
1/8

The AWK book’s 60-line version of Make
benhoyt.com/writings/awk-make/

In the wonderful book The AWK Programming Language by Aho, Weinberger, and
Kernighan, there are a few pages at the end of chapter 7 that present a simplified version
of the Make utility – written in a single page of AWK code.

Before we look at that, I want to mention that the second edition of the AWK book is
coming out next month. Brian Kernighan’s done a great job of updating it, most notably
with a new chapter on exploratory data analysis, and adding proper CSV support to AWK
to enable this. I was honoured to be asked to review a draft of the second edition.

AWK still shines for exploring data in 2023, especially with the new --csv option. CSV
mode has also been added to Gawk (GNU AWK), the most widely-installed version of
AWK. My own GoAWK implementation has had proper CSV support for some time, and
I’ve added the --csv option to match the others.

The second edition of the book still includes the Make program, though it’s been made
more readable with the addition of some <spacing and bracing= – this took it from 50 lines
to 62 lines.

This article presents the Make program, to show how AWK is not just great for one-liners,
but can be used as a scripting language too – though whether you should or not is
another question.

I’m then going to compare what the same program would look like in Python, and briefly
discuss when you’d choose AWK or Python for this kind of thing.

It should go without saying, but I intend this purely as a learning exercise (for me and my
readers), not a program I’d recommend you use to build your projects!

Original AWK version

The second edition of the book introduces the Make program as follows. (For what it’s
worth, I find the term <target= confusing here – I think <source= or <dependency= would fit
better.)

https://benhoyt.com/writings/awk-make/
https://awk.dev/
https://en.wikipedia.org/wiki/Exploratory_data_analysis
https://git.savannah.gnu.org/cgit/gawk.git/tree/NEWS
https://github.com/benhoyt/goawk
https://benhoyt.com/writings/goawk-csv/
https://github.com/benhoyt/awkmake/commit/a5793b2b55168959f3f2e976d1e409401cd8aac4
https://maximullaris.com/awk.html

2/8

This section develops a rudimentary updating program, patterned after the Unix
make command, that is based on the depth-first search technique of the previous
section.

To use the updater, one must explicitly describe what the components of the system
are, how they depend upon one another, and what commands are needed to
construct them. We’ll assume these dependencies and commands are stored in a
file, called a makefile, that contains a sequence of rules of the form

name: t1 t2 ... tn
 commands

The first line of a rule is a dependency relation that states that the program or file
name depends on the targets t1, t2, …, tn where each ti is a filename or another
name. Following each dependency relation may be one or more lines of commands
that list the commands necessary to generate name. Here is an example of a
makefile for a small program with two C files called a.c and b.c, and a yacc
grammar file c.y, a typical program-development application.

prog: a.o b.o c.o
 gcc a.o b.o c.o -ly -o prog
a.o: prog.h a.c
 gcc -c prog.h a.c
b.o: prog.h b.c
 gcc -c prog.h b.c
c.o: c.c
 gcc -c c.c
c.c: c.y
 yacc c.y
 mv y.tab.c c.c
print:
 pr prog.h a.c b.c c.y

The first line states that prog depends on the target files a.o, b.o, and c.o. The
second line says that prog is generated by using the C compiler command gcc to
link a.o, b.o, c.o, and a yacc library y into the file prog. The next rule (third line)
states that a.o depends on the targets prog.h and a.c and is created by compiling
these targets; b.o is the same. The file c.o depends on c.c, which in turn depends
on c.y, which has to be processed by the yacc parser generator. Finally, the name
print does not depend on any target; by convention, for targetless names make will
always perform the associated action, in this case printing all the source files with
the command pr.

The dependency relations in the makefile can be represented by a graph in which
there is an edge from node x to node y whenever there is a dependency rule with x
on the left side and y one of the targets on the right. For a rule with no targets, a
successorless node with the name on the left is created. For the makefile above,
we have the following dependency graph:

3/8

 prog print
 / | \
 / | \
 a.o b.o c.o
 / \ / \ \
 / \/ \ \
 a.c prog.h b.c c.c
 |
 c.y

It’s a highly-simplified version of Make, of course, but still has the core concepts of
outputs, dependencies, and build commands.

Before we look at how it works, I’ve included the full source code below, as it appears in
the second edition of the AWK book. Click on the bold text to expand it, or skip down to
<How it works= to see the code explained in detail.

The AWK book’s Make program (full source code).

How it works

There’s an explanation of how the program works in the book, but I’ll explain it in my own
words here, focussing on the aspects I find interesting.

The BEGIN block is the main entry point for a program like this. Unlike most AWK
programs which implicitly read lines from standard input, this one uses an explicit loop
with getline to read the makefile:

BEGIN {
 while (getline <"makefile" > 0) {
 if ($0 ~ /^[A-Za-z]/) { # $1: $2 $3 ...
 sub(/:/, "")
 if (++names[nm = $1] > 1)
 error(nm " is multiply defined")
 for (i = 2; i <= NF; i++) # remember targets
 slist[nm, ++scnt[nm]] = $i
 } else if ($0 ~ /^\t/) { # remember cmd for
 cmd[nm] = cmd[nm] $0 "\n" # current name
 } else if (NF > 0) {
 error("illegal line in makefile: " $0)
 }
 }
 ...
}

The getline <filename is a redirect clause that opens makefile (the first time) and
reads it line-by-line until the end. If the line ($0) starts with a letter (/^[A-Za-z]/), it’s
considered a name: targets rule.

The sub(/:/, "") call removes the colon from the current line (the $0 is implicit in the
two-argument form of sub).

4/8

We then ensure that this rule hasn’t already been defined by checking the names array. An
AWK array is actually an associative array, an old-school term for a key-value map.

The inner for loop adds each target (or dependency) to the slist / scnt data structure.
This is really a map of lists, but it’s flattened to work around the fact that AWK doesn’t
support nested collections. The body of the loop is very terse:

for (i = 2; i <= NF; i++)
 slist[nm, ++scnt[nm]] = $i

This loops through each dependency: every field $i from field 2 to NF (the number of
fields in the line).

For each dependency, it increments scnt[nm], the count of sources for the current rule
(nm). Then, store the dependency $i in slist, indexed by the multi-key name and count.
AWK simulates multi-dimensional or multi-key arrays by creating a concatenated key
where each key is separated by the SUBSEP separator (which defaults to "\x1c").

After the loop, in the prog example we’d end up with slist and scnt looking like this:

slist
 a.o,1: prog.h
 a.o,2: a.c
 b.o,1: prog.h
 b.o,2: b.c
 c.c,1: c.y
 c.o,1: c.c
 prog,1: a.o
 prog,2: b.o
 prog,3: c.o

scnt
 a.o: 2
 b.o: 2
 c.c: 1
 c.o: 1
 prog: 3

Coming back up, if the line starts with a tab, it’s a command, so we append it to the
name’s command string:

cmd[nm] = cmd[nm] $0 "\n"

Otherwise, if the line is not a blank line (NF > 0), it’s a makefile error.

Finally, after reading the makefile in the while loop, we uses ages() to compute the
ages of all files in the current directory, and then call update(ARGV[1]) to update the rule
passed on the command line:

5/8

BEGIN {
 ...
 ages() # compute initial ages

 if (ARGV[1] in names) {
 if (update(ARGV[1]) == 0)
 print ARGV[1] " is up to date"
 } else {
 error(ARGV[1] " is not in makefile")
 }
}

The ages function is where things start to get interesting:

function ages(f,n,t) {
 for (t = 1; ("ls -t" | getline f) > 0; t++)
 age[f] = t # all existing files get an age
 close("ls -t")

 for (n in names)
 if (!(n in age)) # if n has not been created
 age[n] = 9999 # make n really old
}

The parameter names f, n, and t are prefixed with a bunch of spaces to show they’re
actually local variables, and not expected as arguments. This is an AWK quirk (which
Kernighan regrets): the only way to define local variables is as function parameters, and if
a function is called with fewer arguments than it has parameters, the extras take on the
default value (0 for numbers, "" for strings). So you’ll see these extra spaces a lot in AWK
function definitions.

The next thing is quite neat: AWK supports shell-like | syntax to pipe the output of a
program, one getline at a time, to a variable (in this case f). The ls -t command lists
files in the current directory ordered by modification time, newest first.

After the loop that’s assigned each file’s age to age[f], we call close to close the ls -t
pipe and avoid too many open file handles.

Finally, we loop through the rule names and assign an arbitrary large number to age[n] to
pretend that files that haven’t been created are really old and need to be updated.

Next is the recursive update function, where the meat of the algorithm lives:

6/8

function update(n, changed,i,s) {
 if (!(n in age))
 error(n " does not exist")
 if (!(n in names))
 return 0
 changed = 0
 visited[n] = 1
 for (i = 1; i <= scnt[n]; i++) {
 if (visited[s = slist[n, i]] == 0)
 update(s)
 else if (visited[s] == 1)
 error(s " and " n " are circularly defined")
 if (age[s] <= age[n])
 changed++
 }
 visited[n] = 2
 if (changed || scnt[n] == 0) {
 printf("%s", cmd[n])
 system(cmd[n]) # execute cmd associated with n
 ages() # recompute all ages
 age[n] = 0 # make n very new
 return 1
 }
 return 0
}

Once again you’ll note the parameter list: n is an expected argument (the name to
update), and changed,i,s are the locals.

After initial checks, we loop through the list of dependencies by iterating from slist[n,
1] to slist[n, scnt[n]]. If we haven’t visited this dependency yet, we perform a depth-
first traversal of the dependency graph by recursively calling update to see if we need to
update that dependency first:

if (visited[s = slist[n, i]] == 0)
 update(s)

The recursion is terminated by the if (!(n in names)) return 0 block near the top.
We stop when the file being updated isn’t in the list of rule names – which is a leaf node in
the dependency graph.

The block if (age[s] <= age[n]) changed++ increments the changed count if any
dependency is newer than the age of the current file being updated.

After the traversal loop, if any of the dependencies or sub-dependencies had changed,
we run the associated command using system(), recompute the ages of all files, and
return 1 to the caller to indicate we did make an update.

The scnt[n] == 0 clause handles the case where the rule being updated doesn’t have
any dependencies specified, like the print rule in the example. In that case, always re-
run its command.

7/8

And there you have it! A minimalist Make in one page of AWK.

Python version

For interest, I ported the book’s AWK Make to Python, and have included it below. Once
again, click the bold text to expand the program.

My Python port of the Make program (full source code).
It’s very similar in structure to the original AWK version, though I made two simplifications
which I think make it somewhat easier to understand:

1. Simpler data structures to avoid the slist / scnt quirkiness – in Python we can just
use a dictionary of lists. (See diff.)

2. Determine ages more directly using os.stat() to fetch file modification times
(mtimes), rather than using the ls -t trick. This also removes the need for the age
map and the ages function. (See diff.)

I didn’t plan for this, but even if you include the import line and the if __name__ ==
'__main__' dance, it’s 58 lines of code – basically the same length as the AWK program.

When making the Python version, I realized we could simplify the AWK version in a
similar way:

1. It’s conceptually simpler to store the slist directly as an AWK array: a key-value
map where the key is the rule name and the value is the list of dependencies as a
space-separated string (just like in the makefile). We can use split as needed to
turn the dependencies string into a list (an array from 1 to the number of
dependencies). This avoids the need for scnt and names altogether. (See diff.)

2. Similar to the Python version, we can get the mtime directly by shelling out to stat,
instead of listing all files in age order with ls -t. I’ve used stat --format %y to do
this. I believe this is a GNU extension, so it’s not as portable as ls -t, but it’s
simpler and avoids the need for recomputing the age array. (See diff.)

Update: Volodymyr Gubarkov pointed out that the stat version <adds multiple external
process invocations=, and he’s quite right. It might be more direct, but it is significantly
slower.

For what it’s worth, the modified version is four lines shorter than the original. I think the
simpler slist is clearer, and I like the more direct approach to fetching mtimes, though I
realize the lack of portability of stat --format is a downside (macOS’s stat looks quite
different).

Conclusion

The AWK Make program is a neat little piece of code that shows how useful a language
AWK is, even for medium-sized scripts.

https://github.com/benhoyt/awkmake/commit/490e5d210bdd4a7ce61292c73f1ec3f06da090eb
https://github.com/benhoyt/awkmake/commit/7bb6a6de06a329551678fb90073a268342baf049
https://github.com/benhoyt/awkmake/pull/2/commits/45b5c4de5ec4c5b09830fdf06b00f4e0c7f7886e
https://github.com/benhoyt/awkmake/pull/2/commits/d5cd8cc3cdeebce953dc2b15c9fedca3eef5ceca
https://lobste.rs/s/rhjptp/awk_book_s_60_line_version_make#c_kzkfcm
https://ss64.com/osx/stat.html

8/8

However, Python is definitely a nicer language for this kind of thing: it has much richer
data types, better tools like os.stat, and local variables without quirky syntax.

I consider AWK amazing, but I think it should remain where it excels: for exploratory data
analysis and for one-liner data extraction scripts.

As the author of GoAWK, which has had native CSV support for a while, I’m especially
pleased to see both Kernighan’s <one true AWK= and Gawk gain proper CSV support in
the form of the --csv option. Kernighan’s AWK updates will be merged soon, and Gawk
will include this feature in version 5.3.0, which is coming out soon.

You can also view my awkmake repo on GitHub, which contains the full source for both
the AWK book’s Make program and my Python version, as well as a runnable example
project based on the example in the AWK book.

https://github.com/onetrueawk/awk/commit/c76017e59eb71b5403d44fb974a83bf71462eb39#diff-b335630551682c19a781afebcf4d07bf978fb1f8ac04c6bf87428ed5106870f5
http://git.savannah.gnu.org/cgit/gawk.git/tree/NEWS
https://github.com/benhoyt/awkmake

