
Appendix A:

Awk Reference Manual

This appendix explains, with examples, the constructs that make up Awk programs.

Because it’s a description of the complete language, the material is detailed, so we recom-

mend that you skim it, then come back as necessary to check your understanding.

The first section describes patterns. The second section deals with actions: expressions,

assignments, and control-flow statements. The remaining sections cover function definitions,

output, input, and how Awk programs can call other programs.

Awk programs. The simplest Awk program is a sequence of pattern-action statements:

pattern { action }

pattern { action }

...

In some statements, the pattern may be missing; in others, the action and its enclosing braces

may be missing. After Awk has checked your program to make sure there are no syntactic

errors, it reads the input a line at a time, and for each input line, evaluates the patterns in

order. For each pattern that matches the current input line, it executes the associated action.

A missing pattern matches every input line, so every action with no pattern is performed on

each line of input. A pattern-action statement consisting only of a pattern prints each input

line matched by the pattern. The terms ‘‘input line’’ and ‘‘record’’ are used synonymously,

though Awk also supports multiline records, where a record may contain several lines.

An Awk program is a sequence of pattern-action statements and function definitions. A

function definition has the form

function name(parameter-list) { statements }

Pattern-action statements and function definitions are separated by newlines or semicolons

and can be intermixed.

Statements are separated by newlines or semicolons or both.

164 APPENDIX A: AWK REFERENCE MANUAL

The opening brace of an action must be on the same line as the pattern it accompanies; the

remainder of the action, including the closing brace, may appear on the following lines.

Blank lines are ignored; they may be inserted before or after any statement to improve the

readability of a program. Spaces and tabs may be inserted around operators and operands,

again to enhance readability.

A semicolon by itself denotes the empty statement, as does {}.

A comment starts with the character # and ends at the end of the line, as in

{ print $1, $3 } # name and population

Comments may appear at the end of any line.

Backslashes may be used to break statements across multiple lines.

In addition, a statement may be broken without a backslash after a comma, left brace, &&,

l l , do, else, and the closing right parenthesis in an if, for, or while statement.

A long statement may be spread over sev eral lines by inserting a backslash and newline at

each break:

{ print \

$1, # country name

$2, # area in thousands of square kilometers

$3 } # population in millions

As this illustrates, statements may be broken after commas, and a comment may be inserted at

the end of each broken line.

In this book we have used several formatting styles, partly to illustrate different ones, and

partly to keep programs short. For short programs, format doesn’t much matter, but consis-

tency and readability will help to keep longer programs manageable.

Commandlines. An Awk program is usually provided as a single argument on the com-

mandline, or from a file named in a -f argument.

awk [-Fs] [-v var=value] 'program' optional list of filenames

awk [-Fs] [-v var=value] -f progfile optional list of filenames

Multiple -f options are allowed; the Awk program is created by combining these files in

order. If the filename is -, the program is read from the standard input.

The option -Fs sets the field separator variable FS to s.

The option --csv causes input to be treated as comma-separated values.

An option of the form -v var=value sets the variable var to value before the Awk pro-

gram begins execution. Any number of -v arguments are permitted.

The option --version prints the version identification of the specific Awk program and

terminates.

All options must appear before a literal program. The special optional argument --

marks the end of a list of optional arguments.

Command-line arguments are discussed further in Section A.5.5, below.

The Input File countries. As input for many of the Awk programs in the manual, we

will use the countries file from Section 5.1. Each line contains the name of a country, its

population in millions, its area in thousands of square kilometers, and the continent it is in.

Values are from 2020; Russia has been arbitrarily placed in Europe. In the file, the four col-

umns are separated by tabs; a single space separates North and South from America.

SECTION A.1: PATTERNS 165

The file countries contains the following lines:

Russia 16376 145 Europe

China 9388 1411 Asia

USA 9147 331 North America

Brazil 8358 212 South America

India 2973 1380 Asia

Mexico 1943 128 North America

Indonesia 1811 273 Asia

Ethiopia 1100 114 Africa

Nigeria 910 206 Africa

Pakistan 770 220 Asia

Japan 364 126 Asia

Bangladesh 130 164 Asia

For the rest of the manual, the countries file is used when no input file is mentioned

explicitly.

A.1 Patterns

Patterns control the execution of actions: when a pattern matches an input line, its associ-

ated action is executed. This section describes the types of patterns and the conditions under

which they match.

Summary of Patterns

1. BEGIN { statements }

The statements are executed once before any input has been read.

2. END { statements }

The statements are executed once after all input has been read.

3. expression { statements }

The statements are executed at each input line where the expression is true, that is, nonzero or non-

null.

4. /regular expression/ { statements }

The statements are executed at each input line that contains a string matched by the regular expres-

sion.

5. pattern1 , pattern2 { statements }

A range pattern matches each input line from a line matched by pattern1 to the next line matched by

pattern2, inclusive; the statements are executed at each matching line. Both matches can occur on

the same line.

BEGIN and END do not combine with other patterns, but there may be multiple instances. BEGIN and

END always require an action; the statements and enclosing braces may be omitted from all other pat-

terns.

A range pattern cannot be part of any other pattern.

166 APPENDIX A: AWK REFERENCE MANUAL

A.1.1 BEGIN and END

The BEGIN and END patterns do not match any input lines. Rather, the statements in the

BEGIN action are executed after Awk has processed the command line, but before it reads any

input; the statements in the END action are executed after all input has been read. BEGIN and

END thus provide a way to gain control for initialization and wrapup. BEGIN and END do not

combine with other patterns. If there is more than one BEGIN, the associated actions are

executed in the order in which they appear in the program; the same is true for multiple END

patterns. Although it’s not required, we put BEGIN first and END last.

One common use of a BEGIN action is to change the default way that input lines are split

into fields. The field separator is controlled by a built-in variable called FS. By default, fields

are separated by sequences of spaces and/or tabs; this behavior occurs when FS is set to a

space.

If the command-line argument --csv is used, the input is treated as comma-separated

values (CSV) format. Input fields are separated by commas, independent of the value of FS.

Fields may be quoted with double-quote characters ". Such quoted fields may contain com-

mas and double quotes, which are represented as ""; that is, two adjacent quotes are a literal

quote. See Section A.5.2 for more details.

Setting FS to any character other than a space makes that character the field separator. A

multi-character field separator is interpreted as a regular expression, as discussed below.

The following program uses the BEGIN action to set the field separator to a tab character

(\t) and to put column headings on the output. The second printf statement, which is

executed for each input line, formats the output into a table aligned under the column head-

ings. The END action prints the totals. (Variables and expressions are discussed in Section

A.2.1.)

print countries with column headers and totals

BEGIN { FS = "\t" # make tab the field separator

printf("%12s %6s %5s %s\n\n",

"COUNTRY", "AREA", "POP", "CONTINENT")

}

{ printf("%12s %6d %5d %s\n", $1, $2, $3, $4)

area += $2

pop += $3

}

END { printf("\n%12s %6d %5d\n", "TOTAL", area, pop) }

With the countries file as input, this program produces

SECTION A.1: PATTERNS 167

COUNTRY AREA POP CONTINENT

Russia 16376 145 Europe

China 9388 1411 Asia

USA 9147 331 North America

Brazil 8358 212 South America

India 2973 1380 Asia

Mexico 1943 128 North America

Indonesia 1811 273 Asia

Ethiopia 1100 114 Africa

Nigeria 910 206 Africa

Pakistan 770 220 Asia

Japan 364 126 Asia

Bangladesh 130 164 Asia

TOTAL 53270 4710

A.1.2 Expression Patterns

Like most programming languages, Awk is rich in expressions for describing numeric

computations, but it also has expressions for describing operations on strings. The term string

means a sequence of zero or more characters represented in UTF-8. These may be stored in

variables, or appear literally as string constants like "", "Asia", "7pmV" and "34".

A substring is a contiguous sequence of zero or more characters within a string. The

string "", which contains no characters, is called the null or empty string. In every string, the

null string appears as a substring of length zero before the first character, between every pair

of adjacent characters, and after the last character.

Any expression can be used as an operand of any operator. If an expression has a numeric

value but an operator requires a string value, the numeric value is automatically transformed

into a string; similarly, a string is converted into a number when an operator requires a

numeric value. Type conversions and coercions are discussed in detail in Section A.2.2

below.

Any expression can be used as a pattern. If an expression used as a pattern has a nonzero

or nonnull value at the current input line, then the pattern matches that line. The typical

expression patterns are those involving comparisons between numbers or strings. A compari-

son expression contains one of the six relational operators, or one of the two string-matching

operators ~ (tilde) and !~ that will be discussed in the next section. These operators are

listed in Table A-1.

168 APPENDIX A: AWK REFERENCE MANUAL

TABLE A-1. COMPARISON OPERATORS

OPERATOR MEANING

< less than

<= less than or equal to

== equal to

!= not equal to

>= greater than or equal to

> greater than

~ matched by

!~ not matched by

If the pattern is a comparison expression like NF > 10, then it matches the current input

line when the condition is satisfied, that is, when the number of fields in the line is greater

than 10. If the pattern is an arithmetic expression like NF, it matches the current input line

when its numeric value is nonzero. If the pattern is a string expression, it matches the current

input line when the string value of the expression is nonnull.

In a relational comparison, if both operands are numeric, a numeric comparison is made;

otherwise, any numeric operand is converted to a string, and then the operands are compared

as strings. The strings are compared character by character using UTF-8 ordering. One string

is ‘‘less than’’ another if it would appear before the other according to this ordering, for exam-

ple, "India" < "Indonesia" and "Asia" < "Asian". Comparisons are case-sensi-

tive: "A" and "Z" both precede "a".

The pattern

$3/$2 > 0.5

selects lines where the value of the third field divided by the second is greater than 0.5, that is,

where the population density is greater than 500 people per square kilometer, while

$0 >= "M"

selects lines that begin with an M, N, O, etc.:

Russia 16376 145 Europe

USA 9147 331 North America

Mexico 1943 128 North America

Nigeria 910 206 Africa

Pakistan 770 220 Asia

Note that this also matches lines that begin with any character past M, which among other

things includes any lower-case letter.

Sometimes the type of a comparison operator cannot be determined solely by the syntax

of the expression in which it appears. The program

$1 < $4

could compare the first and fourth fields of each input line either as numbers or as strings.

Here, the type of the comparison depends on the values of the fields, and it may vary from

line to line. In the countries file, the first and fourth fields are always strings, so string

comparisons are always made; the output is

SECTION A.1: PATTERNS 169

Brazil 8358 212 South America

Mexico 1943 128 North America

As with all comparisons, the comparison is done numerically only if both fields are numbers;

this would be the case with

$2 < $3

on the same data.

Section A.2.2 contains a complete discussion of strings, numbers, expressions, and coer-

cions.

A compound pattern is an expression that combines other patterns, using parentheses and

the logical operators l l (OR), && (AND), and ! (NOT). A compound pattern matches the cur-

rent input line if the expression evaluates to true. The following program uses the AND opera-

tor to select all lines in which the fourth field is Asia and the third field exceeds 500:

$4 == "Asia" && $3 > 500

The program

$4 == "Asia" l l $4 == "Europe"

uses the OR operator to select lines with either Asia or Europe as the fourth field. As we will

see in a moment, because the latter query is a test on string values, another way to write it is

to use a regular expression with the alternation operator l :

$4 ~ /^(Asia l Europe)$/

Tw o regular expressions are equivalent if they match the same strings. Test your understand-

ing of the precedence rules for regular expressions: Are the two regular expressions

^Asia l Europe$ and ^(Asia l Europe)$ equivalent?

If there are no occurrences of Asia or Europe in other fields, this pattern could also be

written as

/Asia/ l l /Europe/

or even

/Asia l Europe/

The l l operator has the lowest precedence, then &&, and finally !. The && and l l opera-

tors evaluate their operands from left to right; evaluation stops as soon as truth or falsehood is

determined.

A.1.3 Regular Expression Patterns

Awk provides a notation called regular expressions for specifying and matching strings of

characters. Regular expressions are widely used throughout Unix, where restricted forms of

regular expressions use ‘‘wild-card characters’’ for specifying sets of filenames. Regular

expressions are also supported by text editors, and today are part of most programming lan-

guages, either directly in the syntax (as in Awk) or by libraries (as in Python).

A regular expression pattern tests whether a string contains a substring matched by a reg-

ular expression. In this section, we will discuss the most basic kinds of regular expressions

and show how they appear in patterns; a detailed description of regular expressions follows in

the next section.

170 APPENDIX A: AWK REFERENCE MANUAL

Summary of Regular Expression Patterns

/regexpr/

Matches when the current input line contains a substring matched by regexpr.

expression ~ /regexpr/

Matches if the string value of expression contains a substring matched by regexpr.

expression !~ /regexpr/

Matches if the string value of expression does not contain a substring matched by regexpr.

Any expression may be used in place of /regexpr/ in the context of ~ and !~. It is evaluated and then

interpreted as a regular expression.

The simplest regular expression is a string of letters and numbers, like Asia, that matches

itself. To turn a regular expression into a string-matching pattern, enclose it in slashes:

/Asia/

This pattern matches when the current input line contains the substring Asia, either as Asia

by itself or as some part of a larger word like Asian or Pan-Asiatic. Note that spaces

are significant within regular expressions: the string-matching pattern

/ Asia /

matches only when Asia is surrounded by spaces and thus matches no lines in countries.

The pattern above is one of three types of string-matching patterns. Its form is a regular

expression r enclosed in slashes:

/r/

This pattern matches an input line if the line contains a substring matched by r.

The other two types of string-matching patterns use an explicit match operator:

expression ~ /r/

expression !~ /r/

The match operator ~ means ‘‘is matched by’’ and !~ means ‘‘is not matched by.’’ The first

pattern matches when the string value of expression contains a substring matched by the regu-

lar expression r; the second pattern matches if there is no such substring.

The left operand of a match operator is often a field: the pattern

$4 ~ /Asia/

matches all input lines in which the fourth field contains Asia as a substring, while

$4 !~ /Asia/

matches if the fourth field does not contain Asia anywhere.

Note that the string-matching pattern /Asia/ is a shorthand for $0 ~ /Asia/.

A.1.4 Regular Expressions in Detail

A regular expression is a notation for specifying and matching strings. Like an arithmetic

expression, a regular expression is a basic expression or one created by applying operators to

SECTION A.1: PATTERNS 171

component expressions. To understand the strings matched by a regular expression, we need

to understand the strings matched by its components.

Summary of Regular Expressions

The regular expression metacharacters are:

\ ^ $. [] l () * + ? { }

A basic regular expression is one of the following:

a nonmetacharacter, such as A, that matches itself.

an escape sequence that matches a special symbol: e.g., \t matches a tab (see Table A-2).

a quoted metacharacter, such as *, that matches the metacharacter literally.

^, which matches the beginning of a string.

$, which matches the end of a string.

. , which matches any single character.

a character class: [ABC] matches any of the characters A, B, or C.

Character classes may include abbreviations: [0-9] matches any single digit, [A-Za-z] matches any

single letter in either case, [[:class:]] matches any character in the class, which may be alnum,

alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper, or xdigit

(hexadecimal digit).

Character classes may be complemented, to match any character not in the class: [^0-9] matches any

character except a digit; [^[:cntrl:]] matches any non-control character.

These operators combine regular expressions into larger ones.

r1 l r2 alternation: matches any string matched by r1 or r2

r1r2 concatenation: matches xy where r1 matches x and r2 matches y

r* matches zero or more consecutive strings matched by r

r+ matches one or more consecutive strings matched by r

r? matches the null string or one string matched by r

r{m,n} between m and n instances of r; n is optional

(r) grouping: matches the same strings as r

The operators are listed in order of increasing precedence. Redundant parentheses in regular expres-

sions may be omitted as long as the precedence of operators is respected.

Metacharacters. Most characters in a regular expression match literal occurrences of

themselves in the text, so a regular expression consisting of a single character like a letter or

digit is a basic regular expression that matches itself.

However, the regular expression mechanism uses some characters to indicate a meaning

other than their literal value. The characters

\ ^ $. [] l () * + ? { }

are called metacharacters because they hav e special meanings as discussed below.

To preserve the literal meaning of a metacharacter in a regular expression, precede it by a

backslash: the regular expression \$ matches the character $. If a character is preceded by a

single \, we say that the character is quoted.

172 APPENDIX A: AWK REFERENCE MANUAL

In a regular expression, an unquoted caret ^ matches the beginning of a string, an

unquoted dollar sign $ matches the end of a string, and an unquoted period . matches any

single character. Thus,

^C matches a C at the beginning of a string; no special meaning elsewhere
C$ matches a C at the end of a string; no special meaning elsewhere
^C$ matches the string consisting of the single character C
^.$ matches any string containing exactly one character
^...$ matches any string containing exactly three characters
... matches any three consecutive characters
\.$ matches a period at the end of a string

Character classes. A regular expression consisting of a group of characters enclosed in

brackets is called a character class; it matches any one of the enclosed characters. For exam-

ple, [AEIOU] matches any of the characters A, E, I, O, or U.

Ranges of characters can be abbreviated in a character class by using a hyphen. The char-

acter immediately to the left of the hyphen defines the beginning of the range; the character

immediately to the right defines the end. Thus, [0-9] matches any digit, and

[a-zA-Z][0-9] matches a letter followed by a digit. Without both a left and right oper-

and, a hyphen in a character class denotes itself, so the character classes [+-] and [-+]

match either a + or a -. The character class [A-Za-z-]+ matches words that include

hyphens.

Ranges of Unicode characters work so long as the range is of manageable size, roughly

256 characters. In general, if the character set in question fits on a single page in the Unicode

descriptions at unicode.org, a range will work; for example, the character class [Y-x]

matches Japanese Katakana characters.

Special character classes like [:alpha:] match any one of a range of characters defined

by the local environment, as set by the LOCALE shell variable. This enables some language-

independent character-class matching. For example, if the locale is set to the value

LC_ALL=fr_FR.UTF-8, then the regular expression [[:alpha:]] matches accented

letters like é and à , while in the locale en_EN, it does not.

Complemented character classes. A complemented character class is one in which the

first character after the [is a ^. Such a class matches any character not in the group follow-

ing the caret. Thus, [^0-9] matches any character except a digit; [^a-zA-Z] matches any

character except an upper or lower-case letter.

^[ABC] matches an A, B, or C at the beginning of a string
^[^ABC] matches any character at the beginning of a string, except A, B, or C
[^ABC] matches any character other than an A, B, or C
^[^a-z]$ matches any single-character string, except a lower-case letter
^[^[:lower:]]$ also matches any single-character string, except a lower-case letter

Inside a character class, all characters have their literal meaning, except for the quoting

character \, ^ at the beginning, and - between two characters. Thus, [.] matches a period

and ^[^^] matches any character except a caret at the beginning of a string.

Grouping. Parentheses are used in regular expressions to specify how components are

grouped. There are two binary regular expression operators: alternation and concatenation.

The alternation operator l is used to specify alternatives: if r1 and r2 are regular expressions,

then r1 l r2 matches any string matched by r1 or by r2.

http://unicode.org

SECTION A.1: PATTERNS 173

There is no explicit concatenation operator. If r1 and r2 are regular expressions, then

(r1)(r2) (with no space between (r1) and (r2)) matches any string of the form xy where

r1 matches x and r2 matches y. The parentheses around r1 or r2 can be omitted if the con-

tained regular expression does not contain the alternation operator. The regular expression

(Asian l European l North American) (male l female) (black l blue)bird

matches twelve strings ranging from

Asian male blackbird

to

North American female bluebird

Repetitions. The symbols *, +, and ? are unary operators used to specify repetitions in

regular expressions. If r is a regular expression, then (r) * matches any string consisting of

zero or more consecutive substrings matched by r; (r) + matches any string consisting of one

or more consecutive substrings matched by r; and (r)? matches zero or one instances of r,

that is the null string or any string matched by r.

The notation (r){m,n} specifies a match of between m and n (inclusive) occurrences of

the preceding regular expression; if ,n is omitted, the pattern matches exactly m occurrences.

If r is a basic regular expression, parentheses can be omitted.

B* matches the null string or B or BB, and so on
AB*C matches AC or ABC or ABBC, and so on
AB+C matches ABC or ABBC or ABBBC, and so on
ABB*C also matches ABC or ABBC or ABBBC, and so on
AB?C matches AC or ABC
[A-Z]+ matches any string of one or more upper-case letters
(AB)+C matches ABC, ABABC, ABABABC, and so on
X(AB){1,2}Y matches XABY, XABABY, but not XABABABY and so on

In regular expressions, the alternation operator l has the lowest precedence, then concate-

nation, and finally the repetition operators *, +, ? and {}. As in arithmetic expressions, oper-

ators of higher precedence are evaluated before lower ones. These conventions allow paren-

theses to be omitted: ab l cd is the same as (ab) l (cd), and ^ab l cd*e$ is the same as

(^ab) l (c(d*)e$).

Escapes in regular expressions and strings. Within regular expressions and strings, Awk

uses certain character sequences, called escape sequences, to specify characters for which

there may be no other notation. For example, \n stands for a newline character, which cannot

otherwise appear in a string or regular expression; \b stands for backspace; \t stands for tab;

and \/ represents a slash. Any arbitrary value can be entered with an octal or hexadecimal

escape: \033 and \0x1b both represent the ASCII escape character. An arbitrary Unicode

character can be entered as \uh..., where h... is a sequence of up to 8 hexadecimal digits that

represent a valid Unicode character; for example, the character 4 is \u1F642.

It’s important to note that such escape sequences have special meaning only within an

Awk program; in data, they are just characters. The complete list of escape sequences is

shown in Table A-2.

Examples. To finish our discussion of regular expressions, here are some examples of use-

ful string-matching patterns containing regular expressions with unary and binary operators,

174 APPENDIX A: AWK REFERENCE MANUAL

TABLE A-2. ESCAPE SEQUENCES

SEQUENCE MEANING

\a alarm (bell)

\b backspace

\f formfeed

\n newline (line feed)

\r carriage return

\t tab

\v vertical tab

\ddd octal value ddd; ddd is 1 to 3 digits between 0 and 7

\xhh hexadecimal value; hh is 1 or 2 hexadecimal digits in upper or lower case

\uh... Unicode value; h... is up to 8 hexadecimal digits in upper or lower case

\c any other character c literally, e.g., \" for " and \\ for \

along with a description of the kinds of input lines they match. Recall that a string-matching

pattern /r/ matches the current input line if the line contains at least one substring matched

by r.

/^[0-9]+$/

matches any input line that consists of one or more decimal digits
/^[0-9][0-9][0-9]$/

exactly three digits
/^[0-9]{3}$/

also exactly three digits
/^(\+ l -)?[0-9]+\.?[0-9]*$/

a decimal number with an optional sign and optional fraction
/^[+-]?[0-9]+[.]?[0-9]*$/

also a decimal number with an optional sign and optional fraction
/^[+-]?([0-9]+[.]?[0-9]* l [.][0-9]+)([eE][+-]?[0-9]+)?$/

a floating point number with optional sign and optional exponent
/^[A-Za-z_][A-Za-z_0-9]*$/

a letter or underscore followed by any letters, underscores, or digits (e.g., a variable name)
/^[A-Za-z]$ l ^[A-Za-z][0-9]$/

a letter or a letter followed by a digit
/^[A-Za-z][0-9]?$/

also a letter or a letter followed by a digit

Since + and . are metacharacters, they hav e to be preceded by backslashes in the fourth

example to match literal occurrences. These backslashes are not needed within character

classes, so the fifth example shows an alternate way to describe the same numbers.

Any regular expression enclosed in slashes can be used as the right-hand operand of a

matching operator: the program

$2 !~ /^[0-9]+$/

prints all lines in which the second field is not a string of digits.

Table A-3 summarizes regular expressions and the strings they match. The operators are

listed in order of increasing precedence. Characters are Unicode code points.

SECTION A.1: PATTERNS 175

TABLE A-3. REGULAR EXPRESSIONS

EXPRESSION MATCHES

c the nonmetacharacter c

\c escape sequence or literal character c

^ beginning of string

$ end of string

. any character

[c1c2. . .] any character in c1c2. . .

[^c1c2. . .] any character not in c1c2. . .

[c1-c2] any character in the range beginning with c1 and ending with c2

[^c1-c2] any character not in the range c1 to c2

r1 l r2 any string matched by r1 or r2

(r1)(r2) any string xy where r1 matches x and r2 matches y;

parentheses are not needed around subexpressions with no alternations

(r)* zero or more consecutive strings matched by r

(r)+ one or more consecutive strings matched by r

(r)? zero or one string matched by r

(r){m,n} m through n consecutive strings matched by r; n may be omitted;

parentheses are not needed around basic regular expressions

(r) any string matched by r

A.1.5 Range Patterns

A range pattern consists of two patterns separated by a comma, as in

pat1, pat2

A range pattern matches each line between an occurrence of pat1 and the next occurrence of

pat2 inclusive; pat2 may match the same line as pat1, making the range a single line.

Matching begins whenever the first pattern of a range matches; if no instance of the sec-

ond pattern is subsequently found, then all lines to the end of the input are matched:

/Europe/, /Africa/

prints

Russia 16376 145 Europe

China 9388 1411 Asia

USA 9147 331 North America

Brazil 8358 212 South America

India 2973 1380 Asia

Mexico 1943 128 North America

Indonesia 1811 273 Asia

Ethiopia 1100 114 Africa

FNR is the number of the line just read from the current input file and FILENAME is the

filename itself; both are built-in variables. Thus, the program

FNR == 1, FNR == 5 { print FILENAME ": " $0 }

176 APPENDIX A: AWK REFERENCE MANUAL

prints the first five lines of each input file with the filename prefixed. Alternatively, this pro-

gram could be written as

FNR <= 5 { print FILENAME ": " $0 }

A range pattern cannot be part of any other pattern.

A.2 Actions

In a pattern-action statement, the pattern determines when the action is executed. Some-

times an action is simple: a single print or assignment. Other times, it may be a sequence of

several statements separated by newlines or semicolons. This section begins the description

of actions by discussing expressions and control-flow statements. The following sections

present user-defined functions, and statements for input and output.

Summary of Actions

The statements in actions can include:

expressions, with constants, variables, assignments, function calls, etc.

print expression -list

printf(format, expression -list)

if (expression) statement

if (expression) statement else statement

while (expression) statement

for (expression; expression; expression) statement

for (variable in array) statement

do statement while (expression)

break

continue

next

nextfile

exit

exit expression

{ statements }

A.2.1 Expressions

We begin with expressions, because expressions are the simplest statements, and most

other statements are made up of expressions of various kinds. An expression is formed by

combining primary expressions and other expressions with operators. The primary expres-

sions are the primitive building blocks: they include constants, variables, array references,

function invocations, and various built-ins, like field names.

Our discussion of expressions starts with constants and variables. Then come the opera-

tors that can be used to combine expressions. These operators fall into five categories: arith-

metic, comparison, logical, conditional, and assignment. The built-in arithmetic and string

functions come next, followed at the end of the section by the description of arrays.

SECTION A.2: ACTIONS 177

Constants. There are two types of constants, string and numeric. A string constant is cre-

ated by enclosing a sequence of characters in quotation marks, as in "hello, world" or

"Asia" or "". String constants may contain the escape sequences listed in Table A-2. A

long string can be split into multiple lines with backslashes:

s = "a really very long \

string split over two lines"

The newline that follows the backslash is removed; it is not part of the string, so the result is

equivalent to

s = "a really very long string split over two lines"

Any spaces at the beginning of the continuation are included.

A numeric constant can be an integer like 1127, a decimal number like 3.14, or a num-

ber in scientific (exponential) notation like 6.022E+23. Different representations of the

same number have the same numeric value: the numbers 1e6, 1.00E6, 10e5, 0.1e7, and

1000000 are numerically equal.

All numbers are stored in double-precision floating point, the precision of which is

machine dependent, though usually about 15 decimal digits.

Tw o special numeric values are recognized, "+nan" and "+inf", which represent NaN,

the ‘‘not a number’’ value, and infinity. These must include an explicit + or - sign both as lit-

erals in a program and as data input.

The names are not case sensitive, so NaN and Inf are also valid.

The nan and inf values can be generated by arithmetic expressions; for example.

$ awk '{print " " $1/$2}'

1 2

0.5

1 +nan

+nan

+nan 1

+nan

+nan +nan

+nan

+nan -inf

+nan

+inf +inf

-nan

0 +inf

0

+inf 0

awk: division by zero

input record number 7, file

source line number 1

Variables. Expressions can contain several kinds of variables: user-defined, built-in, and

fields. Variable names are sequences of letters, digits, and underscores that do not begin with

a digit; all built-in variables have all-upper-case names.

A variable has a value that is a string or a number or both. Since the type of a variable is

not declared, Awk infers the type from context. When necessary, Awk will convert a string

value into a numeric one, or vice versa. For example, in

178 APPENDIX A: AWK REFERENCE MANUAL

$4 == "Asia" { print $1, 1000 * $2 }

$2 is converted into a number if it is not one already, and $1 and $4 are converted into

strings if they are not already.

An uninitialized variable has the string value "" (the null string) and the numeric value 0.

Built-In Variables. Table A-4 lists the built-in variables. These variables can be used in

all expressions, and may be reset by the user. FILENAME is set each time a new file is read.

FNR, NF, and NR are set each time a new record is read; additionally, NF is reset when $0

changes or when a new field is created. Conversely, if NF changes, $0 is recomputed when

its value is needed. The variables RLENGTH and RSTART change as a result of invoking the

match function.

TABLE A-4. BUILT-IN VARIABLES

VARIABLE MEANING DEFAULT

ARGC number of command-line arguments, including command name -

ARGV array of command-line arguments, numbered 0..ARGC-1 -

CONVFMT conversion format for numbers "%.6g"

ENVIRON array of shell environment variables -

FILENAME name of current input file -

FNR record number in current file -

FS input field separator " "

NF number of fields in current record -

NR number of records read so far -

OFMT output format for numbers "%.6g"

OFS output field separator for print " "

ORS output record separator for print "\n"

RLENGTH length of string matched by match function -

RS input record separator "\n"

RSTART start of string matched by match function -

SUBSEP subscript separator "\034"

Field Variables. The fields of the current input line are called $1, $2, through $NF; $0

refers to the whole line. Fields share the properties of other variables — they may be used in

arithmetic or string operations, and they may be assigned to. Thus one can divide the second

field in each line of countries by 1000 to express areas in millions of square kilometers

instead of thousands:

{ $2 = $2 / 1000; print }

One can assign a new string to a field:

BEGIN { FS = OFS = "\t" }

$4 == "North America" { $4 = "NA" }

$4 == "South America" { $4 = "SA" }

{ print }

In this program, the BEGIN action sets FS, the variable that controls the input field separator,

and OFS, the output field separator, both to a tab. The print statement in the fourth line

SECTION A.2: ACTIONS 179

prints the value of $0 after it has been modified by previous assignments. When $0 is

changed by assignment or substitution, $1, $2, etc., and NF will all be recomputed; likewise,

when one of $1, $2, etc., is changed, $0 is reconstructed using OFS to separate fields.

Fields can also be specified by expressions. For example, $(NF-1) is the next-to-last

field of the current line. The parentheses are needed: $NF-1 is one less than the numeric

value of the last field.

A field variable referring to a nonexistent field, e.g., $(NF+1), has as its initial value the

null string. A new field can be created by assigning a value to it. For example, the following

program creates a fifth field containing the population density:

BEGIN { FS = OFS = "\t" }

{ $5 = 1000 * $3 / $2; print }

Any intervening fields are created when necessary and given null values.

The number of fields can vary from line to line.

Summary of Expressions

The primary expressions are:

numeric and string constants, variables, fields, function calls, array elements.

These operators combine expressions:

assignment operators = += -= *= /= %= ^=

conditional expression operator ?:

logical operators l l (OR), && (AND), ! (NOT)

matching operators ~ and !~

relational operators < <= == != > >=

concatenation (no explicit operator)

arithmetic operators + - * / % ^

unary + and -

increment and decrement operators ++ and -- (prefix and postfix)

parentheses for grouping

Assignment Operators. There are seven assignment operators that can be used in expres-

sions called assignments. The simplest assignment is an expression of the form

var = expr

where var is a variable or field name, and expr is any expression. For example, to compute

the total population and number of Asian countries, we could write

$4 == "Asia" { pop = pop + $3; n = n + 1 }

END { print "Total population of the", n,

"Asian countries is", pop, "million."

}

Applied to countries, the program produces

Total population of the 6 Asian countries is 3574 million.

The first action contains two assignments, one to accumulate population, and the other to

180 APPENDIX A: AWK REFERENCE MANUAL

count countries. The variables are not explicitly initialized, yet everything works properly

because each variable is initialized by default to the string value "" and the numeric value 0.

We also use default initialization to advantage in the following program, which finds the

country with the largest population:

$3 > maxpop { maxpop = $3; country = $1 }

END { print "country with largest population:",

country, maxpop

}

The result:

country with largest population: China 1411

Note, however, that this program is correct only when at least one value of $3 is positive.

The other six assignment operators are +=, -=, *=, /=, %=, and ^=. Their meanings are

similar: v op= e has the same effect as v = v op e. The assignment

pop = pop + $3

can be written more concisely using the assignment operator +=:

pop += $3

This statement has the same effect as the longer version — the variable on the left is incre-

mented by the value of the expression on the right — but += is more compact and often

clearer. In addition, v is evaluated only once so a complicated computation like

v[substr($0,index($0,"!")+1)] += 2

will run faster.

As another example,

{ $2 /= 1000; print }

divides the second field by 1000, then prints the line.

An assignment is an expression; its value is the new value of the left side. Thus assign-

ments can be used inside any expression. In the multiple assignment

FS = OFS = "\t"

both the field separator and the output field separator are set to tab. Assignment expressions

are also common within tests, such as:

if ((n = length($0)) > 0) ...

though this kind of use can be confusing. Don’t forget the parentheses.

Conditional Expression Operator. A conditional expression has the form

expr1 ? expr2 : expr3

First, expr1 is evaluated. If it is true, that is, nonzero or nonnull, the value of the conditional

expression is the value of expr2; otherwise, it is the value of expr3. Only one of expr2 and

expr3 is evaluated.

The following program uses a conditional expression to print the reciprocal of $1, or a

warning if $1 is zero:

SECTION A.2: ACTIONS 181

{ print ($1 != 0 ? 1/$1 : "$1 is zero, line " NR) }

As with nested assignments, conditional expressions can be abused to create inscrutable code.

Logical Operators. The logical operators && (AND), l l (OR), and ! (NOT) are used to cre-

ate logical expressions by combining other expressions. A logical expression has the value 1

if it is true and 0 if false. In the evaluation of a logical operator, an operand with a nonzero or

nonnull value is treated as true; other values are treated as false. The operands of expressions

separated by && or l l are evaluated from left to right, and evaluation ceases as soon as the

value of the complete expression can be determined. This means that in

expr1 && expr2

expr2 is not evaluated if expr1 is false, while in

expr3 l l expr4

expr4 is not evaluated if expr3 is true.

Newlines may be inserted after the && and l l operators.

The precedence of && is higher than l l , so an expression like

A && B l l C && D

is parsed as

(A && B) l l (C && D)

Parentheses should be used to make sure such expressions are clear to the reader.

Relational Operators. Relational or comparison expressions are those containing either a

relational operator or a regular expression matching operator. The relational operators are <,

<=, == (equals), != (not equals), >=, and >. The regular expression matching operators are ~

(is matched by) and !~ (is not matched by).

The value of a comparison expression is 1 if it is true and 0 otherwise. Similarly, the

value of a matching expression is 1 if true, 0 if false, so

$4 ~ /Asia/

is 1 if the fourth field of the current line contains Asia as a substring, or 0 if it does not.

Arithmetic Operators. Awk provides the usual +, -, *, /, %, and ^ arithmetic operators.

The % operator computes remainders: x%y is the remainder when x is divided by y; its behav-

ior depends on the particular computer if x or y is negative. The ^ operator is exponentiation:

x^y is xy. Note that ^ has a different meaning (bitwise exclusive OR) in C and many other

languages.

All arithmetic is done in double-precision floating point, which is usually about 15 deci-

mal digits.

Unary Operators. The unary operators are + and -, with the obvious meanings.

Increment and Decrement Operators. The assignment n = n + 1 is usually written ++n

or n++ using the unary increment operator ++, which adds 1 to a variable. The prefix form

++n increments n before delivering its value; the postfix form n++ increments n after deliv-

ering its value. This makes a difference when ++ is used in an assignment. If n is initially 1,

then the assignment i = ++n increments n and assigns the new value 2 to i, while the assign-

ment i = n++ increments n but assigns the old value 1 to i. To just increment n, howev er,

182 APPENDIX A: AWK REFERENCE MANUAL

there’s no difference between n++ and ++n. The prefix and postfix decrement operator --,

which subtracts 1 from a variable, works the same way.

Built-In Arithmetic Functions. The built-in arithmetic functions are shown in Table A-5.

These functions can be used as primary expressions in all expressions. In the table, x and y

are arbitrary expressions.

TABLE A-5. BUILT-IN ARITHMETIC FUNCTIONS

FUNCTION VALUE RETURNED

atan2(y, x) arctangent of y/x in the range −π to π

cos(x) cosine of x, with x in radians

exp(x) exponential function of x, ex

int(x) integer part of x; truncated towards 0

log(x) natural (base e) logarithm of x

rand() random number r, where 0 ≤ r < 1

sin(x) sine of x, with x in radians

sqrt(x) square root of x

srand(x) x is new seed for rand(); use time of day if x is omitted; return previous seed

Useful constants can be computed with these functions: atan2(0,-1) gives π and

exp(1) gives e, the base of the natural logarithms. To compute the base-10 logarithm of x,

use log(x)/log(10).

The function rand() returns a pseudo-random floating point number greater than or

equal to 0 and less than 1. Calling srand(x) sets the starting seed of the generator from x

and returns the previous seed. Calling srand() sets the starting point from the time of day.

If srand is not called, rand starts with the same value each time the program is run.

The assignment

randint = int(n * rand()) + 1

sets randint to a random integer between 1 and n inclusive, using the int function to dis-

card the fractional part. The assignment

x = int(x + 0.5)

rounds the value of x to the nearest integer when x is positive.

String Operators. There is only one string operation, concatenation. It has no explicit

operator: string expressions are created by writing constants, variables, fields, array elements,

function values, and other expressions next to one another. The program

{ print NR ":" $0 }

prints each line preceded by its line number and a colon, with no spaces. The number NR is

converted to its string value (and so is $0 if necessary); then the three strings are concatenated

and the result is printed.

Strings as Regular Expressions. So far, in all of our examples of matching expressions,

the right-hand operand of ~ and !~ has been a regular expression enclosed in slashes. But in

fact any expression can be used as the right operand of these operators. Awk evaluates the

SECTION A.2: ACTIONS 183

expression, converts the value to a string if necessary, and interprets the string as a regular

expression. For example, the program

BEGIN { digits = "^[0-9]+$" }

$2 ~ digits

will print all lines in which the second field is a string of digits.

Since expressions can be concatenated, a regular expression can be built up from compo-

nents. The following program echoes input lines that are valid floating point numbers:

BEGIN {

sign = "[+-]?"

decimal = "[0-9]+[.]?[0-9]*"

fraction = "[.][0-9]+"

exponent = "([eE]" sign "[0-9]+)?"

number = "^" sign "(" decimal " l " fraction ")" exponent "$"

}

$0 ~ number

In a matching expression, a quoted string like "^[0-9]+$" can normally be used inter-

changeably with a regular expression enclosed in slashes, such as /^[0-9]+$/. There is

one exception, however. If the string in quotes is to match a literal occurrence of a regular

expression metacharacter, one extra backslash is needed to protect the protecting backslash

itself. That is,

$0 ~ /(\+ l -)[0-9]+/

and

$0 ~ "(\\+ l -)[0-9]+"

are equivalent.

This behavior may seem arcane, but it arises because one level of protecting backslashes is

removed when a quoted string in a program is parsed by Awk. If a backslash is needed in

front of a metacharacter to turn off its special meaning in a regular expression, then that back-

slash needs a preceding backslash to protect it in a string. If the right operand of a matching

operator is a variable or field, as in

x ~ $1

then the additional level of backslashes is not needed in the first field because backslashes

have no special meaning in data.

As an aside, it’s easy to test your understanding of regular expressions interactively: the

program

$1 ~ $2

lets you type in a string and a regular expression; it echoes the line back if the string matches

the regular expression.

Built-In String Functions. Awk provides the built-in string functions shown in Table A-6.

In this table, r represents a regular expression (either as a string or enclosed in slashes), s and

t are string expressions, and n and p are integers. Strings are represented as UTF-8 charac-

ters.

The arguments of a function call are all evaluated before the function is called, but the

order of evaluation is unspecified.

184 APPENDIX A: AWK REFERENCE MANUAL

TABLE A-6. BUILT-IN STRING FUNCTIONS

FUNCTION DESCRIPTION

gsub(r,s) substitute s for r globally in $0,

return number of substitutions made

gsub(r,s,t) substitute s for r globally in string t,

return number of substitutions made

index(s,t) return first position of string t in s, or 0 if t is not present

length(s) return number of Unicode characters in s;

return number of elements if s is an array

match(s,r) test whether s contains a substring matched by r;

return index or 0; sets RSTART and RLENGTH

split(s,a) split s into array a on FS or as CSV if --csv is set,

return number of elements in a

split(s,a, fs) split s into array a on field separator fs,

return number of elements in a

sprintf(fmt,expr-list) return expr-list formatted according to format string fmt

sub(r,s) substitute s for the leftmost longest substring of $0 matched by r;

return number of substitutions made

sub(r,s,t) substitute s for the leftmost longest substring of t matched by r;

return number of substitutions made

substr(s,p) return suffix of s starting at position p

substr(s,p,n) return substring of s of length at most n starting at position p

tolower(s) return s with upper case ASCII letters mapped to lower case

toupper(s) return s with lower case ASCII letters mapped to upper case

The function index(s,t) returns the leftmost position where the string t begins in s, or

zero if t does not occur in s. The first character in a string is at position 1, so

index("banana", "an")

returns 2.

The function match(s,r) finds the leftmost longest substring in the string s that is

matched by the regular expression r. It returns the index where the substring begins or 0 if

there is no matching substring. It also sets the built-in variables RSTART to this index and

RLENGTH to the length of the matched substring.

The function split(s,a,fs) splits the string s into the array a according to the separator

fs and returns the number of elements. It is described after arrays, at the end of this section.

The string function sprintf(format, expr1, expr2, . . . , exprn) returns (without

printing) a string containing expr1, expr2, . . . , exprn formatted according to the printf

specifications in the string value of the expression format. Thus, the statement

x = sprintf("%10s %6d", $1, $2)

assigns to x the string produced by formatting the values of $1 and $2 as a ten-character

string and a decimal number in a field of width at least six. Section A.4.3 contains a complete

SECTION A.2: ACTIONS 185

description of the printf format-conversion characters.

The functions sub and gsub are patterned after the substitute command in the Unix text

editor ed. The function sub(r,s,t) first finds the leftmost longest substring matched by

the regular expression r in the target string t, which must be a variable, field, or array ele-

ment; it then replaces the substring by the substitution string s. As in most text editors, ‘‘left-

most longest’’ means that the leftmost match (that is, the first match) is found first, then

extended as far as possible.

In the target string banana, for example, anan is the leftmost longest substring matched

by the regular expression (an)+. By contrast, the leftmost longest match of (an)* is the

null string before b, which may be surprising when first encountered.

The sub function returns the number of substitutions made, which will be zero or one.

The function sub(r,s) is a synonym for sub(r,s,$0).

The function gsub(r,s,t) is similar, except that it successively replaces the leftmost

longest nonoverlapping substrings matched by r with s in t; it returns the number of substitu-

tions made. (The ‘‘g’’ is for ‘‘global,’’ meaning everywhere.) For example, the program

{ gsub(/USA/, "United States"); print }

will transcribe its input, replacing all occurrences of ‘‘USA’’ by ‘‘United States’’. (In such

examples, when $0 changes, the fields and NF change too.) And

b = "banana"

gsub(/ana/, "anda", b)

will replace banana by bandana in b; matches are nonoverlapping.

In a substitution performed by either sub(r,s,t) or gsub(r,s,t), any occurrence of

the character & in s will be replaced by the substring matched by r. Thus

b = "banana"

gsub(/a/, "aba", b)

replaces banana by babanabanaba in b; so does

gsub(/a/, "&b&", b)

The special meaning of & in the substitution string can be turned off by preceding it with a

backslash, as in \&.

The function substr(s,p) returns the suffix of s that begins at position p. If

substr(s,p,n) is used, only the first n characters of the suffix are returned; if the suffix is

shorter than n, then the entire suffix is returned. For example, we could abbreviate the coun-

try names in countries to their first six characters by the program

{ $1 = substr($1, 1, 6); print $0 }

to produce

186 APPENDIX A: AWK REFERENCE MANUAL

Russia 16376 145 Europe

China 9388 1411 Asia

USA 9147 331 North America

Brazil 8358 212 South America

India 2973 1380 Asia

Mexico 1943 128 North America

Indone 1811 273 Asia

Ethiop 1100 114 Africa

Nigeri 910 206 Africa

Pakist 770 220 Asia

Japan 364 126 Asia

Bangla 130 164 Asia

Setting $1 (or any other field) forces Awk to recompute $0 and thus the fields are now sepa-

rated by a space (the default value of OFS), no longer by a tab.

Strings are concatenated merely by writing them one after another in an expression. For

example, on the countries file,

/Asia/ { s = s $1 " " }

END { print s }

prints

China India Indonesia Pakistan Japan Bangladesh

by building s up a piece at a time starting with an initially empty string. To remove the extra

space at the end, you could use

print substr(s, 1, length(s)-1)

instead of print s in the END action.

A.2.2 Type Conversions

Each Awk variable and field can potentially hold a string value, a numeric value, or both,

at any time. This section sets out the rules for how string and numeric values are treated in

assignments, comparisons, expression evaluation, input, and output.

Assignments. When a variable is set by an assignment

var = expr

its type is set to that of the expression. (‘‘Assignment’’ includes the assignment operators +=,

-=, etc.) An arithmetic expression is of type number, a concatenation is of type string, and so

on. If the assignment is a simple copy, as in v1 = v2, then the type of v1 is set to that of

v2.

Number or String? The value of an expression may be automatically converted from a

number to a string or vice versa, depending on what operation is applied to it. In an arith-

metic expression like

pop + $3

the operands pop and $3 must be numeric, so their values will be forced or coerced to num-

bers if they are not already. Similarly, in the assignment expression

SECTION A.2: ACTIONS 187

pop += $3

pop and $3 must be numbers, so after the expression is evaluated, pop will be numeric and

$3 will have a numeric value, which may have been computed from its string value if it had

one. In a string expression like

$1 $2

the operands $1 and $2 must be strings to be concatenated, so they will be coerced to strings

if necessary; if they had numeric values, those will be unchanged.

The type of a field is determined by context when possible; for example,

$1++

implies that $1 must be coerced to numeric if necessary, and

$1 = $1 "," $2

implies that $1 and $2 must be coerced to strings if necessary.

Comparisons and coercions. In comparisons, if both operands are numeric, the compari-

son is made numerically. Otherwise, operands are coerced to string if necessary, and the com-

parison is made on the string values.

Uninitialized variables have the numeric value 0 and the string value "". Accordingly, if

x is uninitialized,

if (x) ...

is false, and

if (!x) ...

if (x == 0) ...

if (x == "") ...

are all true because x is both 0 and "". But if x is uninitialized,

if (x == "0") ...

is false because x is "", which is a string value, not numeric.

There are two idioms for coercing an expression of one type to the other:

number "" concatenate a null string to number to coerce it to a string
string + 0 add zero to string to coerce it to a number

Thus, to force a string comparison between two fields, coerce one field to string:

$1 "" == $2

To force a numeric comparison, coerce both fields to numeric:

$1 + 0 == $2 + 0

This works regardless of what the fields contain.

Type inference. In contexts where types cannot be reliably determined, such as

if ($1 == $2) ...

the type of each field is determined heuristically on input. All fields are strings; in addition,

each field that contains only a number is also considered numeric.

http://inference.In

188 APPENDIX A: AWK REFERENCE MANUAL

Fields that are explicitly null have the string value ""; they are not numeric. Non-existent

fields (i.e., fields past NF) and $0 for blank lines are treated this way too.

Let us examine the meaning of a comparison like

$1 == $2

that involves fields. Here, the type of the comparison depends on whether the fields contain

numbers or strings, and this can only be determined when the program runs; the type of the

comparison may differ from input line to input line. When Awk creates a field at run time, it

automatically sets its type to string; in addition, if the field contains a valid number, it also

gives the field a numeric type.

For example, the comparison $1 == $2 will be numeric and succeed if $1 and $2 have

any of the values

1 1.0 +1 1e0 0.1e+1 10E-1 001

because all these values are different representations of the numeric value 1. However, this

same expression will be a string comparison and hence fail on each of these pairs:

0 (null)
0.0 (null)
0 0x

1e5000 1.0e5000

In the first three pairs, the second field is not a number. The last pair will be compared as

strings on computers where the values are too large to be represented as numbers.

As it is for fields, so it is for array elements created by split.

Mentioning an array element in an expression causes it to exist, with the values 0 and ""

as described above. Thus, if arr[i] does not currently exist,

if (arr[i] == "") ...

causes it to exist with the value "" and thus the if is satisfied.

This property leads to an elegant program for eliminating duplicate records from an input

stream:

!a[$0]++ # equivalently, a[$0]++ == 0

counts the number of times any particular line appears, but prints only the first occurrence,

because that is the only time when the count for the specific array element is zero.

The test

if (i in arr) ...

determines if arr[i] exists without the side effect of creating it.

Number to string conversions. The print statement

print $1

prints the string value of the first field; thus, the output is identical to the input.

Nonexistent fields and fields that are explicitly null have only the string value ""; they are

not numeric, but when coerced to numbers they acquire the numeric value 0. Array subscripts

are always strings; a numeric subscript is converted to its string value.

The numeric value of a string is the value of the longest numeric prefix of the string. Thus

SECTION A.2: ACTIONS 189

BEGIN { print "1E2"+0, "12E"+0, "E12"+0, "1X2Y3"+0 }

yields

100 12 0 1

For printing, the string value of a number is computed by formatting the number with the

output format conversion OFMT; its default value is "%.6g". Thus

BEGIN { print 1E2, 12E-2, E12 "", 1.23456789 }

gives

100 0.12 1.23457

Look carefully at this output: there is an empty field corresponding to the third argument,

E12 "".

For other conversions from number to string, the string value of a number is computed by

formatting the number with the conversion format conversion CONVFMT.

CONVFMT controls the conversion of numeric values to strings for concatenation, compar-

ison, and creation of array subscripts. The default value of CONVFMT is also "%.6g". The

default values of OFMT and CONVFMT can be changed by assigning them new values. If

CONVFMT were changed to "%.2f", for example, coerced numbers would be compared with

two digits after the decimal point. In both cases, integral values convert to integers regardless

of CONVFMT and OFMT.

Summary of Operators. The operators that can appear in expressions are summarized in

Table A-7. Expressions can be created by applying these operators to constants, variables,

field names, array elements, function results, and other expressions.

The operators are listed in order of increasing precedence. Operators of higher prece-

dence are evaluated before lower ones; this means, for example, that * is evaluated before +

in an expression. All operators are left associative except the assignment operators, the condi-

tional operator, and exponentiation, which are right associative. Left associativity means that

operators of the same precedence are evaluated left to right; thus 3-2-1 is (3-2)-1, not

3-(2-1).

Since there is no explicit operator for concatenation, it is wise to parenthesize expressions

involving other operators in concatenations. Consider the program

$1 < 0 { print "abs($1) = " -$1 }

The expression following print seems to use concatenation, but is actually a subtraction.

The programs

$1 < 0 { print "abs($1) = " (-$1) }

and

$1 < 0 { print "abs($1) =", -$1 }

both do what was intended.

A.2.3 Control-Flow Statements

Awk provides braces for grouping statements, an if-else statement for decision-mak-

ing, and while, for, and do statements for looping. All of these statements were adopted

190 APPENDIX A: AWK REFERENCE MANUAL

TABLE A-7. EXPRESSION OPERATORS

OPERATION OPERATORS EXAMPLE MEANING OF EXAMPLE

assignment = += -= *= x *= 2 x = x * 2

/= %= ^=

conditional ?: x ? y : z if x is true then y else z

logical OR l l x l l y 1 if x or y is true,

0 otherwise

logical AND && x && y 1 if x and y are true,

0 otherwise

array membership in i in a 1 if a[i] exists, 0 otherwise

matching ~ !~ $1 ~ /x/ 1 if the first field contains an x,

0 otherwise

relational < <= == != x == y 1 if x is equal to y,

>= > 0 otherwise

concatenation "a" "bc" "abc"; there is no explicit

concatenation operator

add, subtract + - x + y sum of x and y

multiply, divide, mod * / % x % y remainder of x divided by y

unary plus and minus + - -x negated value of x

logical NOT ! !$1 1 if $1 is zero or null,

0 otherwise

exponentiation ^ x ^ y xy

increment, decrement ++ -- ++x, x++ add 1 to x

field $ $i+1 value of i-th field, plus 1

grouping () $(i++) return i-th field, then increment i

Operators are listed in order of increasing precedence.

from C, except for the special form of for that iterates over arrays.

A single statement can always be replaced by a list of statements enclosed in braces. The

statements in the list are separated by newlines or semicolons. Newlines may be inserted after

any left brace and before any right brace.

The if-else statement has the form

if (expression)
statement1

else

statement2

The else statement2 is optional. Newlines are optional after the right parenthesis, after

statement1, and after the keyword else. If else appears on the same line as statement1,

however, then a semicolon must terminate statement1 if it is a single statement.

In an if-else statement, the test expression is evaluated first. If it is true, that is, either

nonzero or nonnull, statement1 is executed. If expression is false, that is, either zero or null,

and else statement2 is present, then statement2 is executed.

SECTION A.2: ACTIONS 191

Summary of Control-Flow Statements

{ statements }

statement grouping

if (expression) statement

if expression is true, execute statement

if (expression) statement1 else statement2

if expression is true, execute statement1 otherwise execute statement2

while (expression) statement

if expression is true, execute statement, then repeat

for (expression1; expression2; expression3) statement

equivalent to expression1; while (expression2) { statement; expression3 }

for (variable in array) statement

execute statement with variable set to each subscript in array in turn, in unspecified order

do statement while (expression)

execute statement; if expression is true, repeat

break

immediately leave innermost enclosing while, for, or do; illegal outside of loops

continue

start next iteration of innermost enclosing while, for, or do; illegal outside of loops

return expression

return from function with value expression if present.

next

start next iteration of main input loop; illegal inside function definition

nextfile

start next iteration of main input loop with the next input file; illegal inside function definition

exit

exit expression

go immediately to the END action; if within the END action, exit program entirely. Return expres-

sion as program status, or zero if there is no expression.

To eliminate any ambiguity, each else is associated with the closest previous unassoci-

ated if. For example, in the statement

if (e1) if (e2) s=1; else s=2

the else is associated with the second if. (The semicolon after s=1 is required, because

the else appears on the same line.)

The while statement repeatedly executes a statement while a condition is true:

while (expression)
statement

In this loop, expression is evaluated; if it is true, statement is executed and expression is tested

again. The cycle repeats as long as expression is true, that is, until the expression becomes

false. For example, this program prints all input fields, one per line:

192 APPENDIX A: AWK REFERENCE MANUAL

{ i = 1

while (i <= NF) {

print $i

i++

}

}

The loop stops when i reaches NF+1, and that is its value after the loop exits.

The for statement is a more general form of while:

for (expression1; expression2; expression3)

statement

The for statement has the same effect as

expression1

while (expression2) {

statement
expression3

}

so

{ for (i = 1; i <= NF; i++)

print $i

}

does the same loop over the fields as the while example above. In the for statement, all

three expressions are optional. If expression2 is missing, the condition is taken to be always

true, so for(;;) is an infinite loop.

An alternate version of the for statement that loops over array subscripts is described in

Section A.2.5 below.

The do statement has the form

do

statement
while (expression)

Newlines are optional after the keyword do and after statement. If while appears on the

same line as statement, howev er, then statement must be terminated by a semicolon if it is a

single statement. The do loop executes statement once, then repeats statement as long as

expression is true. It differs from the while and for in a critical way: its test for comple-

tion is at the bottom instead of the top, so it always goes through the loop at least once.

There are two statements for modifying how loops cycle: break and continue. The

break statement causes an exit from the immediately enclosing while, for, or do. The

continue statement causes the next iteration to begin; it causes execution to go to the test

expression in the while and do, and to expression3 in the for statement. Both break and

continue are illegal outside of loops.

The return statement returns from a function, optionally with a value.

The next, nextfile, and exit statements control the outer loop that reads the input

lines in an Awk program. The next statement causes Awk to fetch the next input line and

begin matching patterns starting from the first pattern-action statement.

SECTION A.2: ACTIONS 193

The nextfile statement causes Awk to close the current input file and begin processing

the next input file if there is one.

In an END action, the exit statement causes the program to terminate immediately. In

any other action, it causes the program to behave as if the end of the input had occurred; no

more input is read, and the END actions, if any, are executed.

If an exit statement includes an expression:

exit expr

it causes Awk to return the value of expr as its exit status unless overridden by a subsequent

error or exit. If there is no expr, the exit status is zero. In some operating systems, includ-

ing Unix, the exit status may be tested by the program that invoked Awk.

A.2.4 Empty Statement

A semicolon by itself denotes the empty statement. In the following program, the body of

the for loop is an empty statement.

BEGIN { FS = "\t" }

{ for (i = 1; i <= NF && $i != ""; i++)

;

if (i <= NF)

print

}

The program prints all lines that contain an empty field.

A.2.5 Arrays

Awk provides one-dimensional arrays for storing strings and numbers. Arrays and array

elements need not be declared, nor is there any need to specify how many elements an array

has or will have. Like variables, array elements spring into existence by being mentioned; at

birth, they hav e the numeric value 0 and the string value "".

As a simple example, the statement

x[NR] = $0

assigns the current input line to element NR of the array x. In fact, it is often easiest to read

the entire input into an array, then process it in any convenient order. For example, this vari-

ant of the program from Section 1.7 prints its input in reverse line order:

{ x[NR] = $0 }

END { for (i = NR; i > 0; i--) print x[i] }

The first action stores each input line in the array x, using the line number as a subscript; the

real work is done in the END statement.

The characteristic that sets Awk arrays apart from those in most other languages is that

subscripts are strings. This gives Awk a key-value capability like Python’s dictionary data

structure, or hash tables in Java or JavaScript, or maps in other languages. Arrays in Awk are

called associative arrays, a terminology that predates dictionary and hash table.

The following program accumulates the populations of Asia and Africa in the array

pop. The END action prints the total populations of these two continents.

194 APPENDIX A: AWK REFERENCE MANUAL

/Asia/ { pop["Asia"] += $3 }

/Africa/ { pop["Africa"] += $3 }

END { print "Asian population", pop["Asia"], "million"

print "African population", pop["Africa"], "million"

}

On countries, this program generates

Asian population 3574 million

African population 320 million

Note that the subscripts are the string constants "Asia" and "Africa". If we had written

pop[Asia] instead of pop["Asia"], the expression would have used the value of the

variable Asia as the subscript, and because that variable is uninitialized, the values would

have been accumulated in pop[""].

This example doesn’t really need an associative array since there are only two elements,

both named explicitly. Suppose instead that our task is to determine the total population for

each continent. Associative arrays are ideally suited for this kind of aggregation. Any

expression can be used as a subscript in an array reference, so

pop[$4] += $3

uses the string in the fourth field of the current input line to index the array pop and in that

entry accumulates the value of the third field:

BEGIN { FS = "\t" }

{ pop[$4] += $3 }

END { for (name in pop)

print name, pop[name]

}

The subscripts of the array pop are the continent names; the values are the accumulated pop-

ulations. This code works regardless of the number of continents; the output from the

countries file is

Africa 320

South America 212

North America 459

Asia 3574

Europe 145

The last program used the for statement that loops over all subscripts of an array:

for (variable in array)
statement

This loop executes statement with variable set in turn to each different subscript in the array.

The order in which the subscripts are considered is implementation dependent. Results are

unpredictable if elements are deleted or if new elements are added to the array by statement.

You can determine whether a particular subscript occurs in an array with the expression

subscript in A

This expression has the value 1 if A[subscript] already exists, and 0 otherwise. Thus, to test

whether Africa is a subscript of the array pop you can say

SECTION A.2: ACTIONS 195

if ("Africa" in pop) ...

This condition performs the test without the side effect of creating pop["Africa"], which

would happen if you used

if (pop["Africa"] != "") ...

Note that neither is a test of whether the array pop contains an element with the value

"Africa".

The delete Statement. An array element may be deleted with

delete array[subscript]

For example, this loop removes all the elements from the array pop:

for (i in pop)

delete pop[i]

The statement

delete array

deletes the entire array, and thus delete pop is equivalent to the loop above.

The split Function. The function split(str,arr, fs) splits the string value of str

into fields and stores them in the array arr; str is unchanged. The number of fields produced

is returned as the value of split. The string value of the third argument, fs, determines the

field separator. If there is no third argument, if --csv is set, splitting is done as for CSV;

otherwise FS is used. The string fs may be a regular expression. The rules are as for input

field splitting, which is discussed in Section A.5.1. The function call

split("7/4/76", arr, "/")

splits the string 7/4/76 into three fields using / as the separator; it stores 7 in arr["1"],

4 in arr["2"], and 76 in arr["3"].

If the source string is empty, the number of elements is always zero and the array is not

set.

As a final special case, if the fs argument is the empty string "", the string str is split into

individual characters, one character per array element.

Strings are versatile array subscripts, but the behavior of numeric subscripts as strings may

sometimes appear counterintuitive. Since the string values of 1 and "1" are the same,

arr[1] is the same as arr["1"]. But "01" is not the same string as "1" and the string

"10" comes before the string "2".

Multidimensional Arrays. Awk does not support multidimensional arrays directly but it

provides a simulation using one-dimensional arrays. If you write multidimensional subscripts

like [i,j] or [s,p,q,r], Awk concatenates the components of the subscripts (with a sep-

arator between them) to synthesize a single subscript out of the multiple subscripts that you

write. For example,

for (i = 1; i <= 10; i++)

for (j = 1; j <= 10; j++)

arr[i,j] = 0

creates an array of 100 elements whose subscripts appear to have the form 1,1, 1,2, and so

196 APPENDIX A: AWK REFERENCE MANUAL

on. Internally, howev er, these subscripts are stored as strings of the form 1 SUBSEP 1, 1

SUBSEP 2, and so on. The built-in variable SUBSEP contains the value of the subscript-

component separator; its default value is not a comma but the ASCII file separator character

"\034" or "\x1C", a value that is unlikely to appear in normal text.

The test for array membership with multidimensional subscripts uses a parenthesized list

of subscripts, such as

if ((i,j) in arr) ...

To loop over such an array, howev er, you would write

for (k in arr) ...

and use split(k,x,SUBSEP) if access to the individual subscript components is needed.

Array elements cannot themselves be arrays.

A.3 User-Defined Functions

In addition to built-in functions, an Awk program can contain user-defined functions.

Such a function is defined by a statement of the form

function name(parameter-list) {

statements
}

A function definition can occur anywhere a pattern-action statement can. Thus, the general

form of an Awk program is a sequence of pattern-action statements and function definitions

separated by newlines or semicolons.

In a function definition, newlines are optional after the left brace and before the right

brace of the function body. The parameter list is a sequence of zero or more variable names

separated by commas; within the body of the function these variables refer to the arguments

with which the function was called.

The body of a function definition may contain a return statement that returns control

and perhaps a value to the caller:

return expression

The expression is optional, and so is the return statement itself, but the return value is ""

and 0 if no expression is provided. If the last statement executed is not a return (‘‘falling

off the end of the function’’) the return value is also "" and 0.

For example, this function computes the maximum of its arguments:

function max(m, n) {

return m > n ? m : n

}

The variables m and n are local to the function max; they are unrelated to any other variables

of the same names elsewhere in the program.

A user-defined function can be used in any expression in any pattern-action statement or

the body of any function definition. Each use is a call of the function.

SECTION A.4: OUTPUT 197

For example, the max function might be called like this:

{ print max($1, max($2, $3)) } # print maximum of $1, $2, $3

function max(m, n) {

return m > n ? m : n

}

There cannot be any spaces between the function name and the left parenthesis of the argu-

ment list when the function is called.

If a user-defined function is called in the body of its own definition, that function is said to

be recursive.

When a function is called with an argument like $1, which is just an ordinary variable, the

function is given a copy of the value of the variable, so the function manipulates the copy, not

the variable itself. This means that the function cannot affect the value of the variable outside

the function. (The jargon is that such variables, called ‘‘scalars,’’ are passed ‘‘by value.’’)

Arrays are not copied, however, so it is possible for the function to alter array elements or cre-

ate new ones. (This is called passing ‘‘by reference.’’) The name of a function may not be

used as a parameter, global array, or scalar.

To repeat, within a function definition, the parameters are local variables — they last only

as long as the function is executing, and they are unrelated to variables of the same name else-

where in the program. But all other variables are global; if a variable is not named in the

parameter list, it is visible and accessible throughout the program.

This means that the only way to provide local variables for the private use of a function is

to include them at the end of the parameter list in the function definition. Any variable in the

parameter list for which no actual parameter is supplied in a call is a local variable, with null

initial value. This is not a good design but it at least provides the necessary facility. We insert

several spaces between the arguments and the local variables so they can be more easily dis-

tinguished. Omitting a local variable from this list is a common source of bugs.

A.4 Output

The print and printf statements generate output. The print statement is used for

simple output; printf is used when careful formatting is required. Output from print and

printf can be directed into files and pipes as well as to the terminal. These statements can

be used in any mixture; the output comes out in the order in which it is generated.

A.4.1 The print Statement

The print statement has two equivalent forms:

print expr1, expr2, . . . , exprn

print(expr1, expr2, . . . , exprn)

Both forms print the string value of each expression separated by the output field separator

followed by the output record separator. The statement

print

is an abbreviation for

198 APPENDIX A: AWK REFERENCE MANUAL

Summary of Output Statements

print

print $0 on standard output

print expression, expression, . . .

print expressions, separated by OFS, terminated by ORS

print expression, expression, . . . > filename

print on file filename instead of standard output

print expression, expression, . . . >> filename

append to file filename instead of overwriting previous contents

print expression, expression, . . . l command

print to standard input of command

printf(format, expression, expression, . . .)

printf(format, expression, expression, . . .) > filename

printf(format, expression, expression, . . .) >> filename

printf(format, expression, expression, . . .) l command

printf statements are like print but the first argument specifies the output format

close(filename), close(command)

break connection between print and filename or command

fflush(filename), fflush(command)

force out any buffered output of filename or command

If an expression in the argument list of a print or printf statement contains a relational operator,

either the expression or the argument list must be enclosed in parentheses. Pipes may not be available

on non-Unix systems.

print $0

To print a blank line, that is, a line with only a newline, use

print ""

The second form of the print statement encloses the argument list in parentheses, as in

print($1 ":", $2)

Both forms of the print statement generate the same output but, as we will see, parentheses

may be necessary for arguments containing relational operators.

A.4.2 Output Separators

The output field separator and output record separator are stored in the built-in variables

OFS and ORS. Initially, OFS is set to a single space and ORS to a single newline, but these

values can be changed at any time. For example, the following program prints the first and

second fields of each line with a colon between the fields and two newlines after the second

field:

BEGIN { OFS = ":"; ORS = "\n\n" }

{ print $1, $2 }

By contrast,

SECTION A.4: OUTPUT 199

{ print $1 $2 }

prints the first and second fields with no intervening output field separator, because $1 $2 is a

string consisting of the concatenation of the two fields.

A.4.3 The printf Statement

The printf statement generates formatted output. It is similar to that in C, though

width qualifiers like h and l have no effect.

printf(format, expr1, expr2, . . . , exprn)

The format argument is always required; it is an expression whose string value contains both

literal text to be printed and specifications of how the expressions in the argument list are to

be formatted, as in Table A-8. Each specification begins with %, ends with a character that

determines the conversion, and may include modifiers:

- left-justify expression in its field
+ always print a sign
0 pad with zeros instead of spaces
width pad result to this width as needed; leading 0 pads with zeros
.prec maximum string width, or digits to right of decimal point

If a * appears in a specification, it is replaced by the numeric value of the next argument, so

widths and precisions can be provided dynamically.

TABLE A-8. PRINTF FORMAT-CONTROL CHARACTERS

CHARACTER PRINT EXPRESSION AS

c single UTF-8 character (code point)

d or i decimal integer

e or E [-]d.dddddde[+-]dd or [-]d.ddddddE[+-]dd

f [-]ddd.dddddd

g or G e or f conversion, whichever is shorter, with nonsignificant zeros suppressed

o unsigned octal number

u unsigned integer

s string

x or X unsigned hexadecimal number

% print a %; no argument is consumed

Table A-9 contains some examples of specifications, data, and the corresponding output.

Output produced by printf does not contain any newlines unless you put them in explicitly.

A.4.4 Output into Files

The redirection operators > and >> are used to put output into files instead of the standard

output. The following program will put the first and third fields of all input lines into two

files: bigpop if the third field is greater than 1000, and smallpop otherwise:

$3 > 1000 { print $1, $3 >"bigpop" }

$3 <= 1000 { print $1, $3 >"smallpop" }

200 APPENDIX A: AWK REFERENCE MANUAL

TABLE A-9. EXAMPLES OF PRINTF SPECIFICATIONS

fmt $1 printf(fmt, $1)

%c 97 a

%d 97.5 97

%5d 97.5 97

%e 97.5 9.750000e+01

%f 97.5 97.500000

%7.2f 97.5 97.50

%g 97.5 97.5

%.6g 97.5 97.5

%o 97 141

%06o 97 000141

%x 97 61

l %s l January l January l

l %10s l January l January l

l %-10s l January l January l

l %.3s l January l Jan l

l %10.3s l January l Jan l

l %-10.3s l January l Jan l

%% January %

Notice that the filenames have to be quoted; without quotes, bigpop and smallpop are

merely uninitialized variables. Filenames can be variables or expressions as well:

{ print($1, $3) > ($3 > 1000 ? "bigpop" : "smallpop") }

does the same job, and the program

{ print > $1 }

puts each input line into a file named by its first field.

In print and printf statements, if an expression in the argument list contains a rela-

tional operator, then either that expression or the argument list needs to be parenthesized.

This rule eliminates any potential ambiguity arising from the redirection operator >. In

{ print $1, $2 > $3 }

> is the redirection operator, and hence not part of the second expression, so the values of the

first two fields are written to the file named in the third field. If you want the second expres-

sion to include the > operator, use parentheses:

{ print $1, ($2 > $3) }

It is also important to note that a redirection operator opens a file only once; each succes-

sive print or printf statement adds more data to the open file. When the redirection

operator > is used, the file is initially cleared before any output is written to it. If >> is used

instead of >, the file is not cleared when opened; output is appended after the original con-

tents of the file.

SECTION A.4: OUTPUT 201

There are three special filenames for pre-defined input and output streams:

"/dev/stdin", "/dev/stdout", and "/dev/stderr" represent the standard input,

standard output, and standard error streams of the program. The name "-" may also be used

for the standard input.

A.4.5 Output into Pipes

It is also possible to direct output into a pipe instead of a file on systems that support

pipes. The statement

print l command

causes the output of print to be piped into the command.

Suppose we want to create a list of continent-population pairs, sorted in reverse numeric

order by population. The program below accumulates in an array pop the population values

in the third field for each of the distinct continent names in the fourth field. The END action

prints each continent name and its population, and pipes this output into a suitable sort

command.

print continents and populations, sorted by population

BEGIN { FS = "\t" }

{ pop[$4] += $3 }

END { for (c in pop)

printf("%15s\t%6d\n", c, pop[c]) l "sort -t'\t' -k2 -rn"

}

This yields

Asia 3574

North America 459

Africa 320

South America 212

Europe 145

Another use for a pipe is writing onto the standard error file on Unix systems; output writ-

ten there appears on the user’s terminal instead of the standard output. There are several older

idioms for writing on the standard error:

print message l "cat 1>&2" # redirect cat output to stderr

system("echo '" message "' 1>&2") # redirect echo output to stderr

print message > "/dev/tty" # write directly on terminal

but the easiest idiom with newer versions of Awk is instead to write to /dev/stderr.

Although most of our examples show literal strings enclosed in quotes, command lines

and filenames can be specified by any expression. In print statements involving redirection

of output, the files or pipes are identified by their names; that is, the pipe in the program

above is literally named

sort -t'\t' -k2 -rn

Normally, a file or pipe is created and opened only once during the run of a program. If the

file or pipe is explicitly closed and then reused, it will be reopened.

202 APPENDIX A: AWK REFERENCE MANUAL

A.4.6 Closing Files and Pipes

The statement close(expr) closes a file or pipe denoted by expr; the string value of expr

must be exactly the same as the string used to create the file or pipe in the first place. Thus

close("sort -t'\t' -k2 -rn")

closes the sort pipe opened above.

close is necessary if you intend to write a file, then read it later in the same program.

There are also system-defined limits on the number of files and pipes that can be open at the

same time.

close is a function; it returns the value returned by the underlying fclose function or

exit status for a pipeline.

The fflush function forces out any output that has been collected for a file or pipe;

fflush() or fflush("") flush all output files and pipes.

A.5 Input

There are several ways of providing input to an Awk program. It’s obviously possible to

just type input at the keyboard, but the most common arrangement is to put input data in a

file, say data, and then type

awk 'program' data

Awk reads its standard input if no filenames are given; thus, a second common arrange-

ment is to have another program pipe its output into Awk. For example, the program grep

selects input lines containing a specified regular expression, and is part of many Unix pro-

grammers’ muscle memory. They might instinctively type

grep Asia countries l awk 'program'

to use grep to find the lines containing Asia and pass them on to Awk for subsequent pro-

cessing.

Use "-" or /dev/stdin on the command line to read the standard input in the middle

of a list of files.

Note that literal escaped characters like \n or \007 are not interpreted nor are they in any

way special when they appear in an input stream; they are just literal byte sequences. The

only interpretation on input is that apparently-numeric values like scientific notation and

explicitly signed instances of nan and inf will be stored with a numeric value as well as a

string value.

A.5.1 Input Separators

The default value of the built-in variable FS is " ", that is, a single space. When FS has

this specific value, input fields are separated by spaces and/or tabs, and leading spaces and

tabs are discarded, so each of the following lines has the same first field:

field1

field1

field1 field2

When FS has any other value, leading spaces and tabs are not discarded.

SECTION A.5: INPUT 203

The field separator can be changed by assigning a string to the built-in variable FS. If the

string is longer than one character, it is taken to be a regular expression. The leftmost longest

nonnull and nonoverlapping substrings matched by that regular expression become the field

separators in the current input line. For example,

BEGIN { FS = "[\t]+" }

makes every string consisting of spaces and tabs into a field separator.

When FS is set to a single character other than space, that literal character becomes the

field separator. This convention makes it easy to use regular expression metacharacters as

field separators:

FS = " l "

makes l a field separator. But note that something indirect like

FS = "[]"

is required to set the field separator to a single space.

FS can also be set on the command line with the -F argument. The command line

awk -F'[\t]+' 'program'

sets the field separator to the same strings as the BEGIN action shown above.

Finally, if the --csv argument is used, fields are treated as comma-separated values, and

the value of FS is irrelevant.

A.5.2 CSV Input

Comma-separated values, or CSV, is a widely used format for spreadsheet data. As we

said earlier, CSV is not rigorously defined, but generally any field that contains a comma or a

double quote (") must be surrounded by double quotes. Any field may be surrounded by

quotes, whether it contains commas and quotes or not. An empty field is just "", and a quote

within a field is represented by a doubled quote, as in """,""", which represents ",".

Input records are terminated by an unquoted newline, perhaps preceded by a carriage

return (\r) for files that originated on Windows. Input fields in CSV files may contain

embedded newline characters. A quoted \r\n is converted to \n. A quoted \r or \n is left

alone.

A.5.3 Multiline Records

By default, records are separated by newlines, so the terms ‘‘line’’ and ‘‘record’’ are nor-

mally synonymous. The default record separator can be changed, however, by assigning a

new value to the built-in record-separator variable RS.

If RS is set to the null string, as in

BEGIN { RS = "" }

then records are separated by one or more blank lines and each record can therefore occupy

several lines. Setting RS back to newline with the assignment RS = "\n" restores the default

behavior. With multiline records, no matter what value FS has, newline is always one of the

field separators. Input fields may not contain newlines unless the --csv option has been

used.

204 APPENDIX A: AWK REFERENCE MANUAL

A common way to process multiline records is to use

BEGIN { RS = ""; FS = "\n" }

to set the record separator to one or more blank lines and the field separator to a newline

alone; each line is thus a separate field. Section 4.4 contains more discussion of how to han-

dle multiline records.

The RS variable can be a regular expression, so it’s possible to separate records by text

strings more complicated than just a single character. For example, in a well-structured

HTML document, individual paragraphs might be separated by <p> tags. By setting RS to

<[Pp]>, an input file could be split into records that were each one HTML paragraph.

A.5.4 The getline Function

The function getline reads input either from the current input or from a file or pipe.

By itself, getline fetches the next input record, performs the normal field-splitting opera-

tions on it, and sets NF, NR, and FNR. It returns 1 if there was a record present, 0 if end-of-

file was encountered, and −1 if some error occurred (such as failure to open a file).

The expression getline x reads the next record into the variable x and increments NR

and FNR. No splitting is done; NF is not set.

The expression

getline <"file"

reads from file instead of the current input. It has no effect on NR or FNR, but field split-

ting is performed and NF is set.

The expression

getline x <"file"

gets the next record from file into the variable x; no splitting is done, and NF, NR, and FNR

are untouched.

If the filename is "-", the standard input is read; the filename "/dev/stdin" is equiv-

alent.

Table A-10 summarizes the forms of the getline function. The value of each expres-

sion is the value returned by getline.

TABLE A-10. GETLINE FUNCTION

EXPRESSION SETS

getline $0, NF, NR, FNR

getline var var, NR, FNR

getline <file $0, NF

getline var <file var

cmd l getline $0, NF

cmd l getline var var

As an example, this program copies its input to its output, except that each line like

#include "filename"

SECTION A.5: INPUT 205

is replaced by the contents of the file filename.

include - replace #include "f" by contents of file f

/^#include/ {

gsub(/"/, "", $2)

while (getline x <$2 > 0)

print x

close(x)

next

}

{ print }

It is also possible to pipe the output of another command directly into getline. For

example, the statement

while ("who" l getline)

n++

executes the Unix program who (once only) and pipes its output into getline. The output

of who is a list of the users logged in. Each iteration of the while loop reads one more line

from this list and increments the variable n, so after the while loop terminates, n contains a

count of the number of users. Similarly, the expression

"date" l getline d

pipes the output of the date command into the variable d, thus setting d to the current date.

Again, input pipes may not be available on non-Unix systems.

In all cases involving getline, you should be aware of the possibility of an error return

if the file can’t be accessed. Although it’s appealing to write

while (getline <"file") ... # Dangerous

that’s an infinite loop if file doesn’t exist, because with a nonexistent file getline returns

−1, a nonzero value that is interpreted as true. The preferred way is

while (getline <"file" > 0) ... # Safe

Here the loop will be executed only when getline returns 1, which it does for each input

line it reads.

A.5.5 Command-Line Arguments and Variable Assignments

As we have seen, an Awk command line can have sev eral forms:

awk 'program' f1 f2 ...

awk -f progfile f1 f2 ...

awk -Fsep 'program' f1 f2 ...

awk -Fsep -f progfile f1 f2 ...

awk --csv f1 f2 ...

awk -v var=value f1 f2 ...

awk --version

In these command lines, f1, f2, etc., are command-line arguments that normally represent

filenames; the name "-" may be used for the standard input. The argument --csv enables

CSV input processing.

206 APPENDIX A: AWK REFERENCE MANUAL

The special argument -- can be used to end the list of options.

If a filename has the form var=value, howev er, it is treated as an assignment of value to

the Awk variable var, performed when that argument would otherwise be accessed as a file.

This type of assignment allows variables to be changed before and after a file is read.

The command-line arguments are available to the Awk program in a built-in array called

ARGV. The value of the built-in variable ARGC is one more than the number of arguments.

With the command line

awk -f progfile a v=1 b

ARGC has the value 4, ARGV[0] contains awk, ARGV[1] contains a, ARGV[2] contains

v=1, and ARGV[3] contains b. ARGC is one more than the number of arguments because

awk, the name of the command, is counted as argument zero, as it is in C programs. If the

Awk program appears on the command line, however, the program is not treated as an argu-

ment, nor is -f filename or any -F option. For example, with the command line

awk -F'\t' '$3 > 100' countries

ARGC is 2 , ARGV[0] is awk and ARGV[1] is countries.

The following program echoes its command-line arguments (and a spurious space):

echo - print command-line arguments

BEGIN {

for (i = 1; i < ARGC; i++)

printf "%s ", ARGV[i]

printf "\n"

}

Notice that everything happens in the BEGIN action: because there are no other pattern-action

statements, the arguments are never treated as filenames, and no input is read.

Another program using command-line arguments is seq, which generates sequences of

integers:

seq - print sequences of integers

input: arguments q, p q, or p q r; q >= p; r > 0

output: integers 1 to q, p to q, or p to q in steps of r

BEGIN {

if (ARGC == 2)

for (i = 1; i <= ARGV[1]; i++)

print i

else if (ARGC == 3)

for (i = ARGV[1]; i <= ARGV[2]; i++)

print i

else if (ARGC == 4)

for (i = ARGV[1]; i <= ARGV[2]; i += ARGV[3])

print i

}

The commands

awk -f seq 10

awk -f seq 1 10

awk -f seq 1 10 1

SECTION A.6: INTERACTION WITH OTHER PROGRAMS 207

all generate the integers one through ten.

The arguments in ARGV may be modified or added to, and ARGC may be altered. As each

input file ends, Awk treats the next nonnull element of ARGV (up through the current value of

ARGC-1) as the name of the next input file. Thus setting an element of ARGV to null means

that it will not be treated as an input file.

Increasing ARGC and adding elements to ARGV cause more filenames to be processed.

A.6 Interaction with Other Programs

This section describes some of the ways in which Awk programs can cooperate with other

commands. The discussion applies primarily to the Unix operating system; the examples here

may fail or work differently on non-Unix systems.

A.6.1 The system Function

The built-in function system(expression) executes the command given by the string

value of expression. The value returned by system is the status returned by the command

that was executed, as with close.

For example, we can build another version of the file-inclusion program of Section A.5.4

like this:

$1 == "#include" {

gsub(/"/, "", $2)

system("cat " $2)

next

}

{ print }

If the first field is #include, quotes are removed, and the Unix command cat is called to

print the file named in the second field. Other lines are just copied.

A.6.2 Making a Shell Command from an Awk Program

In all of the examples so far, the Awk program was in a file and fetched with the -f flag,

or it appeared on the command line enclosed in single quotes, like this:

awk '{ print $1 }' ...

Since Awk uses many of the same characters as the shell does, such as $ and ", surrounding

the program with single quotes ensures that the shell will pass the entire program unchanged

to Awk.

Both methods of invoking the Awk program require some typing. To reduce the number

of keystrokes, we might want to put both the command and the program into an executable

file, and invoke the command by typing just the name of the file.

Suppose we want to create a command field1 that will print the first field of each line

of input. This is easy: we put

awk '{print $1}' $*

208 APPENDIX A: AWK REFERENCE MANUAL

into the file field1, and make the file executable by typing the Unix command

$ chmod +x field1

We can now print the first field of each line of a set of files by typing

field1 filenames ...

Now, consider writing a more general command field that will print an arbitrary combi-

nation of fields from each line of its input; in other words, the command

field n1 n2 . . . file1 file2 . . .

will print the specified fields in the specified order. How do we get the value of each ni into

the Awk program each time it is run and how do we distinguish the ni’s from the filename

arguments?

There are several ways to do this if one is adept in shell programming. The simplest way

that uses only Awk, however, is to scan through the built-in array ARGV to process the ni’s,

resetting each such argument to the null string so that it is not treated as a filename.

field - print named fields of each input line

usage: field n n n ... file file file ...

awk '

BEGIN {

for (i = 1; ARGV[i] ~ /^[0-9]+$/; i++) { # collect numbers

fld[++nf] = ARGV[i]

ARGV[i] = ""

}

if (i >= ARGC) # no file names so force stdin

ARGV[ARGC++] = "-"

}

{ for (i = 1; i <= nf; i++)

printf("%s%s", $fld[i], i < nf ? " " : "\n")

}

' $*

This version can deal with either standard input or a list of filename arguments, and with any

number of fields in any order.

A.7 Summary

As we said earlier, this is a long manual, packed with details, and you are dedicated

indeed if you have read every word to get here. You will find that it pays to go back and re-

read sections from time to time, either to see precisely how something works, or because one

of the examples suggests a construction that you might not have tried before.

Awk, like any language, is best learned by experience and practice, so we encourage you

to write your own programs. They don’t hav e to be big or complicated — you can usually

learn how some feature works or test some crucial point with only a couple of lines of code,

and you can just type in data to see how the program behaves.

