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PRAISE FOR
EFFECTIVE C

<Effective C will teach you C programming for the modern era. . . . This
book’s emphasis on the security aspects of C programming is unmatched.
My personal recommendation is that, after reading it, you use all of the
available tools it presents to avoid undefined behavior in the C programs
you write.=

—PASCAL CUOQ, CHIEF SCIENTIST,
TRUSTINSOFT

<An excellent introduction to modern C.=
—FRANCIS GLASSBOROW, ACCU

<A good introduction to modern C, including chapters on dynamic memory
allocation, on program structure, and on debugging, testing, and analysis.=

—STACK OVERFLOW, THE DEFINITIVE C
BOOK LIST

<A worthwhile addition to a C programmer’s bookshelf.=
—IAN BRUNTLETT, ACCU

<This is why you should program in C. Because other languages don’t open
portals to hell.=

—MICHAŁ ZALEWSKI, FORMER CISO, SNAP
INC.
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FOREWORD TO THE SECOND EDITION

When I started in cybersecurity over 27 years ago, I learned my trade
primarily by finding and exploiting unsafe memory handling in C programs
4a class of vulnerability that, even at the time, was over 20 years old. In
my career at BlackBerry, as I waded through torrents of code review, I saw
firsthand how dangerous C could be to the improperly initiated. Now, as a
chief technology officer for the UK’s National Cyber Security Centre, I see
the consequences of poorly written C code on our connected society every
day at a national level.

Today we still face numerous challenges in writing secure and
professional C. The many innovations in compiler- and operating system3
level mitigations can be and are regularly undermined. And even while we
see advanced innovations in other modern languages and hardware, there is
still a growing demand for C, particularly in Internet of Things (IoT) or
other highly resource-constrained environments, while it also sustains what
we have. Professional C coupled with hardware-level architectures such as
CHERI is how we secure the environments that will never migrate to other
languages.

Robert is the authority on how to program professionally and securely
in C. For over a decade, I have recommended his material to customers and
internal teams alike. There is no better person to teach how to code C in a
professional and, among other things, secure manner.

Writing professional C today means writing code that is performant,
safe, and secure. By doing so, you will be able to contribute to our
connected society without increasing its technical debt.

This book will help those with little or no C experience quickly
develop the knowledge and skills to become professional C programmers



and will provide a strong foundation for developing systems that are
performant, safe, and secure.

Ollie Whitehouse
CTO, National Cyber Security Centre, United Kingdom



FOREWORD TO THE FIRST EDITION

The first time I came across Robert Seacord’s name was in 2008. Robert
was already well known in the C programming galaxy for his work on The
CERT® C Coding Standard and Annex K of the C standard. But in 2008, it
had been only a few years since—young and foolish—I had embarked on
the Frama-C project to guarantee the absence of undefined behavior in C
programs. At some point, a CERT Vulnerability Note about how C
compilers (and GCC in particular) removed certain pointer-arithmetic
overflow checks piqued my interest. The compilers had reason to eliminate
the checks; naively written, they invoked undefined behavior when the
overflow was present.

The C compilers were also allowed to tell the programmer nothing
about what they had done wrong, even at the maximum warning level.
Undefined behavior in C can be harsh. I had set out to solve this exact
problem. Robert was one of the authors of that note.

Effective C will teach you C programming for the modern era. It will
help you establish good habits to keep you from using undefined behavior,
whether voluntarily or through negligence. Let the reader be warned: in
large C programs, avoiding ordinary programming errors alone may not
suffice for dodging undefined behavior caused by arbitrary inputs!

This book’s emphasis on the security aspects of C programming is
unmatched. My personal recommendation is that, after reading it, you use
all of the available tools it presents to avoid undefined behavior in the C
programs you write.

Pascal Cuoq
Chief scientist, TrustInSoft
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INTRODUCTION

C was developed as a system
programming language in the 1970s,

and even after all this time, it remains incredibly
popular. System languages are designed for
performance and ease of access to the underlying
hardware while providing high-level programming
features. While other languages may offer newer
language features, their compilers and libraries are
typically written in C.

Carl Sagan once said, <If you wish to make an apple pie from scratch,
you must first invent the universe.= The inventors of C did not invent the
universe; they designed C to work with a variety of computing hardware
and architectures that, in turn, were constrained by physics and
mathematics. C is layered directly on top of computing hardware, making it
more sensitive to evolving hardware features, such as vectorized
instructions, than higher-level languages that typically rely on C for their
efficiency.

According to the TIOBE index (https://www.tiobe.com/tiobe-index/)—
whose rankings are based on the number of skilled engineers, courses, and
third-party vendors for each language—C has been either the most popular
programming language or second most popular since 2001. The popularity
of the C programming language can most likely be attributed to several
tenets of the language referred to as the spirit of C:

https://www.tiobe.com/tiobe-index/


Trust the programmer. The C language assumes you know what you’re
doing and lets you. This isn’t always a good thing (for example, if you
don’t know what you’re doing).
Don’t prevent the programmer from doing what needs to be done.
Because C is a system programming language, it needs to handle a
variety of low-level tasks.
Keep the language small and simple. The language is designed to be
close to the hardware and to have a small footprint.
Provide only one way to do an operation. Also known as conservation
of mechanism, the C language tries to limit the introduction of
duplicate mechanisms.
Make it fast, even if it isn’t guaranteed to be portable. Allowing you to
write optimally efficient code is the top priority. The responsibility of
ensuring that code is portable, safe, and secure is delegated to you, the
programmer.
C is used as a target language for compilers to build operating systems,

to teach fundamentals of computing, and for embedded and general-purpose
programming.

There is a large amount of legacy code written in C. The C standards
committee is extremely careful not to break existing code, providing a
smooth pass for modernizing this code to take advantage of modern
language features.

C is often used in embedded systems because it is a small and efficient
language. Embedded systems are small computers that are embedded in
other devices, such as cars, appliances, and medical devices.

Your favorite programming language and library are written in C (or
were at one time). There are many libraries available for C. This makes it
easy to find libraries that can be used to perform common tasks.

Overall, C is a powerful and versatile language that is still widely used
today. It is a good choice for programmers who need a fast, efficient, and
portable language.

A Brief History of C



The C programming language was developed in the early 1970s at Bell
Labs as a system implementation language for the nascent Unix operating
system and remains incredibly popular today (Ritchie 1993). System
languages are designed for performance and ease of access to the
underlying hardware while providing high-level programming features.
While other languages may offer newer language features, their compilers
and libraries are typically written in C. It serves as a lingua franca for
translating between various systems and languages.

C was first described in 1978 by Kernighan and Ritchie in the book
The C Programming Language (Kernighan and Ritchie 1988). It is now
defined by revisions of the ISO/IEC 9899 standard (ISO/IEC 2024) and
other technical specifications. The C standards committee is the steward of
the C programming language, working with the broader community to
maintain and evolve the C language. In 1983, the American National
Standards Institute (ANSI) formed the X3J11 committee to establish a
standard C specification, and in 1989, the C standard was ratified as ANSI
X3.159-1989, <Programming Language C.= This 1989 version of the
language is referred to as ANSI C or C89.

In 1990, the ANSI C standard was adopted (unchanged) by a joint
technical committee of the International Organization for Standardization
(ISO) and the International Electrotechnical Commission (IEC) and
published as the first edition of the C standard, C90 (ISO/IEC 9899:1990).
The second edition of the C standard, C99, was published in 1999 (ISO/IEC
9899:1999), and a third edition, C11, in 2011 (ISO/IEC 9899:2011). The
fourth version, published in 2018 as C17 (ISO/IEC 9899:2018), repairs
defects in C11. The latest version of the C standard (as of this writing) is the
fifth version, published in 2024 as C23 (ISO/IEC 9899:2024). As of
September 2023, I am the convenor of ISO/IEC JTC1/SC22/WG14, the
international standardization working group for the programming language
C.

In the 20 years the TIOBE Programming Community index has tracked
programming language popularity, C has remained in first or second place
(TIOBE Index 2022).

The C Standard



The C standard (ISO/IEC 9899:2024) defines the language and is the final
authority on language behavior. While the standard can be obscure to
impenetrable, you need to understand it if you intend to write code that’s
portable, safe, and secure. The C standard provides a substantial degree of
latitude to implementations to allow them to be optimally efficient on
various hardware platforms. Implementations is the term the C standard
uses to refer to compilers and is defined as follows:

A particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs for, and supports execution of
functions in, a particular execution environment.

This definition indicates that each compiler with a particular set of
command line flags, along with the C standard library, is considered a
separate implementation, and different implementations can have
significantly different implementation-defined behavior. This is noticeable
in GNU Compiler Collection (GCC), which uses the -std= flag to
determine the language standard. Possible values for this option include
c89, c90, c99, c11, c17, and c23. The default depends on the version of the
compiler. If no C language dialect options are given, the default for GCC 13
is -std=gnu17, which provides extensions to the C language. For
portability, specify the standard you’re using. For access to new language
features, specify a recent standard. C23 features have been available since
GCC 11. To enable C23 support, add the compiler option -std=c23 (or
possibly -std=c2x). All the examples in this book are written for C23.

Because implementations have such a range of behaviors, and because
some of these behaviors are undefined, you can’t understand the C language
by just writing simple test programs to examine the behavior. (If you want
to try this, the Compiler Explorer is an excellent tool; see https://godbolt
.org.) The behavior of the code can vary when compiled by a different
implementation on different platforms or even the same implementation
using a different set of flags or a different C standard library
implementation. Code behavior can even vary between versions of a
compiler. The C standard specifies which behaviors are guaranteed for all
implementations and where you need to plan for variability. This is mostly a
concern when developing portable code but can also affect the security and
safety of your code.

https://godbolt.org/


The CERT C Coding Standard
The CERT® C Coding Standard: 98 Rules for Developing Safe, Reliable,
and Secure Systems, 2nd edition (Addison-Wesley Professional, 2014), is a
reference book I wrote while managing the secure coding team at the
Software Engineering Institute at Carnegie Mellon University. The book
contains examples of common C programming mistakes and how to correct
them. Throughout this book, we reference some of those rules as a source
for detailed information on specific C language programming topics.

Common Weakness Enumeration
MITRE’s Common Weakness Enumeration (CWE) is a list of common
hardware and software weaknesses that can be used to identify weaknesses
in source code and operational systems. The CWE list is maintained by a
community project with the goals of understanding flaws in software and
hardware and creating automated tools that can be used to identify, fix, and
prevent those flaws. Occasionally, we will reference specific CWEs in this
book when discussing classes of defects that can lead to security
vulnerabilities. For more information on CWE, see https://cwe.mitre.org.

https://cwe.mitre.org/


Who This Book Is For
This book is an introduction to the C language. It is written to be as
accessible as possible to anyone who wants to learn C programming,
without dumbing it down. In other words, we didn’t overly simplify C
programming in the way many other introductory books and courses might.
These overly simplified references will teach you how to compile and run
code, but the code might still be wrong. Developers who learn how to
program C from such sources will typically develop substandard, flawed,
insecure code that will eventually need to be rewritten (often sooner than
later). Hopefully, these developers will eventually benefit from senior
developers in their organizations who will help them unlearn these harmful
misconceptions about programming in C and help them start developing
professional-quality C code. On the other hand, this book will quickly teach
you how to develop correct, portable, professional-quality code; build a
foundation for developing security- critical and safety-critical systems; and
perhaps teach you some things that even the senior developers at your
organization don’t know.

Effective C: An Introduction to Professional C Programming, 2nd
edition, is a concise introduction to essential C language programming that
will soon have you writing programs, solving problems, and building
working systems. The code examples are idiomatic and straightforward.
You’ll also learn about good software engineering practices for developing
correct, secure C code.

In this book, you’ll learn about essential programming concepts in C
and practice writing high-quality code with exercises for each topic. Code
listings from this book and additional materials can be found on GitHub at
https://github.com/rcseacord/effective-c. Go to this book’s page at https://
nostarch.com/effective-c-2nd-edition or to http://www.robertseacord.com to
check for updates and additional material, or contact me if you have
additional questions or are interested in training.

What’s in This Book
This book starts with an introductory chapter that covers just enough
material to get you programming right from the start. After that, we circle
back and examine the basic building blocks of the language. The book

https://github.com/rcseacord/effective-c
https://nostarch.com/effective-c-2nd-edition
http://www.robertseacord.com/


culminates with two chapters that will show you how to compose real-
world systems from these basic building blocks and how to debug, test, and
analyze the code you’ve written. The chapters are as follows:

Chapter 1: Getting Started with C You’ll write a simple C program
to become familiar with using the main function. You’ll also look at a
few options for editors and compilers.
Chapter 2: Objects, Functions, and Types This chapter explores
basics like declaring variables and functions. You’ll also investigate the
principles of using basic types.
Chapter 3: Arithmetic Types You’ll learn about the integer and
floating-point arithmetic data types.
Chapter 4: Expressions and Operators You’ll learn about operators
and how to write simple expressions to perform operations on various
object types.
Chapter 5: Control Flow You’ll learn how to control the order in
which individual statements are evaluated. We’ll introduce expression
and compound statements that define the work to be performed. We’ll
then cover the control statements that determine which code blocks are
executed and in what order: selection, iteration, and jump statements.
Chapter 6: Dynamically Allocated Memory You’ll learn about
dynamically allocated memory, which is allocated from the heap at
runtime. Dynamically allocated memory is useful when the exact
storage requirements for a program are unknown before runtime.
Chapter 7: Characters and Strings This chapter covers the various
character sets, including ASCII and Unicode, that can be used to
compose strings. You’ll learn how strings are represented and
manipulated using the legacy functions from the C standard library, the
bounds-checking interfaces, and POSIX and Windows application
programming interfaces (APIs).
Chapter 8: Input/Output This chapter will teach you how to
perform input/output (I/O) operations to read data from, or write data
to, terminals and filesystems. I/O involves all the ways information
enters or exits a program. We’ll cover techniques that make use of C
standard streams and POSIX file descriptors.



Chapter 9: Preprocessor You’ll learn how to use the preprocessor to
include files, define object- and function-like macros, and conditionally
include code based on implementation-specific features.
Chapter 10: Program Structure You’ll learn how to structure your
program into multiple translation units consisting of both source and
include files. You’ll also learn how to link multiple object files together
to create libraries and executable files.
Chapter 11: Debugging, Testing, and Analysis This chapter
describes tools and techniques for producing error-free programs,
including compile-time and runtime assertions, debugging, testing,
static analysis, and dynamic analysis. The chapter also discusses which
compiler flags are recommended for use in different phases of the
software development process.
Appendix: The Fifth Edition of the C Standard (C23) This
appendix enumerates some of the additions and changes in C23. It’s a
convenient way to learn what’s new in C and to identify changes from
the previous C standard (C17).This book is updated from the previous
edition to cover the features and behaviors of C23. According to 2022
polling data from JetBrains (https://www.jetbrains.com/lp
/devecosystem-2022/c/), 44 percent of C programmers use C99, 33
percent use C11, 16 percent use C17, and 15 percent use an embedded
version of C.

You’re about to embark on a journey from which you will emerge a
newly minted but professional C developer.

https://www.jetbrains.com/lp/devecosystem-2022/c/


1
GETTING STARTED WITH C

In this chapter, you’ll develop your first
C program: the traditional <Hello,

world!= program. We’ll examine the various aspects
of this simple C program, compile it, and run it. Then
I’ll review some editor and compiler options and lay
out common portability issues you’ll quickly become
familiar with as you code in C.

Developing Your First C Program
The most effective way to learn C programming is to start writing C
programs, and the traditional program to start with is <Hello, world!= Open
your favorite text editor and enter the program in Listing 1-1.

hello.c

#include <stdio.h> 
#include <stdlib.h> 
 
int main() { 
  puts("Hello, world!"); 
  return EXIT_SUCCESS; 
}



Listing 1-1: The <Hello, world!= program

The first two lines use the #include preprocessor directive, which
behaves as if you replaced it with the contents of the specified file at the
exact same location. In this program, <stdio.h> and <stdlib.h> are both
headers. A header is a source file that, by convention, contains the
definitions, function declarations, and constant definitions required by the
users of the corresponding source file. As the filenames suggest, <stdio.h>
defines the interface for C standard input/output (I/O) functions, and
<stdlib.h> declares several general utility types and functions and defines
several macros. You need to include the declarations for any library
functions that you use in your program. (You’ll learn more about the
appropriate use of headers in Chapter 9.)

Here, we include <stdio.h> to access the declaration of the puts
function called by the main function. We include the <stdlib.h> to access
the definition of the EXIT_SUCCESS macro, which is used in the return
statement.

This line defines the main function that’s called at program startup:

int main() {

The main function defines the entry point for the program that’s
executed in a hosted environment when the program is invoked from the
command line or from another program. C defines two possible execution
environments: freestanding and hosted. A freestanding environment may
not provide an operating system and is typically used in embedded
programming. These implementations provide a minimal set of library
functions, and the name and type of the function called at program startup
are implementation defined. Most of the examples in this book work on the
assumption that the main function is the one and only entry point.

Like other procedural languages, C programs contain functions that can
accept arguments and return values. Each function is a reusable unit of
work that you can invoke as often as required in your program. The puts
function is invoked from the main function to print out the line Hello,
world!:



  puts("Hello, world!");

The puts function is a C standard library function that writes a string
argument to the stdout stream and appends a newline character to the
output. The stdout stream typically represents the console or terminal
window. "Hello, world!" is a string literal that behaves like a read-only
string. This function invocation outputs Hello, world! to the terminal.

Once your program has completed, you’ll want it to exit. The return
statement will exit main and return an integer value to the host environment
or invocation script:

  return EXIT_SUCCESS;

EXIT_SUCCESS is an object-like macro that may be defined as follows:

#define EXIT_SUCCESS 0

Each occurrence of EXIT_SUCCESS is replaced by a 0, which is then
returned to the host environment from the call to main. The script that
invokes the program can then check its status to determine whether the
invocation was successful. A return from the initial call to the main function
is equivalent to calling the C standard library exit function with the value
returned by the main function as its argument.

The final line of this program consists of a closing brace (}), which
closes the code block we opened with the declaration of the main function:

int main() { 
  // --snip--  
}

You can place the opening brace on the same line as the declaration or
on its own line, as follows:

int main() 
{ 



  // --snip--  
}

This decision is strictly a stylistic one, because whitespace characters
(including newlines) are generally not syntactically meaningful. In this
book, I usually place the opening brace on the line with the function
declaration because it’s stylistically more compact.

For now, save this file as hello.c. The file extension .c indicates that the
file contains C language source code.

NOTE
If you’ve purchased an ebook, cut and paste the program into the editor.
Using cut and paste can reduce transcription errors.

Compiling and Running a Program
Next, you need to compile and run the program, which involves two steps.
The command to compile the program depends on which compiler you’re
using. On Linux and other Unix-like operating systems, enter cc on the
command line followed by the name of the file you want to compile:

$ cc hello.c

If you enter the program correctly, the compile command will create a
new file called a.out in the same directory as your source code.

NOTE
Compilers are invoked differently on other operating systems such as
Windows or macOS. Refer to the documentation for your specific compiler.

Inspect your directory with the following command:

$ ls  
a.out  hello.c



The a.out file in the output is the executable program, which you can
now run on the command line:

$ ./a.out  
Hello, world!

If everything goes right, the program should print Hello, world! to
the terminal window. If it doesn’t, compare the program text from Listing 1-
1 to your program and make sure they are the same.

The cc command accepts numerous compiler options. The -o file
compiler option, for example, lets you give the executable file a memorable
name instead of a.out. The following compiler invocation names the
executable hello:

$ cc -o hello hello.c  
$ ./hello  
Hello, world!

We’ll introduce other compiler and linker options (aka flags)
throughout the book and dedicate a section to them in Chapter 11.

Function Return Values
Functions will often return a value that’s the result of a computation or that
signifies whether the function successfully completed its task. For example,
the puts function we used in our <Hello, world!= program takes a string to
print and returns a value of type int. The puts function returns the value of
the macro EOF (a negative integer) if a write error occurs; otherwise, it
returns a nonnegative integer value.

Although it’s unlikely that the puts function will fail and return EOF for
our simple program, it’s possible. Because the call to puts can fail and
return EOF, it means that your first C program has a bug or, at least, can be
improved as follows:

#include <stdio.h> 
#include <stdlib.h> 
int main() { 



  if (puts("Hello, world!") == EOF) { 
    return EXIT_FAILURE; 
    // code here never executes 
  } 
  return EXIT_SUCCESS; 
  // code here never executes 
}

This revised version of the <Hello, world!= program checks whether
the puts call returns the value EOF, indicating a write error. If the function
returns EOF, the program returns the value of the EXIT_FAILURE macro
(which evaluates to a nonzero value). Otherwise, the function succeeds, and
the program returns EXIT_SUCCESS. The script that invokes the program can
check its status to determine whether it was successful. Code following a
return statement is dead code that never executes. This is indicated by a
single-line comment in the revised program. Everything following // is
disregarded by the compiler.

Formatted Output
The puts function is a simple way to write a string to stdout, but to print
arguments other than strings, you’ll need the printf function. The printf
function takes a format string that defines how the output is formatted,
followed by a variable number of arguments that are the actual values you
want to print. For example, if you want to use the printf function to print
out Hello, world!, you could write it like this:

printf("%s\n", "Hello, world!");

The first argument is the format string "%s\n". The %s is a conversion
specification that instructs the printf function to read the second argument
(a string literal) and print it to stdout. The \n is an alphabetic escape
sequence used to represent nongraphic characters and tells the function to
include a new line after the string. Without the newline sequence, the next
characters printed (likely the command prompt) would appear on the same
line. This function call outputs the following:



Hello, world!

Take care not to pass user-supplied data as part of the first argument to
the printf function, because doing so can result in a formatted output
security vulnerability (Seacord 2013).

The simplest way to output a string is to use the puts function, as
previously shown. If you use printf instead of puts in the revised version
of the <Hello, world!= program, however, you’ll find it no longer works
because the printf function returns the status differently than the puts
function. The printf function returns the number of characters printed
when successful, or a negative value if an output or encoding error
occurred. Try modifying the <Hello, world!= program to use the printf
function as an exercise.

Editors and Integrated Development Environments
You can use a variety of editors and integrated development environments
(IDEs) to develop your C programs. Figure 1-1 shows the most used
editors, according to a 2023 JetBrains survey (https://www.jetbrains.com/lp
/devecosystem-2023/c/).

https://www.jetbrains.com/lp/devecosystem-2023/c/


Figure 1-1: Popular IDEs and editors



The exact tools available depend on which system you’re using.
For Microsoft Windows, Microsoft’s Visual Studio IDE (https://

visualstudio.microsoft.com) is an obvious choice. Visual Studio comes in
three editions: Community, Professional, and Enterprise. The Community
edition has the advantage of being free, while the other editions add features
at a cost. For this book, you’ll need only the Community edition.

For Linux, the choice is less obvious as there are a variety of options. A
popular choice is Visual Studio Code (VS Code). VS Code is a streamlined
code editor with support for development operations such as debugging,
task running, and version control (covered in Chapter 11). It provides just
the tools a developer needs for a quick code-build-debug cycle. VS Code
runs on macOS, Linux, and Windows and is free for private or commercial
use. Installation instructions are available for Linux and other platforms
(https://code.visualstudio.com).

Figure 1-2 shows VS Code being used to develop the <Hello, world!=
program on Ubuntu. The debug console shows that the program exited with
status code 0 as expected.

Figure 1-2: Visual Studio Code running on Ubuntu

https://visualstudio.microsoft.com/
https://code.visualstudio.com/


Vim is the editor of choice for many developers and power users. It is a
text editor based on the vi editor written by Bill Joy in the 1970s for a
version of Unix. It inherits the key bindings of vi but also adds functionality
and extensibility that are missing from the original vi. You can optionally
install Vim plug-ins such as YouCompleteMe (https://github.com/ycm-core
/YouCompleteMe) or deoplete (https://github.com/Shougo/deoplete.nvim)
that provide native semantic code completion for C programming.

GNU Emacs is an extensible, customizable, and free text editor. At its
core, it’s an interpreter for Emacs Lisp, a dialect of the Lisp programming
language with extensions to support text editing—although I’ve never
found this to be a problem. Full disclosure: Almost all the production C
code I’ve developed was edited in Emacs.

Compilers
Many C compilers are available, so I won’t discuss them all here. Different
compilers implement different versions of the C standard. Many compilers
for embedded systems support only C89/C90. Popular compilers for Linux
and Windows work harder to support modern versions of the C standard, up
to and including support for C23.

GNU Compiler Collection
The GNU Compiler Collection (GCC) includes frontends for C, C++, and
Objective-C, as well as other languages (https://gcc.gnu.org). GCC follows
a well-defined development plan under the guidance of the GCC steering
committee.

GCC has been adopted as the standard compiler for Linux systems,
although versions are also available for Microsoft Windows, macOS, and
other platforms. Installing GCC on Linux is easy. The following command,
for example, should install GCC on Ubuntu:

$ sudo apt-get install gcc

You can test the version of GCC you’re using with the following
command:

https://github.com/ycm-core/YouCompleteMe
https://github.com/Shougo/deoplete.nvim
https://gcc.gnu.org/


$ gcc --version

The output will display the version and copyright information for the
installed GCC version.

Clang
Another popular compiler is Clang (https://clang.llvm.org). Installing Clang
on Linux is also easy. You can use the following command to install Clang
on Ubuntu:

$ sudo apt-get install clang

You can test the version of Clang you’re using with the following
command:

$ clang --version

This displays the installed Clang version.

Microsoft Visual Studio
As previously mentioned, the most popular development environment for
Windows is Microsoft Visual Studio, which includes both the IDE and the
compiler. Visual Studio (https://visualstudio.microsoft.com/downloads/) is
bundled with Visual C++ 2022, which includes both the C and C++
compilers.

You can set options for Visual Studio on the Project Property pages. On
the Advanced tab under C/C++, make sure you compile as C code by using
the Compile as C Code (/TC) option and not the Compile as C++ Code
(/TP) option. By default, when you name a file with a .c extension, it’s
compiled with /TC. If the file is named with .cpp, .cxx, or a few other
extensions, it’s compiled with /TP.

Portability

https://clang.llvm.org/
https://visualstudio.microsoft.com/downloads/


Every C compiler implementation is a little different. Compilers continually
evolve—so, for example, a compiler like GCC might provide full support
for C17 but be working toward support for C23, in which case it might have
some C23 features implemented but not others. Consequently, compilers
support a full spectrum of C standard versions (including in-between
versions). The overall evolution of C implementations is slow, with many
compilers significantly lagging behind the C standard.

Programs written for C can be considered strictly conforming if they
use only those features of the language and library specified in the standard.
These programs are intended to be maximally portable. However, because
of the range of implementation behaviors, no real-world C program is
strictly conforming, nor will it ever be (and probably shouldn’t be). Instead,
the C standard allows you to write conforming programs that may depend
on nonportable language and library features.

It’s common practice to write code for a single reference
implementation, or sometimes several implementations, depending on the
platforms to which you plan to deploy your code. The C standard ensures
that these implementations don’t differ too much, and it allows you to target
several at once without having to learn a new language each time.

Five kinds of portability issues are enumerated in Annex J of the C
standard documents:

Implementation-defined behavior
Unspecified behavior
Undefined behavior
Locale-specific behavior
Common extensions
As you learn about the C language, you’ll encounter examples of all

five kinds of behaviors, so it’s important to understand precisely what these
are.

Implementation-Defined Behavior
Implementation-defined behavior is program behavior that’s not specified
by the C standard and that may produce different results between
implementations but has consistent, documented behavior within an



implementation. An example of implementation-defined behavior is the
number of bits in a byte.

Implementation-defined behaviors are mostly harmless but can cause
defects when porting to different implementations. Whenever possible,
avoid writing code that depends on implementation-defined behaviors that
vary among the C implementations you plan to compile your code with. A
complete list of implementation-defined behaviors is enumerated in Annex
J.3 of the C standard. You can document your dependencies on these
implementation-defined behaviors by using a static_assert declaration,
as discussed in Chapter 11.

Unspecified Behavior
Unspecified behavior is program behavior for which the standard provides
two or more options but doesn’t mandate which option is chosen in any
instance. Each execution of a given expression may yield different results or
produce a different value than a previous execution of the same expression.
An example of unspecified behavior is function parameter storage layout,
which can vary among function invocations within the same program.
Unspecified behaviors are enumerated in Annex J.1 of the C standard.

Undefined Behavior
Undefined behavior is behavior that isn’t defined by the C standard or, less
circularly, <behavior, upon use of a nonportable or erroneous program
construct or of erroneous data, for which the standard imposes no
requirements= (ISO/IEC 9899:2024). Examples of undefined behavior
include signed integer overflow and dereferencing an invalid pointer value.
Code that has undefined behavior is often incorrect, but not always.
Undefined behaviors are identified in the standard as follows:

When a <shall= or <shall not= requirement is violated and that
requirement appears outside a constraint, behavior is undefined.
When behavior is explicitly specified by the words <undefined
behavior.=
By the omission of any explicit definition of behavior.



The first two kinds of undefined behavior are frequently referred to as
explicit undefined behaviors, while the third kind is referred to as implicit
undefined behavior. There is no difference in emphasis among these three;
they all describe behavior that is undefined. The C standard Annex J.2,
<Undefined behavior,= lists the explicit undefined behaviors in C.

Developers often misconstrue undefined behaviors as errors or
omissions in the C standard, but the decision to classify a behavior as
undefined is intentional and considered. Behaviors are classified as
undefined by the C standards committee for one of the following reasons:

Give the implementer license not to catch program errors that are
difficult to diagnose
Avoid defining obscure corner cases that would favor one
implementation strategy over another
Identify areas of possible conforming language extension in which the
implementer may augment the language by providing a definition of
the officially undefined behavior
These three reasons are quite different but are all considered portability

issues. We’ll examine examples of all three as they come up over the course
of this book. Upon encountering undefined behavior, compilers have the
latitude to do the following:

Ignore undefined behavior completely, giving unpredictable results
Behave in a documented manner characteristic of the environment
(with or without issuing a diagnostic)
Terminate a translation or execution (and issue a diagnostic)
None of these options are great (particularly the first), so it’s best to

avoid undefined behaviors except when the compiler specifies that these
behaviors are defined to allow you to invoke a language augmentation.
Compilers sometimes have a pedantic mode that can help notify the
programmer of these portability issues.

Locale-Specific Behavior and Common Extensions
Locale-specific behavior depends on local conventions of nationality,
culture, and language that each implementation documents. Common



extensions are widely used in many systems but are not portable to all
implementations.

Summary
In this chapter, you learned how to write a simple C language program,
compile it, and run it. We looked at several editors and integrated
development environments as well as a few compilers that you can use to
develop C programs on Windows, Linux, and macOS systems. You should
use newer versions of the compilers and other tools, as they tend to support
newer features of the C programming language and provide better
diagnostics and optimizations. However, you may not want to use newer
versions of compilers if they break your existing code or if you’re getting
ready to deploy your code to avoid introducing unnecessary changes into
your already tested application. We concluded this chapter with a discussion
of the portability of C language programs.

Subsequent chapters will examine specific features of the C language
and library, starting with objects, functions, and types in the next chapter.



2
OBJECTS, FUNCTIONS, AND TYPES

In this chapter, you’ll learn about
objects, functions, and types. We’ll

examine how to declare variables (objects with
named identifiers) and functions, take the addresses
of objects, and dereference those object pointers.
Each object or function instance has a type. You’ve
already seen some types that are available to C
programmers. The first thing you’ll learn in this
chapter is one of the last things that I learned: every
type in C is either an object type or a function type.

Entities
An object is storage in which you can represent values. To be precise, an
object is defined by the C standard (ISO/IEC 9899:2024) as a <region of
data storage in the execution environment, the contents of which can
represent values,= with the added note, <when referenced, an object can be
interpreted as having a particular type.= A variable is an example of an
object.

Variables have a declared type that tells you the kind of object its value
represents. For example, an object with type int contains an integer value.



Type is important because the collection of bits that represent one type of
object can have a different value if interpreted as a different type of object.
For example, the number 1 is represented in the IEEE Standard for
Floating-Point Arithmetic by the bit pattern 0x3f800000 (IEEE 754-2019).
But if you were to interpret this same bit pattern as an integer, you’d get the
value 1,065,353,216 instead of 1.

Functions are not objects but do have types. A function type is
characterized by both its return type and the number and types of its
parameters.

The C language also has pointers, which can be thought of as an
address4a location in memory where an object or function is stored.

Just like objects and functions, object pointers and function pointers are
different things and must not be interchanged. In the following section,
you’ll write a simple program that attempts to swap the values of two
variables to help you better understand objects, functions, pointers, and
types.

Declaring Variables
When you declare a variable, you assign it a type and provide it a name, or
identifier, by which the variable is referenced. Optionally, you can also
initialize the variable.

Listing 2-1 declares two integer objects with initial values. This simple
program also declares, but doesn’t define, a swap function to swap those
values.

#include <stdio.h> 
#include <stdlib.h> 
 

w void swap(int, int); // defined in Listing 2-2 
 
int main() { 
  int a = 21; 
  int b = 17; 
x swap(a, b); 
  printf("main: a = %d, b = %d\n", a, b); 



  return EXIT_SUCCESS; 
}

Listing 2-1: A program meant to swap two integers

This example program shows a main function with a single compound
statement that includes the {} characters and all the statements between
them (also referred to as a block). We define two variables, a and b, within
the main function. We declare the variables as having the type int and
initialize them to 21 and 17, respectively. Each variable must have a
declaration. The main function then calls the swap function x to try to swap
the values of the two integers. The swap function is declared in this program
w but not defined. We’ll look at some possible implementations of this
function later in this section.

DECLARING MULTIPLE VARIABLES

You can declare multiple variables in any single declaration, but doing so can
become confusing if the variables are pointers or arrays or if the variables are of
different types. For example, the following declarations are all correct:

char *src, c; 
int x, y[5]; 
int m[12], n[15][3], o[21];

The first line declares two variables, src and c, which have different types.
The src variable has a type of char *, and c has a type of char. The second line
again declares two variables, x and y, with different types. The variable x has a
type int, and y is an array of five elements of type int. The third line declares
three arrays (m, n, and o) with different dimensions and numbers of elements.

These declarations are easier to understand if each is on its own line:

char *src;    // src has a type of char * 
char c;       // c has a type of char 
int x;        // x has a type int 
int y[5];     // y is an array of 5 elements of type int 
int m[12];    // m is an array of 12 elements of type int 
int n[15][3]; // n is an array of 15 arrays of 3 elements



 of type int 
int o[21];    // o is an array of 21 elements of type int

Readable and understandable code is less likely to have defects.

Swapping Values, First Attempt
Each object has a storage duration that determines its lifetime, which is the
time during program execution for which the object exists, has storage, has
a constant address, and retains its last-stored value. Objects must not be
referenced outside their lifetime.

Local variables such as a and b from Listing 2-1 have automatic
storage duration, meaning that they exist until execution leaves the block in
which they’re declared. We’re going to try to swap the values stored in
these two variables. Listing 2-2 shows our first attempt to implement the
swap function.

void swap(int a, int b) { 
  int t = a; 
  a = b; 
  b = t; 
  printf("swap: a = %d, b = %d\n", a, b); 
}

Listing 2-2: A first attempt at implementing the swap function

The swap function is declared with two parameters, a and b, that we use
to pass arguments to this function. C distinguishes between parameters,
which are objects declared as part of the function declaration that acquire a
value on entry to the function, and arguments, which are comma-separated
expressions we include in the function call expression. We also declare a
temporary variable t of type int in the swap function and initialize it to the
value of a. This variable is used to temporarily save the value stored in a so
that it’s not lost during the swap.

We can now run the generated executable to test the program:



% ./a.out  
swap: a = 17, b = 21 
main: a = 21, b = 17

This result may be surprising. The variables a and b were initialized to
21 and 17, respectively. The first call to printf within the swap function
shows that these two values were swapped, but the second call to printf in
main shows the original values unchanged. Let’s examine what happened.

C is a call-by-value (also called a pass-by-value) language, which
means that when you provide an argument to a function, the value of that
argument is copied into a distinct variable for use within the function. The
swap function assigns the values of the objects you pass as arguments to
their respective parameters. When the parameter values in the function are
changed, the argument values in the caller are unaffected because they are
distinct objects. Consequently, the variables a and b retain their original
values in main during the second call to printf. The goal of the program
was to swap the values of these two objects. By testing the program, we’ve
discovered it has a bug, or defect.

Swapping Values, Second Attempt
To repair this bug, we can use pointers to rewrite the swap function. We use
the indirection (*) operator to both declare pointers and dereference them,
as shown in Listing 2-3.

void swap(int *pa, int *pb) { 
  int t = *pa; 
  *pa = *pb; 
  *pb = t; 
}

Listing 2-3: The revised swap function using pointers

When used in a function declaration or definition, * acts as part of a
pointer declarator indicating that the parameter is a pointer to an object or
function of a specific type. In the rewritten swap function, we declare two
parameters, pa and pb, both having the type pointer to int.



The unary * operator denotes indirection. If its operand has type
pointer to T, the result of the operation has type T. For example, consider
the following assignment:

pa = pb;

This replaces the value of the pointer pa with the value of the pointer
pb. Now consider the assignment in the swap function:

*pa = *pb;

The *pb operation reads the value referenced by pb, while the *pa
operation reads the location referenced by pa. The value referenced by pb is
then written to the location referenced by pa.

When you call the swap function in main, you must also place an
ampersand (&) character before each variable name:

swap(&a, &b);

The unary & (address-of) operator generates a pointer to its operand.
This change is necessary because the swap function now accepts arguments
of type pointer to int instead of type int.

Listing 2-4 shows the entire swap program with comments describing
the objects created during execution of this code and their values.

#include <stdio.h> 
#include <stdlib.h> 
 
void swap(int *pa, int *pb) {   // pa → a: 21    pb → b: 17 
  int t = *pa;                  // t: 21 
  *pa = *pb;                    // pa → a: 17    pb → b: 17 
  *pb = t;                      // pa → a: 17    pb → b: 21 
} 
 
int main() { 
  int a = 21;                   // a: 21 



  int b = 17;                   // b: 17 
  swap(&a, &b); 
  printf("a = %d, b = %d\n", a, b);    // a: 17    b: 21 
  return EXIT_SUCCESS; 
}

Listing 2-4: A simulated call by reference

Upon entering the main function block, the variables a and b are
initialized to 21 and 17, respectively. The code then takes the addresses of
these objects and passes them to the swap function as arguments.

Within the swap function, the parameters pa and pb are now both
declared as type pointer to int and contain copies of the arguments passed
to swap from the calling function (in this case, main). These address copies
still refer to the exact same objects, so when the values of their referenced
objects are swapped in the swap function, the contents of the original
objects declared in main are also swapped. This approach simulates call by
reference (also known as pass by reference) by generating object addresses,
passing those by value, and then dereferencing the copied addresses to
access the original objects.

Object Types
This section introduces object types in C. Specifically, we’ll cover the
Boolean type, character types, and arithmetic types (including both integer
and floating types).

Boolean
A Boolean data type has one of two possible values (true or false) that
represent the two truth values of logic and Boolean algebra. Objects
declared as bool can store only the values true and false.

RESERVED IDENTIFIERS

A Boolean type was introduced in C99 starting with an underscore (_Bool) to
differentiate it in existing programs that had already declared their own
identifiers named bool. Identifiers that begin with an underscore and either an



uppercase letter or another underscore are always reserved. The C standards
committee often creates new keywords such as _Bool under the assumption
that you have avoided the use of reserved identifiers. If you haven’t, as far as
the C standards committee is concerned, it’s your fault for not having read the
standard more carefully. C23 added the bool keyword but retained _Bool as an
alternative spelling, and bool is now the preferred spelling. The keywords false
and true are constants of type bool with a value of 0 for false and 1 for true. If
you are using an older version of C, you can include the header <stdbool.h>,
still spell this type as bool, and assign it the values true and false.

The following example declares a function called arm_detonator that
takes a single int argument and returns a value of type bool:

bool arm_detonator(int); 
 
void arm_missile(void) { 
  bool armed = arm_detonator(3); 
  if (armed) puts("missile armed"); 
  else puts("missile disarmed"); 
}

The arm_missile function calls the arm_detonator function and
assigns the return value to the Boolean variable armed. This value can then
be tested to determine whether the missile is armed.

Historically, Boolean values were represented by integers and still
behave as integers. They can be stored in integer variables and used
anywhere integers would be valid, including in indexing, arithmetic,
parsing, and formatting. C guarantees that any two true values will compare
equally (which was impossible to achieve before the introduction of the
bool type). You should use the bool type to represent Boolean values.

Character
The C language defines the following character types: char, signed char,
and unsigned char. Each compiler implementation defines char to have
the same alignment, size, range, representation, and behavior as either
signed char or unsigned char. Regardless of the choice made, char is a
separate type from the other two and is incompatible with both.



The char type is commonly used to represent character data in C
language programs. Objects of type char can represent the basic execution
character set4the minimum set of characters required in the execution
environment4including upper- and lowercase letters, the 10 decimal digits,
the space character, punctuation, and control characters. The char type is
inappropriate for integer data; use signed char to represent small, signed
integer values, and use unsigned char to represent small, unsigned integer
values.

The size of objects of type char is always 1 byte, and its width is
CHAR_BIT bits. The CHAR_BIT macro from <limits.h> defines the number
of bits in a byte. The value of CHAR_BIT macro cannot be less than 8, and on
most modern platforms, it is 8.

The basic execution character set suits the needs of many conventional
data processing applications, but its lack of non-English letters is an
obstacle to acceptance by international users. To address this need, the C
standards committee specified a new wide type to allow large character sets.
You can represent the characters of a large character set as wide characters
by using the wchar_t type, which generally takes more space than a basic
character. Typically, implementations choose 16 or 32 bits to represent a
wide character. The C standard library provides functions that support both
narrow and wide character types. The wchar_t type was not designed to
support Unicode and has consequently fallen out of favor for most
implementations with the notable exception of Microsoft Visual Studio.

Arithmetic
C provides several arithmetic types that can be used to represent integers,
enumerators, and floating-point values. Chapter 3 covers some of these in
more detail, but here’s a brief introduction.

Integer
Signed integer types can be used to represent negative numbers, positive
numbers, and zero. The standard signed integer types include signed char,
short int, int, long int, and long long int.

For each signed integer type, there is a corresponding unsigned integer
type that uses the same amount of storage: unsigned char, unsigned



short int, unsigned int, unsigned long int, and unsigned long long
int. The unsigned types can represent positive numbers and zero. These
unsigned integer types along with type bool make up the standard unsigned
integer types.

Except for int itself, the keyword int may be omitted in the
declarations for these types, so you might, for example, declare a type by
using long long instead of long long int.

The signed and unsigned integer types are used to represent integers of
various widths. Each platform determines the width for each of these types,
given some constraints. Each type has a minimum representable range. The
types are ordered by width, guaranteeing that wider types are at least as
large as narrower types. This means that an object of type long long int
can represent all values that an object of type long int can represent, an
object of type long int can represent all values that can be represented by
an object of type int, and so forth. The implementation-defined minimum
and maximum representable values for integer types are specified in the
<limits.h> header file.

Extended integer types may be provided in addition to the standard
integer types. They are implementation defined, meaning that their width,
precision, and behavior are up to the compiler. Extended integer types are
typically larger than the standard integer types (for example, __int128).

In addition to the standard and extended integer types, C23 adds bit-
precise integer types. These types accept an operand specifying the width of
the integer, so a _BitInt(32) is a signed 32-bit integer, and an unsigned
_BitInt(32) is an unsigned 32-bit integer. Bit-precise integer types do not
require their width to be a power of two; the maximum width supported is
specified by BITINT_MAXWIDTH (which must be at least the same as the
width of unsigned long long).

The int type is typically assigned the natural width suggested by the
architecture of the execution environment (for example, 16 bits on a 16-bit
architecture and 32 bits on a 32-bit or 64-bit architecture). You can specify
actual-width integers by using type definitions from the <stdint.h> or
<inttypes.h> header, like uint32_t. These headers also provide type
definitions for the greatest-width integer types: uintmax_t and intmax_t.
The intmax_t type, for example, can represent any value of any signed



integer type with the possible exceptions of signed bit-precise integer types
and of signed extended integer types.

Chapter 3 covers integer types in excruciating detail.

enum
An enumeration, or enum, allows you to define a type that assigns names
(enumerators) to integer values in cases with an enumerable set of constant
values. The following are examples of enumerations:

enum day {sun, mon, tue, wed, thu, fri, sat}; 
enum cardinal_points {north = 0, east = 90, south = 180, wes
t = 270}; 
enum months {jan = 1, feb, mar, apr, may, jun, jul, aug, se
p, oct, nov, dec};

If you don’t specify a value to the first enumerator with the = operator,
the value of its enumeration constant is 0, and each subsequent enumerator
without an = adds 1 to the value of the previous enumeration constant.
Consequently, the value of sun in the day enumeration is 0, mon is 1, and so
forth.

You can also assign specific values to each enumerator, as shown by
the cardinal_points enumeration. Using = with enumerators may produce
enumeration constants with duplicate values, which can be a problem if you
incorrectly assume that all the values are unique. The months enumeration
sets the first enumerator at 1, and each subsequent enumerator that isn’t
specifically assigned a value will be incremented by 1.

Starting with C23, you can specify the underlying type of the
enumeration. For portability and other reasons (Meneide and Pygott 2022),
it is always better to specify the enumeration type. In the following
example, the enumeration constant a0 can be assigned the value
0xFFFFFFFFFFFFFFFFULL because the type is specified as unsigned long
long:

enum a : unsigned long long { 
  a0 = 0xFFFFFFFFFFFFFFFFULL 
};



An omitted type is implementation defined. Visual C++ uses a signed
int for the type, and GCC uses an unsigned int.

Floating
Floating-point arithmetic is similar to, and often used as a model for, the
arithmetic of real numbers. The C language supports a variety of floating-
point representations including, on most systems, representations in the
IEEE Standard for Floating-Point Arithmetic (IEEE 754-2019). ISO/IEC
60559:2011 has content identical to IEEE 754-2019 but is referenced by the
C standard because it is published by the same standards organization. The
choice of floating-point representation is implementation defined. Chapter 3
covers floating types in detail.

The C language supports three standard floating types: float, double,
and long double. The set of values of the type float is a subset of the set
of values of the type double; the set of values of the type double is a subset
of the set of values of the type long double.

C23 adds three decimal floating types (ISO/IEC TS 18661-2:2015),
designated as _Decimal32, _Decimal64, and _Decimal128. Respectively,
these have the decimal32, decimal64, and decimal128 IEC 60559 formats.

The standard floating types and the decimal floating types are
collectively called the real floating types.

There are also three complex types, designated as float complex,
double complex, and long double complex.

The real floating and complex types are collectively called the floating
types. Figure 2-1 shows the hierarchy of floating types.

Figure 2-1: The hierarchy of floating types



Complex types and decimal floating types are not covered in detail in
this book.

void
The void type is a rather strange type. The keyword void (by itself) means
<cannot hold any value.= For example, you can use it to indicate that a
function doesn’t return a value or as the sole parameter of a function to
indicate that the function takes no arguments. On the other hand, the
derived type void * means that the pointer can reference any object.

Derived Types
Derived types are constructed from other types. These include function
types, pointer types, array types, type definitions, structure types, and union
types4all of which are covered here.

Function
A function type is derived from the return type and the number and types of
its parameters. A function can return any complete object type except for an
array type.

When you declare a function, you use the function declarator to
specify the name of the function and the return type. If the declarator
includes a parameter type list and a definition, the declaration of each
parameter must include an identifier, except parameter lists with only a
single parameter of type void, which needs no identifier.

Here are a few function type declarations:

int f(void); 
int fprime(); 
int *fip(); 
void g(int i, int j); 
void h(int, int);

First, we declare two functions, f and fprime, with no parameter that
returns an int. Next, we declare a function fip with no parameters that



return a pointer to an int. Finally, we declare two functions, g and h, each
returning void and taking two parameters of type int.

Specifying parameters with identifiers (as done here with g) can be
problematic if an identifier is a macro. However, providing parameter
names is good practice for self-documenting code, so omitting the
identifiers (as done with h) is not typically recommended.

In a function declaration, specifying parameters is optional. However,
failing to do so can be problematic. Prior to C23, fip declares a function
accepting any number of arguments of any type and returning an int *.
The same function declaration for fip in C++ declares a function accepting
no arguments and returning an int *. Starting with C23, a function
declarator with an empty parameter list declares a prototype for a function
that takes no arguments (like it does in C++).

A function type is also known as a function prototype. A function
prototype informs the compiler about the number and types of parameters a
function accepts. Compilers use this information to verify that the correct
number and type of parameters are used in the function definition and any
calls to the function.

The function definition provides the actual implementation of the
function. Consider the following function definition:

int max(int a, int b) 
{return a > b ? a : b;}

The return type specifier is int; the function declarator is max(int a,
int b); and the function body is {return a > b ? a : b;}. The
specification of a function type must not include any type qualifiers (see
<Type Qualifiers= on page 31). The function body itself uses the conditional
operator (? :), which is explained in Chapter 4. This expression states that
if a is greater than b, return a; otherwise, return b.

Pointer
A pointer type is derived from a function or object type called the
referenced type. A pointer type derived from the referenced type T is called



a pointer to T. A pointer provides a reference to an entity of the referenced
type.

The following three declarations declare a pointer to int, a pointer to
char, and a pointer to void:

int *ip = 0; // compliant 
char *cp = NULL; // good 
void *vp = nullptr; // better

Each pointer is initialized to a null pointer constant. A null pointer
constant can be specified as an integer constant expression with the value 0,
(void *)0, or the predefined constant nullptr. The NULL macro is defined
in <stddef.h>. If a null pointer constant is converted to a pointer type, the
resulting null pointer is guaranteed to compare unequally to a pointer to any
object or function.

The nullptr constant was introduced in C23 and has advantages to
using NULL (Gustedt 2022). Table 2-1 shows common values for NULL and
their associated types.

Table 2-1: Common Values for NULL and Their Associated Types

Value Type
0 int
0L long
(void *)0 void *

These different types can have surprising results when invoking a type-
generic macro with a NULL argument. The conditional expression (true ? 0
: NULL) is always defined, regardless of the type of NULL. However, the
conditional expression (true ? 1 : NULL) is a constraint violation if NULL
has type void *.

A NULL argument passed as a sentinel value to a variadic function, such
as the Portable Operating System Interface (POSIX) execl function, which
expects a pointer, can have unexpected results. On most modern
architectures, the int and void * types have different sizes. If NULL is



defined as 0 on such an architecture, an incorrectly sized argument is passed
to the variadic function.

Earlier in the chapter, I introduced the address-of (&) and indirection (*)
operators. You use the & operator to take the address of an object or
function. For example, taking the address of an int object results in an
address with the type pointer to int:

int i = 17; 
int *ip = &i;

The second declaration declares the variable ip as a pointer to int and
initializes it to the address of i. You can also use the & operator on the result
of the * operator:

ip = &*ip;

Dereferencing ip using the * operator resolves to the actual object i.
Taking the address of *ip using the & operator retrieves the pointer, so these
two operations cancel each other out.

The unary * operator converts a pointer to a type T into a value of type
T. It denotes indirection and operates only on pointers. If the operand points
to a function, the result of using the * operator is the function designator,
and if it points to an object, the result is a value of the designated object.
For example, if the operand is a pointer to int, the result of the indirection
operator has type int. If the pointer is not pointing to a valid object or
function, the behavior is undefined.

Array
An array is a contiguously allocated sequence of objects that all have the
same element type. Array types are characterized by their element types and
the number of elements in the array. Here we declare an array of 11
elements of type int identified by ia and an array of 17 elements of type
pointer to float identified by afp:



int ia[11]; 
float *afp[17];

You can use square brackets ([]) to identify an element of an array. For
example, the following contrived code snippet creates the string
"0123456789" to demonstrate how to assign values to the elements of an
array:

char str[11]; 
for (unsigned int i = 0; i < 10; ++i) { 
  str[i] = '0' + i; 
} 
str[10] = '\0';

The first line declares an array of char with a bound of 11. This
allocates sufficient storage to create a string with 10 characters plus a null
character. The for loop iterates 10 times, with the values of i ranging from
0 to 9. Each iteration assigns the result of the expression '0' + i to str[i].
Following the end of the loop, the null character is copied to the final
element of the array str[10], and str now contains the string
"0123456789".

In the expression str[i], str is automatically converted to a pointer to
the first member of the array (pointer to char), and i has an unsigned
integer type. The subscript ([]) and addition (+) operators are defined so
that str[i] is identical to *(str + i). When str is an array object (as it is
here), the expression str[i] designates the ith element of the array
(counting from 0). Because arrays are indexed starting at 0, the array char
str[11] is indexed from 0 to 10, with 10 being the last element, as
referenced on the last line of this example.

If the operand of the unary & operator is the result of a [] operator, the
result is as if the & operator were removed and the [] operator were
changed to a + operator. For example, &str[10] is the same as str + 10:

&str[10] → &*(str + 10) → str + 10



You can also declare multidimensional arrays. Listing 2-5 declares arr
in the function main as a two-dimensional 3×5 array of type int, also
referred to as a matrix.

#include <stdlib.h> 
void func(int arr[5]); 
int main() { 
  unsigned int i = 0; 
  unsigned int j = 0; 
  int arr[3][5]; 
w func(arr[i]); 
x int x = arr[i][j]; 
  return EXIT_SUCCESS; 
}

Listing 2-5: Matrix operations

More precisely, arr is an array of three elements, each of which is an
array of five elements of type int. When you use the expression arr[i] w
(which is equivalent to *(arr+i)), the following occurs:

  1.  arr is converted to a pointer to the initial array of five elements of type
int starting at arr[i].

  2.  i is scaled to the type of arr by multiplying i by the size of one array
of five int objects.

  3.  The results from steps 1 and 2 are added.
  4.  Indirection is applied to the sum to produce an array of five elements of

type int.

When used in the expression arr[i][j] x, that array is converted to a
pointer to the first element of type int, so arr[i][j] produces an object of
type int.

TYPE DEFINITIONS

You use typedef to declare an alias for an existing type; it never creates a new
type. For example, each of the following declarations creates at least one new



type alias:

typedef unsigned int uint_type; 
typedef signed char schar_type, *schar_p, (*fp)(void);

On the first line, we declare uint_type as an alias for the type unsigned int.
On the second line, we declare schar_type as an alias for signed char, schar_p
as an alias for signed char *, and fp as an alias for signed char(*)(void).
Identifiers that end in _t in the standard headers are type definitions (aliases for
existing types). You should not follow this convention in your own code because
the C standard reserves identifiers that match the patterns int[0-9a-z_]*_t and
uint[0-9a-z_]*_t, and POSIX reserves all identifiers that end in _t. If you define
identifiers that use these names, they may collide with names used by the
implementation, which can cause problems that are difficult to debug.

Structure
A structure type (also known as a struct) contains sequentially allocated
members. Each member has its own name and may have a distinct type4
unlike array elements, which must all be of the same type. Structures are
like record types found in other programming languages.

Structures are useful for declaring collections of related objects and
may be used to represent things such as a date, customer, or personnel
record. They are especially useful for grouping objects that are frequently
passed together as arguments to a function, so you don’t need to repeatedly
pass individual objects separately.

Listing 2-6 declares a struct named sigline with type struct
sigrecord and a pointer to struct sigrecord named sigline_p.

struct sigrecord { 
  int signum; 
  char signame[20]; 
  char sigdesc[100]; 
} sigline, *sigline_p;

Listing 2-6: A struct sigrecord

The structure has three member objects: signum is an object of type
int, signame is an array of type char consisting of 20 elements, and



sigdesc is an array of type char consisting of 100 elements.
Once you have defined a structure, you’ll likely want to reference its

members. You reference members of an object of the structure type by
using the structure member (.) operator. If you have a pointer to a structure,
you can reference its members with the structure pointer (->) operator.
Listing 2-7 demonstrates the use of each operator.

sigline.signum = 5; 
strcpy(sigline.signame, "SIGINT"); 
strcpy(sigline.sigdesc, "Interrupt from keyboard"); 
 

w sigline_p = &sigline; 
 
sigline_p->signum = 5; 
strcpy(sigline_p->signame, "SIGINT"); 
strcpy(sigline_p->sigdesc, "Interrupt from keyboard");

Listing 2-7: Referencing structure members

The first three lines of Listing 2-7 directly access members of the
sigline object by using the dot (.) operator. We assign the address of the
sigline object to the sigline_p pointer w. In the final three lines of the
program, we indirectly access the members of the sigline object by using
the -> operator through the sigline_p pointer.

Union
Union types are like structures, except that the memory used by the member
objects overlaps. Unions provide multiple different ways to look at the same
memory.

Listing 2-8 shows a union that contains a single member f of type
float and a struct that contains three bitfields of type uint32_t:
significand, exponent, and sign.

static_assert( 
  (__STDC_IEC_60559_BFP__ >= 202311L || __STDC_IEC_559__ ==
 1) 
  && __STDC_ENDIAN_LITTLE__ 



); 
 
union { 
  float f; 
  struct { 
    uint32_t significand : 23; 
    uint32_t exponent : 8; 
    uint32_t sign : 1; 
  }; 
} float_encoding;

Listing 2-8: Decomposing a float using a union

This allows a (low-level) C programmer to use the entire floating-point
value and examine (and possibly modify) its constituent parts. This union is
not portable because implementations may use a different floating-point
representation or endianness. The static_assert tests to ensure this union
matches the implementation.

Listing 2-9 shows a struct n that contains a member type and a union
u that itself contains four members: inode, fnode, dnode, and ldnode.

enum node_type { 
  integer_type, 
  float_type, 
  double_float_type, 
  long_double_type 
}; 
 
struct node { 
  enum node_type type; 
  union { 
    int inode; 
    float fnode; 
    double dnode; 
    long double ldnode; 
  } u; 
} n; 
 



n.type = double_type; 
n.u.dnode = 3.14;

Listing 2-9: Saving memory with a union

This structure might be used in a tree, a graph, or some other data
structure that contains differently typed nodes. The type member might
contain a value between 0 and 3, which indicates the type of the value
stored in the structure. It is declared directly in the struct n because it is
common to all nodes.

As with structures, you can access union members via the . operator.
Using a pointer to a union, you can reference its members with the ->
operator. In Listing 2-9, the dnode member is referenced as n.u.dnode.
Code that uses this union will typically check the type of the node by
examining the value stored in n.type and then accessing the value using
n.u.inode, n.u.fnode, n.u.dnode, or n.u.ldnode, depending on the value
stored in n.type. Without the union, each node would contain separate
storage for all four data types. The use of a union allows the same storage to
be used for all union members. On the x86-64 GCC version 13.2 compiler,
using a union saved 16 bytes per node.

Unions are commonly used to describe network or device protocols in
cases where you do not know in advance which protocol will be used.

Tags
Tags are a special naming mechanism for structures, unions, and
enumerations. For example, the identifier s in the following structure is a
tag:

struct s { 
  // --snip--  
};

By itself, a tag is not a type name and cannot be used to declare a
variable (Saks 2002). Instead, you must declare variables of this type as
follows:



struct s v;   // instance of struct s 
struct s *p;  // pointer to struct s

The names of unions and enumerations are also tags and not types,
meaning that they cannot be used alone to declare a variable. For example:

enum day {sun, mon, tue, wed, thu, fri, sat}; 
day today;  // error 
enum day tomorrow;  // OK

The tags of structures, unions, and enumerations are defined in a
separate namespace from ordinary identifiers. This allows a C program to
have both a tag and another identifier with the same spelling in the same
scope:

enum status {ok, fail};    // enumeration 
enum status status(void);  // function

You can even declare an object s of type struct s:

struct s s;

This may not be good practice, but it is valid C. You can think of
struct tags as type names and define an alias for the tag by using a
typedef. Here’s an example:

typedef struct s {int x;} t;

This now allows you to declare variables of type t instead of struct s.
The tag name in struct, union, and enum is optional, so you can just
dispense with it entirely:

typedef struct {int x;} t;



This works fine except in the case of self-referential structures that
contain pointers to themselves:

struct tnode { 
  int count; 
  struct tnode *left; 
  struct tnode *right; 
};

C requires the use of tag types (struct, union, or enum) to include the
tag name. The compiler will emit a diagnostic if you do not use struct
tnode in the declaration of the left and right pointers. Consequently, you
must declare a tag for the structure.

You can create an alias for the structure using a typedef:

typedef struct tnode { 
  int count; 
  struct tnode *left; 
  struct tnode *right; 
} tnode;

The declaration of the left and right pointers must still use the tag
name because the typedef name is not introduced until after the struct
declaration is complete. You can use the same name for the tag and the
typedef, but a common idiom is to name the tag something ugly such as
tnode_ to encourage programmers to use the type name:

typedef struct tnode_ { 
  int count; 
  struct tnode_ *left; 
  struct tnode_ *right; 
} tnode;

You can also define this type before the structure so that you can use it
to declare the left and right members that refer to other objects of type
tnode:



typedef struct tnode tnode; 
struct tnode { 
  int count; 
  tnode *left; 
  tnode *right; 
};

Type definitions can improve code readability beyond their use with
structures. For example, given the following type definition

typedef void fv(int), (*pfv)(int);

these declarations of the signal function all specify the same type:

void (*signal(int, void (*)(int)))(int); 
fv *signal(int, fv *); 
pfv signal(int, pfv);

The last two declarations are clearly easier to read.

Type Qualifiers
All the types examined so far have been unqualified types. You can qualify
types by using one or more of the following qualifiers: const, volatile,
and restrict. Each of these qualifiers changes behaviors when accessing
objects of the qualified type.

The qualified and unqualified versions of types can be used
interchangeably as arguments to functions, return values from functions,
and structure and union members.

NOTE
The _Atomic type qualifier, available since C11, supports concurrent
programs.

const



Objects declared with the const qualifier (const-qualified types) are not
assignable but can have constant initializers. This means the compiler can
place objects with const-qualified types in read-only memory, and any
attempt to write to them will result in a runtime error:

const int i = 1; // const-qualified int 
i = 2; // error: i is const-qualified

It’s possible to accidentally convince your compiler to change a const-
qualified object for you. In the following example, we take the address of a
const-qualified object i and tell the compiler that it’s actually a pointer to
an int:

const int i = 1;  // object of const-qualified type 
int *ip = (int *)&i; 
*ip = 2;  // undefined behavior

C does not allow you to cast away the const if the original was
declared as a const-qualified object. This code might appear to work, but
it’s defective and may fail later. For example, the compiler might place the
const-qualified object in read-only memory, causing a memory fault when
trying to store a value in the object at runtime.

C allows you to modify an object that is referenced by a const-
qualified pointer by casting the const away, provided that the original
object was not declared const:

int i = 12; 
const int j = 12; 
const int *ip = &i; 
const int *jp = &j; 
*(int *)ip = 42; // OK 
*(int *)jp = 42; // undefined behavior

Be careful not to pass a const-qualified pointer to a function that
modifies the object.



volatile
Objects are given a volatile-qualified type to allow for processes that are
extrinsic to the compiler. The values stored in these objects may change
without the knowledge of the compiler, or a write may synchronize
externally. For example, every time the value from a real-time clock is read,
it may change, even if the value has not been written to by the C program.
Using a volatile-qualified type lets the compiler know that the value may
change without its knowledge and ensures that every access to the real-time
clock occurs. Otherwise, an access to the real-time clock may be optimized
away or replaced by a previously read and cached value.

A volatile-qualified type can be used to access memory-mapped
registers, which are accessed through an address just like any other
memory. Input/output (I/O) devices often have memory-mapped registers,
where you can write to, or read from, a specific address to set or retrieve
information or data. Each read and write operation must occur, even if the
compiler can see no reason for it. Declaring an object as volatile ensures
that each read or write of that object at runtime occurs the same number of
times and in the same order as indicated by the source code. For example, if
port is defined as a volatile-qualified int, the compiler must generate
instructions to read the value from port and then write this value back to
port in the assignment:

port = port;

Without the volatile qualification, the compiler would see this as a
no-op (a programming statement that does nothing) and might eliminate
both the read and the write. Reads and writes of volatile memory are
touched exactly once. A volatile operation cannot be eliminated or fused
with a subsequent one, even if the compiler believes it’s useless. A volatile
operation cannot be speculated, even if the compiler can undo or otherwise
make that speculation benign.

Objects with volatile-qualified types are used when a compiler is not
aware of external interactions. For example, volatile-qualified types can
be used for memory shared with untrusted code to avoid time-of-check to
time-of-use (ToCToU) vulnerabilities. Such types are used to access objects



from a signal handler and with setjmp/longjmp (refer to the C standard for
information on signal handlers and setjmp/longjmp). Unlike Java and other
programming languages, volatile-qualified types should not be used in C
for synchronization between threads.

Memory-mapped I/O ports are modeled by a static volatile3
qualified objects model. Memory-mapped input ports such as a real-time
clock are modeled by static const volatile3qualified objects. A const
volatile3qualified object models a variable that can be altered by a
separate thread. The meaning of the static storage-class specifier is
explained later in this chapter.

restrict
A restrict-qualified pointer is used to promote optimization. Objects
indirectly accessed through a pointer frequently cannot be fully optimized
because of potential aliasing, which occurs when more than one pointer
refers to the same object. Aliasing can inhibit optimizations because the
compiler can’t tell whether an object can change values when another
apparently unrelated object is modified, for example.

The following function copies n bytes from the storage referenced by q
to the storage referenced by p. The function parameters p and q are both
restrict-qualified pointers:

void f(unsigned int n, int * restrict p, int * restrict q) { 
  while (n-- > 0) { 
    *p++ = *q++; 
  } 
}

Because both p and q are restrict-qualified pointers, the compiler can
assume that an object accessed through one of the pointer parameters is not
also accessed through the other. The compiler can make this assessment
based solely on the parameter declarations without analyzing the function
body.

Although using restrict-qualified pointers can result in more efficient
code, you must ensure that the pointers do not refer to overlapping memory



to prevent undefined behavior.

Scope
Objects, functions, macros, and other C language identifiers have scope that
delimits the contiguous region where they can be accessed. C has four types
of scope: file, block, function prototype, and function.

The scope of an object or function identifier is determined by where it
is declared. If the declaration is outside any block or parameter list, the
identifier has file scope, meaning its scope is the entire text file in which it
appears as well as any included files.

If the declaration appears inside a block or within the list of
parameters, it has block scope, meaning that the identifier is accessible only
from within the block. The identifiers for a and b from Listing 2-4 have
block scope and can be referenced only from within the code block in the
main function in which they’re defined.

If the declaration appears within the list of parameter declarations in a
function prototype (not part of a function definition), the identifier has
function prototype scope, which terminates at the end of the function
declarator. Function scope is the area between the opening {of a function
definition and its closing}. A label name is the only kind of identifier that
has function scope. Labels are identifiers followed by a colon, and they
identify a statement in the same function to which control may be
transferred. (Chapter 5 covers labels and control transfer.)

Scopes also can be nested, with inner and outer scopes. For example,
you can define a block scope inside another block scope, and every block
scope is defined within a file scope. The inner scope has access to the outer
scope, but not vice versa. As the name implies, any inner scope must be
completely contained within any outer scope that encompasses it.

If you declare the same identifier in both an inner scope and an outer
scope, the identifier declared in the outer scope is hidden (also known as
shadowed) by the identifier declared in the inner scope. Referencing the
identifier from the inner scope will refer to the object in the inner scope; the
object in the outer scope is hidden and cannot be referenced by its name.
The easiest way to prevent this from becoming a problem is to use different



names. Listing 2-10 demonstrates different scopes and how identifiers
declared in inner scopes can hide identifiers declared in outer scopes.

int j;  // file scope of j begins 
 
void f(int i) {         // block scope of i begins 
  int j = 1;            // block scope of j begins; hides fi
le-scope j 
  i++;                  // i refers to the function paramete
r 
  for (int i = 0; i < 2; i++) {  // block scope of loop-loca
l i begins 
    int j = 2;          // block scope of the inner j begin
s; hides outer j 
    printf("%d\n", j);  // inner j is in scope, prints 2 
  }                     // block scope of the inner i and j
 ends 
  printf("%d\n", j);    // the outer j is in scope, prints 1 
}  // the block scope of i and j ends 
 
void g(int j);          // j has function prototype scope; h
ides file-scope j

Listing 2-10: Identifiers declared in inner scopes hiding identifiers declared in outer
scopes

There is nothing wrong with this code, provided the comments
accurately describe your intent. However, it’s better to use different names
for different identifiers to avoid confusion, which leads to bugs. Using short
names such as i and j is fine for identifiers with small scopes. Identifiers in
large scopes should have longer, descriptive names that are unlikely to be
hidden in nested scopes. Some compilers will warn about hidden identifiers.

Storage Duration
Objects have a storage duration that determines their lifetime. Four storage
durations are available: automatic, static, thread, and allocated. You’ve
already seen that objects declared within a block or as a function parameter
have automatic storage duration. The lifetime of these objects starts when



the block in which they’re declared begins execution and ends when
execution of this block completes. If the block is entered recursively, a new
object is created each time the block is entered, and each object has its own
storage.

NOTE
Scope and lifetime are entirely different concepts. Scope applies to
identifiers, whereas lifetime applies to objects. The scope of an identifier is
the code region where the object denoted by the identifier can be accessed
by its name. The lifetime of an object is the period for which the object
exists.

Objects declared in file scope have static storage duration. The lifetime
of those objects is the entire execution of the program, and their stored
value is initialized prior to program startup.

Thread storage duration is used in concurrent programming and is not
covered in this book. Allocated storage duration involves dynamically
allocated memory and is discussed in Chapter 6. Finally, as described in the
next section, a storage-class specifier can determine or influence storage
duration.

Storage Class
You can specify the storage class of an object or functions using storage-
class specifiers. For C23, these include auto, constexpr, extern,
register, static, thread_local, and typedef. The constexpr storage-
class specifier is new in C23, and the auto storage-class specifier is
significantly changed.

Storage-class specifiers specify various properties of identifiers and
declared features:

Storage duration: static in block scope, thread_local, auto, and
register
Linkage: extern, static and constexpr in file scope, and typedef
Value: constexpr
Type: typedef



With a few exceptions, only one storage-class specifier is allowed for
each declaration. For example, auto may appear with all the others except
typedef.

static
The static storage-class specifier is used to specify both storage duration
and linkage.

File scope identifiers specified as static or constexpr, or functions
specified as static, have internal linkage.

You can also declare a variable with block scope to have static storage
duration by using the storage-class specifier static, as shown in the
counting example in Listing 2-11. These objects persist after the function
has exited.

#include <stdio.h> 
#include <stdlib.h> 
 
void increment(void) { 
  static unsigned int counter = 0; 
  counter++; 
  printf("%d ", counter); 
} 
 
int main() { 
  for (int i = 0; i < 5; i++) { 
    increment(); 
  } 
  return EXIT_SUCCESS; 
}

Listing 2-11: A counting example

This program outputs 1 2 3 4 5. The static variable counter is
initialized to 0 once at program startup and incremented each time the
increment function is called. The lifetime of counter is the entire
execution of the program, and it will retain its last-stored value throughout
its lifetime. You could achieve the same behavior by declaring counter



with file scope. However, it’s good software engineering practice to limit
the scope of an object whenever possible.

extern
The extern specifier specifies static storage duration and external linkage.
It can be used with function and object declarations in both file and block
scope (but not function parameter lists). If extern is specified for the
redeclaration of an identifier that has already been declared with internal
linkage, the linkage remains internal. Otherwise (if the prior declaration
was external, has no linkage, or is not in scope), the linkage is external.

thread_local
An object whose identifier is declared with the thread_local storage-class
specifier has thread storage duration. Its initializer is evaluated prior to
program execution, its lifetime is the entire execution of the thread for
which it is created, and its stored value is initialized with the previously
determined value when the thread is started. There is a distinct object per
thread, and use of the declared name in an expression refers to the object
associated with the thread evaluating the expression. (The topic of threading
is beyond the scope of this book.)

constexpr
A scalar object declared with the constexpr storage-class specifier is a
constant and has its value permanently fixed at translation time. The
constexpr storage-class specifier may appear with auto, register, or
static. If not already present, a const qualification is implicitly added to
the object’s type. The resulting object cannot be modified at runtime in any
way. The compiler can then use this value in any other constant expression.

Additionally, the constant expression used for the initializer of such a
constant is checked at compile time. Before the introduction of constexpr
in C23, a very large object constant might be declared as follows:

static size_t const BFO = 0x100000000;



The initializer may or may not fit into size_t; a diagnostic is not
required. In C23, this same object can be declared using constexpr as
follows:

constexpr size_t BFO = 0x100000000;

Now, a diagnostic is required on implementations where size_t has a
width of 32 or less.

Static objects must be initialized with a constant value and not a
variable:

int *func(int i) { 
  const int j = i; // ok 
  static int k = j; // error 
  return &k; 
}

Arithmetic constant expressions are allowed in initializers. Constant
values are literal constants (for example, 1, 'a', or 0xFF), enum members, a
scalar object declared with the constexpr storage-class specifier, and the
result of operators such as alignof or sizeof (provided the operand does
not have a variable-length array type). Unfortunately, const-qualified
objects are not constant values. Starting with C23, an implementation may
accept other forms of constant expressions; it is implementation defined
whether they are integer constant expressions.

register
The register storage-class specifier suggests that access to an object be as
fast as possible. The extent to which such suggestions are effective is
implementation defined. Frequently, compilers can make better decisions
about register allocation and ignore these programmer suggestions. The
register storage class can be used only for an object that never has its
address taken. A compiler can treat any register declaration simply as an
auto declaration. However, whether addressable storage is used, the address
of any part of an object declared with a storage-class specifier register



cannot be computed, either explicitly by use of the unary & operator or
implicitly by converting an array name to a pointer.

typedef
The typedef storage-class specifier defines an identifier to be a typedef
name that denotes the type specified for the identifier. The typedef storage-
class specifier was discussed earlier in the <Type Definitions= box.

auto
Prior to C23, the auto specifier was allowed only for objects declared at
block scope (except function parameter lists). It indicates automatic storage
duration and no linkage, which are the defaults for these kinds of
declarations.

C23 introduced type inference into the C language by expanding the
definition of the existing auto storage-class specifier. Prior to C23,
declaring a variable in C requires the user to name a type. However, when
the declaration includes an initializer, the type can be derived directly from
the type of the expression used to initialize the variable. This has been a
C++ feature since 2011.

The auto storage duration class specifier has similar behavior to C++
in that it allows the type to be inferred from the type of the assignment
value. Take the following file scope definitions, for example:

static auto a = 3; 
auto p = &a;

Because the integer literal 3 has an implicit type of int, these
declarations are interpreted as if they had been written as:

static int a = 3; 
int * p = &a;

Effectively, a is an int, and p is an int *. Type inference is extremely
useful when implementing or invoking type-generic macros, as we’ll see in
Chapter 9.



typeof Operators
C23 introduced the typeof operators typeof and typeof_unqual. The
typeof operators can operate on an expression or a type name and yield the
type of their operand. If the type of the operand is a variably modified type,
the operand is evaluated; otherwise, the operand is not evaluated.

The typeof operators and the auto storage duration class specifier both
perform automatic type inference. They can both be used to determine the
type of expression.

The auto storage duration class specifier is commonly used to declare
initialized variables where the type can be inferred from the initial value.
However, to form a derived type, you must use the typeof operator:

_Atomic(typeof(x)*) apx = &x;

The auto storage duration class specifier cannot be used with _Generic
(described in Chapter 9) and typedef (described later in this chapter).

The result of the typeof_unqual operator is the nonatomic, unqualified
version of the type that would result from the typeof operator. The typeof
operator preserves all qualifiers.

The typeof operator is like the sizeof operator, which executes the
expression in an unevaluated context to understand the final type. You can
use the typeof operator anywhere you can use a type name. The following
example illustrates the use of both typeof operators:

#include <stdlib.h> 
const _Atomic int asi = 0; 
const int si = 1; 
const char* const beatles[] = { 
    "John", 
    "Paul", 
    "George", 
    "Ringo" 
}; 
 
w typeof_unqual(si) main() { 
  x typeof_unqual(asi) plain_si; 



  y typeof(_Atomic z typeof(si)) atomic_si; 
  { typeof(beatles) beatles_array; 
  | typeof_unqual(beatles) beatles2_array; 
    return EXIT_SUCCESS; 
}

At the first use of the typeof_unqual operator w, the operand is si,
which has the type const int. The typeof_unqual operator strips the
const qualifier, resulting in just plain int. This use of the typeof_unqual
operator is illustrative and not meant for production code. The
typeof_unqual operator is used again on operand asi x, which has the
type const _Atomic int. All qualifiers are once again stripped, resulting in
a plain int. The operand to the typeof specifier at y includes another
typeof specifier. If the typeof operand is itself a typeof specifier, the
operand is evaluated before evaluating the current typeof operator. This
evaluation happens recursively until a typeof specifier is no longer the
operand. In this case, the typeof specifier at y does nothing and can be
omitted. The typeof operator at z is evaluated before the typeof operator
at y and returns const int. The typeof operator at y is now evaluated
and returns const _Atomic int. The typeof operator at { returns a const
array of four const char pointers. The typeof_unqual operator at | strips
the qualifier and returns an array of four const char pointers. The
qualifiers, in this case, are stripped only from the array and not the element
types the array contains.

The following main function is equivalent but doesn’t use typeof
operators:

int main() { 
  int plain_si; 
  const _Atomic int atomic_si; 
  const char* const beatles_array[4]; 
  const char* beatles2_array[4]; 
  return EXIT_SUCCESS; 
}



You can use the typeof operator to refer to a macro parameter to
construct objects with the required types without specifying the type names
explicitly as macro arguments.

Alignment
Object types have alignment requirements that place restrictions on the
addresses at which objects of that type may be allocated. An alignment
represents the number of bytes between successive addresses at which a
given object can be allocated. Central processing units (CPUs) may have
different behavior when accessing aligned data (for example, where the data
address is a multiple of the data size) versus unaligned data.

Some machine instructions can perform multibyte accesses on nonword
boundaries, but with a performance penalty. A word is a natural, fixed-sized
unit of data handled by the instruction set or the hardware of the processor.
Some platforms cannot access unaligned memory. Alignment requirements
may depend on the CPU word size (typically, 16, 32, or 64 bits).

Generally, C programmers need not concern themselves with alignment
requirements, because the compiler chooses suitable alignments for its
various types. However, on rare occasions, you might need to override the
compiler’s default choices4for example, to align data on the boundaries of
the memory cache lines that must start at power-of-two address boundaries
or to meet other system-specific requirements. Traditionally, these
requirements were met by linker commands or similar operations involving
other nonstandard facilities.

C11 introduced a simple, forward-compatible mechanism for
specifying alignments. Alignments are represented as values of the type
size_t. Every valid alignment value is a nonnegative integral power of
two. An object type imposes a default alignment requirement on every
object of that type: a stricter alignment (a larger power of two) can be
requested using the alignment specifier (alignas). You can include an
alignment specifier in a declaration. Listing 2-12 uses the alignment
specifier to ensure that good_buff is properly aligned (bad_buff may have
incorrect alignment for member-access expressions).



struct S { 
  double d; int i; char c; 
}; 
 
int main() { 
  unsigned char bad_buff[sizeof(struct S)]; 
  alignas(struct S) unsigned char good_buff[sizeof(struct
 S)]; 
  struct S *bad_s_ptr = (struct S *)bad_buff; 
  struct S *good_s_ptr = (struct S *)good_buff; // correct a
lignment 
  good_s_ptr->i = 12; 
  return good_s_ptr->i; 
}

Listing 2-12: Use of the alignas keyword

Although good_buff has proper alignment to be accessed through an
lvalue of type struct S, this program still has undefined behavior. This
undefined behavior stems from the underlying object good_buff being
declared as an array of objects of type unsigned char and being accessed
through an lvalue of a different type. The cast to (struct S *), like any
pointer cast, doesn’t change the effective type of the storage allocated to
each array. Because it is an established practice to use areas of character
type for low-level storage management, I co-authored a paper to make such
code conforming in a future revision of the C standard (Seacord et al.
2024).

Alignments are ordered from weaker to stronger (also called stricter)
alignments. Stricter alignments have larger alignment values. An address
that satisfies an alignment requirement also satisfies any valid, weaker
alignment requirement.

Alignment of dynamically allocated memory is covered in Chapter 6.

Variably Modified Types
Variably modified types (VMTs) define a base type and an extent (number
of elements), which is determined at runtime. VMTs are a mandatory
feature of C23.



VMTs can be used as function parameters. Remember from earlier in
this chapter that, when used in an expression, an array is converted to a
pointer to the first element of the array. This means that we must add an
explicit parameter to specify the size of the array4for example, the n
parameter in the signature for memset:

void *memset(void *s, int c, size_t n);

When you call such a function, n should accurately represent the size of
the array referenced by s. Undefined behavior results if this size is larger
than the array.

When declaring a function to take an array as an argument that
specifies a size, we must declare the size of the array before referencing the
size in the array declaration. We could, for example, modify the signature
for the memset function as follows to take the number of elements n and an
array of at least n elements:

void *memset_vmt(size_t n, char s[n], int c);

For arrays of character type, the number of elements is equal to the
size. In this function signature, s[n] is a variably modified type because
s[n] depends on the runtime value of n.

We’ve changed the order of the parameters so that the size parameter n
is declared before we use it in the array declaration. The array argument s is
still adjusted to a pointer, and no storage is allocated because of this
declaration (except for the pointer itself). When calling this function, you
must declare the actual storage for the array referenced by s and ensure that
n is a valid size for it. Just like a non-VMT parameter, the actual array
storage may be a fixed-size array, variable-length array (covered in Chapter
6), or dynamically allocated storage.

VMTs can generalize your functions, making them more useful. For
example, the matrix_sum function sums all the values in a two-dimensional
array. The following version of this function accepts a matrix with a fixed
column size:



int matrix_sum(size_t rows, int m[][4]);

When passing a multidimensional array to a function, the number of
elements in the initial dimension of the array (the rows) is lost and needs to
be passed in as an argument. The rows parameter provides this information
in this example. You can call this function to sum the values of any matrix
with exactly four columns, as shown in Listing 2-13.

int main(void) { 
  int m1[5][4]; 
  int m2[100][4]; 
  int m3[2][4]; 
  printf("%d.\n", matrix_sum(5, m1)); 
  printf("%d.\n", matrix_sum(100, m2)); 
  printf("%d.\n", matrix_sum(2, m3)); 
}

Listing 2-13: Summing matrices with four columns

This is fine until you need to sum the values of a matrix that does not
have four columns. For example, changing m3 to have five columns would
result in a warning such as this:

warning: incompatible pointer types passing 'int [2][5]' to
 parameter of type 'int (*)[4]'

To accept this argument, you would have to write a new function with a
signature that matches the new dimensions of the multidimensional array.
The problem with this approach, then, is that it fails to generalize
sufficiently.

Instead of doing that, we can rewrite the matrix_sum function to use a
VMT, as shown in Listing 2-14. This change allows us to call matrix_sum
with matrices of any dimension.

int matrix_sum(size_t rows, size_t cols, int m[rows][cols])
 { 
  int total = 0; 



 
  for (size_t r = 0; r < rows; r++) 
    for (size_t c = 0; c < cols; c++) 
      total += w m[r][c]; 
  return total; 
}

Listing 2-14: Using a VMT as a function parameter

The compiler performs the matrix indexing w. Without VMTs, this
would require either manual indexing or double indirection, which are both
error prone.

Again, no storage is allocated by either the function declaration or the
function definition. As with a non-VMT parameter, you need to allocate the
storage for the matrix separately, and its dimensions must match those
passed to the function as the rows and cols arguments. Failing to do so can
result in undefined behavior.

Attributes
Starting with C23, you can use attributes to associate additional information
with a declaration, statement, or type. This information can be used by the
implementation to improve diagnostics, improve performance, or modify
the behavior of the program in other ways. A comma-delimited list of zero
or more attributes is specified within a pair of double square brackets, for
example, [[foo]] or [[foo, bar]].

Declarations attributes are specified in two ways. If the attribute
specifier is at the start of a declaration, the attributes are applied to all
declarations in the declaration group. Otherwise, the attributes are applied
to the declaration to the immediate left of the attribute specifier. For
example, in the following declaration group, the foo attribute is applied to
x, y, and z:

[[foo]] int x, y, *z;

While in the second declaration group, the foo and bar attributes are
applied only to b:



int a, b [[foo, bar]], *c;

C23 defines several attributes that apply to declarations, such as
nodiscard and deprecated. The nodiscard attribute is used with function
declarations to denote that the value returned by the function is expected to
be used within an expression or initializer. The deprecated attribute is used
with the declaration of a function or a type to denote that use of the function
or type should be diagnosed as discouraged.

In addition to standard attributes, the implementation may provide
nonportable attributes. Such attributes are also specified within double
square brackets, but they include a vendor prefix to distinguish between
attributes from different vendors. For example, the
[[clang::overloadable]] attribute is used on a function declaration to
specify that it can use C++-style function overloading in C, and the
[[gnu::packed]] attribute is used on a structure declaration to specify that
the member declarations of the structure should avoid using padding
between member declarations whenever possible for a more space-efficient
layout. Vendors typically use their own prefixes, and they may use whatever
prefixes they choose. For example, Clang implements many attributes with
the gnu prefix for improved compatibility with GCC. Your compiler should
ignore unknown attributes, although they may still be diagnosed so you
know that the attribute has no effect. Refer to your compiler’s
documentation for the full list of supported attributes.

EXERCISES

1.  Add a retrieve function to the counting example from Listing 2-6 to retrieve the
current value of counter.

2.  Declare an array of three pointers to functions and invoke the appropriate
function based on an index value passed in as an argument.

3.  Repair the following program with the appropriate use of the volatile type
qualifier:

#include <stdlib.h> 
#include <stdio.h> 
#include <setjmp.h> 



 
static jmp_buf buf; 
 
int main() { 
  int foo = 5; 
  if (setjmp(buf) != 2) { 
    if (foo != 5) {puts("hi"); longjmp(buf, 2);} 
    foo = 6; 
    longjmp(buf, 1); 
  } 
  return EXIT_SUCCESS; 
}

Hint: The problem may only manifest for optimized builds.

Summary
In this chapter, you learned about objects and functions and how they differ.
You learned how to declare objects and functions, take the addresses of
objects, and dereference those object pointers. You also learned about most
of the object types available to C programmers as well as derived types.

We’ll return to these types in later chapters to further explore how they
can be best used to implement your designs. In the next chapter, I provide
detailed information about the two kinds of arithmetic types: integers and
floating-point.



3
ARITHMETIC TYPES

In this chapter, you’ll learn about the
two kinds of arithmetic types: integers

and floating types. Most operators in C operate on
arithmetic types. Because C is a system-level
language, performing arithmetic operations correctly
can be difficult, resulting in frequent defects. This is
partially because arithmetic operations in digital
systems with limited range and precision do not
always produce the same result as they would in
ordinary mathematics. Performing basic arithmetic
correctly is an essential foundation to becoming a
professional C programmer.

We’ll dive deep into how arithmetic works in the C language so that
you have a firm grasp of these fundamental concepts. We’ll also look at
how to convert one arithmetic type to another, which is necessary for
performing operations on mixed types.

Integers



As mentioned in Chapter 2, each integer type represents a finite range of
integers. Signed integer types represent values that can be negative, zero, or
positive; unsigned integers represent values that can be only zero or
positive. The range of values that each integer type can represent depends
on your implementation.

The value of an integer object is the ordinary mathematical value
stored in the object. The representation of a value for an integer object is
the particular encoding of the value in the bits of the object’s allocated
storage. We’ll look at the representation in more detail later.

Padding, Width, and Precision
All integer types except char, signed char, and unsigned char may
contain unused bits, called padding, that allow implementations to
accommodate hardware quirks (such as skipping over a sign bit in the
middle of a multiple- word representation) or to optimally align with a
target architecture. The number of bits used to represent a value of a given
type, excluding padding but including the sign, is called the width and is
often denoted by N. The precision is the number of bits used to represent
values, excluding sign and padding bits.

Integer Ranges
A representable value is a value that can be represented in the number of
bits available to an object of a particular type. Values that cannot be
represented will be diagnosed by the compiler or converted to a
representable but different (incorrect) value. The <limits.h> header file
defines object-like macros that expand to various limits and parameters of
the standard integer types. To write portable code, you should use these
macros rather than integer literals such as +2147483647 (the maximum
value representable as a 32-bit integer) that represent a specific limit and
may change when porting to a different implementation.

The C standard imposes only three constraints on integer sizes. First,
storage for every data type occupies an integral number of adjacent
unsigned char objects (which may include padding). Second, each integer
type must support a minimum range of values, allowing you to depend on a
portable range of values across any implementation. Third, smaller types



cannot be wider than larger types. So, for example, short cannot be wider
than int, but both types may have the same width.

Integer Declarations
Unless declared as unsigned, integer types are assumed to be signed
(except for char, which the implementation can define as either a signed or
unsigned integer type). The following are valid declarations of unsigned
integers:

unsigned int ui; // unsigned is required 
unsigned u; // int can be omitted 
unsigned long long ull2; // int can be omitted 
unsigned char uc; // unsigned is required

When declaring signed integer types, you can omit the signed keyword
4 except for signed char, which requires the keyword to distinguish
signed char from plain char.

You can also omit int when declaring variables of type short, long, or
long long. For example:

int i; // signed can be omitted 
long long int sll; // signed can be omitted 
long long sll2; // signed and int can be omitted 
signed char sc; // signed is required

These are all valid signed integer declarations.

Unsigned Integers
Unsigned integers have ranges that start at 0, and their upper bound is
greater than that of the corresponding signed integer type. Unsigned
integers are frequently used for counting items that may have large,
nonnegative quantities.

Representation
Unsigned integer types are easier to understand and to use than signed
integer types. They represent values using a pure binary system with no



offset: the least significant bit has the weight 20, the next least significant
has the weight 21, and so forth. The value of the binary number is the sum
of all the weights of the set bits. Table 3-1 shows some examples of
unsigned values using an unpadded 8-bit representation.

Table 3-1: 8-Bit Unsigned Values

Decimal Binary Hexadecimal
0 0b00000000 0x00
1 0b00000001 0x01
42 0b00101010 0x2A
255 0b11111111 0xFF

Unsigned integer types do not have a sign bit, allowing for 1-bit greater
precision than the corresponding signed integer types. Unsigned integer
values range from 0 to a maximum value that depends on the width of the
type. This maximum value is 2N 3 1, where N is the width. For example,
most x86 architectures use 32-bit integers with no padding bits, so an object
of type unsigned int has a range of 0 to 232 3 1 (4,294,967,295). The
constant expression UINT_MAX from <limits.h> specifies the
implementation-defined upper range for this type. Table 3-2 shows the
constant expressions from <limits.h> for each unsigned type and the
minimum magnitude required by the standard.

Table 3-2: Unsigned Integer Minimum Magnitudes

Constant
expression Minimum magnitude

Maximum value for an object of
type

UCHAR_MAX 255 // 28 – 1 unsigned char

USHRT_MAX 65,535 // 216 – 1 unsigned short int

UINT_MAX 65,535 // 216 – 1 unsigned int

ULONG_MAX 4,294,967,295 // 232 – 1 unsigned long int

ULLONG_MAX 18,446,744,073,709,551,615 //
264 – 1

unsigned long long int

Your compiler will replace these values with implementation-defined
magnitudes.



Wraparound
C23 defines wraparound as <the process by which a value is reduced
modulo 2N, where N is the width of the resulting type.= Wraparound occurs
when you perform arithmetic operations that result in values too small (less
than 0) or too large (greater than 2N 3 1) to be represented as a particular
unsigned integer type. In this case, the value is reduced modulo the number
that is one greater than the largest value that can be represented in the
resulting type. Wraparound is well-defined behavior in the C language.
Whether it is a defect in your code depends on the context. If you are
counting something and the value wraps, it is likely to be an error.
However, the use of wraparound in certain algorithms is intentional.

The code in Listing 3-1 illustrates wraparound by initializing an
unsigned integer value ui to its maximum value and incrementing it.

unsigned int ui = UINT_MAX;  // 4,294,967,295 on x86 
ui++; 
printf("ui = %u\n", ui); // ui is 0 
ui--; 
printf("ui = %u\n", ui); // ui is 4,294,967,295

Listing 3-1: Unsigned integer wraparound

The resulting value cannot be represented as an unsigned int, so it
wraps around to 0. If the resulting value is decremented, it falls outside the
range again and will wrap around back to UINT_MAX.

Because of wraparound, an unsigned integer expression can never
evaluate to less than 0. It’s easy to lose track of this and implement
comparisons that are always true or always false. For example, the i in the
following for loop can never take on a negative value, so this loop will
never terminate:

for (unsigned int i = n; i >= 0; --i)

This behavior has caused some notable real-world bugs. For example,
all six power-generating systems on a Boeing 787 are managed by a
corresponding generator control unit. Boeing’s laboratory testing



discovered that an internal software counter in the generator control unit
wraps around after running continuously for 248 days (see the Federal
Aviation Administration Rule at https://www.federalregister.gov/documents
/2015/05/01/2015-10066/airworthiness-directives-the-boeing-company-
airplanes). This defect causes all six generator control units on the engine-
mounted generators to enter fail-safe mode at the same time.

To avoid unplanned behavior (such as having your airplane fall from
the sky), it’s important to check for wraparound by using the limits from
<limits.h>. Be careful when implementing these checks because it’s easy
to make mistakes. For example, the following code contains a defect, as sum
+ ui can never be larger than UINT_MAX:

extern unsigned int ui, sum; 
// assign values to ui and sum 
if (sum + ui > UINT_MAX) 
  too_big(); 
else 
  sum = sum + ui;

If the result of adding sum and ui is larger than UINT_MAX, it is reduced
modulo UINT_MAX + 1. Therefore, the test is useless, and the generated code
will unconditionally perform the summation. Quality compilers might issue
a warning pointing this out, but not all do so. To remedy this, you can
subtract sum from both sides of the inequality to form the following
effective test:

extern unsigned int ui, sum; 
// assign values to ui and sum 
if (ui > UINT_MAX - sum)  
  too_big(); 
else 
  sum = sum + ui;

The UINT_MAX macro is the largest representable unsigned int value,
and sum is a value between 0 and UINT_MAX. If sum is equal to UINT_MAX, the
result of the subtraction is 0, and if sum is equal to 0, the result of the

https://www.federalregister.gov/documents/2015/05/01/2015-10066/airworthiness-directives-the-boeing-company-airplanes


subtraction is UINT_MAX. Because the result of this operation will always fall
in the allowable range of 0 to UINT_MAX, it can never wrap around.

The same problem occurs when checking the result of an arithmetic
operation against 0, the minimum unsigned value:

extern unsigned int i, j; 
// assign values to i and j 
if (i - j < 0)  // cannot happen 
  negative(); 
else 
  i = i - j;

Because unsigned integer values can never be negative, the subtraction
will be performed unconditionally. Quality compilers may warn about this
mistake as well. Instead of this useless test, you can check for wraparound
by testing whether j is greater than i:

if (j > i)  // correct 
  negative(); 
else 
  i = i - j;

If j > i, the difference would wrap around, so the possibility of
wraparound is prevented. By eliminating the subtraction from the test, the
possibility of wraparound is also eliminated.

WARNING
Keep in mind that the width used during wraparound depends on the
implementation, which means you can obtain different results on different
platforms. Your code won’t be portable if you fail to account for this.

Signed Integers
Each unsigned integer type (excluding bool) has a corresponding signed
integer type that occupies the same amount of storage. Use signed integers
to represent negative, zero, and positive values, the range of which depends
on the number of bits allocated to the type and the representation.



Representation
Representing signed integer types is more complicated than representing
unsigned integer types. Historically, the C language has supported three
different schemes for representing negative numbers: sign and magnitude,
one’s complement, and two’s complement.

Starting with C23, only two’s-complement representation is supported.
In two’s complement representation, the sign bit is given the weight −(2N −

1), and the other value bits have the same weights as for unsigned. The
remainder of this book assumes the two’s complement representation.

Signed two’s-complement integer types with a width of N can represent
any integer value in the range of 32N 3 1 to 2N 3 1 3 1. This means, for
example, that an 8-bit value of type signed char has a range of 3128 to
127. Compared to other signed integer representations, two’s complement
can represent an additional most negative value. The most negative value
for an 8-bit signed char is 3128, and its absolute value |3128| cannot be
represented as this type. This leads to some interesting edge cases, which
we’ll soon examine in more detail.

Table 3-3 shows the constant expressions from <limits.h> for each
signed type and the minimum magnitudes required by the standard. Your
compiler will replace these values with implementation-defined
magnitudes.

Table 3-3: Signed Integer Minimum Magnitudes

Constant expression Minimum magnitude Type
SCHAR_MIN –128 // –27 signed char

SCHAR_MAX +127 // 27 – 1 signed char

SHRT_MIN –32,768 // –215 short int

SHRT_MAX +32,767 // 215 – 1 short int

INT_MIN –32,768 // –215 int

INT_MAX +32,767 // 215 – 1 int

LONG_MIN –2,147,483,648 // –231 long int

LONG_MAX +2,147,483,647 // 231 – 1 long int

LLONG_MIN –9,223,372,036,854,775,808 // –263 long long int

LLONG_MAX +9,223,372,036,854,775,807 // 263 – 1 long long int



To negate a value in two’s-complement representation, simply toggle
each nonpadding bit and then add 1 (with carries as necessary), as shown in
Figure 3-1.

Figure 3-1: Negating an 8-bit value in two’s-complement representation

Table 3-4 shows the binary and decimal representations for an 8-bit
two’s-complement signed integer type with no padding (that is, N = 8).

Table 3-4: 8-Bit Two’s-Complement Values

Binary Decimal Weighting Constant
00000000 0 0
00000001 1 20

01111110 126 26 + 25 + 24 + 23 + 22 + 21

01111111 127 28 − 1 – 1 SCHAR_MAX

10000000 −128 −(28 − 1) + 0 SCHAR_MIN

10000001 −127 −(28 − 1) + 1
11111110 −2 −(28 − 1) + 126
11111111 −1 −(28 − 1) + 127

It is not necessary to know the binary representations of numbers, but
as a C programmer, you will likely find it useful.

Integer Overflow
Integer overflow occurs when a signed integer operation results in a value
that cannot be represented in the resulting type. Signed integer overflow
and unsigned integer wraparound are often confused. The primary
difference is that signed integer overflow is undefined behavior, while



unsigned integer wraparound is well-defined behavior. Unsigned integers
cannot overflow.

Consider the following function-like macro that returns the absolute
value of an arithmetic operand:

// undefined or wrong for the most-negative value 
#define ABS(i) ((i) < 0 ? –(i) : (i))

We’ll examine macros in detail in Chapter 9. For now, think of
function-like macros as functions that operate on generic types. On the
surface, this macro appears to correctly implement the absolute value
function by returning the nonnegative value of i without regard to its sign.
We use the conditional (? :) operator (which I’ll cover in more detail in the
next chapter) to test whether the value of i is negative. If so, i is negated to
-(i); otherwise, it evaluates to the unmodified value (i).

Because we’ve implemented ABS as a function-like macro, it can take
an argument of any type. This macro can overflow when passed a signed
integer argument of type int or a larger signed integer type. Of course,
invoking this macro with an unsigned integer is pointless because unsigned
integers can never be negative, so the macro’s output would just reproduce
the argument. Let’s explore the behavior of the ABS macro when passed a
signed integer argument:

signed int si = -25; 
signed int abs_si = ABS(si); 
printf("%d\n", abs_si);  // prints 25

In this example, we pass an object of type signed int with the value
-25 as an argument to the ABS macro. This invocation expands to the
following:

signed int si = -25; 
signed int abs_si = ((si) < 0 ? –(si) : (si)); 
printf("%d\n", abs_si);  // prints 25



The macro correctly returned the absolute value of 25. So far, so good.
The problem is that the negative of the two’s-complement most negative
value for a given type cannot be represented in that type, so this use of the
ABS macro results in signed integer overflow. Consequently, this
implementation of ABS is defective and can do anything, including
unexpectedly returning a negative value:

signed int si = INT_MIN; 
signed int abs_si = ABS(si);  // undefined behavior 
printf("%d\n", abs_si);

What should ABS(INT_MIN) return to fix this behavior? Signed integer
overflow is undefined behavior in C, allowing implementations to silently
wrap around (the most common behavior), trap, or both (for example, some
operations wrap around while other operations trap). Traps interrupt
execution of the program so that no further operations are performed.
Common architectures like x86 do a combination of both. Because the
behavior is undefined, no universally correct solution to this problem exists,
but we can at least test for the possibility of undefined behavior before it
occurs and take appropriate action.

To make the absolute-value macro useful for a variety of types, we’ll
add a type-dependent flag argument to it. The flag represents the *_MIN
macro, which matches the type of the first argument. This value is returned
in the following problematic case:

#define ABSM(i, flag) ((i) >= 0 ? (i) : ((i)==(flag) ? (fla
g) : -(i))) 
signed int si = -25;  // try INT_MIN to trigger the undefine
d behavior 
signed int abs_si = ABSM(si, INT_MIN); 
if (abs_si == INT_MIN) 
  overflow();  // handle special case 
else 
  printf("%d\n", abs_si);  // prints 25



The ABSM macro tests for the most negative value and simply returns it
if found instead of triggering the undefined behavior by negating it.

On some systems, the C standard library implements the following
int-only absolute-value function to avoid overflow when the function is
passed INT_MIN as an argument:

int abs(int i) { 
  return (i >= 0) ? i : -(unsigned)i;  // avoids overflow 
}

In this case, i is converted to an unsigned int and negated. (I’ll
discuss conversions in more detail later in this chapter.)

Perhaps surprisingly, the unary minus (-) operator is defined for
unsigned integer types. The resulting unsigned integer value is reduced
modulo the number that is one greater than the largest value that the
resulting type can represent. Finally, i is implicitly converted back to
signed int as required by the return statement. Because -INT_MIN can’t
be represented as a signed int, the result is implementation defined, which
is why this implementation is used only on some systems, and even on these
systems, the abs function returns an incorrect value.

The ABS and ABSM function-like macros evaluate their parameters more
than once, which can cause surprises when their arguments change the
program state. These are called side effects (covered in detail in Chapter 4).
Function calls, on the other hand, evaluate each argument only once.

Unsigned integers have well-defined wraparound behavior. Signed
integer overflow, or the possibility of it, should always be considered a
defect.

Bit-Precise Integer Types
As noted in Chapter 2, bit-precise integer types accept an operand
specifying the width of the integer, so a _BitInt(32) is a signed 32-bit
integer and unsigned _BitInt(32) is an unsigned 32-bit integer. Bit-
precise integer types can have any width up to BITINT_MAXWIDTH. Bit-
precise integer types are useful in application domains, such as using 256-
bit integer values in cryptographic symmetric ciphers like Advanced



Encryption Standard (AES), calculating Secure Hash Algorithm (SHA)-256
hashes, representing a 24-bit color space, or describing the layout of
network or serial protocols.

Bit-precise integer types are also very useful when programming field-
programmable gate arrays (FPGAs). FPGAs are integrated circuits often
sold off-the-shelf that provide customers with the ability to reconfigure the
hardware to meet specific use-case requirements after the manufacturing
process. In the case of FPGA hardware, using normal integer types for
small value ranges where the full bit-width isn’t used is extremely wasteful
and creates severe performance and space concerns. At the other extreme,
FPGAs can support wide integers, essentially providing arbitrary precision,
and existing FPGA applications make use of large integers4for example,
up to 2,031 bits. Prior to C23, programmers must pick an integer data type
of the next larger size and manually perform mask and shifting operations.
However, this is error prone because integer widths are implementation
defined.

A bit-precise signed integer type is designated as _BitInt(N), where N
is an integer constant expression that specifies the width of the type.
Because bit-precise integer types are specified including the sign bit, a
signed _BitInt(1) is invalid because it has one sign bit and no value bits.
Unsigned bit-precise integer types do not include a sign bit, so the correct
way to specify a 1-bit integer is unsigned _BitInt(1).

The _BitInt types follow the usual C standard integer conversion
ranks, as detailed in the <Integer Conversion Rank= section on page 65. The
usual arithmetic conversions also work the same, where the smaller ranked
integer is converted to the larger. However, _BitInt types are excepted
from integer promotions.

Overflow occurs when a value exceeds the allowable range of a given
data type. For example, (_BitInt(3))7 + (_BitInt(3))2 overflows, and
the result is undefined as with other signed integer types. To avoid the
overflow, the operation type can be widened to 4 bits by casting one of the
operands to _BitInt(4). Unsigned _BitInt wraparound is well-defined,
and the value wraps around with two’s complement semantics.

To avoid overflow, you can cast one of the operands to a sufficient
width to represent all possible values. For example, the following function



casts one of the operands to 32 bits:

_BitInt(32) multiply(_BitInt(8) a8, _BitInt(24) a24) { 
  _BitInt(32) a32 = a8 * (_BitInt(32))a24; 
  return a32; 
}

This guarantees that the product can be represented.

Integer Constants
Integer constants (or integer literals) introduce integer values into a
program. For example, you might use them in a declaration to initialize a
counter to 0. C has four kinds of integer constants that use different number
systems: decimal constants, binary constants, octal constants, and
hexadecimal constants.

Decimal constants always begin with a nonzero digit. For example, the
following code uses two decimal constants:

unsigned int ui = 71; 
int si; 
si = -12;

In this example code, we initialize ui to the decimal constant 71 and
assign si the decimal constant value -12. (Formally, -12 is the negation
operator [-] followed by an integer constant [12]. However, the expression
-12 is usable as an integer constant expression and therefore effectively
indistinguishable from an integer constant whose value is 312.) Use decimal
constants when introducing regular integer values into your code.

If a constant starts with a 0, optionally followed by digits 0 through 7,
it is an octal constant. Here’s an example:

int agent = 007; 
int permissions = 0777;

In this example, 007 octal equals 7 decimal, and the octal constant 0777
equals the decimal value 511. Octal constants are convenient when dealing



with 3-bit fields such as POSIX file permissions.
You can also create a hexadecimal constant by prefixing a sequence of

decimal digits and the letters a (or A) through f (or F) with 0x or 0X. For
example:

int burger = 0xDEADBEEF;

Use hexadecimal constants when the constant you are introducing is
meant to represent a bit pattern more than a particular value4for example,
when representing an address. Idiomatically, most hexadecimal constants
are written like 0xDEADBEEF because it resembles a typical hex dump. It’s
probably a good idea for you to write all your hexadecimal constants like
this.

Starting with C23, you can also specify a binary constant by appending
a sequence of 1 and 0 decimal digits to 0b. For example:

int mask = 0b110011;

Binary constants can be more readable than octal or hexadecimal
constants, especially when the value is used as a bitmask.

You can also append a suffix to your constant to specify its type.
Without a suffix, a decimal constant is given the int type if it can be
represented as a value in that type. If it can’t be represented as an int, it
will be represented as a long int or long long int. The L suffix specifies
the long type, and LL specifies the long long type. You can combine these
suffixes with U for unsigned. For example, the ULL suffix specifies the
unsigned long long type. Here are some examples:

unsigned int ui = 71U; 
signed long int sli = 9223372036854775807L; 
unsigned long long int ui = 18446744073709551615ULL;

These suffixes can be either uppercase or lowercase. Uppercase is
generally preferred for readability, as a lowercase letter l might be mistaken
for the number 1.



Bit-precise constants were added in C23 to specify _BitInt literals.
The suffixes wb and uwb designate a constant of type _BitInt(N) and
unsigned _BitInt(N), respectively. The width N is the smallest N greater
than 1 that can accommodate the value and the sign bit (when present).

The wb suffix results in a _BitInt that includes space for the sign bit
even if the value of the constant is positive or was specified in binary, octal,
or hexadecimal notation:

-3wb Yields a _BitInt(3) that is then negated; two value bits, one
sign bit
-0x3wb Yields a _BitInt(3) that is then negated; two value bits, one
sign bit
3wb Yields a _BitInt(3); two value bits, one sign bit
3ub Yields an unsigned _BitInt(2)
-3uwb Yields an unsigned _BitInt(2) that is then negated, resulting
in wraparound

If we don’t use a suffix and the integer constant isn’t of the required
type, it may be implicitly converted. (We’ll discuss implicit conversion in
the <Arithmetic Conversion= section on page 64.) This may result in a
surprising conversion or a compiler diagnostic, so it’s best to specify an
integer constant of an appropriate type. Section 6.4.4.1 of the C standard
contains more information on integer constants (ISO/IEC 2024).

Floating-Point Representation
Floating-point representation is the most common digital representation of
real numbers. Floating-point representation is a technique that uses
scientific notation to represent numbers with a mantissa and an exponent for
a given base. For example, the decimal number 123.456 can be represented
as 1.23456 × 102, while the binary number 0b10100.11 can be represented
as 1.010011 × 24.

The C standard defines a general floating-point model for floating-
point numbers. However, it does not require all implementations to use the
same representation schemes or formats, and it allows implementations to
provide values that are not in the C model. To keep things simple, we’ll



assume conformance to Annex F. Annex F includes the most common
floating-point formats specified in IEC 60559. You can test the value of the
__STDC_IEC_559__ macro, or of the __STDC_IEC_60559_BFP__ macro in
newer compilers, to determine whether the implementation conforms to
Annex F.

This section explains floating types, arithmetic, values, and constants,
so you will know how and when to use them to emulate math on real
numbers and when to avoid them.

Floating Types and Encodings
C has three standard floating types: float, double, and long double.

The float type can be used for floating-point data and results that can
be adequately represented with the precision and exponent range of the
type. Using float arithmetic to compute float results from float data is
particularly vulnerable to roundoff error. The common IEC 60559 float
type encodes values using 1 sign bit, 8 exponent bits, and 23 significand
bits. The value has a 24-bit significand, which is encoded in 23 bits (with
help from the exponent field to determine the implicit leading bit).

The double type provides greater precision and exponent range but
requires additional storage. Arithmetic with the double type greatly
increases the reliability of computation of float results from float data.
The IEC 60559 double type encodes values using 1 sign bit, 11 exponent
bits, and 52 significand bits. The value has a 53-bit significand, which is
encoded in 52 bits (with help from the exponent field to determine the
implicit leading bit).

These encodings for float and double are illustrated in Figure 3-2.



Figure 3-2: The float and double types

Let’s illustrate with an example encoding in type float:

1 1000 0001 011 0000 0000 0000 0000 0000

The sign bit is 1, the exponent field is 1000 0001, and the significand
field is 011 0000 0000 0000 0000 0000. The sign bit encodes the sign of
the number, where 0 is used for a positive sign and 1 is used for a negative
sign. Consequently, the number represented in this example has a negative
sign.

Because the exponent field is neither all 0s nor all 1s, the bits in the
significand field are interpreted as bits to the right of a binary point where
an implicit 1 bit is to the left of the binary point. In this example, the
significand of the encoded number is 1.011 0000 0000 0000 0000 0000 =
1 + 232 + 233 = 1.375.

Putting this all together produces the following real number: 322(1 + 232

+ 233) = 35.

C Floating-Point Model
The following formula represents a number in the float type using the C
model:



The s is the sign, which may be 1 or 31. The e is the exponent, and f1

through f24 are the significand bits. Note that the exponent in the C model
representation is 1 greater than the exponent we determined from the
encoding because the C model places the (explicit) leading bit to the right
of the binary point, while the encoding has the (implicit) leading bit to the
left of the binary point.

The following formula represents a number in the double type:

In general, the C model defines floating-point numbers in each floating
type by the parameters b, p, emin, and emax. The parameter b is the radix (the
base for the exponent and the significand digits). The radix b for all the
standard floating types is represented by the FLT_RADIX macro defined in
<float.h>. For Annex F, the value of FLT_RADIX is 2. The parameter p is
the number of base-b digits in the floating-point significand. The emin

parameter is the minimum negative integer such that b raised to one less
than that power is a normalized floating-point number. Finally, the emax

parameter is the maximum integer such that b raised to one less than that
power is a representable finite floating-point number, provided that
representable finite floating-point number is normalized (as it will be for all
IEC 60559 types). Table 3-5 shows the actual macro names.

Table 3-5: Standard Type Characterization Macros in <float.h>

Parameter float double long double
p FLT_MANT_DIG DBL_MANT_DIG LDBL_MANT_DIG
emin FLT_MIN_EXP DBL_MIN_EXP LDBL_MIN_EXP



Parameter float double long double
emax FLT_MAX_EXP DBL_MAX_EXP LDBL_MAX_EXP

Each implementation assigns the long double type one of the
following formats:

IEC 60559 quadruple (or binary128) format (IEC 60559 added
binary128 to its basic formats in the 2011 revision)
IEC 60559 binary64-extended format
A non-IEC 60559 extended format
IEC 60559 double (or binary64) format
Recommended practice for compiler implementers is to match the long

double type with the IEC 60559 binary128 format or an IEC 60559
binary64-extended format. IEC 60559 binary64-extended formats include
the common 80-bit IEC 60559 format.

Arithmetic with the long double type should be considered for
computations whose reliability might benefit from the maximum range and
precision that the implementation provides for a standard floating type.
However, the extra range and precision in the long double type (compared
with double) varies considerably among implementations, as does the
performance (speed) of long double arithmetic. Consequently, the long
double type is unsuitable for data interchange or reproducible results
(across implementations) or for portable high performance.

Larger types have greater precision but require more storage. Any
value that can be represented as a float can also be represented as a
double, and any value that can be represented as a double can be
represented as a long double. The header <float.h> defines several
macros that define the characteristics of floating types.

Annex H of C23 specifies additional floating types that have the
arithmetic interchange and extended floating-point formats specified in IEC
60559. These include a sequence of types with unbounded precision and
range and a 16-bit type. Future versions of C may include other floating
types.



Floating-Point Arithmetic
Floating-point arithmetic is similar to, and used to model, the arithmetic of
real numbers. However, there are differences to consider. Unlike in real
number arithmetic, floating-point numbers are bounded in magnitude and
have finite precision. Addition and multiplication operations are not
associative; the distributive property doesn’t hold, nor do many other
properties of real numbers.

Floating types cannot represent all real numbers exactly, even when
they can be represented in a small number of decimal digits. For example,
common decimal constants such as 0.1 can’t be represented exactly as
binary floating-point numbers. Floating types may lack the necessary
precision for various applications such as loop counters or performing
financial calculations. See CERT C rule FLP30-C (do not use floating-point
variables as loop counters) for more information.

Floating-Point Values
A floating-point representation whose significand is 0 (all fk = 0) represents
a floating-point zero. Zeros are signed according to the sign (s), and there
are two floating-point zero values: +0 and 30. They are equal but behave
differently in a few operations. A notable example is 1.0/0.0 yields
positive infinity and 1.0/(-0.0) yields negative infinity.

There are no leading zeros in the significand of a normalized floating-
point number (f1 = 1); leading zeros are removed by adjusting the exponent.
These are normal numbers, and they use the full precision of the
significand. Therefore, float has 24 significant bits of precision, double
has 53 significant bits of precision, and long double has 113 significant
bits of precision (assuming the IEC 60559 binary128 format).

Subnormal numbers are positive and negative numbers (but not 0) of
very small magnitude whose normalized representation would result in an
exponent that is less than the smallest exponent for the type. Their
representations have exponent e = emin and leading significand bit f1 = 0.
Figure 3-3 is a number line showing the range of subnormal values around
0. The precision of subnormal numbers is less than that of normalized
numbers.



Figure 3-3: The domain of subnormal numbers

Floating types can also represent values that are not floating-point
numbers, such as negative and positive infinity and not-a-number (NaN)
values. NaNs are values that do not represent a number.

Having infinity available as a specific value allows operations to
continue past overflow and divide-by-zero situations and produce a useful
result without requiring special treatment. Dividing any nonzero number by
(positive or negative) zero yields an infinity. Operations with infinite values
are well-defined in the IEEE floating-point standard.

A quiet NaN propagates through almost every arithmetic operation
without raising a floating-point exception and is typically tested after a
selected sequence of operations. An arithmetic operation with a signaling
NaN operand generally raises a floating-point exception immediately.
Floating-point exceptions are an advanced topic not covered here. For more
information, refer to Annex F of the C standard.

In C23, the NAN and INFINITY macros in <float.h> and the nan
functions in <math.h> provide designations for IEC 60559 quiet NaNs and
infinities. The FLT_SNAN, DBL_SNAN, and LDBL_SNAN macros in <float.h>
provide designations for IEC 60559 signaling NaNs. C Annex F doesn’t
require full support for signaling NaNs.

You can identify the class of a floating-point value using the
fpclassify function-like macro, which classifies its argument value as
NaN, infinite, normal, subnormal, or zero:

#include <math.h> 
int fpclassify(real-floating x);

In Listing 3-2, we use the fpclassify macro in the
show_classification function to determine whether a floating-point value



of type double is a normal value, subnormal value, zero, infinity, or NaN.

const char *show_classification(double x) { 
  switch(fpclassify(x)) { 
    case FP_INFINITE:  return "Inf"; 
    case FP_NAN:       return "NaN"; 
    case FP_NORMAL:    return "normal"; 
    case FP_SUBNORMAL: return "subnormal"; 
    case FP_ZERO:      return "zero"; 
    default:           return "unknown"; 
  }

Listing 3-2: The fpclassify macro

The function argument x (a double in this example) is passed to the
fpclassify macro, which switches on the return value. The
show_classification function returns a string corresponding to the class
of value stored in x.

There are also a variety of other classification macros including isinf,
isnan, isnormal, issubnormal, iszero, and so forth that may be more
useful than the fpclassify macro in many applications.

Floating Constants
A floating constant is a decimal or hexadecimal number that represents a
real number. You should use floating-point constants to represent floating-
point values that cannot be changed. The following are some examples of
floating-point constants:

15.75 
1.575E1   /* 15.75 */ 
1575e-2   /* 15.75 */ 
25E-4     /* 0.0025 */

The following illustrates constants defined two ways: with a decimal
floating constant and with a hexadecimal floating constant. The
hexadecimal constants have values that can be represented exactly in their
(binary) type. The decimal constants require conversion to binary and might



be slightly affected by rounding direction modes and evaluation methods.
(Rounding modes and evaluation methods are not covered in this book.)
Hexadecimal constants should be used in such cases if you want a specific
(to the last bit) value.

DBL_EPSILON 2.2204460492503131E-16 // decimal constant 
DBL_EPSILON 0X1P-52                // hex constant 
DBL_MIN 2.2250738585072014E-308    // decimal constant 
DBL_MIN 0X1P-1022                  // hex constant 
DBL_MAX 1.7976931348623157E+308    // decimal constant 
DBL_MAX 0X1.fffffffffffffP1023     // hex constant

All floating-point constants have a type. The type is double if
unsuffixed, float if suffixed by the letter f or F, or long double if suffixed
by the letter l or L, as shown here:

10.0F  /* type float */ 
10.0   /* type double */ 
10.0L  /* type long double */

The decimal point is mandatory in these examples, but the trailing zero
is not.

Arithmetic Conversion
Frequently, a value represented in one type (for example, float) must be
represented in a different type (for example, int). This might occur when
you have an object of type float and need to pass it as an argument to a
function that accepts an object of type int. When such conversions are
necessary, you should always ensure that the value is adequately
representable in the new type. I’ll discuss this further in <Safe Conversions=
on page 70.

Values can be implicitly or explicitly converted from one arithmetic
type to another. You can use the cast operator to perform explicit
conversions. Listing 3-3 shows two examples of casts.



int si = 5; 
short ss = 8; 
long sl = (long)si; 
unsigned short us = (unsigned short)(ss + sl);

Listing 3-3: Cast operators

To perform a cast, place a type name in parentheses just before the
expression. The cast converts the expression to the unqualified version of
the type name in parentheses. Here, we cast the value of si to the type
long. Because si is of type int, this cast is guaranteed to be safe because
the value can always be represented in a larger integer type of the same
signedness.

The second cast in this example casts the result of the expression (ss +
sl) to type unsigned short. Because the value is converted to an unsigned
type (unsigned short) with less precision, the result of the conversion
might not be equal to the original value. (Some compilers might warn about
this; others won’t.) In this example, the result of the expression (13) can be
correctly represented in the resulting type.

Implicit conversion, also known as coercion, occurs automatically in
expressions as required. Values are coerced, for example, when operations
are performed on mixed types. In Listing 3-3, implicit conversions are used
to convert ss to the type of sl so that the addition ss + sl can be performed
on a common type. The rules concerning which values are implicitly
converted to which types are somewhat complicated and involve three
concepts: integer conversion rank, integer promotions, and the usual
arithmetic conversions.

Integer Conversion Rank
Integer conversion rank is a standard rank ordering of integer types used to
determine a common type for computations. Every integer type has an
integer conversion rank that determines when and how conversions are
implicitly performed.

The C standard, section 6.3.1.1, paragraph 1 (ISO/IEC 9899:2024),
states that every integer type has an integer conversion rank where the
following applies:



No two signed integer types have the same rank, even if they have the
same representation.
The rank of a signed integer type is greater than the rank of any signed
integer type with less precision.
The rank of long long int is greater than the rank of long int, which
is greater than the rank of int, which is greater than the rank of short
int, which is greater than the rank of signed char.
The rank of a bit-precise signed integer type is greater than the rank of
any standard integer type with less width or any bit-precise integer type
with less width.
The rank of any unsigned integer type equals the rank of the
corresponding signed integer type, if any.
The rank of any standard integer type is greater than the rank of any
extended integer type with the same width or bit-precise integer type
with the same width.
The rank of any bit-precise integer type relative to an extended integer
type of the same width is implementation defined.
The rank of char equals the rank of signed char and unsigned char.
The rank of bool is less than the rank of all other standard integer
types.
The rank of any enumerated type equals the rank of the compatible
integer type. Each enumerated type is compatible with char, a signed
integer type, or an unsigned integer type.
The rank of any extended signed integer type relative to another

extended signed integer type with the same precision is implementation
defined but still subject to the other rules for determining the integer
conversion rank.

Integer Promotions
A small type is an integer with a lower conversion rank than int or
unsigned int. Integer promotion is the process of converting values of
small types to an int or unsigned int. Integer promotions allow you to use
an expression of a small type in any expression where an int or unsigned



int may be used. For example, you could use a lower-ranked integer type4
typically, char or short4on the right-hand side of an assignment or as an
argument to a function.

Integer promotions serve two primary purposes. First, they encourage
operations to be performed in a natural size (int) for the architecture, which
improves performance. Second, they help avoid arithmetic errors from the
overflow of intermediate values, for example:

signed char cresult, c1, c2, c3; 
c1 = 100; c2 = 3; c3 = 4; 
cresult = c1 * c2 / c3;

Without integer promotion, c1 * c2 would result in an overflow of the
signed char type on platforms where signed char is represented by an 8-
bit two’s-complement value. This is because 300 is outside the range of
values (3128 to 127) that can be represented by an object of this type.
However, because of integer promotion, c1, c2, and c3 are implicitly
converted to objects of type signed int, and the multiplication and
division operations take place in this size. There is no possibility of
overflow while performing these operations because the resulting values
can be represented by this wider type. In this specific example, the result of
the entire expression is 75, which is within range of the signed char type,
so the value is preserved when stored in cresult.

Prior to the first C standard, compilers used one of two approaches for
integer promotions: the unsigned-preserving approach or the value-
preserving approach. In the unsigned-preserving approach, the compiler
promotes small, unsigned types to unsigned int. In the value-preserving
approach, if all values of the original type can be represented as an int, the
value of the original small type is converted to int. Otherwise, it’s
converted to unsigned int. When developing the original version of the
standard (C89), the C standards committee decided on value-preserving
rules, because they produce incorrect results less often than the unsigned-
preserving approach. If necessary, you can override this behavior by using
explicit type casts, as in Listing 3-3.



The result of promoting small unsigned types depends on the precision
of the integer types, which is implementation defined. For example, the
x86-32 and x86-64 architectures have an 8-bit char type, a 16-bit short
type, and a 32-bit int type. For implementations that target one of these
architectures, values of both unsigned char and unsigned short are
promoted to signed int, because all the values that can be represented in
these smaller types can be represented as a signed int. However, 16-bit
architectures, such as Intel 8086/8088 and the IBM Series/1, have an 8-bit
char type, a 16-bit short type, and a 16-bit int type. For implementations
that target these architectures, values of type unsigned char are promoted
to signed int, while values of type unsigned short are promoted to
unsigned int. This is because all the values that can be represented as an
8-bit unsigned char type can be represented as a 16-bit signed int, but
some values that can be represented as a 16-bit unsigned short cannot be
represented as a 16-bit signed int.

The _BitInt types are exempt from integer promotions. Integer
promotions might inflate the size of required hardware on some platforms,
so _BitInt types aren’t subject to the integer promotion rules. For example,
in a binary expression involving a _BitInt(12) and an unsigned
_BitInt(3), the usual arithmetic conversions would not promote either
operand to an int before determining the common type. Because one type
is signed and one is unsigned and because the signed type has greater rank
than the unsigned type (due to the bit-widths of the types), the unsigned
_BitInt(3) will be converted to _BitInt(12) as the common type.

Usual Arithmetic Conversions
The usual arithmetic conversions are rules for yielding a common real type
for the operands and result of an arithmetic operation. Ignoring complex or
imaginary types, each operand is converted to the common real type. Many
operators that accept integer operands (including *, /, %, +, -, <, >, <=, >=,
==, != , &, ^, |, and ? :) perform conversions using the usual arithmetic
conversions. The usual arithmetic conversions are applied to the promoted
operands.

The usual arithmetic conversions first check whether one of the
operands in the balancing conversion is a floating type. If so, it applies the



following rules:

  1.  If one type of either operand is long double, the other operand is
converted to long double.

  2.  Otherwise, if one type of either operand is double, the other operand is
converted to double.

  3.  Otherwise, if the type of either operand is float, the other operand is
converted to float.

  4.  Otherwise, the integer promotions are performed on both operands.

If one operand has the type double and the other operand has the type
int, for example, the operand of type int is converted to an object of type
double. If one operand has the type float and the other operand has the
type double, the operand of type float is converted to an object of type
double. Particularly notable is the case of int and float, which converts
the int operand to float, although int typically has greater precision than
float.

If neither operand is a floating type, the following usual arithmetic
conversion rules are applied to the promoted integer operands:

  1.  If both operands have the same type, no further conversion is needed.
  2.  Otherwise, if both operands have signed integer types or both have

unsigned integer types, the operand with the type that has the lesser
integer conversion rank is converted to the type of the operand with
greater rank. If one operand has the type int and the other operand has
the type long, for example, the operand of type int is converted to an
object of type long.

  3.  Otherwise, if the operand that has the unsigned integer type has a rank
greater than or equal to the rank of the other operand’s type, then the
operand with the signed integer type is converted to the type of the
operand with the unsigned integer type. For example, if one operand
has the type signed int and the other operand has the type unsigned
int, the operand of type signed int is converted to an object of type
unsigned int.



  4.  Otherwise, if the type of the operand with the signed integer type can
represent all the values of the type of the operand with unsigned integer
type, then the operand with unsigned integer type is converted to the
type of the operand with signed integer type. For example, if one
operand has the type unsigned int and the other operand has the type
signed long long and the signed long long type can represent all
the values of the unsigned int type, then the operand of type
unsigned int is converted to an object of type signed long long.
This is the case for implementations with a 32-bit int type and a 64-bit
long long type, such as x86-32 and x86-64.

  5.  Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

One consequence of _BitInt being exempt from the integer promotion
rules is that a _BitInt operand of a binary operator is not always promoted
to an int or unsigned int as part of the usual arithmetic conversions.
Instead, a lower-ranked operand is converted to the higher-rank operand
type, and the result of the operation is the higher-ranked type. For example,
given the following declarations

_BitInt(2) a2 = 1; 
_BitInt(3) a3 = 2; 
_BitInt(33) a33 = 1; 
signed char c = 3;

the a2 operand in the following expression is converted to _BitInt(3) as
part of the multiplication, and the resulting type is _BitInt(3):

a2 * a3;

As part of the following multiplication, c is promoted to int, a2 is
converted to int, and the resulting type is int:

a2 * c;



Finally, as part of the following multiplication, c is promoted to int.
Then, provided the width of int is not greater than 32, it is converted to
_BitInt(33) and the resulting type is _BitInt(33):

a33 * c;

These conversion rules, which evolved as new types were added, take
some getting used to. The irregularities in these patterns resulted from
varying architectural properties (notably, the PDP-11’s automatic promotion
of char to int) coupled with a desire to avoid changing the behavior of
existing programs and (subject to those constraints) a desire for uniformity.
When in doubt, use type casts to explicitly force the conversions that you
intend. That said, try not to overuse explicit conversions because casts can
disable important diagnostics.

An Example of Implicit Conversion
The following example illustrates the use of integer conversion rank,
integer promotions, and the usual arithmetic conversions. This code
compares the signed char value c for equality with the unsigned int
value ui. We’ll assume this code is being compiled for the x86 architecture:

unsigned int ui = UINT_MAX; 
signed char c = -1; 
if (c == ui) { 
  printf("%d equals %u\n", c, ui); 
}

The variable c is of type signed char. Because signed char has a
lower integer conversion rank than int or unsigned int, the value stored
in c is promoted to an object of type signed int when used in the
comparison. This is accomplished by sign-extending the original value of
0xFF to 0xFFFFFFFF. Sign extension is used to convert a signed value to a
larger-width object. The sign bit is copied into each bit position of the
expanded object. This operation preserves the sign and magnitude when
converting a value from a smaller to a larger signed integer type.



Next, the usual arithmetic conversions are applied. Because the
operands to the equal (==) operator have different signedness and equal
rank, the operand with the signed integer type is converted to the type of the
operand with the unsigned integer type. The comparison is then performed
as a 32-bit unsigned operation. Because UINT_MAX has the same values as
the promoted and converted value of c, the comparison yields 1, and the
code snippet prints the following:

-1 equals 4294967295

This result should no longer be surprising.

Safe Conversions
Both implicit and explicit conversions (the result of a cast operation) can
produce values that can’t be represented in the resulting type. It’s preferable
to perform operations on objects of the same type to avoid conversions.
However, conversions are unavoidable when a function returns or accepts
an object of a different type. In those cases, we must ensure that the
conversion is performed correctly.

Integer Conversions
Integer conversions occur when a value of an integer type is converted to a
different integer type. Conversions to larger types of the same signedness
are always safe and don’t need to be checked. Most other conversions can
produce unexpected results if the resulting value cannot be represented in
the resulting type. To perform these conversions correctly, you must test
that the value stored in the original integer type is within the range of values
that can be represented in the resulting integer type. As an example, the
do_stuff function shown in Listing 3-4 accepts a signed long argument
value that needs to be used in a context in which only a signed char is
appropriate.

#include <errno.h> 
#include <limits.h> 
 
errno_t do_stuff(signed long value) { 



  if ((value < SCHAR_MIN) || (value > SCHAR_MAX)) { 
    return ERANGE; 
  } 
  signed char sc = (signed char)value; // cast quiets warnin
g 
  // --snip--  
}

Listing 3-4: Safe conversion

To perform this conversion safely, the function checks that value can
be represented as a signed char in the range [SCHAR_MIN, SCHAR_MAX] and
returns an error if it cannot.

The specific range tests vary based on the conversion. See CERT C
rule INT31-C (<Ensure that integer conversions do not result in lost or
misinterpreted data=) for more information.

Integer-Type to Floating-Type Conversions
Floating types that conform to Annex F support positive and negative
infinities, so all integer values are in range. The usual IEC 60559
conversion rules apply. See CERT C rule FLP36-C (<Preserve precision
when converting integral values to floating type=) for more information.

Floating-Type to Integer-Type Conversions
When a finite value of a floating type is converted to an integer type (other
than bool), the fractional part is discarded. If the value of the integral part
cannot be represented by the integer type, Annex F specifies that the
<invalid= floating-point exception is raised, and the result is unspecified.

Floating-Type Demotions
Converting a floating-point value to a larger floating type is always safe.
Demoting a floating-point value (that is, converting to a smaller floating
type) is like converting an integer value to a floating type. Floating types
that conform to Annex F support positive and negative infinities. Demoting
values of floating types for these implementations will always succeed
because any out-of-range values are converted to infinities. See CERT C



rule FLP34-C (<Ensure that floating-point conversions are within range of
the new type=) for more information on floating-point conversions.

EXERCISES

1.  Write a main function that calls the show_classification function from Listing 3-2
with different values of type double. Try to exercise all the switch cases.

2.  Find an example where a conversion from int to float results in a loss of
precision.

Summary
In this chapter, you learned about integers and floating types. You also
learned about implicit and explicit conversions, integer conversion rank,
integer promotions, and the usual arithmetic conversions.

The use of these basic types, particularly integers, is unavoidable and
ubiquitous in C programming. Even the <Hello, world!= program returns an
int and prints a string4an array of type char4which, of course, is an
integer type. Because integer types are used so often, you can’t simply
reread this chapter each time you need to use them. You must understand
their behavior so you can program effectively.

In the next chapter, you’ll learn about operators and how to write
simple expressions to perform operations on these arithmetic types as well
as other object types.



4
EXPRESSIONS AND OPERATORS

In this chapter, you’ll learn about
operators and how to write simple

expressions to perform operations on various object
types. An operator is a keyword or one or more
punctuation characters used to perform an operation.
When an operator is applied to one or more operands,
it becomes an expression that computes a value and
that might have side effects. Expressions are
sequences of operators and operands that compute a
value or accomplish another purpose. The operands
can be identifiers, constants, string literals, and other
expressions.

In this chapter, we discuss simple assignment before stepping back to
examine the mechanics of expressions (operators and operands, value
computations, side effects, precedence, and order of evaluation). We then
consider specific operators including sizeof, arithmetic, bitwise, cast,
conditional, alignment, relational, compound assignment, and the comma
operator. We’ve introduced many of these operators and expressions in



previous chapters; here, we detail their behavior and how best to use them.
Finally, we end the chapter with a discussion of pointer arithmetic.

Simple Assignment
A simple assignment replaces the value stored in the object designated by
the left operand with the right operand. The value of the right operand is
converted to the type of the assignment expression. Simple assignment has
three components: the left operand, the assignment (=) operator, and the
right operand, as shown in the following example:

int i = 21; // declaration with initializer 
int j = 7;  // declaration with initializer 
i = j;      // simple assignment

The first two lines are declarations that define and initialize i with the
value 21 and j with the value 7. Initialization is different from simple
assignment despite having similar syntax. An initializer is an optional part
of a declaration; when present, it provides the initial value for the object. If
the initializer is not present, objects (with automatic storage duration) are
uninitialized.

The third line contains a simple assignment. You must define or declare
all identifiers that appear in an expression (such as a simple assignment) for
your code to compile.

The left operand in a simple assignment is always an expression (with
an object type other than void), referred to as an lvalue. The l in lvalue
originally comes from it being the left operand, but it may be more correct
to think of it as standing for locator value, because it must designate an
object. The right operand is also an expression, but it can simply be a value
and doesn’t need to identify an object. We refer to this value as an rvalue
(right operand) or expression value. In this example, the identifiers for both
objects i and j are lvalues. An lvalue can also be an expression, such as *(p
+ 4), provided it references an object in memory.

In a simple assignment, the rvalue is converted to the type of the lvalue
and then stored in the object designated by the lvalue. In the assignment i =
j, the value is read from j and written to i. Because both i and j are the



same type (int), no conversion is necessary. The assignment expression has
the value of the result of the assignment and the type of the lvalue.

The rvalue does not need to refer to an object, as you can see in the
following statement, which uses the types and values from the preceding
example:

j = i + 12; // j now has the value 19

The expression i + 12 is not an lvalue, because there is no underlying
object storing the result. Instead, i by itself is an lvalue that is automatically
converted into an rvalue to be used as an operand to the addition operation.
The resulting value from the addition operation (which has no memory
location associated with it) is also an rvalue. C constrains where lvalues and
rvalues may appear. The following statements illustrate the correct and
incorrect use of lvalues and rvalues:

int i; 
i = 5;     // i is an lvalue, 5 is an rvalue 
int j = i; // lvalues can appear on the right side of an ass
ignment 
7 = i;     // error: rvalues can't appear on the left side o
f an assignment

The assignment 7 = i doesn’t compile because the rvalue must always
appear on the right side of the operator.

In the following example, the right operand has a different type from
the assignment expression, so the value of i is first converted to a signed
char type. The value of the expression enclosed in parentheses is then
converted to the long int type and assigned to k:

signed char c; 
int i = INT_MAX; 
long k; 
k = (c = i);



Assignment must deal with real-world constraints. Specifically, simple
assignment can result in truncation if a value is converted to a narrower
type. As mentioned in Chapter 3, each object requires a fixed number of
bytes of storage. The value of i can always be represented by k (a larger
type of the same signedness). However, in this example, the value of i is
converted to signed char (the type of the assignment expression c = i).
The value of the expression enclosed in parentheses is then converted to the
type of the outer assignment expression4that is, long int type. If your
implementation’s signed char type has insufficient width to fully represent
the value stored in i, values greater than SCHAR_MAX are truncated, and the
value stored in k (−1) is truncated. To prevent values from being truncated,
make sure that you choose sufficiently wide types that can represent any
value that might arise.

Evaluations
Now that we’ve looked at simple assignment, let’s step back for a moment
and look at how expressions are evaluated. Evaluation mostly means
simplifying an expression down to a single value. The evaluation of an
expression can include both value computations and the initiation of side
effects.

A value computation is the calculation of the value that results from the
evaluation of the expression. Computing the final value may involve
determining the identity of the object or reading the value previously
assigned to an object. For example, the following expression contains
several value computations to determine the identity of i, a, and a[i]:

a[i] + f() + 9

Because f is a function and not an object, the expression f() doesn’t
involve determining the identity of f. The value computations of operands
must occur before the value computation of the result of the operator. In this
example, separate value computations read the value of a[i] and determine
the value returned by the call to the f function. A third computation then
sums these values to obtain the value returned by the overall expression. If



a[i] is an array of int and f() returns an int, the result of the expression
will have the int type.

Side effects are changes to the state of the execution environment. Side
effects include writing to an object, accessing (reading or writing) a
volatile-qualified object, input/output (I/O), assignment, or calling a
function that does any of these things. We can slightly modify the previous
example to add an assignment. Updating the stored value of j is a side
effect of the assignment:

int j; 
j = a[i] + f() + 9;

The assignment to j is a side effect that changes the state of the
execution environment. Depending on the definition of the f function, the
call to f may also have side effects.

Function Invocation
A function designator is an expression that has a function type and is used
to invoke a function. In the following function invocation, max is the
function designator:

int x = 11; 
int y = 21; 
int max_of_x_and_y = max(x, y);

The max function returns the larger of its two arguments. In an
expression, a function designator is converted to a pointer-to-function
returning type at compile time. The value of each argument must be of a
type that can be assigned to an object with (the unqualified version of) the
type of its corresponding parameter. The number and type of each argument
must agree with the number and type of each parameter accepted by the
function. Here, that means two integer arguments. C also supports variadic
functions, such as printf, which accept a variable number of arguments.

We can also pass one function to another, as shown by Listing 4-1.



int f() { 
  // --snip--
  return 0; 
} 
void g(int (*func)()) { 
  // --snip--  
  if (func() != 0) 
    printf("g failed\n"); 
  // --snip--  
} 
// --snip--  
g(f); // call g with function-pointer argument 
// --snip--

Listing 4-1: Passing one function to another function

This code passes the address of a function designated by f to another
function, g. The function g accepts a pointer to a function that accepts no
arguments and returns int. A function passed as an argument is implicitly
converted to a function pointer. The definition of g makes this explicit; an
equivalent declaration is void g(int func(void)).

Increment and Decrement Operators
The increment (++) and decrement (--) operators increment and decrement
a modifiable lvalue, respectively. Both are unary operators because they
take a single operand.

These operators can be used as either prefix operators, which appear
before the operand, or postfix operators, which come after the operand. The
prefix and postfix operators have different behaviors, which means they are
commonly used as trick questions in quizzes and interviews. A prefix
increment performs the increment before returning the value, whereas a
postfix increment returns the value and then performs the increment. Listing
4-2 illustrates these behaviors by performing a prefix or postfix increment
or decrement operation and then assigning the result to e.

int i = 5; 
int e;    // expression result 



e = i++;  // postfix increment: e ← 5, i ← 6 
e = i--;  // postfix decrement: e ← 6, i ← 5 
e = ++i;  // prefix increment: e ← 6, i ← 6 
e = --i;  // prefix decrement: e ← 5, i ← 5

Listing 4-2: The prefix and postfix increment and decrement operators

The i++ operation in this example returns the unchanged value 5,
which is then assigned to e. The value of i is then incremented as a side
effect of the operation.

The prefix increment operator increments the value of the operand, and
the expression returns the new value of the operand after it has been
incremented. Consequently, the expression ++i is equivalent to i = i + 1,
except that i is evaluated only once. The ++i operation in this example
returns the incremented value 6, which is then assigned to e.

Operator Precedence and Associativity
In mathematics and computer programming, the order of operations (or
operator precedence) is a collection of rules that dictates the order in which
operations are performed during the evaluation of an expression. For
example, multiplication is granted a higher precedence than addition.
Therefore, the expression 2 + 3 × 4 is interpreted to have the value 2 + (3 ×
4) = 14, not (2 + 3) × 4 = 20.

Associativity determines how operators of the same precedence are
grouped when no parentheses are used. C associativity differs from
mathematics associativity. For example, while floating-point addition and
multiplication are both commutative (a + b = b + a and a × b = b × a), they
are not necessarily associative. If adjacent operators have equal precedence,
the choice of which operation to apply first is determined by the
associativity. Left-associative operators cause the operations to be grouped
from the left, while right-associative operators cause the operations to be
grouped from the right. You can think of grouping as the implicit
introduction of parentheses. For example, the addition (+) operator has left
associativity, so the expression a + b + c is interpreted as ((a + b) + c). The
assignment operator is right-associative, so the expression a = b = c is
interpreted as (a = (b = c)).



Table 4-1, derived from the C Operator Precedence table at the C++
References website (https://en.cppreference.com/w/c/language/operator
_precedence), lists the precedence and associativity of C operators, as
specified by the language syntax. Operators are listed in order of
descending precedence (that is, higher rows have higher precedence).

Table 4-1: Operator Precedence and Associativity

Precedence Operator Description Associativity
0 (...) Forced grouping Left
1 ++ -- Postfix increment and decrement Left

() Function call
[] Array subscripting
. Structure and union member access
-> Structure and union member access through

pointer
(type)
{list}

Compound literal

2 ++ -- Prefix increment and decrement Right
+ - Unary plus and minus
! ~ Logical NOT and bitwise NOT
(type) Type cast
* Indirection (dereference)
& Address-of
sizeof Size of
_Alignof Alignment requirement

3 * / % Multiplication, division, and remainder Left
4 + - Addition and subtraction
5 << >> Bitwise left shift and right shift
6 < <= Relational operators < and f

> >= Relational operators > and g
7 == != Equal to and not equal to
8 & Bitwise AND
9 ^ Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
11 && Logical AND
12 || Logical OR

https://en.cppreference.com/w/c/language/operator_precedence


Precedence Operator Description Associativity
13 ? : Conditional operator Right
14 = Simple assignment

+= -= Assignment by sum and difference
*= /= %= Assignment by product, quotient, and remainder
<<= >>= Assignment by bitwise left shift and right shift
&= ^= |= Assignment by bitwise AND, XOR, and OR

15 , Expression sequencing Left

Sometimes operator precedence can be intuitive, and sometimes it can
be misleading. For example, the postfix ++ and -- operators have higher
precedence than both the prefix ++ and -- operators, which in turn have the
same precedence as the unary * operator. For example, if p is a pointer, then
*p++ is equivalent to *(p++) and ++*p is equivalent to ++(*p), because both
the prefix ++ operator and the unary * operator are right-associative. If two
operators have the same precedence and associativity, they are evaluated
from left to right. Listing 4-3 illustrates the precedence rules among these
operators.

char cba[] = "cba"; 
char *p = cba; 
printf("%c", ++*p); 
 
char xyz[] = "xyz"; 
char *q = xyz; 
printf("%c", *q++);

Listing 4-3: The operator precedence rules

The pointer in the expression ++*p is first dereferenced, producing the
c character. This value is then incremented, resulting in the character d. In
this case, the prefix ++ operator operates on the object of type char pointed
to by p and not the pointer. On the other hand, the pointer in the expression
*q++ is incremented first, so it refers to the y character. However, the result
of postfix increment operators is the value of the operand so that the original
pointer value is dereferenced, producing the x character. Consequently, this



code prints out the characters dx. You can use parentheses to change or
clarify the order of operations.

Order of Evaluation
The order of evaluation of the operands of any C operator, including the
order of evaluation of any subexpressions, is generally unspecified. The
compiler will evaluate them in any order and may choose a different order
when the same expression is evaluated again. This latitude allows the
compiler to produce faster code by choosing the most efficient order. The
order of evaluation is constrained by operator precedence and associativity.

Listing 4-4 demonstrates the order of evaluation for function
arguments.

int glob;  // static storage initialized to 0 
 
int f(void) { 
  return glob + 10; 
} 
int g(void) { 
  glob = 42; 
  return glob; 
} 
int main(void) { 
  int max_value = max(f(), g()); 
  // --snip--  
}

Listing 4-4: The order of evaluation for function arguments

Both functions f and g access the global variable glob, meaning they
rely on a shared state. Because the order of evaluation of functions f and g
is unspecified, the arguments passed to max may differ between
compilations. If f is called first, it will return 10, but if it’s called last, it will
return 52. Function g always returns 42 regardless of the order of
evaluation. Consequently, the max function (which returns the greater of the
two values) may return either 42 or 52, depending on the order of
evaluation of its arguments. The only sequencing guarantees provided by



this code are that both f and g are called before max and that the executions
of f and g do not interleave.

We can rewrite this code as follows to ensure it always behaves in a
predictable, portable manner:

int f_val = f(); 
int g_val = g(); 
int max_value = max(f_val, g_val);

In this revised program, f is called to initialize the f_val variable. This
is guaranteed to be sequenced before the execution of g, which is called in
the subsequent declaration to initialize the variable g_val. If one evaluation
is sequenced before another evaluation, the first evaluation must complete
before the second evaluation can begin. You can use sequence points
(discussed in the following subsections) to guarantee that an object will be
written before it is read. The execution of f is guaranteed to be sequenced
before the execution of g because a sequence point exists between the
evaluation of one full expression and the next full expression.

Unsequenced and Indeterminately Sequenced
Evaluations
The executions of unsequenced evaluations can interleave, meaning that the
instructions can be executed in any order, provided that reads and writes are
performed in the order specified by the program. A program that performs
reads and writes in the order specified by the program is sequentially
consistent (Lamport 1979).

Some evaluations are indeterminately sequenced, which means they
cannot interleave but can still be executed in any order. For example, the
following statement contains several value computations and side effects:

printf("%d\n", ++i + ++j * --k);

The values of i, j, and k must be read before their values can be
incremented or decremented. This means that the reading of i must be
sequenced before the increment side effect, for example. Similarly, all side



effects for the operands of the multiplication operation need to complete
before the multiplication can occur. The multiplication must complete
before the addition because of operator precedence rules. Finally, all side
effects on the operands of the addition operation must complete before the
addition can occur. These constraints produce a partial ordering among
these operations because they don’t require that j be incremented before k
is decremented, for example. Unsequenced evaluations in this expression
can be performed in any order, which allows the compiler to both reorder
operations and to cache values in registers, allowing for faster overall
execution. Function executions, on the other hand, are indeterminately
sequenced and do not interleave with each other.

Sequence Points
A sequence point is the juncture at which all side effects will have
completed. These are implicitly defined by the language, but you can
control when they occur by how you code.

The sequence points are enumerated in Annex C of the C Standard. A
sequence point occurs between the evaluation of one full expression (an
expression that is not part of another expression or declarator) and the next
full expression to be evaluated. A sequence point also occurs upon entering
or exiting a called function.

If a side effect is unsequenced relative to either a different side effect
on the same scalar or a value computation that uses the value of the same
scalar object, the code has undefined behavior. A scalar type is either an
arithmetic type or pointer type. The expression i++ * i++ performs two
unsequenced operations on i as the following code snippet shows:

int i = 5; 
printf("Result = %d\n", i++ * i++);

You might think this code will produce the value 30, but because it has
undefined behavior, that outcome isn’t guaranteed.

Conservatively, we can ensure that side effects have completed before
the value is read by placing every side-effecting operation in its own full



expression. We can rewrite that code as follows to eliminate the undefined
behavior:

int i = 5; 
int j = i++; 
int k = i++; 
printf("Result = %d\n", j * k);

This example now contains a sequence point between every side-
effecting operation. However, it’s impossible to tell whether this rewritten
code represents the programmer’s original intent because the original code
had no defined meaning. If you choose to omit sequence points, you must
be sure you completely understand the sequencing of side effects. We also
can write this same code as follows without changing the behavior:

int i = 5; 
int j = i++; 
printf("Result = %d\n", j * i++);

Now that we have described the mechanics of expressions, we’ll return
to discussing specific operators.

sizeof Operator
We can use the sizeof operator to find the size in bytes of its operand;
specifically, it returns an unsigned integer of size_t type that represents the
size. Knowing the correct size of an operand is necessary for most memory
operations, including allocating and copying storage. The size_t type is
defined in <stddef.h> as well as in other header files. We need to include
one of these header files to compile any code that references the size_t
type.

We can pass the sizeof operator an unevaluated expression of a
complete object type or a parenthesized name of such a type:

int i; 
size_t i_size = sizeof i;      // the size of the object i 
size_t int_size = sizeof(int); // the size of the type int



It’s always safe to parenthesize the operand to sizeof, because
parenthesizing an expression doesn’t change the way the size of the operand
is calculated. The result of invoking the sizeof operator is a constant
expression unless the operand is a variable-length array. The operand to
sizeof is not evaluated.

If you need to determine the number of bits of storage available, you
can multiply the size of an object by CHAR_BIT, which gives the number of
bits contained in a byte. For example, the expression CHAR_BIT *
sizeof(int) will produce the number of bits in an object of type int.

Arithmetic Operators
Operators that perform arithmetic operations on arithmetic types are
detailed in the following sections. We can also use some of these operators
with nonarithmetic operands.

Unary + and –
The unary + and – operators operate on a single operand of arithmetic type.
The – operator returns the negative of its operand (that is, it behaves as
though the operand were multiplied by 31). The unary + operator just
returns the value. These operators exist primarily to express positive and
negative numbers.

If the operand has a small integer type, it’s promoted (see Chapter 3),
and the result of the operation has the result of the promoted type. As a
point of trivia, C has no negative integer literals. A value such as –25 is
actually an rvalue of type int with the value 25 preceded by the unary –
operator. However, the expression -25 is guaranteed to be a constant integer
expression.

Logical Negation
The result of the unary logical negation operator (!) is as follows:

0 if the evaluated value of its operand is not 0
1 if the evaluated value of its operand is 0



The operand is a scalar type. The result has type int for historical
reasons. The expression !E is equivalent to (0 == E). The logical negation
operator is frequently used to check for null pointers; for example, !p is
equivalent to (nullptr == p). Null pointers may not hold the value zero but
are guaranteed to evaluate to false.

Additive
The binary additive operators include addition (+) and subtraction (−). We
can apply addition and subtraction to two operands of arithmetic types, but
we can also use them to perform scaled pointer arithmetic. I’ll discuss
pointer arithmetic near the end of this chapter.

The binary + operator sums its two operands. The binary - operator
subtracts the right operand from the left operand. The usual arithmetic
conversions are performed on operands of arithmetic type for both
operations.

Multiplicative
The binary multiplicative operators include multiplication (*), division (/),
and remainder (%). The usual arithmetic conversions are implicitly
performed on multiplicative operands to find a common type. You can
multiply and divide both floating-point and integer operands, but remainder
operates only on integer operands.

Various programming languages implement different kinds of integer
division operations, including Euclidean, flooring, and truncating. In
Euclidean division, the remainder is always nonnegative (Boute 1992). In
flooring division, the quotient is rounded toward negative infinity (Knuth
1997). In truncating division, the fractional part of the quotient is discarded,
which is often referred to as truncation toward zero.

The C programming language implements truncating division, meaning
that the remainder always has the same sign as the dividend, as shown in
Table 4-2.

Table 4-2: Truncating Division

/ Quotient % Remainder
  10 / 3   3   10 % 3   1



/ Quotient % Remainder
  10 / –3 –3   10 % –3   1
–10 / 3 –3 –10 % 3 –1
–10 / –3   3 –10 % –3   1

To generalize, if the quotient a / b is representable, then the
expression (a / b) * b + a % b equals a. Otherwise, if the value of the
divisor is equal to 0 or a / b overflows, both a / b and a % b will result in
undefined behavior.

It’s worth taking the time to understand the behavior of the % operator
to avoid surprises. For example, the following code defines a faulty
function called is_odd that attempts to test whether an integer is odd:

bool is_odd(int n) { 
  return n % 2 == 1; 
}

Because the result of the remainder operation always has the sign of the
dividend n, when n is negative and odd, n % 2 returns −1, and the function
returns false.

A correct, alternative solution is to test that the remainder is not 0
(because a remainder of 0 is the same regardless of the sign of the
dividend):

bool is_odd(int n) { 
  return n % 2 != 0; 
}

Many central processing units (CPUs) implement remainder as part of
the division operator, which can overflow if the dividend is equal to the
minimum negative value for the signed integer type and the divisor is equal
to −1. This occurs even though the mathematical result of such a remainder
operation is 0.

The C standard library provides floating-point remainder, truncation,
and rounding functions, including fmod, among others.



Bitwise Operators
We use bitwise operators to manipulate the bits of an object or any integer
expression. Bitwise operators (|, &, ^, ~) treat the bits as a pure binary
model without concern for the values represented by these bits. Typically,
they’re used on objects that represent masks or bitmaps where each bit
indicates that something is <on= or <off,= <enabled= or <disabled,= or some
other binary pairing. Using a mask, multiple bits can be set, unset, or
inverted in a single bitwise operation. Masks and bitmaps are best
represented as unsigned integer types, as the sign bit can be better used as a
value and unsigned operations are less prone to undefined behavior.

Complement
The unary complement operator (~) works on a single operand of integer
type and returns the bitwise complement of its operand4that is, a value in
which each bit of the original value is flipped. The complement operator is
used in applying the POSIX umask, for example. The umask masks or
subtracts permissions. For example, a umask of 077 turns off read, write,
and execute permissions for the group and others. A file’s permission mode
is the result of a logical AND operation between the complement of the
mask and the process’s requested permission mode setting.

Integer promotions are performed on the operand of the complement
operator, and the result has the promoted type. For example, the following
code snippet applies the ~ operator to a value of unsigned char type:

unsigned char uc = UCHAR_MAX; // 0xFF 
int i = ~uc;

On an architecture with an 8-bit char type and 32-bit int type, uc is
assigned the value 0xFF. When uc is used as the operand to the ~ operator,
uc is promoted to signed int by zero-extending it to 32 bits, 0x000000FF.
The complement of this value is 0xFFFFFF00. Therefore, on this platform,
complementing an unsigned char type always results in a negative value
of type signed int. As a general policy and to avoid surprises such as this,
bitwise operations should operate only on values of sufficiently wide
unsigned integer types.



Shift
Shift operations shift the value of each bit of an operand of integer type by a
specified number of positions. Shifting is commonly performed in system
programming, where bitmasks are common. Shift operations may also be
used in code that manages network protocols or file formats to pack or
unpack data. They include left-shift operations of the form

shift expression << additive expression

and right-shift operations of the form:

shift expression >> additive expression

The shift expression is the value to be shifted, and the additive
expression is the number of bits by which to shift the value. Figure 4-1
illustrates a logical left shift of 1 bit.

Figure 4-1: A logical left shift of 1 bit

The additive expression determines the number of bits by which to
shift the value. For example, the result of E1 << E2 is the value of E1 left-
shifted E2 bit positions; vacated bits are filled with zeros. If E1 has an
unsigned type, the resulting value is E1 × 2E2. Values that cannot be
represented in the resulting type will wrap around. If E1 has a signed type
and nonnegative value and if E1 × 2E2 is representable in the result type, then
that is the resulting value; otherwise, it is undefined behavior. Similarly, the
result of E1 >> E2 is the value of E1 right-shifted E2 bit positions. If E1 has
an unsigned type or if E1 has a signed type and a nonnegative value, the
value of the result is the integral part of the quotient of E1/2E2. If E1 has a



signed type and a negative value, the resulting value is implementation
defined and may be either an arithmetic (sign-extended) shift or a logical
(unsigned) shift, as shown in Figure 4-2.

Figure 4-2: An arithmetic (signed) right shift and a logical (unsigned) right shift of 1 bit

In both shift operations, the integer promotions are performed on the
operands, each of which has an integer type. The type of the result is that of
the promoted left operand. The usual arithmetic conversions are not
performed.

Listing 4-5 shows how to perform right-shift operations on signed and
unsigned integers that are free from undefined behavior.

extern int si1, si2, sresult; 
extern unsigned int ui1, ui2, uresult; 
// --snip--

w if ((si2 < 0) || (si2 >= sizeof(si1)*CHAR_BIT)) { 
  /* error */ 
} 
else { 
  sresult = si1 >> si2; 
} 

x if (ui2 >= sizeof(unsigned int)*CHAR_BIT) { 
  /* error */ 
} 
else { 
  uresult = ui1 >> ui2; 
}

Listing 4-5: Correct right-shift operations



For signed integers w, you must ensure that the number of bits shifted
is not negative, greater than, or equal to the width of the promoted left
operand. For unsigned integers x, you omit the test for negative values, as
unsigned integers can never be negative. You can perform safe left-shift
operations in a similar manner.

Bitwise AND
The binary bitwise AND operator (&) returns the bitwise AND of two
operands of integer type. The usual arithmetic conversions are performed
on both operands. Each bit in the result is set if and only if each of the
corresponding bits in the converted operands is set, as shown in Table 4-3.

Table 4-3: Bitwise AND Truth Table

x y x & y
0 0 0
0 1 0
1 0 0
1 1 1

Bitwise Exclusive OR
The bitwise exclusive OR operator (^) returns the bitwise exclusive OR of
the operands of integer type. The operands must be integers, and the usual
arithmetic conversions are performed on both. Each bit in the result is set if
and only if exactly one of the corresponding bits in the converted operands
is set, as shown in Table 4-4. You can also think of this operation as <one or
the other, but not both.=

Table 4-4: Bitwise Exclusive OR Truth Table

x y x ^ y
0 0 0
0 1 1
1 0 1
1 1 0



Exclusive OR is equivalent to the addition operation on the integers
modulo 24that is, because of wraparound 1 + 1 mod 2 = 0 (Lewin 2012).

Beginners commonly mistake the exclusive OR operator for an
exponent operator, erroneously believing that the expression 2 ^ 7 will
compute 2 raised to the power of 7. The correct way to raise a number to a
certain power in C is to use the pow functions defined in <math.h>, as
shown in Listing 4-6. The pow functions operate on floating-point
arguments and return a floating-point result, so be aware that these
functions might fail to produce the expected results because of truncation or
other errors.

#include <math.h> 
#include <stdio.h> 
 
int main(void) { 
  int i = 128; 
  if (i == pow(2, 7)) { 
    puts("equal"); 
  } 
}

Listing 4-6: Using the pow functions

This code calls the pow function to compute 2 raised to the power of 7.
Because 27 equals 128, this program will print equal.

Bitwise Inclusive OR
The bitwise inclusive OR (|) operator returns the bitwise inclusive OR of
two operands. Each bit in the result is set if and only if at least one of the
corresponding bits in the converted operands is set, as shown in Table 4-5.

Table 4-5: Bitwise Inclusive OR Truth Table

x y x | y
0 0 0
0 1 1
1 0 1
1 1 1



The operands must be integers, and the usual arithmetic conversions
are performed on both.

Logical Operators
The logical AND (&&) and OR (||) operators are used primarily for
logically joining two or more expressions of scalar type. They’re commonly
used in condition tests to combine multiple comparisons together, such as in
the first operand of the conditional operator, the controlling expression of
an if statement, or the controlling expression of a for loop. You shouldn’t
use logical operators with bitmap operands, as they are intended primarily
for Boolean logic.

The && operator returns 1 if neither of its operands is equal to 0 and
returns 0 otherwise. Logically, this means that a && b is true only if both a
is true and b is true.

The || operator returns 1 if either of its operands is not equal to 0 and
returns 0 otherwise. Logically, this means that a || b is true if a is true, b is
true, or both a and b are true.

The C standard defines both operations in terms of <not equal to zero=
because the operands can have values other than 0 and 1. Both operators
accept operands of scalar type (integers, floats, and pointers), and the result
of the operation has type int.

Unlike the corresponding bitwise binary operators, the logical AND
operator and logical OR operator guarantee left-to-right evaluation. Both
operators short-circuit: The second operand is not evaluated if the result can
be deduced solely by evaluating the first operand. If the second operand is
evaluated, there is a sequence point between the evaluations of the first and
second operands. For example, the expression 0 && unevaluated returns 0
regardless of the value of unevaluated because there is no possible value
for unevaluated that produces a different result. Because of this,
unevaluated is not evaluated to determine its value. The same is true for 1
|| unevaluated because this expression always returns 1.

Short-circuiting is commonly used in operations with pointers:

bool isN(int* ptr, int n) { 
  return ptr && *ptr == n; // avoid a null pointer dereferen



ce 
}

This code tests the value of ptr. If ptr is null, the second && operand is
not evaluated, preventing a null pointer dereference.

Short-circuiting can also be used to avoid unnecessary computing. In
the following expression, the is_file_ready predicate function returns
true if the file is ready:

is_file_ready() || prepare_file()

When the is_file_ready function returns true, the second || operand
is not evaluated, as there is no need to prepare the file. This avoids potential
errors or, when prepare_file is idempotent, unnecessary computing,
assuming the cost of determining whether the file is ready is less than the
cost of preparing the file.

Programmers should exercise caution if the second operand contains
side effects, because it may not be apparent whether these side effects
occur. For example, in the following code, the value of i is incremented
only when i >= 0:

enum {max = 15}; 
int i = 17; 
 
if ((i >= 0) && ((i++) <= max)) { 
  // --snip--  
}

This code may be correct, but it’s likely a programmer error.

Cast Operators
Casts (also known as type casts) explicitly convert a value of one type to a
value of another type. To perform a cast, we precede an expression with a
parenthesized type name, which converts the value of the expression to the



unqualified version of the named type. The following code illustrates an
explicit conversion, or cast, of x from type double to type int:

double x = 1.2; 
int sum = (int)x + 1;  // explicit conversion from double to 
int

Unless the type name specifies a void type, the type name must be a
qualified or unqualified scalar type. The operand must also have scalar
type; a pointer type cannot be converted to any floating-point type, and vice
versa.

Casts are extremely powerful and must be used carefully. For one
thing, casts may reinterpret the existing bits as a value of the specified type
without changing the bits:

intptr_t i = (intptr_t)a_pointer; // reinterpret bits as an
 integer

Casts may also change these bits into whatever bits are needed to
represent the original value in the resulting type:

int i = (int)a_float; // change bits to an integer represent
ation

Casts can also disable diagnostics. For example:

char c; 
// --snip--  
while ((c = fgetc(in)) != EOF) { 
  // --snip--  
}

This generates the following diagnostic when compiled with Visual
C++ 2022 with warning level /W4:



Severity  Code   Description 
Warning   C4244  '=': conversion from 'int' to 'char', possi
ble loss of data

Adding a cast to char disables the diagnostic without fixing the
problem:

char c; 
while ((c = (char)fgetc(in)) != EOF) { 
  // --snip--  
}

To mitigate these risks, C++ defines its own casts, which are less
powerful.

Conditional Operator
The conditional operator (? :) is the only C operator that takes three
operands. It returns a result based on the condition. You can use the
conditional operator like this:

result = condition ? valueReturnedIfTrue : valueReturnedIfFa
lse;

The conditional operator evaluates the first operand, called the
condition. The second operand (valueReturnedIfTrue) is evaluated if the
condition is true, or the third operand (valueReturnedIfFalse) is evaluated
if the condition is false. The result is the value of either the second or third
operand (depending on which operand was evaluated).

This result is converted to a common type based on the second and
third operands. There is a sequence point between the evaluation of the first
operand and the evaluation of the second or third operand (whichever is
evaluated) so that the compiler will ensure that all side effects resulting
from evaluating the condition have completed before the second or third
operand is evaluated.



The conditional operator is similar to an if...else control flow block
but returns a value as a function does. Unlike with an if...else control
flow block, you can use the conditional operator to initialize a const-
qualified object:

const int x = (a < b) ? b : a;

The first operand to the conditional operator must have scalar type. The
second and third operands must have compatible types (roughly speaking).
For more details on the constraints for this operator and the specifics of
determining the return type, refer to Section 6.5.15 of the C standard
(ISO/IEC 9899:2024).

alignof Operator
The alignof operator yields an integer constant representing the alignment
requirement of its operand’s declared complete object type. It does not
evaluate the operand. When applied to an array type, it returns the
alignment requirement of the element type. An alternative spelling of
_Alignof is available for this operator. Prior to C23, the alignof spelling
was available through a convenience macro provided in the header
<stdalign.h>. The alignof operator is useful in static assertions that are
used to verify assumptions about your program (discussed further in
Chapter 11). The purpose of these assertions is to diagnose situations in
which your assumptions are invalid. Listing 4-7 demonstrates the use of the
alignof operator.

#include <stdio.h> 
#include <stddef.h> 
#include <stdalign.h> 
#include <assert.h> 
 
int main(void) { 
  int arr[4]; 
  static_assert(alignof(arr) == 4, "unexpected alignment"); 
  static_assert(alignof(max_align_t) == 16, "unexpected alig
nment"); 



  printf("Alignment of arr = %zu\n", alignof(arr)); 
  printf("Alignment of max_align_t = %zu\n", alignof(max_ali
gn_t)); 
}

Listing 4-7: The alignof operator

This simple program doesn’t accomplish anything particularly useful. It
declares an array arr of four integers followed by a static assertion
concerning the alignment of the array and a runtime assertion concerning
the alignment of max_align_t (an object type whose alignment is the
greatest fundamental alignment). It then prints out these values. This
program will not compile if either static assertion is false, or it will output
the following:

Alignment of arr = 4 
Alignment of max_align_t = 16

These alignments are characteristic of the x86-64 architecture.

Relational Operators
The relational operators include equal to (==), not equal to (!=), less than
(<), greater than (>), less than or equal to (<=), and greater than or equal to
(>=). Each returns 1 if the specified relationship is true and 0 if it is false.
The result has type int, again, for historical reasons.

Note that C does not interpret the expression a < b < c to mean that b
is greater than a but less than c, as ordinary mathematics does. Instead, the
expression is interpreted to mean (a < b) < c. In English, if a is less than
b, the compiler should compare 1 to c; otherwise, it compares 0 to c. If this
is your intent, include the parentheses to make that clear to any potential
code reviewer. Some compilers such as GCC and Clang provide the -
Wparentheses flag to diagnose those problems. To determine whether b is
greater than a but less than c, you can write this test: (a < b) && (b < c).

The equality and inequality operators have lower precedence than the
relational operators4and assuming otherwise is a common mistake. This
means that the expression a < b == c < d is evaluated the same as (a < b)



== (c < d). In both cases, the comparisons a < b and c < d are evaluated
first, and the resulting values (either 0 or 1) are compared for equality.

We can use these operators to compare arithmetic types or pointers.
When we compare two pointers, the result depends on the relative locations
in the address space of the objects pointed to. If both pointers point to the
same object, they are equal.

Equality and inequality operators differ from the other relational
operators. For example, you cannot use the other relational operators on two
pointers to unrelated objects, because doing so makes no sense and is
consequently undefined behavior:

int i, j; 
bool b1 = &i < &j;  // undefined behavior 
bool b2 = &i == &j; // OK, but tautologically false

You might compare pointers, for example, to determine whether you
have reached the too-far element of an array.

Compound Assignment Operators
Compound assignment operators, shown in Table 4-6, modify the current
value of an object by performing an operation on it.

Table 4-6: Compound Assignment Operators

Operator Assignment by
+= -= Sum and difference
*= /= %= Product, quotient, and remainder
<<= >>= Bitwise left shift and right shift
&= ^= |= Bitwise AND, XOR, and OR

A compound assignment of the form E1 op = E2 is equivalent to the
simple assignment expression E1 = E1 op (E2), except that E1 is evaluated
only once. Compound assignments are primarily used as shorthand
notation. There are no compound assignment operators for logical
operators.



Comma Operator
In C, we use commas in two distinct ways: as operators and to separate
items in a list (such as arguments to functions or lists of declarations). The
comma (,) operator is a way to evaluate one expression before another.
First, the left operand of a comma operator is evaluated as a void
expression. There is a sequence point between the evaluation of the left
operand and the evaluation of the right operand. Then, the right operand is
evaluated after the left. The comma operation has the type and value of the
right operand4mostly because it is the last expression evaluated.

You can’t use the comma operator in contexts in which a comma might
separate items in a list. Instead, you would include a comma within a
parenthesized expression or within the second expression of a conditional
operator. For example, assume that a, t, and c each have type int in the
following call to f:

f(a, (t=3, t+2), c)

The first comma separates the first and second arguments to the
function. The second comma is a comma operator. The assignment is
evaluated first, followed by the addition. Because of the sequence point, the
assignment is guaranteed to complete before the addition takes place. The
result of the comma operation has the type int and value 5. The third
comma separates the second and third arguments to the function.

Pointer Arithmetic
Earlier in this chapter, we mentioned that the additive operators (addition
and subtraction) can be used with either arithmetic operands or object
pointers. In this section, we discuss adding a pointer and an integer,
subtracting two pointers, and subtracting an integer from a pointer.

Adding or subtracting an expression that has an integer type to or from
a pointer returns a value with the type of the pointer operand. If the pointer
operand points to an element of an array, then the result points to an
element offset from the original element. If the resulting pointer is beyond
the bounds of the array, undefined behavior occurs. The difference of the



array subscripts of the resulting and original array elements equals the
integer expression:

int arr[100]; 
int *arrp1 = &arr[40]; 
int *arrp2 = arrp1 + 20; // arrp2 points to arr[60] 
printf("%td\n", arrp2 - arrp1); // prints 20

Pointer arithmetic is automatically scaled to the size of the array
element, rather than individual bytes. C allows a pointer to be formed to
each element of an array, including one past the last element of the array
object (also referred to as the too-far pointer). While this might seem
unusual or unnecessary, many early C programs incremented a pointer until
it was equal to the too-far pointer, and the C standards committee didn’t
want to break all this code, which is also idiomatic in C++ iterators. Figure
4-3 illustrates forming the too-far pointer.

Figure 4-3: One past the last element of an array object

If both the pointer operand and the result point to elements of the same
array object or the too-far pointer, the evaluation did not overflow;
otherwise, the behavior is undefined. To satisfy the too-far requirement, an
implementation need only provide one extra byte (which can overlap
another object in the program) just after the end of the object.

C also allows objects to be treated as an array containing only a single
element, allowing you to obtain a too-far pointer from a scalar.

The too-far special case allows us to advance a pointer until it is equal
to the too-far pointer, as in the following function:

int m[2] = {1, 2}; 
 
int sum_m_elems(void) { 



  int *pi; int j = 0; 
  for (pi = &m[0]; pi < &m[2]; ++pi) j += *pi; 
  return j; 
}

Here, the for statement (explained in detail in the next chapter) in the
sum_m_elems function loops while pi is less than the address of the too-far
pointer for the array m. The pointer pi is incremented at the end of each
iteration of the loop until the too-far pointer is formed, causing the loop
condition to evaluate to 0 when tested.

When we subtract one pointer from another, both must point to
elements of the same array object or the too-far element. This operation
returns the difference of the subscripts of the two array elements. The type
of the result is ptrdiff_t (a signed integer type). You should take care
when subtracting pointers, because the range of ptrdiff_t may not be
sufficient to represent the difference of pointers to elements of very large
character arrays.

Summary
In this chapter, you learned how to use operators to write simple
expressions that perform operations on various object types. Along the way,
you learned about some core C concepts, such as lvalues, rvalues, value
computations, and side effects, which determine how expressions are
evaluated. You also learned how operator precedence, associativity, order of
evaluation, sequencing, and interleaving can affect the total order in which
a program is executed. In the next chapter, you’ll learn more about how to
control the execution of your program by using selection, iteration, and
jump statements.



5
CONTROL FLOW

In this chapter, you’ll learn how to
control the order in which individual

statements are evaluated. We’ll start by going over
expression statements and compound statements that
define the work to be performed. We’ll then cover
three kinds of statements that determine which code
blocks are executed and in what order: selection,
iteration, and jump statements.

Expression Statements
An expression statement is an optional expression terminated by a
semicolon. It’s one of the most common statements and a basic unit of
work. The following examples show different expression statements.

Assigns a value to a:

a = 6;

Assigns the sum of a and b to c:

c = a + b;



A null statement:

; // null statement, does nothing

You can use a null statement when the syntax of the language requires
a statement but no expression needs to be evaluated. Null statements
are commonly used as placeholders in iteration statements.
The following expression statement increments the value of count:

++count;

After each full expression has been evaluated, its value (if any) is
discarded (including assignment expressions in which the assignment itself
is a side effect of the operation) so that any useful results occur as the
consequence of side effects (as discussed in Chapter 4). Three of the four
expression statements in this example have side effects (the null statement
does nothing). Once all side effects have completed, execution proceeds to
the statement following the semicolon.

Compound Statements
A compound statement, or block, is a list of zero or more statements,
surrounded by braces. The statements in the block may be any kind of
statement described throughout this chapter. Some of these statements may
be declarations. (In early versions of C, declarations within the block had to
precede all nondeclarations, but that restriction no longer applies.) Each
statement in the block is executed in sequence unless modified by a control
statement. After the final statement has been evaluated, execution proceeds
to after the closing brace:

{ 
  static int count = 0; 
  c += a; 
  ++count; 
}



This example declares a static variable of type int called count. The
second line increases a variable c declared in an outer scope by the value
stored in a. Finally, count is incremented to track how many times this
block has been executed.

Compound statements can be nested so that one compound statement
fully encloses another. You may also have blocks with no statements at all
(just the empty braces).

CODE STYLE

Competing coding styles disagree on when and where to place braces. If you’re
modifying existing code, it would be wise to follow the style already in use for
the project. Otherwise, look at styles you see in code written by experienced C
programmers and choose one that seems clear. For example, some
programmers line up the opening and closing braces to make it easy to find the
mate for a given brace. Others follow the style used in The C Programming
Language, 2nd edition, by Brian Kernighan and Dennis Ritchie (Pearson, 1988),
wherein the opening brace is placed at the end of the preceding line and the
closing brace gets a line to itself. Once you have chosen a style, use it
consistently.

Selection Statements
Selection statements allow you to conditionally execute a substatement
depending on the value of a controlling expression. The controlling
expression determines which statements are executed based on a condition.
Selection statements include the if statement and the switch statement.

if
The if statement allows a programmer to execute a substatement based on
the value of a controlling expression of scalar type.

There are two kinds of if statements. The first conditionally
determines whether the substatement is executed:

if (expression) 
  substatement



In this case, the substatement is executed if the expression is not
equal to 0. Only the single substatement of the if statement is
conditionally executed, although it can be a compound statement.

Listing 5-1 shows a division function that uses if statements. It divides
a specified dividend by a specified divisor and returns the result in the
object referenced by quotient. The function tests for both division by zero
and signed integer overflow and returns false in either case.

bool safediv(int dividend, int divisor, int *quotient) { 
w if (!quotient) return false; 
x if ((divisor == 0) || ((dividend == INT_MIN) && (divisor =
= -1))) 
  y return false; 
z *quotient = dividend / divisor; 
  return true; 
}

Listing 5-1: A safe division function

The first line of this function w tests quotient to ensure that it’s not
null. If it is null, the function returns false to indicate that it is unable to
return a value. (We cover return statements later in this chapter.)

The second line of the function x contains a more complex if
statement. Its controlling expression tests whether the divisor is 0 or
whether the division would result in signed integer overflow if unchecked.
If the result of this expression is not equal to 0, the function returns false
y to indicate that it is unable to produce a quotient. If the controlling
expression of the if statement evaluates to 0, the function does not return,
and the remaining statements z are executed to calculate the quotient and
return true.

The second kind of if statement includes an else clause, which selects
an alternative substatement to execute when the initial substatement is not
selected:

if (expression) 
  substatement1  



else 
  substatement2

In this form, substatement1 is executed if expression is not equal to
0, and substatement2 is executed if expression is equal to 0. One of these
substatements is executed, but never both.

For either form of the if statement, the conditionally executed
substatement may also be an if statement. A common use of this is the
if...else ladder, shown in Listing 5-2.

if (expr1) 
  substatement1  
else if (expr2) 
  substatement2  
else if (expr3) 
  substatement3  
else 
  substatement4

Listing 5-2: The if...else ladder syntax

One (and only one) of the four statements in an if...else ladder will
execute:

substatement1 executes if expr1 does not equal 0.
substatement2 executes if expr1 equals 0 and if expr2 does not equal
0.
substatement3 executes if both expr1 and expr2 equal 0 and expr3
does not equal 0.
substatement4 executes only if the preceding conditions are all equal
to 0.
The example shown in Listing 5-3 uses an if...else ladder to print

grades.

void printgrade(unsigned int marks) { 
  if (marks >= 90) { 
    puts("YOUR GRADE : A"); 



  } else if (marks >= 80) { 
    puts("YOUR GRADE : B"); 
  } else if (marks >= 70) { 
    puts("YOUR GRADE : C"); 
  } else { 
    puts("YOUR GRADE : Failed"); 
  } 
}

Listing 5-3: Using an if...else ladder to print grades

In this if...else ladder, the printgrade function tests the value of the
unsigned int parameter marks to determine whether it is greater than or
equal to 90. If so, the function prints YOUR GRADE : A. Otherwise, it tests
whether marks is greater than or equal to 80, and so forth down the
if...else ladder. If marks is not greater than or equal to 70, the function
prints YOUR GRADE : Failed. This example uses a coding style in which the
closing brace is followed by the else clause on the same line.

Only a single statement following the if statement is executed. For
example, in the following code snippet, conditionally_executed is
executed only if condition is not equal to 0, but
unconditionally_executed is always executed:

if (condition) 
  conditionally_executed(); 
unconditionally_executed(); // always executed

Attempting to add another conditionally executed function is a
common source of errors:

if (condition) 
  conditionally_executed(); 
  also_conditionally_executed(); // ???? 
unconditionally_executed(); // always executed

In this code snippet, also_conditionally_executed is unconditionally
executed. The name and indented formatting are deceptive because



whitespace (in general) and indentation (in particular) are meaningless to
the syntax. This code can be fixed by adding braces to delimit a single
compound statement or block. This block is then executed as the single
conditionally executed statement:

if (condition) { 
  conditionally_executed(); 
  also_conditionally_executed(); // fixed it 
} 
unconditionally_executed(); // always executed

While the original code snippet was not incorrect, many coding
guidelines recommend always including braces to avoid this kind of error:

if (condition) { 
  conditionally_executed(); 
} 
unconditionally_executed(); // always executed

My personal style is to omit the braces only when I can include the
conditionally executed statement on the same line as the if statement:

if (!quotient) return false;

This issue is less problematic when you let your integrated
development environment (IDE) format your code for you, as it won’t be
fooled by code indentation when formatting your code. The GCC and Clang
compilers provide a -Wmisleading-indentation compiler flag that checks
code indentation and warns when it doesn’t correspond to the control flow.

switch
The switch statement works just like the if...else ladder, except that the
controlling expression must have an integer type. For example, the switch
statement in Listing 5-4 performs the same function as the if...else
ladder from Listing 5-3, provided that marks is an integer in the range of 0
to 109. If marks is greater than 109, it will result in a failed grade because



the resulting quotient will be greater than 10 and will consequently be
caught by the default case.

switch (marks/10) { 
  case 10: 
  case 9: 
    puts("YOUR GRADE : A"); 
    break; 
  case 8: 
    puts("YOUR GRADE : B"); 
    break; 
  case 7: 
    puts("YOUR GRADE : C"); 
    break; 
  default: 
    puts("YOUR GRADE : Failed"); 
}

Listing 5-4: Using a switch statement to print out grades

The switch statement causes control to jump to one of the three
substatements, depending on the value of the controlling expression and the
constant expressions in each case label. Following the jump, code is
executed sequentially until the next control flow statement is reached. In
our example, a jump to case 10 (which is empty) flows through and
executes the subsequent statements in case 9. This is necessary to the logic
so that a perfect grade of 100 results in an A and not an F.

You can terminate the execution of the switch by inserting a break
statement, causing control to jump to the execution of the statement directly
following the overall switch statement. (We discuss break statements in
more detail later in this chapter.) Make sure you remember to include a
break statement before the next case label. If omitted, the control flow falls
through to the next case in the switch statement—a common source of
errors. Because the break statement isn’t required, omitting it doesn’t
typically produce compiler diagnostics. GCC issues a warning for fall-
through if you use the -Wimplicit-fallthrough flag. The C23 standard
introduces the [[fallthrough]] attribute as a way for a programmer to



specify that fall-through behavior is desirable, under the assumption that
silent fall-through is an accidental omission of a break statement.

Integer promotions are performed on the controlling expression. The
constant expression in each case label is converted to the promoted type of
the controlling expression. If a converted value matches that of the
promoted controlling expression, control jumps to the statement following
the matched case label. Otherwise, if there is no match but there is a
default label, control jumps to the labeled statement. If no converted case
constant expression matches and there is no default label, no part of the
switch body is executed. When switch statements are nested, a case or
default label is accessible only within the closest enclosing switch
statement.

There are best practices regarding the use of switch statements. Listing
5-5 shows a less-than-ideal implementation of a switch statement that
assigns interest rates to an account based on the account type. The
AccountType enumeration represents the fixed number of account types
offered by the bank.

typedef enum {Savings, Checking, MoneyMarket} AccountType; 
void assignInterestRate(AccountType account) { 
  double interest_rate; 
  switch (account) { 
    case Savings: 
      interest_rate = 3.0; 
      break; 
    case Checking: 
      interest_rate = 1.0; 
      break; 
    case MoneyMarket: 
      interest_rate = 4.5; 
      break; 
  } 
  printf("Interest rate = %g.\n", interest_rate); 
}

Listing 5-5: A switch statement without a default label



The assignInterestRate function defines a single parameter of the
enumeration type AccountType and switches on it to assign the appropriate
interest rate associated with each account type.

Nothing is wrong with the code as written, but it requires programmers
to update the code in at least two separate places if they want to make any
changes. Let’s say the bank introduces a new type of account: a certificate
of deposit. A programmer updates the AccountType enumeration as
follows:

typedef enum {Savings, Checking, MoneyMarket, CD} AccountTyp
e;

However, if the programmer neglects to modify the switch statement
in the assignInterestRate function, the interest_rate isn’t assigned,
resulting in an uninitialized read when the function attempts to print that
value. This problem is common because the enumeration may be declared
far from the switch statement, and the program may contain many similar
switch statements that all reference an object of type AccountType in their
controlling expression.

Both Clang and GCC help diagnose these problems at compilation time
when you use the -Wswitch-enum flag. Alternatively, you can protect
against such errors and improve the testability of this code by adding this
default case to the switch statement, as shown in Listing 5-6.

typedef enum {Savings, Checking, MoneyMarket, CD} AccountTyp
e; 
void assignInterestRate(AccountType account) { 
  double interest_rate; 
  switch (account) { 
    case Savings: 
      interest_rate = 3.0; 
      break; 
    case Checking: 
      interest_rate = 1.0; 
      break; 
    case MoneyMarket: 
      interest_rate = 4.5; 



      break; 
    case CD: 
      interest_rate = 7.5; 
      break; 
    default: abort();  
  } 
  printf("Interest rate = %g.\n", interest_rate); 
  return; 
}

Listing 5-6: A switch statement with a default label

The switch statement now includes a case for CD, and the default
clause is unused. However, retaining the default clause is good practice, in
case another account type is added in the future.

Including a default clause does have the drawback of suppressing
compiler warnings and not diagnosing the problem until runtime. Compiler
warnings (if supported by your compiler) are therefore a better approach.

Iteration Statements
Iteration statements cause substatements (or compound statements) to be
executed zero or more times, subject to termination criteria. The English
word iteration means <the repetition of a process.= Iteration statements are
more informally and commonly referred to as loops. A loop is <a process,
the end of which is connected to the beginning.=

while
The while statement causes the loop body to execute repeatedly until the
controlling expression is equal to 0. The evaluation of the controlling
expression occurs before each execution of the loop body. Consider the
following example:

void f(unsigned int x) { 
  while (x > 0) { 
    printf("%d\n," x); 
    --x; 
  } 



  return; 
}

If x is not initially greater than 0, the while loop exits without
executing the loop body. If x is greater than 0, its value is output and then
decremented. Once the end of the loop is reached, the controlling
expression is tested again. This pattern repeats until the expression
evaluates to 0. Overall, this loop will count down from x to 1.

A while loop is an entry-controlled loop that executes until its
controlling expression evaluates to 0. Listing 5-7 shows an implementation
of the C standard library memset function. This function copies the value of
val (converted to an unsigned char) into each of the first n characters of
the object pointed to by dest.

void *memset(void *dest, int val, size_t n) { 
  unsigned char *ptr = (unsigned char*)dest; 
  while (n-- > 0) 
    *ptr++ = (unsigned char)val; 
  return dest; 
}

Listing 5-7: The C standard library memset function

The first line of the memset function converts dest to a pointer to an
unsigned char and assigns the resulting value to the unsigned char
pointer ptr. This lets us preserve the value of dest to return on the last line
of the function. The remaining two lines of the function form a while loop
that copies the value of val (converted to an unsigned char) into each of
the first n characters of the object dest points to. The controlling expression
of the while loop tests that n-- > 0.

The n argument is a loop counter that’s decremented on each iteration
of the loop as a side effect of the evaluation of the controlling expression.
The loop counter in this case monotonically decreases until it reaches the
minimum value (0). The loop performs n repetitions, where n is less than or
equal to the bound of the memory that ptr references.



The ptr pointer designates a sequence of objects of type unsigned
char, from ptr through ptr + n - 1. The value of val is converted to an
unsigned char and written to each object in turn. If n is greater than the
bound of the object that ptr references, the while loop writes to memory
outside the bounds of this object. This is undefined behavior and a common
security flaw, referred to as a buffer overflow, or overrun. Provided the
object referenced by ptr has at least n bytes, the while loop terminates
without undefined behavior. In the final iteration of the loop, the controlling
expression n-- > 0 evaluates to 0, causing the loop to terminate.

It’s possible to write an infinite loop—a loop that never terminates. To
avoid writing a while loop that inadvertently runs forever, be sure you
initialize any objects referenced by the controlling expression before the
start of the while loop. Also make sure that the controlling expression
changes during the while loop’s execution in a manner that causes the loop
to terminate after iterating an appropriate number of times.

do...while
The do...while statement is similar to the while statement, except that the
evaluation of the controlling expression occurs after each execution of the
loop body rather than before. As a result, the loop body is guaranteed to
execute once before the condition is tested. The do...while iteration
statement has the following syntax:

do 
  statement  
while (expression);

In a do...while iteration, statement is unconditionally executed once,
after which expression is evaluated. If expression is not equal to 0,
control returns to the top of the loop and statement is executed again.
Otherwise, execution passes to the statement following the loop.

The do...while iteration statement is commonly used in input/output
(I/O), where it makes sense to read from a stream before testing the state of
the stream, as shown in Listing 5-8.



#include <stdio.h> 
// --snip--  
int count; 
float quant; 
char units[21], item[21]; 
do { 
  count = fscanf(stdin, "%f%20s of %20s", &quant, units, ite
m); 
  fscanf(stdin,"%*[^\n]"); 
} while (!feof(stdin) && !ferror(stdin)); 
// --snip--

Listing 5-8: An input loop

This code inputs a floating-point quantity, a unit of measure (as a
string), and an item name (also as a string) from the standard input stream
stdin until the end-of-file indicator has been set or a read error has
occurred. We’ll discuss I/O in detail in Chapter 8.

for
The for statement might be the most C-like thing about C. The for
statement repeatedly executes a statement and is typically used when the
number of iterations is known before entering the loop. It has the following
syntax:

for (clause1; expression2; expression3) 
  statement

The controlling expression (expression2) is evaluated before each
execution of the loop body, and expression3 is evaluated after each
execution of the loop body. If clause1 is a declaration, the scope of any
identifiers it declares is the remainder of the declaration and the entire loop,
including the other two expressions.

The purpose of clause1, expression2, and expression3 is apparent
when we translate the for statement into an equivalent while loop, as
shown in Figure 5-1.



Figure 5-1: Translating a for loop into a while loop

Listing 5-9 shows a modified version of the memset implementation
from Listing 5-7; we have replaced the while loop with a for loop.

void *memset(void *dest, int val, size_t n) { 
  unsigned char *ptr = (unsigned char *)dest; 
  for (w size_t i = 0; x i < n; y ++i) { 
    *(ptr + i) = (unsigned char)val; 
  } 
  return dest; 
}

Listing 5-9: Filling a character array by using a for loop

The for loop is popular among C programmers because it provides a
convenient location for declaring and/or initializing the loop counter w,
specifying the controlling expression for the loop x, and incrementing the
loop counter y, all on the same line. The *(ptr + i) lvalue expression
could be written equivalently using the index operator as ptr[i].

The for loop can also be somewhat misleading. Let’s take the example
of a singly linked list in C that declares a node structure consisting of a data
element and a pointer to the next node in the list. We also define a pointer p
to the node structure:



struct node { 
  int data; 
  struct node *next; 
}; 
struct node *p;

Using the definition of p, the following example (used to deallocate the
storage for a linked list) erroneously reads the value p after it has been
freed:

for (p = head; p != nullptr; p = p->next) { 
  free(p); 
}

Reading p after it has been freed is undefined behavior.
If this loop were rewritten as a while loop, it would become apparent

that the code reads p after it was freed:

p = head; 
while (p != nullptr) { 
  free(p); 
  p = p->next; 
}

The for loop can be confusing because it evaluates expression3 after
the main body of the loop, even though lexically it appears before the loop’s
body.

The correct way to perform this operation is to save the required
pointer before freeing it, like this:

for (p = head; p != nullptr; p = q) { 
  q = p->next; 
  free(p); 
}

You can read more about dynamic memory management in Chapter 6.



Jump Statements
A jump statement unconditionally transfers control to another section of the
same function when encountered. These are the lowest-level control flow
statements and generally correspond closely to the underlying assembly
language code.

goto
Any statement may be preceded by a label, which is an identifier followed
by a colon. C23 also allows you to place labels in front of declarations and
at the end of a compound statement, which was not allowed in previous
versions of C. A goto statement causes a jump to the statement prefixed by
the named label in the enclosing function. The jump is unconditional,
meaning it happens every time the goto statement is executed. Here’s an
example of a goto statement:

  /* executed statements */ 
  goto location; 
  /* skipped statements */ 
location: 
  /* executed statements */

Execution continues until the goto statement is reached, at which point
control jumps to the statement following the location label, where
execution continues. Statements between the goto statement and the label
are passed over.

The goto statement has had a bad reputation since Edsger Dijkstra
wrote a paper titled <Go To Statement Considered Harmful= (1968). His
criticism was that goto statements can result in spaghetti code (code with a
complex and tangled control structure, resulting in a program flow that’s
conceptually twisted and tangled like a bowl of spaghetti) if used
haphazardly. However, goto statements can also make code easier to read if
used in a clear, consistent manner.

One helpful way to use goto statements is to chain them together to
release allocated resources (such as dynamic allocated memory or an open
file) when an error occurs and you must leave a function. This scenario



happens when a program allocates multiple resources; each allocation can
fail, and resources must be released to prevent leaking. If the first resource
allocation fails, no cleanup is needed, because no resources have been
allocated. However, if the second resource cannot be allocated, the first
resource needs to be released. Similarly, if the third resource cannot be
allocated, the second and first resources allocated need to be released, and
so forth. This pattern results in duplicated cleanup code, and it can be error-
prone because of the duplication and additional complexity.

One solution is to use nested if statements, which can also become
difficult to read if nested too deeply. Instead, we can use a goto chain as
shown in Listing 5-10 to release resources.

int do_something(void) { 
  FILE *file1, *file2; 
  object_t *obj; 
  int ret_val = 0; // initially assume a successful return v
alue 
 
  file1 = fopen("a_file", "w"); 
  if (file1 == nullptr) { 
    return -1; 
  } 
 
  file2 = fopen("another_file", "w"); 
  if (file2 == nullptr) { 
    ret_val = -1; 
    goto FAIL_FILE2;  
  } 
 
  obj = malloc(sizeof(*obj)); 
  if (obj == nullptr) { 
    ret_val = -1; 
    goto FAIL_OBJ;  
  } 
 
  // operate on allocated resources 
 
  // clean up everything 
  free(obj); 



FAIL_OBJ:   // otherwise, close only the resources we opened 
  fclose(file2); 
FAIL_FILE2:  
  fclose(file1); 
  return ret_val; 
}

Listing 5-10: Using a goto chain to release resources

The code follows a simple pattern: resources are allocated in a certain
order, operated upon, and then released in reverse (last in, first out) order. If
an error occurs while allocating a resource, the code uses a goto to jump to
the appropriate location in cleanup code and releases only those resources
that have been allocated.

Used like this, goto statements can make code easier to read. A real-
world example is the copy_process function from kernel/fork.c from
v6.7 of the Linux kernel (https://elixir.bootlin.com/linux/v6.7/source/kernel
/fork.c#L2245), which uses 20 goto labels to perform cleanup code when an
internal function fails.

continue
You can use a continue statement inside a loop to jump to the end of the
loop body, skipping the execution of the remaining statements inside the
loop body for the current iteration. For example, the continue statement is
equivalent to goto END_LOOP_BODY; in each of the loops shown in Listing
5-11.

while (/* _ */) { 
  // --snip--  
  continue; 
  // --snip--  
END_LOOP_BODY: ; 
}

do { 
  // --snip--  
  continue; 

https://elixir.bootlin.com/linux/v6.7/source/kernel/fork.c#L2245


  // --snip--  
END_LOOP_BODY: ; 
} while (/* _ */);

for (/* _ */) { 
  // --snip--  
  continue; 
  // --snip--  
END_LOOP_BODY: ; 
}

Listing 5-11: Using the continue statement

The continue statement is used in conjunction with a conditional
statement so that processing may continue with the subsequent loop
iteration after the objective of the current loop iteration has been achieved.

break
A break statement terminates execution of a switch or iteration statement.
We used break within a switch statement in Listing 5-4. Within a loop, a
break statement causes the loop to terminate and the program execution to
resume at the statement following the loop. For instance, the for loop in the
following example exits only when the uppercase or lowercase Q key is
pressed on the keyboard:

#include <stdio.h> 
int main(void) { 
  char c; 
  for(;;) { 
    puts("Press any key, Q to quit: "); 
    c = toupper(getchar()); 
    if (c == 'Q') break; 
    // --snip--  
  } 
} // loop exits when either q or Q is pressed



We typically use break statements to discontinue the execution of the
loop when the work it was performing has been completed. For example,
the break statement in Listing 5-12 exits the loop after it finds the specified
key in an array. Assuming that key is unique in arr, the find_element
function would behave the same without the break statement but,
depending on the length of the array and the point at which key is
discovered, could run much slower.

size_t find_element(size_t len, int arr[len], int key) { 
  size_t pos = (size_t)-1; 
  // traverse arr and search for key 
  for (size_t i = 0; i < len; ++i) { 
    if (arr[i] == key) { 
      pos = i; 
      break;  // terminate loop 
    } 
  } 
  return pos; 
}

Listing 5-12: Breaking out of a loop

Because continue and break bypass part of a loop body, use these
statements carefully: the code following these statements is not executed.

return
A return statement terminates execution of the current function and returns
control to its caller. You’ve already seen many examples of return
statements in this book. A function may have zero or more return
statements.

A return statement can simply return, or it can return an expression.
Within a void function (a function that doesn’t return a value), the return
statement should simply return. When a function returns a value, the return
statement should return an expression that produces a value of the return
type. If a return statement with an expression is executed, the value of the
expression is returned to the caller as the value of the function call
expression:



int sum(int x, int y, int z) { 
  return x + y + z; 
}

This simple function sums its parameters and returns the sum. The
return expression x + y + z produces a value of type int, which matches the
return type of the function. If this expression produced a different type, it
would be implicitly converted to an object having the return type of the
function. The return expression can also be as simple as returning 0 or 1.
The function result may then be used in an expression or assigned to a
variable.

Be aware that if control reaches the closing brace of a non-void
function (a function declared to return a value) without evaluating a return
statement with an expression, using the return value of the function call is
undefined behavior. For example, the following function fails to return a
value when a is nonnegative because the condition a < 0 is false:

int absolute_value(int a) { 
  if (a < 0) { 
    return -a; 
  } 
}

We can easily repair this defect by providing a return value when a is
nonnegative, as shown in Listing 5-13.

int absolute_value(int a) { 
  if (a < 0) { 
    return -a; 
  } 
  return a;  
}

Listing 5-13: The absolute_value function returns a value along all paths.

However, this code still has a bug (see Chapter 3). Identifying this bug
is left as an exercise for you.



EXERCISES

1.  Modify the function from Listing 5-10 to make it clear to the caller which file
could not be opened.

2.  Fix the remaining bug in the absolute_value function in Listing 5-13.

Summary
In this chapter, you learned about control flow statements. Control flow
statements allow you to create flexible programs that can repeat tasks and
alter their execution based on program inputs:

Selection statements, such as if and switch, allow you to select from a
set of statements depending on the value of a controlling expression.
Iteration statements repeatedly execute a loop body until a controlling
expression equals 0.
Jump statements unconditionally transfer control to a new location.
In the next chapter, you’ll learn about dynamically allocated memory.

Similar to control flow statements, you can use dynamic memory to create
flexible programs that allocate memory based on program inputs.



6
DYNAMICALLY ALLOCATED MEMORY

In Chapter 2, you learned that every
object has a storage duration that

determines its lifetime and that C defines four storage
durations: static, thread, automatic, and allocated. In
this chapter, you’ll learn about dynamically allocated
memory, which is allocated from the heap at runtime.
Dynamically allocated memory is useful when the
exact storage requirements for a program are
unknown before runtime.

We’ll first describe the differences between allocated, static, and
automatic storage duration. We’ll skip thread storage allocation as this
involves parallel execution, which we don’t cover here. We’ll then explore
the functions you can use to allocate and deallocate dynamic memory,
common memory allocation errors, and strategies for avoiding them. The
terms memory and storage are used interchangeably in this chapter, similar
to the way they’re used in practice.

Storage Duration
Objects occupy storage, which might be read-write memory, read-only
memory, or central processing unit (CPU) registers. Storage of allocated



duration has significantly different properties from storage of either
automatic or static storage duration. First, we’ll review automatic and static
storage duration.

Objects of automatic storage duration are declared within a block or as
a function parameter. The lifetime of these objects begins when the block in
which they are declared begins execution and ends when execution of the
block ends. If the block is entered recursively, a new object is created each
time, each with its own storage.

Objects declared at file scope have static storage duration. The lifetime
of these objects is the entire execution of the program, and their stored
value is initialized prior to program startup. You can also declare a variable
within a block to have static storage duration by using the static storage-
class specifier.

The Heap and Memory Managers
Dynamically allocated memory has allocated storage duration. The lifetime
of an allocated object extends from the allocation until the deallocation.
Dynamically allocated memory is allocated from the heap, which is simply
one or more large, subdividable blocks of memory managed by the memory
manager.

Memory managers are libraries that manage the heap for you by
providing implementations of the standard memory management functions
described in this chapter. A memory manager runs as part of the client
process. The memory manager requests one or more blocks of memory
from the operating system (OS) and then allocates this memory to the client
process when it invokes a memory allocation function. Allocation requests
don’t go directly to the OS because it’s slower and works only in big chunks
of memory, whereas allocators split up those big chunks into little chunks
and are faster.

Memory managers manage unallocated and deallocated memory only.
Once memory has been allocated, the caller manages the memory until it’s
returned. It’s the caller’s responsibility to ensure that the memory is
deallocated, although most implementations will reclaim dynamically
allocated memory when the program terminates.



MEMORY MANAGER IMPLEMENTATIONS

Memory managers frequently implement a variant of a dynamic storage
allocation algorithm described by Donald Knuth (1997). This algorithm uses
boundary tags, which are size fields that appear before and after the block of
memory returned to the programmer. This size information allows all memory
blocks to be traversed from any known block in either direction so that the
memory manager can coalesce two bordering unused blocks into a larger block
to minimize fragmentation.

When a program starts, the free memory areas are long and contiguous.
During the program’s lifetime, memory is allocated and deallocated. Eventually,
the long contiguous regions fragment into smaller and smaller contiguous areas.
As a result, larger allocations can fail even though the total amount of free
memory is sufficient for the allocation. Memory allocated for the client process
and memory allocated for internal use within the memory manager are all within
the addressable memory space of the client process.

When to Use Dynamically Allocated Memory
As previously mentioned, dynamically allocated memory is used when the
exact storage requirements for a program are unknown before runtime.
Dynamically allocated memory is less efficient than statically allocated
memory because the memory manager needs to find appropriately sized
blocks of memory in the runtime heap, and the caller must explicitly free
those blocks when no longer needed, all of which requires additional
processing. Dynamically allocated memory also requires additional
processing for housekeeping operations such as defragmentation (the
consolidation of adjacent free blocks), and the memory manager often uses
extra storage for control structures to facilitate these processes.

Memory leaks occur when dynamically allocated memory that’s no
longer needed isn’t returned to the memory manager. If these memory leaks
are severe, the memory manager eventually won’t be able to satisfy new
requests for storage.

By default, you should declare objects with either automatic or static
storage duration for objects whose sizes are known at compilation time.
Dynamically allocate memory when the size of the storage or the number of
objects is unknown before runtime. For example, you might use
dynamically allocated memory to read a table from a file at runtime,
especially if you do not know the number of rows in the table at compile
time. Similarly, you might use dynamically allocated memory to create



linked lists, hash tables, binary trees, or other data structures for which the
number of data elements held in each container is unknown at compile time.

Memory Management
The C standard library defines memory management functions for
allocating (for example, malloc, calloc, and realloc) and deallocating
(free) dynamic memory. The OpenBSD reallocarray function is not
defined by the C standard library but can be useful for memory allocation.
C23 added two additional deallocation functions: free_sized and
free_aligned_sized.

Dynamically allocated memory is required to be suitably aligned for
objects up to the requested size, including arrays and structures. C11
introduced the aligned_alloc function for hardware with stricter-than-
normal memory alignment requirements.

malloc
The malloc function allocates space for an object of a specified size. The
representation of the returned storage is indeterminate. In Listing 6-1, we
call the malloc function to dynamically allocate storage for an object the
size of struct widget.

#include <stdlib.h> 
 
typedef struct { 
  double d; 
  int i; 
  char c[10]; 
} widget; 
 

w widget *p = malloc(sizeof *p); 
x if (p == nullptr) { 

  // handle allocation error 
} 
// continue processing

Listing 6-1: Allocating storage for a widget with the malloc function



All memory allocation functions accept an argument of type size_t
that specifies the number of bytes of memory to be allocated w. For
portability, we use the sizeof operator when calculating the size of objects,
because the size of objects of distinct types, such as int and long, may
differ among implementations.

The malloc function returns either a null pointer to indicate an error or
a pointer to the allocated space. Therefore, we check whether malloc
returns a null pointer x and appropriately handles the error.

After the function successfully returns the allocated storage, we can
reference members of the widget structure through the p pointer. For
example, p->i accesses the int member of widget, while p->d accesses the
double member.

Allocating Memory Without Declaring a Type
You can store the return value from malloc as a void pointer to avoid
declaring a type for the referenced object:

void *p = malloc(size);

Alternatively, you can use a char pointer, which was the convention
before the void type was introduced to C:

char *p = malloc(size);

In either case, the object that p points to has no type until an object is
copied into this storage. Once that occurs, the object has the effective type
of the last object copied into this storage, which imprints the type onto the
allocated object.

In the following example, the storage that p references has an effective
type of widget:

widget w = {3.2, 9, "abc",}; 
memcpy(p, &w, sizeof(w));



Following the call to memcpy, the change of effective type influences
optimizations and nothing else.

Because allocated memory can store any sufficiently small object type,
pointers returned by allocation functions, including malloc, must be
sufficiently aligned. For example, if an implementation has objects with 1-,
2-, 4-, 8-, and 16-byte alignments and 16 or more bytes of storage are
allocated, the alignment of the returned pointer is a multiple of 16.

Reading Uninitialized Memory
The contents of memory returned from malloc are uninitialized, which
means it has an indeterminate representation. Reading uninitialized memory
is never a good idea; think of it as undefined behavior. If you’d like to know
more, I wrote an in-depth article on uninitialized reads (Seacord 2017). The
malloc function doesn’t initialize the returned memory because you are
expected to overwrite this memory anyway.

Even so, beginners commonly make the mistake of assuming that the
memory malloc returns contains zeros. The program shown in Listing 6-2
makes this exact error.

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
int main() { 
  char *str = (char *)malloc(16); 
  if (str) { 
    strncpy(str, "123456789abcdef", 15); 
    printf("str = %s.\n", str); 
    free(str); 
    return EXIT_SUCCESS; 
  } 
  return EXIT_FAILURE; 
}

Listing 6-2: An initialization error



This program calls malloc to allocate 16 bytes of memory and then
uses strncpy to copy the first 15 bytes of a string into the allocated
memory. The programmer attempts to create a properly null-terminated
string by copying one fewer byte than the size of the allocated memory. In
doing so, the programmer assumes that the allocated storage already
contains a zero value to serve as the null byte. However, the storage could
easily contain nonzero values, in which case the string wouldn’t be properly
null terminated, and the call to printf would result in undefined behavior.

A common solution is to write a null character into the last byte of the
allocated storage, as follows:

strncpy(str, "123456789abcdef", 15); 
w str[15] = '\0';

If the source string (the string literal "123456789abcdef" in this
example) has fewer than 15 bytes, the null termination character will be
copied, and the assignment w is unnecessary. If the source string has 15
bytes or longer, adding this assignment ensures that the string is properly
null terminated.

aligned_alloc
The aligned_alloc function is similar to the malloc function, except that it
requires you to provide an alignment as well as a size for the allocated
object. The function has the following signature, where size specifies the
object’s size and alignment specifies its alignment:

void *aligned_alloc(size_t alignment, size_t size);

Although C requires the dynamically allocated memory from malloc to
be sufficiently aligned for all standard types, including arrays and
structures, you might occasionally need to override the compiler’s default
choices. You can use the aligned_alloc function to request stricter
alignment than the default (in other words, a larger power of two). If the
value of alignment is not a valid alignment supported by the



implementation, the function fails by returning a null pointer. See Chapter 2
for more information on alignment.

calloc
The calloc function allocates storage for an array of nmemb objects, each of
whose size is size bytes. It has the following signature:

void *calloc(size_t nmemb, size_t size);

This function initializes the storage to all zero-valued bytes. These zero
values might not be the same one used to represent floating-point zero or
null-pointer constants. You can also use the calloc function to allocate
storage for a single object, which can be thought of as an array of one
element.

Internally, the calloc function works by multiplying nmemb by size to
determine the required number of bytes to allocate. Historically, some
calloc implementations failed to validate that these values wouldn’t wrap
around when multiplied. C23 requires this test, and modern
implementations of calloc return a null pointer if the space cannot be
allocated or if the product nmemb * size would wrap around.

realloc
The realloc function increases or decreases the size of previously allocated
storage. It takes a pointer to memory allocated by an earlier call to aligned
_alloc, malloc, calloc, or realloc (or a null pointer) and a size and has
the following signature:

void *realloc(void *ptr, size_t size);

You can use the realloc function to grow or (less commonly) shrink
the size of an array.

Avoiding Memory Leaks
To avoid introducing bugs when you use realloc, you should understand
how this function is specified. If the newly allocated storage is larger than



the old contents, realloc leaves the additional storage uninitialized. If
realloc succeeds in allocating the new object, it calls free to deallocate
the old object. The pointer to the new object may have the same value as a
pointer to the old object. If the allocation fails, the realloc function retains
the old object data at the same address and returns a null pointer. A call to
realloc can fail, for example, when insufficient memory is available to
allocate the requested number of bytes. The following use of realloc might
be erroneous:

size += 50; 
if ((p = realloc(p, size)) == nullptr) return nullptr;

In this example, size is incremented by 50 before calling realloc to
increase the size of the storage that p references. If the call to realloc fails,
p is assigned a null pointer value, but realloc doesn’t deallocate the
storage that p references, resulting in this memory being leaked.

Listing 6-3 demonstrates the correct use of the realloc function.

void *p = malloc(100); 
void *p2; 
 
// --snip--  
if ((nsize == 0) || (p2 = realloc(p, nsize)) == nullptr) { 
  free(p); 
  return nullptr; 
} 
p = p2;

Listing 6-3: An example of the correct use of the realloc function

Listing 6-3 declares two variables, p and p2. The variable p refers to the
dynamically allocated memory malloc returns, and p2 starts out
uninitialized. Eventually, this memory is resized, which we accomplish by
calling the realloc function with the p pointer and the new nsize size. The
return value from realloc is assigned to p2 to avoid overwriting the pointer
stored in p. If realloc returns a null pointer, the memory p references is



freed, and the function returns a null pointer. If realloc succeeds and
returns a pointer to an allocation of size nsize, p is assigned the pointer to
the newly reallocated storage, and execution continues.

This code also includes a test for a zero-byte allocation. Avoid passing
the realloc function a value of 0 as the size argument, as that is undefined
behavior (as clarified in C23).

If the following call to the realloc function doesn’t return a null
pointer, the address stored in p is invalid and can no longer be read:

newp = realloc(p, ...);

In particular, the following test is not allowed:

if (newp != p) { 
  // update pointers to reallocated memory 
}

Any pointers that reference the memory p previously pointed to must
be updated to reference the memory newp pointed to after the call to
realloc regardless of whether realloc kept the same address for the
storage.

One solution to this problem is to go through an extra indirection,
sometimes called a handle. If all uses of the reallocated pointer are indirect,
they’ll all be updated when that pointer is reassigned.

Calling realloc with a Null Pointer
Calling realloc with a null pointer is equivalent to calling malloc.
Provided newsize isn’t equal to 0, we can replace the following code

if (p == nullptr) 
  newp = malloc(newsize); 
else 
  newp = realloc(p, newsize);

with this:



newp = realloc(p, newsize);

The first, longer version of this code calls malloc for the initial
allocation and realloc to adjust the size later as required. Because calling
realloc with a null pointer is equivalent to calling malloc, the second
version concisely accomplishes the same thing.

reallocarray
As we have seen in previous chapters, both signed integer overflow and
unsigned integer wraparound are serious problems that can result in buffer
overflows and other security vulnerabilities. In the following code snippet,
for example, the expression num * size might wrap around before being
passed as the size argument in the call to realloc:

if ((newp = realloc(p, num * size)) == nullptr) { 
  // --snip--

The OpenBSD reallocarray function can reallocate storage for an
array, but like calloc, it checks for wraparound during array size
calculations, which saves you from having to perform these checks. The
reallocarray function has the following signature:

void *reallocarray(void *ptr, size_t nmemb, size_t size);

The reallocarray function allocates storage for nmemb members of
size size and checks for wraparound in the nmemb * size calculation.
Other platforms, including the GNU C Library (libc), have adopted this
function, and it has been proposed for inclusion in the next revision of the
POSIX standard. The reallocarray function does not zero out the
allocated storage.

The reallocarray function is useful when two values are multiplied to
determine the size of the allocation:

if ((newp = reallocarray(p, num, size)) == nullptr) { 
  // --snip--



This call to the reallocarray function will fail and return a null
pointer if num * size would wrap around.

free
When it’s no longer needed, memory can be deallocated using the free
function. Deallocating memory allows that memory to be reused, reducing
the chances that you’ll exhaust the available memory and often providing
more efficient use of the heap.

We can deallocate memory by passing a pointer to that memory to the
free function, which has the following signature:

void free(void *ptr);

The ptr value must have been returned by a previous call to malloc,
aligned_alloc, calloc, or realloc. CERT C rule MEM34-C, <Only free
memory allocated dynamically,= discusses what happens when the value is
not returned. Memory is a limited resource and so must be reclaimed.

If we call free with a null-pointer argument, nothing happens, and the
free function simply returns:

  char *ptr = nullptr; 
  free(ptr);

Freeing the same pointer twice, on the other hand, is a serious error.

free_sized
C23 introduced two new memory deallocation functions. The free_sized
function has the following signature:

void free_sized(void *ptr, size_t size);

If ptr is a null pointer or the result obtained from a call to malloc,
realloc, or calloc, where size is equal to the requested allocation size,
this function behaves the same as free(ptr). You cannot pass the result of



aligned_alloc to this function; you must use the free_aligned_sized
function (described in the next section). By reminding the allocator of the
size of that allocation, you can reduce deallocation cost and allow extra
security-hardening functionality. However, if you specify the size
incorrectly, the behavior is undefined.

Using the free_sized function, we could improve the performance and
safety of the following code

void *buf = malloc(size); 
use(buf, size); 
free(buf);

by rewriting it as:

void *buf = malloc(size); 
use(buf, size); 
free_sized(buf, size);

This is feasible and practical when the size of the allocation is retained
or can be inexpensively re-created.

free_aligned_sized
The second of the two new memory deallocation functions that C23
introduced is the free_aligned_sized function. The free_aligned_sized
function has the following signature:

void free_aligned_sized(void *ptr, size_t alignment, size_t
 size);

If ptr is a null pointer or the result obtained from a call to
aligned_alloc, where alignment is equal to the requested allocation
alignment and size is equal to the requested allocation size, this function is
equivalent to free(ptr). Otherwise, the behavior is undefined. In other
words, this function may be used only for deallocating explicitly aligned
memory.



Using the free_aligned_sized function, we could improve the
performance and safety of the following code

void *aligned_buf = aligned_alloc(alignment, size); 
use_aligned(buf, size, alignment); 
free(buf);

by rewriting it as:

void *aligned_buf = aligned_alloc(size, alignment); 
use_aligned(buf, size, alignment); 
free_aligned_sized(buf, alignment, size);

This is feasible and practical when the alignment and size of the
allocation is retained or can be inexpensively re-created.

Dealing with Dangling Pointers
If you call one of the free functions on the same pointer more than once,
undefined behavior occurs. These defects can result in a security flaw
known as a double-free vulnerability. One consequence is that they might
be exploited to execute arbitrary code with the permissions of the
vulnerable process. The full effects of double-free vulnerabilities are
beyond the scope of this book, but I discuss them in detail in Secure Coding
in C and C++ (Seacord 2013). Double-free vulnerabilities are especially
common in error-handling code, as programmers attempt to free allocated
resources.

Another common error is to access memory that has already been
freed. This type of error frequently goes undetected because the code might
appear to work but then fails in an unexpected manner away from the actual
error. In Listing 6-4, taken from an actual application, the argument to
close is invalid because the second call to free has reclaimed the storage
dirp formerly pointed to.

#include <dirent.h> 
#include <stdlib.h> 
#include <unistd.h> 



 
int closedir(DIR *dirp) { 
  free(dirp->d_buf); 
  free(dirp); 
  return close(dirp->d_fd);  // dirp has already been freed 
}

Listing 6-4: Accessing already freed memory

We refer to pointers to already freed memory as dangling pointers.
Dangling pointers are a potential source of errors (like a banana peel on the
floor). Every use of a dangling pointer (not just dereferencing) is undefined
behavior. When used to access memory that has already been freed,
dangling pointers can result in use-after-free vulnerabilities (CWE 416).
When passed to the free function, dangling pointers can result in double-
free vulnerabilities (CWE 415). See CERT C rule MEM30-C, <Do not
access freed memory,= for more information on these topics.

Setting the Pointer to Null
To limit the opportunity for defects involving dangling pointers, set the
pointer to nullptr after completing a call to free:

char *ptr = malloc(16); 
// --snip--  
free(ptr); 
ptr = nullptr;

Any future attempt to dereference the pointer will usually result in a
crash, increasing the likelihood that the error is detected during
implementation and testing. If the pointer is set to nullptr, the memory can
be freed multiple times without consequence. Unfortunately, the free
function cannot set the pointer to nullptr itself because it’s passed a copy
of the pointer and not the actual pointer.

Memory States



Dynamically allocated memory can exist in one of three states shown in
Figure 6-1: unallocated and uninitialized within the memory manager,
allocated but uninitialized, and allocated and initialized. Calls to the malloc
and free functions, as well as writing the memory, cause the memory to
transition between states.

Figure 6-1: Memory states

Different operations are valid depending on the state of the memory.
Avoid any operation on memory that’s not shown as valid or explicitly
listed as invalid. Following execution of the memset function in this code
snippet

char *p = malloc(100); 
memset(p, 0, 50);

the first 50 bytes are allocated and initialized, while the last 50 bytes are
allocated but uninitialized. Initialized bytes can be read, but uninitialized
bytes must not be read.



Flexible Array Members
Allocating storage for a structure that contains an array has always been a
little tricky in C. There’s no problem if the array has a fixed number of
elements, as the size of the structure can easily be determined. Developers,
however, frequently need to declare an array whose size is unknown until
runtime, and originally, C offered no straightforward way to do so.

Flexible array members let you declare and allocate storage for a
structure with any number of fixed members, where the last member is an
array of unknown size. Starting with C99, the last member of a struct with
more than one member can have an incomplete array type, which means
that the array has an unknown size that you can specify at runtime. A
flexible array member allows you to access a variable-length object.

For example, Listing 6-5 shows the use of a flexible array member
data in widget. We dynamically allocate storage for the object by calling
the malloc function.

#include <stdlib.h> 
 
constexpr size_t max_elem = 100; 
 
typedef struct { 
  size_t num; 
w int data[]; 
} widget; 
 
widget *alloc_widget(size_t num_elem) { 
  if (num_elem > max_elem) return nullptr; 
x widget *p = (widget *)malloc(sizeof(widget) + sizeof(int)
 * num_elem); 
  if (p == nullptr) return nullptr; 
 
  p->num = num_elem; 
  for (size_t i = 0; i < p->num; ++i) { 
  y p->data[i] = 17; 
  } 
  return p; 
}



Listing 6-5: Flexible array members

We first declare a struct whose last member, the data array w, is an
incomplete type (with no specified size). We then allocate storage for the
entire struct x. When computing the size of a struct containing a
flexible array member using the sizeof operator, the flexible array member
is ignored. Therefore, we must explicitly include an appropriate size for the
flexible array member when allocating storage. To accomplish that, we
allocate additional bytes for the array by multiplying the number of
elements in the array (num_elem) by the size of each element
(sizeof(int)). This program assumes that the value of num_elem is such
that when multiplied by sizeof(int), wraparound won’t occur.

We can access this storage by using a . or -> operator y, as if the
storage had been allocated as data[num_elem]. See CERT C rule MEM33-
C, <Allocate and copy structures containing a flexible array member
dynamically,= for more information on allocating and copying structures
containing flexible array members.

Prior to C99, multiple compilers supported a similar <struct hack=
using a variety of syntaxes. CERT C rule DCL38-C, <Use the correct syntax
when declaring a flexible array member, = is a reminder to use the syntax
specified in C99 and later versions of the C standard.

Other Dynamically Allocated Storage
C has language and library features beyond the memory management
functions that support dynamically allocated storage. This storage is
typically allocated in the stack frame of the caller (the C standard does not
define a stack, but it’s a common implementation feature). A stack is a last-
in-first-out (LIFO) data structure that supports nested invocation of
functions at runtime. Each function invocation creates a stack frame in
which local variables (of automatic storage duration) and other data specific
to that invocation of the function can be stored.

alloca
For performance reasons, alloca (a nonstandard function supported by
some implementations) allows dynamic allocation at runtime from the stack



rather than the heap. This memory is automatically released when the
function that called alloca returns. The alloca function is an intrinsic (or
built-in) function, which is specially handled by the compiler. This allows
the compiler to substitute a sequence of automatically generated
instructions for the original function call. For example, on the x86
architecture, the compiler substitutes a call to alloca with a single
instruction to adjust the stack pointer to accommodate the additional
storage.

The alloca function originated in an early version of the Unix
operating system from Bell Laboratories but is not defined by the C
standard library or POSIX. Listing 6-6 shows an example function called
printerr that uses the alloca function to allocate storage for an error
string before printing it out to stderr.

void printerr(errno_t errnum) { 
w rsize_t size = strerrorlen_s(errnum) + 1; 
x char *msg = (char *)alloca(size);  
  if (y strerror_s(msg, size, errnum) != 0) { 
   z fputs(msg, stderr); 
  } 
  else { 
   { fputs("unknown error", stderr); 
  } 
}

Listing 6-6: The printerr function

The printerr function takes a single argument, errnum, of errno_t
type. We call the strerrorlen_s function w to determine the length of the
error string associated with this error number. Once we know the size of the
array that we need to allocate to hold the error string, we can call the
alloca function x to efficiently allocate storage for the array. We then
retrieve the error string by calling the strerror_s function y and store the
result in the newly allocated storage msg references. Assuming the
strerror_s function succeeds, we output the error message z; otherwise,



we output unknown error {. This printerr function is written to
demonstrate the use of alloca and is more complicated than it needs to be.

The alloca function can be tricky to use. First, the call to alloca can
make allocations that exceed the bounds of the stack. However, the alloca
function doesn’t return a null pointer value, so there’s no way to check for
the error. For this reason, it’s critically important to avoid using alloca
with large or unbounded allocations. The call to strerrorlen_s in this
example should return a reasonable allocation size.

A further problem with the alloca function is that programmers may
become confused by having to free memory allocated by malloc but not
alloca. Calling free on a pointer not obtained by calling aligned_alloc,
calloc, realloc, or malloc is a serious error. Due to those issues, the use
of alloca is discouraged.

Both GCC and Clang provide a -Walloca compiler flag that diagnoses
all calls to the alloca function. GCC also provides a -Walloca-larger-
than=size compiler flag that diagnoses any call to the alloca function
when the requested memory is more than size.

Variable-Length Arrays
Variable-length arrays (VLAs) were introduced in C99. A VLA is an object
of a variably modified type (covered in Chapter 2). Storage for the VLA is
allocated at runtime and is equal to the size of the base type of the variably
modified type multiplied by the runtime extent.

The size of the array cannot be modified after you create it. All VLA
declarations must be at block scope.

The following example declares the VLA vla of size size as an
automatic variable in function func:

void func(size_t size) { 
  int vla[size]; 
  // --snip--  
}

VLAs are useful when you don’t know the number of elements in the
array until runtime. Unlike the alloca function, VLAs are freed when the



corresponding block ends, just like any other automatic variable. Listing 6-
7 replaces the call to alloca in the printerr function from Listing 6-6 with
a VLA. The change modifies just a single line of code (shown in bold).

void print_error(int errnum) { 
  size_t size = strerrorlen_s(errnum) + 1; 
  char msg[size];  
  if (strerror_s(msg, size, errnum) != 0) { 
    fputs(msg, stderr); 
  } 
  else { 
    fputs("unknown error", stderr); 
  } 
}

Listing 6-7: The print_error function rewritten to use a VLA

The main advantage of using VLAs instead of the alloca function is
that the syntax matches the programmer’s model of how arrays with
automatic storage duration work. VLAs work just like automatic variables
(because they are). Another advantage is that memory does not accumulate
while iterating (which can accidentally happen with alloca because
memory is released at the end of the function).

VLAs share some of the problems of the alloca function, in that they
can attempt to make allocations that exceed the bounds of the stack.
Unfortunately, there’s no portable way to determine the remaining stack
space to detect such an error. Also, the calculation of the array’s size could
wrap around when the size you provide is multiplied by the size of each
element. For those reasons, it’s important to validate the size of the array
before declaring it to avoid overly large or incorrectly sized allocations.
This can be especially important in functions that are called with untrusted
inputs or are called recursively, because a complete new set of automatic
variables for the functions (including these arrays) will be created for each
recursion. Untrusted inputs must be validated before being used for any
allocations, including from the heap.

You should determine whether you have sufficient stack space in the
worst-case scenario (maximum-sized allocations with deep recursions). On



some implementations, it’s also possible to pass a negative size to the VLA,
so make sure your size is represented as a size_t or other unsigned type.
See CERT C rule ARR32-C, <Ensure size arguments for variable-length
arrays are in a valid range,= for more information. VLAs reduce stack usage
when compared to using worst-case fixed-sized arrays.

The following file-scope declarations demonstrate another confusing
aspect of VLAs:

static const unsigned int num_elem = 12; 
double array[num_elem];

Is this code valid? If array is a VLA, then the code is invalid, because
the declaration is at file scope. If array is a constant-sized array, then the
code is valid. GCC currently rejects this example because array is a VLA.
However, C23 allows implementations to extend the definition of an integer
constant expression, which Clang does by making array a constant-sized
array.

We can rewrite these declarations to be portable using constexpr on all
C23-conforming implementations:

constexpr unsigned int num_elem = 12; 
double array[num_elem];

Finally, another interesting and unexpected behavior occurs when
calling sizeof on a VLA. The compiler usually performs the sizeof
operation at compile time. However, if the expression changes the size of
the array, it will be evaluated at runtime, including any side effects. The
same is true of typedef, as the program in Listing 6-8 shows.

#include <stdio.h> 
#include <stdlib.h> 
 
int main() { 
  size_t size = 12; 
  (void)(sizeof(size++)); 
  printf("%zu\n", size); // prints 12 



  (void)sizeof(int[size++]); 
  printf("%zu\n", size); // prints 13 
  typedef int foo[size++]; 
  printf("%zu\n", size); // prints 14 
  typeof(int[size++]) f; 
  printf("%zu\n", size); // prints 15 
  return EXIT_SUCCESS; 
}

Listing 6-8: Unexpected side effects

In this simple test program, we declare a variable size of type size_t
and initialize it to 12. The operand in sizeof(size++) isn’t evaluated
because the type of the operand is not a VLA. Consequently, the value of
size doesn’t change. We then call the sizeof operator with int[size++] as
the argument. Because this expression changes the size of the array, size is
incremented and is now equal to 13. The typedef similarly increments the
value of size to 14. Finally, we declare f to be of typeof(int[size++]),
which further increments size. Because these behaviors aren’t well
understood, avoid using expressions with side effects with the typeof
operator, sizeof operators, and typedefs to improve understandability.

Debugging Allocated Storage Problems
As noted earlier in this chapter, improper memory management can lead to
errors like leaking memory, reading from or writing to freed memory, and
freeing memory more than once. One way to avoid some of these problems
is to set pointers to a null pointer value after calling free, as we’ve already
discussed. Another strategy is to keep your dynamic memory management
as simple as possible. For example, you should allocate and free memory in
the same module, at the same level of abstraction, rather than freeing
memory in subroutines, which leads to confusion about if, when, and where
memory is freed.

A third option is to use dynamic analysis tools, such as
AddressSanitizer, Valgrind, or dmalloc to detect and report memory errors.
AddressSanitizer, as well as general approaches to debugging, testing, and
analysis, are discussed in Chapter 11, while dmalloc is covered in this



section. AddressSanitizer or Valgrind are effective tools and better choices
if they are available for your environment.

dmalloc
The debug memory allocation (dmalloc) library Gray Watson created
replaces malloc, realloc, calloc, free, and other memory management
features with routines that provide debugging facilities that you can
configure at runtime. The library has been tested on a variety of platforms.

Follow the installation directions provided at https://dmalloc.com to
configure, build, and install the library. Listing 6-9 contains a short program
that prints out usage information and exits (it would typically be part of a
longer program). This program has several intentional errors and
vulnerabilities.

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
#ifdef DMALLOC
#include "dmalloc.h"
#endif  
 
void usage(char *msg) { 
  fprintf(stderr, "%s", msg); 
  free(msg); 
  return; 
} 
 
int main(int argc, char *argv[]) { 
  if (argc != 3 && argc != 4) { 
    // the error message is less than 80 chars 
    char *errmsg = (char *)malloc(80); 
    sprintf( 
      errmsg, 
      "Sorry %s,\nUsage: caesar secret_file keys_file [outpu
t_file]\n", 
      getenv("USER") 
    ); 

https://dmalloc.com/


    usage(errmsg); 
    free(errmsg); 
    return EXIT_FAILURE; 
  } 
  // --snip--  
 
  return EXIT_SUCCESS; 
}

Listing 6-9: Catching a memory bug with dmalloc

Recent versions of glibc will detect at least one of the vulnerabilities
from this program:

Sorry (null), 
Usage: caesar secret_file keys_file [output_file] 
free(): double free detected in tcache 2 
Program terminated with signal: SIGSEGV

After repairing this error, include the lines shown in bold font to allow
dmalloc to report the file and line numbers of calls that cause problems.

I’ll show the output later, but we need to discuss a few things first. The
dmalloc distribution also comes with a command line utility. You can run
the following command to get further information on how to use this utility:

% dmalloc --usage

Before debugging your program with dmalloc, enter the following at
the command line:

% dmalloc -l logfile -i 100 low

This command sets the logfile name to logfile and instructs the library
to perform a check after 100 invocations, as the -i argument specifies. If
you specify a larger number as the -i argument, dmalloc will check the
heap less often, and your code will run faster; lower numbers are more
likely to catch memory problems. The third argument enables a low number



of debug features. Other options include runtime for minimal checking or
medium or high for more extensive heap verification.

After executing this command, we can compile the program by using
GCC as follows:

% gcc -DDMALLOC caesar.c -ocaesar -ldmalloc

When you run the program, you should see the following error:

% ./caesar  
Sorry student, 
Usage: caesar secret_file keys_file [output_file] 
debug-malloc library: dumping program, fatal error 
  Error: tried to free previously freed pointer (err 61) 
Aborted (core dumped)

And if you examine the logfile, you’ll find the following information:

% more logfile  
1571549757: 3: Dmalloc version '5.5.2' from 'https://dmallo
c.com/' 
1571549757: 3: flags = 0x4e48503, logfile 'logfile' 
1571549757: 3: interval = 100, addr = 0, seen # = 0, limit = 
0 
1571549757: 3: starting time = 1571549757 
1571549757: 3: process pid = 29531 
1571549757: 3:   error details: finding address in heap 
1571549757: 3:   pointer '0x7ff010812f88' from 'caesar.c:29' 
prev access 'unknown' 
1571549757: 3: ERROR: free: tried to free previously freed p
ointer (err 61)

These messages indicate that we’ve attempted to free the storage
referenced by errmsg twice, first in the usage function and then in main,
which constitutes a double-free vulnerability. Of course, this is just a single
example of the types of bugs that dmalloc can detect, and other defects
exist in the simple program we are testing.



Safety-Critical Systems
Systems with high safety requirements frequently ban the use of dynamic
memory because memory managers can have unpredictable behavior that
significantly impacts performance. Forcing all applications to live within a
fixed, preallocated area of memory can eliminate these problems and make
it easier to verify memory use. In the absence of recursion, alloca, and
VLAs (also prohibited in safety-critical systems), an upper bound on the
use of stack memory can be derived statically, making it possible to prove
that sufficient storage exists to execute the functionality of the application
for all possible inputs.

Both GCC and Clang have a -Wvla flag that warns if a VLA is used.
GCC also has a -Wvla-larger-than=byte-size flag that warns for
declarations of VLAs whose size is either unbounded or bounded by an
argument that allows the array size to exceed byte-size bytes.

EXERCISES

1.  Repair the use-after-free defect from Listing 6-4.
2.  Use dmalloc to perform additional testing of the program from Listing 6-9. Try

varying inputs to the program to identify other memory management defects.

Summary
In this chapter, you learned about working with memory that has allocated
storage duration and how this differs from objects of either automatic or
static storage duration. We described the heap and memory managers and
each of the standard memory management functions. We identified some
common causes of errors when using dynamic memory, such as leaks and
double-free vulnerabilities, and introduced some mitigations to help avoid
these problems.

We also covered some more specialized memory allocation topics such
as flexible array members, the alloca function, and VLAs. We concluded
the chapter with a discussion of debugging allocated storage problems by
using the dmalloc library.

In the next chapter, you’ll learn about characters and strings.



7
CHARACTERS AND STRINGS

Strings are such an important and
useful data type that nearly every

programming language implements them in some
form. Often used to represent text, strings constitute
most of the data exchanged between an end user and
a program, including text input fields, command line
arguments, environment variables, and console input.

In C, the string data type is modeled on the idea of a formal string
(Hopcroft and Ullman 1979):

Let Σ be a non-empty finite set of characters, called the alphabet. A string over Σ is any
finite sequence of characters from Σ. For example, if Σ = {0, 1}, then 01011 is a string over
Σ.

In this chapter, we’ll talk about the various character sets, including
ASCII and Unicode, that can be used to compose strings (the alphabet from
the formal definition). We’ll cover how strings are represented and
manipulated using the legacy functions from the C standard library, the
bounds-checked interfaces, and POSIX and Windows application
programming interfaces (APIs).

Characters



The characters that people use to communicate aren’t naturally understood
by digital systems, which operate on bits. To process characters, digital
systems use character encodings that assign unique integer values, referred
to as code points, to designate specific characters. As you’ll see, there are
multiple ways to encode the same notional character in your program.
Common standards used by C implementations for encoding characters
include Unicode, ASCII, Extended ASCII, ISO 8859-1 (Latin-1), Shift-JIS,
and EBCDIC.

NOTE
The C standard explicitly references Unicode and ASCII.

ASCII
The 7-bit American Standard Code for Information Interchange, better
known as 7-bit ASCII, specifies a set of 128 characters and their coded
representation (ANSI X3.4-1986). Characters from 0x00 to 0x1f and
character 0x7f are control characters, such as null, backspace, horizontal
tab, and DEL. Characters from 0x20 through 0x7e are all printable
characters such as letters, digits, and symbols.

We often refer to this standard with the updated name US-ASCII to
clarify that this system was developed in the United States and focuses on
the typographical symbols predominantly used in this country. Most
modern character encoding schemes are based on US-ASCII, although they
support many additional characters.

Characters in the 0x80 to 0xFF range are not defined by US-ASCII but
are part of the 8-bit character encoding known as Extended ASCII.
Numerous encodings for these ranges exist, and the actual mapping depends
on the code page. A code page is a character encoding that maps a set of
printable characters and control characters to unique numbers.

Unicode
Unicode has become the universal character encoding standard for
representing text in computer processing. It supports a much wider range of
characters than ASCII does; the current Unicode Standard (Unicode 2023)
encodes characters in the range U+0000 to U+10FFFF, which amounts to a



21-bit code space. An individual Unicode value is expressed as U+ followed
by four or more hexadecimal digits in printed text. The Unicode characters
U+0000 to U+007F are identical to those in US-ASCII, and the range U+0000
to U+00FF is identical to ISO 8859-1, consisting of characters from the Latin
script used throughout the Americas, Western Europe, Oceania, and much
of Africa.

Unicode organizes code points into planes, which are continuous
groups of 65,536 code points. There are 17 planes, identified by the
numbers 0 to 16. The most used characters, including those found in major,
older encoding standards, have been placed into the first plane (0x0000 to
0xFFFF), which is called the basic multilingual plane (BMP), or Plane 0.

Unicode also specifies several Unicode transformation formats (UTFs),
which are character encoding formats that assign each Unicode scalar value
to a unique code unit sequence. A Unicode scalar value is any Unicode
code point except high-surrogate and low-surrogate code points. (Surrogate
pairs are explained later in this section.) A code unit is the minimal bit
combination that can represent encoded text for processing or interchange.
The Unicode standard defines three UTFs to allow for code units of various
sizes:

UTF-8 Represents each character as a sequence of one to four 8-bit
code units
UTF-16 Represents each character as a sequence of one or two 16-bit
code units
UTF-32 Represents each character as a single 32-bit code unit

The UTF-8 encoding is the dominant encoding for POSIX operating
systems. It has the following desirable properties:

It encodes US-ASCII characters (U+0000 to U+007F) as single bytes in
the range 0x00 to 0x7F. This means that files and strings that contain
only 7-bit ASCII characters have the same encoding under both ASCII
and UTF-8.
Using a null byte to terminate a string (a topic we’ll discuss later)
works the same as for an ASCII string.



All currently defined Unicode code points can be encoded using
between 1 and 4 bytes.
Unicode allows character boundaries to be easily identified by
scanning for well-defined bit patterns in either direction.
On Windows, you can compile and link your programs with the Visual

C++ /utf8 flag to set the source and execution character sets as UTF-8.
You’ll also need to configure Windows to use Unicode UTF-8 for
worldwide language support.

UTF-16 is currently the dominant encoding for Windows operating
systems. Like UTF-8, UTF-16 is a variable-width encoding. As just
mentioned, the BMP consists of characters from U+0000 to U+FFFF.
Characters whose code points are greater than U+FFFF are called
supplementary characters. Supplementary characters are defined by a pair
of code units called surrogates. The first code unit is from the high-
surrogates range (U+D800 to U+DBFF), and the second code unit is from the
low-surrogates range (U+DC00 to U+DFFF).

Unlike other variable-length UTFs, UTF-32 is a fixed-length encoding.
The main advantage of UTF-32 is that the Unicode code points can be
directly indexed, meaning that you can find the nth code point in a sequence
of code points in constant time. In contrast, a variable-length encoding
requires accessing each code point to find the nth code point in a sequence.

Source and Execution Character Sets
No universally accepted character encoding existed when C was originally
standardized, so it was designed to work with a wide variety of character
representations. Instead of specifying a character encoding like Java, each C
implementation defines both a source character set in which source files
are written and an execution character set used for character and string
literals at compile time.

Both the source and execution character sets must contain encodings
for the uppercase and lowercase letters of the Latin alphabet; the 10 decimal
digits; 29 graphic characters; and the space, horizontal tab, vertical tab,
form feed, and newline characters. The execution character set also includes
alert, backspace, carriage return, and null characters.



Character conversion and classification functions (such as isdigit) are
evaluated at runtime, based on the locale-determined encoding in effect at
the time of the call. A program’s locale defines its code sets, date and time
formatting conventions, monetary conventions, decimal formatting
conventions, and sort order.

Data Types
C defines several data types to represent character data, some of which we
have already seen. C offers the unadorned char type to represent narrow
characters (those that can be represented in as few as 8 bits) and the
wchar_t type to represent wide characters (those that may require more
than 8 bits).

char
As I have already mentioned, char is an integer type, but each
implementation defines whether it’s signed or unsigned. In portable code,
you can assume neither.

Use the char type for character data (where signedness has no
meaning) and not for integer data (where signedness is important). You can
safely use the char type to represent 7-bit character encodings, such as US-
ASCII. For these encodings, the high-order bits are always 0, so you don’t
have to be concerned about sign extension when a value of type char is
converted to int and implementation defined as a signed type.

You can also use the char type to represent 8-bit character encodings,
such as Extended ASCII, ISO/IEC 8859, EBCDIC, and UTF-8. These 8-bit
character encodings can be problematic on implementations that define
char as an 8-bit signed type. For example, the following code prints the
string end of file when an EOF is detected:

char c = 'ÿ';  // extended character 
if (c == EOF) puts("end of file");

Assuming the implementation-defined execution character set is
ISO/IEC 8859-1, the Latin small letter y with diaeresis (ÿ) is defined to
have the representation 255 (0xFF). For implementations in which char is



defined as a signed type, c will be sign-extended to the width of signed
int, making the ÿ character indistinguishable from EOF because they have
the same representation.

A similar problem occurs when using the character classification
functions defined in <ctype.h>. These library functions accept a character
argument as an int or the value of the macro EOF. They return a nonzero
value if the character belongs to the set of characters that the function’s
description defines and zero if the value doesn’t belong to it. For example,
the isdigit function tests whether the character is a decimal-digit character
in the current locale. Any argument value that isn’t a valid character or EOF
results in undefined behavior.

To avoid undefined behavior when invoking these functions, cast c to
unsigned char before the integer promotions, as shown here:

char c = 'ÿ'; 
if (isdigit((unsigned char)c)) { 
  puts("c is a digit"); 
}

The value stored in c is zero-extended to the width of signed int,
eliminating the undefined behavior by ensuring that the resulting value is
representable as an unsigned char. Note that the initialization of c to 'ÿ'
may result in a warning or error.

int
Use the int type for data that could be either EOF (a negative value) or
character data interpreted as unsigned char and then converted to int.
Functions that read character data from a stream, such as fgetc, getc, and
getchar, return the int type. As we’ve seen, character-handling functions
from <ctype.h> also accept this type because they might be passed the
result of fgetc or related functions.

wchar_t
The wchar_t type is an integer type added to C to process the characters of
a large character set. It can be a signed or unsigned integer type, depending



on the implementation, and it has an implementation-defined inclusive
range of WCHAR_MIN to WCHAR_MAX. Most implementations define wchar_t to
be either a 16- or 32-bit unsigned integer type, but implementations that
don’t support localization may define wchar_t to have the same width as
char. C does not permit a variable-length encoding for wide strings (despite
UTF-16 being used this way in practice on Windows). Implementations can
conditionally define the macro __STDC_ISO_10646__ as an integer constant
of the form yyyymmL (for example, 199712L) to mean that the wchar_t type
is used to represent Unicode characters corresponding to the specified
version of the standard. Implementations that chose a 16-bit type for
wchar_t cannot meet the requirements for defining __STDC_ISO_10646__
for ISO/IEC 10646 editions more recent than Unicode 3.1. Consequently,
the requirement for defining __STDC_ISO_10646__ is either a wchar_t type
larger than 20 bits or a 16-bit wchar_t and a value for __STDC_ISO_10646__
earlier than 200103L. The wchar_t type can be used for encodings other
than Unicode, such as wide EBCDIC.

Writing portable code using wchar_t can be difficult because of the
range of implementation-defined behavior. For example, Windows uses a
16-bit unsigned integer type, while Linux typically uses a 32-bit unsigned
integer type. Code that calculates the lengths and sizes of wide-character
strings is error prone and must be performed with care.

char16_t and char32_t
Other languages (including Ada95, Java, TCL, Perl, Python, and C#) have
data types for Unicode characters. C11 introduced the 16- and 32-bit
character data types char16_t and char32_t, declared in <uchar.h>, to
provide data types for UTF-16 and UTF-32 encodings, respectively. C
doesn’t provide standard library functions for the new data types, except for
one set of character conversion functions. Without library functions, these
types have limited usefulness.

C defines two environment macros that indicate how characters
represented in these types are encoded. If the environment macro
__STDC_UTF_16__ has the value 1, values of type char16_t are UTF-16
encoded. If the environment macro __STDC_UTF_32__ has the value 1,
values of type char32_t are UTF-32 encoded. If the macro isn’t defined,



another implementation-defined encoding is used. Visual C++ does not
define these macros, suggesting that you can’t use char16_t on Windows
for UTF-16.

Character Constants
C allows you to specify character constants, also known as character
literals, which are sequences of one or more characters enclosed in single
quotes, such as 'ÿ'. Character constants allow you to specify character
values in the source code of your program. Table 7-1 shows the types of
character constants that can be specified in C.

Table 7-1: Types of Character Constants

Prefix Type
None unsigned char
u8'a' char8_t
L'a' The unsigned type corresponding to wchar_t
u'a' char16_t
U'a' char32_t

The value of a character constant containing more than one character
(for example, 'ab') is implementation defined. So is the value of a source
character that cannot be represented as a single code unit in the execution
character set. The earlier example of 'ÿ' is one such case. If the execution
character set is UTF-8, the value might be 0xC3BF to reflect the UTF-8
encoding of the two code units needed to represent the U+00FF code-point
value. C23 adds the u8 prefix for character literals to represent a UTF-8
encoding. A UTF-8, UTF-16, or UTF-32 character constant cannot contain
more than one character. The value must be representable with a single
UTF-8, UTF-16, or UTF-32 code unit, respectively. Because UTF-8
encodes US-ASCII characters (U+0000 to U+007F) as single bytes in the
range 0x00 to 0x7F, the u8 prefix can be used to create ASCII characters,
even on implementations where the locale-dependent character encoding is
some other encoding, such as EBCDIC.

Escape Sequences



The single quote (') and backslash (\) have special meanings, so they
cannot be directly represented as characters. Instead, to represent the single
quote, we use the escape sequence \', and to represent the backslash, we
use \\. We can represent other characters, such as the question mark (?),
and arbitrary integer values by using the escape sequences shown in Table
7-2.

Table 7-2: Escape Sequences

Character Escape sequence
Single quote \'
Double quote \"
Question mark \?
Backslash \\
Alert \a
Backspace \b
Form feed \f
Newline \n
Carriage return \r
Horizontal tab \t
Vertical tab \v
Octal character \<up to three octal digits>
Hexadecimal character \<x hexidecimal digits>

The following nongraphical characters are represented by escape
sequences consisting of the backslash followed by a lowercase letter: \a
(alert), \b (backspace), \f (form feed), \n (newline), \r (carriage return), \t
(horizontal tab), and \v (vertical tab).

Octal digits can be incorporated into an octal escape sequence to
construct a single character for a character constant or a single wide
character for a wide-character constant. The numerical value of the octal
integer specifies the value of the desired character or wide character. A
backslash followed by numbers is always interpreted as an octal value. For
example, you can represent the backspace character (8 decimal) as the octal
value \10 or, equivalently, \010.



You can also incorporate the hexadecimal digits that follow the \x to
construct a single character or wide character for a character constant. The
numerical value of the hexadecimal integer forms the value of the desired
character or wide character. For example, you can represent the backspace
character as the hexadecimal value \x8 or, equivalently, \x08.

Linux
Character encodings have evolved differently on various operating systems.
Before UTF-8 emerged, Linux typically relied on various language-specific
extensions of ASCII. The most popular of these were ISO 8859-1 and ISO
8859-2 in Europe, ISO 8859-7 in Greece, KOI-8/ISO 8859-5/CP1251 in
Russia, EUC and Shift-JIS in Japan, and BIG5 in Taiwan. Linux
distributors and application developers are phasing out these older legacy
encodings in favor of UTF-8 to represent localized text strings (Kuhn
1999).

GCC has several flags that allow you to configure character sets. Here
are a couple of flags you may find useful:

-fexec-charset=charset

The -fexec-charset flag sets the execution character set that’s used to
interpret string and character constants. The default is UTF-8. The charset
can be any encoding supported by the system’s iconv library routine
described later in this chapter. For example, setting -fexec-
charset=IBM1047 instructs GCC to interpret string constants hardcoded in
source code, such as printf format strings, according to EBCDIC code
page 1,047.

To select the wide-execution character set, used for wide-string and
character constants, use the -fwide-exec-charset flag:

-fwide-exec-charset=charset

The default is UTF-32 or UTF-16, corresponding to the width of
wchar_t.



The input character set defaults to your system locale (or UTF-8 if the
system locale is not configured). To overwrite the input character set used
for translating the character set of the input file to the source character set
used by GCC, use the -finput-charset flag:

-finput-charset=charset

Clang has -fexec-charset and -finput-charset but not -fwide-
exec-charset. Clang allows you to set charset to UTF-8 only and rejects
any attempt to set it to something else.

Windows
Support for character encodings in Windows has irregularly evolved.
Programs developed for Windows can handle character encodings using
either Unicode interfaces or interfaces that rely implicitly on locale-
dependent character encodings. For most modern applications, you should
choose the Unicode interfaces by default to ensure that the application
behaves as you expect when processing text. Generally, this code will have
better performance, as narrow strings passed to Windows library functions
are frequently converted to Unicode strings.

The main and wmain Entry Points
Visual C++ supports two entry points to your program: main, which allows
you to pass narrow-character arguments, and wmain, which allows you to
pass wide-character arguments. You declare formal parameters to wmain by
using a similar format to main, as shown in Table 7-3.

Table 7-3: Windows Program Entry Point Declarations

Narrow-character arguments Wide-character arguments
int main(); int wmain();
int main(int argc, char *argv[]); int wmain(int argc, wchar_t *argv[]);
int main(int argc, char *argv[],
char *envp[]);

int wmain(int argc, wchar_t *argv[],
wchar_t *envp[]);



For either entry point, the character encoding ultimately depends on the
calling process. However, by convention, the main function receives its
optional arguments and environment as pointers to text encoded with the
current Windows (also called ANSI) code page, while the wmain function
receives UTF-16-encoded text.

When you run a program from a shell such as the command prompt,
the shell’s command interpreter converts the arguments into the proper
encoding for that entry point. A Windows process starts with a UTF-16-
encoded command line. The startup code emitted by the compiler/linker
calls the CommandLineToArgvW function to convert the command line to the
argv form required to call main or passes the command line arguments
directly to the argv form required to call wmain. In a call to main, the results
are then transcoded to the current Windows code page, which can vary from
system to system. The ASCII character ? is substituted for characters that
lack representation in the current Windows code page.

The Windows console uses an original equipment manufacturer (OEM)
code page when writing data to the console. The actual encoding used
varies from system to system but is often different from the Windows code
page. For example, on a US English version of Windows, the Windows
code page may be Windows Latin 1, while the OEM code page may be
DOS Latin US. In general, writing textual data to stdout or stderr requires
the text to be converted to the OEM code page first, or requires setting the
console’s output code page to match the encoding of the text being written
out. Failure to do so may cause unexpected output to be printed to the
console. However, even if you carefully match the character encodings
between your program and the console, the console might still fail to
display the characters as expected because of other factors, such as the
current font selected for the console not having the appropriate glyphs
required to represent the characters. Additionally, the Windows console has
historically been unable to display characters outside of the Unicode BMP
because it stores only a 16-bit value for character data for each cell.

Narrow vs. Wide Characters
There are two versions of all system APIs in the Win32 software
development kit (SDK): a narrow Windows (ANSI) version with an A suffix



and a wide-character version with a W suffix:

int SomeFuncA(LPSTR SomeString); 
int SomeFuncW(LPWSTR SomeString);

Determine whether your application is going to use wide (UTF-16) or
narrow characters and then code accordingly. The best practice is to
explicitly call the narrow- or wide-string version of each function and pass
a string of the appropriate type:

SomeFuncW(L"String"); 
SomeFuncA("String");

Examples of actual functions from the Win32 SDK include the
MessageBoxA/MessageBoxW and CreateWindowExA/CreateWindowExW
functions.

Character Conversion
Although international text is increasingly encoded in Unicode, it’s still
encoded in language- or country-dependent character encodings, making it
necessary to convert between these encodings. Windows still operates in
locales with traditional, limited character encodings, such as IBM EBCDIC
and ISO 8859-1. Programs frequently need to convert between the Unicode
and traditional encoding schemes when performing input/output (I/O).

It’s not possible to convert all strings to each language- or country-
dependent character encoding. This is obvious when the encoding is US-
ASCII, which can’t represent characters requiring more than 7 bits of
storage. Latin-1 will never encode the character 愛 properly, and many kinds
of non-Japanese letters and words cannot be converted to Shift-JIS without
losing information.

C Standard Library
The C standard library provides a handful of functions to convert between
narrow-code units (char) and wide-code units (wchar_t). The mbtowc
(multibyte to wide character), wctomb (wide character to multibyte),



mbrtowc (multibyte restartable to wide character), and wcrtomb (wide-
character restartable to multibyte) functions convert one code unit at a time,
writing the result to an output object or buffer. The mbstowcs (multibyte
string to wide-character string), wcstombs (wide-character string to
multibyte string), mbsrtowcs (multibyte-string restartable to multibyte
string), and wcsrtombs (wide-character-string restartable to wide-character
string) functions convert a sequence of code units, writing the result to an
output buffer.

Conversion functions need to store data to properly process a sequence
of conversions between function calls. The nonrestartable forms store the
state internally and are consequently unsuitable for multithreaded
processing. The restartable versions have an additional parameter that’s a
pointer to an object of type mbstate_t that describes the current conversion
state of the associated multibyte character sequence. This object holds the
state data that makes it possible to restart the conversion where it left off
after another call to the function to perform an unrelated conversion. The
string versions are for performing bulk conversions of multiple code units
at once.

These functions have a few limitations. As discussed earlier, Windows
uses 16-bit code units for wchar_t. This can be a problem, because the C
standard requires an object of type wchar_t to be capable of representing
any character in the current locale, and a 16-bit code unit can be too small
to do so. C technically doesn’t allow you to use multiple objects of type
wchar_t to represent a single character. Consequently, the standard
conversion functions may result in a loss of data. On the other hand, most
POSIX implementations use 32-bit code units for wchar_t, allowing the use
of UTF-32. Because a single UTF-32 code unit can represent a whole code
point, conversions using standard functions cannot lose or truncate data.

The C standards committee added the following functions to C11 to
address the potential loss of data using standard conversion functions:

mbrtoc16, c16rtomb Converts between a sequence of narrow-code
units and one or more char16_t code units
mbrtoc32, c32rtomb Converts a sequence of narrow-code units to
one or more char32_t code units



The first two functions convert between locale-dependent character
encodings, represented as an array of char, and UTF-16 data stored in an
array of char16_t (assuming __STDC_UTF_16__ has the value 1). The
second two functions convert between the locale-dependent encodings and
UTF-32 data stored in an array of char32_t encoded data (assuming
__STDC_UTF_32__ has the value 1). The program shown in Listing 7-1 uses
the mbrtoc16 function to convert a UTF-8 input string to a UTF-16-encoded
string.

#include <locale.h> 
#include <uchar.h>
#include <stdio.h>
#include <wchar.h> 
 
static_assert(__STDC_UTF_16__ == 1, "UTF-16 is not supporte
d"); w 
 
size_t utf8_to_utf16(size_t utf8_size, const char utf8[utf8_
size], char16_t *utf16) { 
  size_t code, utf8_idx = 0, utf16_idx = 0; 
  mbstate_t state = {0}; 
  while ((code = x mbrtoc16(&utf16[utf16_idx], 
    &utf8[utf8_idx], utf8_size - utf8_idx, &state))) { 
    switch(code) { 
    case (size_t)-1: // invalid code unit sequence detected 
    case (size_t)-2: // code unit sequence missing elements 
      return 0; 
    case (size_t)-3: // high surrogate from a surrogate pair 
      utf16_idx++; 
      break; 
    default:         // one value written 
      utf16_idx++; 
      utf8_idx += code; 
    } 
  } 
  return utf16_idx + 1; 
} 
 
int main() { 



  setlocale(LC_ALL, "es_MX.utf8"); y 
  char utf8[] = u8"I ♥ �  s!"; 
  char16_t utf16[sizeof(utf8)]; // UTF-16 requires less code 
units than UTF-8 
  size_t output_size = utf8_to_utf16(sizeof(utf8), utf8, utf
16); 
  printf("%s\nConverted to %zu UTF-16 code units: [", utf8,
 output_size); 
  for (size_t x = 0; x < output_size; ++x) { 
    printf("%#x ", utf16[x]); 
  } 
  puts("]"); 
}

Listing 7-1: Converting a UTF-8 string to a char16_t string with the mbrtoc16 function

We call the setlocale function y to set the multibyte character
encoding to UTF-8 by passing an implementation-defined string. The static
assertion w ensures that the macro __STDC_UTF_16__ has the value 1.
(Refer to Chapter 11 for more information on static assertions.) As a result,
each call to the mbrtoc16 function converts a single code point from a UTF-
8 representation to a UTF-16 representation. If the resulting UTF-16 code
unit is a high surrogate (from a surrogate pair), the state object is updated
to indicate that the next call to mbrtoc16 will write out the low surrogate
without considering the input string.

There is no string version of the mbrtoc16 function, so we loop through
a UTF-8 input string iteratively, calling the mbrtoc16 function x to convert
it to a UTF-16 string. In the case of an encoding error, the mbrtoc16
function returns (size_t)-1, and if the code unit sequence is missing
elements, it returns (size_t)-2. If either situation occurs, the loop
terminates and the conversion ends.

A return value of (size_t)-3 means that the function has output the
high surrogate from a surrogate pair and then stored an indicator in the state
parameter. The indicator is used the next time the mbrtoc16 function is
called so it can output the low surrogate from a surrogate pair to form a
complete char16_t sequence that represents a single code point. All



restartable encoding conversion functions in the C standard behave
similarly with the state parameter.

If the function returns anything other than (size_t)-1, (size_t)-2, or
(size_t)-3, the utf16_idx index is incremented and the utf8_idx index is
increased by the number of code units read by the function, and the
conversion of the string continues.

libiconv
GNU libiconv is a commonly used cross-platform, open source library for
performing string-encoding conversions. It includes the iconv_open
function that allocates a conversion descriptor you can use to convert byte
sequences from one character encoding to another. The documentation for
this function (https://www.gnu.org/software/libiconv/) defines strings you
can use to identify a particular charset such as ASCII, ISO−8859−1,
SHIFT_JIS, or UTF−8 to denote the locale-dependent character encoding.

Win32 Conversion APIs
The Win32 SDK provides two functions for converting between wide- and
narrow-character strings: MultiByteToWideChar and
WideCharToMultiByte.

The MultiByteToWideChar function maps string data that’s encoded in
an arbitrary character code page to a UTF-16 string. Similarly, the
WideCharTo MultiByte function maps string data encoded in UTF-16 to an
arbitrary character code page. Because UTF-16 data cannot be represented
by all code pages, this function can specify a default character to use in
place of any UTF-16 character that cannot be converted.

Strings
C doesn’t support a primitive string type and likely never will. Instead, it
implements strings as arrays of characters. C has two types of strings:
narrow and wide.

A narrow string has the type array of char. It consists of a contiguous
sequence of characters that includes a terminating null character. A pointer
to a string references its initial character. The size of a string is the number
of bytes allocated to the backing array storage. The length of a string is the

https://www.gnu.org/software/libiconv/


number of code units (bytes) preceding the first null character. In Figure 7-
1, the size of the string is 7, and the length of the string is 5. Elements of the
backing array beyond the last element must not be accessed. Elements of
the array that haven’t been initialized must not be read.

Figure 7-1: A sample narrow string

A wide string has the type array of wchar_t. It’s a contiguous sequence
of wide characters that includes a terminating null wide character. A pointer
to a wide string references its initial wide character. The length of a wide
string is the number of code units preceding the first null wide character.
Figure 7-2 illustrates both the UTF-16BE (big-endian) and UTF-16LE
(little-endian) representations of hello. The size of the array is
implementation defined. This array is 14 bytes and assumes an
implementation that has an 8-bit byte and 16-bit wchar_t type. The length
of this string is 5, as the number of characters has not changed.

Figure 7-2: Sample UTF-16BE and UTF-16LE wide strings



Elements of the backing array beyond the last element must not be
accessed. Elements of the array that haven’t been initialized must not be
read.

String Literals
A character string literal is a string constant represented by a sequence of
zero or more multibyte characters enclosed in double quotes4for example,
"ABC". You can use various prefixes to declare string literals of different
character types:

char string literal type, such as "ABC"
wchar_t string literal type with L prefix, such as L"ABC"
UTF-8 string literal type with u8 prefix, such as u8"ABC"
char16_t string literal type with u prefix, such as u"ABC"
char32_t string literal type with U prefix, such as U"ABC"
The C standard doesn’t mandate that an implementation use ASCII for

string literals. However, you can use the u8 prefix to force a string literal to
be UTF-8 encoded, and if all the characters in the literal are ASCII
characters, the compiler will produce an ASCII string literal, even if the
implementation would normally encode string literals in another encoding
(for example, EBCDIC).

A string literal has a non-const array type. Modifying a string literal is
undefined behavior and prohibited by the CERT C rule STR30-C, <Do not
attempt to modify string literals.= This is because these string literals may
be stored in read-only memory, or multiple string literals may share the
same memory, resulting in multiple strings being altered if one string is
modified.

String literals often initialize array variables, which you can declare
with an explicit bound that matches the number of characters in the string
literal. Consider the following declaration:

#define S_INIT "abc" 
// --snip--  
const char s[4] = S_INIT;



The size of the array s is four, the exact size required to initialize the
array to the string literal, including the space for a trailing null byte.

If you add another character to the string literal used to initialize the
array, however, the meaning of the code changes substantially:

#define S_INIT "abcd" 
// --snip--  
const char s[4] = S_INIT;

The size of the array s remains four, although the size of the string
literal is now five. As a result, the array s is initialized to the character array
"abcd" with the trailing null byte omitted. By design, this syntax allows
you to initialize a character array and not a string. Therefore, it’s unlikely
that your compiler will diagnose this declaration as an error.

There is some risk that if the string literal changes during maintenance,
a string could unintentionally be changed to a character array with no
terminating null character, particularly when the string literal is defined
apart from the declaration, as in this example. If your intent is to always
initialize s to a string, you should omit the array bound. If you don’t specify
the bound of the array, the compiler will allocate sufficient space for the
entire string literal, including the terminating null character:

const char s[] = S_INIT;

This approach simplifies maintenance because the size of the array can
always be determined even if the size of the string literal changes.

The size of arrays declared using this syntax can be determined at
compile time by using the sizeof operator:

size_t size = sizeof(s);

If, instead, we declared this string as follows

const char *foo = S_INIT;



we would need to invoke the strlen function to get the length

size_t length = strlen(foo) + 1U;

which may incur a runtime cost and is different from the size.

String-Handling Functions
Several approaches can be used to manage strings in C, the first of which
are the C standard library functions. Narrow-string-handling functions are
defined in the <string.h> header file and wide-string-handling functions in
<wchar.h>. These legacy string-handling functions have been associated in
recent years with various security vulnerabilities. This is because they don’t
check the size of the array (frequently lacking the information needed to
perform such checks) and trust you to provide adequately sized character
arrays to hold the output. While it’s possible to write safe, robust, and error-
free code using these functions, they promote programming styles that can
result in buffer overflows if a result is too large for the provided array.
These functions aren’t inherently insecure but are prone to misuse and need
to be used carefully (or not at all).

As a result, C11 introduced the normative (but optional) Annex K
bounds-checking interfaces. This annex provides alternative library
functions intended to promote safer, more secure programming by requiring
you to provide the length of output buffers, for example, and validating that
these buffers are adequately sized to contain the output from these
functions. For instance, Annex K defines the strcpy_s, strcat_s,
strncpy_s, and strncat_s functions as close replacements for the C
standard library’s strcpy, strcat, strncpy, and strncat functions.

<string.h> and <wchar.h>
The C standard library includes well-known functions such as strcpy,
strncpy, strcat, strncat, strlen, and so forth, as well as the memcpy and
memmove functions that you can use to copy and move strings, respectively.
The C standard also provides a wide-character interface that operates on
objects of type wchar_t instead of char. (These function names are like the



narrow-string function names, except that str is replaced with wcs, and a w
is added in front of the memory function names.) Table 7-4 gives some
examples of narrow- and wide-character string functions. Refer to the C
standard (ISO/IEC 9899:2024) or man pages for more information on how
to use these functions.

Table 7-4: Narrow- and Wide-String Functions

Narrow (char)
Wide
(wchar_t) Description

strcpy wcscpy String copy
strncpy wcsncpy Truncated, zero-filled copy
memcpy wmemcpy Copies a specified number of nonoverlapping code units
memmove wmemmove Copies a specified number of (possibly overlapping) code

units
strcat wcscat Concatenates strings
strncat wcsncat Concatenates strings with truncation
strcmp wcscmp Compares strings
strncmp wcsncmp Compares truncated strings
strchr wcschr Locates a character in a string
strcspn wcscspn Computes the length of a complementary string segment
strdup wcsdup Copies string into allocated storage
strndup N/A Truncated copy into allocated storage
strpbrk wcspbrk Finds the first occurrence of a set of characters in a string
strrchr wcsrchr Finds the first occurrence of a character in a string
strspn wcsspn Computes the length of a string segment
strstr wcsstr Finds a substring
strtok wcstok String tokenizer (modifies the string being tokenized)
memchr wmemchr Finds a code unit in memory
strlen wcslen Computes string length
memset wmemset Fills memory with a specified code unit
memset_explicit N/A Like memset but always performed

These string-handling functions are considered efficient because they
leave memory management to the caller and can be used with both
statically and dynamically allocated storage. In the next couple of sections,
I’ll go into more detail on some of the more commonly used functions.



NOTE
The wcsdup function listed in Table 7-4 is not a C standard library function
but is defined by POSIX.

Size and Length
As mentioned earlier in this chapter, strings have both a size (which is the
number of bytes allocated to the backing array storage) and a length. You
can determine the size of a statically allocated backing array at compile
time by using the sizeof operator:

char str[100] = "Here comes the sun"; 
size_t str_size = sizeof(str); // str_size is 100

You can compute the length of a string by using the strlen function:

char str[100] = "Here comes the sun"; 
size_t str_len = strlen(str); // str_len is 18

The wcslen function computes the length of a wide string measured by
the number of code units preceding the terminating null wide character:

wchar_t str[100] = L"Here comes the sun"; 
size_t str_len = wcslen(str); // str_len is 18

The length is a count of something, but what exactly is being counted
can be unclear. Here are some of the things that could be counted when
taking the length of a string:

Bytes Useful when allocating storage.
Code units Number of individual code units used to represent the
string. This length depends on encoding and can also be used to
allocate memory.
Code points Code points (characters) can take up multiple code
units. This value is not useful when allocating storage.



Extended grapheme cluster A group of one or more Unicode scalar
values that approximates a single user-perceived character. Many
individual characters, such as é, 김, and , may be constructed from
multiple Unicode scalar values. Unicode’s boundary algorithms
combine these code points into extended grapheme clusters.

The strlen and wcslen functions count code units. For the strlen
function, this corresponds to the number of bytes. Determining the amount
of storage required by using the wcslen function is more complicated
because the size of the wchar_t type is implementation defined. Listing 7-2
contains examples of dynamically allocating storage for both narrow and
wide strings.

// narrow strings 
char *str1 = "Here comes the sun"; 
char *str2 = malloc(strlen(str1) + 1); 
 
// wide strings 
wchar_t *wstr1 = L"Here comes the sun"; 
wchar_t *wstr2 = malloc((wcslen(wstr1) + 1) * sizeof(*wstr
1));

Listing 7-2: Dynamically allocating storage for narrow- and wide-string functions

For narrow strings, we can determine the size of the string by adding 1
to the return value of the strlen function to account for the terminating null
character. For wide strings, we can determine the size of the string by
adding 1 to the return value of the wcslen function to account for the
terminating null wide character and then multiply the sum by the size of the
wchar_t type. Because str1 and wstr1 are declared as pointers (and not
arrays), it’s not possible to use the sizeof operator to obtain their sizes.

Code point or extended grapheme cluster counts cannot be used for
storage allocation because they consist of an unpredictable number of code
units. (For an interesting exposition on string length, see <It’s Not Wrong
that " ".length == 7= at https://hsivonen.fi/string-length/.) Extended
grapheme clusters are used to determine where to truncate a string, for

https://hsivonen.fi/string-length/


example, because of a lack of storage. Truncation at extended grapheme
cluster boundaries avoids slicing user-perceived characters.

Calling the strlen function can be an expensive operation because it
needs to traverse the length of the array looking for a null character. The
following is a straightforward implementation of the strlen function:

size_t strlen(const char * str) { 
  const char *s; 
  for (s = str; *s; ++s) {} 
  return s - str; 
}

The strlen function has no way of knowing the size of the object
referenced by str. If you call strlen with an invalid string that lacks a null
character before the bound, the function will access the array beyond its
end, resulting in undefined behavior. Passing a null pointer to strlen will
also result in undefined behavior (a null-pointer dereference). This
implementation of the strlen function also has undefined behavior for
strings larger than PTRDIFF_MAX. You should refrain from creating such
objects (in which case this implementation is fine).

strcpy
Calculating the size of dynamically allocated memory is not always easy.
One approach is to store the size when allocating and reuse this value later.
The code snippet in Listing 7-3 uses the strcpy function to make a copy of
str by determining the length and then adding 1 to accommodate the
terminating null character.

char str[100] = "Here comes the sun"; 
size_t str_size = strlen(str) + 1; 
char *dest = (char *)malloc(str_size); 
if (dest) { 
  strcpy(dest, str); 
} 
else { 
  /* handle error */ 
}



Listing 7-3: Copying a string

We can then use the value stored in str_size to dynamically allocate
the storage for the copy. The strcpy function copies the string from the
source string (str) to the destination string (dest), including the
terminating null character. The strcpy function returns the address of the
beginning of the destination string, which is ignored in this example.

The following is a simple implementation of the strcpy function:

char *strcpy(char *dest, const char *src) { 
  char *save = dest; 
  while ((*dest++ = *src++)); 
  return save; 
}

This code saves a pointer to the destination string in save (to use as the
return value) before copying all the bytes from the source to the destination
array. The while loop terminates when the first null byte is copied. Because
strcpy doesn’t know the length of the source string or the size of the
destination array, it assumes that all the function’s arguments have been
validated by the caller, allowing the implementation to simply copy each
byte from the source string to the destination array without performing any
checks.

Argument Checking
Argument checking can be performed by either the calling function or the
called function. Redundant argument testing by both the caller and the
callee is a largely discredited style of defensive programming. The usual
discipline is to require validation on only one side of each interface.

The most time-efficient approach is for the caller to perform the check,
because the caller should have a better understanding of the program state.
In Listing 7-3, we can see that the arguments to strcpy are valid without
introducing further redundant tests: the variable str references a statically
allocated array that was properly initialized in the declaration, and the dest
parameter is a valid non3null pointer referencing dynamically allocated



storage of sufficient size to hold a copy of str, including the null character.
Therefore, the call to strcpy is safe, and the copy can be performed in a
time-efficient manner. This approach to argument checking is commonly
used by C standard library functions because it adheres to the <spirit of C,=
in that it’s optimally efficient and trusts the programmer (to pass valid
arguments).

The safer, more secure approach is for the callee to check the
arguments. This approach is less error-prone because the library function
implementer validates the arguments, so we no longer need to trust the
programmer to pass valid ones. The function implementer is usually in a
better position to understand which arguments need to be validated. If the
input validation code is defective, the repair needs to be made in only one
place. All the code to validate the arguments is in one place, so this
approach can be more space efficient. However, because these tests run
even when unnecessary, they can also be less time efficient. Frequently, the
caller of these functions will place checks before suspect calls that may or
may not already perform similar checks. This approach would also impose
additional error handling on callees that don’t currently return error
indications but would presumably need to if they validated arguments. For
strings, the called function can’t always determine whether the argument is
a valid null-terminated string or points to sufficient space to make a copy.

The lesson here is don’t assume that the C standard library functions
validate arguments unless the standard explicitly requires them to.

memcpy
The memcpy function copies size characters from the object referenced by
src into the object referenced by dest:

void *memcpy(void * restrict dest, const void * restrict sr
c, size_t size);

You can use the memcpy function instead of strcpy to copy strings
when the size of the destination array is larger than or equal to the size
argument to memcpy, the source array contains a null character before the
bound, and the string length is less than size - 1 (so that the resulting



string will be properly null terminated). The best advice is to use strcpy
when copying a string and memcpy when copying only raw, untyped
memory. Also remember that the assignment (=) operator can efficiently
copy objects in many cases.

memccpy
Most of the C standard library’s string-handling functions return a pointer to
the beginning of the string passed as an argument so that you can nest calls
to string functions. For example, the following sequence of nested function
calls constructs a full name using a Western naming order by copying, then
concatenating, the constituent parts:

strcat(strcat(strcat(strcat(strcpy(name, first), " "), middl
e), " "), last);

However, piecing together the array name from its constituent
substrings requires name to be scanned many more times than necessary; it
would have been more useful for the string-handling functions to return
pointers to the end of the modified string to eliminate this need for
rescanning. C23 introduced the memccpy function with a better interface
design. POSIX environments should already provide this, but you may need
to enable its declaration as follows:

#define _XOPEN_SOURCE 700 
#include <string.h>

The memccpy function has the following signature:

void *memccpy(void * restrict s1, const void * restrict s2,
 int c, size_t n);

Like the memchr function, memccpy scans the source sequence for the
first occurrence of a character specified by one of its arguments. The
character can have any value, including zero. It copies (at most) the
specified number of characters from the source to the destination, without



writing beyond the end of the destination buffer. Finally, it returns a pointer
just past the copy of the specified character if it exists.

Listing 7-4 reimplements the preceding sequence of nested string-
handling function calls using the memccpy function. This implementation is
more performant and secure.

#include <stdarg.h> 
#include <string.h> 
#include <stdio.h> 
#include <stdint.h> 
 
constexpr size_t name_size = 18U; 
 
char *vstrcat(char *buff, size_t buff_length, ...) { 
  char *ret = buff; 
  va_list list; 
  va_start(list, buff_length); 
  const char *part = nullptr; 
  size_t offset = 0; 
  while ((part = va_arg(list, const char *))) { 
  w buff = (char *)memccpy(buff, part, '\0', buff_length - o
ffset); 
    if (buff == nullptr) { 
      ret[0] = '\0'; 
      break; 
    } 
  x offset = --buff - ret; 
  } 
  va_end(list); 
  return ret; 
} 
 
int main() { 
  char name[name_size] = ""; 
  char first[] = "Robert"; 
  char middle[] = "C."; 
  char last[] = "Seacord"; 
 
  puts(vstrcat( 



    name, sizeof(name), first, " ", 
    middle, " ", last, nullptr 
  )); 
}

Listing 7-4: String concatenation with memccpy

Listing 7-4 defines the variadic function vstrcat that accepts a buffer
(buff) and buffer length (buff_length) as fixed arguments and a variable
list of string arguments. A null pointer is used as the sentinel value to
indicate the end of the variable-length argument list. The memccpy function
is invoked w to concatenate each string to the buffer. As previously noted,
memccpy returns a pointer just past the copy of the specified character,
which in this case is the null termination character '\0'.

Instead of nesting calls, we call memccpy for each string argument
passed to vstrcat and store the return value in buff. This allows you to
concatenate directly to the end of the string instead of having to find the
null termination character each time, making this solution more performant.

If buff is a null pointer, we couldn’t copy the entire string. Instead of
returning a partial name in this case, we return an empty string. This empty
string can be printed or treated as an error condition.

Because the memccpy function returns a pointer to the character after
the copy of the null byte, we decrement buff using the prefix decrement
operator and then subtract the value stored in ret to obtain a new offset
x. The size argument to the memccpy function (which it uses to prevent
buffer overflow) is calculated by subtracting offset from buff_length.
This is a more secure approach than nested function calls, which are always
suspect because there is no way to check for an error.

memset, memset_s, and memset_explicit
The memset function copies the value of (unsigned char)c into each of the
first n characters of the object pointed to by s:

void *memset(void *s, int c, size_t n);



The memset function is frequently used to clear memory4for example,
to initialize memory allocated by malloc to zero. However, in the following
example, it’s used incorrectly:

void check_password() { 
  char pwd[64]; 
  if (get_password(pwd, sizeof(pwd))) { 
    /* check password */ 
  } 
  memset(pwd, 0, sizeof(pwd)); 
}

One problem with the get_password function is that it uses the memset
function to clear an automatic variable after it has been read for the last
time. This is being done for security reasons to make sure that the sensitive
information stored here is inaccessible. However, the compiler doesn’t
know that and may perform a <dead store= optimization. This is when a
compiler notices a write is not followed by a read, and just like this book,
there is no sense in writing it if no one is going to read it. Consequently, the
call to memset in the get_password function is likely to be removed by the
compiler.

This problem was meant to be addressed in C11 by the memset_s
function from Annex K bounds-checking interfaces (discussed in the next
section). Unfortunately, this function has not been implemented by any
compiler mentioned in this book.

To solve this problem again, C23 introduced the memset_explicit
function for making sensitive information inaccessible. In contrast to the
memset function, the intention is that the memory store is always performed
(that is, never elided), regardless of optimizations.

gets
The gets function is a flawed input function that accepts input without
providing any way to specify the size of the destination array. For that
reason, it cannot prevent buffer overflows. As a result, the gets function
was deprecated in C99 and eliminated from C11. However, it has been
around for many years, and most libraries still provide an implementation



for backward compatibility, so you may see it in the wild. You should never
use this function, and you should replace any use of the gets function you
find in any code you’re maintaining.

Because the gets function is so bad, we’ll spend some time examining
why it’s so awful. The function shown in Listing 7-5 prompts the user to
enter either y or n to indicate whether they’d like to continue.

#include <stdio.h> 
#include <stdlib.h> 
#include <ctypes.h> 
 
void get_y_or_n(void) { 
  char response[8]; 
  puts("Continue? [y] n: "); 
  gets(response); 
  if (tolower(response[0]) == 'n') exit(EXIT_SUCCESS); 
  return; 
}

Listing 7-5: Misuse of the obsolete gets function

This function has undefined behavior if more than eight characters are
entered at the prompt. This undefined behavior occurs because the gets
function has no way of knowing how large the destination array is and will
write beyond the end of the array object.

Listing 7-6 shows a simplified implementation of the gets function. As
you can see, the caller of this function has no way to limit the number of
characters read.

char *gets(char *dest) { 
  int c; 
  char *p = dest; 
  while ((c = getchar()) != EOF && c != '\n') { 
    *p++ = c; 
  } 
  *p = '\0'; 
  return dest; 
}



Listing 7-6: A gets function implementation

The gets function iterates reading a character at a time. The loop
terminates if either an EOF or newline '\n' character is read. Otherwise, the
function will continue to write to the dest array without concern for the
boundaries of the object.

Listing 7-7 shows the get_y_or_n function from Listing 7-5 with the
gets function inlined.

#include <stdio.h> 
#include <stdlib.h> 
void get_y_or_n(void) { 
  char response[8]; 
  puts("Continue? [y] n: "); 
  int c; 
  char *p = response; 
w while ((c = getchar()) != EOF && c != '\n') { 
    *p++ = c; 
  } 
  *p = '\0'; 
  if (response[0] == 'n') 
    exit(0); 
}

Listing 7-7: A poorly written while loop

The size of the destination array is now available, but the while loop w
doesn’t use this information. You should ensure that reaching the bound of
the array is a loop termination condition when reading or writing to an array
in a loop such as this one.

Annex K Bounds-Checking Interfaces
C11 introduced the Annex K bounds-checking interfaces with alternative
functions that verify that output buffers are large enough for the intended
result and return a failure indicator if they aren’t. These functions are
designed to prevent writing data past the end of an array and to null-
terminate all string results. These string-handling functions leave memory



management to the caller, and memory can be statically or dynamically
allocated before the functions are invoked.

Microsoft created the C11 Annex K functions to help retrofit its legacy
code base in response to numerous, well-publicized security incidents in the
1990s. These functions were then proposed to the C standards committee
for standardization, published as ISO/IEC TR 24731-1 (ISO/IEC TR
24731-1:2007) and then later incorporated into C11 as an optional annex.
Despite the improved usability and security provided by these functions,
they aren’t yet widely implemented at the time of writing.

gets_s
The Annex K bounds-checking interface has a gets_s function we can use
to eliminate the undefined behavior caused by the call to gets in Listing 7-
5, as shown in Listing 7-8.

#define __STDC_WANT_LIB_EXT1__ 1 
#include <stdio.h> 
#include <stdlib.h> 
#include <ctype.h> 
 
void get_y_or_n(void) { 
  char response[8]; 
  puts("Continue? [y] n: "); 
  gets_s(response, sizeof(response)); 
  if (tolower(response[0]) == 'n') { 
    exit(EXIT_SUCCESS); 
  } 
}

Listing 7-8: Use of the gets_s function

The two functions are similar, except that the gets_s function checks
the array bounds. The default behavior when the maximum number of
characters input is exceeded is implementation defined, but typically the
abort function is called. You can change this behavior via the
set_constraint_handler_s function, which I’ll explain further in
<Runtime Constraints= on page 163.



You need to define __STDC_WANT_LIB_EXT1__ as a macro that expands
to the integer constant 1 before including the header files that define the
bounds-checking interfaces to allow them to be used in your program.
Unlike the gets function, the gets_s function takes a size argument.
Consequently, the revised function calculates the size of the destination
array by using the sizeof operator and passes this value as an argument to
the gets_s function. The implementation-defined behavior is the result of
the runtime-constraint violation.

strcpy_s
The strcpy_s function is a close replacement for the strcpy function
defined in <string.h>. The strcpy_s function copies characters from a
source string to a destination character array up to and including the
terminating null character. Here’s the strcpy_s signature:

errno_t strcpy_s( 
  char * restrict s1, rsize_t s1max, const char * restrict s
2 
);

The strcpy_s function has an extra argument of type rsize_t that
specifies the maximum length of the destination buffer. The rsize_t type is
like the size_t type except that functions that accept an argument of this
type test to make sure that the value is not greater than RSIZE_MAX. The
strcpy_s function succeeds only when it can fully copy the source string to
the destination without overflowing the destination buffer. The strcpy_s
function verifies that the following runtime constraints aren’t violated:

Neither s1 nor s2 are null pointers.
s1max is not greater than RSIZE_MAX.
s1max does not equal zero.
s1max is greater than strnlen_s(s2, s1max).
Copying does not take place between overlapping objects.
To perform the string copy in a single pass, a strcpy_s function

implementation retrieves a character (or characters) from the source string



and copies it to the destination array until it has copied the entire string or
the destination array is full. If it can’t copy the entire string and s1max is not
zero, the strcpy_s function sets the first byte of the destination array to the
null character, creating an empty string.

Runtime Constraints
Runtime constraints are violations of a function’s runtime requirements that
the function will detect and diagnose by a call to a handler. If this handler
returns, the functions will return a failure indicator to the caller.

The bounds-checking interfaces enforce runtime constraints by
invoking a runtime-constraint handler, which may simply return.
Alternatively, the runtime-constraint handler might print a message to
stderr and/or abort the program. You can control which handler function is
called via the set_constraint_handler_s function and make the handler
simply return as follows:

int main(void) { 
  constraint_handler_t oconstraint = 
    set_constraint_handler_s(ignore_handler_s); 
  get_y_or_n(); 
}

If the handler returns, the function that identified the runtime-constraint
violation and invoked the handler indicates a failure to its caller by using its
return value.

The bounds-checking interface functions typically check the conditions
either immediately upon entry or as they perform their tasks and gather
sufficient information to determine whether a runtime constraint has been
violated. The runtime constraints of the bounds-checking interfaces are
conditions that would otherwise be undefined behavior for C standard
library functions.

Implementations have a default constraint handler that they invoke if
no calls to the set_constraint_handler_s function have been made. The
default handler’s behavior may cause the program to exit or abort, but
implementations are encouraged to provide reasonable behavior by default.
This allows, for example, compilers customarily used to implement safety-



critical systems to not abort by default. You must check the return value of
calls to functions that can return and not simply assume their results are
valid. Implementation-defined behavior can be eliminated by invoking the
set_constraint_handler_s function before invoking any bounds-checking
interfaces or using any mechanism that invokes a runtime-constraint
handler.

Annex K provides the abort_handler_s and ignore_handler_s
functions, which represent two common strategies for handling errors. The
C implementation’s default handler need not be either of these handlers.

POSIX
POSIX also defines several string-handling functions, such as strdup and
strndup (IEEE Std 1003.1:2018), that provide another set of string-related
APIs for POSIX-compliant platforms such as GNU/Linux and Unix (IEEE
Std 1003.1:2018). Both functions were adopted into the C standard library
by C23.

These replacement functions use dynamically allocated memory to
ensure that buffer overflows don’t occur, and they implement a callee
allocates, caller frees model. Each function ensures that enough memory is
available (except when a call to malloc fails). The strdup function, for
example, returns a pointer to a new string that contains a duplicate of the
argument. The returned pointer should be passed to the C standard free
function to reclaim the storage when it’s no longer needed.

Listing 7-9 contains a code snippet that uses the strdup function to
make a copy of the string returned by the getenv function.

const char *temp = getenv("TMP"); 
if (temp != nullptr) { 
  char *tmpvar = strdup(temp); 
  if (tmpvar != nullptr) { 
    printf("TMP = %s.\n", tmpvar); 
    free(tmpvar); 
  } 
}

Listing 7-9: Copying a string using the strdup function



The C standard library getenv function searches an environment list,
provided by the host environment, for a string that matches the string
referenced by a specified name (TMP in this example). Strings in this
environment list are referred to as environment variables and provide an
additional mechanism for communicating strings to a process. These strings
don’t have a well-defined encoding but typically match the system encoding
used for command line arguments, stdin, and stdout.

The returned string (the value of the variable) may be overwritten by a
subsequent call to the getenv function, so it’s a good idea to retrieve any
environmental variable you need before creating any threads to eliminate
the possibility of a race condition. If later use is anticipated, you should
copy the string so the copy can be safely referenced as needed, as illustrated
by the idiomatic example shown in Listing 7-9.

The strndup function is equivalent to strdup, except that strndup
copies, at most, n + 1 bytes into the newly allocated memory (while strdup
copies the entire string) and ensures that the newly created string is always
properly terminated.

These POSIX functions can help prevent buffer overflows by
automatically allocating storage for the resulting strings, but this requires
introducing additional calls to free when this storage is no longer needed.
This means matching a call to free to each call to strdup or strndup, for
example, which can be confusing to programmers who are more familiar
with the behavior of the string functions defined by <string.h>.

Microsoft
Visual C++ provides all the string-handling functions defined by the C
standard library up to C99 but doesn’t implement the full POSIX
specification. However, sometimes the Microsoft implementation of these
APIs differs from the requirements of a given standard or has a function
name that conflicts with an identifier reservation in another standard. In
these circumstances, Microsoft will often prefix the function name with an
underscore. For instance, the POSIX function strdup isn’t available on
Windows, but the function _strdup is available and behaves the same way.

NOTE



For more information on Microsoft’s POSIX support, see https://docs
.microsoft.com/en-us/cpp/c-runtime-library/compatibility.

Visual C++ also supports many of the safe string-handling functions
from Annex K and will diagnose the use of an unsafe variant unless you
define _CRT_SECURE_NO_WARNINGS prior to including the header file that
declares the function. Unfortunately, Visual C++ does not conform to
Annex K of the C standard, because Microsoft chose not to update its
implementation based on changes to the APIs that occurred during the
standardization process. For example, Visual C++ doesn’t provide the
set_constraint_handler_s function but instead retains an older function
with similar behavior but an incompatible signature:

_invalid_parameter_handler _set_invalid_parameter_handler(_i
nvalid_parameter_handler)

Microsoft also doesn’t define the abort_handler_s and
ignore_handler_s functions, the memset_s function (which was not
defined by ISO/IEC TR 24731-1), or the RSIZE_MAX macro. Visual C++ also
doesn’t treat overlapping source and destination sequences as runtime-
constraint violations and instead has undefined behavior in such cases.
<Bounds-Checking Interfaces: Field Experience and Future Directions=
(Seacord 2019) provides additional information on all aspects of the
bounds-checked interfaces, including Microsoft’s implementation.

Summary
In this chapter, you learned about character encodings, such as ASCII and
Unicode. You also learned about the various data types used to represent
characters in C language programs, such as char, int, wchar_t, and so
forth. We then covered character conversion libraries, including C standard
library functions, libiconv, and Windows APIs.

In addition to characters, you also learned about strings and the legacy
functions and bounds-checked interfaces defined in the C standard library
for handling strings, as well as some POSIX- and Microsoft-specific
functions.

https://docs.microsoft.com/en-us/cpp/c-runtime-library/compatibility


Manipulating character and string data is a common programming task
in C as well as a frequent source of errors. We outlined various approaches
to handling these data types; you should determine which approach is best
suited to your application and apply that approach consistently.

In the next chapter, you’ll learn about I/O, which, among other things,
can be used to read and write characters and strings.



8
INPUT/OUTPUT

This chapter will teach you how to
perform input/output (I/O) operations to

read data from, or write data to, terminals and
filesystems. Information can enter a program via
command line arguments or the environment and exit
it via its return status. However, most information
typically enters or exits a program through I/O
operations. We’ll cover techniques that use C
standard streams and POSIX file descriptors. We’ll
start by discussing C standard text and binary
streams. We’ll then cover different ways of opening
and closing files using C standard library and POSIX
functions.

Next, we’ll discuss reading and writing characters and lines, reading
and writing formatted text, and reading from and writing to binary streams.
We’ll also cover stream buffering, stream orientation, and file positioning.

Many other devices and I/O interfaces (such as ioctl) are available but
are beyond the scope of this book.



Standard I/O Streams
C provides streams to communicate with files stored on supported,
structured storage devices and terminals. A stream is a uniform abstraction
for communicating with files and devices that consume or produce
sequential data such as sockets, keyboards, Universal Serial Bus (USB)
ports, and printers.

C uses the opaque FILE data type to represent streams. A FILE object
holds the internal state information for the connection to the associated file,
including the file position indicator, buffering information, an error
indicator, and an end-of-file indicator. You should never allocate a FILE
object yourself. C standard library functions operate on objects of type FILE
* (that is, a pointer to the FILE type). As a result, streams are frequently
referred to as file pointers.

C provides an extensive application programming interface (API),
found in <stdio.h>, for operating on streams; we’ll explore this API later
in this chapter. However, because these I/O functions need to work with a
wide variety of devices and filesystems across many platforms, they’re
highly abstracted, which makes them unsuitable for anything beyond the
simplest applications.

For example, the C standard has no concept of directories, because it
must be able to work with nonhierarchical filesystems. The C standard
makes few references to filesystem-specific details, like file permissions or
locking. However, function specifications frequently state that certain
behaviors happen <to the extent that the underlying system supports it,=
meaning that they will occur only if they’re supported by your
implementation.

As a result, you’ll generally need to use the less portable APIs provided
by POSIX, Windows, and other platforms to perform I/O in real-world
applications. Frequently, applications will define their own APIs that, in
turn, rely on platform-specific APIs to provide safe, secure, and portable
I/O operations.

Error and End-of-File Indicators
As just mentioned, a FILE object holds the internal state information for the
connection to the associated file, including an error indicator that records



whether a read/write error has occurred and an end-of-file indicator that
records whether the end of the file has been reached. When opened, the
error and end-of-file indicators for the stream are cleared. The following C
standard library functions all set the error indicator for the stream when an
error occurs: the byte input functions (getc, fgetc, and getchar), byte
output functions (putc, fputc, and putchar), fflush, fseek, and fsetpos.
Input functions such as fgetc and getchar will also set the end-of-file
indicator for the stream if the stream is at end-of-file. Certain functions such
as rewind and freopen clear the error indicator for the stream, and
functions such as rewind, freopen, ungetc, fseek, and fsetpos clear the
end-of-file indicator for the stream. The wide character I/O functions
behave similarly.

These indicators may be tested and cleared explicitly:
The ferror function tests the error indicator for the specified stream
and returns nonzero if and only if the error indicator is set for the
specified stream.
The feof function tests the end-of-file indicator for the specified
stream and returns nonzero if and only if the end-of-file indicator is set
for the specified stream.
The clearerr function clears the end-of-file and error indicators for
the specified stream.
The following short program illustrates the interaction between these

functions and the two indicators:

#include <stdio.h> 
#include <assert.h> 
 
int main() { 
  FILE* tmp = tmpfile(); 
  fputs("Effective C\n", tmp); 
  rewind(tmp); 
  for (int c; (c = fgetc(tmp)) != EOF; putchar(c)) {} 
  printf("%s", "End-of-file indicator "); 
  puts(feof(tmp) ? "set" : "clear"); 
  printf("%s", "Error indicator "); 



  puts(ferror(tmp) ? "set" : "clear"); 
  clearerr(tmp); // clear both indicators 
  printf("%s", "End-of-file indicator "); 
  puts(feof(tmp) ? "set" : "clear"); 
}

This program produces the following output on stdout:

Effective C 
End-of-file indicator set 
Error indicator clear 
End-of-file indicator clear

The loop terminates by end-of-file, after which the end-of-file indicator
is set. Both indicators are cleared by the call to the clearerr function.

Stream Buffering
Buffering is the process of temporarily storing data in memory that’s
passing between a process and a device or file. Buffering improves the
throughput of I/O operations, which often have high latencies per individual
I/O operation with the system. Similarly, when a program requests to write
to block-oriented devices like disks, the driver can cache the data in
memory until it has accumulated enough data for one or more device
blocks, at which point it writes the data all at once to the disk, improving
throughput. This strategy is called flushing the output buffer.

A stream can be in one of three states:

Unbuffered Characters are intended to appear from the source or at
the destination as soon as possible. Streams where more than one
program may be accessing the data concurrently are often best
unbuffered. Streams used for error reporting or logging might be
unbuffered.
Fully buffered Characters are intended to be transmitted to or from
the host environment as a block when a buffer is filled. Streams used
for file I/O are normally fully buffered to optimize throughput.



Line buffered Characters are intended to be transmitted to or from
the host environment as a block when a newline character is
encountered. Streams connected to interactive devices such as
terminals are line-buffered when you open them.

In the next section, we’ll introduce predefined streams and describe
how they’re buffered.

Predefined Streams
A C program has three predefined text streams open and available for use
on startup. These predefined streams are declared in <stdio.h>:

extern FILE * stdin;  // standard input stream 
extern FILE * stdout; // standard output stream 
extern FILE * stderr; // standard error stream

The standard output stream (stdout) is the conventional output
destination from the program. This stream is usually associated with the
terminal that initiated the program but can be redirected to a file or other
stream. You can enter the following commands in a Linux or Unix shell:

$ echo fred  
fred 
$ echo fred > tempfile  
$ cat tempfile  
fred

Here, the output from the echo command is redirected to tempfile.
The standard input stream (stdin) is the conventional input source for

the program. By default, stdin is associated with the keyboard but may be
redirected to input from a file, for example, with the following commands:

$ echo "one two three four five six seven" > tempfile  
$ wc < tempfile  
1 7 34



The contents of the file tempfile are redirected to the stdin of the wc
command, which outputs the newline (1), word (7), and byte (34) counts
from tempfile. The stdin and stdout streams are fully buffered if and only
if the stream doesn’t refer to an interactive device.

The standard error stream (stderr) is for writing diagnostic output.
The stderr stream isn’t fully buffered so that error messages can be viewed
as soon as possible.

Figure 8-1 shows the predefined streams stdin, stdout, and stderr
attached to the keyboard and display of the user’s terminal.

Figure 8-1: Standard streams attached to I/O communication channels

The output stream of one program can be redirected to be another
application’s input stream by using POSIX pipes:

$ echo "Hello Robert" | sed "s/Hello/Hi/" | sed "s/Robert/ro
bot/"  
Hi robot

The stream editor sed is a Unix utility used for filtering and
transforming text. The vertical bar character (|) is available on many
platforms to chain commands.

Stream Orientation



Each stream has an orientation that indicates whether the stream contains
narrow or wide characters. After a stream is associated with an external file,
but before any operations are performed on it, the stream doesn’t have an
orientation. Once a wide-character I/O function has been applied to a
stream without orientation, the stream becomes a wide-oriented stream.
Similarly, once a byte I/O function has been applied to a stream without
orientation, the stream becomes a byte-oriented stream. Multibyte character
sequences or narrow characters that can be represented as an object of type
char (which are required by the C standard to be 1 byte) can be written to a
byte-oriented stream.

You can reset the orientation of a stream by using the fwide function or
by closing and then reopening the file. Applying a byte I/O function to a
wide-oriented stream or a wide-character I/O function to a byte-oriented
stream results in undefined behavior. Never mix narrow-character data,
wide-character data, and binary data in the same file.

All three predefined streams (stderr, stdin, and stdout) are
unoriented at program startup.

Text and Binary Streams
The C standard supports both text streams and binary streams. A text stream
is an ordered sequence of characters composed into lines, each of which
consists of zero or more characters plus a terminating newline character
sequence. You can denote a single line break on a Unix-like system by
using a line feed (\n). Most Microsoft Windows programs use a carriage
return (\r) followed by a line feed (\n).

The different newline conventions can cause text files that have been
transferred between systems with different conventions to display or parse
incorrectly, though this is increasingly uncommon on recent systems that
now understand foreign newline conventions.

A binary stream is an ordered sequence of arbitrary binary data. Data
read in from a binary stream will be the same as data written out earlier to
that same stream, under the same implementation. On non-POSIX systems,
streams may have an implementation-defined number of null bytes
appended to the end of the stream.



Binary streams are always more capable and more predictable than text
streams. However, the easiest way to read or write an ordinary text file that
can work with other text-oriented programs is through a text stream.

Opening and Creating Files
When you open or create a file, it’s associated with a stream. The fopen and
the POSIX open functions open or create a file.

fopen
The fopen function opens the file whose name is given as a string and
pointed to by filename and then associates a stream with it:

FILE *fopen( 
  const char * restrict filename, 
  const char * restrict mode 
);

The mode argument points to one of the strings shown in Table 8-1 to
determine how to open the file.

Table 8-1: Valid File Mode Strings

Mode string Description
r Open existing text file for reading
w Truncate to zero length or create text file for writing
a Append, open, or create text file for writing at end-of-file
rb Open existing binary file for reading
wb Truncate file to zero length or create binary file for writing
ab Append, open, or create binary file for writing at end-of-file
r+ Open existing text file for reading and writing
w+ Truncate to zero length or create text file for reading and writing
a+ Append, open, or create text file for update, writing at current end-of-file
r+b or rb+ Open existing binary file for reading and writing
w+b or wb+ Truncate to zero length or create binary file for reading and writing
a+b or ab+ Append, open, or create binary file for update, writing at current end-of-file



Opening a file with read mode (by passing r as the first character in the
mode argument) fails if the file doesn’t exist or cannot be read.

Opening a file with append mode (by passing a as the first character in
the mode argument) causes all subsequent writes to the file to occur at the
current end-of-file at the point of buffer flush or actual write, regardless of
intervening calls to the fseek, fsetpos, or rewind functions. Incrementing
the current end-of-file by the amount of data written is atomic with respect
to other threads writing to the same file provided the file was also opened in
append mode. If the implementation is incapable of incrementing the
current end-of-file atomically, it will fail instead of performing nonatomic
end-of-file writes. In some implementations, opening a binary file with
append mode (by passing b as the second or third character in the mode
argument) may initially set the file position indicator for the stream beyond
the last data written because of null character padding.

You can open a file in update mode by passing + as the second or third
character in the mode argument, allowing both read and write operations to
be performed on the associated stream. Opening (or creating) a text file
with update mode may instead open (or create) a binary stream in some
implementations. On POSIX systems, text and binary streams have the
exact same behavior.

The C11 standard added the exclusive mode for reading and writing
binary and text files, as shown in Table 8-2.

Table 8-2: Valid File Mode Strings Added by C11

Mode string Description
wx Create exclusive text file for writing
wbx Create exclusive binary file for writing
w+x Create exclusive text file for reading and writing
w+bx or wb+x Create exclusive binary file for reading and writing

Opening a file with exclusive mode (by passing x as the last character
in the mode argument) fails if the file already exists or cannot be created.
The check for the existence of the file and the creation of the file if it
doesn’t exist are atomic with respect to other threads and concurrent
program executions. If the implementation is incapable of performing the



check for the existence of the file and the creation of the file atomically, it
fails rather than perform a nonatomic check and creation.

As a final note, make sure that you never copy a FILE object. The
following program, for example, can fail because a by-value copy of
stdout is being used in the call to fputs:

#include <stdio.h> 
#include <stdlib.h> 
 
int main() { 
  FILE my_stdout = *stdout; 
  if (fputs("Hello, World!\n", &my_stdout) == EOF) { 
    return EXIT_FAILURE; 
  } 
  return EXIT_SUCCESS; 
}

This program has undefined behavior and typically crashes when run.

open
On POSIX systems, the open function (IEEE Std 1003.1:2018) establishes
the connection between a file identified by path and a value called a file
descriptor:

int open(const char *path, int oflag, ...);

The file descriptor is a nonnegative integer that refers to the structure
representing the file (called the open file description). The file descriptor
returned by the open function is the lowest numbered unused file descriptor
and is unique to the calling process. The file descriptor is used by other I/O
functions to refer to that file. The open function sets the file offset used to
mark the current position within the file to the beginning of the file. For a
file descriptor underlying a stream, this file offset is separate from the
stream’s file position indicator.

The value of the oflag parameter sets the open file description’s file
access modes, which specify whether the file is being opened for reading,



writing, or both. Values for oflag are constructed by a bitwise-inclusive OR
of a file access mode and any combination of access flags. Applications
must specify exactly one of the following file access modes in the value of
oflag:

O_EXEC  Open for execute only (nondirectory files)
O_RDONLY Open for reading only
O_RDWR Open for reading and writing
O_SEARCH Open directory for search only
O_WRONLY Open for writing only

The value of the oflag parameter also sets the file status flags, which
control the behavior of the open function and affect how file operations are
performed. These flags include the following:

O_APPEND Sets the file offset to the end-of-file prior to each write
O_TRUNC Truncates the length to 0
O_CREAT Creates a file
O_EXCL Causes the open to fail if O_CREAT is also set and the file
exists

The open function takes a variable number of arguments. The value of
the argument following the oflag argument specifies the file-mode bits (the
file permissions when you create a new file) and is of type mode_t.

Listing 8-1 shows an example of using the open function to open a file
for writing.

#include <err.h> 
#include <fcntl.h> 
#include <sys/stat.h> 
#include <stdio.h> 
#include <stdlib.h> 
 
int main() { 
  int fd; 
  int flags = O_WRONLY | O_CREAT | O_TRUNC; 
w mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH; 



  const char *pathname = "/tmp/file"; 
  if ((fd = open(pathname, flags, mode) x) == -1) { 
    err(EXIT_FAILURE, "Can't open %s", pathname); 
  } 
  // --snip--  
}

Listing 8-1: Opening a file as write-only

The call to open x takes multiple arguments, including the pathname
of the file, the oflag, and the mode. We create a mode flag w that is a
bitwise-inclusive OR of the following mode bits for access permission:

S_IRUSR Read permission bit for the owner of the file
S_IWUSR Write permission bit for the owner of the file
S_IRGRP Read permission bit for the group owner of the file
S_IROTH Read permission bit for other users

The open function sets these permissions only if it creates the file. If
the file already exists, its current permissions are kept. The file access mode
is O_WRONLY, which means the file is opened for writing only. The O_CREAT
file status flag informs open to create the file; the O_TRUNC file status flag
informs open that if the file exists and is successfully opened, it should
discard the previous contents of the file.

If the file was successfully opened, the open function returns a
nonnegative integer representing the file descriptor. Otherwise, open returns
−1 and sets errno to indicate the error. Listing 8-1 checks for a value of −1,
writes a diagnostic message to the predefined stderr stream if an error
occurred, and then exits.

In addition to open, POSIX has other useful functions for working with
file descriptors, such as the fileno function to get the file descriptor
associated with an existing file pointer and the fdopen function to create a
new stream file pointer from an existing file descriptor. POSIX APIs
available through the file descriptor allow access to features of POSIX
filesystems that aren’t normally exposed through the file pointer interfaces



such as directories (posix_getdents, fdopendir, readdir), file
permissions (fchmod), and file locks (fcntl).

Closing Files
Opening a file allocates resources. If you continually open files without
closing them, you’ll eventually run out of file descriptors or handles
available for your process, and attempting to open more files will fail.
Consequently, it’s important to close files after you’ve finished using them.

fclose
The C standard library fclose function closes the file:

int fclose(FILE *stream);

Any unwritten buffered data for the stream is delivered to the host
environment to be written to the file. Any unread buffered data is discarded.

It’s possible for the fclose function to fail. When fclose writes the
remaining buffered output, for example, it might return an error because the
disk is full. Even if you know the buffer is empty, errors can still occur
when closing a file if you’re using the Network File System (NFS) protocol.
Despite the possibility of failure, recovery is often impossible, so
programmers commonly ignore errors returned by fclose. When closing
the file fails, a common practice is to abort the process or to truncate the file
so its contents are meaningful when next read.

To ensure your code is robust, make sure you check for errors. File I/O
can fail for any number of reasons. The fclose function returns EOF if any
errors were detected:

if (fclose(fp) == EOF) { 
  err(EXIT_FAILURE, "Failed to close file\n"); 
}

You need to explicitly call fflush or fclose on any buffered stream
the program has written to, instead of letting exit (or a return from main)
flush it, to perform the error checking.



The value of a pointer to a FILE object is indeterminate after the
associated file is closed. Whether a file of zero length (in which an output
stream hasn’t written any data) exists is implementation defined.

You can reopen a closed file in the same program or another one, and
its contents can be reclaimed or modified. If the initial call to the main
function returns or if the exit function is called, all open files close (and all
output streams are flushed) before program termination.

Other paths to program termination, such as calling the abort function,
may not close all files properly, which means that buffered data not yet
written to a disk might be lost.

close
On POSIX systems, you can use the close function to deallocate the file
descriptor specified by fd:

int close(int fd);

If an I/O error occurred while reading from or writing to the filesystem
during close, it may return −1 with errno set to the cause of failure. If an
error is returned, the state of fd is unspecified, meaning you can no longer
read or write data to the descriptor or attempt to close it again—effectively
leaking the file descriptor. The posix_close function is being added to The
Open Group Base Specifications Issue 8 to address this problem.

Once a file is successfully closed, the file descriptor no longer exists,
because the integer corresponding to it no longer refers to a file. Files are
also closed when the process owning that file descriptor terminates.

Except in rare circumstances, an application that uses fopen to open a
file will use fclose to close it; an application that uses open to open a file
will use close to close it (unless it passed the descriptor to fdopen, in
which case it must close by calling fclose).

Reading and Writing Characters and Lines
The C standard defines functions for reading and writing specific characters
or lines.



Most byte stream functions have counterparts that take a wide character
(wchar_t) or wide-character string instead of a narrow character (char) or
string, respectively (see Table 8-3). Byte-stream functions are declared in
the header file <stdio.h>, and the wide-stream functions are declared in
<wchar.h>. The wide-character functions operate on the same streams (such
as stdout).

Table 8-3: Narrow- and Wide-String I/O Functions

char wchar_t Description
fgetc fgetwc Reads a character from a stream.
getc getwc Reads a character from a stream.
getchar getwchar Reads a character from stdin.
fgets fgetws Reads a line from a stream.
fputc fputwc Writes a character to a stream.
putc putwc Writes a character to a stream.
fputs fputws Writes a string to a stream.
putchar putwchar Writes a character to stdout.
puts N/A Writes a string to stdout.
ungetc ungetwc Returns a character to a stream.
scanf wscanf Reads formatted character input from stdin.
fscanf fwscanf Reads formatted character input from a stream.
sscanf swscanf Reads formatted character input from a buffer.
printf wprintf Prints formatted character output to stdout.
fprintf fwprintf Prints formatted character output to a stream.
sprintf swprintf Prints formatted character output to a buffer.
snprintf N/A This is the same as sprintf with truncation. The swprintf function also

takes a length argument but behaves differently from snprintf in the
way it interprets it.

In this chapter, we’ll discuss the byte-stream functions only. You may
want to avoid wide-character function variants altogether and work
exclusively with UTF-8 character encodings, if possible, as these functions
are less prone to programmer error and security vulnerabilities.

The fputc function converts the character c to the type unsigned char
and writes it to stream:



int fputc(int c, FILE *stream);

It returns EOF if a write error occurs; otherwise, it returns the character
it has written.

The putc function is just like fputc, except that most libraries
implement it as a macro:

int putc(int c, FILE *stream);

If putc is implemented as a macro, it may evaluate its stream argument
more than once. Using fputc is generally safer. See CERT C rule FIO41-C,
<Do not call getc(), putc(), getwc(), or putwc() with a stream argument
that has side effects,= for more information.

The putchar function is equivalent to the putc function, except that it
uses stdout as the value of the stream argument.

The fputs function writes the string s to the stream stream:

int fputs(const char * restrict s, FILE * restrict stream);

This function doesn’t write the null character from the string s—nor
does it write a newline character—but outputs only the characters in the
string. If a write error occurs, fputs returns EOF. Otherwise, it returns a
nonnegative value. For example, the following statements output the text I
am Groot, followed by a newline:

fputs("I ", stdout); 
fputs("am ", stdout); 
fputs("Groot\n", stdout);

The puts function writes the string s to the stream stdout followed by
a newline:

int puts(const char *s);



The puts function is the most convenient function for printing simple
messages because it takes only a single argument. Here’s an example:

puts("This is a message.");

The fgetc function reads the next character as an unsigned char from
a stream and returns its value, converted to an int:

int fgetc(FILE *stream);

If an end-of-file condition or read error occurs, the function returns
EOF.

The getc function is equivalent to fgetc, except that if it’s
implemented as a macro, it may evaluate its stream argument more than
once. Consequently, this argument should never be an expression with side
effects. Analogous to the fputc function, using fgetc is generally safer and
should be preferred to getc.

The getchar function is equivalent to the getc function, except that it
uses stdout as the value of the stream argument.

You may recall that the gets function reads characters from stdin and
writes them into a character array until a newline or EOF is reached. The
gets function is inherently insecure. It was deprecated in C99 and removed
from C11 and should never be used. If you need to read a string from
stdin, consider using the fgets function instead. The fgets function reads
at most one less than n characters from a stream into a character array
pointed to by s:

char *fgets(char * restrict s, int n, FILE * restrict strea
m);

No additional characters are read after a (retained) newline character or
EOF. A null character is written immediately following the last character
read into the array.

Stream Flushing



As described earlier in this chapter, streams can be fully or partially
buffered, meaning that data you thought you wrote may not yet be delivered
to the host environment. This can be a problem when the program
terminates abruptly. The fflush function delivers any unwritten data for a
specified stream to the host environment to be written to the file:

int fflush(FILE *stream);

The behavior is undefined if the last operation on the stream was input.
If the stream is a null pointer, the fflush function performs this flushing
action on all streams. Make sure that your file pointer isn’t null before
calling fflush if this isn’t your intent.

Setting the Position in a File
Random-access files (which include a disk file, for example, but not a
terminal) maintain a file position indicator associated with the stream. The
file position indicator describes where in the file the stream is currently
reading or writing.

When you open a file, the indicator is positioned at the file’s start
(unless you open it in append mode). You can position the indicator
wherever you want to read or write any portion of the file. The ftell
function obtains the current value of the file position indicator, while the
fseek function sets the file position indicator. These functions use the long
int type to represent offsets (positions) in a file and are therefore limited to
offsets that can be represented as a long int. Listing 8-2 demonstrates the
use of the ftell and fseek functions.

#include <err.h> 
#include <stdio.h> 
#include <stdlib.h> 
 
long int get_file_size(FILE *fp) { 
  if (fseek(fp, 0, SEEK_END) != 0) { 
    err(EXIT_FAILURE, "Seek to end-of-file failed"); 
  } 
  long int fpi = ftell(fp); 



  if (fpi == -1L) { 
    err(EXIT_FAILURE, "ftell failed"); 
  } 
  return fpi; 
} 
 
int main() { 
  FILE *fp = fopen("fred.txt", "rb"); 
  if (fp  == nullptr) { 
    err(EXIT_FAILURE, "Cannot open fred.txt file"); 
  } 
  printf("file size: %ld\n", get_file_size(fp)); 
  if (fclose(fp) == EOF) { 
    err(EXIT_FAILURE, "Failed to close file"); 
  } 
  return EXIT_SUCCESS; 
}

Listing 8-2: Using the ftell and fseek functions

This program opens a file called fred.txt and calls the get_file_size
function to find the file size. The get_file_size function calls fseek to set
the file position indicator to the end of the file (indicated by SEEK_END) and
the ftell function to retrieve the current value of the file position indicator
for the stream as a long int. This value is returned by the get_file_size
function and is printed in the main function. Finally, we close the file
referenced by the fp file pointer.

The fseek function has different constraints for text and binary files.
The offset must be either zero or a value previously returned by ftell for a
text file, whereas you can use calculated offsets for a binary file.

To ensure your code is robust, make sure you check for errors. File I/O
can fail for any number of reasons. The fopen function returns a null
pointer when it fails. The fseek function returns nonzero only for a request
that cannot be satisfied. On failure, the ftell function returns −1L and
stores an implementation-defined value in errno. If the return value from
ftell is equal to −1L, we use the err function to print the last component of
the program name, a colon character, a space followed by an appropriate
error message corresponding to the value stored in errno, and finally, a



newline character. The fclose function returns EOF if any errors were
detected. One of the unfortunate aspects of the C standard library
demonstrated by this short program is that each function tends to report
errors in its own unique way, so you normally need to refer to your
documentation to see how to test for errors.

The fgetpos and fsetpos functions use the fpos_t type to represent
offsets. This type can represent arbitrarily large offsets, meaning you can
use fgetpos and fsetpos with arbitrarily large files. A wide-oriented
stream has an associated mbstate_t object that stores the stream’s current
parse state. A successful call to fgetpos stores this multibyte state
information as part of the value of the fpos_t object. A later successful call
to fsetpos using the same stored fpos_t value restores the parse state as
well as the position within the controlled stream. It’s not possible to convert
an fpos_t object to an integer byte or character offset within the stream
except indirectly by calling fsetpos followed by ftell. The short program
shown in Listing 8-3 demonstrates the use of the fgetpos and fsetpos
functions.

#include <err.h> 
#include <stdio.h> 
#include <stdlib.h> 
 
int main() { 
  FILE *fp = fopen("fred.txt", "w+"); 
  if (fp == nullptr) { 
    err(EXIT_FAILURE, "Cannot open fred.txt file"); 
  } 
  fpos_t pos; 
  if (fgetpos(fp, &pos) != 0) { 
    err(EXIT_FAILURE, "get position"); 
  } 
  if (fputs("abcdefghijklmnopqrstuvwxyz", fp) == EOF) { 
      fputs("Cannot write to fred.txt file\n", stderr); 
  } 
  if (fsetpos(fp, &pos) != 0) { 
    err(EXIT_FAILURE, "set position"); 
  } 



  long int fpi = ftell(fp); 
  if (fpi == -1L) { 
    err(EXIT_FAILURE, "ftell"); 
  } 
  printf("file position = %ld\n", fpi); 
  if (fputs("0123456789", fp) == EOF) { 
    fputs("Cannot write to fred.txt file\n", stderr); 
  } 
  if (fclose(fp) == EOF) { 
    err(EXIT_FAILURE, "Failed to close file\n"); 
  } 
  return EXIT_SUCCESS; 
}

Listing 8-3: Using the fgetpos and fsetpos functions

This program opens the fred.txt file for writing and then calls fgetpos
to get the current file position within the file, which is stored in pos. We
then write some text to the file before calling fsetpos to restore the file
position indicator to the position stored in pos. At this point, we can use the
ftell function to retrieve and print the file position, which should be 0.
After running this program, fred.txt contains the following text:

0123456789klmnopqrstuvwxyz

You cannot write to a stream and then read from it again without an
intervening call to the fflush function to write any unwritten data or to a
file positioning function (fseek, fsetpos, or rewind). You also cannot read
from a stream and then write to it without an intervening call to a file
positioning function.

The rewind function sets the file position indicator to the beginning of
the file:

void rewind(FILE *stream);

The rewind function is equivalent to invoking fseek followed by
clearerr to clear the error indicator for the stream:



fseek(stream, 0L, SEEK_SET); 
clearerr(stream);

Because there is no way to determine if rewind failed, you should use
fseek so that you can check for errors.

You shouldn’t attempt to use file positions in files opened in append
mode, because many systems don’t modify the current file position
indicator for append or will forcefully reset to the end of the file when
writing. If using APIs that use file positions, the file position indicator is
maintained by subsequent reads, writes, and positioning requests. Both
POSIX and Windows have APIs that never use the file position indicator;
for those, you always need to specify the offset into the file at which to
perform the I/O. POSIX defines the lseek function, which behaves
similarly to fseek but operates on an open file description (IEEE Std
1003.1:2018).

Removing and Renaming Files
The C standard library provides a remove function to delete a file and a
rename function to move or rename it:

int remove(const char *filename); 
int rename(const char *old, const char *new);

In POSIX, the file deletion function is unlink, and the directory
removal function is rmdir:

int unlink(const char *path); 
int rmdir(const char *path);

POSIX also uses rename for renaming. One obvious difference
between the C standard and POSIX is that C does not have a concept of
directories, while POSIX does. Consequently, no specific semantics are
defined in the C standard for dealing with directories.

The unlink function has better-defined semantics than the remove
function because it’s specific to POSIX filesystems. In POSIX and



Windows, we can have any number of links to a file, including hard links
and open file descriptors. The unlink function always removes the
directory entry for the file but deletes the file only when there are no more
links or open file descriptors referencing it. Even after deletion, the contents
of the file may remain in permanent storage. The rmdir function removes a
directory whose name is given by path only if it is an empty directory.

In POSIX, the remove function is required to behave the same as the
unlink function when the argument is not a directory and to behave the
same as the rmdir function when the argument is a directory. The remove
function may behave differently on other operating systems.

The filesystem is shared with other programs running concurrently to
yours. These other programs will modify the filesystem while your program
runs. This means that a file entry can disappear or be replaced by a different
file entry, which can be a source of security exploits and unexpected data
loss. POSIX provides functions that let you unlink and rename files referred
to by an open file descriptor or handle. These can be used to prevent
security exploits and possible unexpected data loss in a shared public
filesystem.

Using Temporary Files
We frequently use temporary files as an interprocess communication
mechanism or for temporarily storing information out to disk to free up
random-access memory (RAM). For example, one process might write to a
temporary file that another process reads from. These files are normally
created in a temporary directory by using functions such as the C standard
library’s tmpfile and tmpnam or POSIX’s mkstemp.

Temporary directories can be either global or user specific. In Unix and
Linux, the TMPDIR environment variable is used to specify the location of
the global temporary directories, which are typically /tmp and /var/tmp.
Systems running Wayland or the X11 window system usually have user-
specific temporary directories defined by the $XDG_RUNTIME_DIR
environment variable, which is typically set to /run/user/$uid. In Windows,
you can find user-specific temporary directories in the AppData section of
the User Profile, typically C:\Users\User Name\AppData\Local\Temp
(%USERPROFILE%\AppData\Local\Temp). On Windows, the global



temporary directory is specified by either the TMP or TEMP environment
variable. The C:\Windows\Temp directory is a system folder used by
Windows to store temporary files.

For security reasons, it’s best for each user to have their own temporary
directory, because the use of global temporary directories frequently results
in security vulnerabilities. The most secure function for creating temporary
files is the POSIX mkstemp function. However, because accessing files in
shared directories may be difficult or impossible to implement securely, we
recommended that you not use any of the available functions and instead
perform the interprocess communication by using sockets, shared memory,
or other mechanisms designed for this purpose.

Reading Formatted Text Streams
In this section, we’ll demonstrate the use of the fscanf function to read
formatted input. The fscanf function is the corresponding input version of
the fprintf function that we introduced all the way back in Chapter 1 and
has the following signature:

int fscanf(FILE * restrict stream, const char * restrict for
mat, ...);

The fscanf function reads input from the stream pointed to by stream,
under control of the format string that tells the function how many
arguments to expect, their type, and how to convert them for assignment.
Subsequent arguments are pointers to the objects receiving the converted
input. The result is undefined if there are insufficient arguments for the
format string. If you provide more arguments than conversion specifiers,
the excess arguments are evaluated but otherwise ignored. The fscanf
function has lots of functionality that we’ll only touch upon here. For more
information, refer to the C standard.

To demonstrate the use of fscanf, as well as some other I/O functions,
we’ll implement a program that reads in the signals.txt file shown in Listing
8-4 and prints each line.



1 HUP Hangup 
2 INT Interrupt 
3 QUIT Quit 
4 ILL Illegal instruction 
5 TRAP Trace trap 
6 ABRT Abort 
7 EMT EMT trap 
8 FPE Floating-point exception

Listing 8-4: The signals.txt file

Each line of this file contains the following: a signal number (a small
positive-integer value), the signal ID (a small string of up to six
alphanumeric characters), and a short string with a description of the signal.
Fields are whitespace delimited except for the description field, which is
delimited by one or more space or tab characters at the beginning and by a
newline at the end.

Listing 8-5 shows the signals program, which reads this file and prints
out each line.

#include <err.h> 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
#define TO_STR_HELPER(x) #x 
#define TO_STR(x) TO_STR_HELPER(x) 
 
#define DESC_MAX_LEN 99 
 
int main() { 
  int status = EXIT_SUCCESS; 
  FILE *in; 
 
  struct sigrecord { 
    int signum; 
    char signame[10]; 
    char sigdesc[DESC_MAX_LEN + 1]; 
w} rec; 



 
  if ((in = fopen("signals.txt", "r")) == nullptr) { 
    err(EXIT_FAILURE, "Cannot open signals.txt file"); 
  } 
 
x while (true) { 
  y int n = fscanf(in, "%d%9s%*[\t]%" TO_STR(DESC_MAX_LEN) "
[^\n]", 
      &rec.signum, rec.signame, rec.sigdesc 
    ); 
    if (n == 3) { 
      printf( 
        "Signal\n  number = %d\n  name = %s\n  description = 
%s\n\n", 
        rec.signum, rec.signame, rec.sigdesc 
      ); 
    } 
    else if (ferror(in)) { 
      perror("Error indicated"); 
      status = EXIT_FAILURE; 
      break; 
    } 
    else if (n == EOF) { 
      // normal end-of-file 
      break; 
    } 
    else if (feof(in)) { 
      fputs("Premature end-of-file detected\n", stderr); 
      status = EXIT_FAILURE; 
      break; 
    } 
    else { 
      fputs("Failed to match signum, signame, or sigdesc\n
\n", stderr); 
      int c; 
      while ((c = getc(in)) != '\n' && c != EOF); 
      status = EXIT_FAILURE; 
    } 
  } 
 



z if (fclose(in) == EOF) { 
    err(EXIT_FAILURE, "Failed to close file\n"); 
  } 
 
  return status; 
}

Listing 8-5: The signals program

We define several variables in the main function, including the rec
structure w, which we use to store the signal information found on each line
of the file. The rec structure contains three members: a signum member of
type int that will hold the signal number; a signame member that’s an array
of char and will hold the signal ID; and the sigdesc member, an array of
char that will hold the description of the signal. Both arrays have fixed
sizes that we determined were adequately sized for the strings being read
from the file. If the strings read from the file are too long to fit in these
arrays, the program will treat it as an error.

The call to fscanf y reads each line of input from the file. It appears
inside of an infinite while (true) loop x that we must break out of for the
program to terminate. We assign the return value from the fscanf function
to a local variable n. The fscanf function returns EOF if an input failure
occurs before the first conversion has completed. Otherwise, the function
returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early matching failure. The
call to fscanf assigns three input items, so we print the signal description
only when n is equal to 3. Next, we call ferror(in) to determine if the call
to fscanf set the error indicator. If it did, we print errno with a call to the
perror function and then set the status to EXIT_FAILURE. Next, if n equals
EOF, we break out of the loop because we have successfully processed all
the input. The final possibility is that fscanf returned a value that is not the
expected number of input items, nor is it EOF indicating an early matching
failure. In this case, we treat the condition as a nonfatal error:

fputs("Failed to match signum, signame, or sigdesc\n\n", std
err); 



int c; 
while ((c = getc(in)) != '\n' && c != EOF); 
status = EXIT_FAILURE;

We print a message to stderr to let the user know that there is a
problem with one of the signal descriptions in the file, but we continue to
process the remaining entries. The loop discards the defective line and
status is assigned EXIT_FAILURE to indicate to the calling program that an
error occurred. You’ll notice that proper error handling in this program
makes up the bulk of the code.

The fscanf function uses a format string that determines how the input
text is assigned to each argument. In this case, the "%d%9s%*[\t]%99[^\n]"
format string contains four conversion specifiers, which specify how the
input read from the stream is converted into values stored in the objects
referenced by the format string’s arguments. We introduce each conversion
specification with the percent character (%). After the %, the following may
appear, in sequence:

An optional character * that discards the input without assigning it to
an argument
An optional integer greater than zero that specifies the maximum field
width (in characters)
An optional length modifier that specifies the size of the object
A conversion specifier character that specifies the type of conversion to
be applied
The first conversion specifier in the format string is %d. This conversion

specifier matches the first optionally signed decimal integer, which should
correspond to the signal number in the file, and stores the value in the third
argument referenced by rec.signum. Without an optional length modifier,
the length of the input depends on the conversion specifier’s default type.
For the d conversion specifier, the argument must point to a signed int.

The second conversion specifier in this format string is %9s, which
matches the next sequence of non-whitespace characters from the input
stream—corresponding to the signal name—and stores these characters as a
string in the fourth argument referenced by rec.signame. The length



modifier prevents more than nine characters from being input and then
writes a null character in rec.signame after the matched characters. A
conversion specifier of %10s in this example would allow a buffer overflow
to occur. A conversion specifier of %9s can still fail to read the entire string,
resulting in a matching error. When reading data into a fixed-size buffer as
we are doing, you should test inputs that exactly match or slightly exceed
the fixed buffer length to ensure buffer overflow does not occur and that the
string is properly null terminated.

We’re going to skip the third conversion specifier for a moment and
talk about the fourth one: %99[^\n]. This fancy conversion specifier will
match the signal description field in the file. The brackets ([]) contain a
scanset, which is like a regular expression. This scanset uses the circumflex
(^) to exclude \n characters. Put together, %99[^\n] reads all the characters
until it reaches a \n (or EOF) and stores them in the fifth argument
referenced by rec.sigdesc. C programmers commonly use this syntax to
read an entire line. This conversion specifier also includes a maximum
string length of 99 characters to avoid buffer overflows.

We can now revisit the third conversion specifier: %*[\t]. As we have
just seen, the fourth conversion specifier reads all the characters, starting
from the end of the signal ID. Unfortunately, this includes any whitespace
characters between the signal ID and the start of the description. The
purpose of the %*[\t] conversion specifier is to consume any space or
horizontal tab characters between these two fields and suppress them by
using the assignment-suppressing specifier *. It’s also possible to include
other whitespace characters in the scanset for this conversion specifier.

Finally, we call the fclose function z to close the file.

Reading from and Writing to Binary Streams
The C standard library fread and fwrite functions can operate on both text
and binary streams. The fwrite function has the following signature:

size_t fwrite(const void * restrict ptr, size_t size, size_t 
nmemb, 
  FILE * restrict stream);



This function writes up to nmemb elements of size bytes from the array
pointed to by ptr to stream. The fwrite function behaves as if it converts
each object to an array of unsigned char (every object can be converted to
an array of this type) and then calls the fputc function to write the value of
each character in the array in order. The file position indicator for the
stream is advanced by the number of characters successfully written.

POSIX defines similar read and write functions that operate on file
descriptors instead of streams (IEEE Std 1003.1:2018).

Listing 8-6 demonstrates the use of the fwrite function to write signal
records to the signals.bin file.

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
typedef struct sigrecord { 
  int signum; 
  char signame[10]; 
  char sigdesc[100]; 
} rec; 
 
int main() { 
  int status = EXIT_SUCCESS; 
  FILE *fp; 
 
w if ((fp = fopen("signals.bin", "wb")) == nullptr) { 
    fputs("Cannot open signals.bin file\n", stderr); 
    return EXIT_FAILURE; 
  } 
 
x rec sigrec30 = {30, "USR1", "user-defined signal 1"}; 
  rec sigrec31 = { 
    .signum = 31, .signame = "USR2", .sigdesc = "user-define
d signal 2" 
  }; 
 
  size_t size = sizeof(rec); 
 



y if (fwrite(&sigrec30, size, 1, fp) != 1) { 
    fputs("Cannot write sigrec30 to signals.bin file\n", std
err); 
    status = EXIT_FAILURE; 
    goto close_files; 
  } 
 
  if (fwrite(&sigrec31, size, 1, fp) != 1) { 
    fputs("Cannot write sigrec31 to signals.bin file\n", std
err); 
    status = EXIT_FAILURE; 
  } 
 
close_files: 
  if (fclose(fp) == EOF) { 
    fputs("Failed to close file\n", stderr); 
    status = EXIT_FAILURE; 
  } 
 
  return status; 
}

Listing 8-6: Writing to a binary file using direct I/O

We open the signals.bin file in wb mode w to create a binary file for
writing. We declare two rec structures x and initialize them with the signal
values we want to write to the file. For comparison, the sigrec30 structure
is initialized with positional initializers, and sigrec31 is initialized using
designated initializers. Both initialization styles have the same behavior;
designated initializers make the declaration less terse but clearer. The actual
writing begins at y. We check the return values from each call to the
fwrite function to ensure that it wrote the correct number of elements.

Listing 8-7 uses the fread function to read the data we just wrote from
the signals.bin file.

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 



typedef struct rec { 
  int signum; 
  char signame[10]; 
  char sigdesc[100]; 
} rec; 
 
int main() { 
  int status = EXIT_SUCCESS; 
  FILE *fp; 
  rec sigrec; 
 
w if ((fp = fopen("signals.bin", "rb")) == nullptr) { 
    fputs("Cannot open signals.bin file\n", stderr); 
    return EXIT_FAILURE; 
  } 
 
  // read the second signal 
x if (fseek(fp, sizeof(rec), SEEK_SET)  != 0) { 
    fputs("fseek in signals.bin file failed\n", stderr); 
    status = EXIT_FAILURE; 
    goto close_files; 
  } 
 
y if (fread(&sigrec, sizeof(rec), 1, fp) != 1) { 
    fputs("Cannot read from signals.bin file\n", stderr); 
    status = EXIT_FAILURE; 
    goto close_files; 
  } 
 
  printf( 
    "Signal\n  number = %d\n  name = %s\n  description = %s
\n\n", 
    sigrec.signum, sigrec.signame, sigrec.sigdesc 
  ); 
 
close_files: 
  if (fclose(fp) == EOF) { 
    fputs("Failed to close file\n", stderr); 
    status = EXIT_FAILURE; 
  } 



 
  return status; 
}

Listing 8-7: Reading from a binary file using direct I/O

We open the binary file by using the rb mode w for reading. Next, to
make this example a bit more interesting, the program reads and prints the
information for a specific signal, rather than reading the entire file. We
could indicate which signal to read by using an argument to the program,
but for this example, we hardcoded it as the second signal. To accomplish
this, the program invokes the fseek function x to set the file position
indicator for the stream referenced by fp. As mentioned earlier in this
chapter, the file position indicator determines the file position for the
subsequent I/O operation. For a binary stream, we set the new position by
adding the offset (measured in bytes) to the position specified by the final
argument (the beginning of the file, as indicated by SEEK_SET). The first
signal is at position 0 in the file, and each subsequent signal is at an integer
multiple of the size of the structure from the beginning of the file.

After the file position indicator is positioned at the start of the second
signal, we call the fread function y to read the data from the binary file
into the structure referenced by &sigrec. The call to fread reads a single
element whose size is specified by sizeof(rec) from the stream pointed to
by fp. In most cases, this object has the size and type of the corresponding
call to fwrite. The file position indicator for the stream is advanced by the
number of characters successfully read. We check the return value from the
fread function to ensure the correct number of elements, here one, was
read.

Endian
Object types other than character types can include padding as well as value
representation bits. Different target platforms can pack bytes into multiple-
byte words in different ways, called endianness.

NOTE



The term endianness is drawn from Jonathan Swift’s 1726 satire, Gulliver’s
Travels, in which civil war erupts over whether the big end or the little end
of a boiled egg is the proper end to crack open.

A big-endian ordering places the most significant byte first and the
least significant byte last, while a little-endian ordering does the opposite.
For example, consider the unsigned hexadecimal number 0x1234, which
requires at least two bytes to represent. In a big-endian ordering, these two
bytes are 0x12, 0x34, while in a little-endian ordering, the bytes are
arranged as 0x34, 0x12. Intel and AMD processors use the little-endian
format, while the ARM and POWER series of processors can switch
between the little- and big-endian formats. However, big-endian is the
dominant ordering in network protocols such as Internet Protocol (IP),
Transmission Control Protocol (TCP), and User Datagram Protocol (UDP).
Endianness can cause problems when a binary file is created on one
computer and is read on another computer with different endianness.

C23 has added a mechanism to determine your implementation’s byte
ordering at runtime using three macros that expand to integer constant
expressions. The __STDC_ENDIAN_LITTLE__ macro represents a byte order
storage in which the least significant byte is placed first and the rest are in
ascending order. The __STDC_ENDIAN_BIG__ macro represents a byte order
storage in which the most significant byte is placed first and the rest are in
descending order.

The __STDC_ENDIAN_NATIVE__ macro describes the endianness of the
execution environment with respect to bit-precise integer types, standard
integer types, and most extended integer types. The short program in
Listing 8-8 determines the byte ordering for the execution environment by
testing the value of the __STDC_ENDIAN_NATIVE__ macro. If the execution
environment is neither little-endian nor big-endian and has some other
implementation-defined byte order, the macro __STDC_ENDIAN_NATIVE__
will have a different value.

#include <stdbit.h> 
#include <stdio.h> 
 
int main (int argc, char* argv[]) { 



  if (__STDC_ENDIAN_NATIVE__ == __STDC_ENDIAN_LITTLE__) { 
    puts("little endian"); 
  } 
  else if (__STDC_ENDIAN_NATIVE__ == __STDC_ENDIAN_BIG__) { 
    puts("big endian"); 
  } 
  else { 
    puts("other byte ordering"); 
  } 
  return 0; 
}

Listing 8-8: Determining the byte ordering

All this variation between platforms implies that, for interhost
communication, you should adopt a standard for the external format and use
format conversion functions to marshal arrays of external data to and from
multiple-byte native objects (using exact width types). POSIX has some
suitable functions for this purpose, including htonl, htons, ntohl, and
ntohs, that convert values between host and network byte order.

Endianness independence in binary data formats can be achieved by
always storing the data in one fixed endianness or including a field in the
binary file to indicate the endianness of the data.

Summary
In this chapter, you learned about streams, including stream buffering, the
predefined streams, stream orientation, and the difference between text and
binary streams.

You then learned how to create, open, and close files by using the C
standard library and POSIX APIs. You also learned how to read and write
characters and lines, read and write formatted text, and read and write from
binary streams. You looked at how to flush a stream, set the position in a
file, remove files, and rename files. Without I/O, communication with the
user would be limited to the program’s return value. Finally, you learned
about temporary files and how to avoid using them.

In the next chapter, you’ll learn about the compilation process and the
preprocessor, including file inclusion, conditional inclusion, and macros.



9
PREPROCESSOR

with Aaron Ballman

The preprocessor is the part of the C
compiler that runs at an early phase of

compilation and transforms the source code before
it’s translated, such as inserting code from one file
(typically a header) into another (typically a source
file). The preprocessor also allows you to specify that
an identifier should be automatically substituted by a
source code segment during macro expansion. In this
chapter, you’ll learn how to use the preprocessor to
include files, define object- and function-like macros,
conditionally include code based on implementation-
specific features, and embed binary resources into
your program.

The Compilation Process
Conceptually, the compilation process consists of a pipeline of eight phases,
as shown in Figure 9-1. We call these translation phases because each
phase translates the code for processing by the next phase.



Figure 9-1: Translation phases

The preprocessor runs before the translator translates the source code
into object code, which allows the preprocessor to modify the source code
the user wrote before the translator operates on it. Consequently, the
preprocessor has a limited amount of semantic information about the
program being compiled. It doesn’t understand functions, variables, or
types. Only basic elements, such as header names, identifiers, literals, and
punctuation characters like +, -, and ! are meaningful to the preprocessor.
These basic elements, called tokens, are the smallest elements of a computer
program that have meaning to a compiler.

The preprocessor operates on preprocessing directives that you include
in the source code to program the behavior of the preprocessor. You spell
preprocessing directives with a leading # token followed by a directive
name, such as #include, #define, #embed, or #if. Each preprocessing
directive is terminated by a newline character. You can indent directives by
including whitespace between the beginning of the line and the #

  #define THIS_IS_FINE 1

or between the # and the directive:

#  define SO_IS_THIS 1

Preprocessing directives instruct the preprocessor to alter the resulting
translation unit. If your program contains preprocessing directives, the code
the translator consumes is not the same code you wrote. Compilers usually
provide a way to view the preprocessor output, called a translation unit,
passed to the translator. Viewing the preprocessor output is unnecessary, but
you may find it informative to see the actual code given to the translator.
Table 9-1 lists flags that common compilers use to output a translation unit.

Table 9-1: Outputting a Translation Unit



Compiler Example command lineCompiler Example command line
Clang clang other-options -E -o tu.i tu.c
GCC gcc other-options -E -o tu.i tu.c
Visual C++ cl other-options /P /Fitu.i tu.c

Preprocessed output files are commonly given a .i file extension.

File Inclusion
A powerful feature of the preprocessor is the ability to insert the contents of
one source file into the contents of another source file by using the
#include preprocessing directive. The included files are called headers to
distinguish them from other source files. Headers typically contain
declarations for use by other programs. This is the most common way to
share external declarations of functions, objects, and data types with other
parts of the program.

You’ve already seen many examples of including the headers for C
standard library functions in the examples in this book. For instance, the
program in Table 9-2 is separated into a header named bar.h and a source
file named foo.c. The source file foo.c does not directly contain a
declaration of func, yet the function is successfully referenced by name
within main. During preprocessing, the #include directive inserts the
contents of bar.h into foo.c in the place of the #include directive itself.

Table 9-2: Header Inclusion

Original sources Resulting translation unit
bar.h
int func(void);

int func(void);

int main(void) {
return func();
}

foo.c
#include "bar.h"

int main(void) {
  return func();
}

The preprocessor executes #include directives as it encounters them.
Therefore, inclusion has transitive properties: if a source file includes a



header that itself includes another header, the preprocessed output will
contain the contents of both headers. For example, given the baz.h and bar.h
headers and the foo.c source file, the output after running the preprocessor
on the foo.c source code is shown in Table 9-3.

Table 9-3: Transitive Header Inclusion

Original sources Resulting translation unit
baz.h
int other_func(void);

int other_func(void);

int func(void);

int main(void) {
  return func();
}

bar.h
#include "baz.h"

int func(void);
foo.c
#include "bar.h"

int main(void) {
   return func();
}

Compiling the foo.c source file causes the preprocessor to include the
"bar.h" header. The preprocessor then finds the include directive for the
"baz.h" header and includes it as well, bringing the declaration for
other_func into the resulting translation unit.

A best practice is to avoid relying on transitive includes because they
make your code brittle. Consider using tools like include-what-you-use
(https://include-what-you-use.org) to automatically remove reliance on
transitive includes.

Starting with C23, you can test for the presence of an include file
before the #include directive is executed with the __has_include
preprocessor operator. It takes a header name as the only operand. The
operator returns true if the specified file can be found and false otherwise.
You can use it with conditional inclusion to provide an alternative
implementation if a file cannot be included. For example, you can use the
__has_include preprocessor operator to test for C standard library
threading or POSIX threads support as follows:

https://include-what-you-use.org/


#if __has_include(<threads.h>) 
#  include <threads.h> 
   typedef thrd_t thread_handle; 
#elif __has_include(<pthread.h>) 
   typedef pthread_t thread_handle; 
#endif

You can use either a quoted include string (for example, #include
"foo.h") or an angle-bracketed include string (for example, #include
<foo.h>) to specify the file to include. The difference between these
syntaxes is implementation defined, but they typically influence the search
path used to find the included files. For example, both Clang and GCC
attempt to find files included with:

Angle brackets on the system include path, specified using the -
isystem flag
Quoted strings on the quoted include path, specified using the -iquote
and -isystem flags
Refer to your compiler’s documentation for the specific differences

between these two syntaxes. Normally, headers for standard or system
libraries are found on the default system include path, and your own project
headers are found on the quoted include path.

The header operand passed to the __has_include preprocessor
operator is specified with either quotes or angle brackets. The operator uses
the same search path heuristics as the #include directive. Consequently,
you should use the same form for both the #include directive and
corresponding __has_include operator to ensure a consistent result.

Conditional Inclusion
Frequently, you’ll need to write different code to support different
implementations. For example, you may want to provide alternative
implementations of a function for different target architectures. One
solution to this problem is to maintain two files with slight variations
between them and compile the appropriate file for a particular



implementation. A better solution is to either translate or refrain from
translating the target-specific code based on a preprocessor definition.

You can conditionally include source code using a preprocessing
directive such as #if, #elif, or #else with a predicate condition. A
predicate condition is the controlling constant expression that’s evaluated to
determine which branch of the program the preprocessor should take.
They’re typically used along with the preprocessor defined operator, which
determines whether a given identifier is the name of a defined macro.

The conditional inclusion directives are similar to the if and else
statements. When the predicate condition is evaluated to a nonzero
preprocessor value, the #if branch is processed, and all other branches are
not. When the predicate condition evaluates to zero, the next #elif branch,
if any, has its predicate tested for inclusion. If none of the predicate
conditions evaluate to nonzero, then the #else branch, if there is one, is
processed. The #endif preprocessing directive indicates the end of the
conditionally included code.

The defined operator evaluates to 1 if the given identifier is defined as
a macro or 0 otherwise. For example, the preprocessing directives shown in
Listing 9-1 conditionally determine which header contents to include in the
resulting translation unit. The preprocessed output depends on whether
_WIN32 or __ANDROID__ is a defined macro. If neither is a defined macro,
the preprocessor output will be empty.

#if defined(_WIN32) 
#  include <Windows.h> 
#elif defined(__ANDROID__) 
#  include <android/log.h> 
#endif

Listing 9-1: An example of conditional inclusion

Unlike with the if and else keywords, preprocessor conditional
inclusion cannot use braces to denote the block of statements controlled by
the predicate. Instead, preprocessor conditional inclusion will include all the
tokens from the #if, #elif, or #else directive (following the predicate) to
the next balanced #elif, #else, or #endif token found, while skipping any



tokens in a conditional inclusion branch not taken. Conditional inclusion
directives can be nested. You can write

#ifdef identifier

as shorthand for:

#if defined identifier

Similarly, you can write

#ifndef identifier

as shorthand for:

#if !defined identifier

Starting in C23, you can write

#elifdef identifier

as shorthand for

#elif defined identifier

and you can write

#elifndef identifier

as shorthand for

#elif !defined identifier

or, equivalently:



#elif !defined(identifier)

The parentheses around the identifier are optional.

Generating Diagnostics
A conditional inclusion directive may need to generate an error if the
preprocessor can’t take any of the conditional branches because no
reasonable fallback behavior exists. Consider the example in Listing 9-2,
which uses conditional inclusion to select between including the C standard
library header <threads.h> or the POSIX threading library header
<pthread.h>. If neither option is available, you should alert the
programmer porting the system that the code must be repaired.

#if __STDC__ && __STDC_NO_THREADS__ != 1 
#  include <threads.h> 
#elif POSIX_THREADS == 200809L 
#  include <pthread.h> 
#else 
  int compile_error[-1]; // induce a compilation error 
#endif

Listing 9-2: Inducing a compilation error

Here, the code generates a diagnostic but doesn’t describe the actual
problem. For this reason, C has the #error preprocessing directive, which
causes the implementation to produce a compile-time diagnostic message.
You can optionally follow this directive with one or more preprocessor
tokens to include in the resulting diagnostic message. Using these, we can
replace the erroneous array declaration from Listing 9-2 with an #error
directive such as the one shown in Listing 9-3.

#if __STDC__ && __STDC_NO_THREADS__ != 1 
#  include <threads.h> 
#elif POSIX_THREADS == 200809L 
#  include <pthread.h> 
#else 



#  error "Neither <threads.h> nor <pthread.h> is available" 
#endif

Listing 9-3: An #error directive

This code generates the following error message if neither threading
library header is available:

Neither <threads.h> nor <pthread.h> is available

In addition to the #error directive, C23 added the #warning directive.
This directive is like the #error directive in that they both cause the
implementation to generate a diagnostic. However, instead of terminating
compilation, the diagnostic message is generated, and compilation
continues as normal (unless other command line options disable the
warnings or upgrade them into errors). The #error directive should be used
for fatal problems such as a missing library with no fallback
implementation, while the #warning directive should be used for nonfatal
problems such as a missing library with a low-quality fallback
implementation.

Using Header Guards
One problem you’ll encounter when writing headers is preventing
programmers from including the same file twice in a translation unit. Given
that you can transitively include headers, you could easily include the same
header multiple times by accident (possibly even leading to infinite
recursion between headers).

Header guards ensure that a header is included only once per
translation unit. A header guard is a design pattern that conditionally
includes the contents of a header based on whether a header-specific macro
is defined. If the macro is not already defined, you define it so that a
subsequent test of the header guard won’t conditionally include the code. In
the program shown in Table 9-4, bar.h uses a header guard (shown in bold)
to prevent its (accidental) duplicate inclusion from foo.c.

Table 9-4: A Header Guard



Original sources Resulting translation unitOriginal sources Resulting translation unit

bar.h
#ifndef BAR_H
#define BAR_H
inline
int func() { return 1; }
#endif /* BAR_H */

inline
int func() { return 1; }

extern inline int func();

int main() {
  return func();
}foo.c

#include "bar.h"
#include "bar.h" // repeated inclusion is
                 // usually not this obvious

extern inline int func();

int main() {
  return func();
}

The first time that "bar.h" is included, the #ifndef test to see that
BAR_H is not defined will return true. We then define the macro BAR_H with
an empty replacement list, which is sufficient to define BAR_H, and the
function definition for func is included. The second time that "bar.h" is
included, the preprocessor won’t generate any tokens because the
conditional inclusion test will return false. Consequently, func is defined
only once in the resulting translation unit.

A common practice when picking the identifier to use as a header
guard is to use the salient parts of the file path, filename, and extension,
separated by an underscore and written in all capital letters. For example, if
you had a header that would be included with #include "foo/bar/baz.h",
you might choose FOO_BAR_BAZ_H as the header guard identifier.

Some IDEs will automatically generate the header guard for you. Avoid
using a reserved identifier as your header guard’s identifier, which could
introduce undefined behavior. Identifiers that begin with an underscore
followed by a capital letter are reserved. For example, _FOO_H is a reserved
identifier and a bad choice for a user-chosen header guard identifier, even if
you’re including a file named _foo.h. Using a reserved identifier can result
in a collision with a macro defined by the implementation, leading to a
compilation error or incorrect code.



Macro Definitions
The #define preprocessing directive defines a macro. You can use macros
to define constant values or function-like constructs with generic
parameters. The macro definition contains a (possibly empty) replacement
list—a code pattern that’s injected into the translation unit when the
preprocessor expands the macro:

#define identifier  replacement-list

The #define preprocessing directive is terminated with a newline. In
the following example, the replacement list for ARRAY_SIZE is 100:

#define ARRAY_SIZE 100 
int array[ARRAY_SIZE];

Here the ARRAY_SIZE identifier is replaced by 100. If no replacement
list is specified, the preprocessor simply removes the macro name. You can
typically specify a macro definition on your compiler’s command line—for
example, using the -D flag in Clang and GCC or the /D flag in Visual C++.
For Clang and GCC, the command line option -DARRAY_SIZE=100 specifies
that the macro identifier ARRAY_SIZE is replaced by 100, producing the same
result as the #define preprocessing directive from the previous example. If
you don’t specify the macro replacement list on the command line,
compilers will typically provide a replacement list. For example, -DFOO is
typically identical to #define FOO 1.

The scope of a macro lasts until the preprocessor encounters either an
#undef preprocessing directive specifying that macro or the end of the
translation unit. Unlike variable or function declarations, a macro’s scope is
independent of any block structure.

You can use the #define directive to define either an object-like macro
or a function-like macro. A function-like macro is parameterized and
requires passing a (possibly empty) set of arguments when you invoke it,
similar to how you would invoke a function. Unlike functions, macros let
you perform operations using the program’s symbols, which means you can
create a new variable name or reference the source file and line number at



which the macro is being invoked. An object-like macro is a simple
identifier that will be replaced by a code fragment.

Table 9-5 illustrates the difference between function-like and object-
like macros. FOO is an object-like macro that is replaced by the tokens (1 +
1) during macro expansion, and BAR is a function-like macro that is
replaced by the tokens (1 + (x)), where x is whatever parameter is
specified when invoking BAR.

Table 9-5: Macro Definition

Original source Resulting translation unit
#define FOO (1 + 1)
#define BAR(x) (1 + (x))

int i = FOO;
int j = BAR(10);
int k = BAR(2 + 2);

int i = (1 + 1);
int j = (1 + (10));
int k = (1 + (2 + 2));

The opening parenthesis of a function-like macro definition must
immediately follow the macro name, with no intervening whitespace. If a
space appears between the macro name and the opening parenthesis, the
parenthesis simply becomes part of the replacement list, as is the case with
the object-like FOO macro. The macro replacement list terminates with the
first newline character in the macro definition. However, you can join
multiple source lines with the backslash (\) character followed by a newline
to make your macro definitions easier to understand. For example, consider
the following definition of the cbrt type-generic macro that computes the
cube root of its floating-point argument:

#define cbrt(X) _Generic((X), \ 
  long double: cbrtl(X),      \ 
  default: cbrt(X),           \ 
  float: cbrtf(X)             \ 
)

That definition is equivalent to, but easier to read, than the following:



#define cbrt(X) _Generic((X), long double: cbrtl(X), defaul
t: cbrt(X), float: cbrtf(X))

One danger when defining a macro is you can no longer use the
macro’s identifier in the rest of the program without inducing a macro
replacement. For example, because of macro expansion, the following
invalid program won’t compile:

#define foo (1 + 1) 
void foo(int i);

This is because the tokens the preprocessor receives from the translator
result in the following invalid code:

void (1 + 1)(int i);

You can solve this problem by consistently adhering to an idiom
throughout your program, such as defining macro names with all uppercase
letters or prefixing all macro names with a mnemonic, as you might find in
some styles of Hungarian notation.

NOTE
Hungarian notation is an identifier-naming convention in which the name of
a variable or function indicates its intention or kind and, in some dialects,
its type.

After you’ve defined a macro, the only way to redefine it is to invoke
the #undef directive for the macro. Once you’ve undefined it, the named
identifier no longer represents a macro. For example, the program shown in
Table 9-6 defines a function-like macro, includes a header that uses the
macro, and then undefines the macro so that it can be redefined later.

Table 9-6: Undefining Macros

Original sources Resulting translation unit



Original sources Resulting translation unit
header.h
NAME(first)
NAME(second)
NAME(third)

enum Names {
  first,
  second,
  third,
};

void func(enum Names Name) {
  switch (Name){
    case first:
    case second:
    case third:
  }
}

file.c
enum Names {
#define NAME(X) X,
#include "header.h"
#undef NAME
};

void func(enum Names Name) {
  switch (Name) {
#define NAME(X) case X:
#include "header.h"
#undef NAME
  }
}

The first use of the NAME macro declares the names of enumerators
within the Names enumeration. The NAME macro is undefined and then
redefined to generate the case labels in a switch statement.

Undefining a macro is safe even when the named identifier isn’t the
name of a macro. This macro definition works regardless of whether NAME is
already defined. To keep examples short, we don’t normally follow this
practice in this book.

Macro Replacement
Function-like macros look like functions but behave differently. When the
preprocessor encounters a macro identifier, it invokes the macro, which
expands the identifier to replace it with the tokens from the replacement list,
if any, specified in the macro’s definition.

For function-like macros, the preprocessor replaces all parameters in
the replacement list with the corresponding arguments in the macro
invocation after expanding them. Any parameter in the replacement list
preceded by a # token is replaced with a string literal preprocessing token
that contains the text of the argument preprocessing tokens (a process



sometimes called stringizing). The STRINGIZE macro in Table 9-7 stringizes
the value of x.

Table 9-7: Stringizing

Original source Resulting translation unit
#define STRINGIZE(x) #x
const char *str = STRINGIZE(12);

const char *str = "12";

The preprocessor also deletes all instances of the ## preprocessing
token in the replacement list, concatenating the preceding preprocessing
token with the following token, which is called token pasting. The PASTE
macro in Table 9-8 is used to create a new identifier by concatenating foo,
the underscore character (_), and bar.

Table 9-8: Token Pasting

Original source Resulting translation unit
#define PASTE(x, y) x ## _ ## y
int PASTE(foo, bar) = 12;

int foo_bar = 12;

After expanding the macro, the preprocessor rescans the replacement
list to expand additional macros within it. If the preprocessor finds the name
of the macro being expanded while rescanning—including the rescanning
of nested macro expansions within the replacement list—it won’t expand
the name again. Furthermore, if macro expansion results in a fragment of
program text that’s identical to a preprocessing directive, that fragment
won’t be treated as a preprocessing directive.

During macro expansion, a repeated parameter name in the
replacement list will be replaced multiple times by the argument given in
the invocation. This can have surprising effects if the argument to the macro
invocation involves side effects, as shown in Table 9-9. This problem is
explained in detail in CERT C rule PRE31-C, <Avoid side effects in
arguments to unsafe macros.=

Table 9-9: Unsafe Macro Expansion

Original source Resulting translation unit



Original source Resulting translation unit
#define bad_abs(x) (x >= 0 ? x : -x)

int func(int i) {  }
  return bad_abs(i++);
}

int func(int i) {
  return (i++ >= 0 ? i++ : -i++);
}

In the macro definition in Table 9-9, each instance of the macro
parameter x is replaced by the macro invocation argument i++, causing i to
be incremented twice in a way that a programmer or reviewer reading the
original source code can easily overlook. Parameters like x in the
replacement list, as well as the replacement list itself, should usually be
fully parenthesized as in ((x) >= 0 ? (x) : -(x)) to prevent portions of
the argument x from associating with other elements of the replacement list
in unexpected ways.

GNU statement expressions allow you to use loops, switches, and local
variables within an expression. Statement expressions are a nonstandard
compiler extension supported by GCC, Clang, and other compilers. Using
statement expressions, you can rewrite the bad_abs(x) as follows:

#define abs(x) ({               \ 
  auto x_tmp = x;               \ 
  x_tmp >= 0 ? x_tmp : x_tmp;   \ 
})

You can safely invoke the abs(x) macro with side-effecting operands.
Another potential surprise is that a comma in a function-like macro

invocation is always interpreted as a macro argument delimiter. The C
standard ATOMIC_VAR_INIT macro (removed in C23) demonstrates the
danger (Table 9-10).

Table 9-10: The ATOMIC_VAR_INIT Macro

Original sources Resulting translation unit
stdatomic.h
#define ATOMIC_VAR_INIT(value) (value)

<error>



Original sources Resulting translation unit
foo.c
#include <stdatomic.h>

struct S {
  int x, y;
};

Atomic struct S val = ATOMIC_VAR_INIT({1, 2});

This code fails to translate because the comma in
ATOMIC_VAR_INIT({1, 2}) is treated as a function-like macro argument
delimiter, causing the preprocessor to interpret the macro as having two
syntactically invalid arguments {1 and 2} instead of a single valid argument
{1, 2}. This usability issue is one of the reasons the ATOMIC_VAR_INIT
macro was deprecated in C17 and removed in C23.

Type-Generic Macros
The C programming language doesn’t allow you to overload functions
based on the types of the parameters passed to the function, as you can in
other languages such as Java and C++. However, you might sometimes
need to alter the behavior of an algorithm based on the argument types. For
example, <math.h> has three sin functions (sin, sinf, and sinl) because
each of the three floating-point types (double, float, and long double,
respectively) has a different precision. Using generic selection expressions,
you can define a single function-like identifier that delegates to the correct
underlying implementation based on the argument type when called.

A generic selection expression maps the type of its unevaluated
operand expression to an associated expression. If none of the associated
types match, it can optionally map to a default expression. You can use
type-generic macros (macros that include generic selection expressions) to
make your code more readable. In Table 9-11, we define a type-generic
macro to select the correct variant of the sin function from <math.h>.

Table 9-11: A Generic Selection Expression as a Macro

Original source Resulting _Generic resolution



Original source Resulting _Generic resolution

#define singen(X) _Generic((X), \
  float: sinf,                  \
  double: sin                   \
  long double: sinl             \
)(X) 
 
int main() {
  printf("%f, %Lf\n",
    singen(3.14159),
    singen(1.5708L)
  );
}

int main() {
  printf("%f, %Lf\n",
    sin(3.14159),
    sinl(1.5708L)   
);
}

The controlling expression (X) of the generic selection expression is
unevaluated; the type of the expression selects a function from the list of
type : expr mappings. The generic selection expression picks one of these
function designators (either sinf, sin, or sinl) and then executes it. In this
example, the argument type in the first call to singen is double, so the
generic selection resolves to sin, and the argument type in the second call
to singen is long double, so this resolves to sinl. Because this generic
selection expression has no default association, an error occurs if the type
of (X) doesn’t match any of the associated types. If you include a default
association for a generic selection expression, it will match every type not
already used as an association, including types you might not expect, such
as pointers or structure types.

Type-generic macro expansion can be difficult to use when the
resulting value type depends on the type of an argument to the macro, as
with the singen example in Table 9-11. For instance, it can be a mistake to
call the singen macro and assign the result to an object of a specific type or
pass its result as an argument to printf because the necessary object type
or format specifier will depend on whether sin, sinf, or sinl is called. You
can find examples of type-generic macros for math functions in the C
standard library <tgmath.h> header.



C23 partially addressed this problem with the introduction of automatic
type inference using the auto type specifier, described in Chapter 2.
Consider using automatic type inference when initializing an object with a
type-generic macro to avoid unintentional conversions on initialization. For
example, the following file scope definitions

static auto a = sin(3.5f); 
static auto p = &a;

are interpreted as if they had been written as:

static float a = sinf(3.5f); 
static float *p = &a;

Effectively, a is a float and p is a float *.
In Table 9-12, we replace the types of the two variables declared in

main from Table 9-11 with the auto type specifier. This makes it easier to
invoke a type-generic macro, although it is not strictly necessary as the
programmer can also deduce the types. The auto type specifier is useful
when invoking a type-generic function-like macro where the type of the
resulting value depends on a macro parameter to avoid accidental type
conversion on initialization.

Table 9-12: Type-Generic Macros with Automatic Type Inference

Original source Resulting _Generic resolution

#define singen(X) _Generic((X), \
  float: sinf,                  \
  double: sin,                  \
  long double: sinl             \
)(X)
int main(void) {
auto f = singen(1.5708f);
auto d = singen(3.14159);
}

int main(void) {
  auto f = sinf(1.5708f);
  auto d = sin(3.14159);
}



You can also use the auto type specifier for declaring variables in type-
generic macros where you don’t know the type of the arguments.

Embedded Binary Resources
You may find that you need to dynamically load digital resources, such as
images, sounds, video, text files, or other binary data, at runtime. It may
instead be beneficial to load those resources at compile time so they can be
stored as part of the executable rather than dynamically loaded.

Prior to C23, there were two common approaches to embedding binary
resources into your program. For limited amounts of binary data, the data
could be specified as an initializer for a constant-size array. However, for
larger binary resources, this approach could introduce significant compile-
time overhead, so the use of a linker script or other postprocessing was
necessary to keep compile times reasonable.

C23 added the #embed preprocessor directive to embed a digital
resource directly into source code as if it were a comma-delimited list of
integer constants. The new directive allows an implementation to optimize
for better compile time efficiency when using the embedded constant data
as an array initializer. Using #embed, the implementation does not need to
parse each integer constant and comma token separately; it can inspect the
bytes directly and use a more efficient mapping of the resource.

Table 9-13 shows an example of embedding the binary resource file.txt
as the initializer for the buffer array declaration. For this example, file.txt
contains the ASCII text meow to keep the code listing short. Significantly
larger binary resources are typically embedded.

Table 9-13: Embedding Binary Resources

Original source Resulting translation unit
unsigned char buffer[] = {
#embed <file.txt>
};

unsigned char buffer[] = {
109, 101, 111, 119
};

Like #include, the filename specified in the #embed directive can be
listed within either angle brackets or double quotes. Unlike #include, there
is no notion of system or user embedded resources, so the only difference



between the two forms is that the double-quoted form will start searching
for the resource from the same directory as the source file before trying
other search paths. Compilers have a command line option to specify search
paths for embedded resources; see your compiler documentation for more
details.

The #embed directive supports several parameters to control what data
is embedded into the source file: limit, suffix, prefix, and if_empty. The
most useful of those parameters is the limit parameter, which specifies
how much data to embed (in bytes). This can be helpful if the only data
needed at compile time is in the header of the file or if the file is an infinite
resource like /dev/urandom in some operating systems. The prefix and
suffix parameters insert tokens before or after the embedded resource,
respectively, if the resource is found and is not empty. The if_empty
parameter inserts tokens if the embedded resource is found but has no
content (including when the limit parameter is explicitly set to 0).

Like __has_include, you can test whether an embedded resource can
be found using the __has_embed preprocessor operator. This operator
returns:

__STDC_EMBED_FOUND__ if the resource can be found and isn’t empty
__STDC_EMBED_EMPTY__ if the resource can be found and is empty
__STDC_EMBED_NOT_FOUND__ if the resource cannot be found

Predefined Macros
The implementation defines some macros without requiring you to include
a header. These macros are called predefined macros because they’re
implicitly defined by the preprocessor rather than explicitly defined by the
programmer. For example, the C standard defines various macros that you
can use to interrogate the compilation environment or provide basic
functionality. Some other aspects of the implementation (such as the
compiler or the compilation target operating system) also automatically
define macros. Table 9-14 lists some of the common macros the C standard
defines. You can obtain a full list of predefined macros from Clang or GCC
by passing the -E -dM flags to those compilers. Check your compiler
documentation for more information.



Table 9-14: Predefined Macros

Macro name Replacement and purpose
__DATE__ A string literal of the date of translation of the preprocessing

translation unit in the form Mmm dd yyyy.
__TIME__ A string literal of the time of translation for the preprocessing

translation unit in the form hh:mm:ss.
__FILE__ A string literal representing the presumed filename of the current

source file.
__LINE__ An integer constant representing the presumed line number of the

current source line.
__STDC__ The integer constant 1 if the implementation conforms to the C

standard.
__STDC_HOSTED__ The integer constant 1 if the implementation is a hosted

implementation or the integer constant 0 if it is stand-alone. This
macro is conditionally defined by the implementation.

__STDC_VERSION__ The integer constant representing the version of the C standard the
compiler is targeting, such as 202311L for the C23 standard.

__STDC_UTF_16__ The integer constant 1 if values of type char16_t are UTF-16
encoded. This macro is conditionally defined by the implementation.

__STDC_UTF_32__ The integer constant 1 if values of type char32_t are UTF-32
encoded. This macro is conditionally defined by the implementation.

__STDC_NO_ATOMICS__ The integer constant 1 if the implementation doesn’t support atomic
types, including the _Atomic type qualifier, and the <stdatomic.h>
header. This macro is conditionally defined by the implementation.

__STDC_NO_COMPLEX__ The integer constant 1 if the implementation doesn’t support
complex types or the <complex.h> header. This macro is conditionally
defined by the implementation.

__STDC_NO_THREADS__ The integer constant 1 if the implementation doesn’t support the
<threads.h> header. This macro is conditionally defined by the
implementation.

__STDC_NO_VLA__ The integer constant 1 if the implementation doesn’t support
variable-length arrays. This macro is conditionally defined by the
implementation.

Summary
In this chapter, you learned about some of the features provided by the
preprocessor. You learned how to include fragments of program text in a
translation unit, conditionally compile code, embed binary resources into
your program, and generate diagnostics on demand. You then learned how



to define and undefine macros, how macros are invoked, and about macros
that are predefined by the implementation. The preprocessor is popular in C
language programming but shunned in C++ programming. Use of the
preprocessor can be error prone, so it is best to follow the recommendations
and rules from The CERT C Coding Standard.

In the next chapter, you’ll learn how to structure your program into
more than one translation unit to create more maintainable programs.



10
PROGRAM STRUCTURE

with Aaron Ballman

Any real-world system is made up of
multiple components, such as source

files, headers, and libraries. Many contain resources
including images, sounds, and configuration files.
Composing a program from smaller logical
components is good software engineering practice,
because these components are easier to manage than
a single large file.

In this chapter, you’ll learn how to structure your program into multiple
units consisting of both source and include files. You’ll also learn how to
link multiple object files together to create libraries and executable files.

Principles of Componentization
Nothing prevents you from writing your entire program within the main
function of a single source file. However, as the function grows, that
approach will quickly become unmanageable. For this reason, it makes
sense to decompose your program into a collection of components that
exchange information across a shared boundary, or interface. Organizing



source code into components makes it easier to understand and allows you
to reuse the code elsewhere in the program, or even with other programs.

Understanding how best to decompose a program typically requires
experience. Many of the decisions programmers make are driven by
performance. For example, you may need to minimize communication over
a high-latency interface. Bad hardware can only go so far; you need bad
software to really screw up performance.

Performance is only one software quality attribute (ISO/IEC
25000:2014) and must be balanced with maintainability, code readability,
understandability, safety, and security. For example, you may design a client
application to handle input field validation from the user interface to avoid
a round trip to the server. This helps performance but can hurt security if
inputs to the server are not validated. A simple solution is to validate inputs
in both locations.

Developers frequently do strange things for illusionary gains. The
strangest of these is invoking the undefined behavior of signed integer
overflow to improve performance. Frequently, these local code
optimizations have no impact on overall system performance and are
considered premature optimizations. Donald Knuth, author of The Art of
Computer Programming (Addison-Wesley, 1997), described premature
optimization as <the root of all evil.=

In this section, we’ll cover some principles of component-based
software engineering.

Coupling and Cohesion
In addition to performance, the aim of a well-structured program is to
achieve desirable properties like low coupling and high cohesion. Cohesion
is a measure of the commonality between elements of a programming
interface. Assume, for example, that a header exposes functions for
calculating the length of a string, calculating the tangent of a given input
value, and creating a thread. This header has low cohesion because the
exposed functions are unrelated to each other. Conversely, a header that
exposes functions to calculate the length of a string, concatenate two strings
together, and search for a substring within a string has high cohesion
because all the functionality is related. This way, if you need to work with



strings, you need only to include the string header. Similarly, related
functions and type definitions that form a public interface should be
exposed by the same header to provide a highly cohesive interface of
limited functionality. We’ll discuss public interfaces further in <Data
Abstractions= on page 215.

Coupling is a measure of the interdependency of programming
interfaces. For example, a tightly coupled header can’t be included in a
program by itself; instead, it must be included with other headers in a
specific order. You may couple interfaces for a variety of reasons, such as a
mutual reliance on data structures, interdependence between functions, or
the use of a shared global state. But when interfaces are tightly coupled,
modifying program behavior becomes difficult because changes can have a
ripple effect across the system. You should always strive to have loose
coupling between interface components, regardless of whether they’re
members of a public interface or implementation details of the program.

By separating your program logic into distinct, highly cohesive
components, you make it easier to reason about the components and test the
program (because you can verify the correctness of each component
independently). The result is a more maintainable, less buggy system.

Code Reuse
Code reuse is the practice of implementing functionality once and then
reusing it in various parts of the program without duplicating the code.
Code duplication can lead to subtly unexpected behavior, oversized and
bloated executables, and increased maintenance costs. And anyway, why
write the same code more than once?

Functions are the lowest-level reusable units of functionality. Any logic
that you might repeat more than once is a candidate for encapsulating in a
function. If the functionality has only minor differences, you might be able
to create a parameterized function that serves multiple purposes. Each
function should perform work that isn’t duplicated by any other function.
You can then compose individual functions to solve increasingly
sophisticated problems.

Packaging reusable logic into functions can improve maintainability
and eliminate defects. For example, though you could determine the length



of a null-terminated string by writing a simple for loop, it’s more
maintainable to use the strlen function from the C standard library.
Because other programmers are already familiar with the strlen function,
they’ll have an easier time understanding what that function is doing than
what the for loop is doing. Furthermore, if you reuse existing functionality,
you’re less likely to introduce behavioral differences in ad hoc
implementations, and you make it easier to globally replace the
functionality with a better-performing algorithm or more secure
implementation, for example.

When designing functional interfaces, a balance must be struck
between generality and specificity. An interface that’s specific to the current
requirement may be lean and effective but hard to modify when
requirements change. A general interface might allow for future
requirements but be cumbersome for foreseeable needs.

Data Abstractions
A data abstraction is any reusable software component that enforces a clear
separation between the abstraction’s public interface and the
implementation details. The public interface for each data abstraction
includes the data type definitions, function declarations, and constant
definitions required by the users of the data abstraction and is placed in
headers. The implementation details of how the data abstraction is coded, as
well as any private utility functions, are hidden within source files or in
headers that are in a separate location from the public interface headers.
This separation of the public interface from the private implementation
allows you to change the implementation details without breaking code that
depends on your component.

Header files typically contain function declarations and type definitions
for the component. For example, the C standard library <string.h> header
provides the public interface for string-related functionality, while
<threads.h> provides utility functions for threading. This logical
separation has low coupling and high cohesion, making it easier to access
only the specific components you need and reduce compile time and the
likelihood of name collisions. You don’t need to know anything about



threading application programming interfaces (APIs), for example, if all
you need is the strlen function.

Another consideration is whether you should explicitly include the
headers required by your header or require the users of the header to include
them first. It’s a good idea for data abstractions to be self-contained and
include the headers they use. Not doing so is a burden on the users of the
abstraction and leaks implementation details about the data abstraction.
Examples in this book don’t always follow this practice to keep these file
listings concise.

Source files implement the functionality declared by a given header or
the application-specific program logic used to perform whatever actions are
needed for a given program. For example, if you have a network.h header
that describes a public interface for network communications, you may
have a network.c source file (or network_win32.c for Windows only and
network _linux.c for Linux only) that implements the network
communication logic.

It’s possible to share implementation details between two source files
by using a header, but the header file should be placed in a distinct location
from the public interface to prevent accidentally exposing implementation
details.

A collection is a good example of a data abstraction that separates the
basic functionality from the implementation or underlying data structure. A
collection groups data elements and supports operations such as adding
elements to the collection, removing data elements from the collection, and
checking whether the collection contains a specific data element.

There are many ways to implement a collection. For example, a
collection of data elements may be represented as a flat array, a binary tree,
a directed (possibly acyclic) graph, or a different structure. The choice of
data structure can impact an algorithm’s performance, depending on what
kind of data you’re representing and how much data there is to represent.
For example, a binary tree may be a better abstraction for a large amount of
data that needs good lookup performance, whereas a flat array is likely a
better abstraction for a small amount of data of fixed size. Separating the
interface of the collection data abstraction from the implementation of the



underlying data structure allows the implementation to change without
requiring changes to code that relies on the collection interface.

Opaque Types
Data abstractions are most effective when used with opaque data types that
hide information. In C, opaque (or private) data types are those expressed
using an incomplete type, such as a forward-declared structure type. An
incomplete type is a type that describes an identifier but lacks information
needed to determine the size of objects of that type or their layout. Hiding
internal-only data structures discourages programmers who use the data
abstraction from writing code that depends on implementation details,
which may change. The incomplete type is exposed to users of the data
abstraction, while the fully defined type is accessible only to the
implementation.

Say we want to implement a collection that supports a limited number
of operations, such as adding an element, removing an element, and
searching for an element. The following example implements
collection_type as an opaque type, hiding the implementation details of
the data type from the library’s user. To accomplish this, we create two
headers: an external collection.h header included by the user of the data
type and an internal header included only in files that implement the
functionality of the data type.

collection.h

typedef struct collection * collection_type; 
// function declarations 
extern errno_t create_collection(collection_type *result); 
extern void destroy_collection(collection_type col); 
extern errno_t add_to_collection( 
  collection_type col, const void *data, size_t byteCount 
); 
extern errno_t remove_from_collection( 
  collection_type col, const void *data, size_t byteCount 
); 
extern errno_t find_in_collection( 
  const collection_type col, const void *data, size_t byteCo
unt 



); 
//  --snip--

The collection_type identifier is aliased to struct collection_type
(an incomplete type). Consequently, functions in the public interface must
accept a pointer to this type, instead of an actual value type, because of the
constraints placed on the use of incomplete types in C.

In the internal header, struct collection_type is fully defined but
not visible to a user of the data abstraction:

collection_priv.h

struct node_type { 
  void *data; 
  size_t size; 
  struct node_type *next; 
}; 
 
struct collection_type { 
  size_t num_elements; 
  struct node_type *head; 
};

Users of the data abstraction include only the external collection.h file,
whereas modules that implement the abstract data type also include the
internal definitions collection_priv.h file. This allows the implementation of
the collection_type data type to remain private.

Executables
In Chapter 9, we learned that the compiler is a pipeline of translation phases
and that the compiler’s ultimate output is object code. The last phase of
translation, called the link phase, takes the object code for all the translation
units in the program and links them together to form a final executable.
This can be an executable that a user can run, such as a.out or foo.exe, a
library, or a more specialized program such as a device driver or a firmware
image (machine code to be burned onto read-only memory [ROM]).



Linking allows you to separate your code into distinct source files that can
be compiled independently, which helps to build reusable components.

Libraries are executable components that cannot be executed
independently. Instead, you incorporate libraries into executable programs.
You can invoke the functionality of the library by including the library’s
headers in your source code and calling the declared functions. The C
standard library is an example of a library4you include the headers from
the library, but you do not directly compile the source code that implements
the library functionality. Instead, the implementation ships with a prebuilt
version of the library code.

Libraries allow you to build on the work of others for the generic
components of a program so you can focus on developing the logic that is
unique to your program. For example, when writing a video game, reusing
existing libraries should allow you to focus on developing the game logic,
not worrying about the details of retrieving user input, network
communications, or graphics rendering. Libraries compiled with one
compiler can often be used by programs built with a different compiler.

Libraries are linked into your application and can be either static or
dynamic. A static library, also known as an archive, incorporates its
machine or object code directly into the resulting executable, which means
that a static library is often tied to a specific release of the program.
Because a static library is incorporated at link time, the contents of the
static library can be further optimized for your program’s use of the library.
Library code used by the program can be made available for link-time
optimizations (for example, using the -flto flag), while unused library
code can be stripped from the final executable.

A dynamic library, also referred to as a shared library or a dynamic
shared object, is an executable without the startup routines. It can be
packaged with the executable or installed separately but must be available
when the executable calls a function provided by the dynamic library. Many
modern operating systems will load the dynamic library code into memory
once and share it across all the applications that need it. You can replace a
dynamic library with different versions as necessary after your application
has been deployed.



Letting the library evolve separately from the program comes with its
own set of benefits and risks. A developer can correct bugs in the library
after an application has already shipped without requiring the application to
be recompiled, for instance. However, dynamic libraries provide the
potential opportunity for a malicious attacker to replace a library with a
nefarious one or an end user to accidentally use an incorrect version of the
library. It’s also possible to make a breaking change in a new library release
that results in an incompatibility with existing applications that use the
library. Static libraries might execute somewhat faster because the object
code (binary) is included in the executable file, enabling further
optimizations. The benefits of using dynamic libraries usually outweigh the
disadvantages.

Each library has one or more headers that contain the public interface
to the library and one or more source files that implement the logic for the
library. You can benefit from structuring your code as a collection of
libraries even if the components aren’t turned into actual libraries. Using an
actual library makes it harder to accidentally design a tightly coupled
interface where one component has special knowledge of the internal
details of another component.

Linkage
Linkage is a process that controls whether an interface is public or private
and determines whether any two identifiers refer to the same entity.
Ignoring macros and macro parameters that are replaced early in the
translation phases, an identifier can denote a standard attribute, an attribute
prefix, or an attribute name; an object; a function; a tag or a member of a
structure, union, or enumeration; a typedef name; or a label name.

C provides three kinds of linkage: external, internal, or none. Each
declaration of an identifier with external linkage refers to the same function
or object everywhere in the program. Identifiers referring to declarations
with internal linkage refer to the same entity only within the translation unit
containing the declaration. If two translation units both refer to the same
internal linkage identifier, they refer to different instances of the entity. If a
declaration has no linkage, it’s a unique entity in each translation unit.



The linkage of a declaration is either explicitly declared or implied. If
you declare an entity at file scope without explicitly specifying extern or
static, the entity is implicitly given external linkage. Identifiers that have
no linkage include function parameters, block scope identifiers declared
without an extern storage class specifier, or enumeration constants.

Listing 10-1 shows examples of declarations of each kind of linkage.

static int i; // i has explicit internal linkage 
extern void foo(int j) { 
  // foo has explicit external linkage 
  // j has no linkage because it is a parameter 
}

Listing 10-1: Examples of internal, external, and no linkage

If you explicitly declare an identifier with the static storage class
specifier at file scope, it has internal linkage. The static keyword gives
internal linkage only to file scope entities. Declaring a variable at block
scope as static creates an identifier with no linkage, but it does give the
variable static storage duration. As a reminder, static storage duration
means its lifetime is the entire execution of the program, and its stored
value is initialized only once, prior to program startup. The different
meanings of static when used in different contexts are obviously confusing
and consequently a common interview question.

You can create an identifier with external linkage by declaring it with
the extern storage class specifier. This works only if you haven’t
previously declared the linkage for that identifier. The extern storage class
specifier has no effect if a prior declaration gave the identifier linkage.

Declarations with conflicting linkage can lead to undefined behavior;
see CERT C rule DCL36-C, <Do not declare an identifier with conflicting
linkage classifications,= for more information.

Listing 10-2 shows sample declarations with implicit linkage.

foo.c

void func(int i) {// implicit external linkage 
  // i has no linkage 



} 
static void bar(); // internal linkage, different bar from b
ar.c 
extern void bar() { 
  // bar still has internal linkage because the initial decl
aration 
  // was declared as static; this extern specifier has no ef
fect 
}

Listing 10-2: Examples of implicit linkage

Listing 10-3 shows sample declarations with explicit linkage.

bar.c

extern void func(int i); // explicit external linkage 
static void bar() {  // internal linkage; different bar from 
foo.c 
  func(12); // calls func from foo.c 
} 
int i; // external linkage; doesn’t conflict with i from fo
o.c or bar.c 
void baz(int k) {// implicit external linkage 
  bar(); // calls bar from bar.c, not foo.c 
}

Listing 10-3: Examples of explicit linkage

The identifiers in your public interface should have external linkage so
that they can be called from outside their translation unit. Identifiers that are
implementation details should be declared with internal or no linkage
(provided they don’t need to be referenced from another translation unit). A
common approach to achieving this is to declare your public interface
functions in a header with or without using the extern storage class
specifier (the declarations implicitly have external linkage, but there is no
harm in explicitly declaring them with extern) and define the public
interface functions in a source file in a similar manner.

However, within the source file, all declarations that are
implementation details should be explicitly declared static to keep them



private4accessible to just that source file. You can include the public
interface declared within the header by using the #include preprocessor
directive to access its interface from another file. A good rule of thumb is
that file-scope entities that don’t need to be visible outside the file should be
declared as static. This practice limits the global namespace pollution and
decreases the chances of surprising interactions between translation units.

Structuring a Simple Program
To learn how to structure a complex, real-world program, let’s develop a
simple program to determine whether a number is prime. A prime number
(or a prime) is a natural number that cannot be formed by multiplying two
smaller natural numbers. We’ll write two separate components: a static
library containing the testing functionality and a command line application
that provides a user interface for the library.

The primetest program accepts a whitespace-delimited list of integer
values as input and then outputs whether each value is a prime number. If
any of the inputs are invalid, the program will output a helpful message
explaining how to use the interface.

Before exploring how to structure the program, let’s examine the user
interface. First, we print the help text for the command line program, as
shown in Listing 10-4.

// print command line help text 
static void print_help() { 
  puts("primetest num1 [num2 num3 ... numN]\n"); 
  puts("Tests positive integers for primality."); 
  printf("Tests numbers in the range [2-%llu].\n", ULLONG_MA
X); 
}

Listing 10-4: Printing help text

The print_help function prints usage information about how to use
the command to the standard output.

Next, because the command line arguments are passed to the program
as textual input, we define a utility function to convert them to integer



values, as shown in Listing 10-5.

// converts a string argument arg to an unsigned long long v
alue referenced by val 
// returns true if the argument conversion succeeds and fals
e if it fails 
static bool convert_arg(const char *arg, unsigned long long
 *val) { 
  char *end; 
 
  // strtoull returns an in-band error indicator; clear errn
o before the call 
  errno = 0; 
  *val = strtoull(arg, &end, 10); 
 
  // check for failures where the call returns a sentinel va
lue and sets errno 
  if ((*val == ULLONG_MAX) && errno) return false; 
  if (*val == 0 && errno) return false; 
  if (end == arg) return false; 
 
  // If we got here, the argument conversion was successful. 
  // However, we want to allow only values greater than one, 
  // so we reject values <= 1. 
  if (*val <= 1) return false; 
  return true; 
}

Listing 10-5: Converting a single command line argument

The convert_arg function accepts a string argument as input and uses
an output parameter to report the converted argument. An output parameter
returns a function result to the caller via a pointer, allowing multiple values
to be returned in addition to the function return value. The function returns
true if the argument conversion succeeds and false if it fails. The
convert_arg function uses the strtoull function to convert the string to an
unsigned long long integer value and takes care to properly handle
conversion errors. Additionally, because the definition of a prime number



excludes 0, 1, and negative values, the convert_arg function treats those as
invalid inputs.

We use the convert_arg utility function in the
convert_cmd_line_args function, shown in Listing 10-6, which loops over
all the command line arguments provided and attempts to convert each
argument from a string to an integer.

static unsigned long long *convert_cmd_line_args(int argc, 
                                                 const char
 *argv[], 
                                                 size_t *num
_args) { 
  *num_args = 0; 
 
  if (argc <= 1) { 
    // no command line arguments given (the first argument i
s the 
    // name of the program being executed) 
    print_help(); 
    return nullptr; 
  } 
 
  // We know the maximum number of arguments the user could
 have passed, 
  // so allocate an array large enough to hold all the eleme
nts. Subtract 
  // one for the program name itself. If the allocation fail
s, treat it as 
  // a failed conversion (it is OK to call free(nullptr)). 
  unsigned long long *args = 
      (unsigned long long *)malloc(sizeof(unsigned long lon
g) * (argc - 1)); 
  bool failed_conversion = (args == nullptr); 
  for (int i = 1; i < argc && !failed_conversion; ++i) { 
    // Attempt to convert the argument to an integer. If we 
    // couldn't convert it, set failed_conversion to true. 
    unsigned long long one_arg; 
    failed_conversion |= !convert_arg(argv[i], &one_arg); 
    args[i - 1] = one_arg; 



  } 
 
  if (failed_conversion) { 
    // free the array, print the help, and bail out 
    free(args); 
    print_help(); 
    return nullptr; 
  } 
 
  *num_args = argc - 1; 
  return args; 
}

Listing 10-6: Processing all the command line arguments

If any argument fails to convert, it calls the print_help function to
report the proper command line usage to the user and then returns a null
pointer. This function is responsible for allocating a sufficiently large buffer
to hold the array of integers. It also handles all error conditions, such as
running out of memory or failing to convert an argument. If the function
succeeds, it returns an array of integers to the caller and writes the
converted number of arguments into the num_args parameter. The returned
array is allocated storage and must be deallocated when no longer needed.

There are several ways to determine whether a number is prime. The
naive approach is to test a value N by determining whether it is evenly
divisible by [2..N 3 1]. This approach has poor performance characteristics
as the value of N gets larger. Instead, we’ll use one of the many algorithms
designed for testing primality. Listing 10-7 shows a nondeterministic
implementation of the Miller-Rabin primality test that’s suitable for quickly
testing whether a value is probably prime (Schoof 2008). Please see the
Schoof paper for an explanation of the mathematics behind the Miller-
Rabin primality test algorithm.

static unsigned long long power(unsigned long long x, unsign
ed long long y, 
                                unsigned long long p) { 
  unsigned long long result = 1; 
  x %= p; 



 
  while (y) { 
    if (y & 1) result = (result * x) % p; 
    y >>= 1; 
    x = (x * x) % p; 
  } 
  return result; 
} 
 
static bool miller_rabin_test(unsigned long long d, unsigned 
long long n) { 
  unsigned long long a = 2 + rand() % (n - 4); 
  unsigned long long x = power(a, d, n); 
 
  if (x == 1 || x == n - 1) return true; 
 
  while (d != n - 1) { 
    x = (x * x) % n; 
    d *= 2; 
 
    if (x == 1) return false; 
    if (x == n - 1) return true; 
  } 
  return false; 
}

Listing 10-7: The Miller-Rabin primality test algorithm

The interface to the Miller-Rabin primality test is the is_prime
function shown in Listing 10-8. This function accepts two arguments: the
number to test (n) and the number of times to perform the test (k). Larger
values of k provide a more accurate result but worsen performance. We’ll
place the algorithm from Listing 10-6 in a static library, along with the
is_prime function, which will provide the library’s public interface.

bool is_prime(unsigned long long n, unsigned int k) { 
  if (n <= 1 || n == 4) return false; 
  if (n <= 3) return true; 
 
  unsigned long long d = n - 1; 



  while (d % 2 == 0) d /= 2; 
 
  for (; k != 0; --k) { 
    if (!miller_rabin_test(d, n)) return false; 
  } 
  return true; 
}

Listing 10-8: The interface to the Miller-Rabin primality test algorithm

Finally, we need to compose these utility functions into a program.
Listing 10-9 shows the implementation of the main function. It uses a fixed
number of iterations of the Miller-Rabin test and reports whether the input
values are probably prime or definitely not prime. It also handles
deallocating the memory allocated by convert_cmd_line_args.

int main(int argc, char *argv[]) { 
  size_t num_args; 
  unsigned long long *vals = convert_cmd_line_args(argc, arg
v, &num_args); 
 
  if (!vals) return EXIT_FAILURE; 
 
  for (size_t i = 0; i < num_args; ++i) { 
    printf("%llu is %s.\n", vals[i], 
           is_prime(vals[i], 100) ? "probably prime" : "not
 prime"); 
  } 
 
  free(vals); 
  return EXIT_SUCCESS; 
}

Listing 10-9: The main function

The main function calls the convert_cmd_line_args function to
convert the command line arguments into an array of unsigned long long
integers. For each argument in this array, the program loops, calling
is_prime to determine whether each value is probably prime or not prime



using the Miller-Rabin primality test implemented by the is_prime
function.

Now that we’ve implemented the program logic, we’ll produce the
required build artifacts. Our goal is to produce a static library containing the
Miller-Rabin implementation and a command line application driver.

Building the Code
Create a new file named isprime.c with the code from Listings 10-8 and 10-
9 (in that order), adding the #include directives for "isprime.h" and
<stdlib.h> at the top of the file. The quotes and angle brackets
surrounding the headers are important for telling the preprocessor where to
search for those files, as discussed in Chapter 9. Next, create a header
named isprime.h with the code from Listing 10-10 to provide the public
interface for the static library, with a header guard.

#ifndef PRIMETEST_IS_PRIME_H 
#define PRIMETEST_IS_PRIME_H 
 
bool is_prime(unsigned long long n, unsigned k); 
 
#endif // PRIMETEST_IS_PRIME_H

Listing 10-10: The public interface for the static library

Create a new file named driver.c with the code from Listings 10-5, 10-
6, 10-7, and 10-10 (in that order), adding the #include directives for the
following: "isprime.h", <assert.h>, <errno.h>, <limits.h>, <stdio.h>,
and <stdlib.h> at the top of the file. All three files are in the same
directory in our example, but in a real-world project, you would likely put
the files in different directories, depending on the conventions of your build
system. Create a local directory named bin, which is where the build
artifacts from this example will be created.

We use Clang to create the static library and executable program, but
both GCC and Clang support the command line arguments in the example,
so either compiler will work. First, compile both C source files into object
files placed in the bin directory:



% cc -c -std=c23 -Wall -Wextra -pedantic isprime.c -o bin/is
prime.o  
% cc -c -std=c23 -Wall -Wextra -pedantic driver.c -o bin/dri
ver.o

For older compilers, it may be necessary to replace -std=c23 with -
std=c2x.

If you execute the command and get an error such as

unable to open output file 'bin/isprime.o': 'No such file or 
directory'

then create the local bin directory and try the command again. The -c flag
instructs the compiler to compile the source into an object file without
invoking the linker to produce executable output. We’ll need the object files
to create a library. The -o flag specifies the pathname of the output file.

After executing the commands, the bin directory should contain two
object files: isprime.o and driver.o. These files contain the object code for
each translation unit. You could link them together directly to create the
executable program. However, in this case, we’ll make a static library. To
do this, execute the ar command to generate the static library named
libPrimalityUtilities.a in the bin directory:

% ar rcs bin/libPrimalityUtilities.a bin/isprime.o

The r option instructs the ar command to replace any existing files in
the archive with the new files, the c option creates the archive, and the s
option writes an object-file index into the archive (which is equivalent to
running the ranlib command). This creates a single archive file that’s
structured to allow retrieval of the original object files used to create the
archive, like a compressed tarball or ZIP file. By convention, static libraries
on Unix systems are prefixed with lib and have a .a file extension.

You can now link the driver object file to the libPrimalityUtilities.a
static library to produce an executable named primetest. This can be
accomplished either by invoking the compiler without the -c flag, which



invokes the default system linker with the appropriate arguments, or by
invoking the linker directly. Invoke the compiler to use the default system
linker as follows:

% cc bin/driver.o -Lbin -lPrimalityUtilities -o bin/primetes
t

The -L flag instructs the linker to look in the local bin directory for
libraries to link, and the -l flag instructs the linker to link the
libPrimalityUtilities.a library to the output. Omit the lib prefix and the .a
suffix from the command line argument because the linker adds them
implicitly. For example, to link against the libm math library, specify -lm as
the link target. As with compiling source files, the output of the linked files
is specified by the -o flag.

You can now test the program to see whether values are probably prime
or definitely not prime. Be sure to try out cases like negative numbers,
known prime and nonprime numbers, and incorrect input, as shown in
Listing 10-11.

% ./bin/primetest 899180  
899180 is not prime 
% ./bin/primetest 8675309  
8675309 is probably prime 
% ./bin/primetest 0  
primetest num1 [num2 num3 ... numN] 
 
Tests positive integers for primality. 
Tests numbers in the range [2-18446744073709551615].

Listing 10-11: Running the primetest program with sample input

The number 8,675,309 is prime.

Summary
In this chapter, you learned about the benefits of loose coupling, high
cohesion, data abstractions, and code reuse. Additionally, you learned about



related language constructs such as opaque data types and linkage. You
were introduced to some best practices on how to structure the code in your
projects and saw an example of building a simple program with different
types of executable components. These skills are important as you transition
from writing practice programs to developing and deploying real-world
systems.

In the next chapter, we’ll learn how to use various tools and techniques
to create high-quality systems, including assertions, debugging, testing, and
static and dynamic analysis. These skills are all necessary to develop safe,
secure, and performant modern systems.



11
DEBUGGING, TESTING, AND ANALYSIS

This final chapter describes tools and
techniques for producing correct,

effective, safe, secure, and robust programs,
including static (compile-time) and runtime
assertions, debugging, testing, static analysis, and
dynamic analysis. The chapter also discusses which
compiler flags are recommended for use in different
phases of the software development process.

This chapter marks a transition point from learning to program in C to
professional C programming. Programming in C is relatively easy, but
mastering C programming is a lifetime endeavor. Modern C programming
requires a disciplined approach to develop and deploy safe, secure, and
performant systems.

Assertions
An assertion is a function with a Boolean value, known as a predicate,
which expresses a logical proposition about a program. You use an assertion
to verify that a specific assumption you made during the implementation of
your program remains valid. C supports static assertions that can be
checked at compile time using static_assert and runtime assertions that



are checked during program execution using assert. The assert macro is
defined in the <assert.h> header. In C23, static_assert is a keyword. In
C11, static_assert was provided as a macro in <assert.h>. Prior to that,
C did not have static assertions.

Static Assertions
Static assertions can be expressed using the static_assert keyword as
follows:

static_assert(integer-constant-expression, string-literal);

Since C23, static_assert also accepts a single-argument form:

static_assert(integer-constant-expression);

If the value of the integer constant expression is not equal to 0, the
static_assert declaration has no effect. If the integer constant expression
is equal to 0, the compiler will produce a diagnostic message with the text
of the string literal, if present.

You can use static assertions to validate assumptions at compile time,
such as specific implementation-defined behaviors. Any change in
implementation-defined behavior will then be diagnosed at compilation.

Let’s look at three examples of using static assertions. First, in Listing
11-1, we use static_assert to verify that struct packed has no padding
bytes.

struct packed { 
  int i; 
  char *p; 
}; 
 
static_assert( 
  sizeof(struct packed) == sizeof(int) + sizeof(char *), 
  "struct packed must not have any padding" 
);



Listing 11-1: Asserting the absence of padding bytes

The predicate for the static assertion in this example tests that the size
of the packed structure is the same as the combined size of its int and char
* members. For example, on x86-32, both int and char * are 4 bytes, and
the structure is not padded, but on x86-64, int is 4 bytes, char * is 8 bytes,
and the compiler adds 4 padding bytes between the two fields.

A good use of static assertions is to document all your assumptions
concerning implementation-defined behavior. This will prevent the code
from compiling when porting to another implementation where those
assumptions are invalid.

Because a static assertion is a declaration, it can appear at file scope,
immediately following the definition of the struct whose property it
asserts.

For the second example, the clear_stdin function, shown in Listing
11-2, calls the getchar function to read characters from stdin until the end
of the file is reached.

#include <stdio.h> 
#include <limits.h> 
 
void clear_stdin() { 
  int c; 
 
  do { 
    c = getchar(); 
    static_assert( 
      sizeof(unsigned char) < sizeof(int), 
      "FIO34-C violation" 
    ); 
  } while (c != EOF); 
}

Listing 11-2: Using static_assert to verify integer sizes

Each character is obtained as an unsigned char converted to an int.
It’s common practice to compare the character returned by the getchar
function with EOF, often in a do...while loop, to determine when all the



available characters have been read. For this function loop to work
correctly, the terminating condition must be able to differentiate between a
character and EOF. However, the C standard allows for unsigned char and
int to have the same range, meaning that on some implementations, this
test for EOF could return false positives, in which case the do...while loop
may terminate early. Because this is an unusual condition, you can use
static_assert to validate that the do...while loop can properly
distinguish between valid characters and EOF.

In this example, the static assertion verifies that sizeof(unsigned
char) < sizeof(int). The static assertion is placed near the code that
depends on this assumption being true so that you can easily locate the code
that will need to be repaired if the assumption is violated. Because static
assertions are evaluated at compile time, placing them within executable
code has no impact on the runtime efficiency of the program. See the CERT
C rule FIO34-C, <Distinguish between characters read from a file and EOF
or WEOF,= for more information on this topic.

Finally, in Listing 11-3, we use static_assert to perform compile-
time bounds checking.

static const char prefix[] = "Error No: "; 
constexpr int size = 14; 
char str[size]; 
 
// ensure that str has sufficient space to store at 
// least one additional character for an error code 
static_assert( 
  sizeof(str) > sizeof(prefix), 
  "str must be larger than prefix" 
); 
strcpy(str, prefix);

Listing 11-3: Using static_assert to perform bounds checking

This code snippet uses strcpy to copy a constant string prefix to a
statically allocated array str. The static assertion ensures that str has
sufficient space to store at least one additional character for an error code
following the call to strcpy.



This assumption may become invalid if a developer, for example,
reduced size or changed the prefix string to "Error Number: " during
maintenance. Having added the static assertion, the maintainer would now
be warned about the problem.

Remember that the string literal is a message for the developer or
maintainer and not an end user of the system. It’s intended to provide
information useful for debugging.

Runtime Assertions
The assert macro injects runtime diagnostic tests into programs. It’s
defined in the <assert.h> header file and takes a scalar expression as a
single argument:

#define assert(scalar-expression) /* implementation-defined
 */

The assert macro is implementation defined. If the scalar expression
is equal to 0, the macro expansion typically writes information about the
failing call (including the argument text, the name of the source file
__FILE__, the source line number __LINE__, and the name of the enclosing
function __func__) to the standard error stream stderr. After writing this
information to stderr, the assert macro calls the abort function.

The dup_string function shown in Listing 11-4 uses runtime assertions
to check that the size argument is less than or equal to LIMIT and that str
is not a null pointer.

void *dup_string(size_t size, char *str) { 
  assert(size <= LIMIT); 
  assert(str != nullptr); 
  // --snip--  
}

Listing 11-4: Using assert to verify program conditions

The messages from these assertions might take the following form:



Assertion failed: size <= LIMIT, function dup_string, file f
oo.c, line 122. 
Assertion failed: str != nullptr, function dup_string, file
 foo.c, line 123.

The implicit assumption is that the caller validates arguments before
calling dup_string so that the function is never called with invalid
arguments. The runtime assertions are then used to validate this assumption
during the development and test phases.

The assertion’s predicate expression is often reported in a failed
assertion message, which allows you to use && on a string literal with the
assertion predicate to generate additional debugging information when an
assertion fails. Doing so is always safe because string literals in C can never
have a null pointer value. For example, we can rewrite the assertions in
Listing 11-4 to have the same functionality but provide additional context
when the assertion fails, as shown in Listing 11-5.

void *dup_string(size_t size, char *str) { 
  assert(size <= LIMIT && "size is larger than the expected
 limit"); 
  assert(str != nullptr && "the caller must ensure str is no
t null"); 
  // --snip--  
}

Listing 11-5: Using assert with additional contextual information

You should disable assertions before code is deployed by defining the
NDEBUG macro (typically as a flag passed to the compiler). If NDEBUG is
defined as a macro name at the point in the source file where <assert.h> is
included, the assert macro is defined as follows:

#define assert(ignore) ((void)0)

The reason the macro does not expand empty is because if it did, then
code such as



assert(thing1) // missing semicolon 
assert(thing2);

would compile in release mode but not in debug mode. The reason it
expands to ((void) 0) rather than just 0 is to prevent warnings about
statements with no effect. The assert macro is redefined according to the
current state of NDEBUG each time that <assert.h> is included.

Use static assertions to check assumptions that can be checked at
compile time, and use runtime assertions to detect invalid assumptions
during testing. Because runtime assertions are typically disabled before
deployment, avoid using them to check for conditions that can come up
during normal operations, such as the following:

Invalid input
Errors opening, reading, or writing streams
Out-of-memory conditions from dynamic allocation functions
System call errors
Invalid permissions
You should instead implement these checks as normal error-checking

code that’s always included in the executable. Assertions should be used
only to validate preconditions, postconditions, and invariants designed into
the code (programming errors).

Compiler Settings and Flags
Compilers typically don’t enable optimization or security hardening by
default. Instead, you can enable optimization, error detection, and security
hardening using build flags (Weimer 2018). I recommend specific flags for
GCC, Clang, and Visual C++ in the next section, after first describing how
and why you might want to use them.

Select your build flags based on what you’re trying to accomplish.
Distinct phases of software development call for different compiler and
linker configurations. Some flags, such as the warnings, will be common to
all phases. Other flags, such as the debug or the optimization level, are
specific to each phase.



Build The goal of the build phase is to take full advantage of
compiler analysis to eliminate defects before debugging. Dealing with
numerous diagnostics at this stage can seem bothersome but is much
better than having to find these problems through debugging and
testing, or not finding them until after the code has shipped. During the
build phase, you should use compiler options that maximize
diagnostics to help you eliminate as many defects as possible.
Debug During debugging, you’re typically trying to determine why
your code isn’t working. To best accomplish this, use a set of compiler
flags that includes debug information, allows assertions to be useful,
and enables a quick turnaround time for the inevitable edit-compile-
debug cycle.
Test You may want to retain debug information and leave assertions
enabled during testing to assist in identifying the root cause of any
problems that are discovered. Runtime instrumentation can be injected
to help detect errors.
Profile-Guided Optimization This configuration defines compiler
and linker flags that control how the compiler adds runtime
instrumentation to the code it normally generates. One purpose of
instrumentation is to collect profiling statistics, which can be used to
find program hot spots for profile-guided optimizations.
Release The final phase is to build the code for deployment to its
operational environment. Before deploying the system, make sure you
thoroughly test your release configuration, because using a different set
of compilation flags can trigger new defects, for example, from latent
undefined behaviors or timing effects caused by optimization.

I’ll now cover some specific compiler and linker flags you might want
to use for your compiler and software development phase.

GCC and Clang Flags
Table 11-1 lists recommended compiler and linker options (aka flags) for
both GCC and Clang. You can find documentation for compiler and linker
options in the GCC manual (https://gcc.gnu.org/onlinedocs/gcc/Invoking-

https://gcc.gnu.org/onlinedocs/gcc/Invoking-GCC.xhtml


GCC.xhtml) and the Clang Compiler User’s Manual (https://clang.llvm.org
/docs/UsersManual.xhtml#command-line-options).

Table 11-1: Recommended Compiler and Linker Flags for GCC and Clang

Flag Purpose
-D_FORTIFY_SOURCE=2 Detect buffer overflows
-fpie -Wl,-pie Required for address space layout randomization
-fpic -shared Disable text relocations for shared libraries
-g3 Generate abundant debugging information
-O2 Optimize your code for speed/space efficiency
-Wall Turn on recommended compiler warnings
-Wextra Turn on even more recommended compiler warnings
-Werror Turn warnings into errors
-std=c23 Specify the language standard
-pedantic Issue warnings demanded by strict conformance to the

standard
-Wconversion Warn for implicit conversions that may alter a value
-Wl,-z,noexecstack Mark the stack segments as nonexecutable
-fstack-protector-
strong

Add stack protection to functions

-O
The uppercase letter -O flag controls compiler optimization. Most
optimizations are completely disabled at optimization level 0 (-O0). This is
the default when no optimization level has been set by a command line
option. Similarly, the -Og flag suppresses optimization passes that may
hinder the debugging experience.

Many diagnostics are issued by GCC only at higher optimization
levels, such as -02 or -Os. To ensure that issues are identified during
development, use the same (higher) optimization level you plan to adopt in
production during the compilation and analysis phase. Clang, on the other
hand, does not require the optimizer to issue diagnostics. As a result, Clang
can be run with optimizations disabled during the compilation/analysis and
debug phases.

https://gcc.gnu.org/onlinedocs/gcc/Invoking-GCC.xhtml
https://clang.llvm.org/docs/UsersManual.xhtml#command-line-options


The -Os compiler option optimizes for size, enabling all -O2
optimizations except those that often increase code size. The -Oz compiler
option optimizes aggressively for size rather than speed, which may
increase the number of instructions executed if those instructions require
fewer bytes to encode. The -Oz option behaves similarly to -Os, and it may
be used in Clang but only in conjunction with -mno-outline. The -Oz
compiler option may be used in GCC versions 12.1 or greater.

-glevel
The -glevel flag produces debugging information in the operating system’s
native format. You can specify how much information to produce by setting
the debug level. The default level is -g2. Level 3 (-g3) includes extra
information, such as all the macro definitions present in the program. Level
3 also allows you to expand macros in debuggers that support the capability.

Different settings are appropriate for debugging. Optimization levels
should be low or disabled so that the machine instructions correspond
closely to the source code. Symbols should also be included to assist in
debugging. The -O0 -g3 compiler flags are a good default, although other
options are acceptable.

Consider the following program:

#include <stdio.h> 
#include <stdlib.h> 
 
#define HELLO "hello world!" 
 
int main() 
{ 
  puts(HELLO); 
 
  return EXIT_SUCCESS; 
}

The -Og compiler option affects only the optimization level without
enabling debug symbols:



$ gcc -Og hello.c -o hello  
$ gdb hello  
(...) 
(No debugging symbols found in hello) 
(gdb)

Compiling with -Og -g provides some symbols:

$ gcc -Og -g hello.c -o hello  
$ gdb hello  
(...) 
Reading symbols from hello... 
(gdb) break main 
Breakpoint 1 at 0x1149: file hello.c, line 6. 
(gdb) start 
Temporary breakpoint 2 at 0x1149: file hello.c, line 6. 
Starting program: /home/test/Documents/test/hello 
 
Breakpoint 1, main () at hello.c:6 
6      int main() 
(gdb) print HELLO 
No symbol "HELLO" in current context. 
(gdb)

Compiling with -Og -g3 adds more symbols:

$ gcc -Og -g3 hello.c -o hello  
$ gdb hello  
(...) 
Reading symbols from hello... 
(gdb) break main 
Breakpoint 1 at 0x1149: file hello.c, line 6. 
(gdb) start 
Temporary breakpoint 2 at 0x1149: file hello.c, line 6. 
Starting program: /home/test/Documents/test/hello 
 
Breakpoint 1, main () at hello.c:6 
6      int main() 
(gdb) print HELLO 



$1 = "hello world!" 
(gdb)

The -g3 option causes debugging information to be generated in the
operating system’s native format, but the -ggdb3 option tells GCC to use
the most expressive format available for use by the GNU Project debugger
(GDB). As a result, if you are only debugging with GDB, -Og -ggdb3 is
also a good choice of options.

The -O0 -g3 options are recommended for the standard edit-compile-
debug cycle.

-Wall and -Wextra
Compilers typically enable by default only the most conservatively correct
diagnostic messages. Additional diagnostics can be enabled to check source
code more aggressively for issues. Use the following flags to enable
additional diagnostic messages when compiling code with GCC and Clang:
-Wall and -Wextra.

The -Wall and -Wextra compiler flags enable predefined sets of
compile-time warnings. The warnings in the -Wall set are generally easy to
avoid or eliminate by modifying the diagnosed code. The warnings in the -
Wextra set either are situational or indicate problematic constructs that are
harder to avoid and, in some cases, may be necessary.

Despite their names, the -Wall and -Wextra options do not enable all
possible warning diagnostics; they enable only a predefined subset. For a
complete list of specific warnings enabled by the -Wall and -Wextra
compiler flags, on GCC run:

$ gcc -Wall -Wextra -Q --help=warning

Alternatively, you can consult the documentation for GCC warning
options and Clang diagnostic flags.

-Wconversion
Data type conversions can alter data values in unexpected ways. Memory
safety violations may result from adding or subtracting these values from a



pointer. The -Wconversion compiler option warns about:
Implicit conversions that may alter a value, including conversions
between floating-point and integer values
Conversions between signed and unsigned integers, for example:

unsigned ui = -1;

Conversions to smaller types
Warnings about conversions between signed and unsigned integers can

be disabled by using -Wno-sign-conversion, but they’re often useful in
finding certain classes of defects and security vulnerabilities. The -
Wconversion command line option should remain enabled.

-Werror
The -Werror flag turns all warnings into errors, requiring you to address
them before you can begin debugging. This flag simply encourages good
programming discipline.

-std=
The -std= flag can be used to specify the language standard as c89, c90,
c99, c11, c17, or c23 (you may need to specify -std=c2x when using an
older compiler). If no C language dialect options are given, the default for
GCC 13 is -std=gnu17, which provides extensions to the C language that,
on rare occasions, conflict with the C standard. For portability, specify the
standard you’re using. For access to new language features, specify a recent
standard. A good choice if you are reading this second edition of Effective
C is -std=c23.

-pedantic
The -pedantic flag issues warnings when code deviates from strict
conformance to the standard. This flag is typically used in conjunction with
the -std= flag to improve the code’s portability.

-D_FORTIFY_SOURCE=2



The _FORTIFY_SOURCE macro provides lightweight support for detecting
buffer overflows in functions that perform operations on memory and
strings. This macro can’t detect all types of buffer overflows, but compiling
your source with -D_FORTIFY_SOURCE=2 provides an extra level of
validation for functions that copy memory and are a potential source of
buffer overflows such as memcpy, memset, strcpy, strcat, and sprintf.
Some of the checks can be performed at compile time and result in
diagnostics; others occur at runtime and can result in a runtime error.

The _FORTIFY_SOURCE macro requires optimizations to be enabled.
Consequently, it must be disabled for unoptimized debug builds.

To overwrite a predefined _FORTIFY_SOURCE value, turn it off with -
U_FORTIFY _SOURCE and on again with -D_FORTIFY_SOURCE=2. This will
eliminate the warning that macros are being redefined.

The _FORTIFY_SOURCE=3 macro has improved compiler checks for
buffer overflows since version 12 of GCC and version 2.34 of the GNU C
Library (glibc). The -D_FORTIFY_SOURCE={1,2,3} macro for glibc relies
heavily on GCC-specific implementation details. Clang implements its own
style of fortified function calls.

Specify either -D_FORTIFY_SOURCE=2 (recommended) or -
D_FORTIFY_SOURCE=1 for analysis, testing, and production builds using
Clang and GCC versions prior to 12.0 and _FORTIFY_SOURCE=3 for GCC
version 12.0 and later.

-fpie -Wl, -pie, and -fpic -shared
Address space layout randomization (ASLR) is a security mechanism that
randomizes the process’s memory space to prevent attackers from
predicting the location of the code they’re trying to execute. You can learn
more about ASLR and other security mitigations in Secure Coding in C and
C++ (Seacord 2013).

You must specify the -fpie -Wl, and -pie flags to create position-
independent executable programs and make it possible to enable ASLR for
your main program (executable). However, while code emitted for your
main program with these options is position independent, it does use some
relocations that cannot be used in shared libraries (dynamic shared objects).
For those, use -fpic and link with -shared to avoid text relocations on



architectures that support position-dependent shared libraries. Dynamic
shared objects are always position independent and therefore support
ASLR.

-Wl,-z,noexecstack
Several operating systems, including OpenBSD, Windows, Linux, and
macOS, enforce reduced privileges in the kernel to prevent any part of the
process address space from being both writable and executable. This policy
is called W^X.

The -Wl,-z,noexecstack linker option tells the linker to mark the
stack segments as nonexecutable, which enables the operating system (OS)
to configure memory access rights when the program executable is loaded
into memory.

-fstack-protector-strong
The -fstack-protector-strong option protects applications from the most
common forms of stack buffer overflow exploits by adding a stack canary.
The -fstack-protector option is often viewed as insufficient and the -
fstack-protector-all option as excessive. The -fstack-protector-
strong option was introduced as a compromise between these two
extremes.

Visual C++ Options
Visual C++ provides a wide assortment of compiler options, many of which
are similar to the options available for GCC and Clang. One obvious
difference is that Visual C++ generally uses the forward slash (/) character
instead of a hyphen (-) to indicate a flag. Table 11-2 lists recommended
compiler and linker flags for Visual C++. (For more information on Visual
C++ options, see https://docs.microsoft.com/en-us/cpp/build/reference
/compiler-options-listed-by-category.)

Table 11-2: Recommended Compiler Flags for Visual C++

Flag Purpose
/guard:cf Add control flow guard security checks
/analyze Enable static analysis

https://docs.microsoft.com/en-us/cpp/build/reference/compiler-options-listed-by-category


Flag Purpose
/sdl Enable security features
/permissive- Specify standards conformance mode to the compiler
/O2 Set optimization to level 2
/W4 Set compiler warnings to level 4
/WX Turn warnings into errors
/std:clatest Select the latest/greatest language version

Several of these options are similar to options provided by the GCC
and Clang compilers. The /O2 optimization level is appropriate for
deployed code, while /Od disables optimization to speed compilation and
simplify debugging. The /W4 warning level is appropriate for new code, as
it’s roughly equivalent to -Wall in GCC and Clang. The /Wall option in
Visual C++ isn’t recommended because it produces a high number of false
positives. The /WX option turns warnings into errors and is equivalent to the
-Werror flag in GCC and Clang. I cover the remaining flags in further
detail in the following sections.

/guard:cf
When you specify the control flow guard (CFG) option, the compiler and
linker insert extra runtime security checks to detect attempts to compromise
your code. The /guard:cf option must be passed to both the compiler and
the linker.

/analyze
The /analyze flag enables static analysis, which provides information
about possible defects in your code. I discuss static analysis in more detail
in <Static Analysis= on page 251.

/sdl
The /sdl flag enables additional security features, including treating extra
security-relevant warnings as errors and additional secure code-generation
features. It also enables other security features from the Microsoft Security
Development Lifecycle (SDL). The /sdl flag should be used in all
production builds where security is a concern.



/permissive-
You can use /permissive- to help identify and fix conformance issues in
your code, thereby improving your code’s correctness and portability. This
option disables permissive behaviors and sets the /Zc compiler options for
strict conformance. In the integrated development environment (IDE), this
option also underlines nonconforming code.

/std:clatest
The /std:clatest option enables all currently implemented compiler and
standard library features proposed for C23. There is no /std:c23 at the time
of writing, but once one becomes available, you can use it to build C23
code.

Debugging
I’ve been programming professionally for 42 years. Once or maybe twice
during that time, I’ve written a program that compiled and ran correctly on
the first try. For all the other times, there is debugging.

Let’s debug a faulty program. The program shown in Listing 11-6 is an
early version of the vstrcat function. We reviewed a finished version of
this program in Chapter 7, but this version is not yet ready to deploy.

#include <stdarg.h> 
#include <string.h> 
#include <stdio.h> 
#include <stddef.h> 
 
#define name_size 20U 
 
char *vstrcat(char *buff, size_t buff_length, ...) { 
  char *ret = buff; 
  va_list list; 
  va_start(list, buff_length); 
 
  const char *part = nullptr; 
  size_t offset = 0; 
  while ((part = va_arg(list, const char *))) { 
   buff = (char *)memccpy(buff, part, '\0', buff_length - of



fset) - 1; 
   if (buff == nullptr) { 
     ret[0] = '\0'; 
     break; 
   } 
   offset = buff - ret; 
  } 
 
  va_end(list); 
  return ret; 
} 
 
int main() { 
  char name[name_size] = ""; 
  char first[] = "Robert"; 
  char middle[] = "C."; 
  char last[] = "Seacord"; 
 
  puts( 
    vstrcat( 
      name, sizeof(name), first, " ", 
      middle, " ", last, nullptr 
    ) 
  ); 
}

Listing 11-6: Printing an error

When we run this program as shown, it outputs my name as expected:

Robert C. Seacord

However, we also want to ensure that this program, which uses a fixed-
size array for name, properly handles the case where the full name is larger
than the name array. To test this, we can change the size of the array to a
too-small value:

#define name_size 10U



Now, when we run the program, we learn we have a problem but not much
more than that:

$ ./bug 
Segmentation fault

Instead of adding print statements, we’ll take the plunge and debug this
program using Visual Studio Code on Linux. Just running this program in
the debugger, as shown in Figure 11-1, provides us with some information
that we didn’t previously have.

Figure 11-1: Debugging a program in Visual Studio Code

We can see from the CALL STACK pane that we are crashing in the
__memmove_avx_unaligned_erms function in libc.

libc.so.6!__memmove_avx_unaligned_erms() 
(\x86_64\multiarch\memmove-vec-unaligned-erms.S:314) 
vstrcat(char * buff, size_t buff_length) (\home\rcs\bug.c:1
7) 
main() (\home\rcs\bug.c:32)



We can also see that the segmentation fault is occurring on the line with
the call to memccpy. There isn’t much else going on in this line, so it’s
reasonable to surmise that this function is a memccpy helper function. It’s
seldom the case that the bug is in the implementation of the library
function, so we’ll assume for now that we’re passing an invalid set of
arguments.

Before looking at the arguments, let’s review the description of the
memccpy function from the C23 standard:

#include <string.h>

void *memccpy(void * restrict s1, const void * restrict s2, int c, size_t n);

The memccpy function copies characters from the object pointed to by s2 into the object
pointed to by s1, stopping after the first occurrence of character c (converted to an unsigned
char) is copied or after n characters are copied, whichever comes first. If copying takes
place between objects that overlap, the behavior is undefined.

From the Variables pane in the debugger, we can see that the part we
are adding looks correct:

part: 0x7fffffffdcd6 "Seacord"

The ret alias to the start of ret also has an expected value:

ret:  0x7fffffffdcde "Robert C. "

The value stored in buff, however, seems odd, as it has the same value
as an EOF (31):

buff: 0xffffffffffffffff <error: Cannot access memory at add
ress 0xffffffffffffffff>

The buff parameter is a character pointer that is assigned the return
value from memccpy. So once again, let’s check the standard to see what this
function returns:

The memccpy function returns a pointer to the character after the copy of c in s1, or a null
pointer if c was not found in the first n characters of s2.



According to the C standard, this function can return only a null pointer
or a pointer to a character in s1 (buff, in this program). The storage for
buff begins at 0x7fffffffdcde and extends for only 10 bytes, so neither of
these explain the 0xffffffffffffffff value, so the mystery deepens.

It’s time to examine the behavior of the vstrcat function more closely.
We’ll set a breakpoint on line 12 near the beginning of the function and start
debugging. The buttons along the left of the title bar allow you to continue,
step over, step into, step out, restart, and stop debugging. Starting from line
12, we can single-step through the program by clicking the Step Over
button. The vstrcat function loops several times, so you’ll have to step
through a few iterations of the loop, watching the values in the
VARIABLES pane. If you do this carefully, you’ll eventually see that buff
is set to 0xffffffffffffffff on line 18 following the call to the memccpy
function, as shown in Figure 11-2. This isn’t detected by the null pointer
test, and the segmentation fault occurs on the next iteration.

It was here that I had my eureka moment. The memccpy function returns
a null pointer to indicate that '\0' was not found in the first buff_length -
offset characters of part. However, we are subtracting 1 from the value
returned by memccpy so that buff points to the first occurrence of '\0'
rather than just after it. This works when the character is found, but when it
isn’t found, we subtract 1 from a null pointer, which is technically
undefined behavior in C. On this implementation, the null pointer is
represented by a 0 value. Subtracting 1 from 0 wraps around and produces
the 0xffffffffffffffff value for buff before we can test it.
Consequently, the error condition is not detected, and the subsequent call to
memccpy results in the segmentation fault.



Figure 11-2: An interesting program state

Now that we have discovered the root cause, the bug can be repaired by
moving the minus-one subtraction after the null pointer check, which results
in the final version of the program shown in Chapter 7.

Unit Testing
Testing increases your confidence that your code is defect free. Unit tests
are small programs that exercise your code. Unit testing is a process that
validates that each unit of the software performs as designed. A unit is the
smallest testable part of any software; in C, this is typically an individual
function or data abstraction.

You can write simple tests that resemble normal application code (see
Listing 11-7, for example), but it can be beneficial to use a unit-testing
framework. Several unit-testing frameworks are available, including Google
Test, CUnit, CppUnit, Unity, and others. We’ll examine the most popular of
these, based on a recent survey of the C development ecosystem by
JetBrains (https://www.jetbrains.com/lp/devecosystem-2023/c/): Google
Test.

Google Test works for Linux, Windows, and macOS. Tests are written
in C++, so you get to learn another (related) programming language for

https://www.jetbrains.com/lp/devecosystem-2023/c/


testing purposes. CUnit and Unity are good alternatives if you want to
restrict your testing to pure C.

In Google Test, you write assertions to verify the tested code’s
behavior. Google Test assertions, which are function-like macros, are the
real language of the tests. If a test crashes or has a failed assertion, it fails;
otherwise, it succeeds. An assertion’s result can be success, nonfatal failure,
or fatal failure. If a fatal failure occurs, the current function is aborted;
otherwise, the program continues normally.

We’ll use Google Test on Ubuntu Linux. To install it, follow the
directions from the Google Test GitHub page at https://github.com/google
/googletest/tree/main/googletest.

Once Google Test is installed, we’ll set up a unit test for the get_error
function shown in Listing 11-7. This function returns an error message
string corresponding to the error number passed in as an argument. You’ll
need to include the headers that declare the errno_t type and the
strerrorlen_s and strerror_s functions. Save it in a file named error.c so
that the build instructions described later in this section will work properly.

error.c

char *get_error(errno_t errnum) { 
  rsize_t size = strerrorlen_s(errnum) + 1; 
  char* msg = malloc(size); 
  if (msg != nullptr) { 
    errno_t status = strerror_s(msg, size, errnum); 
    if (status != 0) { 
      strncpy_s(msg, size, "unknown error", size - 1); 
    } 
  } 
  return msg; 
}

Listing 11-7: The get_error function

This function calls both the strerrorlen_s and strerror_s functions
defined in the normative but optional Annex K, <Bounds-checking
interfaces= (described in Chapter 7).

https://github.com/google/googletest/tree/main/googletest


Unfortunately, neither GCC nor Clang implements Annex K, so instead
we’ll use the Safeclib implementation developed by Reini Urban and
available from GitHub (https://github.com/rurban/safeclib).

You can install libsafec-dev on Ubuntu with the following command:

% sudo apt install libsafec-dev

Listing 11-8 contains a unit test suite for the get_error function named
GetErrorTest. A test suite is a set of test cases to be executed in a specific
test cycle. The GetErrorTest suite consists of two test cases: KnownError
and UnknownError. A test case is a set of preconditions, inputs, actions
(where applicable), expected results, and postconditions, developed based
on test conditions (https://glossary.istqb.org). Save this code in a file named
tests.cc.

tests.cc

#include <gtest/gtest.h> 
#include <errno.h> 
#define errno_t int 
 
// implemented in a C source file 
w extern "C" char* get_error(errno_t errnum); 
 
namespace { 
x TEST(GetErrorTest, KnownError) { 
    EXPECT_STREQ(get_error(ENOMEM), "Cannot allocate memor
y"); 
    EXPECT_STREQ(get_error(ENOTSOCK), "Socket operation on n
on-socket"); 
    EXPECT_STREQ(get_error(EPIPE), "Broken pipe"); 
  } 
 
  TEST(GetErrorTest, UnknownError) { 
    EXPECT_STREQ(get_error(-1), "Unknown error -1"); 
  } 
} // namespace 
 

https://github.com/rurban/safeclib
https://glossary.istqb.org/


int main(int argc, char** argv) { 
  ::testing::InitGoogleTest(&argc, argv); 
  return RUN_ALL_TESTS(); 
}

Listing 11-8: Unit tests for the get_error function

Most of the C++ code is boilerplate and can be copied without
modification, including, for example, the main function, which invokes the
function-like macro RUN_ALL_TESTS to execute your tests. The two parts
that aren’t boilerplate are the extern "C" declaration w and the tests x.
The extern "C" declaration changes the linkage requirements so that the
C++ compiler linker doesn’t mangle the function name, as it is wont to do.
You need to add a similar declaration for each function being tested, or you
can simply include the C header file within an extern "C" block as
follows:

extern "C" { 
  #include "api_to_test.h" 
}

An extern "C" declaration is necessary only when compiling with C
but linking with C++.

Both test cases are specified using the TEST macro, which takes two
arguments. The first argument is the name of the test suite, and the second
argument is the name of the test case.

Insert Google Test assertions, along with any additional C++
statements you wish to include, in the function body. In Listing 11-8, we
used the EXPECT _STREQ assertion, which verifies that two strings have the
same content. The strerror_s function returns a locale-specific message
string, which can vary between implementations.

We used the assertion on several error numbers to verify that the
function is returning the correct string for each error number. The
EXPECT_STREQ assertion is a nonfatal assertion because testing can continue
even when this specific assertion fails. This is typically preferable to fatal
assertions, as it lets you detect and fix multiple bugs in a single run-edit-



compile cycle. If it’s not possible to continue testing after an initial failure
(because a subsequent operation relies on a previous result, for example),
you can use the fatal ASSERT_STREQ assertion.

Listing 11-9 shows a simple CMakeLists.txt file that can be used to
build the tests. This file assumes that the C functions we’re testing can be
found in the error.c file and that the implementations of the Annex K
functions are provided by the safec library.

cmake_minimum_required(VERSION 3.21) 
cmake_policy(SET CMP0135 NEW) 
project(chapter-11) 
 
# GoogleTest requires at least C++14 
set(CMAKE_CXX_STANDARD 14) 
set(CMAKE_CXX_STANDARD_REQUIRED ON) 
set(CMAKE_C_STANDARD 23) 
 
include(FetchContent) 
FetchContent_Declare( 
  googletest 
  URL https://github.com/google/googletest/archive/03597a01e
e50ed33e9dfd640b249b4be3799d395.zip 
) 
 
FetchContent_MakeAvailable(googletest) 
 
include(ExternalProject) 
ExternalProject_Add( 
  libsafec 
  BUILD_IN_SOURCE 1 
  URL https://github.com/rurban/safeclib/releases/download/v
3.7.1/safeclib-3.7.1.tar.gz 
  CONFIGURE_COMMAND autoreconf --install 
  COMMAND ./configure --prefix=${CMAKE_BINARY_DIR}/libsafec 
) 
ExternalProject_Get_Property(libsafec install_dir) 
include_directories(${install_dir}/src/libsafec/include) 
link_directories(${install_dir}/src/libsafec/src/.libs/) 
 



enable_testing() 
 
add_library(error error.c) 
add_dependencies(error libsafec) 
add_executable(tests tests.cc) 
 
target_link_libraries( 
  tests 
  error 
  safec 
  GTest::gtest_main 
) 
 
include(GoogleTest) 
gtest_discover_tests(tests)

Listing 11-9: The CMakeLists.txt file

If you prefer to install libsafec-dev using the apt install command,
remove the lines specific to installing libsafec.

Build and run the tests using the following sequence of commands:

$ cmake -S . -B build  
$ cmake --build build  
$ ./build/tests

The test case tests for several error numbers from <errno.h>. How
many of these should be tested depends on what you’re trying to
accomplish. Ideally, the tests should be comprehensive, which would mean
adding an assertion for every error number in <errno.h>. This can become
tiresome, however; once you have established that your code is working,
you’re mostly just testing that the underlying C standard library functions
you’re using are implemented correctly. Instead, we could test the error
numbers we’re likely going to retrieve, but doing so can again become
tiresome because we’d have to identify all the functions called in the
program and which error codes they may return. We opted to implement a
few spot checks for several randomly selected error numbers from different
locations in the list.



Listing 11-10 shows the result of running this test.

$ ./build/tests  
[==========] Running 2 tests from 1 test suite. 
[----------] Global test environment set-up. 
[----------] 2 tests from GetErrorTest 
[RUN       ] GetErrorTest.KnownError 
[        OK] GetErrorTest.KnownError (0 ms) 
[RUN       ] GetErrorTest.UnknownError 
/home/rcs/tests.cc:19: Failure 
Expected equality of these values: 
  get_error(-1) 
    Which is: "Unknown error -1" 
  "unknown error" 
[  FAILED  ] GetErrorTest.UnknownError (0 ms)  
[----------] 2 tests from GetErrorTest (0 ms total) 
 
[----------] Global test environment tear-down 
[==========] 2 tests from 1 test suite ran. (0 ms total) 
[  PASSED  ] 1 test. 
[  FAILED  ] 1 test, listed below:
[  FAILED  ] GetErrorTest.UnknownError  
 
1 FAILED TEST

Listing 11-10: An unsuccessful test run

From the test output, you can see that two tests were executed from one
test suite. The KnownError test case passed, and the UnknownError test case
failed. The UnknownError test failed because the following assertion
returned false:

EXPECT_STREQ(get_error(-1), "unknown error");

The test assumed that the error path in the get_error function would
execute and return the string "unknown error"). Instead, the strerror_s
function returned the string "Unknown error -1". Examining the source
code for the strerror_s function (at https://github.com/rurban/safeclib

https://github.com/rurban/safeclib/blob/master/src/str/strerror_s.c


/blob/master/src/str/strerror_s.c), we can see that the function does return
error codes. Consequently, it’s clear that the function doesn’t treat an
unknown error number as an error. Checking the C standard, we see that
<strerror_s shall map any value of type int to a message,= so the
strerror_s function is implemented correctly, but our assumptions about
how it behaved were incorrect.

There is a defect in the implementation of the get_error function in
that it indicates <unknown error= when the strerror_s function fails, but
according to the standard:

The strerror_s function returns zero if the length of the desired string was less than
maxsize and there was no runtime-constraint violation. Otherwise, the strerror_s function
returns a nonzero value.

Consequently, if the strerror_s function returns a nonzero value, a
serious error has occurred that’s bad enough to reconsider the design of this
function. Instead of returning a string on an error condition, it should
probably return a null pointer or otherwise handle the error in a manner
consistent with the overall error handling strategy for your system. Listing
11-11 updates the function to return a null pointer value.

char *get_error(errno_t errnum) { 
  rsize_t size = strerrorlen_s(errnum) + 1; 
  char* msg = malloc(size); 
  if (msg != nullptr) { 
    errno_t status = strerror_s(msg, size, errnum); 
    if (status != 0) return nullptr; 
  } 
  return msg; 
}

Listing 11-11: The get_error function

We need to repair the test to check for the correct string returned by
get_error(-1):

EXPECT_STREQ(get_error(-1), <Unknown error -1=);

https://github.com/rurban/safeclib/blob/master/src/str/strerror_s.c


After making this change, rebuilding, and rerunning the tests, we can
see that both test cases succeeded as shown in Listing 11-12.

$ ./build/tests  
[==========] Running 2 tests from 1 test suite. 
[----------] Global test environment set-up. 
[----------] 2 tests from GetErrorTest 
[RUN       ] GetErrorTest.KnownError 
[        OK] GetErrorTest.KnownError (0 ms) 
[RUN       ] GetErrorTest.UnknownError 
[        OK] GetErrorTest.UnknownError (0 ms) 
[----------] 2 tests from GetErrorTest (0 ms total) 
 
[----------] Global test environment tear-down 
[==========] 2 tests from 1 test suite ran. (0 ms total) 
[  PASSED  ] 2 tests.

Listing 11-12: A successful test run

In addition to discovering a design error, we also discovered that our
tests are incomplete, as we failed to test the error case. We should add
further tests to ensure that error cases are handled correctly. Adding these
tests is left as an exercise for the reader.

Static Analysis
Static analysis includes any process for assessing code without executing it
(ISO/IEC TS 17961:2013) to provide information about possible software
defects.

Static analysis has practical limitations, as the correctness of software
is computationally undecidable. For example, the halting theorem of
computer science states that there are programs whose exact control flow
cannot be determined statically. As a result, any property dependent on
control flow4such as halting4may not be decidable for some programs.
Consequently, static analysis may fail to report flaws or may report flaws
where they don’t exist.

A failure to report a real flaw in the code is known as a false negative.
False negatives are serious analysis errors, as they may leave you with a



false sense of security. Most tools err on the side of caution and, as a result,
generate false positives. A false positive is a test result that incorrectly
indicates that a flaw is present. Tools might report some high-risk flaws and
miss other flaws as an unintended consequence of trying not to overwhelm
the user with false positives. False positives can also occur when the code is
too complex to completely analyze. The use of function pointers and
libraries can make false positives more likely.

Ideally, tools are both complete and sound in their analysis. An
analyzer is considered sound if it cannot give a false-negative result. An
analyzer is considered complete if it cannot issue false positives. The
possibilities for a given rule are outlined in Figure 11-3.

Figure 11-3: Completeness and soundness

Compilers perform limited analysis, providing diagnostics about highly
localized issues in code that don’t require much reasoning. For example,
when comparing a signed value to an unsigned value, the compiler may
issue a diagnostic about a type mismatch because it doesn’t require
additional information to identify the error. As mentioned earlier in this
chapter, there are numerous compiler flags, such as /W4 for Visual C++ and
-Wall for GCC and Clang, that control compiler diagnostics.

Compilers generally provide high-quality diagnostics, and you
shouldn’t ignore them. Always try to understand the reason for the warning
and rewrite the code to eliminate the error, rather than simply quieting
warnings by adding type casts or making arbitrary changes until the
warning goes away. See the CERT C rule MSC00-C, <Compile cleanly at
high warning levels,= for more information on this topic.



Once you’ve addressed compiler warnings in your code, you can use a
separate static analyzer to identify additional flaws. Static analyzers will
diagnose more complex defects by evaluating the expressions in your
program, performing in-depth control and data flow analysis, and reasoning
about the possible ranges of values and control flow paths taken.

Having a tool locate and identify specific errors in your program is
much, much easier than hours of testing and debugging, and it’s much less
costly than deploying defective code. A wide variety of free and
commercial static analysis tools are available. For example, Visual C++ has
incorporated a static analyzer that you can invoke with the /analyze flag.
Visual C++ analysis allows you to specify which rule sets (such as
recommended, security, or internationalization) you would like to run or
whether to run them all. For more information on Visual C++’s static code
analysis, see Microsoft’s website at https://learn.microsoft.com/en-us
/visualstudio/code-quality. Similarly, Clang has incorporated a static
analyzer that can be run as a stand-alone tool or within Xcode (https://clang
-analyzer.llvm.org). Beginning with version 10, GCC has introduced static
analysis that’s enabled through the -fanalyzer option. Commercial tools
also exist, such as CodeQL from GitHub, TrustInSoft Analyzer, SonarQube
from SonarSource, Coverity from Synopsys, LDRA Testbed, Helix QAC
from Perforce, and others.

Many static analysis tools have nonoverlapping capabilities, so it may
make sense to use more than one.

Dynamic Analysis
Dynamic analysis is the process of evaluating a system or component
during execution. It’s also referred to as runtime analysis, among other
similar names.

A common approach to dynamic analysis is to instrument the code4
for example, by enabling compile-time flags that inject extra instructions
into the executable4and then run the instrumented executable. The debug
memory allocation library dmalloc described in Chapter 6 takes a similar
approach. The dmalloc library provides replacement memory management
routines with runtime-configurable debugging facilities. You can control the
behavior of these routines by using a command line utility (also called

https://learn.microsoft.com/en-us/visualstudio/code-quality
https://clang-analyzer.llvm.org/


dmalloc) to detect memory leaks and to discover and report defects such as
writing outside the bounds of an object and using a pointer after it’s been
freed.

The advantage of dynamic analysis is that it has a low false-positive
rate, so if one of these tools flags a problem, fix it!

A drawback of dynamic analysis is that it requires sufficient code
coverage. If a defective code path is not exercised during the testing
process, the defect won’t be found. Another drawback is that the
instrumentation may change other aspects of the program in undesirable
ways, such as adding performance overhead or increasing the binary size.
Unlike other dynamic analysis tools, the FORTIFY_SOURCE macro mentioned
earlier in this chapter provides lightweight support for detecting buffer
overflows so that it can be enabled in a production build with no noticeable
impacts on performance.

AddressSanitizer
AddressSanitizer (ASan, https://github.com/google/sanitizers/wiki
/AddressSanitizer) is an example of an effective dynamic analysis tool that
is available (for free) for several compilers. Several related sanitizers exist,
including ThreadSanitizer, MemorySanitizer, Hardware-Assisted
AddressSanitizer, and UndefinedBehaviorSanitizer. Many other dynamic
analysis tools are available, both commercial and free. For more
information on sanitizers, see https://github.com/google/sanitizers. I’ll
demonstrate the value of these tools by discussing AddressSanitizer in some
detail.

ASan is a dynamic memory error detector for C and C++ programs. It’s
incorporated into LLVM version 3.1 and GCC version 4.8, as well as later
versions of these compilers. ASan is also available starting with Visual
Studio 2019.

This dynamic analysis tool can find a variety of memory errors,
including the following:

Use after free (dangling pointer dereference)
Heap, stack, and global buffer overflow
Use after return

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers


Use after scope
Initialization order bugs
Memory leaks
To demonstrate ASan’s usefulness, we’ll start by replacing the get

_error function from Listing 11-7 with the print_error function shown in
Listing 11-13.

error.c

errno_t print_error(errno_t errnum) { 
  rsize_t size = strerrorlen_s(errnum) + 1; 
  char* msg = malloc(size); 
  if (msg == nullptr) return ENOMEM; 
  errno_t status = strerror_s(msg, size, errnum); 
  if (status != 0) return EINVAL; 
  fputs(msg, stderr); 
  return EOK; 
}

Listing 11-13: The print_error function

We’ll also replace the unit test suite for the get_error function with
the unit test suite for the print_error function shown in Listing 11-14.

tests.cc

TEST(PrintTests, ZeroReturn) { 
  EXPECT_EQ(print_error(ENOMEM), 0); 
  EXPECT_EQ(print_error(ENOTSOCK), 0); 
  EXPECT_EQ(print_error(EPIPE), 0); 
}

Listing 11-14: The PrintTests test suite

This Google Test code defines the PrintTests test suite that contains a
single test case, ZeroReturn. This test case uses the nonfatal EXPECT_EQ
assertion to test for a return value of 0 from several calls to the
print_error function to print some randomly selected error numbers. Next,
we need to build and run this code on Ubuntu Linux.



Running the Tests
Running the revised tests from Listing 11-14 produces the positive results
shown in Listing 11-15.

$ ./build/tests  
[==========] Running 1 test from 1 test suite. 
[----------] Global test environment set-up. 
[----------] 1 test from PrintTests 
[RUN       ] PrintTests.ZeroReturn 
[        OK] PrintTests.ZeroReturn (0 ms) 
[----------] 1 test from PrintTests (0 ms total) 
 
[----------] Global test environment tear-down 
[==========] 1 test from 1 test suite ran. (0 ms total) 
[  PASSED  ]  1 test.

Listing 11-15: A test run of the PrintTests test suite

An inexperienced tester may look at these results and mistakenly think,
<Hey, this code is working!= However, you should take additional steps to
improve your confidence that your code is free from defects. Now that we
have a working test harness in place, it’s time to instrument the code.

Instrumenting the Code
You can instrument your code by using ASan to compile and link your
program with the -fsanitize=address flag. Table 11-3 shows some
compiler flags that are commonly used with ASan.

Table 11-3: Compiler and Linker Flags Commonly Used with AddressSanitizer

Flag Purpose
-fsanitize=address Enable AddressSanitizer (must be passed to both the compiler and

the linker)
-g3 Get symbolic debugging information
-fno-omit-frame-
pointer

Leave frame pointers to get more informative stack traces in error
messages

-fsanitize-
blacklist=path

Pass a blacklist file



Flag Purpose
-fno-common Do not treat global variables as common variables (allows ASan to

instrument them)

Select the compiler and linker flags you want to use from Table 11-3
and add them to your CMakeLists.txt file using the add_compile_options
and add_link_options commands:

add_compile_options(-g3 -fno-omit-frame-pointer -fno-common
 -fsanitize=address) 
add_link_options(-fsanitize=address)

Do not enable sanitization in the build phase because the inserted
runtime instrumentation can cause false positives.

As previously mentioned, AddressSanitizer works with Clang, GCC,
and Visual C++. (See https://devblogs.microsoft.com/cppblog
/addresssanitizer-asan-for-windows-with-msvc for more information on
ASan support.)

Depending on which version of which compiler you’re using, you may
also need to define the following environment variables:

ASAN_OPTIONS=symbolize=1 
ASAN_SYMBOLIZER_PATH=/path/to/llvm_build/bin/llvm-symbolizer

Try rebuilding and rerunning your tests with these environmental
variables set.

Running the Instrumented Tests
The unit test suite you wrote using Google Test should continue to pass but
will also exercise your code, allowing AddressSanitizer to detect additional
problems. You should now see the additional output in Listing 11-16 from
running ./build/tests.

==22489==ERROR: LeakSanitizer: detected memory leaks 
 
Direct leak of 31 byte(s) in 1 object(s) allocated from: 

https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc


    #0 0x7f2bcf9f58ff in __interceptor_malloc 
  ../../../../src/libsanitizer/asan/asan_malloc_linux.cpp:69 
    #1 0x557d3105f6da in print_error /home/rcs/test/error.c:
21 
    #2 0x557d3105d314 in TestBody /home/rcs/test/tests.cc:28 
 
// --snip--

Listing 11-16: An instrumented test run of PrintTests

Listing 11-16 shows only the first finding of several that are produced.
Most of this stack trace is redacted because it is from the test infrastructure
itself and is uninteresting because it doesn’t help locate the defects.

AddressSanitizer’s LeakSanitizer component has <detected memory
leaks= and informs us that this is a direct leak of 31 bytes from one object.
The stack trace identifies the filename and line number related to the
diagnostic:

#1 0x557d3105f6da in print_error /home/rcs/test/error.c:21

This line of code contains the call to malloc in the print_error
function:

errno_t print_error(errno_t errnum) { 
  rsize_t size = strerrorlen_s(errnum) + 1; 
  char* msg = malloc(size);  
  // --snip--  
}

This is an obvious error; the return value from malloc is assigned to an
automatic variable defined within the scope of the print_error function
and never freed. We lose the opportunity to free this allocated memory after
the function returns, and the lifetime of the object holding the pointer to the
allocated memory ends. To fix this problem, add a call to free(msg) after
the allocated storage is no longer required but before the function returns.
Rerun the tests and repair any additional defects until you’re satisfied with
the quality of your program.



EXERCISES

1.  Use static analysis to evaluate the defective code from Listing 11-6. Did the
static analysis provide any additional findings?

2.  Add further tests to exercise the error handling paths in both the get_error
(Listing 11-8) and print_error (Listing 11-14) functions.

3.  Evaluate the remaining results from the ./tests test instrumented with
AddressSanitizer (Listing 11-15). Eliminate the remaining true-positive errors
detected.

4.  Instrument the ./tests program using other sanitizers available at https://github
.com/google/sanitizers and address any issues you find.

5.  Use these and similar testing, debugging, and analysis techniques on your real-
world code.

6.  Use profile-guided optimization to optimize the prime factorization program from
Chapter 10. Refer to your compiler’s documentation for details.

Summary
In this chapter, you learned about static and runtime assertions and were
introduced to some of the more important and recommended compiler flags
for GCC, Clang, and Visual C++. You also learned how to debug, test, and
analyze your code by using both static and dynamic analysis.

These are the important last lessons in this book, because you’ll find
you spend a considerable amount of time as a professional C programmer
debugging and analyzing your code. I posted the following on social media
a while back, and it summarizes my (and other C programmers) relationship
with the C programming language:

Language I dislike: C
Language I begrudgingly respect: C
Language I think is overrated: C
Language I think is underrated: C
Language I like: C

Future Directions
With C23 complete, the committee can turn its attention to the next revision
of the C programming language, C2Y. This will likely be published in 2029.

https://github.com/google/sanitizers


While that may seem like a long time, it’s roughly half the time previous C
standard editions required.

The C committee has already approved a new charter to document our
principles (Seacord et al. 2024). While the committee is dedicated to
maintaining the traditional spirit of C, there will be a renewed focus on
security and safety. For C2Y, we’ll likely improve automatic type inference,
expand constexpr support, and potentially adopt lambdas and other
features from C++. We’re also working on a novel defer feature for error
handling and resource management. The C floating-point group will
continue its work to update to IEEE 754:2019. A technical specification for
a provenance-aware memory object model for C (ISO/IEC CD TS
6010:2024) should be published soon and hopefully incorporated into C2Y.



APPENDIX

THE FIFTH EDITION OF THE C STANDARD
(C23)

with Aaron Ballman

The latest (fifth) edition of the C
standard (ISO/IEC 9899:2024) is

nicknamed C23. C23 maintains the spirit of C, while
adding new features and functions to improve the
safety, security, and capabilities of the language.

Attributes
The [[attributes]] syntax was added to C23 to specify additional
information for various source constructs such as types, objects, identifiers,
or blocks (Ballman 2019). Prior to C23, similar features were provided in
an implementation-defined (nonportable) manner:

__declspec(deprecated) 
__attribute__((warn_unused_result)) 
int func(const char *str)__attribute__((nonnull(1)));

Starting with C23, attributes can be specified as follows:

[[deprecated, nodiscard]] 
int func( 



  const char *str [[gnu::nonnull]] 
);

Like C++, syntactic location determines apportionment. Attributes
include deprecated, fallthrough, maybe_unused, nodiscard,
unsequenced, and reproducible. The attribute syntax supports both
standard attributes and vendor-specific attributes. The __has_c_attribute
conditional inclusion operator can be used for feature testing.

Keywords
The C language is often ridiculed for having ugly keywords. C typically
defines new keywords using reserved identifiers that begin with an
underscore character (_) followed by a capital letter.

C23 introduced more natural spellings for these keywords (Gustedt
2022). In Table A-1, C11 keywords using this convention are shown on the
left, and the more natural spellings introduced in C23 are shown on the
right.

Table A-1: Keyword Spellings

Value Type
_Bool bool
_Static_assert static_assert
_Thread_local thread_local
_Alignof alignof
_Alignas alignas

Another update is the introduction of the nullptr constant. The well-
worn NULL macro has a pointer type or maybe an integer type. It will
implicitly convert to any scalar type, so it’s not particularly type safe. The
nullptr constant has type nullptr_t and will implicitly convert only to a
pointer type, void, or bool.

Integer Constant Expressions



Integer constant expressions are not a portable construct; vendors can
extend them. For example, the array in func may or may not be a variable-
length array (VLA):

void func() { 
  static const int size = 12; 
  int array[size]; // might be a VLA 
}

C23 adds constexpr variables (which imply the const qualifier) when
you really want something to be a constant (Gilding and Gustedt 2022a):

void func() { 
  static constexpr int Size = 12; 
  int Array[Size]; // never a VLA 
}

C23 doesn’t support constexpr functions yet, only objects. Structure
members cannot be constexpr.

Enumeration Types
C enumeration types seem normal through C17 but have some strange
behaviors. For example, the underlying integer type is implementation
defined and could be either a signed or unsigned integer type. C23 now
allows the programmer to specify the underlying type for enumerations
(Meneide and Pygott 2022):

enum E : unsigned short { 
  Valid = 0, // has type unsigned short 
  NotValid = 0x1FFFF // error, too big 
}; 
 
// can forward declare with fixed type 
enum F : int;

You can also declare enumeration constants larger than int:



// has underlying type unsigned long 
enum G { 
  BiggerThanInt = 0xFFFF'FFFF'0000L, 
};

Type Inference
C23 enhanced the auto type specifier for single object definitions using
type inference (Gilding and Gustedt 2022b). It’s basically the same idea as
in C++, but auto cannot appear in function signatures:

const auto l = 0L; // l is const long 
auto huh = "test"; // huh is char *, not char[5] or const ch
ar * 
void func(); 
auto f = func; // f is void (*)() 
auto x = (struct S){  // x is struct S 
  1, 2, 3.0 
}; 
#define swap(a, b) \ 
  do {auto t = (a); (a) = (b); (b) = t;} \ 
  while (0)

typeof Operators
C23 adds support for typeof and typeof_unqual operators. These are like
decltype in C++ and are used to specify a type based on another type or
the type of an expression. The typeof operator retains qualifiers, while the
typeof_unqual strips qualifiers, including _Atomic.

K&R C Functions
K&R C allowed functions to be declared without prototypes:

int f(); 
int f(a, b) int a, b; {return 0;}



K&R C functions were deprecated 35 years ago and are finally being
removed from the standard. All functions now have prototypes. An empty
parameter list used to mean <takes any number of arguments= and now
means <takes zero arguments,= the same as C++. It is possible to emulate
<accepts zero or more args= via a variadic function signature: int f(...);
which is now possible because va_start no longer requires passing the
parameter before the ... to the call.

Preprocessor
New features have been added to C23 to improve preprocessing. The
#elifdef directive complements #ifdef and also has an #elifndef form.
The #warning directive complements #error but does not halt translation.
The __has_include operator tests for the existence of a header file, and the
__has_c_attribute operator tests for the existence of a standard or vendor
attribute.

The #embed directive embeds external data directly into the source code
via the preprocessor:

unsigned char buffer[] = { 
#embed "/dev/urandom" limit(32) // embeds 32 chars from /de
v/urandom 
}; 
struct FileObject { 
  unsigned int MagicNumber; 
  unsigned _BitInt(8) RGBA[4]; 
  struct Point { 
    unsigned int x, y; 
  } UpperLeft, LowerRight; 
} Obj = { 
#if __has_embed(SomeFile.bin) == __STDC_EMBED_FOUND__ 
// embeds contents of file as struct 
// initialization elements 
#embed "SomeFile.bin" 
#endif 
};

Integer Types and Representations



Starting in C23, two’s complement is the only allowed integer
representation (Bastien and Gustedt 2019). Signed integer overflow remains
undefined behavior. The int8_t, int16_t, int32_t, and int64_t types are
now portably available everywhere. The [u]intmax_t types are no longer
maximal and are only required to represent long long values, not extended
or bit-precise integer values.

C23 also introduces bit-precise integer types (Blower et al. 2020).
These are signed and unsigned types that allow you to specify the bit-width.
These integers do not undergo integer promotions, so they remain the size
you requested. Bit-width includes the sign bit, so _BitInt(2) is the
smallest signed bit-precise integer. BITINT_MAXWIDTH specifies the
maximum width of a bit-precise integer. It must be at least ULLONG_WIDTH
but can be much larger (Clang supports > 2M bits).

In C17, adding two nibbles required some bit twiddling:

unsigned int add( 
  unsigned int L, unsigned int R) 
{ 
  unsigned int LC = L & 0xF; 
  unsigned int RC = R & 0xF; 
  unsigned int Res = LC + RC; 
  return Res & 0xF; 
}

This is much simpler with _BitInt:

unsigned _BitInt(4) add( 
  unsigned _BitInt(4) L, 
  unsigned _BitInt(4) R) 
{ 
  return L + R; 
}

C23 also added binary literals. The integer literals 0b00101010101,
0x155, 341, and 0525 all express the same value. You can also now use
digit separators for improved readability, for example:
0b0000'1111'0000'1100, 0xF'0C, 3'852, and 07'414.



C23 finally has checked integer operations that will detect overflow
and wraparound in addition, subtraction, and multiplication operations
(Svoboda 2021):

#include <stdckdint.h> // new header 
 
bool ckd_add(Type1 *Result, Type2 L, Type3 R); 
bool ckd_sub(Type1 *Result, Type2 L, Type3 R); 
bool ckd_mul(Type1 *Result, Type2 L, Type3 R);

Division is not supported, and it only works with integer types other
than plain char, bool, or bit-precise integers. Type1, Type2, and Type3 can
be different types. These functions return false if the mathematical result
of the operation can be represented by Type1; otherwise, they return true.
These functions make it easier to comply with the CERT C Coding
Standard and MISRA C guidelines, but it is still awkward to compose
operations.

unreachable Function-Like Macro
The unreachable function-like macro is provided in <stddef.h>. It
expands to a void expression; reaching the expression during execution is
undefined behavior. This allows you to give hints to the optimizer about
flow control that is impossible to reach (Gustedt 2021).

As with anything you tell the optimizer to assume, use it with caution,
because the optimizer will believe you even if you’re wrong. The following
is a typical example of how unreachable might be used in practice:

#include <stdlib.h> 
enum Color {Red, Green, Blue}; 
int func(enum Color C) { 
  switch (C) { 
    case Red: return do_red(); 
    case Green: return do_green(); 
    case Blue: return do_blue(); 
  } 



  unreachable(); // unhandled value 
}

Bit and Byte Utilities
C23 introduces a collection of bit and byte utilities in the <stdbit.h>
header (Meneide 2023). These include functions to:

Count the number of 1s or 0s in a bit pattern
Count the number of leading or trailing 1s or 0s
Find the first leading or trailing 1 or 0
Test whether a single bit is set
Determine the smallest number of bits required to represent a value
Determine the next smallest or largest power of two based on a value
For example, the following code can be used to count the number of

consecutive 0 bits in a value, starting from the most significant bit:

#include <stdbit.h> 
void func(uint32_t V) { 
  int N = stdc_leading_zeros(V); 
  // use the leading zero count N 
}

Prior to C23, this operation is considerably more involved:

void func(uint32_t V) { 
  int N = 32; 
  unsigned R; 
  R = V >> 16; 
  if (R != 0) {N --= 16; V = R;} 
  R = V >> 8; 
  if (R != 0) {N --= 8; V = R;} 
  R = V >> 4; 
  if (R != 0) {N --= 4; V = R;} 
  R = V >> 2; 
  if (R != 0) {N --= 2; V = R;} 
  R = V >> 1; 



  if (R != 0) N -= 2; 
  else        N -= V; 
  // use the leading zero count N 
}

IEEE Floating-Point Support
C23 updates IEEE floating-point support by integrating TS 18661-1, 2, and
3 (ISO/IEC TS 18661-1 2014, ISO/IEC TS 18661-2 2015, ISO/IEC TS
18661-3 2015). Annex F now has parity with the IEEE standard for
floating-point arithmetic (IEEE 754-2019). Annex F also applies to decimal
floats: _Decimal32, _Decimal64, and _Decimal128. You cannot mix
decimal operations with binary, complex, or imaginary floats, however.
Annex H (previously the language-independent arithmetic annex) supports
interchange, extended floating types, and nonarithmetic interchange
formats. It allows for binary16, graphics processing unit (GPU) data,
binary, or decimal representations.

Math library changes support <math.h> operations on _DecimalN,
_FloatN, and _FloatNx types. Special variants of exponents, logarithms,
powers, and π-based trig functions; improved functions for min/max, total
ordering, and testing for numerical properties; and functions allowing fine-
grained control of conversions between floating-point values and integers or
strings have been added.

The memset_explicit function has been added for when you really
need to clear memory. It’s the same as memset, except the optimizer cannot
remove a call to it. The strdup and strndup functions have been adopted
from POSIX.
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A
abort function, 162, 177, 232
abort_handler_s function, 164–165
ABS macro, 54–56
addition (+) operator, 25
additive operators, 83–84
address, 14
AddressSanitizer, 132, 253–257

compiler flags used with, 255
address space layout randomization (ASLR), 239
Advanced Encryption Standard (AES), 56
aligned_alloc function, 120
alignment requirements, 41–42
alignof operator, 92
alloca function, 128–129
allocated storage duration, 35, 116
/analyze flag, 241
Annex K bounds-checking interfaces

gets_s function, 161–162
runtime constraints, 163–164
strcpy_s function, 162–163

application programming interface (API), 168, 216
argument checking, 156–157
arithmetic types, 19–22, 47

conversion, 64–72
enumeration, 21
floating-point, 21–22, 59–64
integer, 48–59
operators, 83–85
pointer, 94–96

arm_missile function, 19
ARRAY_SIZE identifier, 203
array types, 25–27
ASCII, 138
assertions

runtime, 232–234



static, 230–232
assert macro, 232
assignInterestRate function, 103–104
assignment (=) operator, 74
associativity, 78–80
ATOMIC_VAR_INIT macro, 207
attributes, 44–45, 259–260
automatic storage duration, 15
auto storage-class specifier, 38–39

B
backslash (\), 143
basic execution character set, 19
basic multilingual plane (BMP), 139, 146
big-endian ordering, 191
binary constants, 58
binary resources, embedding, 209–210
binary streams, 172

reading from and writing to, 188–191
bin directory, 225–227
bit and byte utilities, 264–265
_BitInt type, 56–57
bit-precise constants, 58
bit-precise integers, 20, 56–59
bitwise operators

bitwise AND (&), 87
bitwise exclusive OR (^), 88
bitwise inclusive OR (|), 88–89
complement, 85–86
shift, 86–87

block, 14. See also compound statements
block scope, 34
Boeing 787, 51
Boolean type, 18–19
break statement, 111–112
buffering, 169–170
buffer overflows, 106, 123, 152, 159, 160, 164–165, 188, 239, 240
byte-oriented stream, 171
bytes, 154

C
C, xxv–xxvi

history and development of, xxiii–xxv
getting started with, 1–11

call-by-value language, 16
calloc function, 120–121
cardinal_points enumeration, 21



cast operators, 90–91
cc command, 4
central processing units (CPUs), 41, 85
char16_t type, 142
char32_t type, 142
characters

ASCII, 138
code points, 138
constants, 142–143
conversion of, 146–149
data types, 140–142
escape sequences, 143–144
execution character set, 140
Linux, 144–145
literals, 142–143
narrow, 140–142, 146
reading and writing, 177–180
source character set, 140
Unicode, 138–140
wide, 19, 140–142, 146

character string literal, 150–152
char type, 19, 140–141
Clang, 44–45, 93, 102, 104, 129, 131, 134, 145, 196, 198, 203, 206, 226, 252, 255

flags, 235–240
installation, 8
predefined macros list, 210

clearerr function, 169
clear_stdin function, 231
close function, 177
code

building, 225–227
page, 138
points, 138, 154
reuse, 215
units, 139, 154

coercion, 65
cohesion, 214–215
collection, 216
collection_type identifier, 217
comma (,) operator, 94
CommandLineToArgvW function, 145
common extensions, 11
compilation process, preprocessor, 196
compilers, 7–8
compiler settings and flags, 234–235

GCC and Clang, 235–240
Visual C++, 240–241

compiling and running a program, 3–5



complement operators, 85–86
complex types, 22
componentization, 213–218

code reuse, 215
cohesion, 214–215
coupling, 214–215
data abstraction, 215–216
opaque types, 217–218

compound assignment operators, 93–94
compound statements, 14, 98–99
conditional inclusion, 198–202

generating diagnostics, 200–201
header guards, 201–202

conditional (? :) operator, 91–92
considered behavior, 10
constants

character, 142–143
floating, 64
integer, 57–59

binary, 58
decimal, 57
hexadecimal, 57–58
octal, 57

constexpr storage-class specifier, 37–38
const qualifier, 32
continue statement, 111
control flow, 97–113. See also jump statements; selection statements

compound statement, 14, 98–99
expression statements, 97–98
iteration statements, 105–108

control flow guard (CFG), 240–241
controlling expression, 99–105
conversion

arithmetic, 64–72
characters, 146–149
floating-type demotions, 71
floating-type to integer-type and vice versa, 71
implicit, 69–70
integer, 65–67, 70–71
safe conversion, 70–71
specifiers, 187
usual arithmetic conversions, 67–69

convert_arg function, 222
convert_cmd_line_args function, 222
copy_process function, 110
coupling, 214–215
C standard library, 147–149



D
dangling pointers, dealing with, 125–126
data abstraction, 215–216
debugging, 241–245
decimal constants, 57
decimal floating types, 22
declarations, 74
declarations, integer, 49
decrement (--) operator, 77
defined operator, 199
#define preprocessing directive, 202–203
defragmentation, 117
derived types

array, 25–27
function, 22–23
pointer, 23–25
structure, 27–28
union, 28–29

diagnostics, generating, 200–201
dmalloc (debug memory allocation), 132–134

library, 252
double type, 59–62
do...while loop, 231
do...while statement, 106–107
dup_string function, 233
dynamically allocated memory, 115
dynamic analysis, 252–253
dynamic library, 218–219

debugging, 132–135
flexible array members, 127–128
memory management, 117–126
safety-critical systems, 134–135
storage duration, 116–117
using, 117

E
editors, 6–7
8-bit representation, 51
else statement, 199
#embed preprocessor directive, 209
endianness, 28, 191–193
#endif preprocessing directive, 199
enumerations, 21, 261
environment variables, 164
equal (==) operator, 70
#error preprocessing directive, 201



escape sequences, 143–144
Euclidean division, 84
evaluation, 75–76

indeterminately sequenced, 81
order of, 80–82
unsequenced, 81

executables, 218–219
execution character set, 140
EXIT_SUCCESS macro, 2–3
EXPECT_STREQ assertion, 247
explicit undefined behaviors, 10
expressions, 73

evaluations, 75–76
function invocation, 76–77
simple assignment, 74–75
statement, 97–98

Extended ASCII, 138
extended grapheme cluster, 154–155
extended integer types, 20
extern "C" declaration, 247
extern specifier, 37
extern storage class specifier, 220

F
fclose function, 176–177, 181, 188
feof function, 169
ferror function, 169
fgetc function, 178
fgetpos function, 181
field-programmable gate arrays (FPGAs), 56
file access modes, 174
file descriptor, 174
file inclusion, preprocessor, 197–198
FILE object, 168, 174, 177
file pointers, 168
file scope, 34
files, I/O

closing, 176–177
creating, 172–176
opening, 172–176

file status flags, 175
flag argument, 55
flags, 235–240
flexible array members, 127–128
floating-point

arithmetic, 21–22, 62
C model, 60–62



constants, 64
encoding, 59–60
types, 59–60
values, 62–64

float type, 59–60
flooring division, 84
flushing, 170, 180
fopen function, 172–174, 181
format string, 185
formatted output, 5
formatted text streams, reading, 184–188
for statement, 107–108
_FORTIFY_SOURCE macro, 239
fpclassify macro, 63–64
FPGAs, 56
-fpic flag, 239
-fpie flag, 239
fread function, 188–191
free_aligned_sized function, 124–126
free function, 123–224
free_sized function, 124
freestanding environment, 2
fseek function, 173, 180–181
fsetpos function, 173, 181
-fstack-protector-strong option, 240
functions, 2, 14

code reuse, 215
declarator, 22
definition, 23
designator, 76–77
invocation, 76–77
objects and, 14
prototype, 23
return values, 4–5
scope, 34
type, 22–23
variadic, 76

fwrite function, 188–191

G
GCC. See GNU Compiler Collection
generic selection expression, 207
getc function, 178
getchar function, 178
get_error function, 246
get_file_size function, 181
get_password function, 159



gets function, 160–161
gets_s function, 161–162
-glevel flag, 236–237
GNU Compiler Collection (GCC), xxv–xxvi, 8, 21, 93, 102–104, 129, 131, 133, 134, 144, 196, 198,

203, 206, 210, 226, 252, 253
compiler and linker flags, 235–240

Google Test, 245–246
goto statement, 109–110
/guard:cf flag, 240–241

H
__has_c_attribute operator, 262
__has_include operator, 262
__has_include preprocessor operator, 198
header files, 2, 216
header guards, 201–202
heap manager, 116–117
hexadecimal constants, 57–58
hidden scope, 34

I
identifier, 14
IDEs, 6–7
IEEE floating-point support, 265
if...else ladder, 102
if statement, 99–102, 199
ignore_handler_s function, 164–165
implementation-defined behaviors, 9
implicit conversion, 65, 69–70
implicit undefined behavior, 10
#include preprocessor directive, 2
incomplete array type, 127
increment (++) operator, 77
indeterminately sequenced evaluation, 81
indirection (*) operator, 16–17, 24–25
infinite loop, 106
initializer, 74
inner scope, 34
input/output (I/O), 2, 33, 146, 167–168
integers

bit-precise, 20, 56–57
constant expressions, 260–261
constants, 57–59
conversion rank, 65–66
conversions, 70–71
declarations, 49
overflow, 54–56



padding, 48
precision, 48
promotions, 66–67
ranges, 48
signed, 52–56
unsigned, 49–52
width, 48

integrated development environments (IDEs), 6–7
intentional behavior, 10
Internet Protocol (IP), 191
int type, 141
I/O. See input/output
is_prime function, 224

J
jump statements

break, 111–112
continue, 111
goto, 109–110
return, 112–113

K
K&R C functions, 262
keywords, 260
KnownError test case, 249
Knuth, Donald, 116, 214

L
labels, 34
libiconv function, 149
libraries, 218
lifetime, determining, 15
lines, reading and writing, 177–180
linkage, 219–221
link phase, 218
Linux, 144–145
literals

character, 142–143
string, 150–152

little-endian ordering, 191
locale, 140
locale-specific behavior, 11
locator value, 74
logical AND (&&) operator, 89–90
logical negation (!) operator, 83
logical OR (||) operator, 89



long double type, 59–62

M
macro

definitions, 202–211
embedded binary resources, 209–210
generic selection expression as, 208
predefined, 210–211
replacement, 205–207
type-generic, 207–209

with automatic type inference, 209
undefining, 204–205
unsafe expansion, 206

main entry point, 145–146
main function, 2, 17, 40, 225
malloc function, 118–120
matrix, 26
max function, 76
mbrtoc16 function, 148
mbsrtowcs function, 147
mbstowcs function, 147
mbtowc function, 147
memccpy function, 157–159, 243–244
memcpy function, 157
__memmove_avx_unaligned_erms function, 243
memory

allocating without declaring type, 118–119
leaks, 117

avoiding, 121–122
management of, 117–126
manager, 116–117
reading uninitialized memory, 119–120
states of, 126–127

memset_explicit function, 159–160
memset function, 159–160
memset_s function, 159–160
Miller-Rabin primality test, 224
MultiByteToWideChar function, 149
multiplicative operators, 84

N
NAME macro, 205
namespace, 30
narrow characters, 140–142, 146
narrow string, 149
NDEBUG macro, 233
nesting, 34



not-a-number (NaN), 63
NULL macro, 24
null pointer, calling realloc with, 122
nullptr pointer, 126
num_args parameter, 223

O
objects, 13–14. See also types

storage
class, 36–39
duration, 35–36

octal constants, 57
-O flag, 235–236
opaque types, 217–218
open file description, 174
open function, 174–176
operating system (OS), 116
operators, 73

alignof, 92
arithmetic, 83–85
associativity, 78–80
bitwise, 85–89
cast, 90–91
comma (,), 94
compound assignment, 93–94
conditional (? :), 91–92
decrement (--), 77
increment (++), 77
logical, 89–90
order of evaluation, 80–82
postfix, 77
precedence, 78–80
prefix, 77
relational, 93
sizeof, 82–83

order of operations, 78
original equipment manufacturer (OEM), 145–146
outer scope, 34
overflow, integer, 54–56

P
padding, 48
parameters, 16
pass-by-value language, 16
-pedantic flag, 238
pedantic mode, 11
/permissive- flag, 241



-pie flag, 239
planes, 138–139
++1 operation, 77
pointer arithmetic, 94–96
pointers, 14, 23–25
portability, 9–11

common extensions, 11
implementation-defined behaviors, 9
locale-specific behavior, 11
undefined behavior, 10–11
unspecified behaviors, 10

Portable Operating System Interface (POSIX), 24, 164–165, 183–184, 189
postfix operators, 77
precedence, operator, 78–80
precision, 48
predefined macros, 210–211
predefined streams, 170–171
predicate. See assertions
prefix operators, 77
preprocessing directives, 196
preprocessor, 195

compilation process, 196
conditional inclusion, 198–202
file inclusion, 197–198
macro definitions, 202–211
translation phases, 196

prime number, 221
printerr function, 129, 130
print_error function, 130, 253–254
printf function, 5
print_help function, 221
program structure

building code, 225–227
componentization, 213–218
executables, 218–219
linkage, 219–221
simple program, 221–225

promotions, integer, 66–67
pthread.h header, 200
public interface, 215–216
putc function, 178
puts function, 2, 5, 178

Q
qualified types, 31–34

R



random-access memory (RAM), 184
real floating types, 22
reallocarray function, 117–118, 123
realloc function, 121–122
rec.signame, 186, 188, 190
referenced type, 23
register storage-class specifier, 38
relational operators, 93
representable value, 48
restrict-qualified pointer, 33–34
return statement, 112–113
return values, function, 4–5
rewind function, 173, 182–183
rmdir function, 184
RUN_ALL_TESTS macro, 247
runtime analysis, 252–253
runtime assertions, 232–234
runtime constraints, 163–164
rvalue (right operand), 74

S
safe conversion, 70–71
safety-critical systems, 134–135
scope, 34–35

block, 34
file, 34
function, 34
function prototype, 34

/sdl flag, 241
Secure Hash Algorithm (SHA), 56
selection statements

if, 99–102
switch, 102–104

sequence points, 81–82
set_constraint_handler_s function, 163
setlocale function, 148
7-bit ASCII, 138
shadowed scope, 34
-shared flag, 239
shift operations, 86–87
show_classification function, 63
side effects, 55, 76
signed char type, 19
signed integers, 20
sign extension, 70

integer overflow, 54–56
representation, 52–54



simple assignment, 74–75
simple program, structuring, 221–225
sin function, 207
single quote ('), 143
sizeof operator, 82–83, 131, 154
sizeof(size++) operand, 131
small types, 66–67
software development kit (SDK), 146
source character set, 140
source files, 216
spaghetti code, 109
standard error stream (stderr), 171
standard input stream (stdin), 170
standard output stream (stdout), 170
states, memory, 126–127
static

analysis, 251–252
assertion, 230–232
keyword, 220
library, 218

static storage-class specifier, 36–37
__STDC_ENDIAN_BIG__ macro, 192
__STDC_ENDIAN_LITTLE__ macro, 191
__STDC_ENDIAN_NATIVE__ macro, 192
/std:clatest flag, 241
-std= flag, 238
storage

class, 36–39
duration, 35–36

heap manager, 116–117
memory manager, 116–117
using dynamically allocated memory, 117

other forms of, 128–132
strcpy function, 155–156
strcpy_s function, 162–163
streams, I/O

binary, 172
buffering, 169–170
error and end-of-file indicators, 168–169
orientation, 171
predefined, 170–171
text, 172

strerrorlen_s function, 246
strerror_s function, 246, 249
strictly conforming programs, 9
string-handling functions, 152–165
stringizing, 205
strings, 137–138, 149–152



strlen function, 154–155
strndup function, 164
structure member (.) operator, 27
structure pointer (->) operator, 27
structure type (struct), 27–28
subnormal numbers, 62
subscript ([]) operator, 25
substatement, 99–102
supplementary characters, 139
surrogates, 139
swap function, 16–17
switch statement, 102–104

T
tags, 29–31
tempfile, 170–171
temporary files, 184
test suite, 246
text stream, 172
thread_local storage-class specifier, 37
threads.h header, 200
thread storage duration, 35, 37
time-of-check to time-of-use (ToCToU), 33
token pasting, 206
translation phases, 196
translation unit, 196
Transmission Control Protocol (TCP), 191
truncating division, 84
type, 14
typedef storage-class specifier, 38
type-generic macros, 207–209
type inference, 261
typeof operators, 39–40, 262–264

integer types and representation, 263–264
K&R C functions, 262
preprocessor, 262

typeof_unqual operator, 39–40
types

object
arithmetic, 19–22
Boolean, 18–19
character, 19
void, 22

definitions, 26–27
derived, 22–29

array, 25–27
function, 22–23



pointer, 23–25
structure, 27–28
union, 28–29

qualifiers, 31–34
const, 32
restrict, 33–34
volatile, 32–33

variably modified, 42–44

U
Ubuntu Linux, 246
UINT_MAX expression, 50–52
unary & (address-of) operator, 17
unary + and – operators, 83
undefined behavior, portability and, 10–11
Unicode scalar value, 139
Unicode Standard (Unicode), 138–140
Unicode transformation formats (UTFs), 139
uninitialized memory, 119–120
union types, 28–29
unit testing, 245–251
Universal Serial Bus (USB) ports, 168
unreachable function-like macro, 264
unsequenced evaluations, 81
unsigned char type, 19
unsigned integers, 20

representation, 49–50
wraparound, 50–52

unsigned-preserving approach, 67
unspecified behaviors, 10
Urban, Reini, 246
User Datagram Protocol (UDP), 191
usual arithmetic conversions, 67–69

V
value computation, 75–76
value-preserving approach, 67
valueReturnedIfTrue operand, 91–92
values, swapping, 15–18
variable-length arrays (VLAs), 129–132, 260
variables, 14

declaring, 14–18
variably modified types (VMTs), 42–44
Visual C++, 21, 91, 139, 142, 145, 165, 196, 203, 240–241, 252, 255
Visual Studio Code (VS Code), 6–7, 242
Visual Studio IDE, Microsoft, 6, 8
void type, 22



volatile-qualified type, 32–33
vstrcat function, 241

W
-Wall flag, 237–238
wchar_t type, 141–142
-Wconversion flag, 238
wcslen function, 154
wcsrtombs function, 147
wcstombs function, 147
-Werror flag, 238
-Wextra flag, 237–238
while statement, 105–106
wide characters, 19, 140–142, 146
wide-oriented stream, 171
wide string, 150
width, integer, 48
-WI flag, 239
Win32 conversion APIs, 149
Windows, 145–146
-Wl,-z,noexecstack linker option, 239–240
wmain entry point, 145–146
word, 41
wraparound, 50–52
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