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Preface
In this modern era, we observe mind-blowing technologies on a regular
basis and experience luxury and pleasure far beyond what could have been
imagined even a few decades ago. We find ourselves on the cusp of
autonomous cars becoming a reality on our streets. Advances in physics
and other branches of science are changing the way we perceive reality
itself. We read news about researchers taking baby steps in quantum
computation, rumors about blockchain technology and cryptocurrencies,
and plans to colonize other planets. Unbelievably, such a diversity of
breakthroughs find their roots in just a few core technologies. This book is
about one of those technologies: C.

I started programming with C++ when I was studying in my first year of
high school. There, I joined a 2D soccer simulation team for juniors. Soon
after C++, I got introduced to Linux and C. I must admit that I didn't know
much about the importance of C and Unix in those years, but over time, as
I gained more experience in using them through various projects, and as I
learned about them through my education, I came to see their critical role
and position. The more I knew about C, the bigger my respect for it grew.
Finally, I decided to be an expert in this programming language that had so
captured my interest. I also decided to be an advocate to spread the
knowledge and make people aware of the importance of C. This book is a
result of that ambition.

Despite the mistaken belief that C is a dead language, and despite the
general ignorance that C receives from tech people, the TIOBE index
found at https://www.tiobe.com/tiobe-index demonstrates
otherwise. C is, in fact, one of the most popular programming languages of
the past 15 years, together with Java, and has gained popularity in recent
years.

I come to this book following many years of experience in development
and design using C, C++, Golang, Java, and Python on various platforms

https://www.tiobe.com/tiobe-index/c


including various BSD Unix flavors, Linux, and Microsoft Windows. The
primary aim of this book is to increase the skill of its audience to the next
level; to enable them to take the next step in their use of C, and practically
apply it in a way that comes through hard-earned experience. This won't be
an easy journey for us and that's why we've called this book Extreme C.
This journey is the core concern of this book, and we will not be entering
into the debate of C versus other programming languages. This book tries
to remain practical, but still we have to deal with a significant quantity of
hardcore theory that is relevant to practical application. The book is full of
examples that aim to prepare you to deal with the things you will
encounter within a real system.

It is indeed a great honor to be able to address such a weighty topic. Words
won't suffice, so I'll only say that it has been an incredible joy to have the
opportunity to write about a topic that is so close to my heart. And I owe
this pleasure and astonishment to Andrew Waldron, who let me take on
this book as my first experience in book writing.

As part of this, I want to send my special regards and best thanks to Ian
Hough, the Development Editor, who was with me chapter by chapter on
this journey, to Aliakbar Abbasi for his tireless peer review feedback, and
to Kishor Rit, Gaurav Gavas, Veronica Pais, and many more valuable
people who have put their best efforts into preparing and publishing this
book.

With that said, I invite you to be my companion on this long journey. I
hope that the reading of this book will prove to be transformative, helping
you to see C in a new light, and to become a better programmer in the
process.



Who this book is for
This book is written for an audience that has a minimum level of
knowledge regarding C and C++ development. Junior and intermediate
C/C++ engineers are the main audience that can get the most from this
book and leverage their expertise and knowledge. Hopefully, after reading
this book, they can gain a raise in their position and become senior
engineers. In addition, after reading this book, their expertise would be a
better match for more relevant job opportunities that are challenging and
usually well paid. Some topics can still be useful to senior C/C++
engineers, but it is expected that most of the topics are known to them and
only some extra details can still be useful.

The other audience that can benefit from reading this book is students and
researchers. Students of bachelor's, master's, or PhD degrees studying in
any branch of science or engineering such as computer science, software
engineering, artificial intelligence, Internet of Things (IoT), astronomy,
particle physics, and cosmology, as well as all researchers in these fields,
can use the book to increase the level of their knowledge about C/C++,
Unix-like operating systems, and the relevant programming skills. This
book would be good for engineers and scientists working on complex,
multithreaded, or even multi-process systems performing remote device
controlling, simulations, big data processing, machine learning, deep
learning, and so on.



What this book covers
This book has 7 parts. In each of these 7 parts, we cover some particular
aspects of C programming. The first part focuses upon how to build a C
project, the second part focuses on memory, the third on object orientation,
and the fourth primarily looks at Unix and its relationship to C. The fifth
part then discusses concurrency, the sixth covers inter-process
communication, and finally the seventh part of the book is about testing
and maintenance. Below is a summary of each of the 23 chapters found in
this book.

Chapter 1, Essential Features: This chapter is about the essential features
found in C that have a profound effect on the way we use C. We will be
using these features often throughout the book. The main topics are
preprocessing and directives to define macros, variable and function
pointers, function call mechanisms, and structures.

Chapter 2, Compilation and Linking: As part of this chapter, we discuss
how to build a C project. The compilation pipeline is studied in great
detail, both in terms of the pipeline as a whole and in terms of the
individual pipeline components.

Chapter 3, Object Files: This chapter looks at the products of a C project
after having built it using the compilation pipeline. We introduce object
files and their various types. We also take a look inside these object files
and see what information can be extracted.

Chapter 4, Process Memory Structure: In this chapter, we explore a
process's memory layout. We see what segments can be found in this
memory layout and what static and dynamic memory layouts mean.

Chapter 5, Stack and Heap: As part of this chapter, we discuss the Stack
and Heap segments specifically. We talk about the Stack and Heap
variables and how their lifetime is managed in C. We discuss some best



practice regarding Heap variables and the way that they should be
managed.

Chapter 6, OOP and Encapsulation: This is the first chapter in a group of
four chapters discussing object orientation in C. As part of this chapter, we
go through the theory behind object orientation and we give important
definitions to the terms often used in the literature.

Chapter 7, Composition and Aggregation: This chapter focuses upon
composition and a special form of it: aggregation. We discuss the
differences between composition and aggregation and give examples to
demonstrate these differences.

Chapter 8, Inheritance and Polymorphism: Inheritance is one of the most
important topics in object-oriented programming (OOP). In this
chapter, we show how an inheritance relationship can be established
between two classes and how it can be done in C. Polymorphism is another
big topic that is discussed as part of this chapter.

Chapter 9, Abstraction and OOP in C++: As the final chapter in the third
part of the book, we talk about abstraction. We discuss abstract data types
and how they can be implemented in C. We discuss the internals of C++
and we demonstrate how object-oriented concepts are implemented in
C++.

Chapter 10, Unix – History and Architecture: You cannot talk about C and
forget about Unix. In this chapter, we describe why they are strongly
bound to each other, and how Unix and C have helped one another to
survive thus far. The architecture of Unix is also studied, and we see how a
program uses the functionalities exposed by the operating system.

Chapter 11, System Calls and Kernel: In this chapter, we focus on the
kernel ring in the Unix architecture. We discuss system calls in greater
detail and we add a new system call to Linux. We also talk about various
types of kernels, and we write a new simple kernel module for Linux to
demonstrate how kernel modules work.



Chapter 12, The Most Recent C: As part of this chapter, we take a look at
the most recent version of C standard, C18. We see how it is different from
the previous version, C11. We also demonstrate some of the newly added
features in comparison to C99.

Chapter 13, Concurrency: This is the first chapter of the fifth part of the
book, and it is regarding concurrency. This chapter mainly talks about
concurrent environments and their various properties such as
interleavings. We explain why these systems are non-determinant and how
this property can lead to concurrency issues such as race conditions.

Chapter 14, Synchronization: In this chapter, we continue our discussion
regarding concurrent environments, and we discuss the various types of
issues that we can expect to observe in a concurrent system. Race
conditions, data races, and deadlocks are among the issues that we discuss.
We also talk about the techniques that we can utilize to overcome these
issues. Semaphores, mutexes, and condition variables are discussed in this
chapter.

Chapter 15, Thread Execution: As part of this chapter, we demonstrate
how a number of threads can be executed and how they can be managed.
We also give real C examples about the concurrency issues discussed in
the previous chapter.

Chapter 16, Thread Synchronization: In this chapter, we look at the
techniques that we can use to synchronize a number of threads.
Semaphores, mutexes, and condition variables are among the notable
topics that are discussed and demonstrated in this chapter.

Chapter 17, Process Execution: This chapter talks about the ways that we
can create or spawn a new process. We also discuss push-based and pull-
based techniques for sharing state among a number of processes. We also
demonstrate the concurrency issues discussed in Chapter 14,
Synchronization using real C examples.

Chapter 18, Process Synchronization: This chapter mainly deals with
available mechanisms to synchronize a number of processes residing on
the same machine. Process-shared semaphores, process-shared mutexes,



and process-shared condition variables are among the techniques
discussed in this chapter.

Chapter 19, Single-Host IPC and Sockets: In this chapter, we mainly
discuss push-based interprocess communication (IPC) techniques. Our
focus is on the techniques available to processes residing on the same
machine. We also introduce socket programming, and the required
background to establish channels between processes residing on different
nodes in a network.

Chapter 20, Socket Programming: As part of this chapter, we discuss
socket programming through code examples. We drive our discussion by
bringing up an example that is going to support various types of sockets.
Unix domain sockets, TCP, and UDP sockets operating on either a stream
or a datagram channel are discussed.

Chapter 21, Integration with Other Languages: In this chapter, we
demonstrate how a C library, built as a shared object file, can be loaded
and used in programs written with C++, Java, Python, and Golang.

Chapter 22, Unit Testing and Debugging: This chapter is dedicated to
testing and debugging. For the testing half, we explain various levels of
testing, but we focus on unit testing in C. We also introduce CMocka and
Google Test as two available libraries to write test suites in C. For the
debugging half, we go through various available tools that can be used for
debugging different types of bugs.

Chapter 23, Build Systems: In the final chapter of the book, we discuss
build systems and build script generators. Make, Ninja, and Bazel are the
build systems that we explain as part of this chapter. CMake is also the
sole build script generator that we discuss in this chapter.

To get the most out of this book



As we have explained before, this book requires you to have a minimum
level of knowledge and skill regarding computer programming. The
minimum requirements are listed below:

General knowledge of computer architecture: You should know about
memory, CPU, peripheral devices and their characteristics, and how
a program interacts with these elements in a computer system.
General knowledge of programming: You should know what an
algorithm is, how its execution can be traced, what source code is,
what binary numbers are, and how their related arithmetic works.
Familiarity with using the Terminal and the basic shell commands in a
Unix-like operating system such as Linux or macOS.
Intermediate knowledge about programming topics such as
conditional statements, different kinds of loops, structures or classes
in at least one programming language, pointers in C or C++,
functions, and so on.
Basic knowledge about OOP: This is not mandatory because we will
explain OOP in detail, but it can help you to have a better
understanding while reading the chapters in third part of the book,
Object Orientation.

In addition, it is strongly recommended to download the code repository
and follow the commands given in the shell boxes. Please use a platform
with Linux or macOS installed. Other POSIX-compliant operating
systems can still be used.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com/. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files
emailed directly to you.

You can download the code files by following these steps:

http://www.packt.com/
https://www.packtpub.com/support


1. Log in or register at http://www.packt.com.
2. Select the Support tab.
3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the on-
screen instructions.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Extreme-C. In case
there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check
them out!

Conventions used
In this book, we have used code boxes and shell boxes. Code boxes contain
a piece of either C code or pseudo-code. If the content of a code box is
brought from a code file, the name of the code file is shown beneath the
box. Below, you can see an example of a code box:

#include <stdio.h>

#include <unistd.h>

int main(int argc, char** argv) {

printf("This is the parent process with process ID: %d\n",

getpid());

printf("Before calling fork() ...\n");

pid_t ret = fork();

http://www.packt.com/
https://github.com/PacktPublishing/Extreme-C
https://github.com/PacktPublishing/


if (ret) {

printf("The child process is spawned with PID: %d\n", ret);

} else {

printf("This is the child process with PID: %d\n",

getpid());

}

printf("Type CTRL+C to exit ...\n");

while (1);

return 0;

}

Code Box 17-1 [ExtremeC_examples_chapter17_1.c]: Creating a child process using fork API

As you can see, the above code can be found in the
ExtremeC_examples_chapter17_1.c  file, as part of the code bundle of the
book, in the directory of Chapter 17, Process Execution. You can get the
code bundle from GitHub at
https://github.com/PacktPublishing/Extreme-C.

If a code box doesn't have an associated filename, then it contains pseudo-
code or C code that cannot be found in the code bundle. An example is
given below:

Task P {

1. num = 5

2. num++

3. num = num – 2

4. x = 10

5. num = num + x

}

Code Box 13-1: A simple task with 5 instructions

There can sometimes be some lines shown in bold font within code boxes.
These lines are usually the lines of code that are discussed before or after
the code box. They are in bold font in order to help you find them more
easily.

Shell boxes are used to show the output of the Terminal while running a
number of shell commands. The commands are usually in bold font and
the output is in the normal font. An example is shown below:

https://github.com/PacktPublishing/Extreme-C


$ ls /dev/shm

shm0

$ gcc ExtremeC_examples_chapter17_5.c -lrt -o ex17_5.out

$ ./ex17_5.out

Shared memory is opened with fd: 3

The contents of the shared memory object: ABC

$ ls /dev/shm

$

Shell Box 17-6: Reading from the shared memory object created in example 17.4 and finally
removing it

The commands start either with $  or # . The commands starting with $
should be run with a normal user, and the commands starting with #
should be run with a super user.

The working directory of a shell box is usually the chapter directory found
in the code bundle. In cases when a particular directory should be chosen
as the working directory, we give you the necessary information regarding
that.

Bold: Indicates a new term, an important word. Words that you see on the
screen, for example, in menus or dialog boxes, also appear in the text like
this. For example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.



General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com .

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book we
would be grateful if you would report this to us.

Please visit, www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on
the Internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
copyright@packt.com  with a link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to
a book, please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
https://www.packtpub.com/


Chapter 01
Essential Features

Extreme C is a book that will provide you with both the fundamental and
the advanced knowledge you need in order to develop and maintain real C
applications. Generally, only knowing the syntax of a programming
language is not enough to write successful programs with it – and this is of
greater importance in C compared to most other languages. So, we're
going to cover all of the concepts you need to write great software in C,
from simple single process programs to more complex multiple process
systems.

This first chapter is primarily concerned with particular features of C that
you'll find extremely useful while you're writing C programs. These
features are involved in situations you will encounter regularly while
writing in C. Although there are a number of great books and tutorials on
C programming that explain everything in detail and cover almost all
aspects of C syntax, it would be useful to consider some key features here
before we go deeper with C.

These features include preprocessor directives, variable pointers, function
pointers, and structures. They are common, of course, in today's more
modern programming languages, and it's easy to find their counterparts in
Java, C#, Python, and so on. For example, references in Java can be
considered as similar elements to variable pointers in C. These features
and their related concepts are so fundamental, that without them, no piece
of software could continue to work, even if it could get executed! Even a
simple "hello world" program cannot work without loading a number of
shared libraries that require the usage of function pointers!

So, whenever you see something like traffic lights, your car's central
computer, the microwave oven in your kitchen, the operating system of



your smartphone, or probably any other device that you generally don't
think about, they all have pieces of software written in C.

Our lives today have been greatly impacted by the invention of the C
programming language, and our world would be very different without C.

This chapter focuses on the essential features and machinery required to
write expert C code and contains a handpicked collection of features for us
to study in depth. We'll explore the following topics:

Preprocessor directives, macros, and conditional compilation:
Preprocessing is one of those C features that you can't easily find in
other programming languages. Preprocessing brings a lot of
advantages, and we'll dive into some of its interesting applications,
including macros and conditional directives.
Variable pointers: This section deep-dives into variable pointers and
their uses. We'll also find some helpful insights by looking at some of
the flaws that could be introduced by misusing variable pointers.
Functions: This section of the chapter is a deep dive into everything
we know about functions, beyond just their syntax. In fact, the syntax
is the easy part! In this section, we will look at functions as the
building blocks for writing procedural code. This section also talks
about the function call mechanism and how a function receives its
arguments from the caller function.
Function pointers: Undoubtedly, function pointers are one of the
most important features of C. A function pointer is a pointer that
points to an existing function instead of a variable. The ability to
store a pointer to an existing logic is profoundly important in
algorithm design, and that's why we have a dedicated section on this
topic. Function pointers appear in a vast range of applications ranging
from loading dynamic libraries to polymorphism, and we'll be seeing
plenty more of function pointers across the next couple of chapters.
Structures: C structures might have a simple syntax and convey a
simple idea, but they are the main building blocks for writing well-
organized and more object-oriented code. Their importance, together
with function pointers, simply cannot be overstated! In the last



section of this chapter, we'll revisit all the things that you need to
know about structures in C and the tricks around them.

The essential features of C, and their surrounding concepts, play a key role
in the Unix ecosystem, and they have led to C being an important and
influential technology despite its old age and harsh syntax. We will talk
more about the mutual influence of C and Unix upon one another in the
upcoming chapters. For now, let's begin this first chapter by talking about
preprocessor directives.

Before reading this chapter, bear in mind that you should be already
familiar with C. Most of the examples are trivial in this chapter, but it is
highly recommended that you know C syntax before moving on to other
chapters. For your convenience, below is a list of topics that you should
be familiar with before moving on with this book:

General knowledge of computer architecture — you should know about
memory, CPU, peripheral devices and their characteristics, and how a
program interacts with these elements in a computer system.

General knowledge of programming — you should know what an
algorithm is, how its execution can be traced, what a source code is, what
binary numbers are, and how their related arithmetic work.

Familiarity with using the Terminal and the basic shell commands in a
Unix-like operating system such as Linux or macOS.

Intermediate knowledge about programming topics such as conditional
statements, different kinds of loops, structures or classes in at least one
programming language, pointers in C or C++, functions, and so on.

Basic knowledge about object-oriented programming — this is not
mandatory because we will explain object-oriented programming in
detail, but such knowledge will help you to have a better understanding
while reading the chapters in the third part of the book; Object
Orientation.

Preprocessor directives



Preprocessing is a powerful feature in C. We'll cover it fully in Chapter 2,
Compilation and Linking, but right now let's define preprocessing as
something that allows you to engineer and modify your source code before
submitting it to the compiler. This means that the C compilation pipeline
has at least one step more in comparison to other languages. In other
programming languages, the source code is directly sent to the compiler,
but in C and C++, it should be preprocessed first.

This extra step has made C (and C++) a unique programming language in
the sense that a C programmer can effectively change their source code
before submitting it to the compiler. This feature is not present in most
higher-level programming languages.

The purpose of preprocessing is to remove the preprocessing directives
and substitute them with equivalent generated C code and prepare a final
source that is ready to be submitted to the compiler.

The behavior of the C preprocessor can be controlled and influenced using
a set of directives. C directives are lines of code starting with a #
character in both header and source files. These lines are only meaningful
to the C preprocessor and never to the C compiler. There are various
directives in C, but some of them are very important especially the
directives used for macro definition and the directives used for conditional
compilation.

In the following section, we'll explain macros and give various examples
demonstrating their various uses. We also analyze them further to find
their advantages and disadvantages.

Macros
There are many rumors regarding C macros. One says that they make your
source code too complicated and less readable. Another says that you face
issues while debugging applications if you have used macros in your code.
You might have heard some of these statements yourself. But to what



extent are they valid? Are macros evils that should be avoided? Or do they
have some benefits that can be brought to your project?

The reality is that you'll find macros in any well-known C project. As
proof, download a well-known C project such as Apache HTTP Server and
do a grep for #define . You will see a list of files where macros are
defined. For you as a C developer, there is no way to escape macros. Even
if you don't use them yourself, you will likely see them in other people's
code. Therefore, you need to learn what they are and how to deal with
them.

The grep  command refers to a standard shell utility program in Unix-
like operating systems that searches for a pattern in a stream of
characters. It can be used to search for a text or a pattern in the content of
all files found in a given path.

Macros have a number of applications and you can see some of them as
follows:

Defining a constant
Using as a function instead of writing a C function
Loop unrolling
Header guards
Code generation
Conditional compilation

While there are many more possible applications of macros, we'll focus on
the above in the following sections.

Defining a macro

Macros are defined using the #define  directive. Each macro has a name
and a possible list of parameters. It also has a value that gets substituted
by its name in the preprocessing phase through a step called macro



expansion. A macro can also be undefined with the #undef  directive. Let's
start with a simple example, example 1.1:

#define ABC 5

int main(int argc, char** argv) {

int x = 2;

int y = ABC;

int z = x + y;

return 0;

}

Code Box 1-1 [ExtremeC_examples_chapter1_1.c]: Defining a macro

In the preceding code box, ABC  is not a variable that holds an integer
value nor an integer constant. In fact, it's a macro called ABC  and its
corresponding value is 5 . After the macro expansion phase, the resulting
code that can be submitted to the C compiler looks similar to the one we
see as follows:

int main(int argc, char** argv) {

int x = 2;

int y = 5;

int z = x + y;

return 0;

}

Code Box 1-2: The generated code for the example 1.1 after macro expansion phase

The code in Code Box 1-2 has a valid C syntax, and now the compiler can
proceed and compile it. In the preceding example, the preprocessor did the
macro expansion, and as a part of it, the preprocessor simply replaced the
macro's name with its value. The preprocessor has also removed the
comments on the beginning lines.

Let's now have a look at another example, example 1.2:

#define ADD(a, b) a + b

int main(int argc, char** argv) {

int x = 2;

int y = 3;



int z = ADD(x, y);

return 0;

}

Code Box 1-3 [ExtremeC_examples_chapter1_2.c]: Defining a function-like macro

In the preceding code box, similar to example 1.1, ADD  is not a function. It
is just a function-like macro that accepts arguments. After preprocessing,
the resulting code will be like this:

int main(int argc, char** argv) {

int x = 2;

int y = 3

int z = x + y;

return 0;

}

Code Box 1-4: Example 1.2 after preprocessing and macro expansion

As you can see in the preceding code box, the expansion that has taken
place is as follows. The argument x  used as parameter a  is replaced with
all instances of a  in the macro's value. This is the same for the parameter
b , and its corresponding argument y . Then, the final substitution occurs,
and we get x + y  instead of ADD(a, b)  in the preprocessed code.

Since function-like macros can accept input arguments, they can mimic
C functions. In other words, instead of putting a frequently used logic into
a C function, you can name that logic as a function-like macro and use that
macro instead.

This way, the macro occurrences will be replaced by the frequently used
logic, as part of the preprocessing phase, and there is no need to introduce
a new C function. We will discuss this more and compare the two
approaches.

Macros only exist before the compilation phase. This means that the
compiler, theoretically, doesn't know anything about the macros. This is a
very important point to remember if you are going to use macros instead
of functions. The compiler knows everything about a function because it is



part of the C grammar and it is parsed and being kept in the parse tree. But
a macro is just a C preprocessor directive only known to the preprocessor
itself.

Macros allow you to generate code before the compilation. In other
programming languages such as Java, you need to use a code generator to
fulfill this purpose. We will give examples regarding this application of
macros.

Modern C compilers are aware of C preprocessor directives. Despite the
common belief that they don't know anything about the preprocessing
phase, they actually do. The modern C compilers know about the source
before entering the preprocessing phase. Look at the following code:

#include <stdio.h>

#define CODE \

printf("%d\n", i);

int main(int argc, char** argv) {

CODE

return 0;

}

Code Box 1-5 [example.c]: Macro definition which yields an undeclared identifier error

If you compile the above code using clang  in macOS, the following
would be the output:

$ clang example.c

code.c:7:3: error: use of undeclared identifier 'i'

CODE

^

code.c:4:16: note: expanded from macro 'CODE'

printf("%d\n", i);

^

1 error generated.

$

Shell Box 1-1: The output of the compilation refers to the macro definition



As you see, the compiler has generated an error message that points
exactly to the line in which the macro is defined.

As a side note, in most modern compilers, you can view the preprocessing
result just before the compilation. For example, when using gcc  or
clang , you can use the -E  option to dump the code after preprocessing.
The following shell box demonstrates how to use the -E  option. Note that
the output is not fully shown:

$ clang -E example.c

# 1 "sample.c"# 1 "<built-in>" 1

# 1 "<built-in>" 3

# 361 "<built-in>" 3

...

# 412

"/Library/Developer/CommandLineTools/SDKs/MacOSX10.14.sdk/us

r/include/stdio.h" 2 3 4

# 2 "sample.c" 2

...

int main(int argc, char** argv) {

printf("%d\n", i);

return 0;

}

$

Shell Box 1-2: The code of example.c after preprocessing phase

Now we come to an important definition. A translation unit (or a
compilation unit) is the preprocessed C code that is ready to be passed to
the compiler.

In a translation unit, all directives are substituted with inclusions or macro
expansions and a flat long piece of C code has been produced.

Now that you know more about macros, let's work on some more difficult
examples. They will show you the power and danger of macros. In my
opinion, extreme development deals with dangerous and delicate stuff in a
skilled way, and this is exactly what C is about.

The next example is an interesting one. Just pay attention to how the
macros are used in sequence to generate a loop:



#include <stdio.h>

#define PRINT(a) printf("%d\n", a);

#define LOOP(v, s, e) for (int v = s; v <= e; v++) {

#define ENDLOOP }

int main(int argc, char** argv) {

LOOP(counter, 1, 10)

PRINT(counter)

ENDLOOP

return 0;

}

Code Box 1-6 [ExtremeC_examples_chapter1_3.c]: Using macros to generate a loop

As you see in the preceding code box, the code inside the main  function is
not a valid C code in any way! But after preprocessing, we get a correct C
source code that compiles without any problem. Following is the
preprocessed result:

...

... content of stdio.h …

...

int main(int argc, char** argv) {

for (int counter = 1; counter <= 10; counter++) {

printf("%d\n", counter);

}

return 0;

}

Code Box 1-7: Example 1.3 after preprocessing phase

In Code Box 1-6, in the main  function, we just used a different and not C-
looking set of instructions to write our algorithm. Then after
preprocessing, in Code Box 1-7, we got a fully functional and correct C
program. This is an important application of macros; to define a new
domain specific language (DSL) and write code using it.

DSLs are very useful in different parts of a project; for example, they are
used heavily in testing frameworks such as Google Test framework (gtest)
where a DSL is used to write assertions, expectations, and test scenarios.



We should note that we don't have any C directives in the final
preprocessed code. This means that the #include  directive in Code Box 1-
6 has been replaced by the contents of the file it was referring to. That is
why you see the content of the stdio.h  header file (which we replaced
with ellipses) in Code Box 1-7 before the main  function.

Let's now look at the next example, example 1.4, which introduces two
new operators regarding macro parameters; the #  and ##  operators:

#include <stdio.h>

#include <string.h>

#define CMD(NAME) \

char NAME ## _cmd[256] = ""; \

strcpy(NAME ## _cmd, #NAME);

int main(int argc, char** argv) {

CMD(copy)

CMD(paste)

CMD(cut)

char cmd[256];

scanf("%s", cmd);

if (strcmp(cmd, copy_cmd) == 0) {

// ...

}

if (strcmp(cmd, paste_cmd) == 0) {

// ...

}

if (strcmp(cmd, cut_cmd) == 0) {

// ...

}

return 0;

}

Code Box 1-8 [ExtremeC_examples_chapter1_4.c]: Using # and ## operators in a macro

While expanding the macro, the #  operator turns the parameter into its
string form surrounded by a pair of quotation marks. For example, in the
preceding code, the #  operator used before the NAME  parameter turns it
into "copy"  in the preprocessed code.

The ##  operator has a different meaning. It just concatenates the
parameters to other elements in the macro definition and usually forms



variable names. Following is the final preprocessed source for example
1.4:

...

... content of stdio.h ...

...

... content of string.h ...

...

int main(int argc, char** argv) {

char copy_cmd[256] = ""; strcpy(copy_cmd, "copy");

char paste_cmd[256] = ""; strcpy(paste_cmd, "paste");

char cut_cmd[256] = ""; strcpy(cut_cmd, "cut");

char cmd[256];

scanf("%s", cmd);

if (strcmp(cmd, copy_cmd) == 0) {

}

if (strcmp(cmd, paste_cmd) == 0) {

}

if (strcmp(cmd, cut_cmd) == 0) {

}

return 0;

}

Code Box 1-9: Example 1.4 after preprocessing phase

Comparing the source before and after preprocessing helps you to realize
how #  and ##  operators are applied to the macro arguments. Note that, in
the final preprocessed code, all lines expanded from the same macro
definition are on the same line.

It is a good practice to break long macros into multiple lines but do not
forget to use \ (one backslash) to let the preprocessor know that the rest
of the definition comes on the next line. Note that \ doesn't get substituted
with a newline character. Instead, it is an indicator that the following line
is the continuation of the same macro definition.

Now let's talk about a different type of macros. The next section is going
to talk about variadic macros which can accept a variable number of
arguments.

Variadic macros



The next example, example 1.5, is dedicated to variadic macros, which can
accept a variable number of input arguments. Sometimes the same
variadic macro accepts 2 arguments, sometimes 4 arguments, and
sometimes 7. Variadic macros are very handy when you are not sure about
the number of arguments in different usages of the same macro. A simple
example is given as follows:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define VERSION "2.3.4"

#define LOG_ERROR(format, ...) \

fprintf(stderr, format, __VA_ARGS__)

int main(int argc, char** argv) {

if (argc < 3) {

LOG_ERROR("Invalid number of arguments for version %s\n.",

VERSION);

exit(1);

}

if (strcmp(argv[1], "-n") != 0) {

LOG_ERROR("%s is a wrong param at index %d for version %s.",

argv[1], 1, VERSION);

exit(1);

}

// ...

return 0;

}

Code Box 1-10 [ExtremeC_examples_chapter1_5.c]: Definition and usage of a variadic
macro

In the preceding code box, you see a new identifier: __VA_ARGS__ . It is an
indicator that tells the preprocessor to replace it with all the remaining
input arguments that are not assigned to any parameter yet.

In the preceding example, in the second usage of LOG_ERROR , according to
the macro definition, the arguments argv[1] , 1 , and VERSION  are those
input arguments that are not assigned to any parameter. So, they are going
to be used in place of __VA_ARGS__  while expanding the macro.

As a side note, the function fprintf  writes to a file descriptor. In example
1.5, the file descriptor is stderr , which is the error stream of the process.



Also, note the ending semicolon after each LOG_ERROR  usage. It is
mandatory because the macro doesn't supply them as part of its definition
and the programmer must add that semicolon to make the final
preprocessed code syntactically correct.

The following code is the final output after passing through the C
preprocessor:

...

... content of stdio.h ...

...

... content of stdlib.h ...

...

... content of string.h ...

...

int main(int argc, char** argv) {

if (argc < 3) {

fprintf(stderr, "Invalid number of arguments for version

%s\n.", "2.3.4");

exit(1);

}

if (strcmp(argv[1], "-n") != 0) {

fprintf(stderr, "%s is a wrong param at index %d for version

%s.", argv[1], 1, "2.3.4");

exit(1);

}

// ...

return 0;

}

Code Box 1-11: Example 1.5 after preprocessing phase

The next example, example 1.6, is a progressive usage of variadic macros
that tries to mimic a loop. There is a well-known example about this.
Before having foreach  in C++, the boost framework was (and still is)
offering the foreach  behavior using a number of macros.

In the following link, you can see how the BOOST_FOREACH  macro is
defined as the last thing in the header file:
https://www.boost.org/doc/libs/1_35_0/boost/foreac

h.hpp. It is used to iterate over a boost collection, and it is actually a
function-like macro.

https://www.boost.org/doc/libs/1_35_0/boost/foreach.hpp


Our following example, example 1.6, is about a simple loop which is not
comparable to boost's foreach  at all, but yet, it is giving you an idea on
how to use variadic macros for repeating a number of instructions:

#include <stdio.h>

#define LOOP_3(X, ...) \

printf("%s\n", #X);

#define LOOP_2(X, ...) \

printf("%s\n", #X); \

LOOP_3(__VA_ARGS__)

#define LOOP_1(X, ...) \

printf("%s\n", #X); \

LOOP_2(__VA_ARGS__)

#define LOOP(...) \

LOOP_1(__VA_ARGS__)

int main(int argc, char** argv) {

LOOP(copy paste cut)

LOOP(copy, paste, cut)

LOOP(copy, paste, cut, select)

return 0;

}

Code Box 1-12 [ExtremeC_examples_chapter1_6.c]: Using variadic macros to mimic a loop

Before starting to explain the example, let's look at the final code after
preprocessing. Then, the explanation of what happened will be easier:

...

... content of stdio.h ...

...

int main(int argc, char** argv) {

printf("%s\n", "copy paste cut"); printf("%s\n", "");

printf("%s\n", "");

printf("%s\n", "copy"); printf("%s\n", "paste");

printf("%s\n", "cut");

printf("%s\n", "copy"); printf("%s\n", "paste");

printf("%s\n", "cut");

return 0;

}

Code Box 1-13: Example 1.6 after preprocessing phase



If you look at the preprocessed code carefully, you will see that the LOOP
macro has been expanded to multiple printf  instructions instead of
looping instructions such as for  or while . It is obvious why this is the
case, and it's because of the fact that the preprocessor doesn't write smart
C code for us. It is there to replace macros with the instructions given by
us.

The only way to create a loop with a macro is just to put the iteration
instructions one after another, and as some separate instructions. This
means that a simple macro loop with 1000 iterations will be substituted
with 1000 instructions in C and we won't have any actual C loop in the
final code.

The preceding technique will lead to a large binary size which can be
thought of as a disadvantage. But putting instructions one after another
instead of putting them into a loop, which is known as loop unrolling, has
its own applications, which require an acceptable level of performance in
constrained and high-performance environments. According to what we
explained so far, it seems that loop unrolling using macros is a trade-off
between binary size and performance. We talk more about this in the
upcoming section.

There is one more note about the preceding example. As you see, different
usages of the LOOP  macro in the main  function have produced different
results. In the first usage, we pass copy paste cut  without any commas
between the words. The preprocessor accepts it as a single input, so the
simulated loop has only one iteration.

In the second usage, the input copy, paste, cut  is passed with words
separated by commas. Now, the preprocessor treats them as three different
arguments; hence, the simulated loop has three iterations. This is clear
from the following Shell Box 1-3.

In the third usage, we pass four values, copy, paste, cut, select,  but
only three of them are processed. As you see, the preprocessed code is
exactly the same as the second usage. That's because of the fact that our
looping macros are only capable of handling lists of up to three elements.
Extra elements after the third are ignored.



Note that this doesn't produce compilation errors because nothing wrong
has been generated as the final C code, but our macros are limited in the
number of elements they can process:

$ gcc ExtremeC_examples_chapter1_6.c

$ ./a.out

copy paste cut

copy

paste

cut

$

Shell Box 1-3: Compilation and output of example 1.6

Advantages and disadvantages of macros

Let's start the discussion by talking a bit about software design. Defining
macros and putting them together is an art, and at times an addictive one!
You start building the expected preprocessed code in your mind even
before having any macros defined and based on that you define your
macros. Since it is an easy way to replicate the code and play with it, it can
be overused. Overusing the macros may not be a big issue for you, but it
might be for your teammates. But why is that?

Macros have an important characteristic. If you write something in
macros, they will be replaced by other lines of code before the compilation
phase, and finally, you'll have a flat long piece of code without any
modularity at compile time. Of course, you have the modularity in your
mind and probably in your macros, but it is not present in your final
binaries. This is exactly where using macros can start to cause design
issues.

Software design tries to package similar algorithms and concepts in
several manageable and reusable modules, but macros try to make
everything linear and flat. So, when you are using macros as some logical
building blocks within your software design, the information regarding
them can be lost after the preprocessing phase, as part of the final



translation units. That's why the architects and designers use a rule of
thumb about macros:

If a macro can be written as a C function,

then you should write a C function instead!

From the debugging perspective, again, it is said that macros are evil. A
developer uses compilation errors to find the places where there exist
syntax errors as part of their daily development tasks. They also use logs
and possibly compilation warnings to detect a bug and fix it. The
compilation errors and warnings both are beneficial to the bug analysis
routine, and both of them are generated by the compilers.

Regarding the macros, and especially with old C compilers, the compiler
didn't know anything about the macros and it was treating the compiling
source (the translation unit) as a long, linear, flat piece of code. So, for a
developer looking at the actual C code with macros and for the C compiler
looking at the preprocessed code without macros, there were two different
worlds. So, the developer could not understand easily what the compiler
reported.

Hopefully, with the help of our modern C compilers, this issue is not that
severe anymore. Nowadays, the famous C compilers such as gcc  and
clang  know more about the preprocessing phase, and they try to keep,
use, and report according to the source code that the developer sees.
Otherwise, the problem with macros could be repeated with #include
directives, simply because the main content of a translation unit is only
known when all inclusions have happened. As a conclusion, we can say
that the problem with debugging is less severe than the problem we
explained in the previous paragraph about the software design.

If you remember, we brought up a discussion during the explanation of
example 1.6. It was about a trade-off between the binary size and the
performance of a program. A more general form of this trade-off is



between having a single big binary and having multiple small binaries.
Both of them are providing the same functionality, but the former can have
a better performance.

The number of binaries used in a project, especially when the project is
big, is more or less proportional to the degree of modularization and the
design effort spent on it. As an example, a project having 60 libraries
(shared or static) and one executable seems to be developed according to a
software plan which is splitting dependencies into multiple libraries and
using them in a single main executable.

In other words, when a project is being developed according to the
software design principals and best practices, the number of binaries and
their sizes are engineered in a careful way and usually will be comprised
of multiple lightweight binaries with applicable minimum sizes, instead of
having a single huge binary.

Software design tries to have each software component in a suitable
position in a giant hierarchy instead of putting them in a linear order. And
this is intrinsically against the performance even though its effect on the
performance is tiny in most cases.

So, we can conclude that the discussion regarding example 1.6 was about
the trade-off between design and performance. When you need
performance, sometimes you need to sacrifice the design and put things in
a linear construction. For example, you could avoid loops and use loop
unrolling instead.

From a different perspective, performance starts with choosing proper
algorithms for the problems defined in the design phase. The next step is
usually called optimization or performance tuning. In this phase, gaining
performance is equivalent to letting the CPU just compute in a linear and
sequential manner and not to force it to jump between different parts of
the code. This can be done either by modifying the already used
algorithms or by replacing them with some performant and usually more
complex algorithms. This stage can come into conflict with the design
philosophy. As we said before, design tries to put things in a hierarchy and
make them non-linear, but the CPU expects things to be linear, already



fetched and ready to be processed. So, this trade-off should be taken care
of and balanced for each problem separately.

Let's explain the loop unrolling a bit more. This technique is mostly used
in embedded development and especially in environments that suffer from
limited processing power. The technique is to remove loops and make
them linear to increase the performance and avoid the looping overhead
while running iterations.

This is exactly what we did in example 1.6; we mimicked a loop with
macros, which led to a linear set of instructions. In this sense, we can say
that the macros can be used for performance tuning in embedded
development and the environments in which a slight change in the way
that the instructions are executed will cause a significant performance
boost. More than that, macros can bring readability to the code and we can
factor out repeated instructions.

Regarding the quote mentioned earlier that says that macros should be
replaced by equivalent C functions, we know that the quote is there for the
sake of design and it can be ignored in some contexts. In a context where
improved performance is a key requirement, having a linear set of
instructions that lead to better performance may be a necessity.

Code generation is another common application of macros. They can be
used for introducing DSLs into a project. Microsoft MFC, Qt, Linux
Kernel, and wxWidgets are a few projects out of thousands that are using
macros to define their own DSLs. Most of them are C++ projects, but they
are using this C feature to facilitate their APIs.

As a conclusion, C macros can have advantages if the impacts of their
preprocessed form are investigated and known. If you're working on a
project within a team, always share your decisions regarding the usage of
the macros in the team and keep yourself aligned with the decisions made
within the team.

Conditional compilation



Conditional compilation is another unique feature of C. It allows you to
have different preprocessed source code based on different conditions.
Despite the meaning it implies, the compiler is not doing anything
conditionally, but the preprocessed code that is passed to the compiler can
be different based on some specified conditions. These conditions are
evaluated by the preprocessor while preparing the preprocessed code.
There are different directives contributing to the conditional compilation.
You can see a list of them as follows:

#ifdef

#ifndef

#else

#elif

#endif

The following example, example 1.7, demonstrates a very basic usage of
these directives:

#define CONDITION

int main(int argc, char** argv) {

#ifdef CONDITION

int i = 0;

i++;

#endif

int j= 0;

return 0;

}

Code Box 1-14 [ExtremeC_examples_chapter1_7.c]: An example of conditional compilation

While preprocessing the preceding code, the preprocessor sees the
CONDITION  macro's definition and marks it as defined. Note that no value
is proposed for the CONDITION  macro and this is totally valid. Then, the
preprocessor goes down further until it reaches the #ifdef  statement.
Since the CONDITION  macro is already defined, all lines between #ifdef
and #endif  will be copied to the final source code.

You can see the preprocessed code in the following code box:



int main(int argc, char** argv) {

int i = 0;

i++;

int j= 0;

return 0;

}

Code Box 1-15: Example 1.7 after preprocessing phase

If the macro was not defined, we wouldn't see any replacement for the
#if-#endif  directives. Therefore, the preprocessed code could be
something like the following:

int main(int argc, char** argv) {

int j= 0;

return 0;

}

Code Box 1-16: Example 1.7 after preprocessing phase assuming that CONDITION macro is
not defined

Note the empty lines, in both code boxes 1-15 and 1-16, which have been
remained from the preprocessing phase, after replacing the #ifdef-
#endif  section with its evaluated value.

Macros can be defined using -D  options passed to the compilation
command. Regarding the preceding example, we can define the
CONDITION  macro as follows:

$ gcc -DCONDITION -E main.c

This is a great feature because it allows you to have macros defined out
of source files. This is especially helpful when having a single source
code but compiling it for different architectures, for example, Linux or
macOS, which have different default macro definitions and libraries.

One of the very common usages of #ifndef  is to serve as a header guard
statement. This statement protects a header file from being included twice
in the preprocessing phase, and we can say that almost all C and C++



header files in nearly every project have this statement as their first
instruction.

The following code, example 1.8, is an example on how to use a header
guard statement. Suppose that this is the content of a header file and by
chance, it could be included twice in a compilation unit. Note that example
1.8 is just one header file and it is not supposed to be compiled:

#ifndef EXAMPLE_1_8_H

#define EXAMPLE_1_8_H

void say_hello();

int read_age();

#endif

Code Box 1-17 [ExtremeC_examples_chapter1_8.h]: An example of a header guard

As you see, all variable and function declarations are put inside the
#ifndef  and #endif  pair and they are protected against multiple
inclusions by a macro. In the following paragraph, we explain how.

As the first inclusion happens, the EXAMPLE_1_8_H  macro is not yet
defined, so the preprocessor continues by entering the  #ifndef-#endif

block. The next statement defines the EXAMPLE_1_8_H  macro, and the
preprocessor copies everything to the preprocessed code until it reaches
the #endif  directive. As the second inclusion happens, the
EXAMPLE_1_8_H  macro is already defined, so the preprocessor skips all of
the content inside the #ifndef-#endif  section and moves to the next
statement after #endif , if there is any.

It is a common practice that the whole content of a header file is put
between the #ifndef-#endif  pair, and nothing but comments are left
outside.

As a final note in this section, instead of having a pair of #ifndef-#endif
directives, one could use #pragma once  in order to protect the header file
from the double inclusion issue. The difference between conditional
directives and the #pragma once  directive is that the latter is not a C
standard, despite the fact that it is supported by almost all C



preprocessors. However, it is better to not to use it if portability of your
code is a requirement.

The following code box contains a demonstration on how to use #pragma
once  in example 1.8, instead of #ifndef-#endif  directives:

#pragma once

void say_hello();

int read_age();

Code Box 1-18: Using #pragma once directive as part of example 1.8

Now, we close the topic of preprocessor directives while we have
demonstrated some of their interesting characteristics and various
applications. The next section is about variable pointers, which are another
important feature of C.

Variable pointers
The concept of a variable pointer, or for short pointer, is one of the most
fundamental concepts in C. You can hardly find any direct sign of them in
most high-level programming languages. In fact, they have been replaced
by some twin concepts, for example, references in Java. It is worth
mentioning that pointers are unique in the sense that the addresses they
point to can be used directly by hardware, but this is not the case for the
higher-level twin concepts like references.

Having a deep understanding about pointers and the way they work is
crucial to become a skilled C programmer. They are one of the most
fundamental concepts in memory management, and despite their simple
syntax, they have the potential to lead to a disaster when used in a wrong
way. We will cover memory management-related topics in Chapter 4,
Process Memory Structure, and Chapter 5, Stack and Heap, but here in
this chapter, we want to recap everything about pointers. If you feel



confident about the basic terminology and the concepts surrounding the
pointers, you can skip this section.

Syntax
The idea behind any kind of pointer is very simple; it is just a simple
variable that keeps a memory address. The first thing you may recall about
them is the asterisk character, * , which is used for declaring a pointer in
C. You can see it in example 1.9. The following code box demonstrates
how to declare and use a variable pointer:

int main(int argc, char** argv) {

int var = 100;

int* ptr = 0;

ptr = &var;

*ptr = 200;

return 0;

}

Code Box 1-19 [ExtremeC_examples_chapter1_9.c]: Example on how to declare and use a
pointer in C

The preceding example has everything you need to know about the
pointer's syntax. The first line declares the var  variable on top of the
Stack segment. We will discuss the Stack segment in Chapter 4, Process
Memory Structure. The second line declares the pointer ptr  with an
initial value of zero. A pointer which has the zero value is called a null
pointer. As long as the ptr  pointer retains its zero value, it is considered
to be a null pointer. It is very important to nullify a pointer if you are not
going to store a valid address upon declaration.

As you see in Code Box 1-19, no header file is included. Pointers are part
of the C language, and you don't need to have anything included to be able
to use them. Indeed, we can have C programs, which do not include any
header file at all.

All of the following declarations are valid in C:



int* ptr = 0;

int * ptr = 0;

int *ptr = 0;

The third line in the main  function introduces the &  operator, which is
called the referencing operator. It returns the address of the variable next
to it. We need this operator to obtain the address of a variable. Otherwise,
we cannot initialize pointers with valid addresses.

On the same line, the returned address is stored into the ptr  pointer. Now,
the ptr  pointer is not a null pointer anymore. On the fourth line, we see
another operator prior to the pointer, which is called the dereferencing
operator and denoted by * . This operator allows you to have indirect
access to the memory cell that the ptr  pointer is pointing to. In other
words, it allows you to read and modify the var  variable through the
pointer that is pointing to it. The fourth line is equivalent to the var =
200;  statement.

A null pointer is not pointing to a valid memory address. Therefore,
dereferencing a null pointer must be avoided because it is considered
as an undefined behavior, which usually leads to a crash.

As a final note regarding the preceding example, we usually have the
default macro NULL  defined with value 0 , and it can be used to nullify
pointers upon declaration. It is a good practice to use this macro instead of
0  directly because it makes it easier to distinguish between the variables
and the pointers:

char* ptr = NULL;

Code Box 1-20: Using the NULL macro to nullify a pointer

The pointers in C++ are exactly the same as in C. They need to be nullified
by storing 0  or NULL  in them, but C++11 has a new keyword for
initializing the pointers. It is not a macro like NULL  nor an integer like 0 .
The keyword is nullptr  and can be used to nullify the pointers or check



whether they are null. The following example demonstrates how it is used
in C++11:

char* ptr = nullptr;

Code Box 1-21: Using nullptr to nullify a pointer in C++11

It is crucial to remember that pointers must be initialized upon
declaration. If you don't want to store any valid memory address while
declaring them, don't leave them uninitialized. Make it null by assigning
0  or NULL!  Do this otherwise you may face a fatal bug!

In most modern compilers, an uninitialized pointer is always nullified.
This means that the initial value is 0  for all uninitialized pointers. But
this shouldn't be considered as an excuse to declare pointers without
initializing them properly. Keep in mind that you are writing code for
different architectures, old and new, and this may cause problems on
legacy systems. In addition, you will get a list of errors and warnings for
these kinds of uninitialized pointers in most memory profilers. Memory
profilers will be explained thoroughly as part of Chapter 4, Process
Memory Structure, and Chapter 5, Stack and Heap.

Arithmetic on variable pointers
The simplest picture of memory is a very long one-dimensional array of
bytes. With this picture in mind, if you're standing on one byte, you can
only go back and forth in the array; there's no other possible movement.
So, this would be the same for the pointers addressing different bytes in
the memory. Incrementing the pointer makes the pointer go forward and
decrementing it makes the pointer go backward. No other arithmetic
operation is possible for the pointers.

Like we said previously, the arithmetic operations on a pointer are
analogous to the movements in an array of bytes. We can use this figure to
introduce a new concept: the arithmetic step size. We need to have this



new concept because when you increment a pointer by 1, it might go
forward more than 1 byte in the memory. Each pointer has an arithmetic
step size, which means the number of bytes that the pointer will move if it
is incremented or decremented by 1. This arithmetic step size is
determined by the C data type of the pointer.

In every platform, we have one single unit of memory and all pointers
store the addresses inside that memory. So, all pointers should have equal
sizes in terms of bytes. But this doesn't mean that all of them have equal
arithmetic step sizes. As we mentioned earlier, the arithmetic step size of
a pointer is determined by its C data type.

For example, an int  pointer has the same size as a char  pointer, but they
have different arithmetic step sizes. int*  usually has a 4-byte arithmetic
step size and char*  has a 1-byte arithmetic step size. Therefore,
incrementing an integer pointer makes it move forward by 4 bytes in the
memory (adds 4 bytes to the current address), and incrementing a
character pointer makes it move forward by only 1 byte in the memory.
The following example, example 1.10, demonstrates the arithmetic step
sizes of two pointers with two different data types:

#include <stdio.h>

int main(int argc, char** argv) {

int var = 1;

int* int_ptr = NULL; // nullify the pointer

int_ptr = &var;

char* char_ptr = NULL;

char_ptr = (char*)&var;

printf("Before arithmetic: int_ptr: %u, char_ptr: %u\n",

(unsigned int)int_ptr, (unsigned int)char_ptr);

int_ptr++; // Arithmetic step is usually 4 bytes

char_ptr++; // Arithmetic step in 1 byte

printf("After arithmetic: int_ptr: %u, char_ptr: %u\n",

(unsigned int)int_ptr, (unsigned int)char_ptr);

return 0;

}

Code Box 1-22 [ExtremeC_examples_chapter1_10.c]: Arithmetic step sizes of two pointers

The following shell box shows the output of example 1.10. Note that the
printed addresses can be different for two successive runs on the same



machine, and even from a platform to another, therefore you probably
observe different addresses in your output:

$ gcc ExtremeC_examples_chapter1_10.c

$ ./a.out

Before arithmetic: int_ptr: 3932338348, char_ptr: 3932338348

After arithmetic: int_ptr: 3932338352, char_ptr: 3932338349

$

Shell Box 1-4: Output of example 1.10 after first run

It is clear from the comparison of the addresses before and after the
arithmetic operations that the step size for the integer pointer is 4 bytes,
and it is 1 byte for the character pointer. If you run the example again, the
pointers probably refer to some other addresses, but their arithmetic step
sizes remain the same:

$ ./a.out

Before arithmetic: int_ptr: 4009638060, char_ptr: 4009638060

After arithmetic: int_ptr: 4009638064, char_ptr: 4009638061

$

Shell Box 1-5: Output of example 1.10 after second run

Now that you know about the arithmetic step sizes, we can talk about a
classic example of using pointer arithmetic to iterate over a region of
memory. The examples 1.11 and 1.12 are about to print all the elements of
an integer array. The trivial approach without using the pointers is brought
in example 1.11, and the solution based on pointer arithmetic is given as
part of example 1.12.

The following code box shows the code for example 1.11:

#include <stdio.h>

#define SIZE 5

int main(int argc, char** argv) {

int arr[SIZE];

arr[0] = 9;

arr[1] = 22;

arr[2] = 30;



arr[3] = 23;

arr[4] = 18;

for (int i = 0; i < SIZE; i++) {

printf("%d\n", arr[i]);

}

return 0;

}

Code Box 1-23 [ExtremeC_examples_chapter1_11.c]: Iterating over an array without using
pointer arithmetic

The code in Code Box 1-23 should be familiar to you. It just uses a loop
counter to refer to a specific index of the array and read its content. But if
you want to use pointers instead of accessing the elements via the indexer
syntax (an integer between [  and ] ), it should be done differently. The
following code box demonstrates how to use pointers to iterate over the
array boundary:

#include <stdio.h>

#define SIZE 5

int main(int argc, char** argv) {

int arr[SIZE];

arr[0] = 9;

arr[1] = 22;

arr[2] = 30;

arr[3] = 23;

arr[4] = 18;

int* ptr = &arr[0];

for (;;) {

printf("%d\n", *ptr);

if (ptr == &arr[SIZE - 1]) {

break;

}

ptr++;

}

return 0;

}

Code Box 1-24 [ExtremeC_examples_chapter1_12.c]: Iterating over an array using pointer
arithmetic

The second approach, demonstrated in Code Box 1-24, uses an infinite
loop, which breaks when the address of the ptr  pointer is the same as the
last element of the array.



We know that arrays are adjacent variables inside the memory, so
incrementing and decrementing a pointer which is pointing to an element
effectively makes it move back and forth inside the array and eventually
point to a different element.

As is clear from the preceding code, the ptr  pointer has the data type
int* . That's because of the fact that it must be able to point to any
individual element of the array which is an integer of type int . Note that
all the elements of an array are from the same type hence they have equal
sizes. Therefore, incrementing the ptr  pointer makes it point to the next
element inside the array. As you see, before the for  loop, ptr  points to
the first element of the array, and by further increments, it moves forward
along the array's memory region. This is a very classic usage of pointer
arithmetic.

Note that in C, an array is actually a pointer that points to its first element.
So, in the example, the actual data type of arr  is int* . Therefore, we
could have written the line as follows:

int* ptr = arr;

Instead of the line:

int* ptr = &arr[0];

Generic pointers
A pointer of type void*  is said to be a generic pointer. It can point to any
address like all other pointers, but we don't know its actual data type hence
we don't know its arithmetic step size. Generic pointers are usually used to
hold the content of other pointers, but they forget the actual data types of
those pointers. Therefore, a generic pointer cannot be dereferenced, and
one cannot do arithmetic on it because its underlying data type is
unknown. The following example, example 1.13, shows us that
dereferencing a generic pointer is not possible:



#include <stdio.h>

int main(int argc, char** argv) {

int var = 9;

int* ptr = &var;

void* gptr = ptr;

printf("%d\n", *gptr);

return 0;

}

Code Box 1-25 [ExtremeC_examples_chapter1_13.c]: Dereferencing a generic pointer
generates a compilation error!

If you compile the preceding code using gcc  in Linux, you will get the
following error:

$ gcc ExtremeC_examples_chapter1_13.c

In function 'main':warning: dereferencing 'void *' pointer

printf("%d\n", *gptr);

^~~~~

error: invalid use of void expression

printf("%d\n", *gptr);

$

Shell Box 1-6: Compiling example 1.13 in Linux

And if you compile it using clang  in macOS, the error message is
different, but it refers to the same issue:

$ clang ExtremeC_examples_chapter1_13.c

error: argument type 'void' is incomplete

printf("%d\n", *gptr);

^

1 error generated.

$

Shell Box 1-7: Compiling example 1.13 in macOS

As you see, both compilers don't accept dereferencing a generic pointer. In
fact, it is meaningless to dereference a generic pointer! So, what are they
good for? In fact, generic pointers are very handy to define generic
functions that can accept a wide range of different pointers as their input



arguments. The following example, example 1.14, tries to uncover the
details regarding generic functions:

#include <stdio.h>

void print_bytes(void* data, size_t length) {

char delim = ' ';

unsigned char* ptr = data;

for (size_t i = 0; i < length; i++) {

printf("%c 0x%x", delim, *ptr);

delim = ',';

ptr++;

}

printf("\n");

}

int main(int argc, char** argv) {

int a = 9;

double b = 18.9;

print_bytes(&a, sizeof(int));

print_bytes(&b, sizeof(double));

return 0;

}

Code Box 1-26 [ExtremeC_examples_chapter1_14.c]: An example of a generic function

In the preceding code box, the print_bytes  function receives an address
as a void*  pointer and an integer indicating the length. Using these
arguments, the function prints all the bytes starting from the given address
up to the given length. As you see, the function accepts a generic pointer,
which allows the user to pass whatever pointer they want. Keep in mind
that assignment to a void pointer (generic pointer) does not need an
explicit cast. That is why we have passed the addresses of a  and b
without explicit casts.

Inside the print_bytes  function, we have to use an unsigned char
pointer in order to move inside the memory. Otherwise, we cannot do any
arithmetic on the void pointer parameter, data , directly. As you may
know, the step size of a char*  or unsigned char*  is one byte. So, it is the
best pointer type for iterating over a range of memory addresses one byte
at a time and processing all of those bytes one by one.

As a final note about this example, size_t  is a standard and unsigned data
type usually used for storing sizes in C.



size_t  is defined in section 6.5.3.4 of the ISO/ICE 9899:TC3
standard. This ISO standard is the famous C99 specification revised in
2007. This standard has been the basis for all C implementations up until
today. The link to ISO/ICE 9899:TC3 (2007) is http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

Size of a pointer
If you search for the size of a pointer in C on Google, you may realize that
you cannot find a definitive answer to that. There are many answers out
there, and it is true that you cannot define a fixed size for a pointer in
different architectures. The size of a pointer depends on the architecture
rather than being a specific C concept. C doesn't worry too much about
such hardware-related details, and it tries to provide a generic way of
working with pointers and other programming concepts. That is why we
know C as a standard. Only pointers and the arithmetic on them are
important to C.

Architecture refers to the hardware used in a computer system. You will
find more details in the upcoming chapter, Compilation and Linking.

You can always use the sizeof  function to obtain the size of a pointer. It
is enough to see the result of sizeof(char*)  on your target architecture.
As a rule of thumb, pointers are 4 bytes in 32-bit architectures and 8 bytes
in 64-bit architectures, but you may find different sizes in other
architectures. Keep in mind that the code you write should not be
dependent on a specific value for the size of a pointer, and it should not
make any assumptions about it. Otherwise, you will be in trouble while
porting your code to other architectures.

Dangling pointers

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf


There are many known issues caused by misusing pointers. The issue of
dangling pointers is a very famous one. A pointer usually points to an
address to which there is a variable allocated. Reading or modifying an
address where there is no variable registered is a big mistake and can
result in a crash or a segmentation fault situation. Segmentation fault is a
scary error that every C/C++ developer should have seen it at least once
while working on code. This situation usually happens when you are
misusing pointers. You are accessing places in memory that you are not
allowed to. You had a variable there before, but it is deallocated by now.

Let's try to produce this situation as part of the following example,
example 1.15:

#include <stdio.h>

int* create_an_integer(int default_value) {

int var = default_value;

return &var;

}

int main() {

int* ptr = NULL;

ptr = create_an_integer(10);

printf("%d\n", *ptr);

return 0;

}

Code Box 1-27 [ExtremeC_examples_chapter1_15.c]: Producing a segmentation fault
situation

In the preceding example, the create_an_integer  function is used to
create an integer. It declares an integer with a default value and returns its
address to the caller. In the main  function, the address of the created
integer, var , is received and it gets stored in the ptr  pointer. Then, the
ptr  pointer is dereferenced, and the value stored in the var  variable gets
printed.

But things are not that easy. When you want to compile this code using the
gcc  compiler on a Linux machine, it generates a warning as follows, but
still successfully finishes the compilation, and you get the final
executable:



$ gcc ExtremeC_examples_chapter1_15.c

In function 'f':

warning: function returns address of local variable [-

Wreturn-local-addr]

return &var;

^~~~

$

Shell Box 1-8: Compiling example 1.15 in Linux

This is indeed an important warning message which can be easily missed
and forgotten by the programmer. We'll talk more about this later as part
of Chapter 5, Stack and Heap. Let's see what happens if we proceed and
execute the resulting executable.

When you run example 1.15, you get a segmentation fault error, and the
program crashes immediately:

$ ./a.out

Segmentation fault (core dumped)

$

Shell Box 1-9: Segmentation fault when running example 1.15

So, what went wrong? The ptr  pointer is dangling and points to an
already deallocated portion of memory that was known to be the memory
place of the variable, var .

The var  variable is a local variable to the create_an_integer  function,
and it will be deallocated after leaving the function, but its address can be
returned from the function. So, after copying the returned address into
ptr  as part of the main  function, ptr  becomes a dangling pointer
pointing to an invalid address in memory. Now, dereferencing the pointer
causes a serious problem and the program crashes.

If you look back at the warning generated by the compiler, it is clearly
stating the problem.



It says that you are returning the address of a local variable, which will be
deallocated after returning from the function. Smart compiler! If you take
these warnings seriously, you won't face these scary bugs.

But what is the proper way to rewrite the example? Yes, using the Heap
memory. We will cover heap memory fully in Chapter 4, Process Memory
Structure, and Chapter 5, Stack and Heap, but, for now, we will rewrite the
example using Heap allocation, and you will see how you can benefit from
using Heap instead of the Stack.

Example 1.16 below shows how to use Heap memory for allocating
variables, and enabling the passing addresses between functions without
facing any issues:

#include <stdio.h>

#include <stdlib.h>

int* create_an_integer(int default_value) {

int* var_ptr = (int*)malloc(sizeof(int));

*var_ptr = default_value;

return var_ptr;

}

int main() {

int* ptr = NULL;

ptr = create_an_integer(10);

printf("%d\n", *ptr);

free(ptr);

return 0;

}

Code Box 1-28 [ExtremeC_examples_chapter1_16.c]: Rewriting example 1.15 using Heap
memory

As you see in the preceding code box, we have included a new header file,
stdlib.h , and we are using two new functions, malloc  and free . The
simple explanation is like this: the created integer variable inside the
create_an_integer  function is not a local variable anymore. Instead, it is
a variable allocated from the Heap memory and its lifetime is not limited
to the function declaring it. Therefore, it can be accessed in the caller
(outer) function. The pointers pointing to this variable are not dangling
anymore, and they can be dereferenced as long as the variable exists and is
not freed. Eventually, the variable becomes deallocated by calling the



free  function as an end to its lifetime. Note that deallocating a Heap
variable is mandatory when it is not needed anymore.

In this section, we went through all the essential discussions regarding
variable pointers. In the upcoming section, we'll be talking about functions
and their anatomy in C.

Some details about functions
C is a procedural programming language. In C, functions act as
procedures, and they are building blocks of a C program. So, it is
important to know what they are, how they behave, and what is happening
when you enter or leave a function. In general, functions (or procedures)
are analogous to ordinary variables that store algorithms instead of values.
By putting variables and functions together into a new type, we can store
relevant values and algorithms under the same concept. This is what we do
in object-oriented programming, and it will be covered in the third part of
the book, Object Orientation. In this section, we want to explore functions
and discuss their properties in C.

Anatomy of a function
In this section, we want to recap everything about a C function in a single
place. If you feel this is familiar to you, you can simply skip this section.

A function is a box of logic that has a name, a list of input parameters, and
a list of output results. In C and many other programming languages that
are influenced by C, functions return only one value. In object-oriented
languages such as C++ and Java, functions (which are usually called
methods) can also throw an exception, which is not the case for C.
Functions are invoked by a function call, which is simply using the name
of the function to execute its logic. A correct function call should pass all
required arguments to the function and wait for its execution. Note that
functions are always blocking in C. This means that the caller has to wait



for the called function to finish and only then can it collect the returned
result.

Opposite to a blocking function, we can have a non-blocking function.
When calling a non-blocking function, the caller doesn't wait for the
function to finish and it can continue its execution. In this scheme, there is
usually a callback mechanism which is triggered when the called (or
callee) function is finished. A non-blocking function can also be referred
to as an asynchronous function or simply an async function. Since we don't
have async functions in C, we need to implement them using
multithreading solutions. We will explain these concepts in more detail in
the fifth part of the book, Concurrency.

It is interesting to add that nowadays, there is a growing interest in using
non-blocking functions over blocking functions. It is usually referred to as
event-oriented programming. Non-blocking functions are centric in this
programming approach, and most of the written functions are non-
blocking.

In event-oriented programming, actual function calls happen inside an
event loop, and proper callbacks are triggered upon the occurrence of an
event. Frameworks such as libuv  and libev  promote this way of coding,
and they allow you to design your software around one or several event
loops.

Importance in design
Functions are fundamental building blocks of procedural programming.
Since their official support in programming languages, they have had a
huge impact on the way we write code. Using functions, we can store logic
in semi-variable entities and summon them whenever and wherever they
are needed. Using them, we can write a specific logic only once and use it
multiple times in various places.

In addition, functions allow us to hide a piece of logic from other existing
logic. In other words, they introduce a level of abstraction between various



logical components. To give an example, suppose that you have a function,
avg , which calculates the average of an input array. And you have another
function, main , which calls the function, avg . We say that the logic inside
the avg  function is hidden from the logic inside the main  function.

Therefore, if you want to change the logic inside avg , you don't need to
change the logic inside the main  function. That's because the main
function only depends on the name and the availability of the avg
function. This is a great achievement, at least for those years when we had
to use punched cards to write and execute programs!

We are still using this feature in designing libraries written in C or even
higher-level programming languages such as C++ and Java.

Stack management
If you look at the memory layout of a process running in a Unix-like
operating system, you notice that all of the processes share a similar
layout. We will discuss this layout in more detail in Chapter 4, Process
Memory Structure, but for now, we want to introduce one of its segments;
the Stack segment. The Stack segment is the default memory location
where all local variables, arrays, and structures are allocated from. So,
when you declare a local variable in a function, it is being allocated from
the Stack segment. This allocation always happens on top of the Stack
segment.

Notice the term stack in the name of the segment. It means that this
segment behaves like a stack. The variables and arrays are always
allocated on top of it, and those at the top are the first variables to get
removed. Remember this analogy with the stack concept. We will return to
this in the next paragraph.

The Stack segment is also used for function calls. When you call a
function, a stack frame containing the return address and all of the passing
arguments is put on top of the Stack segment, and only then is the function
logic executed. When returning from the function, the stack frame is



popped out, and the instruction addressed by the return address gets
executed, which should usually continue the caller function.

All local variables declared in the function body are put on top of the
Stack segment. So, when leaving the function, all Stack variables become
freed. That is why we call them local variables and that is why a function
cannot access the variables in another function. This mechanism also
explains why local variables are not defined before entering a function and
after leaving it.

Understanding the Stack segment and the way it works is crucial to writing
correct and meaningful code. It also prevents common memory bugs from
occurring. It is also a reminder that you cannot create any variable on the
Stack with any size you like. The Stack is a limited portion of memory,
and you could fill it up and potentially receive a stack overflow error. This
usually happens when we have too many function calls consuming up all
the Stack segment by their stack frames. This is very common when
dealing with recursive functions, when a function calls itself without any
break condition or limit.

Pass-by-value versus pass-by-reference
In most computer programming books, there is a section dedicated to
pass-by-value and pass-by-reference regarding the arguments passed to a
function. Fortunately, or unfortunately, we have only pass-by-value in C.

There is no reference in C, so there is no pass-by-reference either.
Everything is copied into the function's local variables, and you cannot
read or modify them after leaving a function.

Despite the many examples that seem to demonstrate pass-by-reference
function calls, I should say that passing by reference is an illusion in C. In
the rest of this section, we want to uncover this illusion and convince you
that those examples are also pass-by-value. The following example will
demonstrate this:



#include <stdio.h>

void func(int a) {

a = 5;

}

int main(int argc, char** argv) {

int x = 3;

printf("Before function call: %d\n", x);

func(x);

printf("After function call: %d\n", x);

return 0;

}

Code Box 1-29 [ExtremeC_examples_chapter1_17.c]: An example of a pass-by-value
function call

It is easy to predict the output. Nothing changes about the x  variable
because it is passed by value. The following shell box shows the output of
example 1.17 and confirms our prediction:

$ gcc ExtremeC_examples_chapter1_17.c

$ ./a.out

Before function call: 3

After function call: 3

$

Shell Box 1-10: Output of example 1.17

The following example, example 1.18, demonstrates that passing by
reference doesn't exist in C:

#include <stdio.h>

void func(int* a) {

int b = 9;

*a = 5;

a = &b;

}

int main(int argc, char** argv) {

int x = 3;

int* xptr = &x;

printf("Value before call: %d\n", x);

printf("Pointer before function call: %p\n", (void*)xptr);

func(xptr);

printf("Value after call: %d\n", x);

printf("Pointer after function call: %p\n", (void*)xptr);



return 0;

}

Code Box 1-30 [ExtremeC_examples_chapter1_18.c]: An example of pass-by-pointer
function call which differs from pass-by-reference

And this is the output:

$ gcc ExtremeC_examples_chapter1_18.c

$ ./a.out

The value before the call: 3

Pointer before function call: 0x7ffee99a88ec

The value after the call: 5

Pointer after function call: 0x7ffee99a88ec

$

Shell Box 1-11: Output of example 1.18

As you see, the value of the pointer is not changed after the function call.
This means that the pointer is passed as a pass-by-value argument.
Dereferencing the pointer inside the func  function has allowed accessing
the variable where the pointer is pointing to. But you see that changing the
value of the pointer parameter inside the function doesn't change its
counterpart argument in the caller function. During a function call in C, all
arguments are passed by value and dereferencing the pointers allows the
modification of the caller function's variables.

It is worth adding that the above example demonstrates a pass-by-pointer
example in which we pass pointers to variables instead of passing them
directly. It is usually recommended to use pointers as arguments instead of
passing big objects to a function but why? It is easy to guess. Copying 8
bytes of a pointer argument is much more efficient than copying hundreds
of bytes of a big object.

Surprisingly, passing the pointer is not efficient in the above example!
That's because of the fact that the int  type is 4 bytes and copying it is
more efficient than copying 8 bytes of its pointer. But this is not the case
regarding structures and arrays. Since copying structures and arrays is



done byte-wise, and all of the bytes in them should be copied one by one,
it is usually better to pass pointers instead.

Now that we've covered some details regarding the functions in C, let's
talk about function pointers.

Function pointers
Having function pointers is another super feature of the C programming
language. The two previous sections were about variable pointers and
functions, and this section is going to combine them and talk about a more
interesting topic: pointers to functions.

They have many applications, but splitting a large binary into smaller
binaries and loading them again in another small executable is one of the
most important applications. This has led to modularization and software
design. Function pointers are building blocks for the implementation of
polymorphism in C++ and allow us to extend our existing logic. In this
section, we are going to cover them and prepare you for more advanced
topics we'll cover over the coming chapters.

Like a variable pointer addressing a variable, a function pointer addresses
a function and allows you to call that function indirectly. The following
example, example 1.19, can be a good starter for this topic:

#include <stdio.h>

int sum(int a, int b) {

return a + b;

}

int subtract(int a, int b) {

return a - b;

}

int main() {

int (*func_ptr)(int, int);

func_ptr = NULL;

func_ptr = &sum;

int result = func_ptr(5, 4);

printf("Sum: %d\n", result);



func_ptr = &subtract;

result = func_ptr(5, 4);

printf("Subtract: %d\n", result);

return 0;

}

Code Box 1-31 [ExtremeC_examples_chapter1_19.c]: Using a single function pointer to call
different functions

In the preceding code box, func_ptr  is a function pointer. It can only
point to a specific class of functions that match its signature. The
signature limits the pointer to only point to functions that accept two
integer arguments and return an integer result.

As you see, we have defined two functions called sum  and subtract
matching the func_ptr  pointer's signature. The preceding example uses
the func_ptr  function pointer to point to the sum  and subtract
functions separately, then call them with the same arguments and compare
the results. This is the output of the example:

$ gcc ExtremeC_examples_chapter1_19.c

$ ./a.out

Sum: 9

Subtract: 1

$

Shell Box 1-12: Output of example 1.19

As you see in example 1.19, we can call different functions for the same
list of arguments using a single function pointer, and this is an important
feature. If you are familiar with object-oriented programming, the first
thing that comes to mind is polymorphism and virtual functions. In fact,
this is the only way to support polymorphism in C and mimic the C++
virtual functions. We will cover OOP as part of the third part of the book,
Object Orientation.

Like variable pointers, it is important to initialize function pointers
properly. For those function pointers which are not going to be initialized
immediately upon declaration, it is mandatory to make them null. The



nullification of function pointers is demonstrated in the preceding
example, and it is pretty similar to variable pointers.

It is usually advised to define a new type alias for function pointers. The
following example, example 1.20, demonstrates the way it should be done:

#include <stdio.h>

typedef int bool_t;

typedef bool_t (*less_than_func_t)(int, int);

bool_t less_than(int a, int b) {

return a < b ? 1 : 0;

}

bool_t less_than_modular(int a, int b) {

return (a % 5) < (b % 5) ? 1 : 0;

}

int main(int argc, char** argv) {

less_than_func_t func_ptr = NULL;

func_ptr = &less_than;

bool_t result = func_ptr(3, 7);

printf("%d\n", result);

func_ptr = &less_than_modular;

result = func_ptr(3, 7);

printf("%d\n", result);

return 0;

}

Code Box 1-32 [ExtremeC_examples_chapter1_20.c]: Using a single function pointer to call
different functions

The typedef  keyword allows you to define an alias for an already defined
type. There are two new type aliases in the preceding example: bool_t ,
which is an alias for the int  type, and the less_than_func_t  type, which
is an alias type for the function pointer type, bool_t (*)(int, int) .
These aliases add readability to the code and let you choose a shorter name
for a long and complex type. In C, the name of a new type usually ends
with _t  by convention, and you can find this convention in many other
standard type aliases such as size_t  and time_t .

Structures



From the design perspective, structures are one of the most fundamental
concepts in C. Nowadays, they are not unique to C, and you can find their
twin concepts nearly in every modern programming language.

But we should discuss them in the history of computation when there were
no other programming languages offering such a concept. Among many
efforts to move away from machine-level programming languages,
introducing structures was a great step toward having encapsulation in
a programming language. For thousands of years, the way we think hasn't
changed a lot, and encapsulation has been a centric means for our logical
reasoning.

But it was just after C that we finally had some tool, in this case, a
programming language, which was able to understand the way we think
and could store and process the building blocks of our reasoning. Finally,
we got a language that resembles our thoughts and ideas, and all of this
happened when we got structures. C structures weren't perfect in
comparison to the encapsulation mechanisms found in modern languages,
but they were enough for us to build a platform upon which to create our
finest tools.

Why structures?
You know that every programming language has some Primitive Data
Types (PDTs). Using these PDTs, you can design your data structures and
write your algorithms around them. These PDTs are part of the
programming language, and they cannot be changed or removed. As an
example, you cannot have C without the primitive types, int  and double .

Structures come into play when you need to have your own defined data
types, and the data types in the language are not enough. User-Defined
Types (UDTs) are those types which are created by the user and they are
not part of the language.

Note that UDTs are different from the types you could define using
typedef . The keyword typedef  doesn't really create a new type, but



rather it defines an alias or synonym for an already defined type. But
structures allow you to introduce totally new UDTs into your program.

Structures have twin concepts in other programming languages, for
example, classes in C++ and Java or packages in Perl. They are considered
to be the type-makers in these languages.

Why user-defined types?
So, why do we need to create new types in a program? The answer to this
question reveals the principles behind software design and the methods we
use for our daily software development. We create new types because we
do it every day using our brains in a routine analysis.

We don't look at our surroundings as integers, doubles, or characters. We
have learned to group related attributes under the same object. We will
discuss more the way we analyze our surroundings in Chapter 6, OOP and
Encapsulation. But as an answer to our starting question, we need new
types because we use them to analyze our problems at a higher level of
logic, close enough to our human logic.

Here, you need to become familiar with the term business logic. Business
logic is a set of all entities and regulations found in a business. For
example, in the business logic of a banking system, you face concepts such
as client, account, balance, money, cash, payment, and many more, which
are there to make operations such as money withdrawal possible and
meaningful.

Suppose that you had to explain some banking logic in pure integers,
floats, or characters. It is almost impossible. If it is possible for
programmers, it is almost meaningless to business analysts. In a real
software development environment that has a well-defined business logic,
programmers and business analysts cooperate closely. Therefore, they
need to have a shared set of terminology, glossary, types, operations,
regulations, logic, and so on.



Today, a programming language that does not support new types in its type
system can be considered as a dead language. Maybe that's why most
people see C as a dead programming language, mainly because they
cannot easily define their new types in C, and they prefer to move to a
higher-level language such as C++ or Java. Yes, it's not that easy to create
a nice type system in C, but everything you need is present there.

Even today, there can be many reasons behind choosing C as the project's
main language and accepting the efforts of creating and maintaining a nice
type system in a C project and even today many companies do that.

Despite the fact that we need new types in our daily software analysis,
CPUs do not understand these new types. CPUs try to stick to the PDTs
and fast calculations because they are designed to do that. So, if you have
a program written in your high-level language, it should be translated to
CPU level instructions, and this may cost you more time and resources.

In this sense, fortunately, C is not very far away from the CPU-level logic,
and it has a type system which can be easily translated. You may have
heard that C is a low-level or hardware-level programming language. This
is one of the reasons why some companies and organizations try to write
and maintain their core frameworks in C, even today.

What do structures do?
Structures encapsulate related values under a single unified type. As an
early example, we can group red , green , and blue  variables under a
new single data type called color_t . The new type, color_t , can
represent an RGB color in various programs like an image editing
application. We can define the corresponding C structure as follows:

struct color_t {

int red;

int green;

int blue;

};



Code Box 1-33: A structure in C representing an RGB color

As we said before, structures do encapsulation. Encapsulation is one of the
most fundamental concepts in software design. It is about grouping and
encapsulating related fields under a new type. Then, we can use this new
type to define the required variables. We will describe encapsulation
thoroughly in Chapter 6, OOP and Encapsulation, while talking about
object-oriented design.

Note that we use an _t  suffix for naming new data types.

Memory layout
It is usually important to C programmers to know exactly the memory
layout of a structure variable. Having a bad layout in memory could cause
performance degradations in certain architectures. Don't forget that we
code to produce the instructions for the CPU. The values are stored in the
memory, and the CPU should be able to read and write them fast enough.
Knowing the memory layout helps a developer to understand the way the
CPU works and to adjust their code to gain a better result.

The following example, example 1.21, defines a new structure type,
sample_t , and declares one structure variable, var . Then, it populates its
fields with some values and prints the size and the actual bytes of the
variable in the memory. This way, we can observe the memory layout of
the variable:

#include <stdio.h>

struct sample_t {

char first;

char second;

char third;

short fourth;

};

void print_size(struct sample_t* var) {



printf("Size: %lu bytes\n", sizeof(*var));

}

void print_bytes(struct sample_t* var) {

unsigned char* ptr = (unsigned char*)var;

for (int i = 0; i < sizeof(*var); i++, ptr++) {

printf("%d ", (unsigned int)*ptr);

}

printf("\n");

}

int main(int argc, char** argv) {

struct sample_t var;

var.first = 'A';

var.second = 'B';

var.third = 'C';

var.fourth = 765;

print_size(&var);

print_bytes(&var);

return 0;

}

Code Box 1-34 [ExtremeC_examples_chapter1_21.c]: Printing the number of the bytes
allocated for a structure variable

The thirst to know the exact memory layout of everything is a bit C/C++
specific, and vanishes as the programming languages become high level.
For example, in Java and Python, the programmers tend to know less about
the very low-level memory management details, and on the other hand,
these languages don't provide many details about the memory.

As you see in Code Box 1-34, in C, you have to use the struct  keyword
before declaring a structure variable. Therefore, in the preceding example
we have struct sample_t var , which shows how you should use the
keyword before the structure type in the declaration clause. It is trivial to
mention that you need to use a .  (dot) to access the fields of a structure
variable. If it is a structure pointer, you need to use ->  (arrow) to access
its fields.

In order to prevent typing a lot of struct s throughout the code, while
defining a new structure type and while declaring a new structure variable,
we could use typedef  to define a new alias type for the structure.
Following is an example:



typedef struct {

char first;

char second;

char third;

short fourth;

} sample_t;

Now, you can declare the variable without using the keyword struct :

sample_t var;

The following is the output of the preceding example after being compiled
and executed on a macOS machine. Note that the numbers generated may
vary depending upon the host system:

$ clang ExtremeC_examples_chapter1_21.c

$ ./a.out

Size: 6 bytes

65 66 67 0 253 2

$

Shell Box 1-13: Output of example 1.21

As you see in the preceding shell box, sizeof(sample_t)  has returned 6
bytes. The memory layout of a structure variable is very similar to an
array. In an array, all elements are adjacent to each other in the memory,
and this is the same for a structure variable and its field. The difference is
that, in an array, all elements have the same type and therefore the same
size, but this is not the case regarding a structure variable. Each field can
have a different type, and hence, it can have a different size. Unlike an
array, the memory size of which is easily calculated, the size of a structure
variable in the memory depends on a few factors and cannot be easily
determined.

At first, it seems to be easy to guess the size of a structure variable. For
the structure in the preceding example, it has four fields, three char
fields, and one short  field. With a simple calculation, if we suppose that
sizeof(char)  is 1 byte and sizeof(short)  is 2 bytes, each variable of the
type sample_t  should have 5 bytes in its memory layout. But when we



look at the output, we see that sizeof(sample_t)  is 6 bytes. 1 byte more!
Why do we have this extra byte? Again, while looking at the bytes in the
memory layout of the structure variable, var , we can see that it is a bit
different from our expectation which is 65 66 67 253 2 .

For making this clearer and explaining why the size of the structure
variable is not 5 bytes, we need to introduce the memory alignment
concept. The CPU always does all the computations. Besides that, it needs
to load values from memory before being able to compute anything and
needs to store the results back again in the memory after a computation.
Computation is super-fast inside the CPU, but the memory access is very
slow in comparison. It is important to know how the CPU interacts with
the memory because then we can use the knowledge to boost a program or
debug an issue.

The CPU usually reads a specific number of bytes in each memory access.
This number of bytes is usually called a word. So, the memory is split into
words and a word is an atomic unit used by the CPU to read from and
write to the memory. The actual number of bytes in a word is an
architecture-dependent factor. For example, in most 64-bit machines, the
word size is 32 bits or 4 bytes. Regarding the memory alignment, we say
that a variable is aligned in the memory if its starting byte is at the
beginning of a word. This way, the CPU can load its value in an optimized
number of memory accesses.

Regarding the previous example, example 1.21, the first 3 fields, first ,
second , and third , are 1 byte each, and they reside in the first word of
the structure's layout, and they all can be read by just one memory access.
About the fourth field, fourth  occupies 2 bytes. If we forget about the
memory alignment, its first byte will be the last byte of the first word,
which makes it unaligned.

If this was the case, the CPU would be required to make two memory
accesses together with shifting some bits in order to retrieve the value of
the field. That is why we see an extra zero after byte 67 . The zero byte
has been added in order to complete the current word and let the fourth
field start in the next word. Here, we say that the first word is padded by



one zero byte. The compiler uses the padding technique to align values in
the memory. Padding is the extra bytes added to match the alignment.

It is possible to turn off the alignment. In C terminology, we use a more
specific term for aligned structures. We say that the structure is not
packed. Packed structures are not aligned and using them may lead to
binary incompatibilities and performance degradation. You can easily
define a structure that is packed. We will do it in the next example,
example 1.22, which is pretty similar to the previous example, example
1.21. The sample_t  structure is packed in this example. The following
code box shows example 1.22. Note that the similar code are replaced by
ellipses:

#include <stdio.h>

struct __attribute__((__packed__)) sample_t {

char first;

char second;

char third;

short fourth;

} ;

void print_size(struct sample_t* var) {

// ...

}

void print_bytes(struct sample_t* var) {

// ...

}

int main(int argc, char** argv) {

// ...

}

Code Box 1-35 [ExtremeC_examples_chapter1_22.c]: Declaring a packed structure

In the following shell box, the preceding code is compiled using clang
and run on macOS:

$ clang ExtremeC_examples_chapter1_22.c

$ ./a.out

Size: 5 bytes

65 66 67 253 2

$



Shell Box 1-14: Output of example 1.22

As you see in Shell Box 1-14, the printed size is exactly what we were
expecting as part of example 1.21. The final layout is also matched with
our expectation. Packed structures are usually used in memory-constrained
environments, but they can have a huge negative impact on the
performance on most architectures. Only new CPUs can handle reading an
unaligned value from multiple words without enforcing extra cost. Note
that memory alignment is enabled by default.

Nested structures
As we have explained in the previous sections, in general, we have two
kinds of data types in C. There are the types that are primitive to the
language and there are types which are defined by the programmers using
the struct  keyword. The former types are PDTs, and the latter are UDTs.

So far, our structure examples have been about UDTs (structures) made up
of only PDTs. But in this section, we are going to give an example of UDTs
(structures) that are made from other UDTs (structures). These are called
complex data types, which are the result of nesting a few structures.

Let's begin with the example, example 1.23:

typedef struct {

int x;

int y;

} point_t;

typedef struct {

point_t center;

int radius;

} circle_t;

typedef struct {

point_t start;

point_t end;

} line_t;

Code Box 1-36 [ExtremeC_examples_chapter1_23.c]: Declaring some nested structures



In the preceding code box, we have three structures; point_t , circle_t ,
and line_t . The point_t  structure is a simple UDT because it is made
up of only PDTs, but other structures contain a variable of the point_t
type, which makes them complex UDTs.

The size of a complex structure is calculated exactly the same as a simple
structure, by summing up the sizes of all its fields. We should be still
careful about the alignment, of course, because it can affect the size of a
complex structure. So, sizeof(point_t)  would be 8 bytes if sizeof(int)
is 4 bytes. Then, sizeof(circle_t)  is 12 bytes and sizeof(line_t)  is 16
bytes.

It is common to call structure variables objects. They are exactly
analogous to objects in object-oriented programming, and we will see
that they can encapsulate both values and functions. So, it is not wrong at
all to call them C objects.

Structure pointers
Like pointers to PDTs, we can have pointers to UDTs as well. They work
exactly the same as PDT pointers. They point to an address in memory,
and you can do arithmetic on them just like with the PDT pointers. UDT
pointers also have arithmetic step sizes equivalent to the size of the UDT.
If you don't know anything about the pointers or the allowed arithmetic
operations on them, please go to the Pointers section and give it a read.

It is important to know that a structure variable points to the address of the
first field of the structure variable. In the previous example, example 1.23,
a pointer of type point_t  would point to the address of its first field, x .
This is also true for the type, circle_t . A pointer of type circle_t
would point to its first field, center , and since it is actually a point_t
object, it would point to the address of the first field, x , in the point_t
type. Therefore, we can have 3 different pointers addressing the same cell
in the memory. The following code will demonstrate this:



#include <stdio.h>

typedef struct {

int x;

int y;

} point_t;

typedef struct {

point_t center;

int radius;

} circle_t;

int main(int argc, char** argv) {

circle_t c;

circle_t* p1 = &c;

point_t* p2 = (point_t*)&c;

int* p3 = (int*)&c;

printf("p1: %p\n", (void*)p1);

printf("p2: %p\n", (void*)p2);

printf("p3: %p\n", (void*)p3);

return 0;

}

Code Box 1-37 [ExtremeC_examples_chapter1_24.c]: Having three different pointers from
three different types addressing the same byte in memory

And this is the output:

$ clang ExtremeC_examples_chapter1_24.c

$ ./a.out

p1: 0x7ffee846c8e0

p2: 0x7ffee846c8e0

p3: 0x7ffee846c8e0

$

Shell Box 1-15: Output of example 1.24

As you see, all of the pointers are addressing the same byte, but their types
are different. This is usually used to extend structures coming from other
libraries by adding more fields. This is also the way we implement
inheritance in C. We will discuss this in Chapter 8, Inheritance and
Polymorphism.

This was the last section in this chapter. In the upcoming chapter, we will
dive into the C compilation pipeline and how to properly compile and link
a C project.



Summary
In this chapter, we revisited some of the important features of the C
programming language. We tried to go further and show the design aspects
of these features and the concepts behind them. Of course, the proper use
of a feature requires a deeper insight into the different aspects of that
feature. As part of this chapter, we discussed the following:

We talked about the C preprocessing phase and how various
directives can influence the preprocessor to act differently or
generate a specific C code for us.
Macros and the macro expansion mechanism allow us to generate C
code before passing the translation unit to the compilation phase.
Conditional directives allow us to alter the preprocessed code based
on certain conditions and allow us to have different code for different
situations.
We also looked at variable pointers, and how they are employed in C.
We introduced generic pointers and how we can have a function that
accepts any kind of pointer.
We discussed some issues such as segmentation faults and dangling
pointers to show a few disastrous situations that can arise from
misusing pointers.
Functions were discussed next, and we reviewed their syntax.
We explored functions' design aspects and how they contribute to a
nicely shaped procedural C program.
We also explained the function call mechanism and how arguments
are passed to a function using stack frames.
Function pointers were explored in this chapter. The powerful syntax
of function pointers allows us to store logics in variable-like entities
and use them later. They are, in fact, the fundamental mechanism that
every single program uses today to be loaded and operate.
Structures together with function pointers gave rise to encapsulation
in C. We speak more about this in the third part of the book, Object



Orientation.
We tried to explain the design aspects of structures and their effect on
the way we design programs in C.
We also discussed the memory layout of structure variables and how
they are placed inside memory to maximize CPU utilization.
Nested structures were also discussed. We also took a look inside the
complex structure variables and discussed how their memory layout
should look.
As the final section in this chapter, we talked about structure pointers.

The next chapter will be our first step in building a C project. The C
compilation pipeline and linking mechanism will be discussed as part of
the next chapter. Reading it thoroughly will be essential to continue with
the book and proceed to further chapters.



Chapter 02
From Source to Binary

In programming, everything starts with source code. In reality, source code,
which sometimes goes by the other name of the code base, usually consists
of a number of text files. Within that, each of those text files contains
textual instructions written in a programming language.

We know that a CPU cannot execute textual instructions. The reality is that
these instructions should first be compiled (or translated) to machine-level
instructions in order to be executed by a CPU, which eventually will result
in a running program.

In this chapter, we go through the steps needed to get a final product out of
C source code. This chapter goes into the subject in great depth, and as such
we've split it into five distinct sections:

1. The standard C compilation pipeline: In the first section, we are
going to cover standard C compilation, the various steps in the
pipeline, and how they contribute to producing the final product from
C source code.

2. Preprocessor: In this section, we are going to talk about the
preprocessor component, which drives the preprocessing step, in
greater depth.

3. Compiler: In this section, we are going to have a deeper look at
compilers. We will explain how compilers, driving the compilation
step, produce intermediate representations from source code and then
translate them into assembly language.

4. Assemblers: After compilers, we also talk about assemblers, which
play a significant role in translating the assembly instructions,



received from compiler, into machine-level instructions. The
assembler component drives the assembly step.

5. Linker: In the last section, we will discuss the linker component,
driving the linking step, in greater depth. The linker is a build
component that finally creates the actual products of a C project.
There are build errors that are specific to this component, and
sufficient knowledge of the linker will help us to prevent and resolve
them. We also discuss the various final products of a C project, and we
will give some hints about disassembling an object file and reading its
content. More than that, we discuss briefly what C++ name mangling
is and how it prevents certain defects in the linking step when building
C++ code.

Our discussions in this chapter are mostly themed around Unix-like
systems, but we discuss some differences in other operating systems, such
as Microsoft Windows.

In the first section, we need to explain the C compilation pipeline. It is vital
to know how the pipeline produces the executable and library files from the
source code. While there are multiple concepts and steps involved,
understanding them thoroughly is vital for us if we are to be prepared for
the content in both this and future chapters. Note that the various products
of a C project are discussed thoroughly in the next chapter, Object Files.

Compilation pipeline
Compiling some C files usually takes a few seconds, but during this brief
period of time, the source code enters a pipeline that has four distinct
components, with each of them doing a certain task. These components are
as follows:

Preprocessor
Compiler
Assembler



Linker

Each component in this pipeline accepts a certain input from the previous
component and produces a certain output for the next component in the
pipeline. This process continues through the pipeline until a product is
generated by the last component.

Source code can be turned into a product if, and only if, it passes through
all the required components with success. This means that even a small
failure in one of the components can lead to a compilation or linkage
failure, resulting in you receiving relevant error messages.

For certain intermediate products such as relocatable object files, it is
enough that a single source file goes through the first three components
with success. The last component, the linker, is usually used to create
bigger products, such as an executable object file, by merging some of the
already prepared relocatable object files. So, building a collection of C
source files can create one or sometimes multiple object files, including
relocatable, executable, and shared object files.

There are currently a variety of C compilers available. While some of them
are free and open source, others are proprietary and commercial. Likewise,
some compilers will only work on a specific platform while others are
cross-platform, although, the important note is that almost every platform
has at least one compatible C compiler.

Note:

For a complete list of available C compilers, please have a look at the
following Wikipedia page:
https://en.wikipedia.org/wiki/List_of_compilers#C_c

ompilers.

Before talking about the default platform and the C compiler that we use
throughout this chapter, let's talk a bit more about the term platform, and
what we mean by it.

https://en.wikipedia.org/wiki/List_of_compilers#C_compilers


A platform is a combination of an operating system running on specific
hardware (or architecture), and its CPU's instruction set is the most
important part of it. The operating system is the software component of a
platform, and the architecture defines the hardware part. As an example, we
can have Ubuntu running on an ARM-powered board, or we could have
Microsoft Windows running on an AMD 64-bit CPU.

Cross-platform software can be run on different platforms. However, it is
vital to know that cross-platform is different from being portable. Cross-
platform software usually has different binaries (final object files) and
installers for each platform, while portable software uses the same
produced binaries and installers on all platforms.

Some C compilers, for example, gcc  and clang , are cross-platform – they
can generate code for different platforms – and Java bytecode is portable.

Regarding C and C++, if we say that C/C++ code is portable, we mean that
we can compile it for different platforms without any change or with little
modification to the source code. This doesn't mean that the final object
files are portable, however.

If you have looked at the Wikipedia article we noted before, you can see
that there are numerous C compilers. Fortunately for us, all of them follow
the same standard compilation pipeline that we are going to introduce in
this chapter.

Among these many compilers, we need to choose one of them to work with
during this chapter. Throughout this chapter, we will be using gcc  7.3.0 as
our default compiler. We are choosing gcc  because it is available on most
operating systems, in addition to the fact that there are many online
resources to be found for it.

We also need to choose our default platform. In this chapter, we have
chosen Ubuntu 18.04 as our default operating system running on an AMD
64-bit CPU as our default architecture.

Note:



From time to time this chapter might refer to a different compiler, a
different operating system, or a different architecture to compare various
platforms and compilers. If we do so, the specification of the new platform
or the new compiler will be given beforehand.

In the following sections, we are going to describe the steps in the
compilation pipeline. First, we are going to build a simple example to see
how the sources inside a C project are compiled and linked. Throughout
this example, we will become familiar with new terms and concepts
regarding the compilation process. Only after that do we address each
component individually in a separate section. There, we go deep in to each
component to explain more internal concepts and processes.

Building a C project
In this section, we are going to demonstrate how a C project is built. The
project that we are going to work on consists of more than one source file,
which is a common characteristic of almost all C projects. However, before
we move to the example and start building it, we need to ensure that we
understand the structure of a typical C project.

Header files versus source files

Every C project has source code, or code base, together with other
documents related to the project description and existing standards. In a C
code base, we usually have two kinds of files that contain C code:

Header files, which usually have a .h  extension in their names.
Source files, which have a .c  extension.

Note:

For convenience, in this chapter, we may use the terms header instead of
header file and source instead of source file.



A header file usually contains enumerations, macros, and typedefs, as well
as the declarations of functions, global variables, and structures. In C,
some programming elements such as functions, variables, and structures
can have their declaration separated from their definition placed in
different files.

C++ follows the same pattern, but in other programming languages, such as
Java, the elements are defined where they are declared. While this is a great
feature of both C and C++, as it gives them the power to decouple the
declarations from definitions, it also makes the source code more complex.

As a rule of thumb, the declarations are stored in header files, and the
corresponding definitions go to source files. This is even more critical with
regard to function declarations and function definitions.

It is strongly recommended that you only keep function declarations in
header files and move function definitions to the corresponding source
files. While this is not necessary, it is an important design practice to keep
those function definitions out of the header files.

While the structures could also have separate declarations and definitions,
there are special cases in which we move declarations and definitions to
different files. We will see an example of this in Chapter 8, Inheritance and
Polymorphism, where we will be discussing the inheritance relationship
between classes.

Note:

Header files can include other header files, but never a source file. Source
files can only include header files. It is bad practice to let a source file
include another source file. If you do, then this usually means that you
have a serious design problem in your project.

To elaborate more on this, we are going to look at an example. The
following code is the declaration of the average  function. A function
declaration consists of a return type and a function signature. A function
signature is simply the name of the function together with the list of its
input parameters:



double average(int*, int);

Code Box 2-1: The declaration of the average function

The declaration introduces a function signature whose name is average
and it receives a pointer to an array of integers together with a second
integer argument, which indicates the number of elements in the array. The
declaration also states that the function returns a double value. Note that
the return type is a part of the declaration but is not often considered a part
of the function signature.

As you can see in Code Box 2-1, a function declaration ends with a
semicolon ";" and it does not have a body embraced by curly brackets. We
should also take note that the parameters in the function declaration do not
have associated names, and this is valid in C, but only in declarations and
not in definitions. With that being said, it is recommended that you name
the parameters even in declarations.

The function declaration is about how to use the function and the definition
defines how that function is implemented. The user doesn't need to know
about the parameter names to use the function, and because of that it's
possible to hide them in the function declaration.

In the following code, you can find the definition of the average  function
that we declared before. A function definition contains the actual C code
representing the function's logic. This always has a body of code embraced
by a pair of curly brackets:

double average(int* array, int length) {

if (length <= 0) {

return 0;

}

double sum = 0.0;

for (int i = 0; i < length; i++) {

sum += array[i];

}

return sum / length;

}

Code Box 2-2: The definition of the average function



Like we said before, and to put more emphasis on this, function
declarations go to headers, and definitions (or the bodies) go into source
files. There are rare cases in which we have enough reason to violate this.
In addition, sources need to include header files in order to see and use the
declarations, which is how C and C++ work.

If you do not fully understand this now, do not worry as this will become
more obvious as we move forward.

Note:

Having more than one definition for any declaration in a translation unit
will lead to a compile error. This is true for all functions, structures, and
global variables. Therefore, providing two definitions for a single function
declaration is not permitted.

We are going to continue this discussion by introducing our first C example
for this chapter. This example is supposed to demonstrate the correct way
of compiling a C/C++ project consisting of more than one source file.

Example source files

In example 2.1, we have three files, with one being a header file, and the
other two being source files, and all are in the same directory. The example
wants to calculate the average of an array with five elements.

The header file is used as a bridge between two separate source files and
makes it possible to write our code in two separate files but build them
together. Without the header file, it's not possible to break our code in two
source files, without breaking the rule mentioned above (sources must not
include sources). Here, the header file contains everything required by one
of the sources to use the functionality of the other one.

The header file contains only one function declaration, avg , needed for the
program to work. One of the source files contains the definition of the
declared function. The other source file contains the main  function, which
is the entry point of the program. Without the main  function, it is



impossible to have an executable binary to run the program with. The main
function is recognized by the compiler as the starting point of the program.

We are now going to move on and see what the contents of these files are.
Here is the header file, which contains an enumeration and a declaration for
the avg  function:

#ifndef EXTREMEC_EXAMPLES_CHAPTER_2_1_H

#define EXTREMEC_EXAMPLES_CHAPTER_2_1_Htypedef enum {

NONE,

NORMAL,

SQUARED

} average_type_t;

// Function declaration

double avg(int*, int, average_type_t);

#endif

Code Box 2-3 [ExtremeC_examples_chapter2_1.h]: The header file as part of example 2.1

As you can see, this file contains an enumeration, a set of named integer
constants. In C, enumerations cannot have separate declarations and
definitions, and they should be declared and defined just once in the same
place.

In addition to the enumeration, the forward declaration of the avg function
can be seen in the code box. The act of declaring a function before giving
its definition is called forward declaration. The header file is also protected
by the header guard statements. They will prevent the header file from
being included twice or more while being compiled.

The following code shows us the source file that actually contains the
definition of the avg  function:

#include "ExtremeC_examples_chapter2_1.h"

double avg(int* array, int length, average_type_t type) {

if (length <= 0 || type == NONE) {

return 0;

}

double sum = 0.0;

for (int i = 0; i < length; i++) {

if (type == NORMAL) {

sum += array[i];



} else if (type == SQUARED) {

sum += array[i] * array[i];

}

}

return sum / length;

}

Code Box 2-4 [ExtremeC_examples_chapter2_1.c]: The source file containing the definition of
avg function

With the preceding code, you should notice that the filename ends with a
.c  extension. The source file has included the example's header file. This
has been done because it needs the declarations of the average_type_t
enumeration and the avg  function before using them. Using a new type, in
this case, the average_type_t  enumeration, without declaring it before its
usage leads to a compilation error.

Look at the following code box showing the second source file that
contains the main  function:

#include <stdio.h>

#include "ExtremeC_examples_chapter2_1.h"

int main(int argc, char** argv) {

// Array declaration

int array[5];

// Filling the array

array[0] = 10;

array[1] = 3;

array[2] = 5;

array[3] = -8;

array[4] = 9;

// Calculating the averages using the 'avg' function

double average = avg(array, 5, NORMAL);

printf("The average: %f\n", average);

average = avg(array, 5, SQUARED);

printf("The squared average: %f\n", average);

return 0;

}

Code Box 2-5 [ExtremeC_examples_chapter2_1_main.c]: The main function of example 2.1

In every C project, the main  function is the entry point of the program. In
the preceding code box, the main  function declares and populates an array



of integers and calculates two different averages for it. Note how the main
function calls the avg function in the preceding code.

Building the example

After introducing the files of example 2.1 in the previous section, we need
to build them and create a final executable binary file that can be run as a
program.Building a C/C++ project means that we will compile all the
sources within its code base to first produce some relocatable object files
(known as intermediate object files too), and finally combine those
relocatable object files to produce the final products, such as static
libraries or executable binaries.

Building a project in other programming languages is also very similar to
doing it in either C or C++, but the intermediate and final products have
different names and likely different file formats. For example, in Java, the
intermediate products are class files containing Java bytecode, and the final
products are JAR or WAR files.

Note:

To compile the example sources, we will not use an Integrated
Development Environment (IDE). Instead, we are going to use the
compiler directly without help from any other software. Our approach to
building the example is exactly the same as the one that is employed by
IDEs and performed in the background while compiling a number of
source files.

Before we go any further, there are two important rules that we should
remember.

Rule 1: We only compile source files

The first rule is that we only compile source files due to the fact that it is
meaningless to compile a header file. Header files should not contain any
actual C code other than some declarations. Therefore, for example 2.1, we
only need to compile two source files: ExtremeC_examples_chapter2_1.c
and ExtremeC_examples_chapter2_1_main.c .



Rule 2: We compile each source file separately

The second rule is that we compile each source file separately. Regarding
example 2.1, it means that we have to run the compiler twice, each time
passing one of the source files.

Note:

It is still possible to pass two source files at once and ask the compiler to
compile them in just one command, but we don't recommend it and we
don't do that in this book.

Therefore, for a project made up of 100 source files, we need to compile
every source file separately, and it means that we have to run the compiler
100 times! Yes, that seems to be a lot, but this is the way that you should
compile a C or C++ project. Believe me, you will encounter projects in
which several thousand files should be compiled before having a single
executable binary!

Note:

If a header file contains a piece of C code that needs to be compiled, we
do not compile that header file. Instead, we include it in a source file, and
then, we compile the source file. This way, the header's C code will be
compiled as part of the source file.

When we compile a source file, no other source files are going to be
compiled as part of the same compilation because none of them are
included by the compiling source file. Remember, including source files is
not allowed if we respect the best practices in C/C++.

Now let's focus on the steps that should be taken in order to build a C
project. The first step is preprocessing, and we are going to talk about that
in the following section.

Step 1 – Preprocessing



The first step in the C compilation pipeline is preprocessing. A source file
has a number of header files included. However, before the compilation
begins, the contents of these files are gathered by the preprocessor as a
single body of C code. In other words, after the preprocessing step, we get a
single piece of code created by copying content of the header files into the
source file content.

Also, other preprocessor directives must be resolved in this step. This
preprocessed piece of code is called a translation unit. A translation unit is
a single logical unit of C code generated by the preprocessor, and it is ready
to be compiled. A translation unit is sometimes called a compilation unit as
well.

Note:

In a translation unit, no preprocessing directives can be found. As a
reminder, all preprocessing directives in C (and C++) start with # , for
example, #include  and #define .

It is possible to ask compilers to dump the translation unit without
compiling it further. In the case of gcc , it is enough to pass the -E  option
(this is case-sensitive). In some rare cases, especially when doing cross-
platform development, examining the translation units could be useful
when fixing weird issues.

In the following code, you can see the translation unit for
ExtremeC_examples_chapter2_1.c , which has been generated by gcc  on
our default platform:

$ gcc -E ExtremeC_examples_chapter2_1.c

# 1 "ExtremeC_examples_chapter2_1.c"

# 1 "<built-in>"

# 1 "<command-line>"

# 31 "<command-line>"

# 1 "/usr/include/stdc-predef.h" 1 3 4

# 32 "<command-line>" 2

# 1 "ExtremeC_examples_chapter2_1.c"

# 1 "ExtremeC_examples_chapter2_1.h" 1

typedef enum {

NONE,



NORMAL,

SQUARED

} average_type_t;

double avg(int*, int, average_type_t);

# 5 "ExtremeC_examples_chapter2_1.c" 2

double avg(int* array, int length, average_type_t type) {

if (length <= 0 || type == NONE) {

return 0;

}

double sum = 0;

for (int i = 0; i < length; i++) {

if (type == NORMAL) {

sum += array[i];

} else if (type == SQUARED) {

sum += array[i] * array[i];

}

}

return sum / length;

}

$

Shell Box 2-1: The produced translation unit while compiling
ExtremeC_examples_chapter2_1.c

As you can see, all the declarations are copied from the header file into the
translation unit. The comments have also been removed from the
translation unit.

The translation unit for ExtremeC_examples_chapter2_1_main.c  is very
large because it includes the stdio.h  header file.

All declarations from this header file, and further inner header files
included by it, will be copied into the translation unit recursively. Just to
show how big the translation unit of
ExtremeC_examples_chapter2_1_main.c  can be, on our default platform it
has 836 lines of C code!

Note:

The -E  option works also for the clang  compiler.



This completes the first step. The input to the preprocessing step is a source
file, and the output is the corresponding translation unit.

Step 2 – Compilation
Once you have the translation unit, you can go for the second step, which is
compilation. The input to the compilation step is the translation unit,
retrieved from the previous step, and the output is the corresponding
assembly code. This assembly code is still human-readable, but it is
machine-dependent and close to the hardware and still needs further
processing in order to become machine-level instructions.

You can always ask gcc  to stop after performing the second step and dump
the resulting assembly code by passing the -S  option (capital S). The
output is a file with the same name as the given source file but with a .s
extension.

In the following shell box, you can see the assembly of the
ExtremeC_examples_chapter2_1_main.c  source file. However, when
reading the code, you should see that some parts of the output are removed:

$ gcc -S ExtremeC_examples_chapter2_1.c

$ cat ExtremeC_examples_chapter2_1.s

.file "ExtremeC_examples_chapter2_1.c"

.text

.globl avg

.type avg, @function

avg:

.LFB0:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

movq %rdi, -24(%rbp)

movl %esi, -28(%rbp)

movl %edx, -32(%rbp)

cmpl $0, -28(%rbp)

jle .L2

cmpl $0, -32(%rbp)

jne .L3



.L2:

pxor %xmm0, %xmm0

jmp .L4

.L3:

...

.L8:

...

.L6:

...

.L7:

...

.L5:

...

.L4:

...

.LFE0:

.size avg, .-avg

.ident "GCC: (Ubuntu 7.3.0-16ubuntu3) 7.3.0"

.section .note.GNU-stack,"",@progbits

$

Shell Box 2-2: The produced assembly code while compiling
ExtremeC_examples_chapter2_1.c

As part of the compilation step, the compiler parses the translation unit and
turns it into assembly code that is specific to the target architecture. By the
target architecture, we mean the hardware or CPU that the program is being
compiled for and is eventually to be run on. The target architecture is
sometimes referred to as the host architecture.

Shell Box 2-2 shows the assembly code generated for the AMD 64-bit
architecture and produced by gcc  running on an AMD 64-bit machine. The
following shell box contains the assembly code generated for an ARM 32-
bit architecture and produced by gcc  running on an Intel x86-64
architecture. Both assembly outputs are generated for the same C code:

$ cat ExtremeC_examples_chapter2_1.s

.arch armv5t

.fpu softvfp

.eabi_attribute 20, 1

.eabi_attribute 21, 1

.eabi_attribute 23, 3

.eabi_attribute 24, 1

.eabi_attribute 25, 1

.eabi_attribute 26, 2



.eabi_attribute 30, 6

.eabi_attribute 34, 0

.eabi_attribute 18, 4

.file "ExtremeC_examples_chapter2_1.s"

.global __aeabi_i2d

.global __aeabi_dadd

.global __aeabi_ddiv

.text

.align 2

.global avg

.syntax unified

.arm

.type avg, %function

avg:

@ args = 0, pretend = 0, frame = 32

@ frame_needed = 1, uses_anonymous_args = 0

push {r4, fp, lr}

add fp, sp, #8

sub sp, sp, #36

str r0, [fp, #-32]

str r1, [fp, #-36]

str r2, [fp, #-40]

ldr r3, [fp, #-36]

cmp r3, #0

ble .L2

ldr r3, [fp, #-40]

cmp r3, #0

bne .L3

.L2:

...

.L3:

...

.L8:

...

.L6:

...

.L7:

...

.L5:

...

.L4:

mov r0, r3

mov r1, r4

sub sp, fp, #8

@ sp needed

pop {r4, fp, pc}

.size avg, .-avg

.ident "GCC: (Ubuntu/Linaro 5.4.0-6ubuntu1~16.04.9) 5.4.0

20160609"

.section .note.GNU-stack,"",%progbits

$



Shell Box 2-3: The assembly code produced while compiling
ExtremeC_examples_chapter2_1.c for an ARM 32-bit architecture

As you can see in shell boxes 2-2 and 2-3, the generated assembly code is
different for the two architectures. This is despite the fact that they are
generated for the same C code. For the latter assembly code, we have used
the arm-linux-gnueabi-gcc  compiler on an Intel x64-86 hardware set
running Ubuntu 16.04.

Note:

The target (or host) architecture is the architecture that the source is both
being compiled for and will be run on. The build architecture is the
architecture that we are using to compile the source. They can be different.
For example, you can compile a C source for AMD 64-bit hardware on an
ARM 32-bit machine.

Producing assembly code from C code is the most important step in the
compilation pipeline.

This is because when you have the assembly code, you are very close to the
language that a CPU can execute. Because of this important role, the
compiler is one of the most important and most studied subjects in
computer science.

Step 3 – Assembly
The next step after compilation is assembly. The objective here is to
generate the actual machine-level instructions (or machine code) based on
the assembly code generated by the compiler in the previous step. Each
architecture has its own assembler, which can translate its own assembly
code to its own machine code.

A file containing the machine-level instructions that we are going to
assemble in this section is called an object file. We know that a C project
can have several products that are all object files, but in this section, we are



mainly interested in relocatable object files. This file is, without a doubt,
the most important temporary product that we can obtain during the build
process.

Note:

Relocatable object files can be referred to as intermediate object files.

To pull both of the previous steps together, the purpose of this assembly
step is to generate a relocatable object file out of the assembly code
produced by the compiler. Every other product that we create will be based
on the relocatable object files generated by the assembler in this step.

We will talk about these other products in the future sections of this
chapter.

Note:

Binary file and object file are synonyms that refer to a file containing
machine-level instructions. Note however that the term "binary files" in
other contexts can have different meanings, for example binary files vs.
text files.

In most Unix-like operating systems, we have an assembler tool called as ,
which can be used to produce a relocatable object file from an assembly
file.

However, these object files are not executable, and they only contain the
machine-level instructions generated for a translation unit. Since each
translation unit is made up of various functions and global variables, a
relocatable object file simply contains machine-level instructions for the
corresponding functions and the pre-allocated entries for the global
variables.

In the following shell box, you can see how as  is used to produce the
relocatable object file for ExtremeC_examples_chapter2_1_main.s :



$ as ExtremeC_examples_chapter2_1.s -o

ExtremeC_examples_chapter2_1.o

$

Shell Box 2-4: Producing an object file from the assembly of one of the sources in example 2.1

Looking back at the command in the preceding shell box, we can see that
the -o  option is used to specify the name of the output object file.
Relocatable object files usually have a .o  (or a .obj  in Microsoft
Windows) extension in their names, which is why we have passed a
filename with .o  at the end.

The content of an object file, either .o  or .obj , is not textual, so you
would not be able to read it as a human. Therefore, it is common to say that
an object file has binary content.

Despite the fact that the assembler can be used directly, like what we did in
Shell Box 2-4, this is not recommended. Instead, good practice would be to
use the compiler itself to call as  indirectly in order to generate the
relocatable object file.

Note:

We may use the terms object file and relocatable object file
interchangeably. But not all object files are relocatable object files, and, in
some contexts, it may refer to other types of object files such as shared
object files.

If you pass the -c  option to almost all known C compilers, it will directly
generate the corresponding object file for the input source file. In other
words, the -c  option is equivalent to performing the first three steps all
together.

Looking at the following example, you can see that we have used the -c
option to compile ExtremeC_examples_chapter2_1.c  and generate its
corresponding object file:



$ gcc -c ExtremeC_examples_chapter2_1.c

$

Shell Box 2-5: Compiling one of the sources in example 2.1 and producing its corresponding
relocatable object file

All of the steps we have just done – preprocessing, compilation, and
assembling – are done as part of the preceding single command. What this
means for us is that after running the preceding command, a relocatable
object file will be generated. This relocatable object file will have the same
name as the input source file; however, it will differ by having a .o
extension.

IMPORTANT:

Note that, often, the term compilation is used to refer to the first three steps
in the compilation pipeline all together, and not just the second step. It is
also possible that we use the term "compilation" but actually mean
"building;" encompassing all four steps. For instance, we say C
compilation pipeline, but we actually mean C build pipeline.

The assembly is the last step in compiling a single source file. In other
words, when we have the corresponding relocatable object file for a source
file, we are done with its compilation. At this stage we can put aside the
relocatable object file and continue compiling other source files.

In example 2.1, we have two source files that need to be compiled. By
executing the following commands, it compiles both source files and as a
result, produces their corresponding object files:

$ gcc -c ExtremeC_examples_chapter2_1.c -o impl.o

$ gcc -c ExtremeC_examples_chapter2_1_main.c -o main.o

$

Shell Box 2-6: Producing the relocatable object files for the sources in example 2.1

You can see in the preceding commands that we have changed the names of
the object files by specifying our desired names using the -o  option. As a



result, after compiling both of them, we get the impl.o  and main.o
relocatable object files.

At this point, we need to remind ourselves that relocatable object files are
not executable. If a project is going to have an executable file as its final
product, we need to use all, or at the very least, some, of the already
produced relocatable object files to build the target executable file through
the linking step.

Step 4 – Linking
We know that example 2.1 needs to be built to an executable file because
we have a main  function in it. However, at this point, we only have two
relocatable object files. Therefore, the next step is to combine these
relocatable object files in order to create another object file that is
executable. The linking step does exactly that.

However, before we go through the linking step, we need to talk about how
we add support for a new architecture, or hardware, to an existing Unix-like
system.

Supporting new architectures

We know that every architecture has a series of manufactured processors
and that every processor can execute a specific instruction set.

The instruction set has been designed by vendor companies such as Intel
and ARM for their processors. In addition, these companies also design a
specific assembly language for their architecture.

A program can be built for a new architecture if two prerequisites are
satisfied:

1. The assembly language is known.

2. The required assembler tool (or program) developed by the vendor
company must be at hand. This allows us to translate the assembly



code into the equivalent machine-level instructions.

Once these prerequisites are in place, it would be possible to generate
machine-level instructions from C source code. Only then, we are able to
store the generated machine-level instructions within the object files using
an object file format. As an example, this could be in the form of either
ELF or Mach-O.

When the assembly language, assembler tool, and object file format are
clear, they can be used to develop some further tools that are necessary for
us developers when doing C programming. However, you hardly notice
their existence since you are often dealing with a C compiler, and it is
using these tools on your behalf.

The two immediate tools that are required for a new architecture are as
follows:

C compiler
Linker

These tools are like the first fundamental building blocks for supporting a
new architecture in an operating system. The hardware together with these
tools in an operating system give rise to a new platform.

Regarding Unix-like systems, it is important to remember that Unix has a
modular design. If you are able to build a few fundamental modules like
the assembler, compiler, and linker, you will be able to build other modules
on top of them and before long, the whole system is working on a new
architecture.

Step details

With all that's been said before, we know that platforms using Unix-like
operating systems must have the previously discussed mandatory tools,
such as an assembler and a linker, in order to work. Remember, the
assembler and the linker can be run separately from the compiler.



In Unix-like systems, ld  is the default linker. The following command,
which you can see in the following shell box, shows us how to use ld
directly when we want to create an executable from the relocatable object
files we produced in the previous sections for example 2.1. However, as you
will see, it is not that easy to use the linker directly:

$ ld impl.o main.o

ld: warning: cannot find entry symbol _start; defaulting to

00000000004000e8

main.o: In function 'main':

ExtremeC_examples_chapter3_1_main.c:(.text+0x7a): undefined

reference to 'printf'

ExtremeC_examples_chapter3_1_main.c:(.text+0xb7): undefined

reference to 'printf'

ExtremeC_examples_chapter3_1_main.c:(.text+0xd0): undefined

reference to '__stack_chk_fail'

$

Shell Box 2-7: Trying to link the object files using the ld utility directly

As you see, the command has failed, and it has generated some error
messages. If you pay attention to the error messages, they say that in three
places in the Text segment ld  has encountered three function calls (or
references) that are undefined.

Two of these function calls are calls to the printf  function, which we did
in the main  function. However, the other one, __stack_chk_fail , has not
been called by us. It is coming from somewhere else, but where? It has
been called from the supplementary code that has been put into the
relocatable object files by the compiler, and this function is specific to
Linux, and you may not find it in the same object files generated on other
platforms. However, whatever it is and whatever it does, the linker is
looking for its definition and it seems that it cannot find the definition in
the provided object files.

Like we said before, the default linker, ld , has generated these errors
because it has not been able to find the definitions of these functions.
Logically, this makes sense, and is true, because we have not defined
printf  and __stack_chk_fail  ourselves in example 2.1.



This means that we should have given ld  some other object files, though
not necessarily relocatable object files, that contain the definitions of the
printf  and __stack_chk_fail  functions.

Reading what we have just said should explain why it can be very hard to
use ld  directly. Namely, there are more object files and options that need
to be specified in order to make ld  work and generate a working
executable.

Fortunately, in Unix-like systems, the most well-known C compilers use
ld  by passing proper options and specifying extra required object files.
Hence, we do not need to use ld  directly.

Therefore, let's look at a much simpler way of producing the final
executable file. The following shell box shows us how we can use gcc  to
link the object files from example 2.1:

$ gcc impl.o main.o

$ ./a.out

The average: 3.800000

The squared average: 55.800000

$

Shell Box 2-8: Using gcc to link the object files

As a result of running these commands, we can breathe because we have
finally managed to build example 2.1 and run its final executable!

Note:

Building a project is equivalent to compiling the sources firstly and then
linking them together, and possibly other libraries, to create the final
products.

It is important to take a minute to pause and reflect on what we have just
done. Over the last few sections we have successfully built example 2.1 by
compiling its sources into relocatable object files, and finally linking the
generated object files to create the final executable binary.



While this process will be the same for any C/C++ code base, the
difference will be in the number of times you need to compile sources,
which itself depends on the number of source files in your project.

While the compilation pipeline has some steps, in each step, there is a
specific component involved. The focus of the remaining sections of this
chapter will be delving into the critical information surrounding each
component in the pipeline.

To start this, we are going to focus on the preprocessor component.

Preprocessor
At the very start of this book in Chapter 1, Essential Features, we
introduced, albeit briefly, the concepts of C preprocessor. Specifically, we
talked there about macros, conditional compilation, and header guards.

You will remember that at the beginning of the book, we discussed C
preprocessing as an essential feature of the C language. Preprocessing is
unique due to the fact that it cannot be easily found in other programming
languages. In the simplest terms, preprocessing allows you to modify your
source code before sending it for compilation. At the same time, it allows
you to divide your source code, especially the declarations, into header
files so that you can later include them into multiple source files and reuse
those declarations.

It is vital to remember that if you have a syntax error in your source code,
the preprocessor will not find the error as it does not know anything about
the C syntax. Instead, it will just perform some easy tasks, which typically
revolve around text substitutions. As an example, imagine that you have a
text file named sample.c  with the following content:

#include <stdio.h>

#define file 1000

Hello, this is just a simple text file but ending with .c

extension!



This is not a C file for sure!

But we can preprocess it!

Code Box 2-6: C code containing some text!

Having the preceding code, let us preprocess the file using gcc . Note that
some parts of the following shell box have been removed. This is because
including stdio.h  makes the translation unit very big:

$ gcc -E sample.c

# 1 "sample.c"

# 1 "<built-in>" 1

# 1 "<built-in>" 3

# 341 "<built-in>" 3

# 1 "<command line>" 1

# 1 "<built-in>" 2

# 1 "sample.c" 2

# 1 "/usr/include/stdio.h" 1 3 4

# 64 "/usr/include/stdio.h" 3 4

# 1 "/usr/include/_stdio.h" 1 3 4

# 68 "/usr/include/_stdio.h" 3 4

# 1 "/usr/include/sys/cdefs.h" 1 3 4

# 587 "/usr/include/sys/cdefs.h" 3 4

# 1 "/usr/include/sys/_symbol_aliasing.h" 1 3 4

# 588 "/usr/include/sys/cdefs.h" 2 3 4

# 653 "/usr/include/sys/cdefs.h" 3 4

...

...

extern int __vsnprintf_chk (char * restrict, size_t, int,

size_t,

const char * restrict, va_list);

# 412 "/usr/include/stdio.h" 2 3 4

# 2 "sample.c" 2

Hello, this is just a simple text 1000 but ending with .c

extension!

This is not a C 1000 for sure!

But we can preprocess it!

$

Shell Box 2-9: The preprocessed sample C code seen in Code Box 2-6

As you see in the preceding shell box, the content of stdio.h  is copied
before the text.



If you pay more attention, you will see that another interesting substitution
has also happened. The occurrences of the file  have been replaced by
1000  in the text.

This example shows us exactly how the preprocessor works. The
preprocessor only does simple tasks, such as inclusion, by copying contents
from a file or expanding the macros by text substitution. It does not know
anything about C though; it needs a parser to parse the input file before
performing any further tasks. This means that a C preprocessor uses a
parser, which looks for directives in the input code.

Note:

Generally, a parser is a program that processes the input data and extracts
some certain parts of it for further analysis and processing. Parsers need to
know the structure of the input data in order to break it down into some
smaller and useful pieces of data.

The preprocessor's parser is different from the parser used by a C compiler
because it uses grammar that is almost independent of C grammar. This
enables us to use it in circumstances other than preprocessing a C file.

Note:

By exploiting the functionalities of a C preprocessor, you could use file
inclusion and macro expansion for other purposes other than building a C
program. They could be used to process other text files as well.

The GNU C Preprocessor Internals –
http://www.chiark.greenend.org.uk/doc/cpp-4.3-

doc/cppinternals.html – is a great source for learning more about
the gcc  preprocessor. This document is an official source that describes
how the GNU C preprocessor works. The GNU C preprocessor is used by
the gcc  compiler to preprocess the source files.

In the preceding link, you can find how the preprocessor parses the
directives and how it creates the parse tree. The document also provides an

http://www.chiark.greenend.org.uk/doc/cpp-4.3-doc/cppinternals.html


explanation of the different macro expansion algorithms. While it is
outside of the scope of this chapter, if you wanted to implement your own
preprocessor for a specific in-house programming language, or just for
processing some text files, then the above link provides some great context.

In most Unix-like operating systems, there is a tool called cpp, which
stands for C Pre-Processor – and not C Plus Plus! cpp  is part of the C
development bundle that is shipped with each flavor of Unix. It can be used
to preprocess a C file. In the background, the tool is used by a C compiler,
like gcc , to preprocess a C file. If you have a source file, you can use it, in
a similar way to what we have done next, to preprocess a source file:

$ cpp ExtremeC_examples_chapter2_1.c

# 1 "ExtremeC_examples_chapter2_1.c"

# 1 "<built-in>" 1

# 1 "<built-in>" 3

# 340 "<built-in>" 3

# 1 "<command line>" 1

# 1 "<built-in>" 2

...

...

# 5 "ExtremeC_examples_chapter2_1.c" 2

double avg(int* array, int length, average_type_t type) {

if (length <= 0 || type == NONE) {

return 0;

}

double sum = 0;

for (int i = 0; i < length; i++) {

if (type == NORMAL) {

sum += array[i];

} else if (type == SQUARED) {

sum += array[i] * array[i];

}

}

return sum / length;

}

$

Shell Box 2-10: Using the cpp utility to preprocess source code

As a final note in this section, if you pass a file with the extension .i  to a
C compiler, then it will bypass the preprocessor step. It does this because a



file with a .i  extension is supposed to have already been preprocessed.
Therefore, it should be sent directly to the compilation step.

If you insist on running the C preprocessor for a file with a .i  extension,
then you will get the following warning message. Note that the following
shell box is produced with the clang  compiler:

$ clang -E ExtremeC_examples_chapter2_1.c > ex2_1.i

$ clang -E ex2_1.i

clang: warning: ex2_1.i: previously preprocessed input

[-Wunused-command-line-argument]

$

Shell Box 2-11: Passing an already preprocessed file, with extension .i, to the clang compiler

As you can see, clang  warns us that the file has been already preprocessed.

In the next section of this chapter, we are going to specifically talk about
the compiler component in the C compilation pipeline.

Compiler
As we discussed in the previous sections, the compiler accepts the
translation unit prepared by the preprocessor and generates the
corresponding assembly instructions. When multiple C sources are
compiled into their equivalent assembly code, the existing tools in the
platform, such as the assembler and the linker, manage the rest by making
relocatable object files out of the generated assembly code and finally
linking them together (and possibly with other object files) to form a
library or an executable file.

As an example, we spoke about as  and ld  as two examples among the
many available tools in Unix for C development. These tools are mainly
used to create platform-compatible object files. These tools exist
necessarily outside of gcc  or any other compiler. By existing outside of
any compiler, we actually mean that they are not developed as a part of



gcc  (we have chosen gcc  as an example) and they should be available on
any platform even without having gcc  installed. gcc  only uses them in its
compilation pipeline, and they are not embedded into gcc .

That is because the platform itself is the most knowledgeable entity that
knows about the instruction set accepted by its processor and the operating
system-specific formats and restrictions. The compiler is not usually aware
of these constraints unless it wants to do some optimization on the
translation unit. Therefore, we can conclude that the most important task
that gcc  does is to translate the translation unit into assembly instructions.
This is what we actually call compilation.

One of the challenges in C compilation is to generate correct assembly
instructions that can be accepted by the target architecture. It is possible to
use gcc  to compile the same C code for various architectures such as
ARM, Intel x86, AMD, and many more. As we discussed before, each
architecture has an instruction set that is accepted by its processor, and
gcc  (or any C compiler) is the sole responsible entity that should generate
correct assembly code for a specific architecture.

The way that gcc  (or any other C compiler) overcomes this difficulty is to
split the mission into two steps, first parsing the translation unit into an
relocatable and C-independent data structure called an Abstract Syntax
Tree (AST), and then using the created AST to generate the equivalent
assembly instructions for the target architecture. The first part is
architecture-independent and can be done regardless of the target
instruction set. But the second step is architecture-dependent, and the
compiler should be aware of the target instruction set. The subcomponent
that performs the first step is called a compiler frontend, and the
subcomponent that performs the later step is called a compiler backend.

In the following sections, we are going to discuss these steps in more depth.
First, let's talk about the AST.

Abstract syntax tree



As we have explained in the previous section, a C compiler frontend should
parse the translation unit and create an intermediate data structure. The
compiler creates this intermediate data structure by parsing the C source
code according to the C grammar and saving the result in a tree-like data
structure that is not architecture-dependent. The final data structure is
commonly referred to as an AST.

ASTs can be generated for any programming language, not only C, so the
AST structure must be abstract enough to be independent of C syntax.

This is enough to change the compiler frontend to support other languages.
This is exactly why you can find GNU Compiler Collection (GCC), which
gcc  is a part of as the C compiler, or Low-Level Virtual Machine
(LLVM), which clang  is a part of as the C compiler, as a collection of
compilers for many languages beyond just C and C++ such as Java, Fortran,
and so on.

Once the AST is produced, the compiler backend can start to optimize the
AST and generate assembly code based on the optimized AST for a target
architecture. To get a better understanding of ASTs, we are going to take a
look at a real AST. In this example, we have the following C source code:

int main() {

int var1 = 1;

double var2 = 2.5;

int var3 = var1 + var2;

return 0;

}

Code Box 2-7 [ExtremeC_examples_chapter2_2.c]: Simple C code whose AST is going to be
generated

The next step is to use clang  to dump the AST within the preceding code.
In the following figure, Figure 2-1, you can see the AST:



Figure 2-1: The AST generated and dumped for example 2.2

So far, we have used clang  in various places as a C compiler, but let's
introduce it properly. clang  is a C compiler frontend developed by the
LLVM Developer Group for the llvm  compiler backend. The LLVM
Compiler Infrastructure Project uses an intermediate representation – or
LLVM IR – as its abstract data structure used between its frontend and its
backend. LLVM is famous for its ability to dump its IR data structure for
research purposes. The preceding tree-like output is the IR generated from
the source code of example 2.2.

What we have done here is introduce you to the basics of AST. We are not
going through the details of the preceding AST output because each
compiler has its own AST implementation. We would require several
chapters to cover all of the details on this, and that is beyond the scope of
this book.



However, if you pay attention to the above figure, you can find a line that
starts with - FunctionDecl . This represents the main  function. Before that,
you can find meta information regarding the translation unit passed to the
compiler.

If you continue after FunctionDecl , you will find tree entries – or nodes –
for declaration statements, binary operator statements, the return statement,
and even implicit cast statements. There are lots of interesting things
residing in an AST, with countless things to learn!

Another benefit of having an AST for source code is that you can rearrange
the order of instructions, prune some unused branches, and replace
branches so that you have better performance but preserve the purpose of
the program. As we pointed out before, it is called optimization and it is
usually done to a certain configurable extent by any C compiler.

The next component that we are going to discuss in more detail is the
assembler.

Assembler
As we explained before, a platform has to have an assembler in order to
produce object files that contain correct machine-level instructions. In a
Unix-like operating system, the assembler can be invoked by using the as
utility program. In the rest of this section, we are going to discuss what can
be put in an object file by the assembler.

If you install two different Unix-like operating systems on the same
architecture, the installed assemblers might not be the same, which is very
important. What this means is that, despite the fact that the machine-level
instructions are the same, because of being on the same hardware, the
produced object files can be different!

If you compile a program and produce the corresponding object file on
Linux for an AMD64 architecture, it could be different from if you had
tried to compile the same program in a different operating system such as



FreeBSD or macOS, and on the same hardware. This implies that while the
object files cannot be the same, they do contain the same machine-level
instructions. This proves that object files can have different formats in
various operating systems.

In other words, each operating system defines its own specific binary
format or object file format when it comes to storing machine-level
instructions within object files. Therefore, there are two factors that specify
the contents of an object file: the architecture (or hardware) and the
operating system. Typically, we will use the term platform for such a
combination.

To round off this section, we usually say that object files, hence the
assembler generating them, are platform-specific. In Linux, we use the
Executable and Linking Format (ELF). As the name implies, all
executable files, object files, and shared libraries should use this format. In
other words, in Linux, the assembler produces ELF object files. In the
upcoming chapter, Object Files, we will discuss object files and their
formats in greater detail.

In the following section, we will take a deeper look at the linker
component. We will demonstrate and explain how the component actually
produces the final products in a C project.

Linker
The first big step in building a C project is compiling all the source files to
their corresponding relocatable object files. This step is a necessary step in
preparing the final products, but alone, it is not enough, and one more step
is still needed. Before going through the details of this step, we need to
have a quick look at the possible products (sometimes referred to as
artifacts) in a C project.

A C/C++ project can lead to the following products:



A number of executable files that usually have the .out  extension in
most Unix-like operating systems. These files usually have the .exe
extension in Microsoft Windows.
A number of static libraries that usually have the .a  extension in
most Unix-like operating systems. These files have the .lib
extension in Microsoft Windows.
A number of dynamic libraries or shared object files that usually have
the .so  extension in most Unix-like operating systems. These files
have the .dylib  extension in macOS, and .dll  in Microsoft
Windows.

Relocatable object files are not considered as one of these products; hence,
you cannot find them in the preceding list. Relocatable object files are
temporary products simply because they only take part in the linking step
to produce the preceding products, and after that, we don't need them
anymore. The linker component has the sole responsibility of producing the
preceding products from the given relocatable object files.

One final and important note about the used terminology: all these three
products are called object files. Therefore, it is best to use the term
relocatable before the term object file when referring to an object file
produced by the assembler as an intermediate product.

We'll now briefly describe each of the final products. The upcoming
chapter is totally dedicated to the object files and it will discuss these final
products in greater detail.

An executable object file can be run as a process. This file usually contains
a substantial portion of the features provided by a project. It must have an
entry point where the machine-level instructions are executed. While the
main  function is the entry point of a C program, the entry point of an
executable object file is platform-dependent, and it is not the main
function. The main  function will eventually be called after some
preparations made by a group of platform-specific instructions, which have
been added by the linker as the result of the linking step.



A static library is nothing more than an archive file that contains several
relocatable object files. Therefore, a static library file is not produced by
the linker directly. Instead, it is produced by the default archive program of
the system, which on a Unix-like system is the ar  program.

Static libraries are usually linked to other executable files, and they then
become part of those executable files. They are the simplest and easiest
way to encapsulate a piece of logic so that you can use it at a later point.
There is an enormous number of static libraries that exist within an
operating system, with each of them containing a specific piece of logic
that can be used to access a certain functionality within that operating
system.

Shared object files, which have a more complicated structure rather than
simply being an archive, are created directly by the linker. They are also
used differently; namely, before they are used, they need to be loaded into a
running process at runtime.

This is in opposition to static libraries that are used at link time to become
part of the final executable file. In addition, a single shared object file can
be loaded and used by multiple different processes at the same time. As
part of the next chapter, we demonstrate how shared object files can be
loaded and used by a C program at runtime.

In the upcoming section, we explain what happens in the linking step and
what elements are involved and used by the linker to produce the final
products, especially executable files.

How does the linker work?
In this section, we are going to explain how the linker component works
and what we exactly mean by linking. Suppose that you are building a C
project that contains five source files, with the final product being an
executable. As part of the build process, you have compiled all the source
files, and now you have five relocatable object files. What you now need is
a linker to complete the last step and produce the final executable file.



Based on what we have said so far, to put it simply, a linker combines all of
the relocatable object files, in addition to specified static libraries, in order
to create the final executable object file. However, you would be wrong if
you thought that this step was straightforward.

There are a few concerns, which come from the contents of the object files,
that need to be considered when we are combining the object files in order
to produce a working executable object file. In order to see how the linker
works, we need to know how it uses the relocatable object files, and for this
purpose, we need to find out what is inside an object file.

The simple answer is that an object file contains the equivalent machine-
level instructions for a translation unit. However, these instructions are not
put into the file in random order. Instead, they are grouped under sections
called symbols.

In fact, there are many things in an object file, but symbols are one
component that explains how the linker works and how it ties some object
files together to produce a larger one. In order to explain symbols, let's talk
about them in the context of an example: example 2.3. Using this example,
we want to demonstrate how some functions are compiled and placed in the
corresponding relocatable object file. Take a look at the following code,
which contains two functions:

int average(int a, int b) {

return (a + b) / 2;

}

int sum(int* numbers, int count) {

int sum = 0;

for (int i = 0; i < count; i++) {

sum += numbers[i];

}

return sum;

}

Code Box 2-8 [ExtremeC_examples_chapter2_3.c]: A code with two function definitions

Firstly, we need to compile the preceding code in order to produce the
corresponding object file. The following command produces the object file,
target.o . We are compiling the code on our default platform:



$ gcc -c ExtremeC_examples_chapter2_3.c -o target.o

$

Shell Box 2-12: Compiling the source file in example 2.3

Next, we use the nm  utility to look into the target.o  object file. The nm
utility allows us to see the symbols that can be found inside an object file:

$ nm target.o

0000000000000000 T average

000000000000001d T sum

$

Shell Box 2-13: Using the nm utility to see the defined symbols in a relocatable object file

The preceding shell box shows the symbols defined in the object file. As
you can see, their names are exactly the same as the function defined in
Code Box 2-8.

If you use the readelf  utility, like we have done in the following shell box,
you can see the symbol table existing in the object file. A symbol table
contains all the symbols defined in an object file and it can give you more
information about the symbols:

$ readelf -s target.o

Symbol table '.symtab' contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 FILE LOCAL DEFAULT ABS

ExtremeC_examples_chapter

2: 0000000000000000 0 SECTION LOCAL DEFAULT 1

3: 0000000000000000 0 SECTION LOCAL DEFAULT 2

4: 0000000000000000 0 SECTION LOCAL DEFAULT 3

5: 0000000000000000 0 SECTION LOCAL DEFAULT 5

6: 0000000000000000 0 SECTION LOCAL DEFAULT 6

7: 0000000000000000 0 SECTION LOCAL DEFAULT 4

8: 0000000000000000 29 FUNC GLOBAL DEFAULT 1 average

9: 000000000000001d 69 FUNC GLOBAL DEFAULT 1 sum

$

Shell Box 2-14: Using the readelf utility to see the symbol table of a relocatable object file



As you can see in the output of readelf , there are two function symbols in
the symbol table. There are also other symbols in the table that refer to
different sections within the object file. We will discuss some of these
symbols in this chapter and the next chapter.

If you want to see the disassembly of the machine-level instructions, under
each function symbol, then you can use the objdump  tool:

$ objdump -d target.o

target.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <average>:

0: 55 push %rbp

1: 48 89 e5 mov %rsp,%rbp

4: 89 7d fc mov %edi,-0x4(%rbp)

7: 89 75 f8 mov %esi,-0x8(%rbp)

a: 8b 55 fc mov -0x4(%rbp),%edx

d: 8b 45 f8 mov -0x8(%rbp),%eax

10: 01 d0 add %edx,%eax

12: 89 c2 mov %eax,%edx

14: c1 ea 1f shr $0x1f,%edx

17: 01 d0 add %edx,%eax

19: d1 f8 sar %eax

1b: 5d pop %rbp

1c: c3 retq

000000000000001d <sum>:

1d: 55 push %rbp

1e: 48 89 e5 mov %rsp,%rbp

21: 48 89 7d e8 mov %rdi,-0x18(%rbp)

25: 89 75 e4 mov %esi,-0x1c(%rbp)

28: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)

2f: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)

36: eb 1d jmp 55 <sum+0x38>

38: 8b 45 fc mov -0x4(%rbp),%eax

3b: 48 98 cltq

3d: 48 8d 14 85 00 00 00 lea 0x0(,%rax,4),%rdx

44: 00

45: 48 8b 45 e8 mov -0x18(%rbp),%rax

49: 48 01 d0 add %rdx,%rax

4c: 8b 00 mov (%rax),%eax

4e: 01 45 f8 add %eax,-0x8(%rbp)

51: 83 45 fc 01 addl $0x1,-0x4(%rbp)

55: 8b 45 fc mov -0x4(%rbp),%eax

58: 3b 45 e4 cmp -0x1c(%rbp),%eax

5b: 7c db jl 38 <sum+0x1b>

5d: 8b 45 f8 mov -0x8(%rbp),%eax

60: 5d pop %rbp

61: c3 retq



$

Shell Box 2-15: Using the objdump utility to see the instructions of the symbols defined in a
relocatable object file

Based on what we see, each function symbol corresponds to a function that
has been defined in the source code. When you need to link several
relocatable object files, in order to produce an executable object file, this
shows that each of the relocatable object files contains only a portion of the
whole required function symbols needed to build a complete executable
program.

Now, going back to the topic of this section, the linker gathers all the
symbols from the various relocatable object files before putting them
together in a bigger object file to form a complete executable binary. In
order to demonstrate this in a real scenario, we need a different example
that has some functions distributed in a number of source files. This way,
we can show how the linker looks up the symbols in the given relocatable
object files, in order to produce an executable file.

Example 2.4 consists of four C files – three source files and one header file.
In the header file, we have declared two functions, with each one defined in
its own source file. The third source file contains the main  function.

The functions in example 2.4 are amazingly simple, and after compilation,
each function will contain a few machine-level instructions within their
corresponding object files. In addition, example 2.4 will not include any of
the standard C header files. We have chosen this in order to have a small
translation unit for each source file.

The following code box shows the header file:

#ifndef EXTREMEC_EXAMPLES_CHAPTER_2_4_DECLS_H

#define EXTREMEC_EXAMPLES_CHAPTER_2_4_DECLS_H

int add(int, int);

int multiply(int, int);

#endif



Code Box 2-9 [ExtremeC_examples_chapter2_4_decls.h]: The declaration of the functions in
example 2.4

Looking at that code, you can see that we used the header guard statements
to prevent double inclusion. More than that, two functions with similar
signatures are declared. Each of them receives two integers as input and
will return another integer as a result.

As we said before, each of these functions are implemented in separate
source files. The first source file looks as follows:

int add(int a, int b) {

return a + b;

}

Code Box 2-10 [ExtremeC_examples_chapter2_4_add.c]: The definition of the add function

We can clearly see that the source file has not included any other header
files. However, it does define a function that follows the exact same
signature that we have declared in the header file.

As we can see next, the second source file is similar to the first one. This
one contains the definition of the multiply  function:

int multiply(int a, int b) {

return a * b;

}

Code Box 2-11 [ExtremeC_examples_chapter2_4_multiply.c]: The definition of the multiply
function

We can now move onto the third source file, which contains the main
function:

#include "ExtremeC_examples_chapter2_4_decls.h"

int main(int argc, char** argv) {

int x = add(4, 5);

int y = multiply(9, x);

return 0;



}

Code Box 2-12 [ExtremeC_examples_chapter2_4_main.c]: The main function of example 2.4

The third source file has to include the header file in order to obtain the
declarations of both functions. Otherwise, the source file will not be able to
use the add  and multiply  functions, simply because they are not declared,
and this may result in a compilation failure.

In addition, the main  function does not know anything about the
definitions of either add  or multiply . Therefore, we need to ask an
important question: how does the main  function find these definitions
when it does not even know about the other source files? Note that the file
shown in Code Box 2-12 has only included one header file, and therefore it
has no relationship with the other two source files.

The above question can be resolved by bringing the linker into
consideration. The linker will gather the required definitions from various
object files and put them together, and this way, the code written in the
main  function can finally use the code written in another function.

Note:

To compile a source file that uses a function, the declaration is enough.
However, to actually run your program, the definition should be provided
to the linker in order to be put into the final executable file.

Now, it's time to compile example 2.4 and demonstrate what we've said so
far. Using the following commands, we create corresponding relocatable
object files. You need to remember that we only compile source files:

$ gcc -c ExtremeC_examples_chapter2_4_add.c -o add.o

$ gcc -c ExtremeC_examples_chapter2_4_multiply.c -o

multiply.o

$ gcc -c ExtremeC_examples_chapter2_4_main.c -o main.o

$



Shell Box 2-16: Compiling all sources in example 2.4 to their corresponding relocatable object
files

For the next step, we are going to look at the symbol table contained in
each relocatable object file:

$ nm add.o

0000000000000000 T add

$

Shell Box 2-17: Listing the symbols defined in add.o

As you see, the add  symbol has been defined. The next object file:

$ nm multiply.o

0000000000000000 T multiply

$

Shell Box 2-18: Listing the symbols defined in multiply.o

The same happens to the multiply  symbol within multiply.o . And the
final object file:

$ nm main.o

U add

U _GLOBAL_OFFSET_TABLE_

0000000000000000 T main

U multiply

$

Shell Box 2-19: Listing the symbols defined in main.o

Despite the fact that the third source file, Code Box 2-12, has only the
main  function, we see two symbols for add  and multiply  in its
corresponding object file. However, they are different from the main
symbol, which has an address inside the object file. They are marked as U ,
or unresolved. This means that while the compiler has seen these symbols



in the translation unit, it has not been able to find their actual definitions.
And this is exactly what we expected and explained before.

The source file containing the main  function, Code Box 2-12, should not
know anything about the definitions of other functions if they are not
defined in the same translation unit, but the fact that the main  definition is
dependent on the declarations of add  and multiply  should be somehow
pointed out in the corresponding relocatable object file.

To summarize where we are now, we have three intermediate object files,
with one of them having two unresolved symbols. This has now made the
job of the linker clear; we need to give the linker the necessary symbols
that can be found in other object files. After having found all of the
required symbols, the linker can continue to combine them in order to
create a final executable binary that works.

If the linker is not able to find the definition of an unresolved symbol, it
will fail, and inform us by printing a linkage error.

For the next step, we want to link the preceding object files together. The
following command will do that:

$ gcc add.o multiply.o main.o

$

Shell Box 2-20: Linking all object files together

We should note here that running gcc  with a list of object files, without
passing any option, will result in the linking step trying to create an
executable object file out of the input object files. Actually, it calls the
linker in the background with the given object files, together with some
other static libraries and object files, that are required on the platform.

To examine what happens if the linker fails to find proper definitions, we
are going to provide the linker with only two intermediate object files,
main.o  and add.o :

$ gcc add.o main.o



main.o: In function 'main':

ExtremeC_examples_chapter2_4_main.c:(.text+0x2c): undefined

reference to 'multiply'

collect2: error: ld returned 1 exit status

$

Shell Box 2-21: Linking only two of the object files: add.o and main.o

As you can see, the linker has failed because it could not find the multiply
symbol in the provided object files.

Moving on, let's provide the other two object files, main.o  and
multiply.o :

$ gcc main.o multiply.o

main.o: In function 'main':

ExtremeC_examples_chapter2_4_main.c:(.text+0x1a): undefined

reference to 'add'

collect2: error: ld returned 1 exit status

$

Shell Box 2-22: Linking only two of the object files, multiply.o and main.o

As expected, the same thing occurred. This happened since the add  symbol
could not be found in the provided object files.

Finally, let's provide the only remaining combination of two object files,
add.o  and multiply.o . Before we run it, we should expect it to work since
neither object file has unresolved symbols in their symbol tables. Let's see
what happens:

$ gcc add.o multiply.o

/usr/lib/gcc/x86_64-linux-gnu/7/../../../x86_64-linux-

gnu/Scrt1.o: In function '_start':

(.text+0x20): undefined reference to 'main'

collect2: error: ld returned 1 exit status

$

Shell Box 2-23: Linking only two of the object files, add.o and multiply.o



As you see, the linker has failed again! Looking at the output, we can see
the reason was that none of the object files contain the main  symbol that is
necessary to create an executable. The linker needs an entry point for the
program, which is the main  function according to the C standard.

At this point – and I cannot emphasize this enough – pay attention to the
place where a reference to the main  symbol has been made. It has been
made in the _start  function in a file located at /usr/lib/gcc/x86_64-
Linux-gnu/7/../../../x86_64-Linux-gnu/Scrt1.o .

The Scrt1.o  file seems to be a relocatable object file that has not been
created by us. Scrt1.o  is actually a file that is part of a group of default C
object files. These default object files have been compiled for Linux as a
part of the gcc  bundle and are linked to any program in order to make it
runnable.

As you have just seen, there are a lot of different things that are happening
around your source code that can cause conflicts. Not only that, but there
are a number of other object files that need to be linked to your program in
order to make it executable.

Linker can be fooled!
To make our current discussion even more interesting, there are rare
scenarios when the linking step will perform as we planned, but the final
binary step does not work as expected. In this section, we are going to look
at an example of this occurring.

Example 2.5 is based on an incorrect definition having been gathered by the
linker and put into the final executable object file.

This example has two source files, one of which contains the definition of a
function with the same name, but a different signature from the declaration
used by the main  function. The following code boxes are the contents of
these two source files. Here's the first source file:

int add(int a, int b, int c, int d) {



return a + b + c + d;

}

Code Box 2-13 [ExtremeC_examples_chapter2_5_add.c]: Definition of the add function in
example 2.5

And, following is the second source file:

#include <stdio.h>

int add(int, int);

int main(int argc, char** argv) {

int x = add(5, 6);

printf("Result: %d\n", x);

return 0;

}

Code Box 2-14 [ExtremeC_examples_chapter2_5_main.c]: The main function in example 2.5

As you can see, the main  function is using another version of the add
function with a different signature, accepting two integers, but the add
function defined in the first source file, Code Box 2-13, is accepting four
integers.

These functions are usually said to be the overloads of each other. For sure,
there should be something wrong if we compile and link these source files.
It's interesting to see if we can build the example successfully.

The next step is to compile and link the relocatable object files, which we
can do by running the following code:

$ gcc -c ExtremeC_examples_chapter2_5_add.c -o add.o

$ gcc -c ExtremeC_examples_chapter2_5_main.c -o main.o

$ gcc add.o main.o -o ex2_5.out

$

Shell Box 2-24: Building example 2.5

As you can see in the shell output, the linking step went well, and the final
executable has been produced! This clearly shows that the symbols can fool
the linker. Now let's look at the output after running the executable:



$ ./ex2_5.out

Result: -1885535197

$ ./ex2_5.out

Result: 1679625283

$

Shell Box 2-25: Running example 2.5 twice and the strange results!

As you can see, the output is wrong; it even changes in different runs! This
example shows that bad things can happen when the linker picks up the
wrong version of a symbol. Regarding the function symbols, they are just
names and they don't carry any information regarding the signature of the
corresponding function. Function arguments are nothing more than a C
concept; in fact, they do not truly exist in either assembly code or machine-
level instructions.

In order to investigate more, we are going to look at the disassembly of the
add  functions in a different example. In example 2.6, we have two add
functions with the same signatures that we had in example 2.5.

To study this, we are going to work from the idea that we have the
following source files in example 2.6:

int add(int a, int b, int c, int d) {

return a + b + c + d;

}

Code Box 2-15 [ExtremeC_examples_chapter2_6_add_1.c]: The first definition of add in
example 2.6

The following code is the other source file:

int add(int a, int b) {

return a + b;

}

Code Box 2-16 [ExtremeC_examples_chapter2_6_add_2.c]: The second definition of add in
example 2.6



The first step, just like before, is to compile both source files:

$ gcc -c ExtremeC_examples_chapter2_6_add_1.c -o add_1.o

$ gcc -c ExtremeC_examples_chapter2_6_add_2.c -o add_2.o

$

Shell Box 2-26: Compiling the source files in example 2.6 to their corresponding object files

We then need to have a look at the disassembly of the add  symbol in
different object files. Therefore, we start with the add_1.o  object file:

$ objdump -d add_1.o

add_1.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <add>:

0: 55 push %rbp

1: 48 89 e5 mov %rsp,%rbp

4: 89 7d fc mov %edi,-0x4(%rbp)

7: 89 75 f8 mov %esi,-0x8(%rbp)

a: 89 55 f4 mov %edx,-0xc(%rbp)

d: 89 4d f0 mov %ecx,-0x10(%rbp)

10: 8b 55 fc mov -0x4(%rbp),%edx

13: 8b 45 f8 mov -0x8(%rbp),%eax

16: 01 c2 add %eax,%edx

18: 8b 45 f4 mov -0xc(%rbp),%eax

1b: 01 c2 add %eax,%edx

1d: 8b 45 f0 mov -0x10(%rbp),%eax

20: 01 d0 add %edx,%eax

22: 5d pop %rbp

23: c3

$

Shell Box 2-27: Using objdump to look at the disassembly of the add symbol in add_1.o

The following shell box shows us the disassembly of the add  symbol
found in the other object file, add_2.o :

$ objdump -d add_2.o

add_2.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 <add>:

0: 55 push %rbp

1: 48 89 e5 mov %rsp,%rbp

4: 89 7d fc mov %edi,-0x4(%rbp)



7: 89 75 f8 mov %esi,-0x8(%rbp)

a: 8b 55 fc mov -0x4(%rbp),%edx

d: 8b 45 f8 mov -0x8(%rbp),%eax

10: 01 d0 add %edx,%eax

12: 5d pop %rbp

13: c3 retq

$

Shell Box 2-28: Using objdump to look at the disassembly of the add symbol in add_2.o

When a function call takes place, a new stack frame is created on top of the
stack. This stack frame contains both the arguments passed to the function
and the return address. You will read more about the function call
mechanism in Chapter 4, Process Memory Structure, and Chapter 5, Stack
and Heap.

In shell boxes 2-27 and 2-28, you can clearly see how the arguments are
collected from the stack frame. In the disassembly of add_1.o , Shell Box
2-27, you can see the following lines:

4: 89 7d fc mov %edi,-0x4(%rbp)

7: 89 75 f8 mov %esi,-0x8(%rbp)

a: 89 55 f4 mov %edx,-0xc(%rbp)

d: 89 4d f0 mov %ecx,-0x10(%rbp)

Code Box 2-17: The assembly instructions to copy the arguments from the stack frame to the
registers for the first add function

These instructions copy four values from the memory addresses, which
have been pointed by the %rbp  register, and put them into the local
registers.

Note:

Registers are locations within a CPU that can be accessed quickly.
Therefore, it would be highly efficient for the CPU to bring the values
from main memory into its registers first, and then perform calculations on
them. The register %rbp  is the one that points to the current stack frame,
containing the arguments passed to a function.



If you look at the disassembly of the second object file, while it is very
similar, it differs by not having the copy operation four times:

4: 89 7d fc mov %edi,-0x4(%rbp)

7: 89 75 f8 mov %esi,-0x8(%rbp)

Code Box 2-18: The assembly instructions to copy the arguments from the stack frame to the
registers for the second add function

These instructions copy two values simply because the function only
expects two arguments. This is why we saw those strange values in the
output of example 2.5. The main  function only puts two values into the
stack frame while calling the add  function, but the add  definition was
actually expecting four arguments. So, it is likely that the wrong definition
continues to go beyond the stack frame to read the missing arguments,
which results in the wrong values for the sum operation.

We could prevent this by changing the function symbol names based on the
input types. This is usually referred to as name mangling and is mostly used
in C++ because of its function overloading feature. We discuss this briefly
in the last section of the chapter.

C++ name mangling
To highlight how name mangling works in C++, we are going to compile
example 2.6 using a C++ compiler. Therefore, we will use the GNU C++
compiler g++  for this purpose.

Once we have done that, we can use readelf  to dump the symbol tables
for each generated object file. By doing this, we can see how C++ has
changed the name of the function symbols based on the types of input
parameters.

As we have noted before, the compilation pipelines of C and C++ are very
similar. Therefore, we can expect to have relocatable object files as a result
of C++ compilation. Let's look at both of the object files produced as part
of compiling example 2.6:



$ g++ -c ExtremeC_examples_chapter2_6_add_1.o

$ g++ -c ExtremeC_examples_chapter2_6_add_2.o

$ readelf -s ExtremeC_examples_chapter2_6_add_1.o

Symbol table '.symtab' contains 9 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 FILE LOCAL DEFAULT ABS

ExtremeC_examples_chapter

2: 0000000000000000 0 SECTION LOCAL DEFAULT 1

3: 0000000000000000 0 SECTION LOCAL DEFAULT 2

4: 0000000000000000 0 SECTION LOCAL DEFAULT 3

5: 0000000000000000 0 SECTION LOCAL DEFAULT 5

6: 0000000000000000 0 SECTION LOCAL DEFAULT 6

7: 0000000000000000 0 SECTION LOCAL DEFAULT 4

8: 0000000000000000 36 FUNC GLOBAL DEFAULT 1 _Z3addiiii

$ readelf -s ExtremeC_examples_chapter2_6_add_2.o

Symbol table '.symtab' contains 9 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 FILE LOCAL DEFAULT ABS

ExtremeC_examples_chapter

2: 0000000000000000 0 SECTION LOCAL DEFAULT 1

3: 0000000000000000 0 SECTION LOCAL DEFAULT 2

4: 0000000000000000 0 SECTION LOCAL DEFAULT 3

5: 0000000000000000 0 SECTION LOCAL DEFAULT 5

6: 0000000000000000 0 SECTION LOCAL DEFAULT 6

7: 0000000000000000 0 SECTION LOCAL DEFAULT 4

8: 0000000000000000 20 FUNC GLOBAL DEFAULT 1 _Z3addii

$

Shell Box 2-29: Using readelf the see the symbol tables of the object files produced by a C++
compiler

As you can see in the output, we have two different symbol names for
different overloads of the add  function. The overload that accepts four
integers has the symbol name _Z3addiiii , and the other overload, which
accepts two integers, has the symbol name _Z3addii .

Every i  in the symbol name refers to one of the integer input parameters.

From that, you can see the symbol names are different, and if you try to use
the wrong one, you will get a linking error as a result of the linker not being
able to find the definition of a wrong symbol. Name mangling is the
technique that enables C++ to support function overloading and it helps to
prevent the problems we encountered in the previous section.



Summary
In this chapter, we covered the fundamental steps and components required
to build a C project. Without knowing how to build a project, it is pointless
to just write code. In this chapter:

We went through the C compilation pipeline and its various steps. We
discussed each step and described the inputs and the outputs.
We defined the term platform and how different assemblers can lead to
different machine-level instructions for the same C program.
We continued to discuss each step and the component driving that step
in a greater detail.
As part of the compiler component, we explained what the compiler
frontends and backends are, and how GCC and LLVM use this
separation to support many languages.
As part of our discussion regarding the assembler component, we saw
that object files are platform-dependent, and they should have an exact
file format.
As part of the linker component, we discussed what a linker does and
how it uses symbols to find the missing definitions in order to put
them together and form the final product. We also explained various
possible products of a C project. We explained why relocatable (or
intermediate) object files should not be considered as products.
We demonstrated how the linker can be fooled when a symbol is
provided with a wrong definition. We showed this in example 2.5.
We explained the C++ name mangling feature and how problems like
what we saw in example 2.5 can be prevented because of that.

We will continue our discussion regarding object files and their internal
structure in the next chapter, Object Files.



Chapter 03
Object Files

This chapter details the various products that a C/C++ project can have.
Possible products include relocatable object files, executable object files,
static libraries, and shared object files. However, relocatable object files
are considered to be temporary products and they act as ingredients for
making other types of products that are final.

It seems that today in C, it's crucial to have further discussion about the
various types of object files and their internal structures. The majority of
C books only talk about the C syntax and the language itself; but, in real-
world you need more in-depth knowledge to be a successful C
programmer.

When you are creating software, it is not just about the development and
the programming language. In fact, it is about the whole process: writing
the code, compilation, optimization, producing correct products, and
further subsequent steps, in order to run and maintain those products on
the target platforms.

You should be knowledgeable about these intermediate steps, to the extent
that you are able to solve any issues you might encounter. This is even
more serious regarding embedded development, as the hardware
architectures and the instruction sets can be challenging and atypical.

This chapter is divided into the following sections:

1. Application binary interface: Here, we are first going to talk about
the Application Binary Interface (ABI) and its importance.

2. Object file formats: In this section, we talk about various object file
formats that exist today or they have become obsolete over the years.



We also introduce ELF as the most used object file format in Unix-
like systems.

3. Relocatable object files: Here we discuss relocatable object files and
the very first products of a C project. We take a look inside ELF
relocatable object files to see what we can find there.

4. Executable object files: As part of this section, we talk about the
executable object files. We also explain how they are created from a
number of relocatable object files. We discuss the differences
between ELF relocatable and executable object files in terms of their
internal structure.

5. Static library: In this section, we talk about static libraries and how
we can create them. We also demonstrate how to write a program and
use already built static libraries.

6. Dynamic library: Here we talk about shared object files. We
demonstrate how to create them out of a number of relocatable object
files and how to use them in a program. We also briefly talk about the
internal structure of an ELF shared object file.

Our discussions in this chapter will be mostly themed around Unix-like
systems, but we will discuss some differences in other operating systems
like Microsoft Windows.

Note:

Before moving on to read this chapter, you need to be familiar with the
basic ideas and steps required for building a C project. You need to know
what a translation unit is and how linking is different from compilation.
Please read the previous chapter before moving on with this one.

Let's begin the chapter by talking about ABI.



Application binary interface
(ABI)
As you may already know, every library or framework, regardless of the
technologies or the programming language used, exposes a set of certain
functionalities, which is known as its Application Programming
Interface (API). If a library is supposed to be used by another code, then
the consumer code should use the provided API. To be clear, nothing other
than the API should be used in order to use a library because it is the
public interface of the library and everything else is seen as a black box,
hence cannot be used.

Now suppose after some time, the library's API undergoes some
modifications. In order for the consumer code to continue using the newer
versions of the library, the code must adapt itself to the new API;
otherwise, it won't be able to use it anymore. The consumer code could
stick to a certain version of the library (maybe an old one) and ignore the
newer versions, but let's assume that there is a desire to upgrade to the
latest version of the library.

To put it simply, an API is like a convention (or standard) accepted
between two software components to serve or use each other. An ABI is
pretty similar to API, but at a different level. While the API guarantees the
compatibility of two software components to continue their functional
cooperation, the ABI guarantees that two programs are compatible at the
level of their machine-level instructions, together with their corresponding
object files.

For instance, a program cannot use a dynamic or static library that has a
different ABI. Perhaps worse than that, an executable file (which is, in
fact, an object file) cannot be run on a system supporting a different ABI
than the one that the executable file was built for. A number of vital and
obvious system functionalities, such as dynamic linking, loading an
executable, and function calling convention, should be done precisely
according to an agreed upon ABI.



An ABI will typically cover the following things:

The instruction set of the target architecture, which includes the
processor instructions, memory layout, endianness, registers, and so
on.
Existing data types, their sizes, and the alignment policy.
The function calling convention describes how functions should be
called. For example, subjects like the structure of the stack frame and
the pushing order of the arguments are part of it.
Defining how system calls should be called in a Unix-like system.
Used object file format, which we will explain in the following
section, for having relocatable, executable, and shared object files.
Regarding object files produced by a C++ compiler, the name
mangling, virtual table layout, is part of the ABI.

The System V ABI is the most widely used ABI standard among Unix-like
operating systems like Linux and the BSD systems. Executable and
Linking Format (ELF) is the standard object file format used in the
System V ABI.

Note:

The following link is the System V ABI for AMD 64-bit architecture:
https://www.uclibc.org/docs/psABI-x86_64.pdf. You can
go through the list of contents and see the areas it covers.

In the following section, we will discuss the object file formats,
particularly ELF.

Object file formats
As we explained in the previous chapter, Chapter 2, Compilation and
Linking, on a platform, object files have their own specific format for

https://www.uclibc.org/docs/psABI-x86_64.pdf


storing machine-level instructions. Note that this is about the structure of
object files and this is different from the fact that each architecture has its
own instruction set. As we know from the previous discussion, these two
variations are different parts of the ABI in a platform; the object file
format and the architecture's instruction set.

In this section, we are going to have a brief look into some widely known
object file formats. To start with, let's look at some object file formats
used in various operating systems:

ELF used by Linux and many other Unix-like operating systems
Mach-O used in OS X (macOS and iOS) systems
PE used in Microsoft Windows

To give some history and context about the current and past object file
formats, we can say that all object file formats that exist today are
successors to the old a.out  object file format. It was designed for early
versions of Unix.

The term a.out stands for assembler output. Despite the fact that the file
format is obsolete today, the name is still used as the default filename for
the executable files produced by most linkers. You should remember
seeing a.out  in a number of examples in the first chapter of the book.

However, the a.out  format was soon replaced by COFF or the Common
Object File Format. COFF is the basis for ELF – the object format that
we use in most Unix-like systems. Apple also replaced a.out  with Mach-
O as part of OS/X. Windows uses the PE or Portable Execution file
format for its object files, which is based on COFF.

Note:

A deeper history of object file formats can be found here:
https://en.wikipedia.org/wiki/COFF#History. Knowing
about the history of a specific topic will help you to get a better
understanding of its evolution path and current and past characteristics.

https://en.wikipedia.org/wiki/COFF#History


As you can see, all of today's major object file formats are based on the
historic object file format a.out , and then COFF, and in many ways share
the same ancestry.

ELF is the standard object file format used in Linux and most Unix-like
operating systems. In fact, ELF is the object file format used as part of the
System V ABI, heavily employed in most Unix systems. Today, it is the
most widely accepted object file format used by operating systems.

ELF is the standard binary file format for operating systems including, but
not limited to:

Linux
FreeBSD
NetBSD
Solaris

This means that as long as the architecture beneath them remains the
same, an ELF object file created for one of these operating systems can be
run and used in others. ELF, like all other file formats, has a structure that
we will describe briefly in the upcoming sections.

Note:

More information about ELF and its details can be found here:
https://www.uclibc.org/docs/psABI-x86_64.pdf. Note
that this link refers to the System V ABI for AMD 64-bits ( amd64 )
architecture.

You can also read the HTML version of the System V ABI here:
http://www.sco.com/developers/gabi/2003-12-

17/ch4.intro.html.

In the upcoming sections, we are going to talk about the temporary and
final products of a C project. We start with relocatable object files.

https://www.uclibc.org/docs/psABI-x86_64.pdf
http://www.sco.com/developers/gabi/2003-12-17/ch4.intro.html


Relocatable object files
In this section, we are going to talk about relocatable object files. As we
explained in the previous chapter, these object files are the output of the
assembly step in the C compilation pipeline. These files are considered to
be temporary products of a C project, and they are the main ingredients to
produce further and final products. For this reason, it would be useful to
have a deeper look at them and see what we can find in a relocatable
object file.

In a relocatable object file, we can find the following items regarding the
compiled translation unit:

The machine-level instructions produced for the functions found in
the translation unit (code).
The values of the initialized global variables declared in the
translation unit (data).
The symbol table containing all the defined and reference symbols
found in the translation unit.

These are the key items that can be found in any relocatable object file. Of
course, the way that they are put together depends on the object file
format, but using proper tools, you should be able to extract these items
from a relocatable object file. We are going to do this for an ELF
relocatable object file shortly.

But before delving into the example, let's talk about the reason why
relocatable object files are named like this. In other words, what does the
relocatable mean after all? The reason comes from the process that a
linker performs in order to put some relocatable object files together and
form a bigger object file – an executable object file or a shared object file.

We discuss what can be found in an executable file in the next section, but
for now, we should know that the items we find in an executable object file
are the sum of all the items found in all the constituent relocatable object
files. Let's just talk about machine-level instructions.



The machine-level instructions found in one relocatable object file should
be put next to the machine-level instructions coming from another
relocatable object file. This means that the instructions should be easily
movable or relocatable. For this to happen, the instructions have no
addresses in a relocatable object file, and they obtain their addresses only
after the linking step. This is the main reason why we call these object
files relocatable. To elaborate more on this, we need to show it in a real
example.

Example 3.1 is about two source files, one containing the definitions of
two functions, max  and max_3 , and the other source file containing the
main  function using the declared functions max  and max_3 . Next, you
can see the content of the first source file:

int max(int a, int b) {

return a > b ? a : b;

}

int max_3(int a, int b, int c) {

int temp = max(a, b);

return c > temp ? c : temp;

}

Code Box 3-1 [ExtremeC_examples_chapter3_1_funcs.c]: A source file containing two
function definitions

And the second source file looks like the following code box:

int max(int, int);

int max_3(int, int, int);

int a = 5;

int b = 10;

int main(int argc, char** argv) {

int m1 = max(a, b);

int m2 = max_3(5, 8, -1);

return 0;

}

Code Box 3-2 [ExtremeC_examples_chapter3_1.c]: The main function using the already
declared functions. Definitions are put in a separate source file.



Let's produce the relocatable object files for the preceding source files.
This way, we can investigate the content and that which we explained
before. Note that, since we are compiling these sources on a Linux
machine, we expect to see ELF object files as the result:

$ gcc -c ExtremeC_examples_chapter3_1_funcs.c -o funcs.o

$ gcc -c ExtremeC_examples_chapter3_1.c -o main.o

$

Shell Box 3-1: Compiling source files to their corresponding relocatable object files

Both funcs.o  and main.o  are relocatable ELF object files. In an ELF
object file, the items described to be in a relocatable object file are put
into a number of sections. In order to see the present sections in the
preceding relocatable object files, we can use the readelf  utility as
follows:

$ readelf -hSl funcs.o

[7/7]

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: REL (Relocatable file)

Machine: Advanced Micro Devices X86-64

...

Number of section headers: 12

Section header string table index: 11

Section Headers:

[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[ 0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0

[ 1] .text PROGBITS 0000000000000000 00000040

0000000000000045 0000000000000000 AX 0 0 1

...

[ 3] .data PROGBITS 0000000000000000 00000085

0000000000000000 0000000000000000 WA 0 0 1

[ 4] .bss NOBITS 0000000000000000 00000085

0000000000000000 0000000000000000 WA 0 0 1

...



[ 9] .symtab SYMTAB 0000000000000000 00000110

00000000000000f0 0000000000000018 10 8 8

[10] .strtab STRTAB 0000000000000000 00000200

0000000000000030 0000000000000000 0 0 1

[11] .shstrtab STRTAB 0000000000000000 00000278

0000000000000059 0000000000000000 0 0 1

...

$

Shell Box 3-2: The ELF content of the funcs.o object file

As you can see in the preceding shell box, the relocatable object file has
11 sections. The sections in bold font are the sections that we have
introduced as items existing in an object file. The .text  section contains
all the machine-level instructions for the translation unit. The .data  and
.bss  sections contain the values for initialized global variables, and the
number of bytes required for uninitialized global variables respectively.
The .symtab  section contains the symbol table.

Note that, the sections existing in both preceding object files are the same,
but their content is different. Therefore, we don't show the sections for the
other relocatable object file.

As we mentioned before, one of the sections in an ELF object file contains
the symbol table. In the previous chapter, we had a thorough discussion
about the symbol table and its entries. We described how it is being used
by the linker to produce executable and shared object files. Here, we want
to draw your attention to something about the symbol table that we didn't
discuss in the previous chapter. This would be in accordance with our
explanation on why relocatable object files are named in this manner.

Let's dump the symbol table for funcs.o . In the previous chapter, we used
objdump  but now, we are going to use readelf  to do so:

$ readelf -s funcs.o

Symbol table '.symtab' contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

...

6: 0000000000000000 0 SECTION LOCAL DEFAULT 7

7: 0000000000000000 0 SECTION LOCAL DEFAULT 5



8: 0000000000000000 22 FUNC GLOBAL DEFAULT 1 max

9: 0000000000000016 47 FUNC GLOBAL DEFAULT 1 max_3

$

Shell Box 3-3: The symbol table of the funcs.o object file

As you can see in the Value  column, the address assigned to max  is 0
and the address assigned to max_3  is 22  (hexadecimal 16 ). This means
that the instructions related to these symbols are adjacent and their
addresses start from 0. These symbols, and their corresponding machine-
level instructions, are ready to be relocated to other places in the final
executable. Let's look at the symbol table of main.o :

$ readelf -s main.o

Symbol table '.symtab' contains 14 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

...

8: 0000000000000000 4 OBJECT GLOBAL DEFAULT 3 a

9: 0000000000000004 4 OBJECT GLOBAL DEFAULT 3 b

10: 0000000000000000 69 FUNC GLOBAL DEFAULT 1 main

11: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND

_GLOBAL_OFFSET_TABLE_

12: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND max

13: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND max_3

$

Shell Box 3-4: The symbol table of the main.o object file

As you can see, the symbols associated with global variables a  and b , as
well as the symbol for the main  function are put at addresses that don't
seem be the final addresses that they should be placed at. This is a sign of
being a relocatable object file. As we have said before, the symbols in a
relocatable object files don't have any final and absolute addresses and
their addresses will be determined as part of the linking step.

In the following section, we continue to produce an executable file from
the preceding relocatable object files. You will see that the symbol table is
different.



Executable Object Files
Now, it's time to talk about executable object files. You should know by
now that executable object file is one of the final products of a C project.
Like relocatable object files, they have the same items in the:; the
machine-level instructions, the values for initialized global variables, and
the symbol tabl;t however, the arrangement can be different. We can show
this regarding the ELF executable object files since it would be easy to
generate them and study their internal structure.

In order to produce an executable ELF object file, we continue with
example 3.1. In the previous section, we generated relocatable object files
for the two sources existing in the example, and in this section, we are
going to link them to form an executable file.

The following commands do that for you, as explained in the previous
chapter:

$ gcc funcs.o main.o -o ex3_1.out

$

Shell Box 3-5: Linking previously built relocatable object files in example 3.1

In the previous section, we spoke about sections being present in an ELF
object file. We should say that more sections exist in an ELF executable
object file, but together with some segments. Every ELF executable object
file, and as you will see later in this chapter, every ELF shared object file,
has a number of segments in addition to sections. Each segment consists of
a number of sections (zero or more), and the sections are put into
segments based on their content.

For example, all sections containing machine-level instructions go into the
same segment. You will see in Chapter 4, Process Memory Structure, that
these segments nicely map to static memory segments found in the
memory layout of a running process.



Let's look at the contents of an executable file and meet these segments.
Similarly, to relocatable object files, we can use the same command to
show the sectios, and the segments found in an executable ELF object file.

$ readelf -hSl ex3_1.out

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: DYN (Shared object file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x4f0

Start of program headers: 64 (bytes into file)

Start of section headers: 6576 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 9

Size of section headers: 64 (bytes)

Number of section headers: 28

Section header string table index: 27

Section Headers:

[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[ 0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0

[ 1] .interp PROGBITS 0000000000000238 00000238

000000000000001c 0000000000000000 A 0 0 1

[ 2] .note.ABI-tag NOTE 0000000000000254 00000254

0000000000000020 0000000000000000 A 0 0 4

[ 3] .note.gnu.build-i NOTE 0000000000000274 00000274

0000000000000024 0000000000000000 A 0 0 4

...

[26] .strtab STRTAB 0000000000000000 00001678

0000000000000239 0000000000000000 0 0 1

[27] .shstrtab STRTAB 0000000000000000 000018b1

00000000000000f9 0000000000000000 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings), I

(info),

L (link order), O (extra OS processing required), G (group),

T (TLS),

C (compressed), x (unknown), o (OS specific), E (exclude),

l (large), p (processor specific)



Program Headers:

Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align

PHDR 0x0000000000000040 0x0000000000000040

0x0000000000000040

0x00000000000001f8 0x00000000000001f8 R 0x8

INTERP 0x0000000000000238 0x0000000000000238

0x0000000000000238

0x000000000000001c 0x000000000000001c R 0x1

[Requesting program interpreter: /lib64/ld-linux-x86-

64.so.2]

...

GNU_EH_FRAME 0x0000000000000714 0x0000000000000714

0x0000000000000714

0x000000000000004c 0x000000000000004c R 0x4

GNU_STACK 0x0000000000000000 0x0000000000000000

0x0000000000000000

0x0000000000000000 0x0000000000000000 RW 0x10

GNU_RELRO 0x0000000000000df0 0x0000000000200df0

0x0000000000200df0

0x0000000000000210 0x0000000000000210 R 0x1

Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash

.dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .init

.plt .plt.got .text .fini .rodata .eh_frame_hdr .eh_frame

03 .init_array .fini_array .dynamic .got .data .bss

04 .dynamic

05 .note.ABI-tag .note.gnu.build-id

06 .eh_frame_hdr

07

08 .init_array .fini_array .dynamic .got

$

Shell Box 3-6: The ELF content of ex3_1.out executable object file

There are multiple notes about the above output:

We can see that the type of object file from the ELF point of vew, is a
shared object file. In other words, in ELF, an executable object file is
a shared object file that has some specific segments like INTERP .
This segment (actually the .interp  section which is referred to by
this segment) is used by the loader program to load and execute the
executable object file.



We have made four segments bold. The first one refers to the INTERP
segment which is explained in the previous bullet point. The second
one is the TEXT  segment. It contains all the section having machine-
level instructions. The third one is the DATA  segment that contains all
the values that should be used to initialize the global variables and
other early structures. The fourth segment refers to the section that
dynamic linking related information can be found. For instance, the
shared object files that need to be loaded as part of the execution.
As you see, we've got more sections in comparison to a relocatable
shared object, probably filled with data required to load and execute
the object file.

As we explained in the previous section, the symbols found in the symbol
table of a relocatable object file do not have any absolute and determined
addresses. That's because the sections containing machine-level
instructions are not linked yet.

In a deeper sense, linking a number of relocatable object files is actually
to collect all similar sections from the given relocatable object files and
put them together to form a bigger section, and finally put the resulting
section into the output executable or the shared object file. Therefore, only
after this step, the symbols can be finalized and obtain the addresses that
are not going to change. In executable object files, the addresses are
absolute, while in shared object files, the relative addresses are absolute.
We will discuss this more in the section dedicated to dynamic libraries.

Let's look at the symbol table found in the executable file ex3_1.out .
Note that the symbol table has many entries and that's why the output is
not fully shown in the following shell box:

$ readelf -s ex3_1.out

Symbol table '.dynsym' contains 6 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

...

5: 0000000000000000 0 FUNC WEAK DEFAULT UND

__cxa_finalize@GLIBC_2.2.5 (2)

Symbol table '.symtab' contains 66 entries:

Num: Value Size Type Bind Vis Ndx Name



0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

...

45: 0000000000201000 0 NOTYPE WEAK DEFAULT 22 data_start

46: 0000000000000610 47 FUNC GLOBAL DEFAULT 13 max_3

47: 0000000000201014 4 OBJECT GLOBAL DEFAULT 22 b

48: 0000000000201018 0 NOTYPE GLOBAL DEFAULT 22 _edata

49: 0000000000000704 0 FUNC GLOBAL DEFAULT 14 _fini

50: 00000000000005fa 22 FUNC GLOBAL DEFAULT 13 max

51: 0000000000000000 0 FUNC GLOBAL DEFAULT UND

__libc_start_main@@GLIBC_

...

64: 0000000000000000 0 FUNC WEAK DEFAULT UND

__cxa_finalize@@GLIBC_2.2

65: 00000000000004b8 0 FUNC GLOBAL DEFAULT 10 _init

$

Shell Box 3-7: The symbol tables found in the ex3_1.out executable object file

As you see in the preceding shell box, we have two different symbol tables
in an executable object file. The first one, .dynsym , contains the symbols
that should be resolved when loading the executable, but the second
symbol table, .symtab , contains all the resolved symbols together with
unresolved symbols brought from the dynamic symbol table. In other
words, the symbol table contains the unresolved symbols from the
dynamic table as well.

As you see, the resolved symbols in the symbol table have absolute
corresponding addresses that they have obtained after the linking step. The
addresses for max  and max_3  symbols are shown in bold font.

In this section, we took a brief look into the executable object file. In the
next section, we are going to talk about static libraries.

Static libraries
As we have explained before, a static library is one of the possible
products of a C project. In this section, we are going to talk about static
libraries and the way they are created and used. We will then continue this
discussion by introducing dynamic libraries in the next section.



A static library is simply a Unix archive made from the relocatable object
files. Such a library is usually linked together with other object files to
form an executable object file.

Note that a static library itself is not considered as an object file, rather it
is a container for them. In other words, static libraries are not ELF files in
Linux systems, nor are they Mach-O files in macOS systems. They are
simply archived files that have been created by the Unix ar  utility.

When a linker is about to use a static library in the linking step, it first
tries to extract the relocatable object files from it, then it starts to look up
and resolve the undefined symbols that may be found in some of them.

Now, it's time to create a static library for a project with multiple source
files. The first step is to create some relocatable object files. Once you
have compiled all of the source files in a C/C++ project, you can use the
Unix archiving tool, ar , to create the static library's archive file.

In Unix systems, static libraries are usually named according to an
accepted and widely used convention. The name starts with lib , and it
ends with the .a  extension. This can be different for other operating
systems; for instance, in Microsoft Windows, static libraries carry the
.lib  extension.

Suppose that, in an imaginary C project, you have the source files aa.c ,
bb.c , all the way up to zz.c . In order to produce the relocatable object
files, you will need to compile the source files in a similar manner to how
we use the commands next. Note that the compilation process has been
thoroughly explained in the previous chapter:

$ gcc -c aa.c -o aa.o

$ gcc -c bb.c -o bb.o

.

.

.

$ gcc -c zz.c -o zz.o

$

Shell Box 3-8: Compiling a number of sources to their corresponding relocatable object files



By running the preceding commands, we will get all the required
relocatable object files. Note that this can take a considerable amount of
time if the project is big and contains thousands of source files. Of course,
having a powerful build machine, together with running the compilation
jobs in parallel, can reduce the build time significantly.

When it comes to creating a static library file, we simply need to run the
following command:

$ ar crs libexample.a aa.o bb.o ... zz.o

$

Shell Box 3-9: The general recipe for making a static library out of a number of relocatable
object files

As a result, libexample.a  is created, which contains all of the preceding
relocatable object files as a single archive. Explaining the crs  option
passed to ar  would be out of the scope of this chapter, but in the
following link, you can read about its meaning:
https://stackoverflow.com/questions/29714300/what-

does-the-rcs-option-in-ar-do.

Note:

The ar  command does not necessarily create a compressed archive file.
It is only used to put files together to form a single file that is an archive
of all those files. The tool ar  is general purpose, and you can use it to
put any kind of files together and create your own archive out of them.

Now that we know how to create a static library, we are going to create a
real one as part of example 3.2.

First, we are going to presume that example 3.2 is a C project about
geometry. The example consists of three source files and one header file.
The purpose of the library is to define a selection of geometry related
functions that can be used in other applications.

https://stackoverflow.com/questions/29714300/what-does-the-rcs-option-in-ar-do


To do this, we need to create a static library file named libgeometry.a  out
of the three source files. By having the static library, we can use the header
file and the static library file together in order to write another program
that will use the geometry functions defined in the library.

The following code boxes are the contents of the source and header files.
The first file, ExtremeC_examples_chapter3_2_geometry.h , contains all of
the declarations that need to be exported from our geometry library. These
declarations will be used by future applications that are going to use the
library.

Note:

All the commands provided for creating object files are run and tested on
Linux. Some modifications might be necessary if you're going to execute
them on a different operating system.

We need to take note that future applications must be only dependent on
the declarations and not the definitions at all. Therefore, firstly, let's look
at the declarations of the geometry library:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_3_2_H

#define EXTREME_C_EXAMPLES_CHAPTER_3_2_H

#define PI 3.14159265359

typedef struct {

double x;

double y;

} cartesian_pos_2d_t;

typedef struct {

double length;

// in degrees

double theta;

} polar_pos_2d_t;

typedef struct {

double x;

double y;

double z;

} cartesian_pos_3d_t;

typedef struct {

double length;

// in degrees

double theta;



// in degrees

double phi;

} polar_pos_3d_t;

double to_radian(double deg);

double to_degree(double rad);

double cos_deg(double deg);

double acos_deg(double deg);

double sin_deg(double deg);

double asin_deg(double deg);

cartesian_pos_2d_t convert_to_2d_cartesian_pos(

const polar_pos_2d_t* polar_pos);

polar_pos_2d_t convert_to_2d_polar_pos(

const cartesian_pos_2d_t* cartesian_pos);

cartesian_pos_3d_t convert_to_3d_cartesian_pos(

const polar_pos_3d_t* polar_pos);

polar_pos_3d_t convert_to_3d_polar_pos(

const cartesian_pos_3d_t* cartesian_pos);

#endif

Code Box 3-3 [ExtremeC_examples_chapter3_2_geometry.h]: The header file of example 3.2

The second file, which is a source file, contains the definitions of the
trigonometry functions, the first six functions declared in the preceding
header file:

#include <math.h>

// We need to include the header file since

// we want to use the macro PI

#include "ExtremeC_examples_chapter3_2_geometry.h"

double to_radian(double deg) {

return (PI * deg) / 180;

}

double to_degree(double rad) {

return (180 * rad) / PI;

}

double cos_deg(double deg) {

return cos(to_radian(deg));

}

double acos_deg(double deg) {

return acos(to_radian(deg));

}

double sin_deg(double deg) {

return sin(to_radian(deg));

}

double asin_deg(double deg) {

return asin(to_radian(deg));

}



Code Box 3-4 [ExtremeC_examples_chapter3_2_trigon.c]: The source file containing the
definitions of the trigonometry functions

Note that it is not necessary for sources to include the header file unless
they are going to use a declaration like PI  or to_degree , which is
declared in the header file.

The third file, which is a source file again, contains the definitions of all
2D Geometry functions:

#include <math.h>

// We need to include the header file since we want

// to use the types polar_pos_2d_t, cartesian_pos_2d_t,

// etc and the trigonometry functions implemented in

// another source file.

#include "ExtremeC_examples_chapter3_2_geometry.h"

cartesian_pos_2d_t convert_to_2d_cartesian_pos(

const polar_pos_2d_t* polar_pos) {

cartesian_pos_2d_t result;

result.x = polar_pos->length * cos_deg(polar_pos->theta);

result.y = polar_pos->length * sin_deg(polar_pos->theta);

return result;

}

polar_pos_2d_t convert_to_2d_polar_pos(

const cartesian_pos_2d_t* cartesian_pos) {

polar_pos_2d_t result;

result.length = sqrt(cartesian_pos->x * cartesian_pos->x +

cartesian_pos->y * cartesian_pos->y);

result.theta =

to_degree(atan(cartesian_pos->y / cartesian_pos->x));

return result;

}

Code Box 3-5 [ExtremeC_examples_chapter3_2_2d.c]: The source file containing the
definitions of the 2D functions

And finally, the fourth file that contains the definitions of 3D Geometry
functions:

#include <math.h>

// We need to include the header file since we want to

// use the types polar_pos_3d_t, cartesian_pos_3d_t,

// etc and the trigonometry functions implemented in



// another source file.

#include "ExtremeC_examples_chapter3_2_geometry.h"

cartesian_pos_3d_t convert_to_3d_cartesian_pos(

const polar_pos_3d_t* polar_pos) {

cartesian_pos_3d_t result;

result.x = polar_pos->length *

sin_deg(polar_pos->theta) * cos_deg(polar_pos->phi);

result.y = polar_pos->length *

sin_deg(polar_pos->theta) * sin_deg(polar_pos->phi);

result.z = polar_pos->length * cos_deg(polar_pos->theta);

return result;

}

polar_pos_3d_t convert_to_3d_polar_pos(

const cartesian_pos_3d_t* cartesian_pos) {

polar_pos_3d_t result;

result.length = sqrt(cartesian_pos->x * cartesian_pos->x +

cartesian_pos->y * cartesian_pos->y +

cartesian_pos->z * cartesian_pos->z);

result.theta =

to_degree(acos(cartesian_pos->z / result.length));

result.phi =

to_degree(atan(cartesian_pos->y / cartesian_pos->x));

return result;

}

Code Box 3-6 [ExtremeC_examples_chapter3_2_3d.c]: The source file containing the
definitions of the 3D functions

Now we'll create the static library file. To do this, firstly we need to
compile the preceding sources to their corresponding relocatable object
files. You need to note that we cannot link these object files to create an
executable file as there is no main  function in any of the preceding source
files. Therefore, we can either keep them as relocatable object files or
archive them to form a static library. We have another option to create a
shared object file out of them, but we'll wait until the next section to look
at this.

In this section, we have chosen to archive them in order to create a static
library file. The following commands will do the compilation on a Linux
system:

$ gcc -c ExtremeC_examples_chapter3_2_trigon.c -o trigon.o

$ gcc -c ExtremeC_examples_chapter3_2_2d.c -o 2d.o

$ gcc -c ExtremeC_examples_chapter3_2_3d.c -o 3d.o



$

Shell Box 3-10: Compiling source files to their corresponding relocatable object files

When it comes to archiving these object files into a static library file, we
need to run the following command:

$ ar crs libgeometry.a trigon.o 2d.o 3d.o

$ mkdir -p /opt/geometry

$ mv libgeometry.a /opt/geometry

$

Shell Box 3-11: Creating the static library file out of the relocatable object files

As we can see, the file libgeometry.a  has been created. As you see, we
have moved the library file to the /opt/geometry  directory to be easily
locatable by any other program. Again, using the ar  command, and via
passing the t  option, we can see the content of the archive file:

$ ar t /opt/geometry/libgeometry.a

trigon.o

2d.o

3d.o

$

Shell Box 3-12: Listing the content of the static library file

As is clear from the preceding shell box, the static library file contains
three relocatable object files as we intended. The next step is to use the
static library file.

Now that we have created a static library for our geometry example,
example 3.2, we are going to use it in a new application. When using a C
library, we need to have access to the declarations that are exposed by the
library together with its static library file. The declarations are considered
as the public interface of the library, or more commonly, the API of the
library.



We need declarations in the compile stage, when the compiler needs to
know about the existence of types, function signatures, and so on. Header
files serve this purpose. Other details such as type sizes and function
addresses are needed at later stages; linking and loading.

As we said before, we usually find a C API (an API exposed by a C
library) as a group of header files. Therefore, the header file from example
3.2, and the created static library file libgeometry.a , are enough for us to
write a new program that uses our geometry library.

When it comes to using the static library, we need to write a new source
file that includes the library's API and make use of its functions. We write
the new code as a new example, example 3.3. The following code is the
source that we have written for example 3.3:

#include <stdio.h>

#include "ExtremeC_examples_chapter3_2_geometry.h"

int main(int argc, char** argv) {

cartesian_pos_2d_t cartesian_pos;

cartesian_pos.x = 100;

cartesian_pos.y = 200;

polar_pos_2d_t polar_pos =

convert_to_2d_polar_pos(&cartesian_pos);

printf("Polar Position: Length: %f, Theta: %f (deg)\n",

polar_pos.length, polar_pos.theta);

return 0;

}

Code Box 3-7 [ExtremeC_examples_chapter3_3.c]: The main function testing some of the
geometry functions

As you can see, example 3.3 has included the header file from example 3.2.
It has done this because it needs the declarations of the functions that it is
going to use.

We now need to compile the preceding source file to create its
corresponding relocatable object file in a Linux system:

$ gcc -c ExtremeC_examples_chapter3_3.c -o main.o

$



Shell Box 3-13: Compiling example 3.3

After we have done that, we need to link it with the static library that we
created for example 3.2. In this case, we assume that the file
libgeometry.a  is located in the /opt/geometry  directory, as we had in
Shell Box 3-11. The following command will complete the build by
performing the linking step and creating the executable object file,
ex3_3.out:

$ gcc main.o -L/opt/geometry -lgeometry -lm -o ex3_3.out

$

Shell Box 3-14: Linking with the static library created as part of example 3.2

To explain the preceding command, we are going to explain each passing
option separately:

-L/opt/geometry  tells gcc  to consider the directory /opt/geometry
as one of the various locations in which static and shared libraries
could be found. There are well-known paths like /usr/lib  or
/usr/local/lib  in which the linker searches for library files by
default. If you do not specify the -L  option, the linker only searches
its default paths.
-lgeometry  tells gcc  to look for the file libgeometry.a  or
libgeometry.so . A file ending with .so  is a shared object file,
which we explain in the next section. Note the convention used. If
you pass the option -lxyz  for instance, the linker will search for the
file libxyz.a  or libxyz.so  in the default and specified directories.
If the file is not found, the linker stops and generates an error.
-lm  tells gcc  to look for another library named libm.a  or libm.so .
This library keeps the definitions of mathematical functions in glibc.
We need it for the cos , sin , and acos  functions. Note that we are
building example 3.3 on a Linux machine, which uses glibc as its
default C library's implementation. In macOS and possibly some
other Unix-like systems, you don't need to specify this option.



-o ex3_3.out  tells gcc  that the output executable file should be
named ex3_3.out .

After running the preceding command, if everything goes smoothly, you
will have an executable binary file that contains all the relocatable object
files found in the static library libgeometry.a  plus main.o .

Note that there will not be any dependency on the existence of the static
library file after linking, as everything is embedded inside the executable
file itself. In other words, the final executable file can be run on its own
without needing the static library to be present.

However, executable files produced from the linkage of many static
libraries usually have huge sizes. The more static libraries and the more
relocatable object files inside them, the bigger the size of the final
executable. Sometimes it can go up to several hundred megabytes or even
a few gigabytes.

It is a trade-off between the size of the binary and the dependencies it
might have. You can have a smaller binary, but by using shared libraries. It
means that the final binary is not complete and cannot be run if the
external shared libraries do not exist or cannot be found. We talk more
about this in the upcoming sections.

In this section, we described what static libraries are and how they should
be created and used. We also demonstrated how another program can use
the exposed API and get linked to an existing static library. In the
following section, we are going to talk about dynamic libraries and how to
produce a shared object file (dynamic library) from sources in example
3.2, instead of using a static library.

Dynamic libraries
Dynamic libraries, or shared libraries, are another way to produce libraries
for reuse. As their name implies, unlike the static libraries, dynamic



libraries are not part of the final executable itself. Instead, they should be
loaded and brought in while loading a process for execution.

Since static libraries are part of the executable, the linker puts everything
found in the given relocatable files into the final executable file. In other
words, the linker detects the undefined symbols, and required definitions,
and tries to find them in the given relocatable object files, then puts them
all in the output executable file.

The final product is only produced when every undefined symbol is found.
From a unique perspective, we detect all dependencies and resolve them at
linking time. Regarding dynamic libraries, it is possible to have undefined
symbols that are not resolved at linking time. These symbols are searched
for when the executable product is about to be loaded and begin the
execution.

In other words, a different kind of linking step is needed when you have
undefined dynamic symbols. A dynamic linker, or simply the loader,
usually does the linking while loading an executable file and preparing it
to be run as a process.

Since the undefined dynamic symbols are not found in the executable file,
they should be found somewhere else. These symbols should be loaded
from shared object files. These files are sister files to static library files.
While the static library files have a .a  extension in their names, the
shared object files carry the .so  extension in most Unix-like systems. In
macOS, they have the .dylib  extension.

When loading a process and about to be launched, a shared object file will
be loaded and mapped to a memory region accessible by the process. This
procedure is done by a dynamic linker (or loader), which loads and
executes an executable file.

Like we said in the section dedicated to executable object files, both ELF
executable and shared object files have segments in their ELF structure.
Each segment has zero or more sections in them. There are two main
differences between an ELF executable object file and an ELF shared



object file. Firstly, the symbols have relative absolute addresses that allow
them to be loaded as part of many processes at the same time.

This means that while the address of each instruction is different in any
process, the distance between two instructions remains fixed. In other
words, the addresses are fixed relative to an offset. This is because the
relocatable object files are position independent. We talk more about this
in the last section of this chapter.

For instance, if two instructions are located at addresses 100 and 200 in a
process, in another process they may be at 140 and 240, and in another one
they could be at 323 and 423. The related addresses are absolute, but the
actual addresses can change. These two instructions will always be 100
addresses apart from each other.

The second difference is that some segments related to loading an ELF
executable object file are not present in shared object files. This
effectively means that shared object files cannot be executed.

Before giving more details on how a shared object is accessed from
different processes, we need to show an example of how they are created
and used. Therefore, we are going to create dynamic libraries for the same
geometry library, example 3.2, that we worked on in the previous section.

In the previous section we created a static library for the geometry library.
In this section, we want to compile the sources again in order to create a
shared object file out of them. The following commands show you how to
compile the three sources into their corresponding relocatable object files,
with just one difference in comparison to what we did for example 3.2. In
the following commands, note the -fPIC  option that is passed to gcc :

$ gcc -c ExtremeC_examples_chapter3_2_2d.c -fPIC -o 2d.o

$ gcc -c ExtremeC_examples_chapter3_2_3d.c -fPIC -o 3d.o

$ gcc -c ExtremeC_examples_chapter3_2_trigon.c -fPIC -o

trigon.o

$



Shell Box 3-15: Compiling the sources of example 3.2 to corresponding position-independent
relocatable object files

Looking at the commands, you can see that we have passed an extra
option, -fPIC , to gcc  while compiling the sources. This option is
mandatory if you are going to create a shared object file out of some
relocatable object files. PIC stands for position independent code. As we
explained before, if a relocatable object file is position independent, it
simply means that the instructions within it don't have fixed addresses.
Instead, they have relative addresses; hence they can obtain different
addresses in different processes. This is a requirement because of the way
we use shared object files.

There is no guarantee that the loader program will load a shared object file
at the same address in different processes. In fact, the loader creates
memory mappings to the shared object files, and the address ranges for
those mappings can be different. If the instruction addresses were
absolute, we couldn't load the same shared object file in various processes,
and in various memory regions, at the same time.

Note:

For more detailed information on how the dynamic loading of programs
and shared object files works, you can see the following resources:

https://software.intel.com/sites/default/files

/m/a/1/e/dsohowto.pdf

https://www.technovelty.org/linux/plt-and-got-

the-key-to-code-sharing-and-dynamic-

libraries.html

To create shared object files, you need to use the compiler, in this case,
gcc , again. Unlike a static library file, which is a simple archive, a shared
object file is an object file itself. Therefore, they should be created by the
same linker program, for instance ld , that we used to produce the
relocatable object files.

https://software.intel.com/sites/default/files/m/a/1/e/dsohowto.pdf
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html


We know that, on most Unix-like systems, ld  does that. However, it is
strongly recommended not to use ld  directly for linking object files for
the reasons we explained in the previous chapter.

The following command shows how you should create a shared object file
out of a number of relocatable object files that have been compiled using
the -fPIC  option:

$ gcc -shared 2d.o 3d.o trigon.o -o libgeometry.so

$ mkdir -p /opt/geometry

$ mv libgeometry.so /opt/geometry

$

Shell Box 3-16: Creating a shared object file out of the relocatable object files

As you can see in the first command, we passed the -shared  option, to
ask gcc  to create a shared object file out of the relocatable object files.
The result is a shared object file named libgeometry.so . We have moved
the shared object file to /opt/geometry  to make it easily available to
other programs willing to use it. The next step is to compile and link
example 3.3 again.

Previously, we compiled and linked example 3.3 with the created static
library file, libgeometry.a . Here, we are going to do the same, but
instead, link it with libgeometry.so , a dynamic library.

While everything seems to be the same, especially the commands, they are
in fact different. This time, we are going to link example 3.3 with
libgeometry.so  instead of libgeometry.a , and more than that, the
dynamic library won't get embedded into the final executable, instead it
will load the library upon execution. While practicing this, make sure that
you have removed the static library file, libgeometry.a , from
/opt/geometry  before linking example 3.3 again:

$ rm -fv /opt/geometry/libgeometry.a

$ gcc -c ExtremeC_examples_chapter3_3.c -o main.o

$ gcc main.o -L/opt/geometry-lgeometry -lm -o ex3_3.out

$



Shell Box 3-17: Linking example 3.3 against the built shared object file

As we explained before, the option -lgeometry  tells the compiler to find
and use a library, either static or shared, to link it with the rest of the
object files. Since we have removed the static library file, the shared
object file is picked up. If both the static library and shared object files
exist for a defined library, then gcc  prefers to pick the shared object file
and link it with the program.

If you now try to run the executable file ex3_3.out , you will most
probably face the following error:

$ ./ex3_3.out

./ex3_3.out: error while loading shared libraries:

libgeometry.so: cannot open shared object file: No such file

or directory

$

Shell Box 3-18: Trying to run example 3.3

We haven't seen this error so far, because we were using static linkage and
a static library. But now, by introducing dynamic libraries, if we are going
to run a program that has dynamic dependencies, we should provide the
required dynamic libraries to have it run. But what has happened and why
we've received the error message?

The ex3_3.out  executable file depends on libgeometry.so . That's
because some of the definitions it needs can only be found inside that
shared object file. We should note that this is not true for the static library
libgeometry.a . An executable file linked with a static library can be run
on its own as a standalone executable, since it has copied everything from
the static library file, and therefore, doesn't rely on its existence anymore.

This is not true for the shared object files. We received the error because
the program loader (dynamic linker) could not find libgeometry.so  in its
default search paths. Therefore, we need to add /opt/geometry  to its
search paths, so that it finds the libgeometry.so  file there. To do this, we



will update the environment variable LD_LIBRARY_PATH  to point to the
current directory.

The loader will check the value of this environment variable, and it will
search the specified paths for the required shared libraries. Note that more
than one path can be specified in this environment variable (using the
separator colon : ).

$ export LD_LIBRARY_PATH=/opt/geometry

$ ./ex3_3.out

Polar Position: Length: 223.606798, Theta: 63.434949 (deg)

$

Shell Box 3-19: Running example 3.3 by specifying LD_LIBRARY_PATH

This time, the program has successfully been run! This means that the
program loader has found the shared object file and the dynamic linker has
loaded the required symbols from it successfully.

Note that, in the preceding shell box, we used the export  command to
change the LD_LIBRARY_PATH . However, it is common to set the
environment variable together with the execution command. You can see
this in the following shell box. The result would be the same for both
usages:

$ LD_LIBRARY_PATH=/opt/geometry ./ex3_3.out

Polar Position: Length: 223.606798, Theta: 63.434949 (deg)

$

Shell Box 3-20: Running example 3.3 by specifying LD_LIBRARY_PATH as part of the same
command

By linking an executable with several shared object files, as we did before,
we tell the system that this executable file needs a number of shared
libraries to be found and loaded at runtime. Therefore, before running the
executable, the loader searches for those shared object files automatically,
and the required symbols are mapped to the proper addresses that are
accessible by the process. Only then can the processor begin the execution.



Manual loading of shared libraries
Shared object files can also be loaded and used in a different way, in which
they are not loaded automatically by the loader program (dynamic linker).
Instead, the programmer will use a set of functions to load a shared object
file manually before using some symbols (functions) that can be found
inside that shared library. There are applications for this manual loading
mechanism, and we'll talk about them once we've discussed the example
we'll look at in this section.

Example 3.4 demonstrates how to load a shared object file lazily, or
manually, without having it in the linking step. This example borrows the
same logic from example 3.3, but instead, it loads the shared object file
libgeometry.so  manually inside the program.

Before going through example 3.4, we need to produce libgeometry.so  a
bit differently in order to make example 3.4 work. To do this, we have to
use the following command in Linux:

$ gcc -shared 2d.o 3d.o trigon.o -lm -o libgeometry.so

$

Shell Box 3-21: Linking the geometry shared object file against the standard math library

Looking at the preceding command, you can see a new option, -lm , which
tells the linker to link the shared object file against the standard math
library, libm.so . That is done because when we load libgeometry.so
manually, its dependencies should, somehow, be loaded automatically. If
they're not, then we will get errors about the symbols that are required by
libgeometry.so  itself, such as cos  or sqrt . Note that we won't link the
final executable file with the math standard library, and it will be resolved
automatically by the loader when loading libgeometry.so .

Now that we have a linked shared object file, we can proceed to example
3.4:

#include <stdio.h>



#include <stdlib.h>

#include <dlfcn.h>

#include "ExtremeC_examples_chapter3_2_geometry.h"

polar_pos_2d_t (*func_ptr)(cartesian_pos_2d_t*);

int main(int argc, char** argv) {

void* handle = dlopen ("/opt/geometry/libgeometry.so",

RTLD_LAZY);

if (!handle) {

fprintf(stderr, "%s\n", dlerror());

exit(1);

}

func_ptr = dlsym(handle, "convert_to_2d_polar_pos");

if (!func_ptr) {

fprintf(stderr, "%s\n", dlerror());

exit(1);

}

cartesian_pos_2d_t cartesian_pos;

cartesian_pos.x = 100;

cartesian_pos.y = 200;

polar_pos_2d_t polar_pos = func_ptr(&cartesian_pos);

printf("Polar Position: Length: %f, Theta: %f (deg)\n",

polar_pos.length, polar_pos.theta);

return 0;

}

Code Box 3-8 [ExtremeC_examples_chapter3_4.c]: Example 3.4 loading the geometry shared
object file manually

Looking at the preceding code, you can see how we have used the
functions dlopen  and dlsym  to load the shared object file and then find
the symbol convert_to_2d_polar_pos  in it. The function dlsym  returns a
function pointer, which can be used to invoke the target function.

It is worth noting that the preceding code searches for the shared object
file in /opt/geometry , and if there is no such object file, then an error
message is shown. Note that in macOS, the shared object files end in the
.dylib  extension. Therefore, the preceding code should be modified in
order to load the file with the correct extension.

The following command compiles the preceding code and runs the
executable file:

$ gcc ExtremeC_examples_chapter3_4.c -ldl -o ex3_4.out

$ ./ex3_4.out



Polar Position: Length: 223.606798, Theta: 63.434949 (deg)

$

Shell Box 3-22: Running example 3.4

As you can see, we did not link the program with the file libgeometry.so .
We didn't do this because we want to instead load it manually when it is
needed. This method is often referred to as the lazy loading of shared
object files. Yet, despite the name, in certain scenarios, lazy loading the
shared object files can be really useful.

One such case is when you have different shared object files for different
implementations or versions of the same library. Lazy loading gives you
increased freedom to load the desired shared objects according to your
own logic and when it is needed, instead of having them automatically
loaded at load time, where you have less control over them.

Summary
This chapter mainly talked about various types of object files, as products
of a C/C++ project after building. As part of this chapter, we covered the
following points:

We discussed the API and ABI, along with their differences.
We went through various object file formats and looked at a brief
history of them. They all share the same ancestor, but they have
changed in their specific paths to become what they are today.
We talked about relocatable object files and their internal structure
regarding ELF relocatable object files.
We discussed executable object files and the differences between
them and relocatable object files. We also took a look at an ELF
executable object file.
We showed static and dynamic symbol tables and how their content
can be read using some command-line tools.



We discussed static linking and dynamic linking and how various
symbol tables are looked up in order to produce the final binary or
execute a program.
We discussed static library files and the fact that they are just archive
files that contain a number of relocatable object files.
Shared object files (dynamic libraries) were discussed and we
demonstrated how they can be made out of a number of relocatable
object files.
We explained what position-independent code is and why the
relocatable object files participating in the creation of a shared
library must be position-independent.

In the following chapter, we will go through the memory structure of a
process; another key topic in C/C++ programming. The various memory
segments will be described as part of the next chapter and we'll see how
we can write code that has no memory issues in it.



Chapter 04
Process Memory Structure

In this chapter, we are going to talk about memory and its structure within
a process. For a C programmer, memory management is always a crucial
topic, and applying its best practices requires a basic knowledge about
memory structure. In fact, this is not limited to C. In many programming
languages such as C++ or Java, you need to have a fundamental
understanding of memory and the way it works; otherwise, you face some
serious issues that cannot be easily traced and fixed.

You might know that memory management is fully manual in C, and more
than that, the programmer is the sole responsible person who allocates
memory regions and deallocates them once they're no longer needed.

Memory management is different in high-level programming languages
such as Java or C#, and it is done partly by the programmer and partly by
the underlying language platform, such as Java Virtual Machine (JVM)
in the case of using Java. In these languages, the programmer only issues
memory allocations, but they are not responsible for the deallocations. A
component called the garbage collector does the deallocation and frees up
the allocated memory automatically.

Since there is no such garbage collector in C and C++, having some
dedicated chapters for covering the concepts and issues regarding memory
management is essential. That's why we have dedicated this chapter and
the next to memory-related concepts, and these chapters together should
give you a basic understanding of how memory works in C/C++.

Throughout this chapter:



We start by looking at the typical memory structure of a process. This
will help us to discover the anatomy of a process and the way it
interacts with the memory.
We discuss static and dynamic memory layouts.
We introduce the segments found in the aforementioned memory
layouts. We see that some of them reside in the executable object file
and the rest are created while the process is loading.
We introduce the probing tools and commands which can help us to
detect the segments and see their content, both inside an object file
and deep within a running process.

As part of this chapter, we get to know two segments called Stack and
Heap. They are part of the dynamic memory layout of a process and all the
allocations and deallocations happen in these segments. In the following
chapter, we will discuss Stack and Heap segments in a greater detail
because in fact, they are the segments that a programmer interacts with the
most.

Let's start this chapter by talking about the process memory layout. This
will give you an overall idea about how the memory of a running process
is segmented, and what each segment is used for.

Process memory layout
Whenever you run an executable file, the operating system creates a new
process. A process is a live and running program that is loaded into the
memory and has a unique Process Identifier (PID). The operating system
is the sole responsible entity for spawning and loading new processes.

A process remains running until it either exits normally, or the process is
given a signal, such as SIGTERM , SIGINT , or SIGKILL , which eventually
makes it exit. The SIGTERM  and SIGINT  signals can be ignored, but
SIGKILL  will kill the process immediately and forcefully.



Note:

The signals mentioned in the preceding section are explained as follows:

SIGTERM : This is the termination signal. It allows the process to clean
up.

SIGINT : This is the interrupt signal usually sent to the foreground
process by pressing Ctrl + C.

SIGKILL : This is the kill signal and it closes the process forcefully
without letting it clean up.

When creating a process, one of the first things that operating systems do
is allocate a portion of memory dedicated to the process and then apply a
predefined memory layout. This predefined memory layout is more or less
the same in different operating systems, especially in Unix-like operating
systems.

In this chapter, we're going to explore the structure of this memory layout,
and a number of important and useful terms are introduced.

The memory layout of an ordinary process is divided into multiple parts.
Each part is called a segment. Each segment is a region of memory which
has a definite task and it is supposed to store a specific type of data. You
can see the following list of segments being part of the memory layout of
a running process:

Uninitialized data segment or Block Started by Symbol (BSS)
segment
Data segment
Text segment or Code segment
Stack segment
Heap segment

In the following sections, we will study each of these segments
individually, and we discuss the way they contribute to the execution of a
program. In the next chapter, we will focus on Stack and Heap segments
and we'll discuss them thoroughly. As part of our quest, let's introduce



some tools that help us inspect the memory before going into the specifics
of the above segments.

Discovering memory structure
Unix-like operating systems provide a set of tools for inspecting the
memory segments of a process. You learn in this section that some of
these segments reside within the executable object file, and other
segments are created dynamically at runtime, when the process is
spawned.

As you should already know from the two previous chapters, an executable
object file and a process are not the same thing, therefore it is expected to
have different tools for inspecting each of them.

From the previous chapters, we know that an executable object file
contains the machine instructions, and it is produced by the compiler. But
a process is a running program spawned by executing an executable object
file, consuming a region of the main memory, and the CPU is constantly
fetching and executing its instructions.

A process is a living entity that is being executed inside the operating
system while the executable object file is just a file containing a premade
initial layout acting as a basis for spawning future processes. It is true that
in the memory layout of a running process, some segments come directly
from the base executable object file, and the rest are built dynamically at
runtime while the process is being loaded. The former layout is called the
static memory layout, and the latter is called the dynamic memory
layout.

Static and dynamic memory layouts both have a predetermined set of
segments. The content of the static memory layout is prewritten into the
executable object file by the compiler, when compiling the source code.
On the other hand, the content of the dynamic memory layout is written by



the process instructions allocating memory for variables and arrays, and
modifying them according to the program's logic.

With all that said, we can guess the content of the static memory layout
either by just looking at the source code or the compiled object file. But
this is not that easy regarding the dynamic memory layout as it cannot be
determined without running the program. In addition, different runs of the
same executable file can lead to different content in the dynamic memory
layout. In other words, the dynamic content of a process is unique to that
process and it should be investigated while the process is still running.

Let's begin with inspecting the static memory layout of a process.

Probing static memory layout
The tools used for inspecting the static memory layout usually work on the
object files. To get some initial insight, we'll start with an example,
example 4.1, which is a minimal C program that doesn't have any variable
or logic as part of it:

int main(int argc, char** argv) {

return 0;

}

Code Box 4-1 [ExtremeC_examples_chapter4_1.c]: A minimal C program

First, we need to compile the preceding program. We compile it in Linux
using gcc :

$ gcc ExtremeC_examples_chapter4_1.c -o ex4_1-linux.out

$

Shell Box 4-1: Compiling example 4.1 using gcc in Linux



After a successful compilation and having the final executable binary
linked, we get an executable object file named ex4_1-linux.out . This file
contains a predetermined static memory layout that is specific to the
Linux operating system, and it will exist in all future processes spawned
based on this executable file.

The size  command is the first tool that we want to introduce. It can be
used to print the static memory layout of an executable object file.

You can see the usage of the size  command in order to see the various
segments found as part of the static memory layout as follows:

$ size ex4_1-linux.out

text data bss dec hex filename

1099 544 8 1651 673 ex4_1-linux.out

$

Shell Box 4-2: Using the size command to see the static segments of ex4_1-linux.out

As you see, we have Text, Data, and BSS segments as part of the static
layout. The shown sizes are in bytes.

Now, let's compile the same code, example 4.1, in a different operating
system. We have chosen macOS and we are going to use the clang
compiler:

$ clang ExtremeC_examples_chapter4_1.c -o ex4_1-macos.out

$

Shell Box 4-3: Compiling example 4.1 using clang in macOS

Since macOS is a POSIX-compliant operating system just like Linux, and
the size  command is specified to be part of the POSIX utility programs,
macOS should also have the size  command. Therefore, we can use the
same command to see the static memory segments of ex4_1-macos.out :

$ size ex4_1-macos.out

__TEXT __DATA __OBJC others dec hex



4096 0 0 4294971392 4294975488 100002000

$ size -m ex4_1-macos.out

Segment __PAGEZERO: 4294967296

Segment __TEXT: 4096

Section __text: 22

Section __unwind_info: 72

total 94

Segment __LINKEDIT: 4096

total 4294975488

$

Shell Box 4-4: Using the size command to see the static segments of ex4_1-macos.out

In the preceding shell box, we have run the size  command twice; the
second run gives us more details about the found memory segments. You
might have noticed that we have Text and Data segments in macOS, just
like Linux, but there is no BSS segment. Note that the BSS segment also
exists in macOS, but it is not shown in the size  output. Since the BSS
segment contains uninitialized global variables, there is no need to
allocate some bytes as part of the object file and it is enough to know how
many bytes are required for storing those global variables.

In the preceding shell boxes, there is an interesting point to note. The size
of the Text segment is 1,099 bytes in Linux while it is 4 KB in macOS. It
can also be seen that the Data segment for a minimal C program has a non-
zero size in Linux, but it is empty in macOS. It is apparent that the low-
level memory details are different on various platforms.

Despite these little differences between Linux and macOS, we can see that
both platforms have the Text, Data, and BSS segments as part of their
static layout. From now on, we gradually explain what each of these
segments are used for. In the upcoming sections, we'll discuss each
segment separately and we give an example slightly different from
example 4.1 for each, in order to see how differently each segment
responds to the minor changes in the code.

BSS segment



We start with the BSS segment. BSS stands for Block Started by Symbol.
Historically, the name was used to denote reserved regions for
uninitialized words. Basically, that's the purpose that we use the BSS
segment for; either uninitialized global variables or global variables set to
zero.

Let's expand example 4.1 by adding a few uninitialized global variables.
You see that uninitialized global variables will contribute to the BSS
segment. The following code box demonstrates example 4.2:

int global_var1;

int global_var2;

int global_var3 = 0;

int main(int argc, char** argv) {

return 0;

}

Code Box 4-2 [ExtremeC_examples_chapter4_2.c]: A minimal C program with a few global
variables either uninitialized or set to zero

The integers global_var1 , global_var2 , and global_var3  are global
variables which are uninitialized. For observing the changes made to the
resulting executable object file in Linux, in comparison to example 4.1, we
again run the size  command:

$ gcc ExtremeC_examples_chapter4_2.c -o ex4_2-linux.out

$ size ex4_2-linux.out

text data bss dec hex filename

1099 544 16 1659 67b ex4_2-linux.out

$

Shell Box 4-5: Using the size command to see the static segments of ex4_2-linux.out

If you compare the preceding output with a similar output from example
4.1, you will notice that the size of the BSS segment has changed. In other
words, declaring global variables that are not initialized or set to zero will
add up to the BSS segment. These special global variables are part of the
static layout and they become preallocated when a process is loading, and



they never get deallocated until the process is alive. In other words, they
have a static lifetime.

Note:

Because of design concerns, we usually prefer to use local variables in
our algorithms. Having too many global variables can increase the binary
size. In addition, keeping sensitive data in the global scope, it can
introduce security concerns. Concurrency issues, especially data races,
namespace pollution, unknown ownership, and having too many
variables in the global scope, are some of the complications that global
variables introduce.

Let's compile example 4.2 in macOS and have a look at the output of the
size  command:

$ clang ExtremeC_examples_chapter4_2.c -o ex4_2-macos.out

$ size ex4_2-macos.out

__TEXT __DATA __OBJC others dec hex

4096 4096 0 4294971392 4294979584 100003000

$ size -m ex4_2-macos.out

Segment __PAGEZERO: 4294967296

Segment __TEXT: 4096

Section __text: 22

Section __unwind_info: 72

total 94

Segment __DATA: 4096

Section __common: 12

total 12

Segment __LINKEDIT: 4096

total 4294979584

$

Shell Box 4-6: Using the size command to see the static segments of ex4_2-macos.out

And again, it is different from Linux. In Linux, we had preallocated 8
bytes for the BSS segment, when we had no global variables. In example
4.2, we added three new uninitialized global variables whose sizes sum up
to 12 bytes, and the Linux C compiler expanded the BSS segment by 8
bytes. But in macOS, we still have no BSS segment as part of the size 's
output, but the compiler has expanded the data  segment from 0 bytes to



4KB, which is the default page size in macOS. This means that clang  has
allocated a new memory page for the data  segment inside the layout.
Again, this simply shows how much the details of the memory layout can
be different in various platforms.

Note:

While allocating the memory, it doesn't matter how many bytes a
program needs to allocate. The allocator always acquires memory in
terms of memory pages until the total allocated size covers the program's
need. More information about the Linux memory allocator can be found
here:
https://www.kernel.org/doc/gorman/html/understand/u

nderstand009.html.

In Shell Box 4-6, we have a section named __common , inside the _DATA
segment, which is 12 bytes, and it is in fact referring to the BSS segment
that is not shown as BSS in the size 's output. It refers to 3 uninitialized
global integer variables or 12 bytes (each integer being 4 bytes). It's worth
taking note that uninitialized global variables are set to zero by default.
There is no other value that could be imagined for uninitialized variables.

Let's now talk about the next segment in the static memory layout; the
Data segment.

Data segment
In order to show what type of variables are stored in the Data segment, we
are going to declare more global variables, but this time we initialize them
with non-zero values. The following example, example 4.3, expands
example 4.2 and adds two new initialized global variables:

int global_var1;

int global_var2;

int global_var3 = 0;

double global_var4 = 4.5;

char global_var5 = 'A';

https://www.kernel.org/doc/gorman/html/understand/understand009.html


int main(int argc, char** argv) {

return 0;

}

Code Box 4-3 [ExtremeC_examples_chapter4_3.c]: A minimal C program with both
initialized and uninitialized global variables

The following shell box shows the output of the size  command, in Linux,
and for example 4.3:

$ gcc ExtremeC_examples_chapter4_3.c -o ex4_3-linux.out

$ size ex4_3-linux.out

text data bss dec hex filename

1099 553 20 1672 688 ex4_3-linux.out

$

Shell Box 4-7: Using the size command to see the static segments of ex4_3-linux.out

We know that the Data segment is used to store the initialized global
variables set to a non-zero value. If you compare the output of the size
command for examples 4.2 and 4.3, you can easily see that the Data
segment is increased by 9 bytes, which is the sum of the sizes of the two
newly added global variables (one 8-byte double  and one 1-byte char ).

Let's look at the changes in macOS:

$ clang ExtremeC_examples_chapter4_3.c -o ex4_3-macos.out

$ size ex4_3-macos.out

__TEXT __DATA __OBJC others dec hex

4096 4096 0 4294971392 4294979584 100003000

$ size -m ex4_3-macos.out

Segment __PAGEZERO: 4294967296

Segment __TEXT: 4096

Section __text: 22

Section __unwind_info: 72

total 94

Segment __DATA: 4096

Section __data: 9

Section __common: 12

total 21

Segment __LINKEDIT: 4096

total 4294979584

$



Shell Box 4-8: Using the size command to see the static segments of ex4_3-macos.out

In the first run, we see no changes since the size of all global variables
summed together is still way below 4KB. But in the second run, we see a
new section as part of the _DATA  segment; the __data  section. The
memory allocated for this section is 9 bytes, and it is in accordance with
the size of the newly introduced initialized global variables. And still, we
have 12 bytes for uninitialized global variables as we had in example 4.2,
and in macOS.

On a further note, the size  command only shows the size of the
segments, but not their contents. There are other commands, specific to
each operating system, that can be used to inspect the content of segments
found in an object file. For instance, in Linux, you have readelf  and
objdump  commands in order to see the content of ELF files. These tools
can also be used to probe the static memory layout inside the object files.
As part of two previous chapters we explored some of these commands.

Other than global variables, we can have some static variables declared
inside a function. These variables retain their values while calling the
same function multiple times. These variables can be stored either in the
Data segment or the BSS segment depending on the platform and whether
they are initialized or not. The following code box demonstrates how to
declare some static variables within a function:

void func() {

static int i;

static int j = 1;

...

}

Code Box 4-4: Declaration of two static variables, one initialized and the other one
uninitialized

As you see in Code Box 4-4, the i  and j  variables are static. The i
variable is uninitialized and the j  variable is initialized with value 1 . It



doesn't matter how many times you enter and leave the func  function,
these variables keep their most recent values.

To elaborate more on how this is done, at runtime, the func  function has
access to these variables located in either the Data segment or the BSS
segment, which has a static lifetime. That's basically why these variables
are called static. We know that the j  variable is located in the Data
segment simply because it has an initial value, and the i  variable is
supposed to be inside the BSS segment since it is not initialized.

Now, we want to introduce the second command to examine the content of
the BSS segment. In Linux, the objdump  command can be used to print
out the content of memory segments found in an object file. This
corresponding command in macOS is gobjdump  which should be installed
first.

As part of example 4.4, we try to examine the resulting executable object
file to find the data written to the Data segment as some global variables.
The following code box shows the code for example 4.4:

int x = 33; // 0x00000021

int y = 0x12153467;

char z[6] = "ABCDE";

int main(int argc, char**argv) {

return 0;

}

Code Box 4-5 [ExtremeC_examples_chapter4_4.c]: Some initialized global variables which
should be written to the Data segment

The preceding code is easy to follow. It just declares three global variables
with some initial values. After compilation, we need to dump the content
of the Data segment in order to find the written values.

The following commands will demonstrate how to compile and use
objdump  to see the content of the Data segment:

$ gcc ExtremeC_examples_chapter4_4.c -o ex4_4.out

$ objdump -s -j .data ex4_4.out



a.out: file format elf64-x86-64

Contents of section .data:

601020 00000000 00000000 00000000 00000000 ...............

601030 21000000 67341512 41424344 4500 !....4..ABCDE.

$

Shell Box 4-9: Using the objdump command to see the content of the Data segment

Let's explain how the preceding output, and especially the contents of the
section .data , should be read. The first column on the left is the address
column. The next four columns are the contents, and each of them is
showing 4  bytes of data. So, in each row, we have the contents of 16
bytes. The last column on the right shows the ASCII representation of the
same bytes shown in the middle columns. A dot character means that the
character cannot be shown using alphanumerical characters. Note that the
option -s  tells objdump  to show the full content of the chosen section and
the option -j .data  tells it to show the content of the section .data .

The first line is 16 bytes filled by zeros. There is no variable stored here,
so nothing special for us. The second line shows the contents of the Data
segment starting with the address 0x601030 . The first 4 bytes is the value
stored in the x  variable found in example 4.4. The next 4 bytes also
contain the value for the y  variable. The final 6 bytes are the characters
inside the z  array. The contents of z  can be clearly seen in the last
column.

If you pay enough attention to the content shown in Shell Box 4-9, you see
that despite the fact that we write 33, in decimal base, as 0x00000021 , in
hexadecimal base it is stored differently in the segment. It is stored as
0x21000000 . This is also true for the content of the y  variable. We have
written it as 0x12153467 , but it is stored differently as 0x67341512 . It
seems that the order of bytes is reversed.

The effect explained is because of the endianness concept. Generally, we
have two different types of endianness, big-endian and little-endian. The
value 0x12153467  is the big-endian representation for the number
0x12153467 , as the biggest byte, 0x12 , comes first. But the value
0x67341512  is the little-endian representation for the number
0x12153467 , as the smallest byte, 0x67 , comes first.



No matter what the endianness is, we always read the correct value in C.
Endianness is a property of the CPU and with a different CPU you may get
a different byte order in your final object files. This is one of the reasons
why you cannot run an executable object file on hardware with different
endianness.

It would be interesting to see the same output on a macOS machine. The
following shell box demonstrates how to use the gobjdump  command in
order to see the content of the Data segment:

$ gcc ExtremeC_examples_chapter4_4.c -o ex4_4.out

$ gobjdump -s -j .data ex4_4.out

a.out: file format mach-o-x86-64

Contents of section .data:

100001000 21000000 67341512 41424344 4500 !...g4..ABCDE.

$

Shell Box 4-10: Using the gobjdump command in macOS to see the content of the Data
segment

It should be read exactly like the Linux output found as part of Shell Code
4-9. As you see, in macOS, there are no 16-byte zero headers in the data
segment. Endianness of the contents also shows that the binary has been
compiled for a little-endian processor.

As a final note in this section, other tools like readelf  in Linux and
dwarfdump  in macOS can be used in order to inspect the content of object
files. The binary content of the object files can also be read using tools
such as hexdump .

In the following section, we will discuss the Text segment and how it can
be inspected using objdump .

Text segment
As we know from Chapter 2, Compilation and Linking, the linker writes
the resulting machine-level instructions into the final executable object
file. Since the Text segment, or the Code segment, contains all the



machine-level instructions of a program, it should be located in the
executable object file, as part of its static memory layout. These
instructions are fetched by the processor and get executed at runtime when
the process is running.

To dive deeper, let's have a look at the Text segment of a real executable
object file. For this purpose, we propose a new example. The following
code box shows example 4.5, and as you see, it is just an empty main
function:

int main(int argc, char** argv) {

return 0;

}

Code Box 4-6 [ExtremeC_examples_chapter4_5.c]: A minimal C program

We can use the objdump  command to dump the various parts of the
resulting executable object file. Note that the objdump  command is only
available in Linux, while other operating systems have their own set of
commands to do the same.

The following shell box demonstrates using the objdump  command to
extract the content of various sections present in the executable object file
resulting from example 4.5. Note that the output is shortened in order to
only show the main  function's corresponding section and its assembly
instructions:

$ gcc ExtremeC_examples_chapter4_5.c -o ex4_5.out

$ objdump -S ex4_5.out

ex4_5.out: file format elf64-x86-64

Disassembly of section .init:

0000000000400390 <_init>:

... truncated.

.

.

Disassembly of section .plt:

00000000004003b0 <__libc_start_main@plt-0x10>:

... truncated

00000000004004d6 <main>:

4004d6: 55 push %rbp

4004d7: 48 89 e5 mov %rsp,%rbp



4004da: b8 00 00 00 00 mov $0x0,%eax

4004df: 5d pop %rbp

4004e0: c3 retq

4004e1: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)

4004e8: 00 00 00

4004eb: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)

00000000004004f0 <__libc_csu_init>:

... truncated

.

.

.

0000000000400564 <_fini>:

... truncated

$

Shell Box 4-11: Using objdump to show the content of the section corresponding to the main
function

As you see in the preceding shell box, there are various sections
containing machine-level instructions: the .text , .init , and .plt
sections and some others, which all together allow a program to become
loaded and running. All of these sections are part of the same Text
segment found in the static memory layout, inside the executable object
file.

Our C program, written for example 4.5, had only one function, the main
function, but as you see, the final executable object file has a dozen other
functions.

The preceding output, seen as part of Shell Box 4-11, shows that the main
function is not the first function to be called in a C program and there are
logics before and after main  that should be executed. As explained in
Chapter 2, Compilation and Linking, in Linux, these functions are usually
borrowed from the glibc  library, and they are put together by the linker
to form the final executable object file.

In the following section, we start to probe the dynamic memory layout of a
process.



Probing dynamic memory
layout
The dynamic memory layout is actually the runtime memory of a process,
and it exists as long as the process is running. When you execute an
executable object file, a program called loader takes care of the execution.
It spawns a new process and it creates the initial memory layout which is
supposed to be dynamic. To form this layout, the segments found in the
static layout will be copied from the executable object file. More than that,
two new segments will also be added to it. Only then can the process
proceed and become running.

In short, we expect to have five segments in the memory layout of a
running process. Three of these segments are directly copied from the
static layout found in the executable object file. The two newly added
segments are called Stack and Heap segments. These segments are
dynamic, and they exist only when the process is running. This means that
you cannot find any trace of them as part of the executable object file.

In this section, our ultimate goal is to probe the Stack and Heap segments
and introduce tools and places in an operating system which can be used
for this purpose. From time to time, we might refer to these segments as
the process's dynamic memory layout, without considering the other three
segments copied from the object file, but you should always remember
that the dynamic memory of a process consists of all five segments
together.

The Stack segment is the default memory region where we allocate
variables from. It is a limited region in terms of size, and you cannot hold
big objects in it. In contrast, the Heap segment is a bigger and adjustable
region of memory which can be used to hold big objects and huge arrays.
Working with the Heap segment requires its own API which we introduce
as part of our discussion.

Remember, dynamic memory layout is different from Dynamic Memory
Allocation. You should not mix these two concepts, since they are



referring to two different things! As we progress, we'll learn more about
different types of memory allocations, especially dynamic memory
allocation.

The five segments found in the dynamic memory of a process are referring
to parts of the main memory that are already allocated, dedicated, and
private to a running process. These segments, excluding the Text segment,
which is literally static and constant, are dynamic in a sense that their
contents are always changing at runtime. That's due to the fact that these
segments are constantly being modified by the algorithm that the process
is executing.

Inspecting the dynamic memory layout of a process requires its own
procedure. This implies that we need to have a running process before
being able to probe its dynamic memory layout. This requires us to write
examples which remain running for a fairly long time in order to keep
their dynamic memory in place. Then, we can use our inspection tools to
study their dynamic memory structure.

In the following section, we give an example on how to probe the structure
of dynamic memory.

Memory mappings
Let's start with a simple example. Example 4.6 will be running for an
indefinite amount of time. This way, we have a process that never dies, and
in the meantime, we can probe its memory structure. And of course, we
can kill it whenever we are done with the inspection. You can find the
example in the following code box:

#include <unistd.h> // Needed for sleep function

int main(int argc, char** argv) {

// Infinite loop

while (1) {

sleep(1); // Sleep 1 second

};

return 0;

}



Code Box 4-6 [ExtremeC_examples_chapter4_6.c]: Example 4.6 used for probing dynamic
memory layout

As you see, the code is just an infinite loop, which means that the process
will run forever. So, we have enough time to inspect the process's memory.
Let's first build it.

Note:

The unistd.h  header is available only on Unix-like operating
systems; to be more precise, in POSIX-compliant operating systems. This
means that on Microsoft Windows, which is not POSIX-compliant, you
have to include the windows.h  header instead.

The following shell box shows how to compile the example in Linux:

$ gcc ExtremeC_examples_chapter4_6.c -o ex4_6.out

$

Shell Box 4-12: Compiling example 4.6 in Linux

Then, we run it as follows. In order to use the same prompt for issuing
further commands while the process is running, we should start the
process in the background:

$ ./ ex4_6.out &

[1] 402

$

Shell Box 4-13: Running example 4.6 in the background

The process is now running in the background. According to the output,
the PID of the recently started process is 402, and we will use this PID to
kill it in the future. The PID is different every time you run a program;
therefore, you'll probably see a different PID on your computer. Note that



whenever you run a process in the background, the shell prompt returns
immediately, and you can issue further commands.

Note:

If you have the PID (Process ID) of a process, you can easily end it using
the kill  command. For example, if the PID is 402, the following
command will work in Unix-like operating systems: kill -9 402 .

The PID is the identifier we use to inspect the memory of a process.
Usually, an operating system provides its own specific mechanism to
query various properties of a process based on its PID. But here, we are
only interested in the dynamic memory of a process and we'll use the
available mechanism in Linux to find more about the dynamic memory
structure of the above running process.

On a Linux machine, the information about a process can be found in files
under the /proc  directory. It uses a special filesystem called procfs. This
filesystem is not an ordinary filesystem meant for keeping actual files, but
it is more of a hierarchical interface to query about various properties of
an individual process or the system as a whole.

Note:

procfs is not limited to Linux. It is usually part of Unix-like operating
systems, but not all Unix-like operating systems use it. For example,
FreeBSD uses this filesystem, but macOS doesn't.

Now, we are going to use procfs to see the memory structure of the
running process. The memory of a process consists of a number of memory
mappings. Each memory mapping represents a dedicated region of
memory which is mapped to a specific file or segment as part of the
process. Shortly, you'll see that both Stack and Heap segments have their
own memory mappings in each process.



One of the things that you can use procfs for is to observe the current
memory mappings of the process. Next, we are going to show this.

We know that the process is running with PID 402. Using the ls
command, we can see the contents of the /proc/402  directory, shown as
follows:

$ ls -l /proc/402

total of 0

dr-xr-xr-x 2 root root 0 Jul 15 22:28 attr

-rw-r--r-- 1 root root 0 Jul 15 22:28 autogroup

-r-------- 1 root root 0 Jul 15 22:28 auxv

-r--r--r-- 1 root root 0 Jul 15 22:28 cgroup

--w------- 1 root root 0 Jul 15 22:28 clear_refs

-r--r--r-- 1 root root 0 Jul 15 22:28 cmdline

-rw-r--r-- 1 root root 0 Jul 15 22:28 comm

-rw-r--r-- 1 root root 0 Jul 15 22:28 coredump_filter

-r--r--r-- 1 root root 0 Jul 15 22:28 cpuset

lrwxrwxrwx 1 root root 0 Jul 15 22:28 cwd -> /root/codes

-r-------- 1 root root 0 Jul 15 22:28 environ

lrwxrwxrwx 1 root root 0 Jul 15 22:28 exe ->

/root/codes/a.out

dr-x------ 2 root root 0 Jul 15 22:28 fd

dr-x------ 2 root root 0 Jul 15 22:28 fdinfo

-rw-r--r-- 1 root root 0 Jul 15 22:28 gid_map

-r-------- 1 root root 0 Jul 15 22:28 io

-r--r--r-- 1 root root 0 Jul 15 22:28 limits

...

$

Shell Box 4-14: Listing the content of /proc/402

As you can see, there are many files and directories under the /proc/402
directory. Each of these files and directories corresponds to a specific
property of the process. For querying the memory mappings of the
process, we have to see the contents of the file maps  under the PID
directory. We use the cat  command to dump the contents of the
/proc/402/maps  file. It can be seen as follows:

$ cat /proc/402/maps

00400000-00401000 r-xp 00000000 08:01 790655

.../extreme_c/4.6/ex4_6.out



00600000-00601000 r--p 00000000 08:01 790655

.../extreme_c/4.6/ex4_6.out

00601000-00602000 rw-p 00001000 08:01 790655

.../extreme_c/4.6/ex4_6.out

7f4ee16cb000-7f4ee188a000 r-xp 00000000 08:01 787362

/lib/x86_64-linux-gnu/libc-2.23.so

7f4ee188a000-7f4ee1a8a000 ---p 001bf000 08:01 787362

/lib/x86_64-linux-gnu/libc-2.23.so

7f4ee1a8a000-7f4ee1a8e000 r--p 001bf000 08:01 787362

/lib/x86_64-linux-gnu/libc-2.23.so

7f4ee1a8e000-7f4ee1a90000 rw-p 001c3000 08:01 787362

/lib/x86_64-linux-gnu/libc-2.23.so

7f4ee1a90000-7f4ee1a94000 rw-p 00000000 00:00 0

7f4ee1a94000-7f4ee1aba000 r-xp 00000000 08:01 787342

/lib/x86_64-linux-gnu/ld-2.23.so

7f4ee1cab000-7f4ee1cae000 rw-p 00000000 00:00 0

7f4ee1cb7000-7f4ee1cb9000 rw-p 00000000 00:00 0

7f4ee1cb9000-7f4ee1cba000 r--p 00025000 08:01 787342

/lib/x86_64-linux-gnu/ld-2.23.so

7f4ee1cba000-7f4ee1cbb000 rw-p 00026000 08:01 787342

/lib/x86_64-linux-gnu/ld-2.23.so

7f4ee1cbb000-7f4ee1cbc000 rw-p 00000000 00:00 0

7ffe94296000-7ffe942b7000 rw-p 00000000 00:00 0 [stack]

7ffe943a0000-7ffe943a2000 r--p 00000000 00:00 0 [vvar]

7ffe943a2000-7ffe943a4000 r-xp 00000000 00:00 0 [vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0

[vsyscall]

$

Shell Box 4-15: Dumping the content of /proc/402/maps

As you see in Shell Box 4-15, the result consists of a number of rows. Each
row represents a memory mapping that indicates a range of memory
addresses (a region) that are allocated and mapped to a specific file or
segment in the dynamic memory layout of the process. Each mapping has
a number of fields separated by one or more spaces. Next, you can find the
descriptions of these fields from left to right:

Address range: These are the start and end addresses of the mapped
range. You can find a file path in front of them if the region is
mapped to a file. This is a smart way to map the same loaded shared
object file in various processes. We have talked about this as part of
Chapter 3, Object Files.



Permissions: This indicates whether the content can be executed
( x ), read ( r ), or modified ( w ). The region can also be shared ( s )
by the other processes or be private ( p ) only to the owning process.
Offset: If the region is mapped to a file, this is the offset from the
beginning of the file. It is usually 0 if the region is not mapped to a
file.
Device: If the region is mapped to a file, this would be the device
number (in the form of m:n), indicating a device that contains the
mapped file. For example, this would be the device number of the
hard disk that contains a shared object file.
The inode: If the region is mapped to a file, that file should reside on
a filesystem. Then, this field would be the inode number of the file in
that filesystem. An inode is an abstract concept within filesystems
such as ext4 which are mostly used in Unix-like operating systems.
Each inode can represent both files and directories. Every inode has a
number that is used to access its content.
Pathname or description: If the region is mapped to a file, this
would be the path to that file. Otherwise, it would be left empty, or it
would describe the purpose of the region. For example, [stack]
indicates that the region is actually the Stack segment.

The maps  file provides even more useful information regarding the
dynamic memory layout of a process. We'll need a new example to
properly demonstrate this.

Stack segment
First, let's talk more about the Stack segment. The Stack is a crucial part
of the dynamic memory in every process, and it exists in almost all
architectures. You have seen it in the memory mappings described as
[stack] .

Both Stack and Heap segments have dynamic contents which are
constantly changing while the process is running. It is not easy to see the
dynamic contents of these segments and most of the time you need a



debugger such as gdb  to go through the memory bytes and read them
while a process is running.

As pointed out before, the Stack segment is usually limited in size, and it
is not a good place to store big objects. If the Stack segment is full, the
process cannot make any further function calls since the function call
mechanism relies heavily on the functionality of the Stack segment.

If the Stack segment of a process becomes full, the process gets
terminated by the operating system. Stack overflow is a famous error that
happens when the Stack segment becomes full. We discuss the function
call mechanism in future paragraphs.

As explained before, the Stack segment is a default memory region that
variables are allocated from. Suppose that you've declared a variable
inside a function, as follows:

void func() {

// The memory required for the following variable is

// allocated from the stack segment.

int a;

...

}

Code Box 4-7: Declaring a local variable which has its memory allocated from the Stack
segment

In the preceding function, while declaring the variable, we have not
mentioned anything to let the compiler know which segment the variable
should be allocated from. Because of this, the compiler uses the Stack
segment by default. The Stack segment is the first place that allocations
are made from.

As its name implies, it is a stack. If you declare a local variable, it
becomes allocated on top of the Stack segment. When you're leaving the
scope of the declared local variable, the compiler has to pop the local
variables first in order to bring up the local variables declared in the outer
scope.



Note:

Stack, in its abstract form, is a First In, Last Out (FILO) or Last In,
First Out (LIFO) data structure. Regardless of the implementation
details, each entry is stored (pushed) on top of the stack, and it will be
buried by further entries. One entry cannot be popped out without
removing the above entries first.

Variables are not the only entities that are stored in the Stack segment.
Whenever you make a function call, a new entry called a stack frame is
placed on top of the Stack segment. Otherwise, you cannot return to the
calling function or return the result back to the caller.

Having a healthy stacking mechanism is vital to have a working program.
Since the size of the Stack is limited, it is a good practice to declare small
variables in it. Also, the Stack shouldn't be filled by too many stack
frames as a result of making infinite recursive calls or too many function
calls.

From a different perspective, the Stack segment is a region used by you, as
a programmer, to keep your data and declare the local variables used in
your algorithms, and by the operating system, as the program runner, to
keep the data needed for its internal mechanisms to execute your program
successfully.

In this sense, you should be careful when working with this segment
because misusing it or corrupting its data can interrupt the running process
or even make it crash. The Heap segment is the memory segment that is
only managed by the programmer. We will cover the Heap segment in the
next section.

It is not easy to see the contents of the Stack segment from outside if we
are only using the tools we've introduced for probing the static memory
layout. This part of memory contains private data and can be sensitive. It
is also private to the process, and other processes cannot read or modify it.

So, for sailing through the Stack memory, one has to attach something to a
process and see the Stack segment through the eyes of that process. This



can be done using a debugger program. A debugger attaches to a process
and allows a programmer to control the target process and investigate its
memory content. We will use this technique and examine the Stack
memory in the following chapter. For now, we leave the Stack segment to
discuss more about the Heap segment. We will get back to the Stack in the
next chapter.

Heap segment
The following example, example 4.7, shows how memory mappings can be
used to find regions allocated for the Heap segment. It is quite similar to
example 4.6, but it allocates a number of bytes from the Heap segment
before entering the infinite loop.

Therefore, just like we did for example 4.6, we can go through the memory
mappings of the running process and see which mapping refers to the Heap
segment.

The following code box contains the code for example 4.7:

#include <unistd.h> // Needed for sleep function

#include <stdlib.h> // Needed for malloc function

#include <stdio.h> // Needed for printf

int main(int argc, char** argv) {

void* ptr = malloc(1024); // Allocate 1KB from heap

printf("Address: %p\n", ptr);

fflush(stdout); // To force the print

// Infinite loop

while (1) {

sleep(1); // Sleep 1 second

};

return 0;

}

Code Box 4-8 [ExtremeC_examples_chapter4_7.c]: Example 4.7 used for probing the Heap
segment

In the preceding code, we used the malloc  function. It's the primary way
to allocate extra memory from the Heap segment. It accepts the number of



bytes that should be allocated, and it returns a generic pointer.

As a reminder, a generic pointer (or a void pointer) contains a memory
address but it cannot be dereferenced and used directly. It should be cast to
a specific pointer type before being used.

In example 4.7, we allocate 1024 bytes (or 1KB) before entering the loop.
The program also prints the address of the pointer received from malloc
before starting the loop. Let's compile the example and run it as we did for
example 4.7:

$ g++ ExtremeC_examples_chapter4_7.c -o ex4_7.out

$ ./ex4_7.out &

[1] 3451

Address: 0x19790010

$

Shell Box 4-16: Compiling and running example 4.7

Now, the process is running in the background, and it has obtained the PID
3451.

Let's see what memory regions have been mapped for this process by
looking at its maps  file:

$ cat /proc/3451/maps

00400000-00401000 r-xp 00000000 00:2f 176521

.../extreme_c/4.7/ex4_7.out

00600000-00601000 r--p 00000000 00:2f 176521

.../extreme_c/4.7/ex4_7.out

00601000-00602000 rw-p 00001000 00:2f 176521

.../extreme_c/4.7/ex4_7.out

01979000-0199a000 rw-p 00000000 00:00 0 [heap]

7f7b32f12000-7f7b330d1000 r-xp 00000000 00:2f 30

/lib/x86_64-linux-gnu/libc-2.23.so

7f7b330d1000-7f7b332d1000 ---p 001bf000 00:2f 30

/lib/x86_64-linux-gnu/libc-2.23.so

7f7b332d1000-7f7b332d5000 r--p 001bf000 00:2f 30

/lib/x86_64-linux-gnu/libc-2.23.so

7f7b332d5000-7f7b332d7000 rw-p 001c3000 00:2f 30

/lib/x86_64-linux-gnu/libc-2.23.so

7f7b332d7000-7f7b332db000 rw-p 00000000 00:00 0



7f7b332db000-7f7b33301000 r-xp 00000000 00:2f 27

/lib/x86_64-linux-gnu/ld-2.23.so

7f7b334f2000-7f7b334f5000 rw-p 00000000 00:00 0

7f7b334fe000-7f7b33500000 rw-p 00000000 00:00 0

7f7b33500000-7f7b33501000 r--p 00025000 00:2f 27

/lib/x86_64-linux-gnu/ld-2.23.so

7f7b33501000-7f7b33502000 rw-p 00026000 00:2f 27

/lib/x86_64-linux-gnu/ld-2.23.so

7f7b33502000-7f7b33503000 rw-p 00000000 00:00 0

7ffdd63c2000-7ffdd63e3000 rw-p 00000000 00:00 0 [stack]

7ffdd63e7000-7ffdd63ea000 r--p 00000000 00:00 0 [vvar]

7ffdd63ea000-7ffdd63ec000 r-xp 00000000 00:00 0 [vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0

[vsyscall]

$

Shell Box 4-17: Dumping the content of /proc/3451/maps

If you look at Shell Box 4-17 carefully, you will see a new mapping which
is highlighted, and it is being described by [heap] . This region has been
added because of using the malloc  function. If you calculate the size of
the region, it is 0x21000  bytes or 132 KB. This means that to allocate only
1 KB in the code, a region of the size 132 KB has been allocated.

This is usually done in order to prevent further memory allocations when
using malloc  again in the future. That's simply because the memory
allocation from the Heap segment is not cheap and it has both memory and
time overheads.

If you go back to the code shown in Code Box 4-8, the address that the
ptr  pointer is pointing to is also interesting. The Heap's memory
mapping, shown in Shell Box 4-17, is allocated from the address
0x01979000  to 0x0199a000 , and the address stored in ptr  is 0x19790010 ,
which is obviously inside the Heap range, located at an offset of 16  bytes.

The Heap segment can grow to sizes far greater than 132 KB, even to tens
of gigabytes, and usually it is used for permanent, global, and very big
objects such as arrays and bit streams.

As pointed out before, allocation and deallocation within the heap segment
require a program to call specific functions provided by the C standard.



While you can have local variables on top of the Stack segment, and you
can use them directly to interact with the memory, the Heap memory can
be accessed only through pointers, and this is one of the reasons why
knowing pointers and being able to work with them is crucial to every C
programmer. Let's bring up example 4.8, which demonstrates how to use
pointers to access the Heap space:

#include <stdio.h> // For printf function

#include <stdlib.h> // For malloc and free function

void fill(char* ptr) {

ptr[0] = 'H';

ptr[1] = 'e';

ptr[2] = 'l';

ptr[3] = 'l';

ptr[5] = 0;

}

int main(int argc, char** argv) {

void* gptr = malloc(10 * sizeof(char));

char* ptr = (char*)gptr;

fill(ptr);

printf("%s!\n", ptr);

free(ptr);

return 0;

}

Code Box 4-9 [ExtremeC_examples_chapter4_8.c]: Using pointers to interact with the Heap
memory

The preceding program allocates 10 bytes from the Heap space using the
malloc  function. The malloc  function receives the number of bytes that
should be allocated and returns a generic pointer addressing the first byte
of the allocated memory block.

For using the returned pointer, we have to cast it to a proper pointer type.
Since we are going to use the allocated memory to store some characters,
we choose to cast it to a char  pointer. The casting is done before calling
the fill  function.

Note that the local pointer variables, gptr  and ptr , are allocated from
the Stack. These pointers need memory to store their values, and this
memory comes from the Stack segment. But the address that they are
pointing to is inside the Heap segment. This is the theme when working



with Heap memories. You have local pointers which are allocated from the
Stack segment, but they are actually pointing to a region allocated from
the Heap segment. We show more of these in the following chapter.

Note that the ptr  pointer inside the fill  function is also allocated from
the Stack but it is in a different scope, and it is different from the ptr
pointer declared in the main  function.

When it comes to Heap memory, the program, or actually the programmer,
is responsible for memory allocation. The program is also responsible for
deallocation of the memory when it is not needed. Having a piece of
allocated Heap memory that is not reachable is considered a memory leak.
By not being reachable, we mean that there is no pointer that can be used
to address that region.

Memory leaks are fatal to programs because having an incremental
memory leak will eventually use up the whole allowed memory space, and
this can kill the process. That's why the program is calling the free
function before returning from the main  function. The call to the free
function will deallocate the acquired Heap memory block, and the
program shouldn't use those Heap addresses anymore.

More on Stack and Heap segments will come in the next chapter.

Summary
Our initial goal in this chapter was to provide an overview of the memory
structure of a process in a Unix-like operating system. As we have covered
a lot in this chapter, take a minute to read through what we've been
through, as you should now feel comfortable in understanding what we
have accomplished:

We described the dynamic memory structure of a running process as
well as the static memory structure of an executable object file.



We observed that the static memory layout is located inside the
executable object file and it is broken into pieces which are called
segments. We found out that the Text, Data, and BSS segments are
part of the static memory layout.
We saw that the Text segment or Code segment is used to store the
machine-level instructions meant to be executed when a new process
is spawned out of the current executable object file.
We saw that the BSS segment is used to store global variables that are
either uninitialized or set to zero.
We explained that the Data segment is used to store initialized global
variables.
We used the size  and objdump  commands to probe the internals of
object files. We can also use object file dumpers like readelf  in
order to find these segments inside an object file.
We probed the dynamic memory layout of a process. We saw that all
segments are copied from the static memory layout into the dynamic
memory of the process. However, there are two new segments in the
dynamic memory layout; the Stack segment, and the Heap segment.
We explained that the Stack segment is the default memory region
used for allocations.
We learned that the local variables are always allocated on top of the
Stack region.
We also observed that the secret behind the function calls lies within
the Stack segment and the way it works.
We saw that we have to use a specific API, or a set of functions, in
order to allocate and deallocate Heap memory regions. This API is
provided by the C standard library.
We discussed memory leakage and how it can happen regarding Heap
memory regions.

The next chapter is about the Stack and Heap segments specifically. It will
use the topics we have covered within this chapter, and it will add more to
those foundations. More examples will be given, and new probing tools



will be introduced; this will complete our discussion regarding memory
management in C.



Chapter 05
Stack and Heap

In the previous chapter, we ran an investigation of the memory layout of a
running process. System programming without knowing enough about the
memory structure and its various segments is like doing surgery without
knowing the anatomy of the human body. The previous chapter just gave
us the basic information regarding the different segments in the process
memory layout, but this chapter wants us to just focus on the most
frequently used segments: Stack and Heap.

As a programmer, you are mostly busy working with Stack and Heap
segments. Other segments such as Data or BSS are less in use, or you have
less control over them. That's basically because of the fact that the Data
and BSS segments are generated by the compiler, and usually, they take up
a small percentage of the whole memory of a process during its lifetime.
This doesn't mean that they are not important, and, in fact, there are issues
that directly relate to these segments. But as you are spending most of
your time with Stack and Heap, most memory issues have roots in these
segments.

As part of this chapter, you will learn:

How to probe the Stack segment and the tools you need for this
purpose
How memory management is done automatically for the Stack
segment
The various characteristics of the stack segment
The guidelines and best practices on how to use the Stack segment
How to probe the Heap segment



How to allocate and deallocate a Heap memory block
The guidelines and best practices regarding the usage of the Heap
segment
Memory-constrained environments and tuning memory in performant
environments

Let's begin our quest by discussing the Stack segment in more detail.

Stack
A process can continue working without the Heap segment but not without
the Stack segment. This says a lot. The Stack is the main part of the
process metabolism, and it cannot continue execution without it. The
reason is hiding behind the mechanism driving the function calls. As
briefly explained in the previous chapter, calling a function can only be
done by using the Stack segment. Without a Stack segment, no function
call can be made, and this means no execution at all.

With that said, the Stack segment and its contents are engineered carefully
to result in the healthy execution of the process. Therefore, messing with
the Stack content can disrupt the execution and halt the process.
Allocation from the Stack segment is fast, and it doesn't need any special
function call. More than that, the deallocation and all memory
management tasks happen automatically. All these facts are all very
tempting and encourage you to overuse the Stack.

You should be careful about this. Using the Stack segment brings its own
complications. The stack is not very big, therefore you cannot store large
objects in it. In addition, incorrect use of the Stack content can halt the
execution and result in a crash. The following piece of code demonstrates
this:

#include <string.h>

int main(int argc, char** argv) {

char str[10];



strcpy(str,

"akjsdhkhqiueryo34928739r27yeiwuyfiusdciuti7twe79ye");

return 0;

}

Code Box 5-1: A buffer overflow situation. The strcpy function will overwrite the content of
the Stack

When running the preceding code, the program will most likely crash.
That's because the strcpy  is overwriting the content of the Stack, or as it
is commonly termed, smashing the stack. As you see in Code Box 5-1, the
str  array has 10  characters, but the strcpy  is writing way more than 10
characters to the str  array. As you will see shortly, this effectively writes
on the previously pushed variables and stack frames, and the program
jumps to a wrong instruction after returning from the main  function. And
this eventually makes it impossible to continue the execution.

I hope that the preceding example has helped you to appreciate the
delicacy of the Stack segment. In the first half of this chapter, we are
going to have a deeper look into the Stack and examine it closely. We first
start by probing into the Stack.

Probing the Stack
Before knowing more about the Stack, we need to be able to read and,
probably, modify it. As stated in the previous chapter, the Stack segment is
a private memory that only the owner process has the right to read and
modify. If we are going to read the Stack or change it, we need to become
part of the process owning the Stack.

This is where a new set of tools come in: debuggers. A debugger is a
program that attaches to another process in order to debug it. One of the
usual tasks while debugging a process is to observe and manipulate the
various memory segments. Only when debugging a process are we able to
read and modify the private memory blocks. The other thing that can be
done as part of debugging is to control the order of the execution of the



program instructions. We give examples on how to do these tasks using a
debugger shortly, as part of this section.

Let's start with an example. In example 5.1, we show how to compile a
program and make it ready for debugging. Then, we demonstrate how to
use gdb , the GNU debugger, to run the program and read the Stack
memory. This example declares a character array allocated on top of the
Stack and populates its elements with some characters, as can be seen in
the following code box:

#include <stdio.h>

int main(int argc, char** argv) {

char arr[4];

arr[0] = 'A';

arr[1] = 'B';

arr[2] = 'C';

arr[3] = 'D';

return 0;

}

Code Box 5-2 [ExtremeC_examples_chapter5_1.c]: Declaration of an array allocated on top
of the Stack

The program is simple and easy to follow, but the things that are
happening inside the memory are interesting. First of all, the memory
required for the arr  array is allocated from the Stack simply because it is
not allocated from the Heap segment and we didn't use the malloc
function. Remember, the Stack segment is the default place for allocating
variables and arrays.

In order to have some memory allocated from the Heap, one should
acquire it by calling malloc  or other similar functions, such as calloc .
Otherwise, the memory is allocated from the Stack, and more precisely, on
top of the Stack.

In order to be able to debug a program, the binary must be built for
debugging purposes. This means that we have to tell the compiler that we
want a binary that contains debug symbols. These symbols will be used to
find the code lines that have been executing or those that caused a crash.



Let's compile example 5.1 and create an executable object file that
contains debugging symbols.

First, we build the example. We're doing our compilation in a Linux
environment:

$ gcc -g ExtremeC_examples_chapter5_1.c -o ex5_1_dbg.out

$

Shell Box 5-1: Compiling the example 5.1 with debug option -g

The -g  option tells the compiler that the final executable object file must
contain the debugging information. The size of the binary is also different
when you compile the source with and without the debug option. Next, you
can see the difference between the sizes of the two executable object files,
the first one built without the -g  option and the second one with the -g
option:

$ gcc ExtremeC_examples_chapter2_10.c -o ex5_1.out

$ ls -al ex5_1.out

-rwxrwxr-x 1 kamranamini kamranamini 8640 jul 24 13:55

ex5_1.out

$ gcc -g ExtremeC_examples_chapter2_10.c -o ex5_1_dbg.out

$ ls -al ex5_1.out

-rwxrwxr-x 1 kamranamini kamranamini 9864 jul 24 13:56

ex5_1_dbg.out

$

Shell Box 5-2: The size of the output executable object file with and without the -g option

Now that we have an executable file containing the debug symbols, we can
use the debugger to run the program. In this example, we are going to use
gdb  for debugging example 5.1. Next, you can find the command to start
the debugger:

$ gdb ex5_1_dbg.out

Shell Box 5-3: Starting the debugger for the example 5.1



Note:

gdb  is usually installed as part of the build-essentials  package
on Linux systems. In macOS systems, it can be installed using the
brew  package manager like this: brew install gdb .

After running the debugger, the output will be something similar to the
following shell box:

$ gdb ex5_1_dbg.out

GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.5) 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later

http://gnu.org/licenses/gpl.html

...

Reading symbols from ex5_1_dbg.out...done.

(gdb)

Shell Box 5-4: The output of the debugger after getting started

As you may have noticed, I've run the preceding command on a Linux
machine. gdb  has a command-line interface that allows you to issue
debugging commands. Enter the r  (or run ) command in order to execute
the executable object file, specified as an input to the debugger. The
following shell box shows how the run  command executes the program:

...

Reading symbols from ex5_1_dbg.out...done.

(gdb) run

Starting program: .../extreme_c/5.1/ex5_1_dbg.out

[Inferior 1 (process 9742) exited normally]

(gdb)

Shell Box 5-5: The output of the debugger after issuing the run command

In the preceding shell box, after issuing the run  command, gdb  has
started the process, attached to it, and let the program execute its
instructions and exit. It did not interrupt the program because we have not
set a breakpoint. A breakpoint is an indicator that tells gdb  to pause the



program execution and wait for further instructions. You can have as many
breakpoints as you want.

Next, we set a breakpoint on the main  function using the b  (or break )
command. After setting the breakpoint, gdb  pauses the execution when
the program enters the main  function. You can see how to set a breakpoint
on the main  function in the following shell box:

(gdb) break main

Breakpoint 1 at 0x400555: file

ExtremeC_examples_chapter5_1.c, line 4.

(gdb)

Shell Box 5-6: Setting a breakpoint on the main function in gdb

Now, we run the program again. This creates a new process, and gdb
attaches to it. Next, you can find the result:

(gdb) r

Starting program: .../extreme_c/5.1/ex5_1_dbg.out

Breakpoint 1, main (argc=1, argv=0x7fffffffcbd8) at

ExtremeC_examples_chapter5_1.c:3

3 int main(int argc, char** argv) {

(gdb)

Shell Box 5-7: Running the program again after setting the breakpoint

As you can see, the execution has paused at line 3, which is just the line of
the main  function. Then, the debugger waits for the next command. Now,
we can ask gdb  to run the next line of code and pause again. In other
words, we run the program step by step and line by line. This way, you
have enough time to look around and check the variables and their values
inside the memory. In fact, this is the method we are going to use to probe
the Stack and the Heap segments.

In the following shell box, you can see how to use the n  (or next )
command to run the next line of code:

(gdb) n



5 arr[0] = 'A';

(gdb) n

6 arr[1] = 'B';

(gdb) next

7 arr[2] = 'C';

(gdb) next

8 arr[3] = 'D';

(gdb) next

9 return 0;

(gdb)

Shell Box 5-8: Using the n (or next) command to execute upcoming lines of code

Now, if you enter the print arr  command in the debugger, it will show
the content of the array as a string:

(gdb) print arr

$1 = "ABCD"

(gdb)

Shell Box 5-9: Printing the content of the arr array using gdb

To get back to the topic, we introduced gdb  to be able to see inside the
Stack memory. Now, we can do it. We have a process that has a Stack
segment, and it is paused, and we have a gdb  command line to explore its
memory. Let's begin and print the memory allocated for the arr  array:

(gdb) x/4b arr

0x7fffffffcae0: 0x41 0x42 0x43 0x44

(gdb) x/8b arr

0x7fffffffcae0: 0x41 0x42 0x43 0x44 0xff 0x7f 0x00 0x00

(gdb)

Shell Box 5-10: Printing bytes of memory starting from the arr array

The first command, x/4b , shows 4 bytes from the location that arr  is
pointing to. Remember that arr  is a pointer that actually is pointing to
the first element of the array, so it can be used to move along the memory.

The second command, x/8b , prints 8 bytes after arr . According to the
code written for example 5.1, and found in Code Box 5-2, the values A , B ,



C , and D  are stored in the array, arr . You should know that ASCII values
are stored in the array, not the real characters. The ASCII value for A  is
65  decimal or 0x41  hexadecimal. For B , it is 66  or 0x42 . As you can
see, the values printed in the gdb  output are the values we just stored in
the arr  array.

What about the other 4 bytes in the second command? They are part of the
Stack, and they probably contain data from the recent Stack frame put on
top of the Stack while calling the main  function.

Note that the Stack segment is filled in an opposite fashion in comparison
to other segments.

Other memory regions are filled starting from the smaller addresses and
they move forward to bigger addresses, but this is not the case with the
Stack segment.

The Stack segment is filled from the bigger addresses and moves
backward to the smaller addresses. Some of the reasons behind this design
lie in the development history of modern computers, and some in the
functionality of the Stack segment, which behaves like a stack data
structure.

With all that said, if you read the Stack segment from an addresses toward
the bigger addresses, just like we did in Shell Box 5-10, you are effectively
reading the already pushed content as part of the Stack segment, and if you
try to change those bytes, you are altering the Stack, and this is not good.
We will demonstrate why this is dangerous and how this can be done in
future paragraphs.

Why are we able to see more than the size of the arr  array? Because gdb
goes through the number of bytes in the memory that we have requested.
The x  command doesn't care about the array's boundary. It just needs a
starting address and the number of bytes to print the range.

If you want to change the values inside the Stack, you have to use the set
command. This allows you to modify an existing memory cell. In this
case, the memory cell refers to an individual byte in the arr  array:



(gdb) x/4b arr

0x7fffffffcae0: 0x41 0x42 0x43 0x44

(gdb) set arr[1] = 'F'

(gdb) x/4b arr

0x7fffffffcae0: 0x41 0x46 0x43 0x44

(gdb) print arr

$2 = "AFCD"

(gdb)

Shell Box 5-11: Changing an individual byte in the array using the set command

As you can see, using the set  command, we have set the second element
of the arr  array to F . If you are going to change an address that is not in
the boundaries of your arrays, it is still possible through gdb .

Please observe the following modification carefully. Now, we want to
modify a byte located in a far bigger address than arr , and as we
explained before, we will be altering the already pushed content of the
Stack. Remember, the Stack memory is filled in an opposite manner
compared to other segments:

(gdb) x/20x arr

0x7fffffffcae0: 0x41 0x42 0x43 0x44 0xff 0x7f 0x00 0x00

0x7fffffffcae8: 0x00 0x96 0xea 0x5d 0xf0 0x31 0xea 0x73

0x7fffffffcaf0: 0x90 0x05 0x40 0x00

(gdb) set *(0x7fffffffcaed) = 0xff

(gdb) x/20x arr

0x7fffffffcae0: 0x41 0x42 0x43 0x44 0xff 0x7f 0x00 0x00

0x7fffffffcae8: 0x00 0x96 0xea 0x5d 0xf0 0xff 0x00 0x00

0x7fffffffcaf0: 0x00 0x05 0x40 0x00

(gdb)

Shell Box 5-12: Changing an individual byte outside of the array's boundary

That is all. We just wrote the value 0xff  in the 0x7fffffffcaed  address,
which is out of the boundary of the arr  array, and probably a byte within
the stack frame pushed before entering the main  function.

What will happen if we continue the execution? If we have modified a
critical byte in the Stack, we expect to see a crash or at least have this
modification detected by some mechanism and have the execution of the



program halted. The command c  (or continue ) will continue the
execution of the process in gdb , as you can see next:

(gdb) c

Continuing.

*** stack smashing detected ***:

.../extreme_c/5.1/ex5_1_dbg.out terminated

Program received signal SIGABRT, Aborted.

0x00007ffff7a42428 in __GI_raise (sig=sig@entry=6) at

../sysdeps/Unix/sysv/linux/raise.c:54

54 ../sysdeps/Unix/sysv/linux/raise.c: No such file or

directory.

(gdb)

Shell Box 5-13: Having a critical byte changed in the Stack terminates the process

As you can see in the preceding shell box, we've just smashed the Stack!
Modifying the content of the Stack in addresses that are not allocated by
you, even by 1 byte, can be very dangerous and it usually leads to a crash
or a sudden termination.

As we have said before, most of the vital procedures regarding the
execution of a program are done within the Stack memory. So, you should
be very careful when writing to Stack variables. You should not write any
values outside of the boundaries defined for variables and arrays simply
because the addresses grow backward in the Stack memory, which makes
it likely to overwrite the already written bytes.

When you're done with debugging, and you're ready to leave the gdb , then
you can simply use the command q  (or quit ). Now, you should be out of
the debugger and back in the terminal.

As another note, writing unchecked values into a buffer (another name for
a byte or character array) allocated on top of the Stack (not from the Heap)
is considered a vulnerability. An attacker can carefully design a byte array
and feed it to the program in order to take control of it. This is usually
called an exploit because of a buffer overflow attack.

The following program shows this vulnerability:



int main(int argc, char** argv) {

char str[10];

strcpy(str, argv[1]);

printf("Hello %s!\n", str);

}

Code Box 5-3: A program showing the buffer overflow vulnerability

The preceding code does not check the argv[1]  input for its content and
its size and copies it directly into the str  array, which is allocated on top
of the Stack.

If you're lucky, this can lead to a crash, but in some rare but dangerous
cases, this can lead to an exploit attack.

Points on using the Stack memory
Now that you have a better understanding of the Stack segment and how it
works, we can talk about the best practices and the points you should be
careful about. You should be familiar with the scope concept. Each Stack
variable has its own scope, and the scope determines the lifetime of the
variable. This means that a Stack variable starts its lifetime in one scope
and dies when that scope is gone. In other words, the scope determines the
lifetime of a Stack variable.

We also have automatic memory allocation and deallocation for Stack
variables, and it is only applicable to the Stack variables. This feature,
automatic memory management, comes from the nature of the Stack
segment.

Whenever you declare a Stack variable, it will be allocated on top of the
Stack segment. Allocation happens automatically, and this can be marked
as the start of its lifetime. After this point, many more variables and other
stack frames are put on top of it inside the Stack. As long as the variable
exists in the Stack and there are other variables on top of it, it survives and
continues living.



Eventually, however, this stuff will get popped out of the Stack because at
some point in the future the program has to be finished, and the stack
should be empty at that moment. So, there should be a point in the future
when this variable is popped out of the stack. So, the deallocation, or
getting popped out, happens automatically, and that can be marked as the
end of the variable's lifetime. This is basically the reason why we say that
we have automatic memory management for the Stack variables that is not
controlled by the programmer.

Suppose that you have defined a variable in the main  function, as we see
in the following code box:

int main(int argc, char** argv) {

int a;

...

return 0;

}

Code Box 5-4: Declaring a variable on top of the Stack

This variable will stay in the Stack until the main  function returns. In
other words, the variable exists until its scope (the main  function) is
valid. Since the main  function is the function in which all the program
runs, the lifetime of the variable is almost like a global variable that is
declared throughout the runtime of the program.

It is like a global variable, but not exactly one, because there will be a
time that the variable is popped out from the Stack, whereas a global
variable always has its memory even when the main function is finished
and the program is being finalized. Note that there are two pieces of code
that are run before and after the main  function, bootstrapping and
finalizing the program respectively. As another note, global variables are
allocated from a different segment, Data or BSS, that does not behave like
the Stack segment.

Let's now look at an example of a very common mistake. It usually
happens to an amateur programmer while writing their first C programs. It
is about returning an address to a local variable inside a function.



The following code box shows example 5.2:

int* get_integer() {

int var = 10;

return &var;

}

int main(int argc, char** argv) {

int* ptr = get_integer();

*ptr = 5;

return 0;

}

Code Box 5-5 [ExtremeC_examples_chapter5_2.c]: Declaring a variable on top of the Stack

The get_integer  function returns an address to the local variable, var ,
which has been declared in the scope of the get_integer  function. The
get_integer  function returns the address of the local variable. Then, the
main  function tries to dereference the received pointer and access the
memory region behind. The following is the output of the gcc  compiler
while compiling the preceding code on a Linux system:

$ gcc ExtremeC_examples_chapter5_2.c -o ex5_2.out

ExtremeC_examples_chapter5_2.c: In function 'get_integer':

ExtremeC_examples_chapter5_2.c:3:11: warning: function

returns address of local variable [-Wreturn-local-addr]

return &var;

^~~~

$

Shell Box 5-14: Compiling the example 5.2 in Linux

As you can see, we have received a warning message. Since returning the
address of a local variable is a common mistake, compilers already know
about it, and they show a clear warning message like warning: function
returns address of a local variable .

And this is what happens when we execute the program:

$ ./ex5_2.out

Segmentation fault (core dumped)

$



Shell Box 5-15: Executing the example 5.2 in Linux

As you can see in Shell Box 5-15, a segmentation fault has happened. It
can be translated as a crash. It is usually because of invalid access to a
region of memory that had been allocated at some point, but now it is
deallocated.

Note:

Some warnings should be treated as errors. For example, the preceding
warning should be an error because it usually leads to a crash. If you
want to make all warning to be treated as errors, it is enough to pass the
-Werror  option to gcc  compiler. If you want to treat only one

specific warning as an error, for example, the preceding warning, it is
enough to pass the -Werror=return-local-addr  option.

If you run the program with gdb , you will see more details regarding the
crash. But remember, you need to compile the program with the -g  option
otherwise gdb  won't be that helpful.

It is always mandatory to compile the sources with -g  option if you are
about to debug the program using gdb  or other debugging tools such as
valgrind . The following shell box demonstrates how to compile and run
example 5.2 in the debugger:

$ gcc -g ExtremeC_examples_chapter5_2.c -o ex5_2_dbg.out

ExtremeC_examples_chapter5_2.c: In function 'get_integer':

ExtremeC_examples_chapter5_2.c:3:11: warning: function

returns address of local variable [-Wreturn-local-addr]

return &var;

^~~~

$ gdb ex5_2_dbg.out

GNU gdb (Ubuntu 8.1-0ubuntu3) 8.1.0.20180409-git

...

Reading symbols from ex5_2_dbg.out...done.

(gdb) run

Starting program: .../extreme_c/5.2/ex5_2_dbg.out

Program received signal SIGSEGV, Segmentation fault.

0x00005555555546c4 in main (argc=1, argv=0x7fffffffdf88) at

ExtremeC_examples_chapter5_2.c:8



8 *ptr = 5;

(gdb) quit

$

Shell Box 5-16: Running the example 5.2 in the debugger

As is clear from the gdb  output, the source of the crash is located at line 8
in the main  function, exactly where the program tries to write to the
returned address by dereferencing the returned pointer. But the var
variable has been a local variable to the get_integer  function and it
doesn't exist anymore, simply because at line 8 we have already returned
from the get_integer  function and its scope, together with all variables,
have vanished. Therefore, the returned pointer is a dangling pointer.

It is usually a common practice to pass the pointers addressing the
variables in the current scope to other functions but not the other way
around, because as long as the current scope is valid, the variables are
there. Further function calls only put more stuff on top of the Stack
segment, and the current scope won't be finished before them.

Note that the above statement is not a good practice regarding concurrent
programs because in the future, if another concurrent task wants to use the
received pointer addressing a variable inside the current scope, the current
scope might have vanished already.

To end this section and have a conclusion about the Stack segment, the
following points can be extracted from what we have explained so far:

Stack memory has a limited size; therefore, it is not a good place to
store big objects.
The addresses in Stack segment grow backward, therefore reading
forward in the Stack memory means reading already pushed bytes.
Stack has automatic memory management, both for allocation and
deallocation.
Every Stack variable has a scope and it determines its lifetime. You
should design your logic based on this lifetime. You have no control
over it.



Pointers should only point to those Stack variables that are still in a
scope.
Memory deallocation of Stack variables is done automatically when
the scope is about to finish, and you have no control over it.
Pointers to variables that exist in the current scope can be passed to
other functions as arguments only when we are sure that the current
scope will be still in place when the code in the called functions is
about to use that pointer. This condition might break in situations
when we have concurrent logic.

In the next section, we will talk about the Heap segment and its various
features.

Heap
Almost any code, written in any programming language, uses Heap
memory in some way. That's because the Heap has some unique
advantages that cannot be achieved by using the Stack.

On the other hand, it also has some disadvantages; for example, it is
slower to allocate a region of Heap memory in comparison to a similar
region in Stack memory.

In this section, we are going to talk more about the Heap itself and the
guidelines we should keep in mind when using Heap memory.

Heap memory is important because of its unique properties. Not all of
them are advantageous and, in fact, some of them can be considered as
risks that should be mitigated. A great tool always has good points and
some bad points, and if you are going to use it properly, you are required
to know both sides very well.

Here, we are going to list these features and see which ones are beneficial
and which are risky:



1. The Heap doesn't have any memory blocks that are allocated
automatically. Instead, the programmer must use malloc  or similar
functions to obtain Heap memory blocks, one by one. In fact, this
could be regarded as a weak point for Stack memory that is resolved
by Heap memory. Stack memory can contain stack frames, which are
not allocated and pushed by the programmer but as a result of
function calls, and in an automatic fashion.

2. The Heap has a large memory size. While the size of the Stack is
limited and it is not a good choice for keeping big objects, the Heap
allows the storing of very big objects even tens of gigabytes in size.
As the Heap size grows, the allocator needs to request more heap
pages from the operating system, and the Heap memory blocks are
spread among these pages. Note that, unlike the Stack segment, the
allocating addresses in the Heap memory move forward to bigger
addresses.

3. Memory allocation and deallocation inside Heap memory are
managed by the programmer. This means that the programmer is
the sole responsible entity for allocating the memory and then freeing
it when it is not needed anymore. In many recent programming
languages, freeing allocated Heap blocks is done automatically by a
parallel component called garbage collector. But in C and C++, we
don't have such a concept and freeing the Heap blocks should be done
manually. This is indeed a risk, and C/C++ programmers should be
very careful while using heap memory. Failing to free the allocated
Heap blocks usually leads to memory leaks, which can be fatal in
most cases.

4. Variables allocated from the Heap do not have any scope, unlike
variables in the Stack.

5. This is a risk because it makes memory management much harder.
You don't know when you need to deallocate the variable, and you
have to come up with some new definitions for the scope and the
owner of the memory block in order to do the memory management
effectively. Some of these methods are covered in the upcoming
sections.



6. We can only use pointers to address a Heap memory block. In
other words, there is no such concept as a Heap variable. The Heap
region is addressed via pointers.

7. Since the Heap segment is private to its owner process, we need to
use a debugger to probe it. Fortunately, C pointers work with the
Heap memory block exactly the same as they work with Stack
memory blocks. C does this abstraction very well, and because of
this, we can use the same pointers to address both memories.
Therefore, we can use the same methods that we used to examine the
Stack to probe the Heap memory.

In the next section, we are going to discuss how to allocate and deallocate
a heap memory block.

Heap memory allocation and deallocation
As we said in the previous section, Heap memory should be obtained and
released manually. This means that the programmer should use a set of
functions or API (the C standard library's memory allocation functions) in
order to allocate or free a memory block in the Heap.

These functions do exist, and they are defined in the header, stdlib.h .
The functions used for obtaining a Heap memory block are malloc ,
calloc , and realloc , and the sole function used for releasing a Heap
memory block is free . Example 5.3 demonstrates how to use some of
these functions.

Note:

In some texts, dynamic memory is used to refer to Heap memory.
Dynamic memory allocation is a synonym for Heap memory allocation.

The following code box shows the source code of example 5.3. It allocates
two Heap memory blocks, and then it prints its own memory mappings:



#include <stdio.h> // For printf function

#include <stdlib.h> // For C library's heap memory functions

void print_mem_maps() {

#ifdef __linux__

FILE* fd = fopen("/proc/self/maps", "r");

if (!fd) {

printf("Could not open maps file.\n");

exit(1);

}

char line[1024];

while (!feof(fd)) {

fgets(line, 1024, fd);

printf("> %s", line);

}

fclose(fd);

#endif

}

int main(int argc, char** argv) {

// Allocate 10 bytes without initialization

char* ptr1 = (char*)malloc(10 * sizeof(char));

printf("Address of ptr1: %p\n", (void*)&ptr1);

printf("Memory allocated by malloc at %p: ", (void*)ptr1);

for (int i = 0; i < 10; i++) {

printf("0x%02x ", (unsigned char)ptr1[i]);

}

printf("\n");

// Allocation 10 bytes all initialized to zero

char* ptr2 = (char*)calloc(10, sizeof(char));

printf("Address of ptr2: %p\n", (void*)&ptr2);

printf("Memory allocated by calloc at %p: ", (void*)ptr2);

for (int i = 0; i < 10; i++) {

printf("0x%02x ", (unsigned char)ptr2[i]);

}

printf("\n");

print_mem_maps();

free(ptr1);

free(ptr2);

return 0;

}

Code Box 5-6 [ExtremeC_examples_chapter5_3.c]: Example 5.3 showing the memory
mappings after allocating two Heap memory blocks

The preceding code is cross-platform, and you can compile it on most
Unix-like operating systems. But the print_mem_maps  function only works
on Linux since the __linux__  macro is only defined in Linux



environments. Therefore, in macOS, you can compile the code, but the
print_mem_maps  function won't do anything.

The following shell box is the result of running the example in a Linux
environment:

$ gcc ExtremeC_examples_chapter5_3.c -o ex5_3.out

$ ./ex5_3.out

Address of ptr1: 0x7ffe0ad75c38

Memory allocated by malloc at 0x564c03977260: 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00

Address of ptr2: 0x7ffe0ad75c40

Memory allocated by calloc at 0x564c03977690: 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00

> 564c01978000-564c01979000 r-xp 00000000 08:01 5898436

/home/kamranamini/extreme_c/5.3/ex5_3.out

> 564c01b79000-564c01b7a000 r--p 00001000 08:01 5898436

/home/kamranamini/extreme_c/5.3/ex5_3.out

> 564c01b7a000-564c01b7b000 rw-p 00002000 08:01 5898436

/home/kamranamini/extreme_c/5.3/ex5_3.out

> 564c03977000-564c03998000 rw-p 00000000 00:00 0 [heap]

> 7f31978ec000-7f3197ad3000 r-xp 00000000 08:01 5247803

/lib/x86_64-linux-gnu/libc-2.27.so

...

> 7f3197eef000-7f3197ef1000 rw-p 00000000 00:00 0

> 7f3197f04000-7f3197f05000 r--p 00027000 08:01 5247775

/lib/x86_64-linux-gnu/ld-2.27.so

> 7f3197f05000-7f3197f06000 rw-p 00028000 08:01 5247775

/lib/x86_64-linux-gnu/ld-2.27.so

> 7f3197f06000-7f3197f07000 rw-p 00000000 00:00 0

> 7ffe0ad57000-7ffe0ad78000 rw-p 00000000 00:00 0 [stack]

> 7ffe0adc2000-7ffe0adc5000 r--p 00000000 00:00 0 [vvar]

> 7ffe0adc5000-7ffe0adc7000 r-xp 00000000 00:00 0 [vdso]

> ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0

[vsyscall]

$

Shell Box 5-17: Output of example 5.3 in Linux

The preceding output has a lot to say. The program prints the addresses of
the pointers ptr1  and ptr2 . If you find the memory mapping of the Stack
segment, as part of the printed memory mappings, you see that the Stack
region starts from 0x7ffe0ad57000  and ends at 0x7ffe0ad78000 . The
pointers are within this range.



This means that the pointers are allocated from the Stack, but they are
pointing to a memory region outside of the Stack segment, in this case, the
Heap segment. It is very common to use a Stack pointer to address a Heap
memory block.

Keep in mind that the ptr1  and ptr2  pointers have the same scope and
they will be freed when the main  function returns, but there is no scope to
the Heap memory blocks obtained from the Heap segment. They will
remain allocated until the program frees them manually. You can see that
before returning from the main  function, both memory blocks are freed
using the pointers pointing to them and using the free  function.

As a further note regarding the above example, we can see that the
addresses returned by the malloc  and calloc  functions are located inside
the Heap segment. This can be investigated by comparing the returned
addresses and the memory mapping described as [heap] . The region
marked as heap starts from 0x564c03977000  and ends at 0x564c03998000 .
The ptr1  pointer points to the address 0x564c03977260  and the ptr2
p ointer points to the address 0x564c03977690 , which are both inside the
heap region.

Regarding the Heap allocation function, as their names imply, calloc
stands for clear and allocate and malloc  stands for memory allocate. So,
this means that calloc  clears the memory block after allocation, but
malloc  leaves it uninitialized until the program does it itself if necessary.

Note:

In C++, the new  and delete  keywords do the same as malloc
and free  respectively. Additionally, new operator infers the size of the
allocated memory block from the operand type and also converts the
returned pointer to the operand type automatically.

But if you look at the bytes in the two allocated blocks, both of them have
zero bytes. So, it seems that malloc  has also initialized the memory block
after the allocation. But based on the description of malloc  in the C
Specification, malloc  doesn't initialize the allocated memory block. So,



why is that? To move this further, let's run the example in a macOS
environment:

$ clang ExtremeC_examples_chapter5_3.c -o ex5_3.out

$ ./ ex5_3.out

Address of ptr1: 0x7ffee66b2888

Memory allocated by malloc at 0x7fc628c00370: 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x80 0x00 0x00

Address of ptr2: 0x7ffee66b2878

Memory allocated by calloc at 0x7fc628c02740: 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00

$

Shell Box 5-18: Output of example 5.3 on macOS

If you look carefully, you can see that the memory block allocated by
malloc  has some non-zero bytes, but the memory block allocated by
calloc  is all zeros. So, what should we do? Should we assume that the
memory block allocated by malloc  in Linux is always zeros?

If you are going to write a cross-platform program, always be aligned with
the C specification. The specification says malloc  does not initialize the
allocated memory block.

Even when you are writing your program only for Linux and not for other
operating systems, be aware that future compilers may behave differently.
Therefore, according to the C specification, we must always assume that
the memory block allocated by the malloc  is not initialized and it should
be initialized manually if necessary.

Note that since malloc  doesn't initialize the allocated memory, it is
usually faster than calloc . In some implementations, malloc  doesn't
actually allocate the memory block and defer the allocation until when the
memory block is accessed (either read or write). This way, memory
allocations happen faster.

If you are going to initialize the memory after malloc , you can use the
memset  function. Here is an example:



#include <stdlib.h> // For malloc

#include <string.h> // For memset

int main(int argc, char** argv) {

char* ptr = (char*)malloc(16 * sizeof(char));

memset(ptr, 0, 16 * sizeof(char)); // Fill with 0

memset(ptr, 0xff, 16 * sizeof(char)); // Fill with 0xff

...

free(ptr);

return 0;

}

Code Box 5-7: Using the memset function to initialize a memory block

The realloc  function is another function that is introduced as part of the
Heap allocation functions. It was not used as part of example 5.3. It
actually reallocates the memory by resizing an already allocated memory
block. Here is an example:

int main(int argc, char** argv) {

char* ptr = (char*)malloc(16 * sizeof(char));

...

ptr = (char*)realloc(32 * sizeof(char));

...

free(ptr);

return 0;

}

Code Box 5-8: Using the realloc function to change the size of an already allocated block

The realloc  function does not change the data in the old block and only
expands an already allocated block to a new one. If it cannot expand the
currently allocated block because of fragmentation, it will find another
block that's large enough and copy the data from the old block to the new
one. In this case, it will also free the old block. As you can see,
reallocation is not a cheap operation in some cases because it involves
many steps, hence it should be used with care.

The last note about example 5.3 is on the free  function. In fact, it
deallocates an already allocated Heap memory block by passing the
block's address as a pointer. As it is said before, any allocated Heap block
should be freed when it is not needed. Failing to do so leads to memory



leakage. Using a new example, example 5.4, we are going to show you how
to detect memory leaks using the valgrind  tool.

Let's first produce some memory leaks as part of example 5.4:

#include <stdlib.h> // For heap memory functions

int main(int argc, char** argv) {

char* ptr = (char*)malloc(16 * sizeof(char));

return 0;

}

Code Box 5-9: Producing a memory leak by not freeing the allocated block when returning
from the main function

The preceding program has a memory leak because when the program
ends, we have 16  bytes of Heap memory allocated and not freed. This
example is very simple, but when the source code grows and more
components are involved, it would be too hard or even impossible to
detect it by sight.

Memory profilers are useful programs that can detect the memory issues
in a running process. The famous valgrind  tool is one of the most well
knowns.

In order to use valgrind  to analyze example 5.4, first we need to build the
example with the debug option, -g . Then, we should run it using
valgrind . While running the given executable object file, valgrind
records all of the memory allocations and deallocations. Finally, when the
execution is finished or a crash happens, valgrind  prints out the summary
of allocations and deallocations and the amount of memory that has not
been freed. This way, it can let you know how much memory leak has been
produced as part of the execution of the given program.

The following shell box demonstrates how to compile and use valgrind
for example 5.4:

$ gcc -g ExtremeC_examples_chapter5_4.c -o ex5_4.out

$ valgrind ./ex5_4.out

==12022== Memcheck, a memory error detector



==12022== Copyright (C) 2002-2017, and GNU GPL'd, by Julian

Seward et al.

==12022== Using Valgrind-3.13.0 and LibVEX; rerun with -h

for copyright info

==12022== Command: ./ex5_4.out

==12022==

==12022==

==12022== HEAP SUMMARY:

==12022== in use at exit: 16 bytes in 1 blocks

==12022== total heap usage: 1 allocs, 0 frees, 16 bytes

allocated

==12022==

==12022== LEAK SUMMARY:

==12022== definitely lost: 16 bytes in 1 blocks

==12022== indirectly lost: 0 bytes in 0 blocks

==12022== possibly lost: 0 bytes in 0 blocks

==12022== still reachable: 0 bytes in 0 blocks

==12022== suppressed: 0 bytes in 0 blocks

==12022== Rerun with --leak-chck=full to see details of

leaked memory

==12022==

==12022== For counts of detected and suppressed errors,

rerun with: -v

==12022== ERROR SUMMARY: 0 errors from 0 contexts

(suppressed: 0 from 0)

$

Shell Box 5-19: Output of valgrind showing the 16-byte memory leak as part of the execution
of example 5.4

If you look into the HEAP SUMMARY  section in Shell Box 5-19, you can see
that we had 1  allocation and 0  frees, and 16  bytes remained allocated
while exiting. If you come down a bit to the LEAK SUMMARY  section, it
states that 16  bytes are definitely lost, and this means a memory leak!

If you want to know exactly at which line the mentioned leaking memory
block has been allocated, you can use valgrind  with a special option
designed for this. In the following shell box, you will see how to use
valgrind  to find the lines responsible for the actual allocation:

$ gcc -g ExtremeC_examples_chapter5_4.c -o ex5_4.out

$ valgrind --leak-check=full ./ex5_4.out

==12144== Memcheck, a memory error detector

==12144== Copyright (C) 2002-2017, and GNU GPL'd, by Julian

Seward et al.



==12144== Using Valgrind-3.13.0 and LibVEX; rerun with -h

for copyright info

==12144== Command: ./ex5_4.out

==12144==

==12144==

==12144== HEAP SUMMARY:

==12144== in use at exit: 16 bytes in 1 blocks

==12144== total heap usage: 1 allocs, 0 frees, 16 bytes

allocated

==12144==

==12144== 16 bytes in 1 blocks are definitely lost in loss

record 1 of 1

==12144== at 0x4C2FB0F: malloc (in

/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)

==12144== by 0x108662: main

(ExtremeC_examples_chapter5_4.c:4)

==12144==

==12144== LEAK SUMMARY:

==12144== definitely lost: 16 bytes in 1 blocks

==12144== indirectly lost: 0 bytes in 0 blocks

==12144== possibly lost: 0 bytes in 0 blocks

==12144== still reachable: 0 bytes in 0 blocks

==12144== suppressed: 0 bytes in 0 blocks

==12144==

==12144== For counts of detected and suppressed errors,

rerun with : -v

==12144== ERROR SUMMARY: 1 errors from 1 contexts

(suppressed: 0 from 0)

$

Shell Box 5-20: Output of valgrind showing the line that is responsible for the actual
allocation

As you can see, we have passed the --leak-check=full  option to
valgrind , and now it shows the line of code that is responsible for the
leaking Heap memory. It clearly shows that line 4 in Code Box 5-9, which
is a malloc  call, is where the leaking Heap block has been allocated. This
can help you to trace it further and find the right place that the mentioned
leaking block should be freed.

OK, let's change the preceding example so that it frees the allocated
memory. We just need to add the free(ptr)  instruction before the return
statement, as we can see here:

#include <stdlib.h> // For heap memory functions



int main(int argc, char** argv) {

char* ptr = (char*)malloc(16 * sizeof(char));

free(ptr);

return 0;

}

Code Box 5-10: Freeing up the allocated memory block as part of example 5.4

Now with this change, the only allocated Heap block is freed. Let's build
and run valgrind  again:

$ gcc -g ExtremeC_examples_chapter5_4.c -o ex5_4.out

$ valgrind --leak-check=full ./ex5_4.out

==12175== Memcheck, a memory error detector

==12175== Copyright (C) 2002-2017, and GNU GPL'd, by Julian

Seward et al.

==12175== Using Valgrind-3.13.0 and LibVEX; rerun with -h

for copyright info

==12175== Command: ./ex5_4.out

==12175==

==12175==

==12175== HEAP SUMMARY:

==12175== in use at exit: 0 bytes in 0 blocks

==12175== total heap usage: 1 allocs, 1 frees, 16 bytes

allocated

==12175==

==12175== All heap blocks were freed -- no leaks are

possible

==12175==

==12175== For counts of detected and suppressed errors,

rerun with -v

==12175== ERROR SUMMARY: 0 errors from 0 contexts

(suppressed: 0 from 0)

$

Shell Box 5-20: Output of valgrind after freeing the allocated memory block

As you can see, valgrind  says that All Heap blocks were freed , and
this effectively means that we have no further memory leakage in our
program. Running programs with valgrind  can slow them down
noticeably by a factor of 10 to 50, but it can help you to spot the memory
issues very easily. It's a good practice to let your written programs run
inside a memory profiler and catch memory leaks as soon as possible.



Memory leaks can be considered both as technical debts, if you have a bad
design that causes the leaks, or as risks, where it's known that we have a
leak, but we don't know what will happen if the leak continues to grow. But
in my opinion, they should be treated as bugs; otherwise, it will take a
while for you to look back at them. Usually, in teams, memory leaks are
treated as bugs that should be fixed as soon as possible.

There are other memory profilers other than valgrind . LLVM Address
Sanitizer (or ASAN) and MemProf are also other well-known memory
profilers. Memory profilers can profile memory usage and allocations
using various methods. Next, we discuss some of them:

Some profilers can behave like a sandbox, running the target program
inside and monitoring all their memory activities. We've used this
method to run example 5.4 inside a valgrind  sandbox. This method
does not require you to recompile your code.
Another method is to use the libraries provided by some memory
profilers, which wrap memory-related system calls. This way, the
final binary will contain all of the logic required for the profiling
task.

valgrind  and ASAN can be linked to the final executable object file
as a memory profiler library. This method requires the recompilation
of your target source code and even making some modifications to
your source code as well.

Programs can also preload different libraries instead of the default C
standard libraries, which contain memory function interpositions of
the C library's standard memory allocation functions. This way, you
are not required to compile your target source code. You just need to
specify the libraries of such profilers in the LD_PRELOAD  environment
variable to be preloaded instead of the default libc  libraries.
MemProf  uses this method.

Note:



A function interposition is a wrapper function defined in a dynamic
library loaded before the target dynamic library, which propagates calls
to the target function. Dynamic libraries can be preloaded using the
LD_PRELOAD  environment variable.

Heap memory principles
As pointed out before, Heap memory is different from Stack memory in
several ways. Therefore, heap memory has its own guidelines regarding
memory management. In this section, we are going to focus on these
differences and come up with some dos and don'ts that we should consider
when working with the Heap space.

Every memory block (or a variable) in the Stack has a scope. So, it is an
easy task to define the lifetime of a memory block based on its scope.
Whenever we are out of scope, all of the variables in that scope are gone.
But this is different and much more complex with Heap memory.

A Heap memory block doesn't have any scope, so its lifetime is unclear
and should be redefined. This is the reason behind having manual
deallocation or generational garbage collection in modern languages such
as Java. The Heap lifetime cannot be determined by the program itself or
the C libraries used, and the programmer is the sole person who defines
the lifetime of a Heap memory block.

When the discussion comes to the programmer's decision, especially in
this case, it is complicated and hard to propose a universal silver bullet
solution. Every opinion is debatable and can lead to a trade-off.

One of the best proposed strategies to overcome the complexity of the
Heap lifetime, which of course is not a complete solution, is to define an
owner for a memory block instead of having a scope that encompasses the
memory block.

The owner is the sole entity responsible for managing the lifetime of a
Heap memory block and is the one who allocates the block in the first
place and frees it when the block is not needed anymore.



There are many classic examples of how to use this strategy. Most of the
well-known C libraries use this strategy to handle their Heap memory
allocations. Example 5.5 is a very simple implementation of this method
that is used to manage the lifetime of a queue object written in C. The
following code box tries to demonstrate the ownership strategy:

#include <stdio.h> // For printf function

#include <stdlib.h> // For heap memory functions

#define QUEUE_MAX_SIZE 100

typedef struct {

int front;

int rear;

double* arr;

} queue_t;

void init(queue_t* q) {

q->front = q->rear = 0;

// The heap memory block allocated here is owned

// by the queue object.

q->arr = (double*)malloc(QUEUE_MAX_SIZE * sizeof(double));

}

void destroy(queue_t* q) {

free(q->arr);

}

int size(queue_t* q) {

return q->rear - q->front;

}

void enqueue(queue_t* q, double item) {

q->arr[q->rear] = item;

q->rear++;

}

double dequeue(queue_t* q) {

double item = q->arr[q->front];

q->front++;

return item;

}

int main(int argc, char** argv) {

// The heap memory block allocated here is owned

// by the function main

queue_t* q = (queue_t*)malloc(sizeof(queue_t));

// Allocate needed memory for the queue object

init(q);

enqueue(q, 6.5);

enqueue(q, 1.3);

enqueue(q, 2.4);

printf("%f\n", dequeue(q));

printf("%f\n", dequeue(q));

printf("%f\n", dequeue(q));

// Release resources acquired by the queue object



destroy(q);

// Free the memory allocated for the queue object

// acquired by the function main

free(q);

return 0;

}

Code Box 5-11 [ExtremeC_examples_chapter5_5.c]: The example 5.5 demonstrating the
ownership strategy for Heap lifetime management

The preceding example contains two different ownerships each of which
owning a specific object. The first ownership is about the Heap memory
block addressed by the arr  pointer in the queue_t  structure that is owned
by the queue object. As long as the queue object exists, this memory block
must remain in place and allocated.

The second ownership is regarding the Heap memory block acquired by
the main  function as a placeholder for the queue object, q , that is owned
by the main  function itself. It is very important to distinguish between the
Heap memory blocks owned by the queue object and the Heap memory
blocks owned by the main  function because releasing one of them doesn't
release another.

To demonstrate how a memory leak can happen in the preceding code,
suppose that you forget to call the destroy  function on the queue object.
It will definitely lead to a memory leak because the Heap memory block
acquired inside the init  function would be still allocated and not freed.

Note that if an entity (an object, function, and so on) owns a Heap memory
block, it should be expressed in the comments. Nothing should free a Heap
memory block if it does not own the block.

Note that multiple deallocations of the same Heap memory block will lead
to a double free situation. A double-free situation is a memory corruption
issue and like any other memory corruption issue, it should be dealt with
and resolved soon after detection. Otherwise, it can have serious
consequences like sudden crashes.



Other than the ownership strategy, one could use a garbage collector. The
garbage collector is an automatic mechanism that is embedded in a
program and tries to collect memory blocks that have no pointer
addressing them. One of the old well-known garbage collectors for C is the
Boehm-Demers-Weiser Conservative Garbage Collector, which provides a
set of memory allocation functions that should be called instead of
malloc  and other standard C memory allocation functions.

Further Reading:

More information about the Boehm-Demers-Weiser garbage collector can
be found here: http://www.hboehm.info/gc/.

Another technique to manage the lifetime of a Heap block is using a RAII
object. RAII stands for Resource Acquisition Is Initialization. It means
that we can bind the lifetime of a resource, possibly a Heap allocated
memory block, to the lifetime of an object. In other words, we use an
object that upon its construction initializes the resource, and upon its
destruction frees the resource. Unfortunately, this technique cannot be
used in C because we are not notified about the destruction of an object.
But in C++, using destructors, this technique can be used effectively. In
RAII objects, resource initialization happens in the constructor and the
code required to de-initialize the resource is put into the destructor. Note
that in C++, the destructor is invoked automatically when an object is
going out of scope or being deleted.

As a conclusion, the following guidelines are important when working
with Heap memory:

Heap memory allocation is not free, and it has its own costs. Not all
memory allocation functions have the same cost and, usually, malloc
is the cheapest one.
All memory blocks allocated from the Heap space must be freed
either immediately when they are not needed anymore or just before
ending the program.

http://www.hboehm.info/gc/


Since Heap memory blocks have no scope, the program must be able
to manage the memory in order to avoid any possible leakage.
Sticking to a chosen memory management strategy for each Heap
memory block seems to be necessary.
The chosen strategy and its assumptions should be documented
throughout the code wherever the block is accessed so that future
programmers will know about it.
In certain programming languages like C++, we can use RAII objects
to manage a resource, possibly a Heap memory block.

So far, we have considered that we have enough memory to store big
objects and run any kind of program. But in the following section, we are
going to put some constraints on the available memory and discuss the
environments where the memory is low, or it is costly (in terms of money,
time, performance, and so on) to add further memory storage. In such
cases, we need to use the available memory in the most efficient way.

Memory management in
constrained environments
There are environments in which memory is a precious resource, and it is
often limited. There are also other environments in which performance is a
key factor and programs should be fast, no matter how much memory we
have. Regarding memory management, each of these environments
requires a specific technique to overcome the memory shortage and
performance degradation. First, we need to know what a constrained
environment is.

A constrained environment does not necessarily have a low memory
capacity. There are usually some constraints that limit the memory usage
for a program. These constraints can be your customer's hard limits
regarding memory usage, or it could be because of a hardware that



provides the low memory capacity, or it can be because of an operating
system that does not support a bigger memory (for example, MS-DOS).

Even if there are no constraints or hardware limitations, we as
programmers try our best to use the least possible amount of memory and
use it in an optimal way. Memory consumption is one of the key non-
functional requirements in a project and should be monitored and tuned
carefully.

In this section, we'll first introduce the techniques used in low memory
environments for overcoming the shortage issue, and then we will talk
about the memory techniques usually used in performant environments in
order to boost the performance of the running programs.

Memory-constrained environments
In these environments, limited memory is always a constraint, and
algorithms should be designed in a way in order to cope with memory
shortages. Embedded systems with a memory size of tens to hundreds of
megabytes are usually in this category. There are a few tips about memory
management in such environments, but none of them work as well as
having a nicely tuned algorithm. In this case, algorithms with a low
memory complexity are usually used. These algorithms usually have a
higher time complexity, which should be traded off with their low memory
usage.

To elaborate more on this, every algorithm has specific time and memory
complexities. Time complexity describes the relationship between the
input size and the time that the algorithm takes to complete. Similarly,
memory complexity describes the relationship between the input size and
the memory that the algorithm consumes to complete its task. These
complexities are usually denoted as Big-O functions, which we don't want
to deal with in this section. Our discussion is qualitative, so we don't need
any math to talk about memory-constrained environments.



An algorithm should ideally have a low time complexity and also a low
memory complexity. In other words, having a fast algorithm consuming a
low amount of memory is highly desirable, but it is unusual to have this
"best of both worlds" situation. It is also unexpected to have an algorithm
with high memory consumption while not performing well

Most of the time, we have a trade-off between memory and speed, which
represents time. As an example, a sorting algorithm that is faster than
another algorithm usually consumes more memory than the other, despite
the fact that both of them do the same job.

It is a good but conservative practice, especially when writing a program,
to assume that we are writing code for a memory-constrained system, even
if we know that we will have more than enough memory in the final
production environment. We make this assumption because we want to
mitigate the risk of having too much memory consumption.

Note that the driving force behind this assumption should be controlled
and adjusted based on a fairly accurate guess about the average memory
availability, in terms of size, as part of the final setup. Algorithms
designed for memory-constrained environments are intrinsically slower,
and you should be careful about this trap.

In the upcoming sections, we will cover some techniques that can help us
to collect some wasted memory or to use less memory in memory-
constrained environments.

Packed structures

One of the easiest ways to use less memory is to use packed structures.
Packed structures discard the memory alignment and they have a more
compact memory layout for storing their fields.

Using packed structures is actually a trade-off. You consume less memory
because you discard memory alignments and eventually end up with more
memory read time while loading a structure variable. This will result in a
slower program.



This method is simple but not recommended for all programs. For more
information regarding this method, you can read the Structures section
found in Chapter 1, Essential Features.

Compression

This is an effective technique, especially for programs working with a lot
of textual data that should be kept inside the memory. Textual data has a
high compression ratio in comparison to binary data. This technique
allows a program to store the compressed form instead of the actual text
data with a huge memory return.

However, saving memory is not free; since compression algorithms are
CPU-bound and computation-intensive, the program would have worse
performance in the end. This method is ideal for programs that keep
textual data that is not required often; otherwise, a lot of
compression/decompression operations are needed, and the program
would be almost unusable eventually.

External data storage

Using external data storage in the forms of a network service, a cloud
infrastructure, or simply a hard drive is a very common and useful
technique for resolving low memory issues. Since it is usually considered
that a program might be run in a limited or low memory environment,
there are a lot of examples that use this method to be able to consume less
memory even in environments in which enough memory is available.

This technique usually assumes that memory is not the main storage, but it
acts as cache memory. Another assumption is that we cannot keep the
whole data in the memory and at any moment, only a portion of data or a
page of data can be loaded into the memory.

These algorithms are not directly addressing the low memory problem, but
they are trying to solve another issue: slow external data storage. External
data storage is always too slow in comparison to the main memory. So, the
algorithms should balance the reads from the external data store and their



internal memory. All database services, such as PostgreSQL and Oracle,
use this technique.

In most projects, it is not very wise to design and write these algorithms
from scratch because these algorithms are not that trivial and simple to
write. The teams behind famous libraries such as SQLite have been fixing
bugs for years.

If you need to access an external data storage such as a file, a database, or
a host on the network while having a low memory footprint, there are
always options out there for you.

Performant environments
As we have explained in the previous sections about the time and memory
complexities of an algorithm, it is usually expected to consume more
memory when you want to have a faster algorithm. In this section, we
therefore expect to consume more memory for the sake of increased
performance.

An intuitive example of this statement can be using a cache in order to
increase the performance. Caching data means consuming more memory,
but we could expect to get better performance if the cache is used properly.

But adding extra memory is not always the best way to increase
performance. There are other methods that are directly or indirectly
related to memory and can have a substantial impact on the performance
of an algorithm. Before jumping to these methods, let's talk about caching
first.

Caching

Caching is a general term for all similar techniques utilized in many parts
of a computer system when two data storages with different read/write
speeds are involved. For example, the CPU has a number of internal
registers that perform quickly in terms of reading and writing operations.



In addition, the CPU has to fetch data from the main memory, which is
many times slower than its registers. A caching mechanism is needed
here; otherwise, the lower speed of the main memory becomes dominant,
and it hides the high computational speed of the CPU.

Working with database files is another example. Database files are usually
stored on an external hard disk, which is far slower than the main memory,
by orders of magnitude. Definitely, a caching mechanism is required here;
otherwise, the slowest speed becomes dominant, and it determines the
speed of the whole system.

Caching and the details around it deserve to have a whole dedicated
chapter since there are abstract models and specific terminology that
should be explained.

Using these models, one can predict how well a cache would behave and
how much performance gain could be expected after introducing the
cache. Here, we try to explain caching in a simple and intuitive manner.

Suppose that you have slow storage that can contain many items. You also
have another fast storage, but it can contain a limited number of items.
This is an obvious tradeoff. We can call the faster but smaller storage a
cache. It would be reasonable if you bring items from the slow storage
into the fast one and process them on the fast storage, simply because it is
faster.

From time to time, you have to go to slow storage in order to bring over
more items. It is obvious that you won't bring only one item over from the
slow storage, as this would be very inefficient. Rather, you will bring a
bucket of items into the faster storage. Usually, it is said that the items are
cached into the faster storage.

Suppose that you are processing an item that requires you to load some
other item from the slow storage. The first thing that comes to mind is to
search for the required item inside the recently brought bucket, which is in
the cache storage at the moment.



If you could find the item in the cache, there is no need to retrieve it from
the slow storage, and this is called a hit. If the item is missing from the
cache storage, you have to go to the slow storage and read another bucket
of items into the cache memory. This is called a miss. It is clear that the
more hits you observe, the more performance you get.

The preceding description can be applied to the CPU cache and the main
memory. The CPU cache stores recent instructions and data read from the
main memory, and the main memory is slow compared to the CPU cache
memory.

In the following section, we discuss cache-friendly code, and we observe
why cache-friendly code can be executed faster by the CPU.

Cache-friendly code

When the CPU is executing an instruction, it has to fetch all required data
first. The data is located in the main memory at a specific address that is
determined by the instruction.

The data has to be transferred to the CPU registers before any
computation. But the CPU usually brings more blocks than are expected to
be fetched and puts them inside its cache.

Next time, if a value is needed in the proximity of the previous address, it
should exist in the cache, and the CPU can use the cache instead of the
main memory, which is far faster than reading it from the main memory.
As we explained in the previous section, this is a cache hit. If the address
is not found in the CPU cache, it is a cache miss, and the CPU has to
access the main memory to read the target address and bring required data
which is quite slow. In general, higher hit rates result in faster executions.

But why does the CPU fetch the neighboring addresses (the proximity)
around an address? It is because of the principle of locality. In computer
systems, it is usually observed that the data located in the same
neighborhood is more frequently accessed. So, the CPU behaves according
to this principle and brings more data from a local reference. If an



algorithm can exploit this behavior, it can be executed faster by the CPU.
This is why we refer to such algorithm as a cache-friendly algorithm.

Example 5.6 demonstrates the difference between the performances of
cache-friendly code and non-cache-friendly code:

#include <stdio.h> // For printf function

#include <stdlib.h> // For heap memory functions

#include <string.h> // For strcmp function

void fill(int* matrix, int rows, int columns) {

int counter = 1;

for (int i = 0; i < rows; i++) {

for (int j = 0; j < columns; j++) {

*(matrix + i * columns + j) = counter;

}

counter++;

}

}

void print_matrix(int* matrix, int rows, int columns) {

int counter = 1;

printf("Matrix:\n");

for (int i = 0; i < rows; i++) {

for (int j = 0; j < columns; j++) {

printf("%d ", *(matrix + i * columns + j));

}

printf("\n");

}

}

void print_flat(int* matrix, int rows, int columns) {

printf("Flat matrix: ");

for (int i = 0; i < (rows * columns); i++) {

printf("%d ", *(matrix + i));

}

printf("\n");

}

int friendly_sum(int* matrix, int rows, int columns) {

int sum = 0;

for (int i = 0; i < rows; i++) {

for (int j = 0; j < columns; j++) {

sum += *(matrix + i * columns + j);

}

}

return sum;

}

int not_friendly_sum(int* matrix, int rows, int columns) {

int sum = 0;

for (int j = 0; j < columns; j++) {

for (int i = 0; i < rows; i++) {



sum += *(matrix + i * columns + j);

}

}

return sum;

}

int main(int argc, char** argv) {

if (argc < 4) {

printf("Usage: %s [print|friendly-sum|not-friendly-sum] ");

printf("[number-of-rows] [number-of-columns]\n", argv[0]);

exit(1);

}

char* operation = argv[1];

int rows = atol(argv[2]);

int columns = atol(argv[3]);

int* matrix = (int*)malloc(rows * columns * sizeof(int));

fill(matrix, rows, columns);

if (strcmp(operation, "print") == 0) {

print_matrix(matrix, rows, columns);

print_flat(matrix, rows, columns);

}

else if (strcmp(operation, "friendly-sum") == 0) {

int sum = friendly_sum(matrix, rows, columns);

printf("Friendly sum: %d\n", sum);

}

else if (strcmp(operation, "not-friendly-sum") == 0) {

int sum = not_friendly_sum(matrix, rows, columns);

printf("Not friendly sum: %d\n", sum);

}

else {

printf("FATAL: Not supported operation!\n");

exit(1);

}

free(matrix);

return 0;

}

Code Box 5-12 [ExtremeC_examples_chapter5_6.c]: Example 5.6 demonstrates the
performance of cache-friendly code and non-cache-friendly code

The preceding program computes and prints the sum of all elements in a
matrix, but it also does more than that.

The user can pass options to this program, which alters its behavior.
Suppose that we want to print a 2 by 3 matrix that is initialized by an
algorithm written in the fill  function. The user has to pass the print
option with the desired number of rows and columns. Next, you can see
how these options are passed to the final executable binary:



$ gcc ExtremeC_examples_chapter5_6.c -o ex5_6.out

$ ./ex5_6.out print 2 3

Matrix:

1 1 1

2 2 2

Flat matrix: 1 1 1 2 2 2

$

Shell Box 5-21: Output of example 5.6 showing a 2 by 3 matrix

The output consists of two different prints for the matrix. The first is the
2D representation of the matrix and the second is the flat representation of
the same matrix. As you can see, the matrix is stored as a row-major order
in memory. This means that we store it row by row. So, if something from
a row is fetched by the CPU, it is probable that all of the elements in that
row are fetched too. Hence, it would be better to do our summation in row-
major order and not column-major order.

If you look at the code again, you can see that the summation done in the
friendly_sum  function is row-major, and the summation performed in the
not_friendly_sum  function is column-major. Next, we can compare the
time it takes to perform the summation of a matrix with 20,000 rows and
20,000 columns. As you can see, the difference is very clear:

$ time ./ex5_6.out friendly-sum 20000 20000

Friendly sum: 1585447424

real 0m5.192s

user 0m3.142s

sys 0m1.765s

$ time ./ex5_6.out not-friendly-sum 20000 20000

Not friendly sum: 1585447424

real 0m15.372s

user 0m14.031s

sys 0m0.791s

$

Shell Box 5-22: Demonstration of the time difference between the column-major and row-
major matrix summation algorithms

The difference between the measured times is about 10 seconds! The
program is compiled on a macOS machine using the clang  compiler. The



difference means that the same logic, using the same amount of memory,
can take much longer – just by selecting a different order of accessing the
matrix elements! This example clearly shows the effect of cache-friendly
code.

Note:

The time  utility is available in all Unix-like operating systems. It can
be used to measure the time a program takes to finish.

Before continuing to the next technique, we should talk a bit more about
the allocation and deallocation cost.

Allocation and deallocation cost

Here, we want to specifically talk about the cost of Heap memory
allocation and deallocation. This might be a bit of a surprise if you realize
that Heap memory allocation and deallocation operations are time-and
memory-consuming and are usually expensive, especially when you need
to allocate and deallocate Heap memory blocks many times per second.

Unlike Stack allocation, which is relatively fast and the allocation itself
requires no further memory, Heap allocation requires finding a free block
of memory with enough size, and this can be costly.

There are many algorithms designed for memory allocation and
deallocation, and there is always a tradeoff between the allocation and
deallocation operations. If you want to allocate quickly, you have to
consume more memory as part of the allocation algorithm and vice versa
if you want to consume less memory you can choose to spend more time
with a slower allocation.

There are memory allocators for C other than those provided by the
default C standard library through the malloc  and free  functions. Some
of these memory allocator libraries are ptmalloc , tcmalloc , Haord , and
dlmalloc .



Going through all allocators here is beyond the scope of this chapter, but it
would be good practice for you to go through them and give them a try for
yourself.

What is the solution to this silent problem? It is simple: allocate and
deallocate less frequently. This may seem impossible in some programs
that are required to have a high rate of Heap allocations. These programs
usually allocate a big block of the Heap memory and try to manage it
themselves. It is like having another layer of allocation and deallocation
logic (maybe simpler than implementations of malloc  and free ) on top
of a big block of the Heap memory.

There is also another method, which is using memory pools. We'll briefly
explain this technique before we come to the end of this chapter.

Memory pools

As we described in the previous section, memory allocation and
deallocation are costly. Using a pool of preallocated fixed-size Heap
memory blocks is an effective way to reduce the number of allocations
and gain some performance. Each block in the pool usually has an
identifier, which can be acquired through an API designed for pool
management. Also, the block can be released later when it is not needed.
Since the amount of allocated memory remains almost fixed, it is an
excellent choice for algorithms willing to have deterministic behavior in
memory-constrained environments.

Describing memory pools in further detail is beyond the scope of this
book; many useful resources on this topic exist online if you wish to read
more about it.

Summary
As part of this chapter, we mainly covered the Stack and Heap segments
and the way they should be used. After that, we briefly discussed memory-



constrained environments and we saw how techniques like caching and
memory pools can increase the performance.

In this chapter:

We discussed the tools and techniques used for probing both Stack
and Heap segments.
We introduced debuggers and we used gdb  as our main debugger to
troubleshoot memory-related issues.
We discussed memory profilers and we used valgrind  to find
memory issues such as leakages or dangling pointers happening at
runtime.
We compared the lifetime of a Stack variable and a Heap block and
we explained how we should judge the lifetime of such memory
blocks.
We saw that memory management is automatic regarding Stack
variables, but it is fully manual with Heap blocks.
We went through the common mistakes that happen when dealing
with Stack variables.
We discussed the constrained environments and we saw how memory
tuning can be done in these environments.
We discussed the performant environments and what techniques can
be used to gain some performance.

The next four chapters together cover object orientation in C. This might
at first glance seem to be unrelated to C, but in fact, this is the correct way
to write object-oriented code in C. As part of these chapters, you will be
introduced to the proper way of designing and solving a problem in an
object-oriented fashion, and you will get guidance through writing
readable and correct C code.

The next chapter covers encapsulation and the basics of object-oriented
programming by providing the required theoretical discussion and
examples to explore the topics discussed.



Chapter 06
OOP and Encapsulation

There are many great books and articles on the subject of object-oriented
programming or OOP. But I don't think that many of them address the
same topic using a non-OOP language such as C! How is that even
possible? Are we even able to write object-oriented programs with a
programming language that has no support for it? To be precise, is it
possible to write an object-oriented program using C?

The short answer to the above question is yes, but before explaining how,
we need to explain why. We need to break the question down and see what
OOP really means. Why is it possible to write an object-oriented program
using a language that has no claim for object-orientation support? This
seems like a paradox, but it's not, and our effort in this chapter is to
explain why that's possible and how it should be done.

Another question that may puzzle you is that what's the point of having
such discussions and knowing about OOP when you are going to use C as
your primary programming language? Almost all existing mature C code
bases such as open source kernels, implementation of services like
HTTPD, Postfix, nfsd, ftpd, and many other C libraries such as OpenSSL
and OpenCV, are all written in an object-oriented fashion. This doesn't
mean that C is object-oriented; instead, the approach these projects have
taken to organize their internal structure comes from an object-oriented
mindset.

I highly recommend reading this chapter together with the next three
chapters and getting to know more about OOP because firstly, it will
enable you to think and design like the engineers who have designed the
libraries mentioned before, and secondly, it would be highly beneficial
when reading the sources of such libraries.



C does not support object-oriented concepts such as classes, inheritance,
and virtual functions in its syntax. However, it does support object-
oriented concepts – in an indirect way. In fact, nearly all the computer
languages through history have supported OOP intrinsically – way before
the days of Smalltalk, C++, and Java. That's because there must be a way
in every general-purpose programming language to extend its data types
and it is the first step towards OOP.

C cannot and should not support object-oriented features in its syntax; not
because of its age, but because of very good reasons that we're going to
talk about in this chapter. Simply put, you can still write an object-oriented
program using C, but it takes a bit of extra effort to get around the
complexity.

There are a few books and articles regarding OOP in C, and they usually
try to create a type system for writing classes, implementing inheritance,
polymorphism, and more, using C. These books look at adding OOP
support as a set of functions, macros, and a preprocessor, all of which can
be used together to write object-oriented programs with C. This won't be
the approach we take in this chapter. We are not going to create a new C++
out of C; instead, we want to speculate how C has the potential to be used
for OOP.

It is usually said that OOP is another programming paradigm together with
procedural and functional paradigms. But OOP is more than that. OOP is
more like a way of thinking about and analyzing a problem. It is an
attitude towards the universe and the hierarchy of objects within it. It is
part of our ancient, intrinsic, and inherited method for comprehending and
analyzing the physical and abstract entities around us. It is so fundamental
to our understanding of nature.

We've always thought about every problem from an object-oriented point
of view. OOP is just about applying the same point of view that humans
have always adopted, but this time using a programming language to solve
a computational problem. All this explains why OOP is the most common
programming paradigm used for writing software.



This chapter, together with the following three chapters, are going to show
that any concept within OOP can be implemented in C – even though it
might be complex to do. We know we can have OOP with C because some
people have already done it, especially when they created C++ on top of C,
and since they have built many complex and successful programs in C in
an object-oriented fashion.

What these chapters are not going to suggest is a certain library or set of
macros that you should use for declaring a class or establishing an
inheritance relation or working with other OOP concepts. In addition, we
won't impose any methodology or discipline such as specific naming
conventions. We will simply use raw C to implement OOP concepts.

The reason why we're dedicating four whole chapters to OOP with C is
because of the heavy theory behind object orientation and the various
examples that are necessary to be explored in order to demonstrate all of
it. Most of the essential theory behind OOP is going to be explained in this
chapter, while the more practical topics will be dealt with in the following
chapters. With all that said, we need to discuss the theory because the OOP
concepts are usually new to most skilled C programmers, even those with
many years of experience.

The upcoming four chapters together cover almost anything that you
might come across in OOP. In this chapter, we are going to discuss the
following:

First of all, we'll give definitions for the most fundamental terms
used in OOP literature. We'll define classes, objects, attributes,
behaviors, methods, domains, and more. These terms will be used
heavily throughout these four chapters. They are also vital to your
understanding of other OOP-related resources because they are a
staple part of the accepted language of OOP.
The first part of this chapter is not wholly about terminology; we'll
also heavily discuss the roots of object orientation and the philosophy
behind it, exploring the nature of object-oriented thinking.
The second section of this chapter is dedicated to C and why it is not,
and cannot, be object-oriented. This is an important question that



should be asked and properly answered. This topic will be further
discussed in Chapter 10, Unix – History and Architecture, where we
will be exploring Unix and its close relationship to C.
The third section of this chapter talks about encapsulation, which is
one of the most fundamental concepts of OOP. Put simply, it's what
allows you to create objects and use them. The fact that you can put
variables and methods inside an object comes directly from
encapsulation. This is discussed thoroughly in the third section, and
several examples are given.
The chapter then moves on to information-hiding, which is something
of a side effect (though a very important one) of having
encapsulation. Without information-hiding, we wouldn't be able to
isolate and decouple software modules, and we'd effectively be
unable to provide implementation-independent APIs to clients. This
is the last thing we discuss as part of this chapter.

As mentioned, the whole topic will cover four chapters, with the following
chapters picking up from the composition relationship. From there, the
upcoming chapters will cover aggregation, inheritance, polymorphism,
abstraction.

In this chapter, though, we'll start with the theory behind OOP and look at
how we can extract an object model from our thought process regarding a
software component.

Object-oriented thinking
As we said in the chapter introduction, object-oriented thinking is the way
in which we break down and analyze what surrounds us. When you're
looking at a vase on a table, you're able to understand that the vase and the
table are separate objects without any heavy analysis.

Unconsciously, you are aware that there is a border between them that
separates them. You know that you could change the color of the vase, and



the color of the table would remain unchanged.

These observations show us that we view our environment from an object-
oriented perspective. In other words, we are just creating a reflection of
the surrounding object-oriented reality in our minds. We also see this a lot
in computer games, 3D modeling software, and engineering software, all
of which can entail many objects interacting with each other.

OOP is about bringing object-oriented thinking to software design and
development. Object-oriented thinking is our default way of processing
our surroundings, and that's why OOP has become the most commonly
used paradigm for writing software.

Of course, there are problems that would be hard to solve if you go with
the object-oriented approach, and they would have been analyzed and
resolved easier if you chose another paradigm, but these problems can be
considered relatively rare.

In the following sections, we are going to find out more about the
translation of object-oriented thinking into writing object-oriented code.

Mental concepts
You'd be hard-pressed to find a program that completely lacks at least
some traces of object-oriented thinking, even if it had been written using C
or some other non-OOP language. If a human writes a program, it will be
naturally object-oriented. This will be evident even just in the variable
names. Look at the following example. It declares the variables required to
keep the information of 10 students:

char* student_first_names[10];

char* student_surnames[10];

int student_ages[10];

double student_marks[10];

Code Box 6-1: Four arrays related by having the student_ prefix, according to a naming
convention, supposed to keep the information of 10 students



The declarations found in Code Box 6-1 show how we use variable names
to group some variables under the same concept, which in this case is the
student. We have to do this; else we would get confused by ad hoc names
that don't make any sense to our object-oriented minds. Suppose that we
had something such as this instead:

char* aaa[10];

char* bbb[10];

int ccc[10];

double ddd[10];

Code Box 6-2: Four arrays with ad hoc names supposed to keep the information of 10
students!

Using such variable names as seen in Code Box 6-2, however much
experience in programming you have, you must admit that you'd have a lot
of trouble dealing with this when writing an algorithm. Variable naming is
– and has always been – important, because the names remind us of the
concepts in our mind and the relationships between data and those
concepts. By using this kind of ad hoc naming, we lose those concepts and
their relationships in the code. This may not pose an issue for the
computer, but it complicates the analysis and troubleshooting for us
programmers and increases the likelihood of us making mistakes.

Let's clarify more about what we mean by a concept in our current context.
A concept is a mental or abstract image that exists in the mind as a
thought or an idea. A concept could be formed by the perception of a real-
world entity or could simply be entirely imaginary and abstract. When you
look at a tree or when you think about a car, their corresponding images
come to mind as two different concepts.

Note that sometimes we use the term concept in a different context, such
as in "object-oriented concepts," which obviously doesn't use the word
concept in the same way as the definition we just gave. The word concept,
used in relation to technology-related topics, simply refers to the
principles to understand regarding a topic. For now, we'll use this
technology-related definition.



Concepts are important to object-oriented thinking because if you cannot
form and maintain an understanding of objects in your mind, you cannot
extract details about what they represent and relate to, and you cannot
understand their interrelations.

So, object-oriented thinking is about thinking in terms of concepts and
their relationships. It follows, then, that if you want to write a proper
object-oriented program, you need to have a proper understanding of all
the relevant objects, their corresponding concepts, and also their
relationships, in your mind.

An object-oriented map formed in your mind, which consists of many
concepts and their mutual interrelations, cannot be easily communicated
to others, for instance when approaching a task as a team. More than that,
such mental concepts are volatile and elusive, and they can get forgotten
very easily. This also puts an extra emphasis on the fact that you will need
models and other tools for representation, in order to translate your mind
map into communicable ideas.

Mind maps and object models
In this section, we look at an example to understand further what we've
been discussing so far. Suppose that we have a written description of a
scene. The purpose of describing something is to communicate the related
specific concepts to the audience. Think of it this way: the one who is
describing has a map in their mind that lays out various concepts and how
they all link together; their aim is to communicate that mind map to the
audience. You might say that this is more or less the goal of all artistic
expression; it is actually what's happening when you look at a painting,
listen to a piece of music, or read a novel.

Now we are going to look at a written description. It describes a
classroom. Relax your mind and try to imagine what you are reading
about. Everything you see in your mind is a concept communicated by the
following description:



Our classroom is an old room with two big windows. When you enter the
room, you can see the windows on the opposite wall. There are a number
of brown wooden chairs in the middle of the room. There are five students
sitting on the chairs, and two of them are boys. There is a green, wooden
blackboard on the wall to your right, and the teacher is talking to the
students. He is an old man wearing a blue shirt.

Now, let's see what concepts have formed in our minds. Before we do that
though, bear in mind that your imagination can run away without you
noticing. So, let's do our best to limit ourselves to the boundaries of the
description. For example, I could imagine more and say that the girls are
blonde. But that is not mentioned in the description, so we won't take that
into account. In the next paragraph, I explain what has been shaped in my
mind, and before continuing, you should also try to do that for yourself.

In my mind, there are five concepts (or mental images, or objects), one for
each student in the class. There are also another five concepts for the
chairs. There is another concept for the wood and another one for the
glass. And I know that every chair is made from wood. This is a
relationship, between the concept of wood and the concepts of the chairs.
In addition, I know that every student is sitting on a chair. As such, there
are five relationships – between chairs and students. We could continue to
identify more concepts and relate them. In no time, we'd have a huge and
complex graph describing the relationships of hundreds of concepts.

Now, pause for a moment and see how differently you were extracting the
concepts and their relationships. That's a lesson that everyone can do this
in a different way. This procedure also happens when you want to solve a
particular problem. You need to create a mind map before attacking the
problem. This is the phase that we call the understanding phase.

You solve a problem using an approach that is based on the concepts of the
problem and the relationships you find between them. You explain your
solution in terms of those concepts, and if someone wants to understand
your solution, they should understand the concepts and their relationships
first.



You'd be surprised if I told you this is what exactly happens when you try
to solve a problem using a computer, but that is exactly the case. You
break the problem into objects (same as the concepts in a mental context)
and the relationships between them, and then you try to write a program,
based on those objects, that eventually resolves the problem.

The program that you write simulates the concepts and their relations as
you have them in your mind. The computer runs the solution, and you can
verify whether it works. You are still the person who solves the problem,
but now a computer is your colleague, since it can execute your solution,
which is now described as a series of machine-level instructions translated
from your mind map, much faster and more accurately.

An object-oriented program simulates concepts in terms of objects, and
while we create a mind map for a problem in our minds, the program
creates an object model in its memory. In other words, the terms concept,
mind, and mind map are equivalent to object, memory, and object model
respectively, if we are going to compare a human with an object-oriented
program. This is the most important correlation we offer in this section,
which relates the way we think to an object-oriented program.

But why are we using computers to simulate our mind maps? Because
computers are good when it comes to speed and precision. This is a very
classic answer to such questions, but it is still a relevant answer to our
question. Creating and maintaining a big mind map and the corresponding
object model is a complex task and is one that computers can do very well.
As another advantage, the object model created by a program can be stored
on a disk and used later.

A mind map can be forgotten or altered by emotions, but computers are
emotionless, and object models are far more robust than human thoughts.
That's why we should write object-oriented programs: to be able to
transfer the concepts of our minds to effective programs and software.

Note:

So far, nothing has been invented that can download and store a mind
map from someone's mind – but perhaps in the future!



Objects are not in code
If you look at the memory of a running object-oriented program, you'll
find it full of objects, all of which are interrelated. That's the same for
humans. If you consider a human as a machine, you could say that they are
always up and running until they die. Now, that's an important analogy.
Objects can only exist in a running program, just as concepts can only
exist in a living mind. That means you have objects only when you have a
running program.

This may look like a paradox because when you are writing a program (an
object-oriented one), the program doesn't yet exist and so cannot be
running! So, how can we write object-oriented code when there is no
running program and no objects?

Note:

When you are writing object-oriented code, no object exists. The objects
are created once you build the code into an executable program and run
it.

OOP is not actually about creating objects. It is about creating a set of
instructions that will lead to a fully dynamic object model when the
program is run. So, the object-oriented code should be able to create,
modify, relate, and even delete objects, once compiled and run.

As such, writing object-oriented code is a tricky task. You need to imagine
the objects and their relations before they exist. This is exactly the reason
why OOP can be complex and why we need a programming language that
supports object-orientation. The art of imagining something which is not
yet created and describing or engineering its various details is usually
called design. That's why this process is usually called object-oriented
design (OOD) in object-oriented programming.



In object-oriented code, we only plan to create objects. OOP leads to a set
of instructions for when and how an object should be created. Of course, it
is not only about creation. All the operations regarding an object can be
detailed using a programming language. An OOP language is a language
that has a set of instructions (and grammar rules) that allow you to write
and plan different object-related operations.

So far, we've seen that there is a clear correspondence between concepts in
the human mind and objects in a program's memory. So, there should be
a correspondence between the operations that can be performed on
concepts and objects.

Every object has a dedicated life cycle. This is also true for concepts in the
mind. At some point, an idea comes to mind and creates a mental image as
a concept, and at some other point, it fades away. The same is true for
objects. An object is constructed at one point and is destructed at another
time.

As a final note, some mental concepts are very firm and constant (as
opposed to volatile and transient concepts which come and go). It seems
that these concepts are independent of any mind and have been in
existence even when there were no minds to comprehend them. They are
mostly mathematical concepts. The number 2 is an example. We have only
one number 2 in the whole universe! That's amazing. It means that you and
I have the very same concept in our minds of the number 2; if we tried to
change it, it would no longer be the number 2. This is exactly where we
leave the object-oriented realm, and we step into another realm, full of
immutable objects, that is described under the title of the functional
programming paradigm.

Object attributes
Each concept in any mind has some attributes associated with it. If you
remember, in our classroom description, we had a chair, named chair1,
that was brown. In other words, every chair object has an attribute called
color and it was brown for the chair1 object. We know that there were four



other chairs in the classroom, and they had their color attributes which
could have different values. In our description, all of them were brown,
but it could be that in another description, one or two of them were yellow.

An object can have more than one attribute or a set of attributes. We call
the values assigned to these attributes, collectively, the state of an object.
The state can be thought of simply as a list of values, each one belonging
to a certain attribute, attached to an object. An object can be modified
during its lifetime. Such an object is said to be mutable. This simply
means that the state can be changed during its lifetime. Objects can also be
stateless, which means that they don't carry any state (or any attributes).

An object can be immutable as well, exactly like the concept (or object)
corresponding to the number 2, which cannot be altered — being
immutable means that the state is determined upon construction and
cannot be modified after that.

Note:

A stateless object can be thought of as an immutable object because its
state cannot be changed throughout its lifetime. In fact, it has no state to
be changed.

As a final note, immutable objects are especially important. The fact that
their state cannot be altered is an advantage, especially when they are
shared in a multithreaded environment.

Domain
Every program written to solve a particular problem, even an exceedingly
small one, has a well-defined domain. Domain is another big term that is
used widely in the literature of software engineering. The domain defines
the boundaries in which software exhibits its functionality. It also defines
the requirements that software should address.



A domain uses a specific and predetermined terminology (glossary) to
deliver its mission and have engineers stay within its boundaries.
Everyone participating in a software project should be aware of the
domain in which their project is defined.

As an example, banking software is usually built for a very well-defined
domain. It has a set of well-known terms as its glossary which includes
account, credit, balance, transfer, loan, interest, and so on.

The definition of a domain is made clear by the terms found in its
glossary; you wouldn't find the terms patient, medicine, and dosage in the
banking domain, for instance.

If a programming language doesn't provide facilities for working with the
concepts specific to a given domain (such as the concepts of patients and
medicines in the healthcare domain), it would be difficult to write the
software for that domain using that programming language – not
impossible, but certainly complex. Moreover, the bigger the software is,
the harder it becomes to develop and maintain.

Relations among objects
Objects can be inter-related; they can refer to each other to denote
relationships. For example, as part of our classroom description, the object
student4 (the fourth student) might be related to the object chair3 (the
third chair) in regard to a relationship named sitting on. In other words,
student4 sits on chair3. This way, all objects within a system refer to each
other and form a network of objects called an object model. As we've said
before, an object model is the correspondent of the mind map that we form
in our minds.

When two objects are related, a change in the state of one might affect the
state of the other. Let's explain this by giving an example. Suppose that we
have two unrelated objects, p1  and p2 , representing pixels.

Object p1  has a set of attributes as follows: {x: 53, y: 345, red: 120,
green: 45, blue: 178} . Object p2  has the attributes {x: 53, y: 346,



red: 79, green: 162, blue: 23} .

Note:

The notation we used is almost but not quite the same as JavaScript
Object Notation or JSON. In this notation, the attributes of an individual
object are embraced within two curly braces, and the attributes are
separated by commas. Each attribute has a corresponding value separated
from the attribute by a colon.

Now, in order to make them related, they need to have an extra attribute to
denote the relationship between themselves. The state of object p1  would
change to {x: 53, y: 345, red: 120, green: 45, blue: 178,
adjacent_down_pixel: p2} , and that of p2  would change to {x: 53, y:
346, red: 79, green: 162, blue: 23, adjacent_up_pixel: p1} .

The adjacent_down_pixel  and adjacent_up_pixel  attributes denote the
fact that these pixel objects are adjacent; their y  attributes differ only by
1 unit. Using such extra attributes, the objects realize that they are in a
relationship with other objects. For instance, p1  knows that its
adjacent_down_pixel  is p2 , and p2  knows that its adjacent_up_pixel  is
p1 .

So, as we can see, if a relationship is formed between two objects, the
states of those objects (or the lists of the values corresponding to their
attributes) are changed. So, the relationship among objects is created by
adding new attributes to them and because of that, the relationship
becomes part of the objects' states. This, of course, has ramifications for
the mutability or immutability of these objects.

Note that the subset of the attributes which define the state and
immutability of an object can be changed from a domain to another, and it
doesn't necessarily encompass all the attributes. In one domain, we might
use only non-referring attributes ( x , y , red , green , and blue , in the
preceding example) as the state and in another domain, we might combine
them all together with referring attributes ( adjacent_up_pixel  and
adjacent_down_pixel  in the preceding example).



Object-oriented operations
An OOP language allows us to plan the object construction, object
destruction, and altering the states of an object in a soon-to-be-running
program. So, let's start by looking at the object construction.

Note:

The term construction has been chosen carefully. We could use creation
or building, but these terms are not accepted as part of the standard
terminology in OOP literature. Creation refers to the memory allocation
for an object, while construction means the initialization of its attributes.

There are two ways to plan the construction of an object:

The first approach involves either constructing an empty object – one
without any attributes in its state – or, more commonly, an object with
a set of minimum attributes.
More attributes will be determined and added as the code is being
run. Using this method, the same object can have different attributes
in two different executions of the same program, in accordance with
the changes found in the surrounding environment.
Each object is treated as a separate entity, and any two objects, even if
they seem to belong to the same group (or class), by having a list of
common attributes, may get different attributes in their states as the
program continues.
As an example, the already mentioned pixel objects p1  and p2  are
both pixels (or they both belong to the same class named pixel )
because they have the same attributes – x , y , red , green , and
blue . After forming a relationship, they would have different states
because they then have new and different attributes: p1  has the
adjacent_down_pixel  attribute, and p2  has the adjacent_up_pixel
attribute.
This approach is used in programming languages such as JavaScript,
Ruby, Python, Perl, and PHP. Most of them are interpreted



programming languages, and the attributes are kept as a map (or a
hash) in their internal data structures that can be easily changed at
runtime. This technique is usually called prototype-based OOP.
The second approach involves constructing an object whose attributes
are predetermined and won't change in the middle of execution. No
more attributes are allowed to be added to such an object at runtime,
and the object will retain its structure. Only the values of the
attributes are allowed to change, and that's possible only when the
object is mutable.
To apply this approach, a programmer should create a predesigned
object template or class that keeps track of all the attributes that need
to be present in the object at runtime. Then, this template should be
compiled and fed into the object-oriented language at runtime.
In many programming languages, this object template is called a
class. Programming languages such as Java, C++, and Python use this
term to denote their object templates. This technique is usually
known as class-based OOP. Note that Python supports both
prototype-based and class-based OOP.

Note:

A class only determines the list of attributes present in an object but not
the actual values assigned to them at runtime.

Note that an object and an instance are the same thing, and they can be
used interchangeably. However, in some texts, there might be some slight
differences between them. There is also another term, reference, which is
worth mentioning and explaining. The term object or instance is used to
refer to the actual place allocated in the memory for the values of that
object, while a reference is like a pointer that refers to that object. So, we
can have many references referring to the same object. Generally
speaking, an object usually has no name, but a reference does have a name.

Note:



In C, we have pointers as the corresponding syntax for references. We
also have both Stack objects and Heap objects. A Heap object does not
have a name and we use pointers to refer to it. In contrast, a Stack object
is actually a variable and hence has a name.

While it is possible to use both approaches, C and especially C++ are
officially designed in a way to support the class-based approach.
Therefore, when a programmer wants to create an object in C or C++, they
need to have a class first. We will talk more about the class and its role in
OOP in future sections.

The following discussion might seem a bit unrelated, but, in fact, it isn't.
There are two schools of thought regarding how humans grow through life,
and they match quite accurately the object construction approaches that
we've talked about. One of these philosophies says that the human is
empty at birth and has no essence (or state).

By living and experiencing different good and bad events in life, their
essence starts to grow and evolves into something that has an independent
and mature character. Existentialism is a philosophical tradition that
promotes this idea.

Its famous precept is "Existence precedes essence". This simply means
that the human first comes to existence and then gains their essence
through life experience. This idea is awfully close to our prototype-based
approach to object construction, in which the object is constructed empty
and then evolves at runtime.

The other philosophy is older and is promoted mostly by religions. In this,
the human is created based on an image (or an essence), and this image
has been determined before the human comes to exist. This is most similar
to the way in which we plan to construct an object based on a template or
class. As the object creators, we prepare a class, and then a program starts
to create objects according to that class.

Note:



There has been a great correspondence between the approaches that
people in novels or stories, including both literature and history sources,
take to overcome a certain difficulty and the algorithms we have
designed in computer science to solve similar problems. I deeply believe
that the way humans live and the reality they experience are in great
harmony with what we understand about algorithms and data structures
as part of computer science. The preceding discussion was a great
example of such harmony between OOP and Philosophy.

Like object construction, object destruction happens at runtime; we have
only the power to plan it in code. All resources allocated by an object
throughout its lifetime should be released when it is destroyed. When an
object is being destructed, all other related objects should be changed so
that they no longer refer to the destroyed object. An object shouldn't have
an attribute that refers to a non-existent object, otherwise we lose the
referential integrity in our object model. It can lead to runtime errors such
as memory corruption or segmentation fault, as well as logical errors such
as miscalculations.

Modifying an object (or altering the state of an object) can happen in two
different ways. It could simply be either a change in the value of an
existing attribute or it could be the addition or removal of an attribute
to/from the set of attributes in that object. The latter can only happen if we
have chosen the prototype-based approach to object construction.
Remember that altering the state of an object that is immutable is
forbidden and usually, it is not permitted by an object-oriented language.

Objects have behaviors
Every object, together with its attributes, has a certain list of
functionalities that it can perform. For instance, a car object is able to
speed up, slow down, turn, and so on. In OOP, these functionalities are
always in accordance with the domain requirements. For example, in a
banking object model, a client can order a new account but cannot eat. Of
course, the client is a person and can eat, but as long as eating
functionality is not related to the banking domain, we don't consider it as a
necessary functionality for a client object.



Every functionality is able to change the state of an object by altering the
values of its attributes. As a simple example, a car object can accelerate.
Acceleration is a functionality of the car object, and by accelerating, the
speed of the car, which is one of its attributes, changes.

In summary, an object is simply a group of attributes and functionalities.
In the later sections, we'll talk more about how to put these things together
in an object.

So far, we have explained the fundamental terminology needed to study
and understand OOP. The next step is to explain the fundamental concept
of encapsulation. But, as a break, let's read about why C cannot be an OOP
language.

C is not object-oriented, but
why?
C is not object-oriented, but not because of its age. If age was a reason, we
could have found a way to make it object-oriented by now. But, as you will
see in Chapter 12, The Most Recent C, the latest standard of the C
programming language, C18, doesn't try to make C an object-oriented
language.

On the other hand, we have C++, which is the result of all efforts to have
an OOP language based on C. If the fate of C was for it to be replaced by
an object-oriented language, then there wouldn't be any demand for C
today, mainly because of C++ – but the current demand for C engineers
shows that this is not the case.

A human thinks in an object-oriented way, but a CPU executes machine-
level instructions which are procedural. A CPU just executes a set of
instructions one by one, and from time to time, it has to jump, fetch, and
execute other instructions from a different address in memory; quite



similar to function calls in a program written using a procedural
programming language like C.

C cannot be object-oriented because it is located on the barrier between
object orientation and procedural programming. Object orientation is the
human understanding of a problem and procedural execution is what a
CPU can do. Therefore, we need something to be in this position and make
this barrier. Otherwise high-level programs, which are usually written in
an object-oriented way, cannot be translated directly into procedural
instructions to be fed into the CPU.

If you look at high-level programming languages like Java, JavaScript,
Python, Ruby, and so on, they have a component or layer within their
architecture which bridges between their environment and the actual C
library found inside the operating system (the Standard C Library in Unix-
like systems and Win32 API in Windows systems). For instance, Java
Virtual Machine (JVM) does that in a Java platform. While not all these
environments are necessarily object-oriented (for example JavaScript or
Python can be both procedural and object-oriented), they need this layer to
translate their high-level logic to low-level procedural instructions.

Encapsulation
In the previous sections, we saw that each object has a set of attributes and
a set of functionalities attached to it. Here, we are going to talk about
putting those attributes and functionalities into an entity called an object.
We do this through a process called encapsulation.

Encapsulation simply means putting related things together into a capsule
that represents an object. It happens first in your mind, and then it should
be transferred to the code. The moment that you feel an object needs to
have some attributes and functionalities, you are doing encapsulation in
your mind; that encapsulation then needs to be transferred to the code
level.



It is crucial to be able to encapsulate things in a programming language,
otherwise keeping related variables together becomes an untenable
struggle (we mentioned using naming conventions to accomplish this).

An object is made from a set of attributes and a set of functionalities. Both
of these should be encapsulated into the object capsule. Let's first talk
about attribute encapsulation.

Attribute encapsulation
As we saw before, we can always use variable names to do encapsulation
and tie different variables together and group them under the same object.
Following is an example:

int pixel_p1_x = 56;

int pixel_p1_y = 34;

int pixel_p1_red = 123;

int pixel_p1_green = 37;

int pixel_p1_blue = 127;

int pixel_p2_x = 212;

int pixel_p2_y = 994;

int pixel_p2_red = 127;

int pixel_p2_green = 127;

int pixel_p2_blue = 0;

Code Box 6-3: Some variables representing two pixels grouped by their names

This example clearly shows how variable names are used to group
variables under p1  and p2 , which somehow are implicit objects. By
implicit, we mean that the programmer is the only one who is aware of the
existence of such objects; the programming language doesn't know
anything about them.

The programming language only sees 10 variables that seem to be
independent of each other. This would be a very low level of
encapsulation, to such an extent that it would not be officially considered
as encapsulation. Encapsulation by variable names exists in all



programming languages (because you can name variables), even in an
assembly language.

What we need are approaches offering explicit encapsulation. By explicit,
we mean that both the programmer and the programming language are
aware of the encapsulation and the capsules (or objects) that exist.
Programming languages that do not offer explicit attribute encapsulation
are very hard to use.

Fortunately, C does offer explicit encapsulation, and that's one of the
reasons behind why we are able to write so many intrinsically object-
oriented programs with it more or less easily. On the other hand, as we see
shortly in the next section, C doesn't offer explicit behavior encapsulation,
and we have to come up with an implicit discipline to support this.

Note that having an explicit feature such as encapsulation in a
programming language is always desired. Here, we only spoke about
encapsulation, but this can be extended to many other object-oriented
features, such as inheritance and polymorphism. Such explicit features
allow a programming language to catch relevant errors at compile time
instead of runtime.

Resolving errors at runtime is a nightmare, and so we should always try to
catch errors at compile time. This is the main advantage of having an
object-oriented language, which is completely aware of the object-oriented
way of our thinking. An object-oriented language can find and report
errors and violations in our design at compile time and keep us from
having to resolve many severe bugs at runtime. Indeed, this is the reason
why we are seeing more complex programming languages every day – to
make everything explicit to the language.

Unfortunately, not all object-oriented features are explicit in C. That's
basically why it is hard to write an object-oriented program with C. But
there are more explicit features in C++ and, indeed, that's why it is called
an object-oriented programming language.

In C, structures offer encapsulation. Let's change the code inside Code Box
6-3, and rewrite it using structures:



typedef struct {

int x, y;

int red, green, blue;

} pixel_t;

pixel_t p1, p2;

p1.x = 56;

p1.y = 34;

p1.red = 123;

p1.green = 37;

p1.blue = 127;

p2.x = 212;

p2.y = 994;

p2.red = 127;

p2.green = 127;

p2.blue = 0;

Code Box 6-4: The pixel_t structure and declaring two pixel_t variables

There are some important things to note regarding Code Box 6-4:

The attribute encapsulation happens when we put the x , y , red ,
green , and blue  attributes into a new type, pixel_t .
Encapsulation always creates a new type; attribute encapsulation does
this particularly in C. This is very important to note. In fact, this is
the way that we make encapsulation explicit. Please note the _t
suffix at the end of the pixel_t . It is very common in C to add the
_t  suffix to the end of the name of new types, but it is not
mandatory. We use this convention throughout this book.
p1  and p2  will be our explicit objects when this code is executed.
Both of them are of the pixel_t  type, and they have only the
attributes dictated by the structure. In C, and especially C++, types
dictate the attributes to their objects.
The new type, pixel_t , is only the attributes of a class (or the object
template). The word "class," remember, refers to a template of
objects containing both attributes and functionalities. Since a C
structure only keeps attributes, it cannot be a counterpart for a class.
Unfortunately, we have no counterpart concept for a class in C;
attributes and functionalities exist separately, and we implicitly relate
them to each other in the code. Every class is implicit to C and it
refers to a single structure together with a list of C functions. You'll



see more of this in the upcoming examples, as part of this chapter and
the future chapters.
As you see, we are constructing objects based on a template (here, the
structure of pixel_t ), and the template has the predetermined
attributes that an object should have at birth. Like we said before, the
structure only stores attributes and not the functionalities.
Object construction is very similar to the declaration of a new
variable. The type comes first, then the variable name (here the object
name) after that. While declaring an object, two things happen almost
at the same time: first the memory is allocated for the object
(creation), and then, the attributes are initialized (construction) using
the default values. In the preceding example, since all attributes are
integers, the default integer value in C is going to be used which is 0.
In C and many other programming languages, we use a dot ( . ) to
access an attribute inside an object, or an arrow ( -> ) while accessing
the attributes of a structure indirectly through its address stored in a
pointer. The statement p1.x  (or p1->x  if p1  is a pointer) should be
read as the x attribute in the p1 object.

As you know by now, attributes are certainly not the only things that can
be encapsulated into objects. Now it is time to see how functionalities are
encapsulated.

Behavior encapsulation
An object is simply a capsule of attributes and methods. The method is
another standard term that we usually use to denote a piece of logic or
functionality being kept in an object. It can be considered as a C function
that has a name, a list of arguments, and a return type. Attributes convey
values and methods convey behaviors. Therefore, an object has a list of
values and can perform certain behaviors in a system.

In class-based object-oriented languages such as C++, it is very easy to
group a number of attributes and methods together in a class. In prototype-
based languages such as JavaScript, we usually start with an empty object



(ex nihilo, or "from nothing") or clone from an existing object. To have
behaviors in the object, we need to add methods. Look at the following
example, which helps you gain an insight into how prototype-based
programming languages work. It is written in JavaScript:

// Construct an empty object

var clientObj = {};

// Set the attributes

clientObj.name = "John";

clientObj.surname = "Doe";

// Add a method for ordering a bank account

clientObj.orderBankAccount = function () {

...

}

...

// Call the method

clientObj.orderBankAccount();

Code Box 6-5: Constructing a client object in JavaScript

As you see in this example, on the 2nd line, we create an empty object. In
the following two lines, we add two new attributes, name  and surname , to
our object. And on the following line, we add a new method,
orderBankAccount , which points to a function definition. This line is an
assignment actually. On the right-hand side is an anonymous function,
which does not have a name and is assigned to the orderBankAccount
attribute of the object, on the left-hand side. In other words, we store a
function into the orderBankAccount  attribute. On the last line, the object's
method orderBankAccount  is called. This example is a great
demonstration of prototype-based programming languages, which only
rely on having an empty object at first and nothing more.

The preceding example would be different in a class-based programming
language. In these languages, we start by writing a class because without
having a class, we can't have any object. The following code box contains
the previous example but written in C++:

class Client {

public:

void orderBankAccount() {

...



}

std::string name;

std::string surname:

};

...

Client clientObj;

clientObj.name = "John";

clientObj.surname = "Doe";

...

clientObj.orderBankAccount ();

Code Box 6-6: Constructing the client object in C++

As you see, we started by declaring a new class, Client . On the 1st line,
we declared a class, which immediately became a new C++ type. It
resembles a capsule and is surrounded by braces. After declaring the class,
we constructed the object clientObj  from the Client  type.

On the following lines, we set the attributes, and finally, we called the
orderBankAccount  method on the clientObj  object.

Note:

In C++, methods are usually called member functions and attributes are
called data members.

If you look at the techniques employed by open source and well-known C
projects in order to encapsulate some items, you notice that there is a
common theme among them. In the rest of this section, we are going to
propose a behavior encapsulation technique which is based on the similar
techniques observed in such projects.

Since we'll be referring back to this technique often, I'm going to give it a
name. We call this technique implicit encapsulation. It's implicit because
it doesn't offer an explicit behavior encapsulation that C knows about.
Based on what we've got so far in the ANSI C standard, it is not possible to
let C know about classes. So, all techniques that try to address object
orientation in C have to be implicit.



The implicit encapsulation technique suggests the following:

Using C structures to keep the attributes of an object (explicit
attribute encapsulation). These structures are called attribute
structures.
For behavior encapsulation, C functions are used. These functions are
called behavior functions. As you might know, we cannot have
functions in structures in C. So, these functions have to exist outside
the attribute structure (implicit behavior encapsulation).
Behavior functions must accept a structure pointer as one of their
arguments (usually the first argument or the last one). This pointer
points to the attribute structure of the object. That's because the
behavior functions might need to read or modify the object's
attributes, which is very common.
Behavior functions should have proper names to indicate that they are
related to the same class of objects. That's why sticking to a
consistent naming convention is very important when using this
technique. This is one of the two naming conventions that we try to
stick to in these chapters in order to have a clear encapsulation. The
other one is using _t  suffix in the names of the attribute structures.
However, of course, we don't force them and you can use your own
custom naming conventions.
The declaration statements corresponding to the behavior functions
are usually put in the same header file that is used for keeping the
declaration of the attribute structure. This header is called the
declaration header.
The definitions of the behavior functions are usually put in one or
various separate source files which include the declaration header.

Note that with implicit encapsulation, classes do exist, but they are
implicit and known only to the programmer. The following example,
example 6.1, shows how to use this technique in a real C program. It is
about a car object that accelerates until it runs out of fuel and stops.

The following header file, as part of example 6.1, contains the declaration
of the new type, car_t , which is the attribute structure of the Car  class.



The header also contains the declarations required for the behavior
functions of the Car  class. We use the phrase "the Car  class" to refer to
the implicit class that is missing from the C code and it encompasses
collectively the attribute structure and the behavior functions:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_6_1_H

#define EXTREME_C_EXAMPLES_CHAPTER_6_1_H

// This structure keeps all the attributes

// related to a car object

typedef struct {

char name[32];

double speed;

double fuel;

} car_t;

// These function declarations are

// the behaviors of a car object

void car_construct(car_t*, const char*);

void car_destruct(car_t*);

void car_accelerate(car_t*);

void car_brake(car_t*);

void car_refuel(car_t*, double);

#endif

Code Box 6-7 [ExtremeC_examples_chapter6_1.h]: The declarations of the attribute structure
and the behavior functions of the Car class

As you see, the attribute structure car_t  has three fields – name , speed ,
and fuel  – which are the attributes of the car object. Note that car_t  is
now a new type in C, and we can now declare variables of this type. The
behavior functions are also usually declared in the same header file, as you
can see in the preceding code box. They start with the car_  prefix to put
emphasis on the fact that all of them belong to the same class.

Something very important regarding the implicit encapsulation technique:
each object has its own unique attribute structure variable, but all objects
share the same behavior functions. In other words, we have to create a
dedicated variable from the attribute structure type for each object, but we
only write behavior functions once and we call them for different objects.

Note that the car_t  attribute structure is not a class itself. It only contains
the attributes of the Car  class. The declarations all together make the



implicit Car  class. You'll see more examples of this as we go on.

There are many famous open source projects that use the preceding
technique to write semi-object-oriented code. One example is libcurl . If
you have a look at its source code, you will see a lot of structures and
functions starting with curl_ . You can find the list of such functions here:
https://curl.haxx.se/libcurl/c/allfuncs.html.

The following source file contains the definitions of the behavior
functions as part of example 6.1:

#include <string.h>

#include "ExtremeC_examples_chapter6_1.h"

// Definitions of the above functions

void car_construct(car_t* car, const char* name) {

strcpy(car->name, name);

car->speed = 0.0;

car->fuel = 0.0;

}

void car_destruct(car_t* car) {

// Nothing to do here!

}

void car_accelerate(car_t* car) {

car->speed += 0.05;

car->fuel -= 1.0;

if (car->fuel < 0.0) {

car->fuel = 0.0;

}

}

void car_brake(car_t* car) {

car->speed -= 0.07;

if (car->speed < 0.0) {

car->speed = 0.0;

}

car->fuel -= 2.0;

if (car->fuel < 0.0) {

car->fuel = 0.0;

}

}

void car_refuel(car_t* car, double amount) {

car->fuel = amount;

}

Code Box 6-8 [ExtremeC_examples_chapter6_1.c]: The definitions of the behavior functions
as part of the Car class

https://curl.haxx.se/libcurl/c/allfuncs.html


The Car 's behavior functions are defined in Code Box 6-8. As you can see,
all the functions accept a car_t  pointer as their first argument. This
allows the function to read and modify the attributes of an object. If a
function is not receiving a pointer to an attribute structure, then it can be
considered as an ordinary C function that does not represent an object's
behavior.

Note that the declarations of behavior functions are usually found next to
the declarations of their corresponding attribute structure. That's because
the programmer is the sole person in charge of maintaining the
correspondence of the attribute structure and the behavior functions, and
the maintenance should be easy enough. That's why keeping these two sets
close together, usually in the same header file, helps in maintaining the
overall structure of the class, and eases the pain for future efforts.

In the following code box, you'll find the source file that contains the
main  function and performs the main logic. All the behavior functions
will be used here:

#include <stdio.h>

#include "ExtremeC_examples_chapter6_1.h"

// Main function

int main(int argc, char** argv) {

// Create the object variable

car_t car;

// Construct the object

car_construct(&car, "Renault");

// Main algorithm

car_refuel(&car, 100.0);

printf("Car is refueled, the correct fuel level is %f\n",

car.fuel);

while (car.fuel > 0) {

printf("Car fuel level: %f\n", car.fuel);

if (car.speed < 80) {

car_accelerate(&car);

printf("Car has been accelerated to the speed: %f\n",

car.speed);

} else {

car_brake(&car);

printf("Car has been slowed down to the speed: %f\n",

car.speed);

}

}



printf("Car ran out of the fuel! Slowing down ...\n");

while (car.speed > 0) {

car_brake(&car);

printf("Car has been slowed down to the speed: %f\n",

car.speed);

}

// Destruct the object

car_destruct(&car);

return 0;

}

Code Box 6-9 [ExtremeC_examples_chapter6_1_main.c]: The main function of example 6.1

As the first instruction in the main  function, we've declared the car
variable from the car_t  type. The variable car  is our first car  object.
On this line, we have allocated the memory for the object's attributes. On
the following line, we constructed the object. Now on this line, we have
initialized the attributes. You can initialize an object only when there is
memory allocated for its attributes. In the code, the constructor accepts a
second argument as the car's name. You may have noticed that we are
passing the address of the car  object to all car_*  behavior functions.

Following that in the while  loop, the main  function reads the fuel
attribute and checks whether its value is greater than zero. The fact that
the main  function, which is not a behavior function, is able to access (read
and write) the car 's attributes is an important thing. The fuel  and speed
attributes, for instance, are examples of public attributes, which functions
(external code) other than the behavior functions can access. We will come
back to this point in the next section.

Before leaving the main  function and ending the program, we've
destructed the car  object. This simply means that resources allocated by
the object have been released at this phase. Regarding the car  object in
this example, there is nothing to be done for its destruction, but it is not
always the case and destruction might have steps to be followed. We will
see more of this in the upcoming examples. The destruction phase is
mandatory and prevents memory leaks in the case of Heap allocations.

It would be good to see how we could write the preceding example in C++.
This would help you to get an insight into how an OOP language



understands classes and objects and how it reduces the overhead of writing
proper object-oriented code.

The following code box, as part of example 6.2, shows the header file
containing the Car  class in C++:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_6_2_H

#define EXTREME_C_EXAMPLES_CHAPTER_6_2_H

class Car {

public:

// Constructor

Car(const char*);

// Destructor

~Car();

void Accelerate();

void Brake();

void Refuel(double);

// Data Members (Attributes in C)

char name[32];

double speed;

double fuel;

};

#endif

Code Box 6-10 [ExtremeC_examples_chapter6_2.h]: The declaration of the Car class in C++

The main feature of the preceding code is the fact that C++ knows about
classes. Therefore, the preceding code demonstrates an explicit
encapsulation; both attribute and behavior encapsulations. More than that,
C++ supports more object-oriented concepts such as constructors and
destructors.

In the C++ code, all the declarations, both attributes and behaviors, are
encapsulated in the class definition. This is the explicit encapsulation.
Look at the two first functions that we have declared as the constructor
and the destructor of the class. C doesn't know about the constructors and
destructors; but C++ has a specific notation for them. For instance, the
destructor starts with ~ and it has the same name as the class does.

In addition, as you can see, the behavior functions are missing the first
pointer argument. That's because they all have access to the attributes



inside the class. The next code box shows the content of the source file
that contains the definition of the declared behavior functions:

#include <string.h>

#include "ExtremeC_examples_chapter6_2.h"

Car::Car(const char* name) {

strcpy(this->name, name);

this->speed = 0.0;

this->fuel = 0.0;

}

Car::~Car() {

// Nothing to do

}

void Car::Accelerate() {

this->speed += 0.05;

this->fuel -= 1.0;

if (this->fuel < 0.0) {

this->fuel = 0.0;

}

}

void Car::Brake() {

this->speed -= 0.07;

if (this->speed < 0.0) {

this->speed = 0.0;

}

this->fuel -= 2.0;

if (this->fuel < 0.0) {

this->fuel = 0.0;

}

}

void Car::Refuel(double amount) {

this->fuel = amount;

}

Code Box 6-11 [ExtremeC_examples_chapter6_2.cpp]: The definition of the Car class in C++

If you look carefully, you'll see that the car  pointer in the C code has
been replaced by a this  pointer, which is a keyword in C++. The keyword
this  simply means the current object. I'm not going to explain it any
further here, but it is a smart workaround to eliminate the pointer
argument in C and make behavior functions simpler.

And finally, the following code box contains the main  function that uses
the preceding class:



// File name: ExtremeC_examples_chapter6_2_main.cpp

// Description: Main function

#include <iostream>

#include "ExtremeC_examples_chapter6_2.h"

// Main function

int main(int argc, char** argv) {

// Create the object variable and call the constructor

Car car("Renault");

// Main algorithm

car.Refuel(100.0);

std::cout << "Car is refueled, the correct fuel level is "

<< car.fuel << std::endl;

while (car.fuel > 0) {

std::cout << "Car fuel level: " << car.fuel << std::endl;

if (car.speed < 80) {

car.Accelerate();

std::cout << "Car has been accelerated to the speed: "

<< car.speed << std::endl;

} else {

car.Brake();

std::cout << "Car has been slowed down to the speed: "

<< car.speed << std::endl;

}

}

std::cout << "Car ran out of the fuel! Slowing down ..."

<< std::endl;

while (car.speed > 0) {

car.Brake();

std::cout << "Car has been slowed down to the speed: "

<< car.speed << std::endl;

}

std::cout << "Car is stopped!" << std::endl;

// When leaving the function, the object 'car' gets

// destructed automatically.

return 0;

}

Code Box 6-12 [ExtremeC_examples_chapter6_2_main.cpp]: The main function of example
6.2

The main  function written for C++ is very similar to the one we wrote for
C, except that it allocates the memory for a class variable instead of a
structure variable.

In C, we can't put attributes and behavior functions in a bundle that is
known to C. Instead, we have to use files to group them. But in C++, we



have a syntax for this bundle, which is the class definition. It allows us to
put data members (or attributes) and member functions (or behavior
functions) in the same place.

Since C++ knows about the encapsulation, it is redundant to pass the
pointer argument to the behavior functions, and as you can see, in C++, we
don't have any first pointer arguments in member function declarations
like those we see in the C version of the Car  class.

So, what happened? We wrote an object-oriented program in both C, which
is a procedural programming language, and in C++, which is an object-
oriented one. The biggest change was using car.Accelerate()  instead of
car_accelerate(&car) , or using car.Refuel(1000.0)  instead of
car_refuel(&car, 1000.0) .

In other words, if we are doing a call such as func(obj, a, b, c, ...)  in
a procedural programming language, we can do it as obj.func(a, b, c,
...)  in an object-oriented language. They are equivalent but coming from
different programming paradigms. Like we said before, there are
numerous examples of C projects that use this technique.

Note:

In Chapter 9, Abstraction and OOP in C++, you will see that C++ uses
exactly the same preceding technique in order to translate high-level C++
function calls to low-level C function calls.

As a final note, there is an important difference between C and C++
regarding object destruction. In C++, the destructor function is invoked
automatically whenever an object is allocated on top of the Stack and it is
going out of scope, like any other Stack variable. This is a great
achievement in C++ memory management, because in C, you may easily
forget to call the destructor function and eventually experience a memory
leak.

Now it is time to talk about other aspects of encapsulation. In the next
section, we will talk about a consequence of encapsulation: information-



hiding.

Information hiding
So far, we've explained how encapsulation bundles attributes (which
represent values) and functionalities (which represent behaviors) together
to form objects. But it doesn't end there.

Encapsulation has another important purpose or consequence, which is
information-hiding. Information-hiding is the act of protecting (or hiding)
some attributes and behaviors that should not be visible to the outer world.
By the outer world, we mean all parts of the code that do not belong to the
behaviors of an object. By this definition, no other code, or simply no
other C function, can access a private attribute or a private behavior of an
object if that attribute or behavior is not part of the public interface of the
class.

Note that the behaviors of two objects from the same type, such as car1
and car2  from the Car  class, can access the attributes of any object from
the same type. That's because of the fact that we write behavior functions
once for all objects in a class.

In example 6.1, we saw that the main  function was easily accessing the
speed  and fuel  attributes in the car_t  attribute structure. This means
that all attributes in the car_t  type were public. Having a public attribute
or behavior can be a bad thing because it might have some long-lasting
and dangerous.

As a consequence, the implementation details could leak out. Suppose that
you are going to use a car object. Usually, it is only important to you that it
has a behavior that accelerates the car; and you are not curious about how
it is done. There may be even more internal attributes in the object that
contribute to the acceleration process, but there is no valid reason that they
should be visible to the consumer logic.

For instance, the amount of the electrical current being delivered to the
engine starter could be an attribute, but it should be just private to the



object itself. This also holds for certain behaviors that are internal to the
object. For example, injecting the fuel into the combustion chamber is an
internal behavior that should not be visible and accessible to you,
otherwise, you could interfere with that and interrupt the normal process
of the engine.

From another point of view, the implementation details (how the car
works) vary from one car manufacturer to another but being able to
accelerate a car is a behavior that is provided by all car manufacturers. We
usually say that being able to accelerate a car is part of the public API or
the public interface of the Car  class.

Generally, the code using an object becomes dependent on the public
attributes and behaviors of that object. This is a serious concern. Leaking
out an internal attribute by declaring it public at first and then making it
private can effectively break the build of the dependent code. It is
expected that other parts of the code that are using that attribute as a
public thing won't get compiled after the change.

This would mean you've broken the backward compatibility. That's why
we choose a conservative approach and make every single attribute private
by default until we find sound reasoning for making it public.

To put it simply, exposing private code from a class effectively means that
rather than being dependent on a light public interface, we have been
dependent on a thick implementation. These consequences are serious and
have the potential to cause a lot of rework in a project. So, it is important
to keep attributes and behaviors as private as they can be.

The following code box, as part of example 6.3, will demonstrate how we
can have private attributes and behaviors in C. The example is about a
List  class that is supposed to store some integer values:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_6_3_H

#define EXTREME_C_EXAMPLES_CHAPTER_6_3_H

#include <unistd.h>

// The attribute structure with no disclosed attribute

struct list_t;

// Allocation function



struct list_t* list_malloc();

// Constructor and destructor functions

void list_init(struct list_t*);

void list_destroy(struct list_t*);

// Public behavior functions

int list_add(struct list_t*, int);

int list_get(struct list_t*, int, int*);

void list_clear(struct list_t*);

size_t list_size(struct list_t*);

void list_print(struct list_t*);

#endif

Code Box 6-13 [ExtremeC_examples_chapter6_3.h]: The public interface of the List class

What you see in the preceding code box is the way that we make the
attributes private. If another source file, such as the one that contains the
main  function, includes the preceding header, it'll have no access to the
attributes inside the list_t  type. The reason is simple. The list_t  is
just a declaration without a definition, and with just a structure
declaration, you cannot access the fields of the structure. You cannot even
declare a variable out of it. This way, we guarantee the information-hiding.
This is actually a great achievement.

Once again, before creating and publishing a header file, it is mandatory to
double-check whether we need to expose something as public or not. By
exposing a public behavior or a public attribute, you'll create dependencies
whose breaking would cost you time, development effort, and eventually
money.

The following code box demonstrates the actual definition of the list_t
attribute structure. Note that it is defined inside a source file and not a
header file:

#include <stdio.h>

#include <stdlib.h>

#define MAX_SIZE 10

// Define the alias type bool_t

typedef int bool_t;

// Define the type list_t

typedef struct {

size_t size;

int* items;



} list_t;

// A private behavior which checks if the list is full

bool_t __list_is_full(list_t* list) {

return (list->size == MAX_SIZE);

}

// Another private behavior which checks the index

bool_t __check_index(list_t* list, const int index) {

return (index >= 0 && index <= list->size);

}

// Allocates memory for a list object

list_t* list_malloc() {

return (list_t*)malloc(sizeof(list_t));

}

// Constructor of a list object

void list_init(list_t* list) {

list->size = 0;

// Allocates from the heap memory

list->items = (int*)malloc(MAX_SIZE * sizeof(int));

}

// Destructor of a list object

void list_destroy(list_t* list) {

// Deallocates the allocated memory

free(list->items);

}

int list_add(list_t* list, const int item) {

// The usage of the private behavior

if (__list_is_full(list)) {

return -1;

}

list->items[list->size++] = item;

return 0;

}

int list_get(list_t* list, const int index, int* result) {

if (__check_index(list, index)) {

*result = list->items[index];

return 0;

}

return -1;

}

void list_clear(list_t* list) {

list->size = 0;

}

size_t list_size(list_t* list) {

return list->size;

}

void list_print(list_t* list) {

printf("[");

for (size_t i = 0; i < list->size; i++) {

printf("%d ", list->items[i]);

}



printf("]\n");

}

Code Box 6-14 [ExtremeC_examples_chapter6_3.c]: The definition of the List class

All the definitions that you see in the preceding code box are private. The
external logic that is going to use a list_t  object does not know anything
about the preceding implementations, and the header file is the only piece
of code that the external code will be dependent on.

Note that the preceding file has not even included the header file! As long
as the definitions and function signatures match the declarations in the
header file, that's all that's needed. However, it is recommended to do so
because it guarantees the compatibility between the declarations and their
corresponding definitions. As you've seen in Chapter 2, Compilation and
Linking, the source files are compiled separately and finally linked
together.

In fact, the linker brings private definitions to the public declarations and
makes a working program out of them.

Note:

We can use a different notation for private behavior functions. We use the
prefix __  in their names. As an example, the __check_index
function is a private function. Note that a private function does not have
any corresponding declaration in the header file.

The following code box contains example 6.3's main  function that creates
two list objects, populates the first one, and uses the second list to store
the reverse of the first list. Finally, it prints them out:

#include <stdlib.h>

#include "ExtremeC_examples_chapter6_3.h"

int reverse(struct list_t* source, struct list_t* dest) {

list_clear(dest);

for (size_t i = list_size(source) - 1; i >= 0; i--) {

int item;

if(list_get(source, i, &item)) {



return -1;

}

list_add(dest, item);

}

return 0;

}

int main(int argc, char** argv) {

struct list_t* list1 = list_malloc();

struct list_t* list2 = list_malloc();

// Construction

list_init(list1);

list_init(list2);

list_add(list1, 4);

list_add(list1, 6);

list_add(list1, 1);

list_add(list1, 5);

list_add(list2, 9);

reverse(list1, list2);

list_print(list1);

list_print(list2);

// Destruction

list_destroy(list1);

list_destroy(list2);

free(list1);

free(list2);

return 0;

}

Code Box 6-15 [ExtremeC_examples_chapter6_3_main.c]: The main function of example 6.3

As you can see in the preceding code box, we wrote the main  and
reverse  functions only based on the things declared in the header file. In
other words, these functions are using only the public API (or public
interface) of the List  class; the declarations of the attribute structure
list_t  and its behavior functions. This example is a nice demonstration
of how to break the dependencies and hide the implementation details
from other parts of the code.

Note:

Using the public API, you can write a program that compiles, but it
cannot turn into a real working program unless you provide the
corresponding object files of the private part and link them together.



There are some points related to the preceding code that we explore in
more detail here. We needed to have a list_malloc  function in order to
allocate memory for a list_t  object. Then, we can use the function free
to release the allocated memory when we're done with the object.

You cannot use malloc  directly in the preceding example. That's because
if you are going to use malloc  inside the main  function, you have to pass
sizeof(list_t)  as the required number of bytes that should be allocated.
However, you cannot use sizeof  for an incomplete type.

The list_t  type included from the header file is an incomplete type
because it is just a declaration that doesn't give any information regarding
its internal fields, and we don't know its size while compiling it. The real
size will be determined only at link time when we know the
implementation details. As a solution, we had to have the list_malloc
function defined and have malloc  used in a place where sizeof(list_t)
is determined.

In order to build example 6.3, we need to compile the sources first. The
following commands produce the necessary object files before the linking
phase:

$ gcc -c ExtremeC_examples_chapter6_3.c -o private.o

$ gcc -c ExtremeC_examples_chapter6_3_main.c -o main.o

Shell Box 6-1: Compiling example 6.3

As you see, we have compiled the private part into private.o  and the
main part into main.o . Remember that we don't compile header files. The
public declarations in the header are included as part of the main.o  object
file.

Now we need to link the preceding object files together, otherwise main.o
alone cannot turn into an executable program. If you try to create an
executable file using only main.o , you will see the following errors:

$ gcc main.o -o ex6_3.out

main.o: In function 'reverse':



ExtremeC_examples_chapter6_3_main.c:(.text+0x27): undefined

reference to 'list_clear'

...

main.o: In function 'main':

ExtremeC_examples_chapter6_3_main.c:(.text+0xa5): undefined

reference to 'list_malloc'

... collect2: error: ld returned 1 exit status

$

Shell Box 6-2: Trying to link example 6.3 by just providing main.o

You see that the linker cannot find the definitions of the functions declared
in the header file. The proper way to link the example is as follows:

$ gcc main.o private.o -o ex6_3.out

$ ./ex6_3.out

[4 6 1 5 ]

[5 1 6 4 ]

$

Shell Box 6-3: Linking and running example 6.3

What happens if you change the implementation behind the List  class?

Say, instead of using an array, you use a linked list. It seems that we don't
need to generate the main.o  again, because it is nicely independent of the
implementation details of the list it uses. So, we need only to compile and
generate a new object file for the new implementation; for example,
private2.o . Then, we just need to relink the object files and get the new
executable:

$ gcc main.o private2.o -o ex6_3.out

$ ./ex6_3.out

[4 6 1 5 ]

[5 1 6 4 ]

$

Shell Box 6-4: Linking and running example 6.3 with a different implementation of the List
class



As you see, from the user's point of view, nothing has changed, but the
underlying implementation has been replaced. That is a great achievement
and this approach is being used heavily in C projects.

What if we wanted to not repeat the linking phase in case of a new list
implementation? In that case, we could use a shared library (or .so  file)
to contain the private object file. Then, we could load it dynamically at
runtime, removing the need to relink the executable again. We have
discussed shared libraries as part of Chapter 3, Object Files.

Here, we bring the current chapter to an end and we will continue our
discussion in the following chapter. The next two chapters will be about
the possible relationships which can exist between two classes.

Summary
In this chapter, the following topics have been discussed:

We gave a thorough explanation of object-orientation philosophy and
how you can extract an object model from your mind map.
We also introduced the concept of the domain and how it should be
used to filter the mind map to just keep relevant concepts and ideas.
We also introduced the attributes and behaviors of a single object and
how they should be extracted from either the mind map or the
requirements given in the description of a domain.
We explained why C cannot be an OOP language and explored its role
in the translation of OOP programs into low-level assembly
instructions that eventually will be run on a CPU.
Encapsulation, as the first principle in OOP, was discussed. We use
encapsulation to create capsules (or objects) that contain a set of
attributes (placeholders for values) and a set of behaviors
(placeholders for logic).



Information-hiding was also discussed, including how it can lead to
interfaces (or APIs) that can be used without having to become
dependent on the underlying implementation.
While discussing information-hiding, we demonstrated how to make
attributes or methods private in C code.

The next chapter will be the opening to the discussion regarding possible
relations between classes. We start Chapter 7, Composition, and
Aggregation, with talking about composition relationship and then, we
continue with inheritance and polymorphism as part of Chapter 8,
Inheritance and Polymorphism.



Chapter 07
Composition and Aggregation

In the previous chapter, we talked about encapsulation and information
hiding. In this chapter, we continue with object orientation in C and we'll
discuss the various relationships that can exist between two classes.
Eventually, this will allow us to expand our object model and express the
relations between objects as part of the upcoming chapters.

As part of this chapter, we discuss:

Types of relations that can exist between two objects and their
corresponding classes: We will talk about to-have and to-be
relationships, but our focus will be on to-have relations in this
chapter.
Composition as our first to-have relation: An example will be given
to demonstrate a real composition relationship between two classes.
Using the given example, we explore the memory structure which we
usually have in case of composition.
Aggregation as the second to-have relation: It is similar to
composition since both of them address a to-have relationship. But
they are different. We will give a separate complete example to cover
an aggregation case. The difference among aggregation and
composition will shine over the memory layout associated with these
relationships.

This is the second of the four chapters covering OOP in C. The to-be
relationship, which is also called inheritance, will be covered in the next
chapter.



Relations between classes
An object model is a set of related objects. The number of relations can be
many, but there are a few relationship types that can exist between two
objects. Generally, there are two categories of relationships found between
objects (or their corresponding classes): to-have relationships and to-be
relationships.

We'll explore to-have relationships in depth in this chapter, and we'll cover
to-be relationships in the next chapter. In addition, we will also see how
the relationships between various objects can lead to relationships between
their corresponding classes. Before dealing with that, we need to be able to
distinguish between a class and an object.

Object versus class
If you remember from the previous chapter, we have two approaches for
constructing objects. One approach is prototype-based and the other is
class-based.

In the prototype-based approach, we construct an object either empty
(without any attribute or behavior), or we clone it from an existing object.
In this context, instance and object mean the same thing. So, the
prototype-based approach can be read as the object-based approach; an
approach that begins from empty objects instead of classes.

In the class-based approach, we cannot construct an object without having
a blueprint that is often called a class. So, we should start from a class.
And then, we can instantiate an object from it. In the previous chapter, we
explained the implicit encapsulation technique that defines a class as a set
of declarations put in a header file. We also gave some examples showing
how this works in C.



Now, as part of this section, we want to talk more about the differences
between a class and an object. While the differences seem to be trivial, we
want to dive deeper and study them carefully. We begin by giving an
example.

Suppose that we define a class, Person . It has the following attributes:
name , surname , and age . We won't talk about the behaviors because the
differences usually come from the attributes, and not the behaviors.

In C, we can write the Person  class with public attributes as follows:

typedef struct {

char name[32];

char surname[32];

unsigned int age;

} person_t;

Code Box 7-1: The Person attribute structure in C

And in C++:

class Person {

public:

std::string name;

std::string family;

uint32_t age;

};

Code Box 7-2: The Person class's class in C++

The preceding code boxes are identical. In fact, the current discussion can
be applied to both C and C++, and even other OOP languages such as Java.
A class (or an object template) is a blueprint that only determines the
attributes required to be present in every object, and not the values that
these attributes might have in one specific object. In fact, each object has
its own specific set of values for the same attributes that exist in other
objects instantiated from the same class.



When an object is created based on a class, its memory is allocated first.
This allocated memory will be a placeholder for the attribute values. After
that, we need to initialize the attribute values with some values. This is an
important step, otherwise, the object might have an invalid state after
being created. As you've already seen, this step is called construction.

There is usually a dedicated function that performs the construction step,
which is called the constructor. The functions list_init  and
car_construct  in the examples, found in the previous chapter, were
constructor functions. It is quite possible that as part of constructing an
object, we need to allocate even more memory for resources such as other
objects, buffers, arrays, streams, and so on required by that object. The
resources owned by the object must have been released before having the
owner object freed.

We also have another function, similar to the constructor, which is
responsible for freeing any allocated resources. It is called the destructor.
Similarly, the functions list_destroy  and car_destruct  in the examples
found in the previous chapter were destructors. After destructing an object,
its allocated memory is freed, but before that, all the owned resources and
their corresponding memories must be freed.

Before moving on, let's sum up what we've explained so far:

A class is a blueprint that is used as a map for creating objects.
Many objects can be made from the same class.
A class determines which attributes should be present in every future
object created based on that class. It doesn't say anything about the
possible values they can have.
A class itself does not consume any memory (except in some
programming languages other than C and C++) and only exists
at the source level and at compile time. But objects exist at runtime
and consume memory.
When creating an object, memory allocation happens first. In
addition, memory deallocation is the last operation for an object.



When creating an object, it should be constructed right after memory
allocation. It should be also destructed right before deallocation.
An object might be owning some resources such as streams, buffers,
arrays, and so on, that must be released before having
the object destroyed.

Now that you know the differences between a class and an object, we can
move on and explain the different relationships that can exist between two
objects and their corresponding classes. We'll start with composition.

Composition
As the term "composition" implies, when an object contains or possesses
another object – in other words, it is composed of another object – we say
that there is a composition relationship between them.

As an example, a car has an engine; a car is an object that contains an
engine object. Therefore, the car and engine objects have a composition
relationship. There is an important condition that a composition
relationship must have: the lifetime of the contained object is bound to the
lifetime of the container object.

As long as the container object exists, the contained object must exist. But
when the container object is about to get destroyed, the contained object
must have been destructed first. This condition implies that the contained
object is often internal and private to the container.

Some parts of the contained object may be still accessible through the
public interface (or behavior functions) of the container class, but the
lifetime of the contained object must be managed internally by the
container object. If a piece of code can destruct the contained object
without destructing the container object, it is a breach of the composition
relationship and the relationship is no longer a composition.



The following example, example 7.1, demonstrates the composition
relationship between a car object and an engine object.

It is composed of five files: two header files, which declare the public
interfaces of the Car  and Engine  classes; two source files, which contain
the implementation of the Car  and Engine  classes; and finally, a source
file, which contains the main  function and executes a simple scenario
using a car and its engine object.

Note that, in some domains, we can have engine objects outside of the car
objects; for example, in mechanical engineering CAD software. So, the
type of relationships between the various objects is determined by the
problem domain. For the sake of our example, imagine a domain in which
engine objects could not exist outside of car objects.

The following code box shows the header file for the Car  class:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_7_1_CAR_H

#define EXTREME_C_EXAMPLES_CHAPTER_7_1_CAR_H

struct car_t;

// Memory allocator

struct car_t* car_new();

// Constructor

void car_ctor(struct car_t*);

// Destructor

void car_dtor(struct car_t*);

// Behavior functions

void car_start(struct car_t*);

void car_stop(struct car_t*);

double car_get_engine_temperature(struct car_t*);

#endif

Code Box 7-3 [ExtremeC_examples_chapter7_1_car.h]: The public interface of the Car class

As you see, the preceding declarations have been made in a similar way to
what we did for the List  class in the last example of the previous chapter,
example 6.3. One of the differences is that we have chosen a new suffix for
the constructor function; car_new  instead of car_construct . The other
difference is that we have only declared the attribute structure car_t . We
have not defined its fields, and this is called a forward declaration. The
definition for the structure car_t  will be in the source file which comes



in the code box 7-5. Note that in the preceding header file, the type car_t
is considered an incomplete type which is not defined yet.

The following code box contains the header file for the Engine  class:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_7_1_ENGINE_H

#define EXTREME_C_EXAMPLES_CHAPTER_7_1_ENGINE_H

struct engine_t;

// Memory allocator

struct engine_t* engine_new();

// Constructor

void engine_ctor(struct engine_t*);

// Destructor

void engine_dtor(struct engine_t*);

// Behavior functions

void engine_turn_on(struct engine_t*);

void engine_turn_off(struct engine_t*);

double engine_get_temperature(struct engine_t*);

#endif

Code Box 7-4 [ExtremeC_examples_chapter7_1_engine.h]: The public interface of the
Engine class

The following code boxes contains the implementations done for the Car
and Engine  classes. We begin with the Car  class:

#include <stdlib.h>

// Car is only able to work with the public interface of

Engine

#include "ExtremeC_examples_chapter7_1_engine.h"

typedef struct {

// Composition happens because of this attribute

struct engine_t* engine;

} car_t;

car_t* car_new() {

return (car_t*)malloc(sizeof(car_t));

}

void car_ctor(car_t* car) {

// Allocate memory for the engine object

car->engine = engine_new();

// Construct the engine object

engine_ctor(car->engine);

}

void car_dtor(car_t* car) {

// Destruct the engine object



engine_dtor(car->engine);

// Free the memory allocated for the engine object

free(car->engine);

}

void car_start(car_t* car) {

engine_turn_on(car->engine);

}

void car_stop(car_t* car) {

engine_turn_off(car->engine);

}

double car_get_engine_temperature(car_t* car) {

return engine_get_temperature(car->engine);

}

Code Box 7-5 [ExtremeC_examples_chapter7_1_car.c]: The definition of the Car class

The preceding code box shows how the car has contained the engine. As
you see, we have a new attribute as part of the car_t  attribute structure,
and it is of the struct engine_t*  type. Composition happens because of
this attribute.

Though the type struct engine_t*  is still incomplete inside this source
file, it can point to an object from a complete engine_t  type at runtime.
This attribute will point to an object that is going to be constructed as part
of the Car  class's constructor, and it will be freed inside the destructor. At
both places, the car object exists, and this means that the engine's lifetime
is included in the car's lifetime.

The engine  pointer is private, and no pointer is leaking from the
implementation. That's an important note. When you are implementing a
composition relationship, no pointer should be leaked out otherwise it
causes external code to be able to change the state of the contained object.
Just like encapsulation, no pointer should be leaked out when it gives
direct access to the private parts of an object. Private parts should always
be accessed indirectly via behavior functions.

The car_get_engine_temperature  function in the code box gives access to
the temperature  attribute of the engine. However, there is an important
note regarding this function. It uses the public interface of the engine. If
you pay attention, you'll see that the car's private implementation is
consuming the engine's public interface.



This means that the car itself doesn't know anything about the
implementation details of the engine. This is the way that it should be.

Two objects that are not of the same type, in most cases, must not know
about each other's implementation details. This is what information hiding
dictates. Remember that the car's behaviors are considered external to the
engine.

This way, we can replace the implementation of the engine with an
alternative one, and it should work, as long as the new implementation
provides definitions for the same public functions declared in the engine's
header file.

Now, let's look at the implementation of the Engine  class:

#include <stdlib.h>

typedef enum {

ON,

OFF

} state_t;

typedef struct {

state_t state;

double temperature;

} engine_t;

// Memory allocator

engine_t* engine_new() {

return (engine_t*)malloc(sizeof(engine_t));

}

// Constructor

void engine_ctor(engine_t* engine) {

engine->state = OFF;

engine->temperature = 15;

}

// Destructor

void engine_dtor(engine_t* engine) {

// Nothing to do

}

// Behavior functions

void engine_turn_on(engine_t* engine) {

if (engine->state == ON) {

return;

}

engine->state = ON;

engine->temperature = 75;

}



void engine_turn_off(engine_t* engine) {

if (engine->state == OFF) {

return;

}

engine->state = OFF;

engine->temperature = 15;

}

double engine_get_temperature(engine_t* engine) {

return engine->temperature;

}

Code Box 7-6 [ExtremeC_examples_chapter7_1_engine.c]: The definition of the Engine class

The preceding code is just using the implicit encapsulation approach for
its private implementation, and it is very similar to previous examples.
But there is one thing to note about this. As you see, the engine  object
doesn't know that an external object is going to contain it in a composition
relationship. This is like the real world. When a company is building
engines, it is not clear which engine will go into which car. Of course, we
could have kept a pointer to the container car  object, but in this example,
we didn't need to.

The following code box demonstrates the scenario in which we create a
car  object and invoke some of its public API to extract information about
the car's engine:

#include <stdio.h>

#include <stdlib.h>

#include "ExtremeC_examples_chapter7_1_car.h"

int main(int argc, char** argv) {

// Allocate memory for the car object

struct car_t *car = car_new();

// Construct the car object

car_ctor(car);

printf("Engine temperature before starting the car: %f\n",

car_get_engine_temperature(car));

car_start(car);

printf("Engine temperature after starting the car: %f\n",

car_get_engine_temperature(car));

car_stop(car);

printf("Engine temperature after stopping the car: %f\n",

car_get_engine_temperature(car));

// Destruct the car object

car_dtor(car);



// Free the memory allocated for the car object

free(car);

return 0;

}

Code Box 7-7 [ExtremeC_examples_chapter7_1_main.c]: The main function of example 7.1

To build the preceding example, firstly we need to compile the previous
three source files. Then, we need to link them together to generate the
final executable object file. Note that the main source file (the source file
that contains the main  function) only depends on the car's public
interface. So, when linking, it only needs the private implementation of
the car  object. However, the private implementation of the car  object
relies on the public interface of the engine interface; then, while linking,
we need to provide the private implementation of the engine  object.
Therefore, we need to link all three object files in order to have the final
executable.

The following commands show how to build the example and run the final
executable:

$ gcc -c ExtremeC_examples_chapter7_1_engine.c -o engine.o

$ gcc -c ExtremeC_examples_chapter7_1_car.c -o car.o

$ gcc -c ExtremeC_examples_chapter7_1_main.c -o main.o

$ gcc engine.o car.o main.o -o ex7_1.out

$ ./ex7_1.out

Engine temperature before starting the car: 15.000000

Engine temperature after starting the car: 75.000000

Engine temperature after stopping the car: 15.000000

$

Shell Box 7-1: The compilation, linking, and execution of example 7.1

In this section, we explained one type of relationship that can exist
between two objects. In the next section, we'll talk about the next
relationship. It shares a similar concept to the composition relationship,
but there are some significant differences.



Aggregation
Aggregation also involves a container object that contains another object.
The main difference is that in aggregation, the lifetime of the contained
object is independent of the lifetime of the container object.

In aggregation, the contained object could be constructed even before the
container object is constructed. This is opposite to composition, in which
the contained object should have a lifetime shorter than or equal to the
container object.

The following example, example 7.2, demonstrates an aggregation
relationship. It describes a very simple game scenario in which a player
picks up a gun, fires multiple times, and drops the gun.

The player  object would be a container object for a while, and the gun
object would be a contained object as long as the player object holds it.
The lifetime of the gun object is independent of the lifetime of the player
object.

The following code box shows the header file of the Gun  class:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_7_2_GUN_H

#define EXTREME_C_EXAMPLES_CHAPTER_7_2_GUN_H

typedef int bool_t;

// Type forward declarations

struct gun_t;

// Memory allocator

struct gun_t* gun_new();

// Constructor

void gun_ctor(struct gun_t*, int);

// Destructor

void gun_dtor(struct gun_t*);

// Behavior functions

bool_t gun_has_bullets(struct gun_t*);

void gun_trigger(struct gun_t*);

void gun_refill(struct gun_t*);

#endif



Code Box 7-8 [ExtremeC_examples_chapter7_2_gun.h]: The public interface of the Gun
class

As you see, we have only declared the gun_t  attribute structure as we
have not defined its fields. As we have explained before, this is called a
forward declaration and it results in an incomplete type which cannot be
instantiated.

The following code box shows the header file of the Player  class:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_7_2_PLAYER_H

#define EXTREME_C_EXAMPLES_CHAPTER_7_2_PLAYER_H

// Type forward declarations

struct player_t;

struct gun_t;

// Memory allocator

struct player_t* player_new();

// Constructor

void player_ctor(struct player_t*, const char*);

// Destructor

void player_dtor(struct player_t*);

// Behavior functions

void player_pickup_gun(struct player_t*, struct gun_t*);

void player_shoot(struct player_t*);

void player_drop_gun(struct player_t*);

#endif

Code Box 7-9 [ExtremeC_examples_chapter7_2_player.h]: The public interface of the Player
class

The preceding code box defines the public interface of all player objects.
In other words, it defines the public interface of the Player  class.

Again, we have to forward the declaration of the gun_t  and player_t
structures. We need to have the gun_t  type declared since some behavior
functions of the Player  class have arguments of this type.

The implementation of the Player  class is as follows:

#include <stdlib.h>

#include <string.h>



#include <stdio.h>

#include "ExtremeC_examples_chapter7_2_gun.h"

// Attribute structure

typedef struct {

char* name;

struct gun_t* gun;

} player_t;

// Memory allocator

player_t* player_new() {

return (player_t*)malloc(sizeof(player_t));

}

// Constructor

void player_ctor(player_t* player, const char* name) {

player->name =

(char*)malloc((strlen(name) + 1) * sizeof(char));

strcpy(player->name, name);

// This is important. We need to nullify aggregation

pointers

// if they are not meant to be set in constructor.

player->gun = NULL;

}

// Destructor

void player_dtor(player_t* player) {

free(player->name);

}

// Behavior functions

void player_pickup_gun(player_t* player, struct gun_t* gun)

{

// After the following line the aggregation relation begins.

player->gun = gun;

}

void player_shoot(player_t* player) {

// We need to check if the player has picked up the gun

// otherwise, shooting is meaningless

if (player->gun) {

gun_trigger(player->gun);

} else {

printf("Player wants to shoot but he doesn't have a gun!");

exit(1);

}

}

void player_drop_gun(player_t* player) {

// After the following line the aggregation relation

// ends between two objects. Note that the object gun

// should not be freed since this object is not its

// owner like composition.

player->gun = NULL;

}



Code Box 7-10 [ExtremeC_examples_chapter7_2_player.c]: The definition of the Player class

Inside the player_t  structure, we declare the pointer attribute gun  that is
going to point to a gun  object soon. We need to nullify this in the
constructor because unlike composition, this attribute is not meant to be
set as part of the constructor.

If an aggregation pointer is required to be set upon construction, the
address of the target object should be passed as an argument to the
constructor. Then, this situation is called a mandatory aggregation.

If the aggregation pointer can be left as null in the constructor, then it is an
optional aggregation, as in the preceding code. It is important to nullify
the optional aggregation pointers in the constructor.

In the function player_pickup_gun , the aggregation relationship begins,
and it ends in the function player_drop_gun  when the player drops the
gun.

Note that we need to nullify the pointer gun  after dropping the
aggregation relationship. Unlike in composition, the container object is
not the owner of the contained object. So, it has no control over its
lifetime. Therefore, we should not free the gun object in any place inside
the player's implementation code.

In optional aggregation relations, we may not have set the contained object
at some point in the program. Therefore, we should be careful while using
the aggregation pointer since any access to a pointer that is not set, or a
pointer that is null , can lead to a segmentation fault. That's basically why
in the function player_shoot , we check the gun  pointer is valid. If the
aggregation pointer is null, it means that the code using the player object
is misusing it. If that's the case, we abort the execution by returning 1 as
the exit code of the process.

The following code is the implementation of the Gun  class:

#include <stdlib.h>



typedef int bool_t;

// Attribute structure

typedef struct {

int bullets;

} gun_t;

// Memory allocator

gun_t* gun_new() {

return (gun_t*)malloc(sizeof(gun_t));

}

// Constructor

void gun_ctor(gun_t* gun, int initial_bullets) {

gun->bullets = 0;

if (initial_bullets > 0) {

gun->bullets = initial_bullets;

}

}

// Destructor

void gun_dtor(gun_t* gun) {

// Nothing to do

}

// Behavior functions

bool_t gun_has_bullets(gun_t* gun) {

return (gun->bullets > 0);

}

void gun_trigger(gun_t* gun) {

gun->bullets--;

}

void gun_refill(gun_t* gun) {

gun->bullets = 7;

}

Code Box 7-11 [ExtremeC_examples_chapter7_2_gun.c]: The definition of the Gun class

The preceding code is straightforward, and it is written in a way that a gun
object doesn't know that it will be contained in any object.

Finally, the following code box demonstrates a short scenario that creates
a player  object and a gun  object. Then, the player picks up the gun and
fires with it until no ammo is left. After that, the player refills the gun and
does the same. Finally, they drop the gun:

#include <stdio.h>

#include <stdlib.h>

#include "ExtremeC_examples_chapter7_2_player.h"

#include "ExtremeC_examples_chapter7_2_gun.h"

int main(int argc, char** argv) {



// Create and constructor the gun object

struct gun_t* gun = gun_new();

gun_ctor(gun, 3);

// Create and construct the player object

struct player_t* player = player_new();

player_ctor(player, "Billy");

// Begin the aggregation relation.

player_pickup_gun(player, gun);

// Shoot until no bullet is left.

while (gun_has_bullets(gun)) {

player_shoot(player);

}

// Refill the gun

gun_refill(gun);

// Shoot until no bullet is left.

while (gun_has_bullets(gun)) {

player_shoot(player);

}

// End the aggregation relation.

player_drop_gun(player);

// Destruct and free the player object

player_dtor(player);

free(player);

// Destruct and free the gun object

gun_dtor(gun);

free(gun);

return 0;

}

Code Box 7-12 [ExtremeC_examples_chapter7_2_main.c]: The main function of example 7.2

As you see here, the gun  and player  objects are independent of each
other. The responsible logic for creating and destroying these objects is the
main  function. At some point in the execution, they form an aggregation
relationship and perform their roles, then at another point, they become
separated. The important thing in aggregation is that the container object
shouldn't alter the lifetime of the contained object, and as long as this rule
is followed, no memory issues should arise.

The following shell box shows how to build the example and run the
resulting executable file. As you see, the main  function in Code Box 7-12
doesn't produce any output:



$ gcc -c ExtremeC_examples_chapter7_2_gun.c -o gun.o $ gcc -

c ExtremeC_examples_chapter7_2_player.c -o player.o $ gcc -c

ExtremeC_examples_chapter7_2_main.c -o main.o $ gcc gun.o

player.o main.o -o ex7_2.out $ ./ex7_2.out $

Shell Box 7-2: The compilation, linking, and execution of example 7.2

In an object model created for a real project, the amount of aggregation
relationships is usually greater than the number of composition
relationships. Also, aggregation relationships are more visible externally
because, in order to make an aggregation relationship, some dedicated
behavior functions are required, at least in the public interface of the
container object, to set and reset the contained object.

As you see in the preceding example, the gun  and player  objects are
separated from the start. They become related for a short period of time,
and then they become separated again. This means that the aggregation
relationship is temporary, unlike the composition relationship, which is
permanent. This shows that composition is a stronger form of possession
(to-have) relationship between objects, while aggregation exhibits a
weaker relationship.

Now, a question comes to mind. If an aggregation relationship is
temporary between two objects, is it temporary between their
corresponding classes? The answer is no. The aggregation relationship is
permanent between the types. If there is a small chance that in the future,
two objects from two different types become related based on an
aggregation relationship, their types should be in the aggregation
relationship permanently. This holds for composition as well.

Even a low chance of there being an aggregation relationship should cause
us to declare some pointers in the attribute structure of the container
object, and this means that the attribute structure is changed permanently.
Of course, this is only true for class-based programming languages.

Composition and aggregation both describe the possession of some
objects. In other words, these relationships describe a "to-have" or "has-a"
situation; a player has a gun, or a car has an engine. Every time you feel



that an object possesses another one, it means there should either be a
composition relationship or an aggregation relationship between them
(and their corresponding classes).

In the next chapter, we'll continue our discussion regarding relationship
types by looking at the inheritance or extension relationship.

Summary
In this chapter, the following topics have been discussed:

The possible relationship types between classes and objects.
The differences and similarities between a class, an object, an
instance, and a reference.
Composition, which entails that a contained object is totally
dependent on its container object.
Aggregation, in which the contained object can live freely without
any dependency on its container object.
The fact that aggregation can be temporary between objects, but it
is defined permanently between their types (or classes).

In the next chapter, we continue to explore OOP, primarily addressing the
two further pillars upon which it is based: inheritance and polymorphism.



Chapter 08
Inheritance and Polymorphism

This chapter is a continuation of the previous two chapters, where we
introduced how you can do OOP in C and reached the concepts of
composition and aggregation. This chapter mainly continues the
discussion regarding relationships between objects and their
corresponding classes and covers inheritance and polymorphism. As part
of this chapter, we conclude this topic and we continue with Abstraction
in the following chapter.

This chapter is heavily dependent on the theory explained in the previous
two chapters, where we were discussing the possible relationships between
classes. We explained composition and aggregation relationships, and now
we are going to talk about the extension or inheritance relationship in this
chapter, along with a few other topics.

The following are the topics that will be explained throughout this chapter:

As explained earlier, the inheritance relationship is the first topic that
we discuss. The methods for implementing the inheritance
relationship in C will be covered, and we will conduct a comparison
between them.
The next big topic is polymorphism. Polymorphism allows us to have
different versions of the same behavior in the child classes, in the
case of having an inheritance relationship between those classes. We
will discuss the methods for having a polymorphic function in C; this
will be the first step in our understanding of how C++ offers
polymorphism.

Let's start our discussion with the inheritance relationship.



Inheritance
We closed the previous chapter by talking about to-have relationships,
which eventually led us to composition and aggregation relationships. In
this section, we are going to talk about to-be or is-a relationships. The
inheritance relationship is a to-be relationship.

An inheritance relationship can also be called an extension relationship
because it only adds extra attributes and behaviors to an existing object or
class. In the following sections, we'll explain what inheritance means and
how it can be implemented in C.

There are situations when an object needs to have the same attributes that
exist in another object. In other words, the new object is an extension to
the other object.

For example, a student has all the attributes of a person, but may also have
extra attributes. See Code Box 8-1:

typedef struct {

char first_name[32];

char last_name[32];

unsigned int birth_year;

} person_t;

typedef struct {

char first_name[32];

char last_name[32];

unsigned int birth_year;

char student_number[16]; // Extra attribute

unsigned int passed_credits; // Extra attribute

} student_t;

Code Box 8-1: The attribute structures of the Person class and the Student class

This example clearly shows how student_t  extends the attributes of
person_t  with new attributes, student_number  and passed_credits ,
which are student-specific attributes.



As we have pointed out before, inheritance (or extension) is a to-be
relationship, unlike composition and aggregation, which are to-have
relationships. Therefore, for the preceding example, we can say that "a
student is a person," which seems to be correct in the domain of
educational software. Whenever a to-be relationship exists in a domain, it
is probably an inheritance relationship. In the preceding example,
person_t  is usually called the supertype, or the base type, or simply the
parent type, and student_t  is usually called the child type or the
inherited subtype.

The nature of inheritance
If you were to dig deeper and see what an inheritance relationship really
is, you would find out that it is really a composition relationship in its
nature. For example, we can say that a student has a person's nature inside
of them. In other words, we can suppose that there is a private person
object inside the Student  class's attribute structure. That is, an
inheritance relationship can be equivalent to a one-to-one composition
relationship.

So, the structures in Code Box 8-1 can be written as:

typedef struct {

char first_name[32];

char last_name[32];

unsigned int birth_year;

} person_t;

typedef struct {

person_t person;

char student_number[16]; // Extra attribute

unsigned int passed_credits; // Extra attribute

} student_t;

Code Box 8-2: The attribute structures of the Person and Student classes but nested this time

This syntax is totally valid in C, and in fact nesting structures by using
structure variables (not pointers) is a powerful setup. It allows you to have



a structure variable inside your new structure that is really an extension to
the former.

With the preceding setup, necessarily having a field of type person_t  as
the first field, a student_t  pointer can be easily cast to a person_t
pointer, and both of them can point to the same address in memory.

This is called upcasting. In other words, casting a pointer of the type of the
child's attribute structure to the type of the parent's attribute structure is
upcasting. Note that with structure variables, you cannot have this feature.

Example 8.1 demonstrates this as follows:

#include <stdio.h>

typedef struct {

char first_name[32];

char last_name[32];

unsigned int birth_year;

} person_t;

typedef struct {

person_t person;

char student_number[16]; // Extra attribute

unsigned int passed_credits; // Extra attribute

} student_t;

int main(int argc, char** argv) {

student_t s;

student_t* s_ptr = &s;

person_t* p_ptr = (person_t*)&s;

printf("Student pointer points to %p\n", (void*)s_ptr);

printf("Person pointer points to %p\n", (void*)p_ptr);

return 0;

}

Code Box 8-3 [ExtremeC_examples_chapter8_1.c]: Example 8.1, showing upcasting between
Student and Person object pointers

As you can see, we expect that the s_ptr  and p_ptr  pointers are pointing
to the same address in memory. The following is the output after building
and running example 8.1:

$ gcc ExtremeC_examples_chapter8_1.c -o ex8_1.out

$ ./ex8_1.out



Student pointer points to 0x7ffeecd41810

Person pointer points to 0x7ffeecd41810

$

Shell Box 8-1: The output of example 8.1

And yes, they are pointing to the same address. Note that the shown
addresses can be different in each run, but the point is that the pointers are
referring to the same address. This means that a structure variable of the
type student_t  is really inheriting the person_t  structure in its memory
layout. This implies that we can use the function behaviors of the Person
class with a pointer that is pointing to a student  object. In other words,
the Person  class's behavior functions can be reused for the student
objects, which is a great achievement.

Note that the following is wrong, and the code won't compile:

struct person_t;

typedef struct {

struct person_t person; // Generates an error!

char student_number[16]; // Extra attribute

unsigned int passed_credits; // Extra attribute

} student_t;

Code Box 8-4: Establishing an inheritance relationship which doesn't compile!

The line declaring the person  field generates an error because you cannot
create a variable from an incomplete type. You should remember that the
forward declaration of a structure (similar to the first line in Code Box 8-
4) results in the declaration of an incomplete type. You can have only
pointers of incomplete types, not variables. As you've seen before, you
cannot even allocate Heap memory for an incomplete type.

So, what does this mean? It means that if you're going to use nested
structure variables in order to implement inheritance, the student_t
structure should see the actual definition of person_t , which, based on
what we learned about encapsulation, should be private and not visible to
any other class.



Therefore, you have two approaches for implementing the inheritance
relationship:

Make it so that the child class has access to the private
implementation (actual definition) of the base class.
Make it so that the child class only has access to the public interface
of the base class.

The first approach for having inheritance in C

We'll demonstrate the first approach in the following example, example
8.2, and the second approach in example 8.3, which will come up in the
next section. Both of them represent the same classes, Student  and
Person , with some behavior functions, having some objects playing in a
simple scenario in the main  function.

We'll start with example 8.2, in which the Student  class needs to have
access to the actual private definition of the Person  class's attribute
structure. The following code boxes present the headers and the sources
for the Student  and Person  classes together with the main  function.
Let's start with the header file declaring the Person  class:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_8_2_PERSON_H

#define EXTREME_C_EXAMPLES_CHAPTER_8_2_PERSON_H

// Forward declaration

struct person_t;

// Memory allocator

struct person_t* person_new();

// Constructor

void person_ctor(struct person_t*,

const char* /* first name */,

const char* /* last name */,

unsigned int /* birth year */);

// Destructor

void person_dtor(struct person_t*);

// Behavior functions

void person_get_first_name(struct person_t*, char*);

void person_get_last_name(struct person_t*, char*);

unsigned int person_get_birth_year(struct person_t*);

#endif



Code Box 8-5 [ExtremeC_examples_chapter8_2_person.h]: Example 8.2, the public interface
of the Person class

Look at the constructor function in Code Box 8-5. It accepts all the values
required for creating a person  object: first_name , second_name , and
birth_year . As you see, the attribute structure person_t  is incomplete,
hence the Student  class cannot use the preceding header file for
establishing an inheritance relationship, similar to what we demonstrated
in the previous section.

On the other hand, the preceding header file must not contain the actual
definition of the attribute structure person_t , since the preceding header
file is going to be used by other parts of the code which should not know
anything about the Person  internals. So, what should we do? We want a
certain part of the logic to know about a structure definition that other
parts of the code must not know about. That's where private header files
jump in.

A private header file is an ordinary header file that is supposed to be
included and used by a certain part of code or a certain class that actually
needs it. Regarding example 8.2, the actual definition of person_t  should
be part of a private header. In the following code box, you will see an
example of a private header file:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_8_2_PERSON_P_H

#define EXTREME_C_EXAMPLES_CHAPTER_8_2_PERSON_P_H

// Private definition

typedef struct {

char first_name[32];

char last_name[32];

unsigned int birth_year;

} person_t;

#endif

Code Box 8-6 [ExtremeC_examples_chapter8_2_person_p.h]: The private header file which
contains the actual definition of person_t

As you see, it only contains the definition of the person_t  structure and
nothing more than that. This is the part of the Person  class which should



stay private, but it needs to become public to the Student  class. We are
going to need this definition for defining the student_t  attribute
structure. The next code box demonstrates the private implementation of
the Person  class:

#include <stdlib.h>

#include <string.h>

// person_t is defined in the following header file.

#include "ExtremeC_examples_chapter8_2_person_p.h"

// Memory allocator

person_t* person_new() {

return (person_t*)malloc(sizeof(person_t));

}

// Constructor

void person_ctor(person_t* person,

const char* first_name,

const char* last_name,

unsigned int birth_year) {

strcpy(person->first_name, first_name);

strcpy(person->last_name, last_name);

person->birth_year = birth_year;

}

// Destructor

void person_dtor(person_t* person) {

// Nothing to do

}

// Behavior functions

void person_get_first_name(person_t* person, char* buffer) {

strcpy(buffer, person->first_name);

}

void person_get_last_name(person_t* person, char* buffer) {

strcpy(buffer, person->last_name);

}

unsigned int person_get_birth_year(person_t* person) {

return person->birth_year;

}

Code Box 8-7 [ExtremeC_examples_chapter8_2_person.c]: The definition of the Person class

There is nothing special about the definition of the Person  class and it is
like all previous examples. The following code box shows the public
interface of the Student  class:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_8_2_STUDENT_H

#define EXTREME_C_EXAMPLES_CHAPTER_8_2_STUDENT_H



//Forward declaration

struct student_t;

// Memory allocator

struct student_t* student_new();

// Constructor

void student_ctor(struct student_t*,

const char* /* first name */,

const char* /* last name */,

unsigned int /* birth year */,

const char* /* student number */,

unsigned int /* passed credits */);

// Destructor

void student_dtor(struct student_t*);

// Behavior functions

void student_get_student_number(struct student_t*, char*);

unsigned int student_get_passed_credits(struct student_t*);

#endif

Code Box 8-8 [ExtremeC_examples_chapter8_2_student.h]: The public interface of the
Student class

As you can see, the constructor of the class accepts similar arguments to
the Person  class's constructor. That's because a student  object actually
contains a person  object and it needs those values for populating its
composed person  object.

This implies that the student  constructor needs to set the attributes for
the person  part of the student .

Note that we have only two additional behavior functions as part of the
Student  class, and that's because we can use the Person  class's behavior
functions for student  objects as well.

The next code box contains the private implementation of the Student
class:

#include <stdlib.h>

#include <string.h>

#include "ExtremeC_examples_chapter8_2_person.h"

// person_t is defined in the following header

// file and we need it here.

#include "ExtremeC_examples_chapter8_2_person_p.h"

//Forward declaration

typedef struct {



// Here, we inherit all attributes from the person class and

// also we can use all of its behavior functions because of

// this nesting.

person_t person;

char* student_number;

unsigned int passed_credits;

} student_t;

// Memory allocator

student_t* student_new() {

return (student_t*)malloc(sizeof(student_t));

}

// Constructor

void student_ctor(student_t* student,

const char* first_name,

const char* last_name,

unsigned int birth_year,

const char* student_number,

unsigned int passed_credits) {

// Call the constructor of the parent class

person_ctor((struct person_t*)student,

first_name, last_name, birth_year);

student->student_number = (char*)malloc(16 * sizeof(char));

strcpy(student->student_number, student_number);

student->passed_credits = passed_credits;

}

// Destructor

void student_dtor(student_t* student) {

// We need to destruct the child object first.

free(student->student_number);

// Then, we need to call the destructor function

// of the parent class

person_dtor((struct person_t*)student);

}

// Behavior functions

void student_get_student_number(student_t* student,

char* buffer) {

strcpy(buffer, student->student_number);

}

unsigned int student_get_passed_credits(student_t* student)

{

return student->passed_credits;

}

Code Box 8-9 [ExtremeC_examples_chapter8_2_student.c]: The private definition of the
Student class

The preceding code box contains the most important code regarding the
inheritance relationship. Firstly, we needed to include the private header of



the Person  class because as part of defining student_t , we want to have
the first field from the person_t  type. And, since that field is an actual
variable and not a pointer, it requires that we have person_t  already
defined. Note that this variable must be the first field in the structure.
Otherwise, we lose the possibility of using the Person  class's behavior
functions.

Again, in the preceding code box, as part of the Student  class's
constructor, we call the parent's constructor to initialize the attributes of
the parent (composed) object. Look at how we cast the student_t  pointer
to a person_t  pointer when passing it to the person_ctor  function. This
is possible just because the person  field is the first member of
student_t .

Similarly, as part of the Student  class's destructor, we called the parent's
destructor. This destruction should happen first at the child level and then
the parent level, in the opposite order of construction. The next code box
contains example 8.2's main scenario, which is going to use the Student
class and create an object of type Student :

#include <stdio.h>

#include <stdlib.h>

#include "ExtremeC_examples_chapter8_2_person.h"

#include "ExtremeC_examples_chapter8_2_student.h"

int main(int argc, char** argv) {

// Create and construct the student object

struct student_t* student = student_new();

student_ctor(student, "John", "Doe",

1987, "TA5667", 134);

// Now, we use person's behavior functions to

// read person's attributes from the student object

char buffer[32];

// Upcasting to a pointer of parent type

struct person_t* person_ptr = (struct person_t*)student;

person_get_first_name(person_ptr, buffer);

printf("First name: %s\n", buffer);

person_get_last_name(person_ptr, buffer);

printf("Last name: %s\n", buffer);

printf("Birth year: %d\n",

person_get_birth_year(person_ptr));

// Now, we read the attributes specific to the student

object.

student_get_student_number(student, buffer);



printf("Student number: %s\n", buffer);

printf("Passed credits: %d\n",

student_get_passed_credits(student));

// Destruct and free the student object

student_dtor(student);

free(student);

return 0;

}

Code Box 8-10 [ExtremeC_examples_chapter8_2_main.c]: The main scenario of example 8.2

As you see in the main scenario, we have included the public interfaces of
both the Person  and Student  classes (not the private header file), but we
have only created one student  object. As you can see, the student  object
has inherited all attributes from its internal person  object, and they can
be read via the Person  class's behavior functions.

The following shell box shows how to compile and run example 8.2:

$ gcc -c ExtremeC_examples_chapter8_2_person.c -o person.o

$ gcc -c ExtremeC_examples_chapter8_2_student.c -o student.o

$ gcc -c ExtremeC_examples_chapter8_2_main.c -o main.o

$ gcc person.o student.o main.o -o ex8_2.out

$ ./ex8_2.out

First name: John

Last name: Doe

Birth year: 1987

Student number: TA5667

Passed credits: 134

$

Shell Box 8-2: Building and running example 8.2

The following example, example 8.3, will address the second approach to
implementing inheritance relationships in C. The output should be very
similar to example 8.2.

The second approach to inheritance in C

Using the first approach, we kept a structure variable as the first field in
the child's attribute structure. Now, using the second approach, we'll keep a



pointer to the parent's structure variable. This way, the child class can be
independent of the implementation of the parent class, which is a good
thing, considering information-hiding concerns.

We gain some advantages, and we lose some by choosing the second
approach. After demonstrating example 8.3 we will conduct a comparison
between the two approaches, and you will see the advantages and
disadvantages of using each of these techniques.

Example 8.3, below, is remarkably similar to example 8.2, especially in
terms of the output and the final results. However, the main difference is
that as part of this example, the Student  class only relies on the public
interface of the Person  class, and not its private definition. This is great
because it decouples the classes and allows us to easily change the
implementation of the parent class without altering the implementation of
the child class.

In the preceding example, the Student  class didn't strictly violate
information-hiding principles, but it could have done that because it had
access to the actual definition of person_t  and its fields. As a result, it
could read or modify the fields without using Person 's behavior
functions.

As noted, example 8.3 is remarkably similar to example 8.2, but it has
some fundamental differences. The Person  class has the same public
interface as part of the new example. But this is not true regarding the
Student  class and its public interface has to be changed. The following
code box shows the Student  class's new public interface:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_8_3_STUDENT_H

#define EXTREME_C_EXAMPLES_CHAPTER_8_3_STUDENT_H

//Forward declaration

struct student_t;

// Memory allocator

struct student_t* student_new();

// Constructor

void student_ctor(struct student_t*,

const char* /* first name */,

const char* /* last name */,

unsigned int /* birth year */,



const char* /* student number */,

unsigned int /* passed credits */);

// Destructor

void student_dtor(struct student_t*);

// Behavior functions

void student_get_first_name(struct student_t*, char*);

void student_get_last_name(struct student_t*, char*);

unsigned int student_get_birth_year(struct student_t*);

void student_get_student_number(struct student_t*, char*);

unsigned int student_get_passed_credits(struct student_t*);

#endif

Code Box 8-11 [ExtremeC_examples_chapter8_3_student.h]: The new public interface of the
Student class

For reasons you will realize shortly, the Student  class has to repeat all the
behavior functions declared as part of the Person  class. That's because of
the fact that we can no longer cast a student_t  pointer to a person_t
pointer. In other words, upcasting doesn't work anymore regarding
Student  and Person  pointers.

While the public interface of the Person  class is not changed from
example 8.2, its implementation has changed. The following code box
demonstrates the implementation of the Person  class as part of example
8.3:

#include <stdlib.h>

#include <string.h>

// Private definition

typedef struct {

char first_name[32];

char last_name[32];

unsigned int birth_year;

} person_t;

// Memory allocator

person_t* person_new() {

return (person_t*)malloc(sizeof(person_t));

}

// Constructor

void person_ctor(person_t* person,

const char* first_name,

const char* last_name,

unsigned int birth_year) {

strcpy(person->first_name, first_name);

strcpy(person->last_name, last_name);



person->birth_year = birth_year;

}

// Destructor

void person_dtor(person_t* person) {

// Nothing to do

}

// Behavior functions

void person_get_first_name(person_t* person, char* buffer) {

strcpy(buffer, person->first_name);

}

void person_get_last_name(person_t* person, char* buffer) {

strcpy(buffer, person->last_name);

}

unsigned int person_get_birth_year(person_t* person) {

return person->birth_year;

}

Code Box 8-12 [ExtremeC_examples_chapter8_3_person.c]: The new implementation of the
Person class

As you see, the private definition of person_t  is placed inside the source
file and we are not using a private header anymore. This means that we are
not going to share the definition with other classes such as the Student
class at all. We want to conduct a complete encapsulation of the Person
class and hide all its implementation details.

The following is the private implementation of the Student  class:

#include <stdlib.h>

#include <string.h>

// Public interface of the person class

#include "ExtremeC_examples_chapter8_3_person.h"

//Forward declaration

typedef struct {

char* student_number;

unsigned int passed_credits;

// We have to have a pointer here since the type

// person_t is incomplete.

struct person_t* person;

} student_t;

// Memory allocator

student_t* student_new() {

return (student_t*)malloc(sizeof(student_t));

}

// Constructor

void student_ctor(student_t* student,



const char* first_name,

const char* last_name,

unsigned int birth_year,

const char* student_number,

unsigned int passed_credits) {

// Allocate memory for the parent object

student->person = person_new();

person_ctor(student->person, first_name,

last_name, birth_year);

student->student_number = (char*)malloc(16 * sizeof(char));

strcpy(student->student_number, student_number);

student->passed_credits = passed_credits;

}

// Destructor

void student_dtor(student_t* student) {

// We need to destruct the child object first.

free(student->student_number);

// Then, we need to call the destructor function

// of the parent class

person_dtor(student->person);

// And we need to free the parent object's allocated memory

free(student->person);

}

// Behavior functions

void student_get_first_name(student_t* student, char*

buffer) {

// We have to use person's behavior function

person_get_first_name(student->person, buffer);

}

void student_get_last_name(student_t* student, char* buffer)

{

// We have to use person's behavior function

person_get_last_name(student->person, buffer);

}

unsigned int student_get_birth_year(student_t* student) {

// We have to use person's behavior function

return person_get_birth_year(student->person);

}

void student_get_student_number(student_t* student,

char* buffer) {

strcpy(buffer, student->student_number);

}

unsigned int student_get_passed_credits(student_t* student)

{

return student->passed_credits;

}

Code Box 8-13 [ExtremeC_examples_chapter8_3_student.c]: The new implementation of the
Student class



As demonstrated in the preceding code box, we've used the Person  class's
public interface by including its header file. In addition, as part of the
definition of student_t , we've added a pointer field, which points to the
parent Person  object. This should remind you of the implementation of a
composition relationship done as part of the previous chapter.

Note that there is no need for this pointer field to be the first item in the
attribute structure. This is in contrast to what we saw in the first approach.
The pointers of the types student_t  and person_t  are no longer
interchangeable, and they are pointing to different addresses in the
memory that are not necessarily adjacent. This is again in contrast to what
we did in the previous approach.

Note that, as part of the Student  class's constructor, we instantiate the
parent object. Then, we construct it by calling the Person  class's
constructor and passing the required parameters. That's the same for
destructors as well and we destruct the parent object lastly in the Student
class's destructor.

Since we cannot use the behaviors of the Person  class to read the
inherited attributes, the Student  class is required to offer its set of
behavior functions to expose those inherited and private attributes.

In other words, the Student  class has to provide some wrapper functions
to expose the private attributes of its inner parent person  object. Note that
the Student  object itself doesn't know anything about the private
attributes of the Person  object, and this is in contrast with what we saw in
the first approach.

The main scenario is also very similar to how it was as part of example
8.2. The following code box demonstrates that:

#include <stdio.h>

#include <stdlib.h>

#include "ExtremeC_examples_chapter8_3_student.h"

int main(int argc, char** argv) {

// Create and construct the student object

struct student_t* student = student_new();

student_ctor(student, "John", "Doe",



1987, "TA5667", 134);

// We have to use student's behavior functions because the

// student pointer is not a person pointer and we cannot

// access to private parent pointer in the student object.

char buffer[32];

student_get_first_name(student, buffer);

printf("First name: %s\n", buffer);

student_get_last_name(student, buffer);

printf("Last name: %s\n", buffer);

printf("Birth year: %d\n", student_get_birth_year(student));

student_get_student_number(student, buffer);

printf("Student number: %s\n", buffer);

printf("Passed credits: %d\n",

student_get_passed_credits(student));

// Destruct and free the student object

student_dtor(student);

free(student);

return 0;

}

Code Box 8-14 [ExtremeC_examples_chapter8_3_main.c]: The main scenario of example 8.3

In comparison to the main function in example 8.2, we have not included
the public interface of the Person  class. We have also needed to use the
Student  class's behavior functions because the student_t  and person_t
pointers are not interchangeable anymore.

The following shell box demonstrates how to compile and run example
8.3. As you might have guessed, the outputs are identical:

$ gcc -c ExtremeC_examples_chapter8_3_person.c -o person.o

$ gcc -c ExtremeC_examples_chapter8_3_student.c -o student.o

$ gcc -c ExtremeC_examples_chapter8_3_main.c -o main.o

$ gcc person.o student.o main.o -o ex8_3.out

$ ./ex8_3.out

First name: John

Last name: Doe

Birth year: 1987

Student number: TA5667

Passed credits: 134

$

Shell Box 8-3: Building and running example 8.3



In the following section, we're going to compare the aforementioned
approaches to implement an inheritance relationship in C.

Comparison of two approaches

Now that you've seen two different approaches that we can take to
implement inheritance in C, we can compare them. The following bullet
points outline the similarities and differences between the two approaches:

Both approaches intrinsically show composition relationships.
The first approach keeps a structure variable in the child's attribute
structure and relies on having access to the private implementation of
the parent class. However, the second approach keeps a structure
pointer from the incomplete type of the parent's attribute structure,
and hence, it doesn't rely on the private implementation of the parent
class.
In the first approach, the parent and child types are strongly
dependent. In the second approach, the classes are independent of
each other, and everything inside the parent implementation is hidden
from the child.
In the first approach, you can have only one parent. In other words, it
is a way to implement single inheritance in C. However, in the
second approach, you can have as many parents as you like, thereby
demonstrating the concept of multiple inheritance.
In the first approach, the parent's structure variable must be the first
field in the attribute structure of the child class, but in the second
approach, the pointers to parent objects can be put anywhere in the
structure.
In the first approach, there were no two separate parent and child
objects. The parent object was included in the child object, and a
pointer to the child object was actually a pointer to the parent object.
In the first approach, we could use the behavior functions of the
parent class, but in the second approach, we needed to forward the
parent's behavior functions through new behavior functions in the
child class.



So far, we have only talked about inheritance itself and we haven't gone
through its usages. One of the most important usages of inheritance is to
have polymorphism in your object model. In the following section, we're
going to talk about polymorphism and how it can be implemented in C.

Polymorphism
Polymorphism is not really a relationship between two classes. It is mostly
a technique for keeping the same code while having different behaviors. It
allows us to extend code or add functionalities without having to
recompile the whole code base.

In this section, we try to cover what polymorphism is and how we can
have it in C. This also gives us a better view of how modern programming
languages such as C++ implement polymorphism. We'll start by defining
polymorphism.

What is polymorphism?
Polymorphism simply means to have different behaviors by just using the
same public interface (or set of behavior functions).

Suppose that we have two classes, Cat  and Duck , and they each have a
behavior function, sound , which makes them print their specific sound.
Explaining polymorphism is not an easy task to do and we'll try to take a
top-down approach in explaining it. First, we'll try to give you an idea of
how polymorphic code looks and how it behaves, and then we'll dive into
implementing it in C. Once you get the idea, it will be easier to move into
the implementation. In the following code boxes, we first create some
objects, and then we see how we would expect a polymorphic function to
behave if polymorphism was in place. First, let's create three objects. We
have already assumed that both the Cat  and Duck  classes are children of
the Animal  class:



struct animal_t* animal = animal_malloc();

animal_ctor(animal);

struct cat_t* cat = cat_malloc();

cat_ctor(cat);

struct duck_t* duck = duck_malloc();

duck_ctor(duck);

Code Box 8-15: Creating three objects of types Animal, Cat, and Duck

Without polymorphism, we would have called the sound  behavior
function for each object as follows:

// This is not a polymorphism

animal_sound(animal);

cat_sound(cat);

duck_sound(duck);

Code Box 8-16: Calling the sound behavior function on the created objects

And the output would be as follows:

Animal: Beeeep

Cat: Meow

Duck: Quack

Shell Box 8-4: The output of the function calls

The preceding code box is not demonstrating polymorphism because it
uses different functions, cat_sound  and duck_sound , to call specific
behaviors from the Cat  and Duck  objects. However, the following code
box shows how we expect a polymorphic function to behave. The
following code box contains a perfect example of polymorphism:

// This is a polymorphism

animal_sound(animal);

animal_sound((struct animal_t*)cat);

animal_sound((struct animal_t*)duck);

Code Box 8-17: Calling the same sound behavior function on all three objects



Despite calling the same function three times, we expect to see different
behaviors. It seems that passing different object pointers changes the
actual behavior behind animal_sound . The following shell box would be
the output of Code Box 8-17 if animal_sound  was polymorphic:

Animal: Beeeep

Cat: Meow

Duck: Quake

Shell Box 8-5: The output of the function calls

As you see in Code Box 8-17, we have used the same function,
animal_sound , but with different pointers, and as a result, different
functions have been invoked behind the scenes.

CAUTION:

Please don't move forward if you're having trouble understanding the
preceding code; if you are, please recap the previous section.

The preceding polymorphic code implies that there should be an
inheritance relationship between the Cat  and Duck  classes with a third
class, Animal , because we want to be able to cast the duck_t  and cat_t
pointers to an animal_t  pointer. This also implies something else: we
have to use the first approach of implementing inheritance in C in order to
benefit from the polymorphism mechanism we introduced before.

You may recall that in the first approach to implementing inheritance, the
child class had access to the private implementation of the parent class,
and here a structure variable from the animal_t  type should have been put
as the first field in the definitions of the duck_t  and cat_t  attribute
structures. The following code shows the relationship between these three
classes:

typedef struct {

...} animal_t;

typedef struct {



animal_t animal;

...

} cat_t;

typedef struct {

animal_t animal;

...

} duck_t;

Code Box 8-18: The definitions of the attribute structures of classes Animal, Cat, and Duck

With this setup, we can cast the duck_t  and cat_t  pointers to the
animal_t  pointers, and then we can use the same behavior functions for
both child classes.

So far, we have shown how a polymorphic function is expected to behave
and how an inheritance relationship should be defined between the classes.
What we haven't shown is how this polymorphic behavior is fulfilled. In
other words, we haven't talked about the actual mechanism behind the
polymorphism.

Suppose that the behavior function animal_sound  is defined as it can be
seen in code box 8-19. No matter the pointer you send inside as the
argument, we will have always one behavior and the function calls won't
be polymorphic without the underlying mechanism. The mechanism will
be explained as part of example 8.4 which you will see shortly:

void animal_sound(animal_t* ptr) {

printf("Animal: Beeeep");

}

// This could be a polymorphism, but it is NOT!

animal_sound(animal);

animal_sound((struct animal_t*)cat);

animal_sound((struct animal_t*)duck);

Code Box 8-19: The function animal_sound is not polymorphic yet!

As you see next, calling the behavior function animal_sound  with various
pointers won't change the logic of the behavior function; in other words, it
is not polymorphic. We will make this function polymorphic as part of the
next example, example 8.4:



Animal: Beeeep

Animal: Beeeep

Animal: Beeeep

Shell Box 8-6: The output of the functional calls in Code Box 8-19

So, what is the underlying mechanism that enables polymorphic behavior
functions? We answer that question in the upcoming sections, but before
that we need to know why we want to have polymorphism in the first
place.

Why do we need polymorphism?
Before talking further about the way in which we're going to implement
polymorphism in C, we should spend some time talking about the reasons
behind the need for polymorphism. The main reason why polymorphism is
needed is that we want to keep a piece of code "as is," even when using it
with various subtypes of a base type. You are going to see some
demonstration of this shortly in the examples.

We don't want to modify the current logic very often when we add new
subtypes to the system, or when the behavior of one subtype is being
changed. It's just not realistic to have zero changes when a new feature is
added – there will always be some changes – but using polymorphism, we
can significantly reduce the number of changes that are needed.

Another motivation for having polymorphism is due to the concept of
abstraction. When we have abstract types (or classes), they usually have
some vague or unimplemented behavior functions that need to be
overridden in child classes and polymorphism is the key way to do this.

Since we want to use abstract types to write our logic, we need a way to
call the proper implementation when dealing with pointers of very abstract
types. This is another place where polymorphism comes in. No matter
what the language is, we need a way to have polymorphic behaviors,
otherwise the cost of maintaining a big project can grow quickly, for
instance when we are going to add a new subtype to our code.



Now that we've established the importance of polymorphism, it's time to
explain how we can have it in C.

How to have polymorphic behavior in C
If we want to have polymorphism in C, we need to use the first approach
we explored to implementing inheritance in C. To achieve polymorphic
behavior, we can utilize function pointers. However, this time, these
function pointers need to be kept as some fields in the attribute structure.
Let's implement the animal sound example to illustrate this.

We have three classes, Animal , Cat , and Duck , and Cat  and Duck  are
subtypes of Animal . Each class has one header and one source. The
Animal  class has an extra private header file that contains the actual
definition of its attribute structure. This private header is required since
we are taking the first approach to implement inheritance. The private
header is going to be used by the Cat  and Duck  classes.

The following code box shows the public interface of the Animal  class:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_8_4_ANIMAL_H

#define EXTREME_C_EXAMPLES_CHAPTER_8_4_ANIMAL_H

// Forward declaration

struct animal_t;

// Memory allocator

struct animal_t* animal_new();

// Constructor

void animal_ctor(struct animal_t*);

// Destructor

void animal_dtor(struct animal_t*);

// Behavior functions

void animal_get_name(struct animal_t*, char*);

void animal_sound(struct animal_t*);

#endif

Code Box 8-20 [ExtremeC_examples_chapter8_4_animal.h]: The public interface of the
Animal class

The Animal  class has two behavior functions. The animal_sound  function
is supposed to be polymorphic and can be overridden by the child classes,



while the other behavior function, animal_get_name , is not polymorphic,
and children cannot override it.

The following is the private definition of the animal_t  attribute structure:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_8_4_ANIMAL_P_H

#define EXTREME_C_EXAMPLES_CHAPTER_8_4_ANIMAL_P_H

// The function pointer type needed to point to

// different morphs of animal_sound

typedef void (*sound_func_t)(void*);

// Forward declaration

typedef struct {

char* name;

// This member is a pointer to the function which

// performs the actual sound behavior

sound_func_t sound_func;

} animal_t;

#endif

Code Box 8-21 [ExtremeC_examples_chapter8_4_animal_p.h]: The private header of the
Animal class

In polymorphism, every child class can provide its own version of the
animal_sound  function. In other words, every child class can override the
function inherited from its parent class. Therefore, we need to have a
different function for each child class that wants to override it. This
means, if the child class has overridden the animal_sound , its own
overridden function should be called.

That's why we are using function pointers here. Each instance of animal_t
will have a function pointer dedicated to the behavior animal_sound , and
that pointer is pointing to the actual definition of the polymorphic function
inside the class.

For each polymorphic behavior function, we have a dedicated function
pointer. Here, you will see how we use this function pointer to do the
correct function call in each subclass. In other words, we show how the
polymorphism actually works.

The following code box shows the definition of the Animal  class:



#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include "ExtremeC_examples_chapter8_4_animal_p.h"

// Default definition of the animal_sound at the parent

level

void __animal_sound(void* this_ptr) {

animal_t* animal = (animal_t*)this_ptr;

printf("%s: Beeeep\n", animal->name);

}

// Memory allocator

animal_t* animal_new() {

return (animal_t*)malloc(sizeof(animal_t));

}

// Constructor

void animal_ctor(animal_t* animal) {

animal->name = (char*)malloc(10 * sizeof(char));

strcpy(animal->name, "Animal");

// Set the function pointer to point to the default

definition

animal->sound_func = __animal_sound;

}

// Destructor

void animal_dtor(animal_t* animal) {

free(animal->name);

}

// Behavior functions

void animal_get_name(animal_t* animal, char* buffer) {

strcpy(buffer, animal->name);

}

void animal_sound(animal_t* animal) {

// Call the function which is pointed by the function

pointer.

animal->sound_func(animal);

}

Code Box 8-22 [ExtremeC_examples_chapter8_4_animal.c]: The definition of the Animal
class

The actual polymorphic behavior is happening in Code Box 8-22, inside
the function animal_sound . The private function __animal_sound  is
supposed to be the default behavior of the animal_sound  function when
the subclasses decide not to override it. You will see in the next chapter
that polymorphic behavior functions have a default definition which will
get inherited and used if the subclass doesn't provide the overridden
version.



Moving on, inside the constructor animal_ctor , we store the address of
__animal_sound  into the sound_func  field of the animal  object.
Remember that sound_func  is a function pointer. In this setup, every child
object inherits this function pointer, which points to the default definition
__animal_sound .

And the final step, inside the behavior function animal_sound , we just call
the function that is being pointed to by the sound_func  field. Again,
sound_func  is the function pointer field pointing to the actual definition
of the sound behavior which in the preceding case is __animal_sound .
Note that the animal_sound  function behaves more like a relay to the
actual behavior function.

Using this setup, if the sound_func  field was pointing to another function,
then that function would have been called if animal_sound  was invoked.
That's the trick we are going to use in the Cat  and Duck  classes to
override the default definition of the sound  behavior.

Now, it's time to show the Cat  and Duck  classes. The following code
boxes will show the Cat  class's public interface and private
implementation. First, we show the Cat  class's public interface:

#ifndef EXTREME_C_EXAMPLES_CHAPTER_8_4_CAT_H

#define EXTREME_C_EXAMPLES_CHAPTER_8_4_CAT_H

// Forward declaration

struct cat_t;

// Memory allocator

struct cat_t* cat_new();

// Constructor

void cat_ctor(struct cat_t*);

// Destructor

void cat_dtor(struct cat_t*);

// All behavior functions are inherited from the animal

class.

#endif

Code Box 8-23 [ExtremeC_examples_chapter8_4_cat.h]: The public interface of the Cat class

As you will see shortly, it will inherit the sound  behavior from its parent
class, the Animal  class.



The following code box shows the definition of the Cat  class:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "ExtremeC_examples_chapter8_4_animal.h"

#include "ExtremeC_examples_chapter8_4_animal_p.h"

typedef struct {

animal_t animal;

} cat_t;

// Define a new behavior for the cat's sound

void __cat_sound(void* ptr) {

animal_t* animal = (animal_t*)ptr;

printf("%s: Meow\n", animal->name);

}

// Memory allocator

cat_t* cat_new() {

return (cat_t*)malloc(sizeof(cat_t));

}

// Constructor

void cat_ctor(cat_t* cat) {

animal_ctor((struct animal_t*)cat);

strcpy(cat->animal.name, "Cat");

// Point to the new behavior function. Overriding

// is actually happening here.

cat->animal.sound_func = __cat_sound;

}

// Destructor

void cat_dtor(cat_t* cat) {

animal_dtor((struct animal_t*)cat);

}

Code Box 8-24 [ExtremeC_examples_chapter8_4_cat.c]: The private implementation of the
Cat class

As you see in the previous code box, we have defined a new function for
the cat's sound, __cat_sound . Then inside the constructor, we make the
sound_func  pointer point to this function.

Now, overriding is happening, and from now on, all cat  objects will
actually call __cat_sound  instead of __animal_sound . The same
technique is used for the Duck  class.

The following code box shows the public interface of the Duck  class:



#ifndef EXTREME_C_EXAMPLES_CHAPTER_8_4_DUCK_H

#define EXTREME_C_EXAMPLES_CHAPTER_8_4_DUCK_H

// Forward declaration

struct duck_t;

// Memory allocator

struct duck_t* duck_new();

// Constructor

void duck_ctor(struct duck_t*);

// Destructor

void duck_dtor(struct duck_t*);

// All behavior functions are inherited from the animal

class.

#endif

Code Box 8-25 [ExtremeC_examples_chapter8_4_duck.h]: The public interface of the Duck
class

As you see, that's quite similar to the Cat  class. Let's bring up the private
definition of the Duck  class:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "ExtremeC_examples_chapter8_4_animal.h"

#include "ExtremeC_examples_chapter8_4_animal_p.h"

typedef struct {

animal_t animal;

} duck_t;

// Define a new behavior for the duck's sound

void __duck_sound(void* ptr) {

animal_t* animal = (animal_t*)ptr;

printf("%s: Quacks\n", animal->name);

}

// Memory allocator

duck_t* duck_new() {

return (duck_t*)malloc(sizeof(duck_t));

}

// Constructor

void duck_ctor(duck_t* duck) {

animal_ctor((struct animal_t*)duck);

strcpy(duck->animal.name, "Duck");

// Point to the new behavior function. Overriding

// is actually happening here.

duck->animal.sound_func = __duck_sound;

}

// Destructor

void duck_dtor(duck_t* duck) {



animal_dtor((struct animal_t*)duck);

}

Code Box 8-26 [ExtremeC_examples_chapter8_4_duck.c]: The private implementation of the
Duck class

As you can see, the technique has been used to override the default
definition of the sound  behavior. A new private behavior function,
__duck_sound , has been defined that does the duck-specific sound, and the
sound_func  pointer is updated to point to this function. This is basically
the way that polymorphism is introduced to C++. We will talk more about
this in the next chapter.

Finally, the following code box demonstrates the main scenario of example
8.4:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Only public interfaces

#include "ExtremeC_examples_chapter8_4_animal.h"

#include "ExtremeC_examples_chapter8_4_cat.h"

#include "ExtremeC_examples_chapter8_4_duck.h"

int main(int argc, char** argv) {

struct animal_t* animal = animal_new();

struct cat_t* cat = cat_new();

struct duck_t* duck = duck_new();

animal_ctor(animal);

cat_ctor(cat);

duck_ctor(duck);

animal_sound(animal);

animal_sound((struct animal_t*)cat);

animal_sound((struct animal_t*)duck);

animal_dtor(animal);

cat_dtor(cat);

duck_dtor(duck);

free(duck);

free(cat);

free(animal);

return 0;

}

Code Box 8-27 [ExtremeC_examples_chapter8_4_main.c]: The main scenario of example 8.4



As you see in the preceding code box, we are only using the public
interfaces of the Animal , Cat , and Duck  classes. So, the main  function
doesn't know anything about the internal implementation of the classes.
Calling the animal_sound  function with passing different pointers
demonstrates how a polymorphic behavior should work. Let's look at the
output of the example.

The following shell box shows how to compile and run example 8.4:

$ gcc -c ExtremeC_examples_chapter8_4_animal.c -o animal.o

$ gcc -c ExtremeC_examples_chapter8_4_cat.c -o cat.o

$ gcc -c ExtremeC_examples_chapter8_4_duck.c -o duck.o

$ gcc -c ExtremeC_examples_chapter8_4_main.c -o main.o

$ gcc animal.o cat.o duck.o main.o -o ex8_4.out

$ ./ex8_4.out

Animal: Beeeep

Cat: Meow

Duck: Quake

$

Shell Box 8-7: The compilation, execution, and output of example 8.4

As you can see in example 8.4, in class-based programming languages the
behavior functions which we want to be polymorphic need special care and
should be treated differently. Otherwise, a simple behavior function
without the underlying mechanism that we discussed as part of example
8.4 cannot be polymorphic. That's why we have a special name for these
behavior functions, and why we use specific keywords to denote a function
to be polymorphic in a language such as C++. These functions are called
virtual functions. Virtual functions are behavior functions that can be
overridden by child classes. Virtual functions need to be tracked by the
compiler, and proper pointers should be placed in the corresponding
objects to point to the actual definitions when overridden. These pointers
are used at runtime to execute the right version of the function.

In the next chapter, we'll see how C++ handles object-oriented
relationships between classes. Also, we will find out how C++ implements
polymorphism. We will also discuss Abstraction which is a direct result of
polymorphism.



Summary
In this chapter, we continued our exploration of topics in OOP, picking up
from where we left off in the previous chapter. The following topics were
discussed in this chapter:

We explained how inheritance works and looked at the two
approaches that we can use to implement inheritance in C.
The first approach allows direct access to all the private attributes of
the parent class, but the second approach has a more conservative
approach, hiding the private attributes of the parent class.
We compared these approaches, and we saw that each of them can be
suitable in some use cases.
Polymorphism was the next topic that we explored. To put it simply,
it allows us to have different versions of the same behavior and
invoke the correct behavior using the public API of an abstract
supertype.
We saw how to write polymorphic code in C and saw how function
pointers contribute to choosing the correct version of a particular
behavior at runtime.

The next chapter will be our final chapter about object orientation. As part
of it, we'll explore how C++ handles encapsulation, inheritance, and
polymorphism. More than that, we will discuss the topic of abstraction and
how it leads to a bizarre type of class which is called an abstract class. We
cannot create objects from these classes!



Chapter 09
Abstraction and OOP in C++

This is the final chapter on OOP in C. In this chapter, we are going to
cover the remaining topics and introduce you to a new programming
paradigm. In addition, we explore C++ and look at how it implements
object-oriented concepts behind the scenes.

As part of this chapter, we will cover the following topics:

Firstly, we discuss the Abstraction. This continues our discussion
regarding inheritance and polymorphism and will be the last topic
that we cover as part of OOP in C. We show how abstraction helps us
in designing object models that have the maximum extendibility and
the minimum dependencies between its various components.
We talk about how object-oriented concepts have been implemented
in a famous C++ compiler, g++  in this case. As part of this, we see
that how close the approaches that we have discussed so far are in
accordance with the approaches that g++  has taken to provide the
same concepts.

Let's start the chapter by talking about abstraction.

Abstraction
Abstraction can have a very general meaning in various fields of science
and engineering. But in programming, and especially in OOP, abstraction
essentially deals with abstract data types. In class-based object
orientation, abstract data types are the same as abstract classes. Abstract



classes are special classes that we cannot create an object from; they are
not ready or complete enough to be used for object creation. So, why do
we need to have such classes or data types? This is because when we work
with abstract and general data types, we avoid creating strong
dependencies between various parts of code.

As an example, we can have the following relationships between the
Human and Apple classes:

An object of the Human class eats an object of the Apple class.

An object of the Human class eats an object of the Orange class.

If the classes that an object from the Human class can eat were expanded
to more than just Apple and Orange, we would need to add more relations
to the Human class. Instead, though, we could create an abstract class
called Fruit that is the parent of both Apple and Orange classes, and we
could set the relation to be between Human and Fruit only. Therefore, we
can turn our preceding two statements into one:

An object of the Human class eats an object from a subtype of the Fruit
class.

The Fruit class is abstract because it lacks information about shape, taste,
smell, color, and many more attributes of a specific fruit. Only when we
have an apple or an orange do we know the exact values of the different
attributes. The Apple and Orange classes are said to be concrete types.

We can even add more abstraction. The Human class can eat Salad or
Chocolate as well. So, we can say:

An object of the Human type eats an object from a subtype of the Eatable
class.

As you can see, the abstraction level of Eatable is even higher than that of
Fruit. Abstraction is a great technique for designing an object model that
has minimal dependency on concrete types and allows the maximum



future extension to the object model when more concrete types are
introduced to the system.

Regarding the preceding example, we could also add further abstraction by
using the fact that Human is an Eater. Then, we could make our statement
even more abstract:

An object from a subtype of the Eater class eats an object from a subtype
of the Eatable class.

We can continue to abstract everything in an object model and find
abstract data types that are more abstract than the level we need to solve
our problem. This is usually called over-abstraction. It happens when you
try to create abstract data types that have no real application, either for
your current or your future needs. This should be avoided at all costs
because abstraction can cause problems, despite all the benefits it
provides.

A general guide regarding the amount of abstraction that we need can be
found as part of the abstraction principle. I got the following quote from
its Wikipedia page,
https://en.wikipedia.org/wiki/Abstraction_principl

e_(computer_programming). It simply states:

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where similar functions
are carried out by distinct pieces of code, it is generally beneficial to
combine them into one by abstracting out the varying parts.

While at first glance you may not see any sign of object orientation or
inheritance in this statement, by giving some further thought to it you will
notice that what we did with inheritance was based on this principle.
Therefore, as a general rule, whenever you don't expect to have variations
in a specific logic, there is no need to introduce abstraction at that point.

In a programming language, inheritance and polymorphism are two
capabilities that are required in order to create abstraction. An abstract

https://en.wikipedia.org/wiki/Abstraction_principle_(computer_programming)


class such as Eatable is a supertype in relation to its concrete classes, such
as Apple, and this is accomplished by inheritance.

Polymorphism also plays an important role. There are behaviors in an
abstract type that cannot have default implementation at that abstraction
level. For example, taste as an attribute implemented using a behavior
function such as eatable_get_taste  as part of the Eatable class cannot
have an exact value when we are talking about an Eatable object. In other
words, we cannot create an object directly from the Eatable class if we
don't know how to define the eatable_get_taste  behavior function.

The preceding function can only be defined when the child class is
concrete enough. For example, we know that Apple objects should return
sweet for their taste (we've assumed here that all apples are sweet). This is
where polymorphism helps. It allows a child class to override its parent's
behaviors and return the proper taste, for example.

If you remember from the previous chapter, the behavior functions that
can be overridden by child classes are called virtual functions. Note that it
is possible that a virtual function doesn't have any definition at all. Of
course, this makes the owner class abstract.

By adding more and more abstraction, at a certain level, we reach classes
that have no attributes and contain only virtual functions with no default
definitions. These classes are called interfaces. In other words, they
expose functionalities but they don't offer any implementation at all, and
they are usually used to create dependencies between various components
in a software project. As an example, in our preceding examples, the Eater
and Eatable classes are interfaces. Note that, just like abstract classes, you
must not create an object from an interface. The following code shows
why this cannot be done in a C code.

The following code box is the equivalent code written for the preceding
interface Eatable in C using the techniques we introduced in the previous
chapter to implement inheritance and polymorphism:

typedef enum {SWEET, SOUR} taste_t;

// Function pointer type



typedef taste_t (*get_taste_func_t)(void*);

typedef struct {

// Pointer to the definition of the virtual function

get_taste_func_t get_taste_func;

} eatable_t;

eatable_t* eatable_new() { ... }

void eatable_ctor(eatable_t* eatable) {

// We don't have any default definition for the virtual

function

eatable->get_taste_func = NULL;

}

// Virtual behavior function

taste_t eatable_get_taste(eatable_t* eatable) {

return eatable->get_taste_func(eatable);

}

Code Box 9-1: The Eatable interface in C

As you can see, in the constructor function we have set the
get_taste_func  pointer to NULL . So, calling the eatable_get_taste
virtual function can lead to a segmentation fault. From the coding
perspective, that's basically why that we must not create an object from
the Eatable interface other than the reasons we know from the definition
of the interface and the design point of view.

The following code box demonstrates how creating an object from the
Eatable interface, which is totally possible and allowed from a C point of
view, can lead to a crash and must not be done:

eatable_t *eatable = eatable_new();

eatable_ctor(eatable);

taste_t taste = eatable_get_taste(eatable); // Segmentation

fault!

free(eatable);

Code Box 9-2: Segmentation fault when creating an object from the Eatable interface and
calling a pure virtual function from it

To prevent ourselves from creating an object from an abstract type, we can
remove the allocator function from the class's public interface. If you
remember the approaches that we took in the previous chapter to



implement inheritance in C, by removing the allocator function, only child
classes are able to create objects from the parent's attribute structure.

External codes are then no longer able to do so. For instance, in the
preceding example, we do not want any external code to be able to create
any object from the structure eatable_t . In order to do that, we need to
have the attribute structure forward declared and make it an incomplete
type. Then, we need to remove the public memory allocator eatable_new
from the class.

To summarize what we need to do to have an abstract class in C, you need
to nullify the virtual function pointers that are not meant to have a default
definition at that abstraction level. At an extremely high level of
abstraction, we have an interface whose all function pointers are null. To
prevent any external code from creating objects from abstract types, we
should remove the allocator function from the public interface.

In the following section, we are going to compare similar object-oriented
features in C and C++. This gives us an idea how C++ has been developed
from pure C.

Object-oriented constructs in
C++
In this section, we are going to compare what we did in C and the
underlying mechanisms employed in a famous C++ compiler, g++  in this
case, for supporting encapsulation, inheritance, polymorphism, and
abstraction.

We want to show that there is a close accordance between the methods by
which object-oriented concepts are implemented in C and C++. Note that,
from now on, whenever we refer to C++, we are actually referring to the
implementation of g++  as one of the C++ compilers, and not the C++
standard. Of course, the underlying implementations can be different for



various compilers, but we don't expect to see a lot of differences. We will
also be using g++  in a 64-bit Linux setup.

We are going to use the previously discussed techniques to write an object-
oriented code in C, and then we write the same program in C++, before
jumping to the final conclusion.

Encapsulation
It is difficult to go deep into a C++ compiler and see how it uses the
techniques that we've been exploring so far to produce the final
executable, but there is one clever trick that we can use to actually see
this. The way to do this is to compare the assembly instructions generated
for two similar C and C++ programs.

This is exactly what we are going to do to demonstrate that the C++
compiler ends up generating the same assembly instructions as a C
program that uses the OOP techniques that we've been discussing in the
previous chapters.

Example 9.1 is about two C and C++ programs addressing the same simple
object-oriented logic. There is a Rectangle  class in this example, which
has a behavior function for calculating its area. We want to see and
compare the generated assembly codes for the same behavior function in
both programs. The following code box demonstrates the C version:

#include <stdio.h>

typedef struct {

int width;

int length;

} rect_t;

int rect_area(rect_t* rect) {

return rect->width * rect->length;

}

int main(int argc, char** argv) {

rect_t r;

r.width = 10;

r.length = 25;

int area = rect_area(&r);



printf("Area: %d\n", area);

return 0;

}

Code Box 9-3 [ExtremeC_examples_chapter9_1.c]: Encapsulation example in C

And the following code box shows the C++ version of the preceding
program:

#include <iostream>

class Rect {

public:

int Area() {

return width * length;

}

int width;

int length;

};

int main(int argc, char** argv) {

Rect r;

r.width = 10;

r.length = 25;

int area = r.Area();

std::cout << "Area: " << area << std::endl;

return 0;

}

Code Box 9-4 [ExtremeC_examples_chapter9_1.cpp]: Encapsulation example in C++

So, let's generate the assembly codes for the preceding C and C++
programs:

$ gcc -S ExtremeC_examples_chapter9_1.c -o ex9_1_c.s

$ g++ -S ExtremeC_examples_chapter9_1.cpp -o ex9_1_cpp.s

$

Shell Box 9-1: Generating the assembly outputs for the C and C++ codes

Now, let's dump the ex9_1_c.s  and ex9_1_cpp.s  files and look for the
definition of the behavior functions. In ex9_1_c.s , we should look for the
rect_area  symbol, and in ex9_1_cpp.s , we should look for the
_ZN4Rect4AreaEv  symbol. Note that C++ mangles the symbol names, and



that's why you need to search for this strange symbol. Name mangling in
C++ has been discussed in Chapter 2, Compilation and Linking.

For the C program, the following is the generated assembly for the
rect_area  function:

$ cat ex9_1_c.s

...

rect_area:

.LFB0:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

movq %rdi, -8(%rbp)

movq -8(%rbp), %rax

movl (%rax), %edx

movq -8(%rbp), %rax

movl 4(%rax), %eax

imull %edx, %eax

popq %rbp

.cfi_def_cfa 7, 8

Ret

.cfi_endproc

...

$

Shell Box 9-2: The generated assembly code of the rect_area function

The following is the generated assembly instructions for the Rect::Area
function:

$ cat ex9_1_cpp.s

...

_ZN4Rect4AreaEv:

.LFB1493:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

movq %rdi, -8(%rbp)



movq -8(%rbp), %rax

movl (%rax), %edx

movq -8(%rbp), %rax

movl 4(%rax), %eax

imull %edx, %eax

popq %rbp

.cfi_def_cfa 7, 8

Ret

.cfi_endproc

...

$

Shell Box 9-3: The generated assembly code of the Rect::Area function

Unbelievably, they are exactly the same! I'm not sure how the C++ code
turns into the preceding assembly code, but I'm sure that the assembly
code generated for the preceding C function is almost, to high degree of
accuracy, equivalent to the assembly code generated for the C++ function.

We can conclude from this that the C++ compiler has used a similar
approach to that which we used in C, introduced as implicit encapsulation
as part of Chapter 6, OOP and Encapsulation, to implement the
encapsulation. Like what we did with implicit encapsulation, you can see
in Code Box 9-3 that a pointer to the attribute structure is passed to the
rect_area  function as the first argument.

As part of the boldened assembly instructions in both shell boxes, the
width  and length  variables are being read by adding to the memory
address passed as the first argument. The first pointer argument can be
found in the %rdi  register according to System V ABI. So, we can infer
that C++ has changed the Area  function to accept a pointer argument as
its first argument, which points to the object itself.

As a final word on encapsulation, we saw how C and C++ are closely
related regarding encapsulation, at least in this simple example. Let's see
if the same is true regarding inheritance as well.

Inheritance



Investigating inheritance is easier than encapsulation. In C++, the pointers
from a child class can be assigned to the pointers from the parent class.
Also, the child class should have access to the private definition of the
parent class.

Both of these behaviors imply that C++ is using our first approach to
implementing inheritance, which was discussed in the previous chapter,
Chapter 8, Inheritance and Polymorphism, along with the second
approach. Please refer back to the previous chapter if you need to remind
yourself of the two approaches.

However, C++ inheritance seems more complex because C++ supports
multiple inheritances that we can't support in our first approach. In this
section, we will check the memory layouts of two objects instantiated
from two similar classes in C and C++, as demonstrated in example 9.2.

Example 9.2 is about a simple class inheriting from another simple class,
both of which have no behavior functions. The C version is as follows:

#include <string.h>

typedef struct {

char c;

char d;

} a_t;

typedef struct {

a_t parent;

char str[5];

} b_t;

int main(int argc, char** argv) {

b_t b;

b.parent.c = 'A';

b.parent.d = 'B';

strcpy(b.str, "1234");

// We need to set a break point at this line to see the

memory layout.

return 0;

}

Code Box 9-5 [ExtremeC_examples_chapter9_2.c]: Inheritance example in C

And the C++ version comes within the following code box:



#include <string.h>

class A {

public:

char c;

char d;

};

class B : public A {

public:

char str[5];

};

int main(int argc, char** argv) {

B b;

b.c = 'A';

b.d = 'B';

strcpy(b.str, "1234");

// We need to set a break point at this line to see the

memory layout.

return 0;

}

Code Box 9-6 [ExtremeC_examples_chapter9_2.cpp]: Inheritance example in C++

Firstly, we need to compile the C program and use gdb  to set a breakpoint
on the last line of the main  function. When the execution pauses, we can
examine the memory layout as well as the existing values:

$ gcc -g ExtremeC_examples_chapter9_2.c -o ex9_2_c.out

$ gdb ./ex9_2_c.out

...

(gdb) b ExtremeC_examples_chapter9_2.c:19

Breakpoint 1 at 0x69e: file ExtremeC_examples_chapter9_2.c,

line 19.

(gdb) r

Starting program: .../ex9_2_c.out

Breakpoint 1, main (argc=1, argv=0x7fffffffe358) at

ExtremeC_examples_chapter9_2.c:20

20 return 0;

(gdb) x/7c &b

0x7fffffffe261: 65 'A' 66 'B' 49 '1' 50 '2' 51 '3' 52 '4' 0

'\000'

(qdb) c

[Inferior 1 (process 3759) exited normally]

(qdb) q

$



Shell Box 9-4: Running the C version of example 9.2 in gdb

As you can see, we have printed seven characters, starting from the
address of b  object, which are as follows: 'A' , 'B' , '1' , '2' , '3' ,
'4' , '\0' . Let's do the same for the C++ code:

$ g++ -g ExtremeC_examples_chapter9_2.cpp -o ex9_2_cpp.out

$ gdb ./ex9_2_cpp.out

...

(gdb) b ExtremeC_examples_chapter9_2.cpp:20

Breakpoint 1 at 0x69b: file

ExtremeC_examples_chapter9_2.cpp, line 20.

(gdb) r

Starting program: .../ex9_2_cpp.out

Breakpoint 1, main (argc=1, argv=0x7fffffffe358) at

ExtremeC_examples_chapter9_2.cpp:21

21 return 0;

(gdb) x/7c &b

0x7fffffffe251: 65 'A' 66 'B' 49 '1' 50 '2' 51 '3' 52 '4' 0

'\000'

(qdb) c

[Inferior 1 (process 3804) exited normally]

(qdb) q

$

Shell Box 9-5: Running the C++ version of example 9.2 in gdb

As you can see in the preceding two shell boxes, the memory layout and
the values stored in the attributes are the same. You shouldn't get confused
by having the behavior functions and attributes together in a class in C++;
they are going to be treated separately from the class. In C++, the
attributes, no matter where you put them in a class, are always collected
within the same memory block regarding a specific object, and functions
will always be independent of the attributes, just as we saw when looking
at implicit encapsulation as part of Chapter 6, OOP and Encapsulation.

The previous example demonstrates single inheritance. So, what about
multiple inheritance? In the previous chapter, we explained why our first
approach to implementing inheritance in C could not support multiple
inheritance. We again demonstrate the reason in the following code box:



typedef struct { ... } a_t;

typedef struct { ... } b_t;

typedef struct {

a_t a;

b_t b;

...

} c_t;

c_t c_obj;

a_t* a_ptr = (a_ptr*)&c_obj;

b_t* b_ptr = (b_ptr*)&c_obj;

c_t* c_ptr = &c_obj;

Code Box 9-7: Demonstration of why multiple inheritance cannot work with our proposed
first approach for implementing inheritance in C

In the preceding code box, the c_t  class desires to inherit both a_t  and
b_t  classes. After declaring the classes, we create the c_obj  object. In
the following lines of preceding code, we create different pointers.

An important note here is that all of these pointers must be pointing to the
same address. The a_ptr  and c_ptr  pointers can be used safely with any
behavior function from the a_t  and c_t  classes, but the b_ptr  pointer is
dangerous to use because it is pointing to the a field in the c_t  class,
which is an a_t  object. Trying to access the fields inside b_t  through
b_ptr  results in an undefined behavior.

The following code is the correct version of the preceding code, where all
pointers can be used safely:

c_t c_obj;

a_t* a_ptr = (a_ptr*)&c_obj;

b_t* b_ptr = (b_ptr*)(&c_obj + sizeof(a_t));

c_t* c_ptr = &c_obj;

Code Box 9-8: Demonstration of how casts should be updated to point to the correct fields

As you can see on the third line in Code Box 9-8, we have added the size of
an a_t  object to the address of c_obj ; this eventually results in a pointer
pointing to the b  field in c_t . Note that casting in C does not do any
magic; it is there to convert types and it doesn't modify the transferring



value, the memory address in the preceding case. Eventually, after the
assignment, the address from the right-hand side would be copied to the
left-hand side.

For now, let's see the same example in C++ with a look at example 9.3.
Suppose that we have a D  class that inherits from three different classes,
A , B , and C . The following is the code written for example 9.3:

#include <string.h>

class A {

public:

char a;

char b[4];

};

class B {

public:

char c;

char d;

};

class C {

public:

char e;

char f;

};

class D : public A, public B, public C {

public:

char str[5];

};

int main(int argc, char** argv) {

D d;

d.a = 'A';

strcpy(d.b, "BBB");

d.c = 'C';

d.d = 'D';

d.e = 'E';

d.f = 'F';

strcpy(d.str, "1234");

A* ap = &d;

B* bp = &d;

C* cp = &d;

D* dp = &d;

// We need to set a break point at this line.

return 0;

}

Code Box 9-9 [ExtremeC_examples_chapter9_3.cpp]: Multiple inheritance in C++



Let's compile the example and run it with gdb :

$ g++ -g ExtremeC_examples_chapter9_3.cpp -o ex9_3.out

$ gdb ./ex9_3.out

...

(gdb) b ExtremeC_examples_chapter9_3.cpp:40

Breakpoint 1 at 0x100000f78: file

ExtremeC_examples_chapter9_3.cpp, line 40.

(gdb) r

Starting program: .../ex9_3.out

Breakpoint 1, main (argc=1, argv=0x7fffffffe358) at

ExtremeC_examples_chapter9_3.cpp:41

41 return 0;

(gdb) x/14c &d

0x7fffffffe25a: 65 'A' 66 'B' 66 'B' 66 'B' 0 '\000' 67 'C'

68 'D' 69 'E'

0x7fffffffe262: 70 'F' 49 '1' 50 '2' 51 '3' 52 '4' 0 '\000'

(gdb)

$

Shell Box 9-6: Compiling and running example 9.3 in gdb

As you can see, the attributes are placed adjacent to each other. This shows
that multiple objects of the parent classes are being kept inside the same
memory layout of the d  object. What about the ap , bp , cp , and dp
pointers? As you can see, in C++, we can cast implicitly when assigning a
child pointer to a parent pointer (upcasting).

Let's examine the values of these pointers in the current execution:

(gdb) print ap

$1 = (A *) 0x7fffffffe25a

(gdb) print bp

$2 = (B *) 0x7fffffffe25f

(gdb) print cp

$3 = (C *) 0x7fffffffe261

(gdb) print dp

$4 = (D *) 0x7fffffffe25a

(gdb)

Shell Box 9-7: Printing the addresses stored in the pointers as part of example 9.3



The preceding shell box shows that the starting address of the d object,
shown as $4 , is the same as the address being pointed to by ap, shown as
$1 . So, this clearly shows that C++ puts an object of the type A as the first
field in the corresponding attribute structure of the D class. Based on the
addresses in the pointers and the result we got from the x  command, an
object of the B type and then an object of the C type, are put into the same
memory layout belonging to object d .

In addition, the preceding addresses show that the cast in C++ is not a
passive operation, and it can perform some pointer arithmetic on the
transferring address while converting the types. For example, in Code Box
9-9, while assigning the bp  pointer in the main  function, five bytes or
sizeof(A) , are added to the address of d . This is done in order to
overcome the problem we found in implementing multiple inheritance in
C. Now, these pointers can easily be used in all behavior functions without
needing to do the arithmetic yourself. As an important note, C casts and
C++ casts are different, and you may see different behavior if you assume
that C++ casts are as passive as C casts.

Now it's time to look at the similarities between C and C++ in the case of
polymorphism.

Polymorphism
Comparing the underlying techniques for having polymorphism in C and
C++ is not an easy task. In the previous chapter, we came up with a simple
method for having a polymorphic behavior function in C, but C++ uses a
much more sophisticated mechanism to bring about polymorphism,
though the basic underlying idea is still the same. If we want to generalize
our approach for implementing polymorphism in C, we can do it as the
pseudo-code that can be seen in the following code box:

// Typedefing function pointer types

typedef void* (*func_1_t)(void*, ...);

typedef void* (*func_2_t)(void*, ...);

...

typedef void* (*func_n_t)(void*, ...);



// Attribute structure of the parent class

typedef struct {

// Attributes

...

// Pointers to functions

func_1_t func_1;

func_2_t func_2;

...

func_n_t func_t;

} parent_t;

// Default private definitions for the

// virtual behavior functions

void* __default_func_1(void* parent, ...) { // Default

definition }

void* __default_func_2(void* parent, ...) { // Default

definition }

...

void* __default_func_n(void* parent, ...) { // Default

definition }

// Constructor

void parent_ctor(parent_t *parent) {

// Initializing attributes

...

// Setting default definitions for virtual

// behavior functions

parent->func_1 = __default_func_1;

parent->func_2 = __default_func_2;

...

parent->func_n = __default_func_n;

}

// Public and non-virtual behavior functions

void* parent_non_virt_func_1(parent_t* parent, ...) { //

Code }

void* parent_non_virt_func_2(parent_t* parent, ...) { //

Code }

...

void* parent_non_virt_func_m(parent_t* parent, ...) { //

Code }

// Actual public virtual behavior functions

void* parent_func_1(parent_t* parent, ...) {

return parent->func_1(parent, ...);

}

void* parent_func_2(parent_t* parent, ...) {

return parent->func_2(parent, ...);

}

...

void* parent_func_n(parent_t* parent, ...) {

return parent->func_n(parent, ...);

}



Code Box 9-10: Pseudo-code demonstrating how virtual functions can be declared and
defined in a C code

As you can see in the preceding pseudo-code, the parent class has to
maintain a list of function pointers in its attribute structure. These
function pointers (in the parent class) either point to the default definitions
for the virtual functions, or they are null. The pseudo-class defined as part
of Code Box 9-10 has m  non-virtual behavior functions and n  virtual
behavior functions.

Note:

Not all behavior functions are polymorphic. Polymorphic behavior
functions are called virtual behavior functions or simply virtual functions.
In some languages, such as Java, they are called virtual methods.

Non-virtual functions are not polymorphic, and you never get various
behaviors by calling them. In other words, a call to a non-virtual function
is a simple function call and it just performs the logic inside the definition
and doesn't relay the call to another function. However, virtual functions
need to redirect the call to a proper function, set by either the parent or the
child constructor. If a child class wants to override some of the inherited
virtual functions, it should update the virtual function pointers.

Note:

The void*  type for the output variables can be replaced by any other
pointer type. I used a generic pointer to show that anything can be
returned from the functions in the pseudo-code.

The following pseudo-code shows how a child class overrides a few of the
virtual functions found in Code Box 9-10:

Include everything related to parent class ...

typedef struct {

parent_t parent;



// Child attributes

...

} child_t;

void* __child_func_4(void* parent, ...) { // Overriding

definition }

void* __child_func_7(void* parent, ...) { // Overriding

definition }

void child_ctor(child_t* child) {

parent_ctor((parent_t*)child);

// Initialize child attributes

...

// Update pointers to functions

child->parent.func_4 = __child_func_4;

child->parent.func_7 = __child_func_7;

}

// Child's behavior functions

...

Code Box 9-11: Pseudo-code in C demonstrating how a child class can override some virtual
functions inherited from the parent class

As you can see in Code Box 9-11, the child class needs only to update a
few pointers in the parent's attribute structure. C++ takes a similar
approach. When you declare a behavior function as virtual (using the
virtual  keyword), C++ creates an array of function pointers, pretty
similar to the way we did in Code Box 9-10.

As you can see, we added one function pointer attribute for each virtual
function, but C++ has a smarter way of keeping these pointers. It just uses
an array called a virtual table or vtable. The virtual table is created when
an object is about to be created. It is first populated while calling the
constructor of the base class, and then as part of the constructor of the
child class, just as we've shown in Code Boxes 9-10 and 9-11.

Since the virtual table is only populated in the constructors, calling a
polymorphic method in a constructor, either in the parent or in the child
class, should be avoided, as its pointer may have not been updated yet and
it might be pointing to an incorrect definition.

As our last discussion regarding the underlying mechanisms used for
having various object-oriented concepts in C and C++, we are going to talk
about abstraction.



Abstract classes
Abstraction in C++ is possible using pure virtual functions. In C++ if you
define a member function as a virtual function and set it to zero, you have
declared a pure virtual function. Look at the following example:

enum class Taste { Sweet, Sour };

// This is an interface

class Eatable {

public:

virtual Taste GetTaste() = 0;

};

Code Box 9-12: The Eatable interface in C++

Inside the class Eatable , we have a GetTaste  virtual function that is set
to zero. GetTaste  is a pure virtual function and makes the whole class
abstract. You can no longer create objects from the Eatable type, and C++
doesn't allow this. In addition, Eatable is an interface, because all of its
member functions are purely virtual. This function can be overridden in a
child class.

The following shows a class that is overriding the GetTaste  function:

enum class Taste { Sweet, Sour };

// This is an interface

class Eatable {

public:

virtual Taste GetTaste() = 0;

};

class Apple : public Eatable {

public:

Taste GetTaste() override {

return Taste::Sweet;

}

};

Code Box 9-13: Two child classes implementing the Eatable interface



Pure virtual functions are remarkably similar to virtual functions. The
addresses to the actual definitions are being kept in the virtual table in the
same way as virtual functions, but with one difference. The initial values
for the pointers of pure virtual functions are null, unlike the pointers of
normal virtual functions, which need to point to a default definition while
the construction is in progress.

Unlike a C compiler, which doesn't know anything about abstract types, a
C++ compiler is aware of abstract types and generates a compilation error
if you try to create an object from an abstract type.

In this section, we took various object-oriented concepts and compared
them in C, using the techniques introduced in the past three chapters, and
in C++, using the g++  compiler. We showed that, in most cases, the
approaches we employed are in accordance with the techniques that a
compiler like g++  uses.

Summary
In this chapter, we concluded our exploration of topics in OOP, picking up
from abstraction and moving on by showing the similarities between C
and C++ regarding object-oriented concepts.

The following topics were discussed as part of this chapter:

Abstract classes and interfaces were initially discussed. Using them,
we can have an interface or a partially abstract class, which could be
used to create concrete child classes with polymorphic and different
behaviors.
We then compared the output of the techniques we used in C to bring
in some OOP features, with the output of what g++  produces. This
was to demonstrate how similar the results are. We concluded that the
techniques that we employed can be very similar in their outcomes.
We discussed virtual tables in greater depth.



We showed how pure virtual functions (which is a C++ concept but
does have a C counterpart) can be used to declare virtual behaviors
that have no default definition.

The next chapter is about Unix and its correspondence to C. It will review
the history of Unix and the invention of C. It will also explain the layered
architecture of a Unix system.



Chapter 10
Unix – History and Architecture

You might have asked yourself why there should be a chapter about Unix in
the middle of a book about expert-level C. If you have not, I invite you to
ask yourself, how can these two topics, C and Unix, be related in such a
way that there's a need for two dedicated chapters (this and the next
chapter) in the middle of a book that should talk about C?

The answer is simple: if you think they are unrelated, then you are making
a big mistake. The relationship between the two is simple; Unix is the first
operating system that is implemented with a fairly high-level programming
language, C, which is designed for this purpose, and C got its fame and
power from Unix. Of course, our statement about C being a high-level
programming language is not true anymore, and C is no longer considered
to be so high-level.

Back in the 1970s and 1980s, if the Unix engineers at Bell Labs had
decided to use another programming language, instead of C, to develop a
new version of Unix, then we would be talking about that language today,
and this book wouldn't be Extreme C anymore. Let's pause for a minute to
read this quote from Dennis M. Ritchie, one of the pioneers of C, about the
effect of Unix on the success of C:

"Doubtless, the success of Unix itself was the

most important factor; it made the language

available to hundreds of thousands of people.

Conversely, of course, Unix's use of C and its



consequent portability to a wide variety of

machines was important in the system's success."

- Dennis M. Ritchie – The Development of the C

Language

Available at https://www.bell-
labs.com/usr/dmr/www/chist.html.

As part of this chapter, we cover the following topics:

We briefly talk about the history of Unix and how the invention of
C happened.
We explain how C has been developed based on B and BCPL.
We discuss the Unix onion architecture and how it was designed based
on the Unix philosophy.
We describe the user application layer together with shell ring and
how the programs consume the API exposed by the shell ring. The
SUS and POSIX standards are explained as part of this section.
We discuss the kernel layer and what features and functionalities
should be present in a Unix kernel.
We talk about the Unix devices and how they can be used in a Unix
system.

Let's start the chapter by talking about the Unix history.

Unix history
In this section, we are going to give a bit of history about Unix. This is not
a history book, so we're going to keep it short and straight to the point, but

https://www.bell-labs.com/usr/dmr/www/chist.html


the goal here is to gain some hints of history in order to develop a basis for
having Unix side by side with C forever in your minds.

Multics OS and Unix
Even before having Unix, we had the Multics OS. It was a joint project
launched in 1964 as a cooperative project led by MIT, General Electric, and
Bell Labs. Multics OS was a huge success because it could introduce the
world to a real working and secure operating system. Multics was installed
everywhere from universities to government sites. Fast-forward to 2019,
and every operating system today is borrowing some ideas from Multics
indirectly through Unix.

In 1969, because of the various reasons that we will talk about shortly,
some people at Bell Labs, especially the pioneers of Unix, such as Ken
Thompson and Dennis Ritchie, gave up on Multics and, subsequently, Bell
Labs quit the Multics project. But this was not the end for Bell Labs; they
had designed their simpler and more efficient operating system, which was
called Unix.

You can read more about Multics and its history here:
https://multicians.org/history.html, where you can get a
breakdown of the history of Multics.

The following link: https://www.quora.com/Why-did-Unix-
succeed-and-not-Multics, is also a good one that explains why
Unix continued to live while Multics became discontinued.

It is worthwhile to compare the Multics and Unix operating systems. In the
following list, you will see similarities and differences found while
comparing Multics and Unix:

Both follow the onion architecture as their internal structure. We
mean that they both have more or less the same rings in their onion
architecture, especially kernel and shell rings. Therefore,
programmers could write their own programs on top of the shell ring.
Also, Unix and Multics expose a list of utility programs such as ls

https://multicians.org/history.html
https://www.quora.com/Why-did-Unix-succeed-and-not-Multics


and pwd . In the following sections, we will explain the various rings
found in the Unix architecture.
Multics needed expensive resources and machines to be able to
work. It was not possible to install it on ordinary commodity
machines, and that was one of the main drawbacks that let Unix thrive
and finally made Multics obsolete after about 30 years.
Multics was complex by design. This was the reason behind the
frustration of Bell Labs employees and, as we said earlier, the reason
why they left the project. But Unix tried to remain simple. In the first
version, it was not even multitasking or multi-user!

You can read more about Unix and Multics online, and follow the events
that happened in that era. Both were successful projects, but Unix has been
able to thrive and survive to this day.

It is worth sharing that Bell Labs has been working on a new distributed
operating system called Plan 9, which is based on the Unix project. You can
read more about it at Wikipedia:
https://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs.

https://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs


Figure 10-1: Plan 9 from Bell Labs (from Wikipedia)

I suppose that it is enough for us to know that Unix was a simplification of
the ideas and innovations that Multics presented; it was not something new,
and so, I can quit talking about Unix and Multics history at this point.

So far, there are no traces of C in the history because it has not been
invented yet. The first versions of Unix were purely written using assembly
language. Only in 1973 was Unix version 4 written using C.

Now, we are getting close to discussing C itself, but before that, we must
talk about BCPL and B because they have been the gateway to C.



BCPL and B
BCPL was created by Martin Richards as a programming language invented
for the purpose of writing compilers. The people from Bell Labs were
introduced to the language when they were working as part of the Multics
project. After quitting the Multics project, Bell Labs first started to write
Unix using assembly programming language. That's because, back then, it
was an anti-pattern to develop an operating system using a programming
language other than assembly!

For instance, it was strange that the people at the Multics project were
using PL/1 to develop Multics but, by doing that, they showed that
operating systems could be successfully written using a higher-level
programming language other than assembly. So, because of that, Multics
became the main inspiration for using another language for developing
Unix.

The attempt to write operating system modules using a programming
language other than assembly remained with Ken Thompson and Dennis
Ritchie at Bell Labs. They tried to use BCPL, but it turned out that they
needed to apply some modifications to the language to be able to use it in
minicomputers such as the DEC PDP-7. These changes led to the B
programming language.

We are going to avoid going too deep into the properties of the B language
here, but you can read more about it and the way it was developed in the
following links:

The B Programming Language, at
https://en.wikipedia.org/wiki/B_(programming_lan

guage)

The Development of the C Language, at https://www.bell-
labs.com/usr/dmr/www/chist.html

Dennis Ritchie authored the latter article himself, and it is a good way to
explain the development of the C programming language while still sharing
valuable information about B and its characteristics.

https://en.wikipedia.org/wiki/B_(programming_language)
https://www.bell-labs.com/usr/dmr/www/chist.html


B also had its shortcomings in terms of being a system programming
language. B was typeless, which meant that it was only possible to work
with a word (not a byte) in each operation. This made it hard to use the
language on machines with a different word length.

This is why, over time, further modifications were made to the language
until it led to developing the NB (New B) language, and later it derived the
structures from the B language. These structures were typeless in B, but
they became typed in C. Finally, in 1973, the fourth version of Unix could
be developed using C, in which there were still many assembly codes.

In the next section, we talk about the differences between B and C, and why
C is a top-notch modern system programming language for writing an
operating system.

The way to C
I do not think we can find anyone better than Dennis Ritchie himself to
explain why C was invented after the difficulties met with B. In this
section, we're going to list the causes that made Dennis Ritchie, Ken
Thompson, and others create a new programming language instead of using
B for writing Unix.

Following is the list of flaws found in B, which led to the creation of C:

B could only work with words in memory: Every single operation
should have been performed in terms of words. Back then, having a
programming language that was able to work with bytes was a dream.
This was because of the available hardware at the time, which was
addressing the memory in a word-based scheme.
B was typeless: The more accurate statement we could say is that B
was a single-type language. All variables were from the same type:
word. So, if you had a string with 20 characters (21 plus the null
character at the end), you had to divide it up by words and store it in
more than one variable. For example, if a word was 4 bytes, you would
have 6 variables to store 21 characters of the string.



Being typeless meant that multiple byte-oriented algorithms, such
as string manipulation algorithms, were not efficiently written
with B: This was because B was using the memory words not bytes,
and they could not be used efficiently to manage multi-byte data types
such as integers and strings.
B was not supporting floating-point operations: At the time, these
were becoming increasingly available on the new hardware, but there
was no support for that in the B language.
Through the availability of machines such as PDP-1, which were able
to address memory on a byte basis, B showed that it could be
inefficient in addressing bytes of memory: This became even clearer
with B pointers, which could only address the words in the memory,
and not the bytes. In other words, for a program wanting to access a
specific byte or a byte range in the memory, more computations had to
be done to calculate the corresponding word indexes.

The difficulties with B, particularly its slow development and execution on
machines that were available at the time, forced Dennis Ritchie to produce
a new language. This new language was called NB, or New B at first, but it
eventually turned out to be C.

This newly developed language, C, tried to cover the difficulties and flaws
of B and became a de facto programming language for system
development, instead of the assembly language. In less than 10 years,
newer versions of Unix were completely written in C, and all newer
operating systems that were based on Unix got tied with C and its crucial
presence in the system.

As you can see, C was not born as an ordinary programming language, but
instead, it was designed by having a complete set of requirements in mind
and, nowadays, it has no competitor. You may consider languages such as
Java, Python, and Ruby to be higher-level languages, but they cannot be
considered as direct competitors as they are different and serve different
purposes. For instance, you cannot write a device driver or a kernel module
with Java or Python, and they themselves have been built on top of a layer
written in C.



Unlike many programming languages, C is standardized by ISO, and if it is
required to have a certain feature in the future, then the standard can be
modified to support the new feature.

In the next section, we'll discuss Unix architecture. This is a fundamental
concept in understanding how a program evolves within the Unix
environment.

Unix architecture
In this section, we are going to explore the philosophy that the Unix
creators had in mind and what they were expecting it to be when they
created the architecture.

As we've explained in the previous section, the people involved in Unix
from Bell Labs were working for the Multics project. Multics was a big
project, the proposed architecture was complex, and it was tuned to be used
on expensive hardware. But we should remember that despite all the
difficulties, Multics had big goals. The ideas behind the Multics project
revolutionized the way we were thinking about the operating systems.

Despite the challenges and difficulties discussed previously the ideas
presented in the project were successful because Multics managed to live
for around 40 years, until the year 2000. Not only that, but the project
created a huge revenue stream for its owner company.

People such as Ken Thompson and his colleagues brought ideas into Unix
even though Unix was, initially, supposed to be simple. Both Multics and
Unix tried to bring in similar architecture, but they had two vastly different
fates. Multics, since the turn of the century, has started to be forgotten,
while Unix, and the operating system families based on it such as BSD,
have been growing since then.

We're going to move on to talk about the Unix philosophy. It is simply a set
of high-level requirements that the design of Unix is based on. After that,



we're going to talk about the Unix multi-ring, onion-like architecture and
the role of each ring in the overall behavior of the system.

Philosophy
The philosophy of Unix has been explained several times by its founders.
As such, a thorough breakdown of the entire topic is beyond the scope of
this book. What we will do is summarize all of the main viewpoints.

Before we do that, I've listed below some great external literature that
could help you on the subject of Unix philosophy:

Wikipedia, Unix philosophy:
https://en.wikipedia.org/wiki/Unix_philosophy

The Unix Philosophy: A Brief Introduction:
http://www.linfo.org/unix_philosophy.html

Eric Steven Raymond, The Art of Unix Programming:
https://homepage.cs.uri.edu/~thenry/resources/un

ix_art/ch01s06.html

Equally, in the following link, you'll see a quite angry opposite view to the
Unix philosophy. I've included this because it's always great to know both
sides since, intrinsically, nothing is perfect:

The Collapse of UNIX Philosophy:
https://kukuruku.co/post/the-collapse-of-the-

unix-philosophy/

To summarize these viewpoints, I've grouped the key Unix philosophies as
follows:

Unix is mainly designed and developed to be used by programmers
and not ordinary end users: Therefore, many considerations
addressing user interface and user experience requirements are not
part of the Unix architecture.

https://en.wikipedia.org/wiki/Unix_philosophy
http://www.linfo.org/unix_philosophy.html
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html
https://kukuruku.co/post/the-collapse-of-the-unix-philosophy/


A Unix system is made up of many small and simple programs:
Each of them is designed to perform a small and simple task. There
are lots of examples of these small and simple programs, such as ls ,
mkdir , ifconfig , grep , and sed .
A complex task can be performed by executing a sequence of these
small and simple programs in a chain: It means that essentially
more than one program is involved in a big and complex task and that,
together, each of the programs could be executed multiple times in
order to accomplish the task. A good example of this is to use shell
scripts instead of writing a program from scratch. Note that shell
scripts are often portable between Unix systems, and Unix encourages
programmers to break down their big and complex programs into
small and simple programs.
Each small and simple program should be able to pass its output
as the input of another program, and this chain should continue:
This way, we can use small programs in a chain that has the potential
to perform complex tasks. In this chain, each program can be
considered as a transformer that receives the output of the previous
program, transforms it based on its logic, and passes it to the next
program in the chain. A particularly good example of this is piping
between Unix commands, which is denoted by a vertical bar, such as
ls -l | grep a.out .
Unix is very text-oriented: All configurations are text files, and it has
a textual command line. Shell scripts are also text files that use simple
grammar to write an algorithm that executes other Unix shell
programs.
Unix suggests choosing simplicity over perfection: For example, if a
simple solution is working in most cases, don't design a complicated
solution that only works marginally better.
Programs written for a certain Unix-compliant operating system
should be easily usable in other Unix systems: This is mainly
satisfied by having a single code base that can be built and executed
on various Unix-compliant systems.

The points we've just listed have been extracted and interpreted by different
people, but in general, they've been agreed upon as the main principles



driving Unix philosophy and, as a result, have shaped the design of Unix.

If you have had experience with a Unix-like operating system, for example,
Linux, then you'll be able to align your experience with the preceding
statements. As we explained in the previous section regarding the history of
Unix, it was supposed to be a simpler version of Multics, with the
experiences the Unix founders had with Multics leading them to the
preceding philosophies.

But back to the topic of C. You may be asking how C has been contributing
to the preceding philosophy? Well, almost all of the essential things
reflected in the preceding statements are written in C. In other words, the
abovementioned small and simple programs that propel much of Unix are
all written in C.

It's often better to show rather than simply tell. So, let's look at an example.
The C source code for the ls program in NetBSD can be found here:
http://cvsweb.netbsd.org/bsdweb.cgi/~checkout~/src/

bin/ls/ls.c?rev=1.67. As you should know, the ls program lists the
contents of a directory and does nothing more than that, and this simple
logic has been written in C as you can see in the link. But this is not the
only contribution of C in Unix. We will explain more about this in future
sections while talking about the C Standard Library.

Unix onion
Now, it is time to explore the Unix architecture. An onion model, as we
briefly mentioned before, can describe the Unix overall architecture. It is
onion-like because it consists of a few rings, each of which acts as a
wrapper for internal rings.

Figure 10-2 demonstrates the proposed famous onion model for the Unix
architecture:

http://cvsweb.netbsd.org/bsdweb.cgi/~checkout~/src/bin/ls/ls.c?rev=1.67


Figure 10-2: The onion model of Unix architecture

The model looks quite simple at first glance. However, to understand it
fully requires you to write a few programs in Unix. Only after that can you
understand what each ring is really doing. We're going to try and explain
the model as simply as possible in order to develop an initial foundation
before moving forward with writing real examples.

Let's explain the onion model from the innermost ring.



At the core of the preceding model is Hardware. As we know, the main
task of an operating system is to allow the user to interact with and use the
hardware. That's why hardware is at the core of the model in Figure 10-2.
This simply shows us that one of the main goals of Unix is to make
hardware available to the programs willing to have access to it. Everything
that we've read about the Unix philosophy in the previous section focuses
upon delivering these services in the best possible manner.

The ring around the hardware is the Kernel. The kernel is the most
important part of an operating system. This is because it is the closest layer
to the hardware, and it acts as a wrapper to expose the functionalities of the
attached hardware directly. Because of this direct access, the kernel has the
highest privilege to use the whole available resources in a system. This
unlimited access to everything is the best justification for having other
rings in the architecture that don't have that unlimited access. In fact, this
was behind the separation between the kernel space and the user space. We
discuss this in further detail in this chapter and the following one.

Note that writing the kernel takes most of the effort needed when writing a
new Unix-like operating system, and, as you can see, its ring is drawn
thicker than the other rings. There are many different units inside a Unix
kernel, and each of them are playing a vital role in the Unix ecosystem.
Later on in this chapter, we will explain more about the internal structure
of a Unix kernel.

The next ring is called Shell. It is simply a shell around the kernel that
allows user applications to interact with the kernel and use its many
services. Take note that the shell ring alone brings mainly most of the
requirements addressed by the Unix philosophy that we explained in the
previous section. We will elaborate more on this in the upcoming
paragraphs.

The shell ring consists of many small programs, which, together, form a set
of tools that allows a user or an application to use the kernel services. It
also contains a set of libraries, all written in C, which will allow a
programmer to write a new application for Unix.



Based on the libraries found in Simple Unix Specification (SUS), the shell
ring must expose a standard and a precisely defined interface for
programmers. Such standardizations will make Unix programs portable, or
at least compilable, on various Unix implementations. We will reveal some
shocking secrets about this ring in the following sections!

Finally, the outermost ring, User Applications, consists of all of the actual
applications written to be used on Unix systems, such as database services,
web services, mail services, web browsers, worksheet programs, and word
editor programs.

These applications should use the APIs and tools provided by the shell ring
instead of accessing the kernel directly (via system calls, which we will
discuss shortly) to accomplish their tasks. This is done because of the
portability principle in the Unix philosophy. Note that in our current
context, by the term user, we usually mean the user applications, and not
necessarily the people working with these applications.

Being restricted to use just the shell ring also helps these applications to be
compliable on various Unix-like operating systems that are not true Unix-
compliant operating systems. The best example is the various Linux
distributions, which are just Unix-like. We like to have big pieces of
software available on both Unix-compliant and Unix-like operating
systems with a single code base. As we progress, you find out more about
the differences between Unix-like and Unix-compliant systems.

One general theme in the Unix onion is the fact that the inner rings should
provide some interface for the outer rings in order to let them use their
services. In fact, these interfaces between the rings are more important than
the rings themselves. For example, we are more interested in knowing how
to use the existing kernel services rather than just digging down the kernel,
which is different from one Unix implementation to another.

The same could be said of the shell ring and the interface it exposes to the
user applications. In fact, these interfaces are our main subject focus across
these two chapters while looking at Unix. In the following sections, we're
going to talk about each ring individually and discuss its exposed interface
in some detail.



Shell interface to user
applications
A human user either uses a Terminal or a specific GUI program such as a
web browser to use the functionalities available on a Unix system. Both are
referred to as user applications, or just simply applications or programs,
that allow the hardware to be used through the shell ring. Memory, CPU,
network adapter, and hard drives are typical examples of hardware that are
usually used by most Unix programs through the API provided by the shell
ring. The API provided is one of the topics that we are going to talk about.

From a developer's perspective, there is not much difference between an
application and a program. But from a human user's perspective, an
application is a program that has a means such as a Graphical User
interface (GUI) or Command-Line Interface (CLI) to interact with the
user, but a program is a piece of software running on a machine that has
no UI, such as a running service. This book does not distinguish between
programs and applications, and we use the terms interchangeably.

There is a wide range of programs that have been developed for Unix in C.
Database services, web servers, mail servers, games, office applications,
and many others are among various types of programs that exist in a Unix
environment. There is one common feature among these applications, and
that is that their code is portable on most Unix and Unix-like operating
systems with some slight changes. But how is that possible? How can you
write a program in C that can be built on various versions of Unix and
through various types of hardware?

The answer is simple: all Unix systems expose the same Application
Programming Interface (API) from their shell ring. A piece of C source
code that is only using the exposed standard interface can be built and run
across all Unix systems.

But what exactly do we mean by exposing an API? An API, as we have
explained before, is a bunch of header files that contain a set of



declarations. In Unix, these headers, and the declared functions in them, are
the same throughout all Unix systems, but the implementation of those
functions, in other words the static and dynamic libraries written for each
UNIX-compliant system, can be unique and different from others.

Note that we are looking at Unix as a standard and not an operating system.
There are systems that are built fully compatible with the Unix standard,
and we call them Unix-compliant systems, such as BSD Unix, while there
are systems that partly comply with the Unix standard, and which are called
Unix-like systems, such as Linux.

The same API is being exposed from the shell ring in more or less all Unix
systems. As an example, the printf  function must always be declared in
the stdio.h  header file, as specified by the Unix standard. Whenever you
want to print something to the standard output in a Unix-compliant system,
you should use printf  or fprintf  from the stdio.h  header file.

In fact, stdio.h  is not part of C even though all C books explain this
header and the declared functions in it. It's part of the C standard library
specified in the SUS standard. A C program written for Unix is not aware
of the actual implementation of a specific function, such as printf  or
fopen . In other words, the shell ring is seen as a black box by the programs
in the outer ring.

The various APIs exposed by the shell ring are collected under the SUS
standard. This standard is maintained by The Open Group consortium and
has had multiple iterations since the creation of Unix. The most recent
version is SUS version 4, which goes back to 2008. However, the most
recent version has itself some revisions in 2013, 2016, and finally in 2018.

The following link will take you to the document explaining the exposed
interfaces in SUS version 4:
http://www.unix.org/version4/GS5_APIs.pdf. As you can
see in the link, there are different kinds of APIs that are exposed by the
shell ring. Some of these are mandatory, and some others are optional. The
following is the list of APIs found in SUS v4:

http://www.unix.org/version4/GS5_APIs.pdf


System interfaces: This is a list of all functions that should be usable
by any C program. SUS v4 has 1,191 functions that need to be
implemented by a Unix system. The table also describes the fact that a
specific function either is mandatory or optional for a specific version
of C. Take note that the version we are interested in is C99.
Header interfaces: This is a list of header files that can be available
in an SUS v4-compatible Unix system. In this version of SUS, there
are 82 header files that can be accessible to all C programs. If you go
through the list, you will find many famous header files, such as
stdio.h , stdlib.h , math.h , and string.h . Based on the Unix
version and the C version used, some of them are mandatory, while
others are optional. The optional headers could be missing in a Unix
system, but mandatory header files certainly exist somewhere in the
filesystem.
Utility interfaces: This is a list of utility programs, or command-line
programs, that should be available in a SUS v4-compatible Unix
system. If you go through the tables, you will see lots of commands
that are familiar to you, for example, mkdir , ls , cp , df , bc , and
many more, which make up to 160 utility programs. Note that these
are usually programs that must have already been written by a specific
Unix vendor before shipping as part of its installation bundle.

These utility programs are mostly used in Terminals or in shell scripts
and are not often called by another C program. These utility programs
usually use the same system interfaces that are exposed to an ordinary
C program written in the user application ring.

As an example, the following is a link to the mkdir  utility program's
source code written for macOS High Sierra 10.13.6, which is a
Berkeley Software Distribution (BSD) - based Unix system. The
source code is published on the Apple Open Source website, macOS
High Sierra (10.13.6), and is available at
https://opensource.apple.com/source/file_cmds/fi

le_cmds-272/mkdir/mkdir.c.

If you open the link and go through the source, you see that it is using
mkdir  and umask  functions declared as part of the system interfaces.

https://opensource.apple.com/source/file_cmds/file_cmds-272/mkdir/mkdir.c


Scripting interface: This interface is a language that is used to write
shell scripts. It is mainly used for writing automated tasks that are
using utility programs. This interface is usually denoted as a shell
scripting language or a shell command language.
XCURSES interfaces: XCURSES is a set of interfaces that allow a C
program to interact with the user in a minimalistic text-based GUI.

In the following screenshot, you can see an example of the GUI that
has been written using ncurses  that is an implementation for
XCURSES.

In SUS v4, there are 379 functions located in 3 headers, together with
4 utility programs, which make up the XCURSES interface.

Many programs today are still using XCURSES to interact with the
user through a better interface. It's worth noting that, by using
XCURSES-based interfaces, you don't need to have a graphics engine.
Likewise, it is usable over remote connections such as Secure Shell
(SSH) as well.

Figure 10-3: A config menu based on ncurses (Wikipedia)



As you can see, SUS doesn't talk about the filesystem hierarchy and the
place where header files should be found. It only states which headers
should be available and present in the system. A widely used convention
for the path of standard header files says that these headers should be found
in either /usr/include  or /usr/local/include , but it is still up to the
operating system and the user to make the final decision. These are the
default paths for the header files. However, systems can be configured to
use other paths instead of default ones.

If we put system interfaces and header interfaces together with the
implementation of the exposed functions, which are different in each Unix
flavor (or implementation), then we get the C Standard Library or libc. In
other words, libc is a set of functions placed in specific header files, all
according to SUS, together with the static and shared libraries containing
the implementation of the exposed functions.

The definition of libc is entangled tightly with standardizations of Unix
systems. Every C program being developed in a Unix system uses libc for
communicating further down to the kernel and the hardware levels.

It's important to remember that not all operating systems are Unix fully
compatible systems. Microsoft Windows and operating systems using the
Linux kernel, for example, Android, are examples of that. These operating
systems are not Unix-compliant systems, but they can be Unix-like
systems. We have used the terms Unix-compliant and Unix-like across
earlier chapters without explaining their true meanings, but now we are
going to define them carefully.

A Unix-compliant system is fully compliant to SUS standards, but this isn't
true of a Unix-like system that is only partially compliant with the
standard. What this means is that the Unix-like systems are only
conforming to a specific subset of SUS standards and not all of them. This
means, theoretically, that the programs developed for a Unix-compliant
system are supposed to be portable to other Unix-compatible systems, but
may not be ported to a Unix-like operating system. This is especially the
case regarding the programs being ported from Linux to, or to Linux from,
other Unix-compliant systems.



Having lots of Unix-like operating systems developed, especially after the
birth of Linux, became the basis for giving this subset of SUS standards a
specific name. They called it the Portable Operating System Interface
(POSIX). We can say that POSIX is a subset of SUS standards that Unix-
like systems chose to comply with.

In the following link, you can find all of the different interfaces that should
be exposed in a POSIX system:
http://pubs.opengroup.org/onlinepubs/9699919799/.

As you can see in the link, there are similar interfaces in POSIX, just like
there are in SUS. The standards are remarkably similar, but POSIX has
enabled Unix standards to be applicable to a broader range of operating
systems.

Unix-like operating systems, such as most Linux distributions, are POSIX-
compliant from the beginning. That's why if you've worked with Ubuntu,
you can work with FreeBSD Unix in the same manner.

However, that's not true for some operating systems such as Microsoft
Windows. Microsoft Windows cannot be considered as POSIX-compliant,
but further tools can be installed to make it a POSIX operating system, for
example, Cygwin¸ a POSIX-compatible environment that runs natively on
the Windows operating system.

This again shows that POSIX compatibility is about having a standard shell
ring and not the kernel.

On a slight tangent, it was quite the story when Microsoft Windows became
POSIX-compliant in the 1990s. However, over time, that support became
deprecated.

Both SUS and POSIX standards dictate the interfaces. They both state what
should be available, but they don't talk about how it should become
available. Each Unix system has its own implementation of POSIX or SUS
implementation. These implementations are then put in libc libraries that
are part of the shell ring. In other words, in a Unix system, the shell ring
contains a libc implementation that is exposed in a standard way.

http://pubs.opengroup.org/onlinepubs/9699919799/


Subsequently, the shell ring will pass the request further down to the kernel
ring to be processed.

Kernel interface to shell ring
In the previous section, we explained that the shell ring in a Unix system
exposes the interfaces defined in the SUS or POSIX standard. There are
mainly two ways to invoke a certain logic in the shell ring, either through
the libc or using shell utility programs. A user application should either get
linked with libc libraries to execute shell routines, or it should execute an
existing utility program that's available in the system.

Note that the existing utility programs are themselves using the libc
libraries. Therefore, we can generalize and state that all shell routines can
be found in libc libraries. This gives even more importance to standard C
libraries. If you want to create a new Unix system from scratch, you must
write your own libc after having the kernel up and ready.

If you have followed the flow of this book and have read the previous
chapters, you'll see that pieces of the puzzle are coming together. We
needed to have a compilation pipeline and a linking mechanism to be able
to design an operating system that exposes an interface and has been
implemented using a set of library files. At this point, you are able to see
that every feature of C is acting in favor of having Unix. The more you
understand about the relationship between C and Unix, the more you find
them tied together.

Now that the relationship between user applications and the shell ring is
clear, we need to see how the shell ring (or libc) communicates with the
kernel ring. Before we go any further, note that, in this section, we are not
going to explain what a kernel is. Instead, we are going to look at it as a
black box exposing certain functionalities.

The main mechanism that libc (or the functions in shell ring) uses to
consume a kernel functionality is through using system calls. To explain



this mechanism, we need to have an example to follow down the rings of
the onion model in order to find the place where system calls are used to do
certain things.

We also need to choose a real libc implementation, so we can track down
the sources and find the system calls. We choose FreeBSD for further
investigations. FreeBSD is a Unix-like operating system branched from the
BSD Unix.

Note:

The Git repository of FreeBSD can be found here:
https://github.com/freebsd/freebsd. This repository contains
the sources for FreeBSD's kernel and shell rings. The sources for FreeBSD
libc can be found in the lib/libc  directory.

Let's start with the following example. Example 10.1 is a simple program
that just waits for one second. Likewise, the program is considered to be in
the application ring, which means it is a user application, even though it is
remarkably simple.

So, let's first look at the source code of example 10.1:

#include <unistd.h>

int main(int argc, char** argv) {

sleep(1);

return 0;

}

Code Box 10-1 [ExtremeC_examples_chapter10_1.c]: Example 10.1 calling the sleep function
included from the shell ring

As you can see, the code includes the unistd.h  header file and calls the
sleep  function, both of which are part of the SUS exposed interfaces. But
then what happens next, especially in the sleep  function? As a C
programmer, you may have never asked yourself this question before, but
knowing it can enhance your understanding of a Unix system.

https://github.com/freebsd/freebsd0


We have always used functions such as sleep , printf , and malloc ,
without knowing how they work internally, but now we want to take a leap
of faith and discover the mechanism that libc uses to communicate with the
kernel.

We know that system calls, or syscalls for short, are being triggered by the
codes written in a libc implementation. In fact, this is the way that kernel
routines are triggered. In SUS, and subsequently in POSIX-compatible
systems, there is a program that is used to trace system calls when a
program is running.

We are almost certain that a program that doesn't call system calls literally
cannot do anything. So, as a result, we know that every program that we
write has to use system calls through calling the libc functions.

Let's compile the preceding example and find out the system calls that it
triggers. We can start this process by running:

$ cc ExtremeC_examples_chapter10_1.c -lc -o ex10_1.out

$ truss ./ex10_1.out

...

$

Shell Box 10-1: Building and running example 10.1 using truss to trace the system calls that it
invokes

As you can see in Shell Box 10-1, we have used a utility program called
truss . The following text is an excerpt from the FreeBSD's manual page
for truss :

"The truss utility traces the system calls

called by the specified process or program. The

output is to the specified output file or standard

error by default. It does this by stopping and



restarting the process being monitored via

ptrace(2)."

As the description implies, truss  is a program for seeing all system calls
that a program has invoked during the execution. Utilities similar to truss
are available in most Unix-like systems. For instance, strace  can be used
in Linux systems.

The following shell box shows the output of truss  being used to monitor
the system calls invoked by the preceding example:

$ truss ./ex10_1.out

mmap(0x0,32768,PROT_READ|PROT_WRITE,MAP_PRIVATE|MAP_ANON,-1,

0x0) = 34366160896 (0x800620000)

issetugid() = 0 (0x0)

lstat("/etc",{ mode=drwxr-xr-x

,inode=3129984,size=2560,blksize=32768 }) = 0 (0x0)

lstat("/etc/libmap.conf",{ mode=-rw-r--r--

,inode=3129991,size=109,blksize=32768 }) = 0 (0x0)

openat(AT_FDCWD,"/etc/libmap.conf",O_RDONLY|O_CLOEXEC,00) =

3 (0x3)

fstat(3,{ mode=-rw-r--r--

,inode=3129991,size=109,blksize=32768 }) = 0 (0x0)

...

openat(AT_FDCWD,"/var/run/ld-

elf.so.hints",O_RDONLY|O_CLOEXEC,00) = 3 (0x3)

read(3,"Ehnt\^A\0\0\0\M^@\0\0\0Q\0\0\0\0"...,128) = 128

(0x80)

fstat(3,{ mode=-r--r--r--

,inode=7705382,size=209,blksize=32768 }) = 0 (0x0)

lseek(3,0x80,SEEK_SET) = 128 (0x80)

read(3,"/lib:/usr/lib:/usr/lib/compat:/u"...,81) = 81 (0x51)

close(3) = 0 (0x0)

access("/lib/libc.so.7",F_OK) = 0 (0x0)

openat(AT_FDCWD,"/lib/libc.so.7",O_RDONLY|O_CLOEXEC|O_VERIFY

,00) = 3 (0x3)

...

sigprocmask(SIG_BLOCK,{

SIGHUP|SIGINT|SIGQUIT|SIGKILL|SIGPIPE|SIGALRM|SIGTERM|SIGURG

|SIGSTOP|SIGTSTP|SIGCONT|SIGCHLD|SIGTTIN|SIGTTOU|SIGIO|SIGXC

PU|SIGXFSZ|SIGVTALRM|SIGPROF|SIGWINCH|SIGINFO|SIGUSR1|SIGUSR

2 },{ }) = 0 (0x0)sigprocmask(SIG_SETMASK,{ },0x0) = 0 (0x0)

sigprocmask(SIG_BLOCK,{

SIGHUP|SIGINT|SIGQUIT|SIGKILL|SIGPIPE|SIGALRM|SIGTERM|SIGURG



|SIGSTOP|SIGTSTP|SIGCONT|SIGCHLD|SIGTTIN|SIGTTOU|SIGIO|SIGXC

PU|SIGXFSZ|SIGVTALRM|SIGPROF|SIGWINCH|SIGINFO|SIGUSR1|SIGUSR

2 },{ }) = 0 (0x0)sigprocmask(SIG_SETMASK,{ },0x0) = 0 (0x0)

nanosleep({ 1.000000000 }) = 0 (0x0)

sigprocmask(SIG_BLOCK,{

SIGHUP|SIGINT|SIGQUIT|SIGKILL|SIGPIPE|SIGALRM|SIGTERM|SIGURG

|SIGSTOP|SIGTSTP|SIGCONT|SIGCHLD|SIGTTIN|SIGTTOU|SIGIO|SIGXC

PU|SIGXFSZ|SIGVTALRM|SIGPROF|SIGWINCH|SIGINFO|SIGUSR1|SIGUSR

2 },{ }) = 0 (0x0)

...

sigprocmask(SIG_SETMASK,{ },0x0) = 0 (0x0)

exit(0x0)

process exit, rval = 0 $

Shell Box 10-2: Output of truss showing the system calls invoked by example 10.1

As you can see in the preceding output, there are many system calls
initiated by our simple example, with some of them being about loading
shared object libraries, especially when initializing the process. The first
system call shown in bold opens the libc.so.7  shared object library file.
This shared object library contains the actual implementation of FreeBSD's
libc.

In the same shell box, you can see that the program is calling the
nanosleep  system call. The value passed to this system call is 1000000000
nanoseconds, which is equivalent to 1 second.

System calls are like function calls. Note that each system call has a
dedicated and predetermined constant number, and subsequently, together
with that, it has a specific name, and a list of arguments. Each system call
also performs a specific task. In this case, nanosleep  makes the calling
thread sleep for the specified number of nanoseconds.

More information regarding the system calls can be found in the FreeBSD
system calls manual. The following shell box shows the page dedicated to
the nanosleep  system call in the manual:

$ man nanosleep

NANOSLEEP(2) FreeBSD System Calls Manual NANOSLEEP(2)

NAME

nanosleep - high resolution sleep

LIBRARY Standard C Library (libc, -lc)



SYNOPSIS #include <time.h>

Int

clock_nanosleep(clockid_t clock_id, int flags,

const struct timespec *rqtp, struct timespec *rmtp);

int

nanosleep(const struct timespec *rqtp, struct timespec

*rmtp);

DESCRIPTION

If the TIMER_ABSTIME flag is not set in the flags argument,

then

clock_nanosleep() suspends execution of the calling thread

until either

the time interval specified by the rqtp argument has

elapsed, or a signal

is delivered to the calling process and its action is to

invoke a signal-

catching function or to terminate the process. The clock

used to measure

the time is specified by the clock_id argument

...

...

$

Shell Box 10-3: The manual page dedicated to the nanosleep system call

The preceding manual page describes the following:

nanosleep  is a system call.
The system call is accessible through calling the nanosleep  and
clock_nanosleep  functions from the shell ring defined in time.h .
Note that we used the sleep  function from unitsd.h . We could also
use the preceding two functions from time.h . It's also worth noting
that both header files and all of the preceding functions, together with
the functions actually used, are part of SUS and POSIX.
If you want to be able to call these functions, you need to link your
executable against libc by passing the -lc  option to your linker. This
might be specific to FreeBSD only.
This manual page doesn't talk about the system call itself, but it talks
about the standard C API, which is exposed from the shell ring. These
manuals are written for application developers and, as such, they won't
discuss the systems calls and kernel internals often. Instead, they
focus on the APIs exposed from the shell ring.



Now, let's find the place in libc where the system call is actually invoked.
We will be using FreeBSD sources on GitHub. The commit hash we are
using is bf78455d496  from the master branch. In order to clone and use the
proper commit from the repository, run the following commands:

$ git clone https://github.com/freebsd/freebsd

...

$ cd freebsd

$ git reset --hard bf78455d496

...

$

Shell Box 10-4: Cloning the FreeBSD project and going to a specific commit

It is also possible to navigate the FreeBSD project on the GitHub website
itself using the following link:
https://github.com/freebsd/freebsd/tree/bf78455d496.
No matter what method you use to navigate the project, you should be able
to find the following line of codes.

If you go into the lib/libc  directory and do a grep  for sys_nanosleep ,
you will find the following file entries:

$ cd lib/libc

$ grep sys_nanosleep . -R

./include/libc_private.h:int __sys_nanosleep(const struct

timespec *, struct timespec *);

./sys/Symbol.map: __sys_nanosleep;

./sys/nanosleep.c:__weak_reference(__sys_nanosleep,

__nanosleep);

./sys/interposing_table.c: SLOT(nanosleep, __sys_nanosleep),

$

Shell Box 10-5: Finding the entries related to the nanosleep system call in FreeBSD libc files

As you can see in the lib/libc/sys/interposing_table.c  file, the
nanosleep  function is mapped to the __sys_nanosleep  function.
Therefore, any function call targeted at nanosleep  will cause
__sys_nanosleep  to be invoked.

https://github.com/freebsd/freebsd/tree/bf78455d496


The functions starting with __sys  are actual system call functions in
FreeBSD convention. Note that this is part of the libc implementation, and
the used naming convention and other implementation-related
configurations are highly specific to FreeBSD.

Having said all of that there's also another interesting point in the
preceding shell box. The lib/libc/include/libc_private.h  file contains
the private and internal function declarations required for the wrapper
functions around the system calls.

So far, we have seen how shell rings route the function calls made to libc to
the inner rings by using system calls. But why do we need system calls in
the first place? Why is it called a system call and not a function call? When
looking at an ordinary function in a user application or libc, how is it
different from a system call in the kernel ring? In Chapter 11, System Calls
and Kernels, we will discuss this further by giving a more concrete
definition of a system call.

The next section is about the kernel ring and its internal units, which are
common in kernels used by most Unix-compliant and Unix-like systems.

Kernel
The main purpose of the kernel ring is to manage the hardware attached to
a system and expose its functionalities as system calls. The following
diagram shows how a specific hardware functionality is exposed through
different rings before a user application can finally use it:



Figure 10-4: Function calls and system calls made between various Unix rings in order to expose a
hardware functionality



The preceding diagram shows a summary of what we have explained so far.
In this section, we are going to focus on the kernel itself and see what the
kernel is. A kernel is a process that, like any other processes that we know,
executes a sequence of instructions. But a kernel process is fundamentally
different from an ordinary process, which we know as a user process.

The following list compares a kernel process and a user process. Note that
our comparison is biased to a monolithic kernel such as Linux. We will
explain the different types of kernels in the next chapter.

A kernel process is the first thing that is loaded and executed, but user
processes need to have the kernel process loaded and running before
being spawned.
We only have one kernel process, but we can have many user
processes working at the same time.
The kernel process is created by copying a kernel image into the main
memory by the boot loader, but a user process is created using the
exec  or fork  system calls. These system calls exist in most Unix
systems.
The kernel process handles and executes system calls, but a user
process invokes the system call and waits for its execution handled by
the kernel process. This means that, when a user process demands the
execution of a system call, the flow of execution is transferred to the
kernel process and it is the kernel itself that executes the system call's
logic on behalf of the user process. We will clarify this in the second
part of our look into Unix, Chapter 11, System Calls and Kernel.
The kernel process sees the physical memory and all of the attached
hardware in a privileged mode, but a user process sees the virtual
memory, which is mapped to a portion of physical memory, where the
user process doesn't know anything about the physical memory layout.
Likewise, the user process has controlled and supervised access to
resources and hardware. We can say that the user process is being
executed in a sandbox simulated by the operating system. This also
implies that a user process cannot see the memory of another user
process.



As it is understood from the preceding comparison, we have two different
execution modes in an operating system's runtime. One of them is
dedicated to the kernel process, and the other is dedicated to the user
processes.

The former execution mode is called kernel land or kernel space, and the
latter is called user land or user space. Calling system calls by user
processes is a way to bring these two lands together. Basically, we invented
the system calls because we needed to isolate the kernel space and the user
space from each other. Kernel space has the most privileged access to the
system resources, and the user space has the least privileged and supervised
access.

The internal structure of a typical Unix kernel can be discerned by the tasks
a kernel performs. In fact, managing the hardware is not the only task that a
kernel performs. The following is the list of a Unix kernel's
responsibilities. Note that we have included the hardware management
tasks as well in the following list:

Process management: User processes are created by the kernel via a
system call. Allocating memory for a new process and loading its
instructions are some of the operations, among all of the operations,
that should be performed before running a process.
Inter-Process Communication (IPC): User processes on the same
machine can use different methods for exchanging data among them.
Some of these methods are shared memories, pipes, and Unix domain
sockets. These methods should be facilitated by the kernel, and some
of them need the kernel to control the exchange of data. We will
explain these methods in Chapter 19, Single Host IPC and Sockets,
while talking about IPC techniques.
Scheduling: Unix has always been known as a multi-tasking operating
system. The kernel manages access to CPU cores and tries to balance
access to them. Scheduling is a name given to the task that shares the
CPU time among many processes based on their priority and
importance. We will explain more about multi-tasking,
multithreading, and multi-processing in the following chapters.



Memory management: Without doubt, this is one of the key tasks of
a kernel. The kernel is the only process that sees the whole physical
memory and has superuser access to it. So, the task of breaking it into
allocatable pages, assigning new pages to the processes in case of
Heap allocation, freeing the memory, and many more memory-related
tasks besides, should be performed and managed by the kernel.
System startup: Once the kernel image is loaded into the main
memory and the kernel process is started, it should initialize the user
space. This is usually done by creating the first user process with the
Process Identifier (PID) 1. In some Unix systems such as Linux, this
process is called init. After having this process started, further
services and daemons will be started by it.
Device management: Apart from the CPU and memory, the kernel
should be able to manage hardware through an abstraction made over
all of them. A device is a real or virtual hardware attached to a Unix
system. A typical Unix system uses the /dev  path to store mapped
device files. All attached hard drives, network adapters, USB devices,
etc. are mapped to files found in the /dev  path. These device files can
be used by user processes to communicate with these devices.

The following diagram shows the most common internal structure of a
Unix kernel based on the preceding list:



Figure 10-5: Internal structure of different rings in the Unix architecture

The preceding figure is a detailed illustration of Unix rings. It clearly
shows that, in the shell ring, we have three parts that are exposed to the
user applications. It also shows a detailed inner structure of the kernel ring.

At the top in the kernel ring, we have the system call interface. As is clear
in the figure, all of the preceding units that are in the user space must
communicate with the bottom units only through the system call interface.
This interface is like a gate or a barrier between user and kernel spaces.

There are various units in the kernel such as the Memory Management
unit (MMU) that manages the available physical memory. The Process
Management unit creates processes in the user space and allocates
resources for them. It also makes IPC available to processes. The diagram
also shows the Character and Block devices that are mediated by the
Device Drivers to expose the various I/O functionalities. We explain



character and block devices in the following section. The File System unit
is an essential part of the kernel, which is an abstraction over the block and
character devices and lets the processes and the kernel itself use the same
shared file hierarchy.

In the next section, we are going to talk about hardware.

Hardware
The final purpose of every operating system is to allow the user and the
applications to be able to use and interact with hardware. Unix also aims to
provide access to the attached hardware in an abstract and transparent way,
using the same set of utility programs and commands in all existing and
future platforms.

By having this transparency and abstraction, Unix abstracts all of the
different hardware to be a number of devices attached to a system. So, the
term device is centric in Unix, and every connected piece of hardware is
considered to be a device connected to the Unix system.

The hardware attached to a computer can be categorized into two different
categories: mandatory and peripheral. The CPU and main memory are
mandatory devices attached to a Unix system. All other hardware such as
the hard drive, network adapter, mouse, monitor, graphics card, and Wi-Fi
adapter, are peripheral devices.

A Unix machine cannot work without mandatory hardware, but you can
have a Unix machine that doesn't have a hard drive or a network adapter.
Note that having a filesystem, which is essential for a Unix kernel to
operate, doesn't necessarily require a hard disk!

A Unix kernel completely hides the CPU and physical memory. They are
managed directly by the kernel, and no access is allowed to be made from
the user space. The Memory Management and Scheduler units in a Unix



kernel are responsible for managing the physical memory and the CPU,
respectively.

This is not the case with other peripheral devices connected to a Unix
system. They are exposed through a mechanism called device files. You can
see these files in a Unix system as part of the /dev  path.

The following is the list of files that can be found on an ordinary Linux
machine:

$ ls -l /dev

total 0

crw-r--r-- 1 root root 10, 235 Oct 14 16:55 autofs

drwxr-xr-x 2 root root 280 Oct 14 16:55 block

drwxr-xr-x 2 root root 80 Oct 14 16:55 bsg

crw-rw---- 1 root disk 10, 234 Oct 14 16:55 btrfs-control

drwxr-xr-x 3 root root 60 Oct 14 17:02 bus

lrwxrwxrwx 1 root root 3 Oct 14 16:55 cdrom -> sr0

drwxr-xr-x 2 root root 3500 Oct 14 16:55 char

crw------- 1 root root 5, 1 Oct 14 16:55 console

lrwxrwxrwx 1 root root 11 Oct 14 16:55 core -> /proc/kcore

crw------- 1 root root 10, 59 Oct 14 16:55 cpu_dma_latency

crw------- 1 root root 10, 203 Oct 14 16:55 cuse

drwxr-xr-x 6 root root 120 Oct 14 16:55 disk

drwxr-xr-x 3 root root 80 Oct 14 16:55 dri

lrwxrwxrwx 1 root root 3 Oct 14 16:55 dvd -> sr0

crw------- 1 root root 10, 61 Oct 14 16:55 ecryptfs

crw-rw---- 1 root video 29, 0 Oct 14 16:55 fb0

lrwxrwxrwx 1 root root 13 Oct 14 16:55 fd -> /proc/self/fd

crw-rw-rw- 1 root root 1, 7 Oct 14 16:55 full

crw-rw-rw- 1 root root 10, 229 Oct 14 16:55 fuse

crw------- 1 root root 245, 0 Oct 14 16:55 hidraw0

crw------- 1 root root 10, 228 Oct 14 16:55 hpet

drwxr-xr-x 2 root root 0 Oct 14 16:55 hugepages

crw------- 1 root root 10, 183 Oct 14 16:55 hwrng

crw------- 1 root root 89, 0 Oct 14 16:55 i2c-0

...

crw-rw-r-- 1 root root 10, 62 Oct 14 16:55 rfkill

lrwxrwxrwx 1 root root 4 Oct 14 16:55 rtc -> rtc0

crw------- 1 root root 249, 0 Oct 14 16:55 rtc0

brw-rw---- 1 root disk 8, 0 Oct 14 16:55 sda

brw-rw---- 1 root disk 8, 1 Oct 14 16:55 sda1

brw-rw---- 1 root disk 8, 2 Oct 14 16:55 sda2

crw-rw----+ 1 root cdrom 21, 0 Oct 14 16:55 sg0

crw-rw---- 1 root disk 21, 1 Oct 14 16:55 sg1

drwxrwxrwt 2 root root 40 Oct 14 16:55 shm

crw------- 1 root root 10, 231 Oct 14 16:55 snapshot



drwxr-xr-x 3 root root 180 Oct 14 16:55 snd

brw-rw----+ 1 root cdrom 11, 0 Oct 14 16:55 sr0

lrwxrwxrwx 1 root root 15 Oct 14 16:55 stderr ->

/proc/self/fd/2

lrwxrwxrwx 1 root root 15 Oct 14 16:55 stdin ->

/proc/self/fd/0

lrwxrwxrwx 1 root root 15 Oct 14 16:55 stdout ->

/proc/self/fd/1

crw-rw-rw- 1 root tty 5, 0 Oct 14 16:55 tty

crw--w---- 1 root tty 4, 0 Oct 14 16:55 tty0

...

$

Shell Box 10-6: Listing the content of /dev on a Linux machine

As you can see, it is quite a list of devices attached to the machine. But of
course, not all of them are physical. The abstraction over the hardware
devices in Unix has given it the ability to have virtual devices.

For example, you can have a virtual network adapter that has no physical
counterpart, but is able to perform additional operations on the network
data. This is one of the ways that VPNs are being used in Unix-based
environments. The physical network adapter brings the real network
functionality, and the virtual network adapter gives the ability to transmit
the data through a secure tunnel.

As is clear from the preceding output, each device has its own file in the
/dev  directory. The lines starting with c  and b  are device files
representing character devices and block devices, respectively. Character
devices are supposed to deliver and consume data byte by byte. Examples
of such devices are serial ports, and parallel ports. Block devices are
supposed to deliver and consume chunks of data that have more than one
byte. Hard disks, network adapters, cameras, and so on are examples of
block devices. In the preceding shell box, the lines starting with 'l' are
symbolic links to other devices, and the lines starting with d represent
directories that may contain other device files.

User processes use these device files in order to access the corresponding
hardware. These files can be written or can be read in order to send or
receive data to and from the device.



In this book, we won't go deeper than this, but if you are curious to know
more about devices and device drivers, you should read more around this
subject. In the next chapter, Chapter 11, System Calls and Kernels, we
continue our talk about system calls in greater detail, and we will add a new
system call to an existing Unix kernel.

Summary
In this chapter, we started to discuss Unix and how it is interrelated with C.
Even in non-Unix operating systems, you see some traces of a similar
design to Unix systems.

As part of this chapter, we went through the history of the early 1970s and
explained how Unix appeared from Multics and how C was derived from
the B programming language. After that, we talked about the Unix
architecture, an onion-like architecture that consists of four layers: user
applications, the shell, the kernel, and hardware.

We briefly went over the various layers in the Unix onion model and
provided detailed explanations of the shell layer. We introduced the C
standard library and how it is used through POSIX and SUS standards to
give programmers the ability to write programs that can be built on various
Unix systems.

In the second part of our look into Unix, Chapter 11, System Calls and
Kernels, we will continue our discussion about Unix and its architecture,
and we will provide explanations of the kernel and the system call interface
surrounding it in greater depth.



Chapter 11
System Calls and Kernels

In the previous chapter, we discussed the history of Unix and its onion-like
architecture. We also introduced and talked about the POSIX and SUS
standards governing the shell ring in Unix, before explaining how the C
standard library is there to provide common functionalities exposed by a
Unix-compliant system.

In this chapter, we are going to continue our discussion of the system call
interface and the Unix kernel. This will give us a complete insight into
how a Unix system works.

After reading this chapter, you will be able to analyze the system calls a
program invokes, you will be able to explain how the process lives and
evolves inside the Unix environment, and you will also be able to use
system calls directly or through libc. We'll also talk about Unix kernel
development and show you how you can add a new system call to the
Linux kernel and how it can be invoked from the shell ring.

In the last part of this chapter, we will talk about monolithic kernels and
microkernels and how they differ. We will introduce the Linux kernel as a
monolithic kernel, and we will write a kernel module for it that can be
loaded and unloaded dynamically.

Let's start this chapter by talking about system calls.

System calls



In the previous chapter, we briefly explained what a system call is. In this
section, we want to take a deeper look and explain the mechanism that is
used behind system calls to transfer the execution from a user process to
the kernel process.

However, before we do that, we need to explain a bit more about both the
kernel space and the user space, because this will be beneficial in our
understanding of how the system calls work behind the scenes. We will
also write a simple system call to gain some ideas about kernel
development.

What we're about to do is crucial if you want to be able to write a new
system call when you're going to add a new functionality into the kernel
that wasn't there before. It also gives you a better understanding of the
kernel space and how it differs from the user space because, in reality, they
are very different.

System calls under the microscope
As we discussed in the previous chapter, a separation happens when
moving from the shell ring into the kernel ring. You find that whatever
resides in the first two rings, the user application and the shell, belongs to
the user space. Likewise, what ever appears in the kernel ring or the
hardware ring belongs to the kernel space.

There is one rule about this separation, and that is nothing in the two most
inner rings – kernel and hardware – can be accessed directly by the user
space. In other words, no processes in the user space can access the
hardware, internal kernel data structures, and algorithms directly. Instead,
they should be accessed via system calls.

That said you may think that it seems a little contradictory to whatever
you know and have experienced about Unix-like operating systems, such
as Linux. If you don't see the issue, let me explain it to you. It seems to be
a contradiction because, for instance, when a program reads some bytes
from a network socket, it is not the program that actually reads those bytes



from the network adapter. It is the kernel that reads the bytes and copies
them to the user space, and then the program can pick them up and use
them.

We can clarify this by going through all the steps taken from the user
space to the kernel space and vice versa in an example. When you want to
read a file from a hard disk drive, you write a program in the user
application ring. Your program uses a libc I/O function called fread  (or
another similar function) and will eventually be running as a process in the
user space. When the program makes a call to the fread  function, the
implementation behind libc gets triggered.

So far, everything is still in the user process. Then, the fread
implementation eventually invokes a system call, while fread  is
receiving an already opened file descriptor as the first argument, the
address of a buffer allocated in the process's memory, which is in the user
space, as the second argument, and the length of the buffer as the third
argument.

When the system call is triggered by the libc implementation, the kernel
gets control of execution on behalf of the user process. It receives the
arguments from the user space and keeps them in the kernel space. Then, it
is the kernel that reads from the file by accessing the filesystem unit
inside the kernel (as can be seen in Figure 10-5 in the previous chapter).

When the read  operation is complete in the kernel ring, the read data will
be copied to the buffer in the user space, as specified by the second
augment when calling the fread  function, and the system call leaves and
returns the control of execution to the user process. Meanwhile, the user
process usually waits while the system call is busy with the operation. In
this case, the system call is blocking.

There are some important things to note about this scenario:

We only have one kernel that performs all the logic behind system
calls.
If the system call is blocking, when that system call is in progress, the
caller user process has to wait while the system call is busy and has



not finished. Conversely, if the system call is non-blocking, the
system call returns very quickly, but the user process has to make
extra system calls to check if the results are available.
Arguments together with input and output data will be copied from/to
user space. Since the actual values are copied, system calls are
supposed to be designed in such a way that they accept tiny variables
and pointers as input arguments.
The kernel has full privileged access to all resources of a system.
Therefore, there should be a mechanism to check if the user process
is able to make such a system call. In this scenario, if the user is not
the owner of the file, fread  should fail with an error about the lack
of required permissions.
A similar separation exists between the memory dedicated to the user
space and the kernel space. User processes can only access the user
space memory. Multiple transfers might be required in order to fulfil
a certain system call.

Before we move onto the next section, I want to ask you a question. How
does a system call transfer the control of execution to the kernel? Take a
minute to think about that, because in the next section we're going to work
on the answer to it.

Bypassing standard C – calling a system call
directly
Before answering the raised question, let's go through an example that
bypasses the standard C library and calls a system call directly. In other
words, the program calls a system call without going through the shell
ring. As we have noted before, this is considered an anti-pattern, but when
certain system calls are not exposed through libc, a user application can
call the system calls directly.

In every Unix system, there is a specific method for invoking system calls
directly. For example, in Linux, there is a function called syscall  located
in the <sys/syscall.h>  header file that can be used for this purpose.



The following code box, example 11.1, is a different Hello World example
that does not use libc to print to the standard output. In other words, the
example does not use the printf  function that can be found as part of
shell ring and the POSIX standard. Instead, it invokes a specific system
call directly, hence the code is only compilable on Linux machines, not
other Unix systems. In other words, the code is not portable between
various Unix flavors:

// We need to have this to be able to use non-POSIX stuff

#define _GNU_SOURCE

#include <unistd.h>

// This is not part of POSIX!

#include <sys/syscall.h>

int main(int argc, char** argv) {

char message[20] = "Hello World!\n";

// Invokes the 'write' system call that writes

// some bytes into the standard output.

syscall(__NR_write, 1, message, 13);

return 0;

}

Code Box 11-1 [ExtremeC_examples_chapter11_1.c]: A different Hello World example that
invokes the write system call directly

As the first statement in the preceding code box, we have to define
_GNU_SOURCE  to indicate that we are going to use parts of the GNU C
Library (glibc) that are not part of POSIX, or SUS standards. This breaks
the portability of the program, and because of that, you may not be able to
compile your code on another Unix machine. In the second include
statement, we include one of the glibc-specific header files that doesn't
exist in other POSIX systems using implementations other than glibc as
their main libc backbone.

In the main  function, we make a system call by calling the syscall
function. First of all, we have to specify the system call by passing a
number. This is an integer that refers to a specific system call. Every
system call has its own unique specific system call number in Linux.

In the example code, the __R_write  constant has been passed instead of
the system call number, and we don't know its exact numerical value.



After looking it up in the unistd.h  header file, apparently 64 is the
number of the write  system call.

After passing the system call number, we should pass the arguments that
are required for the system call.

Note that, despite the fact that the preceding code is very simple, and it
just contains a simple function call, you should know that syscall  is not
an ordinary function. It is an assembly procedure that fills some proper
CPU registers and actually transfers the control of execution from the user
space to the kernel space. We will talk about this shortly.

For write , we need to pass three arguments: the file descriptor, which
here is 1  to refer to the standard output; the second is the pointer to a
buffer allocated in the user space; and finally, the length of bytes that
should be copied from the buffer.

The following is the output of example 11.1, compiled and run in Ubuntu
18.04.1 using gcc :

$ gcc ExtremeC_examples_chapter11_1.c -o ex11_1.out

$ ./ex11_1.out

Hello World!

$

Shell Box 11-1: The output of example 11.1

Now it's time to use strace , introduced in the previous chapter, to see the
actual system calls that example 11.1 has invoked. The output of strace ,
shown as follows, demonstrates that the program has invoked the desired
system call:

$ strace ./ex11_1.out

execve("./ex11_1.out", ["./ex11_1.out"], 0x7ffcb94306b0 /*

22 vars */) = 0

brk(NULL) = 0x55ebc30fb000

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file

or directory)

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file

or directory)



openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

...

...

arch_prctl(ARCH_SET_FS, 0x7f24aa5624c0) = 0

mprotect(0x7f24aa339000, 16384, PROT_READ) = 0

mprotect(0x55ebc1e04000, 4096, PROT_READ) = 0

mprotect(0x7f24aa56a000, 4096, PROT_READ) = 0

munmap(0x7f24aa563000, 26144) = 0

write(1, "Hello World!\n", 13Hello World!

) = 13

exit_group(0) = ?

+++ exited with 0 +++

$

Shell Box 11-2: The output of strace while running example 11.1

As you can see as a bold in Shell Box 11-2, the system call has been
recorded by strace . Look at the return value, which is 13 . It means that
the system call has successfully written 13 bytes into the given file, the
standard output in this case.

Note:

A user application should never try to use system calls directly. There are
usually steps that should be taken before and after calling the system call.
Libc implementations do these steps. When you're not going to use libc,
you have to do these steps yourself, and you must know that these steps
vary from one Unix system to another.

Inside the syscall function
However, what happens inside the syscall  function? Note that the current
discussion is only applicable to glibc and not to the rest of the libc
implementations. Firstly, we need to find syscall  in glibc. Here is the
link to the syscall  definition:
https://github.com/lattera/glibc/blob/master/sysde

ps/unix/sysv/linux/x86_64/syscall.S.

https://github.com/lattera/glibc/blob/master/sysdeps/unix/sysv/linux/x86_64/syscall.S


If you open the preceding link in a browser, you will see that this function
is written in assembly language.

Note:

Assembly language can be used together with C statements in a C source
file. In fact, this is one of the great features of C that makes it suitable for
writing an operating system. For the syscall  function, we have a
declaration written in C, but the definition is in assembly.

Here is the source code you find as part of syscall.S :

/* Copyright (C) 2001-2018 Free Software Foundation, Inc.

This file is part of the GNU C Library.

...

<http://www.gnu.org/licenses/>. */

#include <sysdep.h>

/* Please consult the file sysdeps/unix/sysv/linux/x86-

64/sysdep.h for

more information about the value -4095 used below. */

/* Usage: long syscall (syscall_number, arg1, arg2, arg3,

arg4, arg5, arg6)

We need to do some arg shifting, the syscall_number will be

in

rax. */

.text

ENTRY (syscall)

movq %rdi, %rax /* Syscall number -> rax. */

movq %rsi, %rdi /* shift arg1 - arg5. */

movq %rdx, %rsi

movq %rcx, %rdx

movq %r8, %r10

movq %r9, %r8

movq 8(%rsp),%r9 /* arg6 is on the stack. */

syscall /* Do the system call. */

cmpq $-4095, %rax /* Check %rax for error. */

jae SYSCALL_ERROR_LABEL /* Jump to error handler if error.

*/

ret /* Return to caller. */

PSEUDO_END (syscall)

Code Box 11-2: The definition of the syscall function in glibc



These instructions are short and simple despite the fact that making a
system call in this way seems to be more complex. The usage comment
explains that a system call in glibc can be provided up to six arguments in
each invocation.

What this means is that if the underlying kernel supports system calls with
more than six arguments, glibc cannot provide certain kernel
functionalities, and it should be changed to support them. Fortunately, six
arguments have been fine in most cases, and for system calls that need
more than six arguments, we can pass pointers to structure variables
allocated in the user space memory.

In the preceding code box, after the movq  instructions, the assembly code
calls the syscall  subroutine. It simply generates an interrupt, which
allows a specific part of the kernel, which is waiting for such interrupts, to
wake up and handle the interrupt.

As you can see on the first line of the syscall  procedure, the system call
number is moved to the %rax  register. On the following lines, we are
copying other arguments into the different registers. When the system call
interrupt is fired, the kernel's interrupt handler unit picks up the call and
gathers the system call number and the arguments. Then it searches its
system call table to find the appropriate function that should be invoked on
the kernel side.

An interesting point is that, by the time the interrupt handler is being
executed in the CPU, the user code that has initiated the system call has
left the CPU, and the kernel is doing the job. This is the main mechanism
behind system calls. When you initiate a system call, the CPU changes its
mode, and the kernel instructions are fetched into the CPU and the user
space application is no longer being executed. That's basically why we say
that the kernel performs the logic behind the system call on behalf of the
user application.

In the next section, we're going to give an example of this by writing a
system call that prints a hello message. It can be considered a progressive
version of example 11.1 that accepts an input string and returns a greeting
string.



Add a system call to Linux
In this section, we are going to add a new system call to the system call
table of an existing Unix-like kernel. This may be the first time that most
of you reading this book have written C code that is supposed to be run
within the kernel space. All of the past examples that we wrote in previous
chapters, and almost all of the codes that we will write in future chapters,
run in the user space.

In fact, most of the programs we write are meant to be running in the user
space. In fact, this is what we call C programming or C development.
However, if we are going to write a C program that is supposed to run in
the kernel space, we use a different name; we call it kernel development.

We are going through the next example, example 11.2, but before that we
need to explore the kernel environment to see how it is different from the
user space.

Kernel development

This section will be beneficial to those of you who are seeking to be a
kernel developer or a security researcher in the field of operating systems.
In the first part, before jumping to the system call itself, we want to
explain the differences between the kernel development and the ordinary C
development.

The development of kernels is different from the development of ordinary
C programs in a number of ways. Before looking at the differences, one
thing we should note is that C development usually takes place in the user
space.

In the following list, we have provided six of the key differences between
the development efforts happening in the kernel and the user space:

There is only one kernel process that runs everything. This simply
means that if your code causes a crash in the kernel, you probably
need to reboot the machine and let the kernel become initialized



again. So, with the kernel process, the development cost is very high,
and you cannot try various solutions without rebooting the machine,
which you can do very easily for user space programs while working
on them. Upon a crash in the kernel, a kernel crash dump is
generated, which can be used to diagnose the cause.
In the kernel ring, there is no C standard library like glibc! In other
words, this is a realm in which SUS and POSIX standards are no
longer valid. So, you cannot include any libc header files, such as
stdio.h  or string.h . In this case, you have a dedicated set of
functions that should be used for various operations. These functions
are usually located in kernel headers and can be different from one
Unix flavor to another because there is no standardization in this
field.

As an example, if you are doing kernel development in Linux, you
may use printk  to write a message into the kernel's message buffer.
However, in FreeBSD, you need to use the printf  family of
functions, which are different from the libc printf  functions. You
will find these printf  functions in the <sys/system.h>  header file
in a FreeBSD system. The equivalent function while doing XNU
kernel development is os_log . Note that XNU is the kernel of
macOS.

You can read or modify files in the kernel, but not using libc
functions. Each Unix kernel has its own method of accessing files
inside the kernel ring. This is the same for all functionalities exposed
through libc.
You have full access to the physical memory and many other services
in the kernel ring. So, writing secure and reliable code is very
important.
There is no system call mechanism in the kernel. System calls are the
main user space mechanism to enable user processes to communicate
with the kernel ring. So, once you're in the kernel, there is no need for
it.
The kernel process is created by copying the kernel image into the
physical memory, performed by the boot loader. You cannot add a



new system call without having to create the kernel image from
scratch and reload it again by rebooting the system. In kernels that
support kernel modules, you can easily add or remove a module when
the kernel is up and running, but you cannot do the same with system
calls.

As you can see with the points we've just listed, kernel development takes
place in a different flow compared to the ordinary C development. Testing
written logic is not an easy task, and buggy code can cause a system crash.

In the next section, we will do our first kernel development by adding a
new system call. We're doing this not because it's common to add a system
call when you want to introduce a new functionality into the kernel, but
we're going to give it a try in order to get familiar with kernel
development.

Writing a Hello World system call for Linux

In this section, we're going to write a new system call for Linux. There are
many great sources on the internet that explain how to add a system call to
an existing Linux kernel, but the following forum post, Adding a Hello
World System Call to Linux Kernel – available at
https://medium.com/anubhav-shrimal/adding-a-hello-

world-system-call-to-linux-kernel-dad32875872 – was
used as the basis to build my own system call in Linux.

Example 11.2 is an advanced version of example 11.1 that uses a different
and custom system call, which we are going to write in this section. The
new system call receives four arguments. The first two are for the input
name and the second two are for the greeting string output. Our system
call accepts a name using its first two arguments, one char  pointer
addressing an already allocated buffer in the user space and one integer as
the buffer's length, and returns the greeting string using its second two
arguments, a pointer that is different from the input buffer and is again
allocated in the user space and another integer as its length.

WARNING:

https://medium.com/anubhav-shrimal/adding-a-hello-world-system-call-to-linux-kernel-dad32875872


Please don't perform this experiment in a Linux installation that is
supposed to be used for work or home usage purposes. Run the
following commands on an experimental machine, which is strongly
recommended to be a virtual machine. You can easily create virtual
machines by using emulator applications such as VirtualBox or VMware.

The following instructions have the potential to corrupt your system and
make you lose part, if not all, of your data if they are used
inappropriately or in the wrong order. Always consider some backup
solutions to make a copy of your data if you're going to run the following
commands on a none-experimental machine.

First of all, we need to download the latest source code of the Linux
kernel. We will use the Linux GitHub repository to clone its source code
and then we will pick a specific release. Version 5.3 was released on 15
September 2019, and so we're going to use this version for this example.

Note:

Linux is a kernel. It means that it can only be installed in the kernel ring
in a Unix-like operating system, but a Linux distribution is a different
thing. A Linux distribution has a specific version of the Linux kernel in
its kernel ring and a specific version of GNU libc and Bash (or GNU
shell) in its shell ring.

Each Linux distribution is usually shipped with a complete list of user
applications in its external rings. So, we can say a Linux distribution is a
complete operating system. Note that, Linux distribution, Linux distro,
and Linux flavor all refer to the same thing.

In this example, I'm using the Ubuntu 18.04.1 Linux distribution on a 64-
bit machine.

Before we start, it's vital to make sure that the prerequisite packages are
installed by running the following commands:

$ sudo apt-get update

$ sudo apt-get install -y build-essential autoconf

libncurses5-dev libssl-dev bison flex libelf-dev git

...

...



$

Shell Box 11-3: Installing the prerequisite packages required for example 11.2

Some notes about the preceding instructions: apt  is the main package
manager in Debian-based Linux distributions, while sudo  is a utility
program that we use to run a command in superuser mode. It is available
on almost every Unix-like operating system.

The next step is to clone the Linux GitHub repository. We also need to
check out the release 5.3 after cloning the repository. The version can be
checked out by using the release tag name, as you can see in the following
commands:

$ git clone https://github.com/torvalds/linux

$ cd linux

$ git checkout v5.3

$

Shell Box 11-4: Cloning the Linux kernel and checking out version 5.3

Now, if you look at the files in the root directory, you will see lots of files
and directories that combined build up the Linux kernel code base:

$ ls

total 760K

drwxrwxr-x 33 kamran kamran 4.0K Jan 28 2018 arch

drwxrwxr-x 3 kamran kamran 4.0K Oct 16 22:11 block

drwxrwxr-x 2 kamran kamran 4.0K Oct 16 22:11 certs

...

drwxrwxr-x 125 kamran kamran 12K Oct 16 22:11 Documentation

drwxrwxr-x 132 kamran kamran 4.0K Oct 16 22:11 drivers

-rw-rw-r-- 1 kamran kamran 3.4K Oct 16 22:11 dropped.txt

drwxrwxr-x 2 kamran kamran 4.0K Jan 28 2018 firmare

drwxrwxr-x 75 kamraln kamran 4.0K Oct 16 22:11 fs

drwxrwxr-x 27 kamran kamran 4.0K Jan 28 2018 include

...

-rw-rw-r-- 1 kamran kamran 287 Jan 28 2018 Kconfig

drwxrwxr-x 17 kamran kamran 4.0K Oct 16 22:11 kernel

drwxrwxr-x 13 kamran kamran 12K Oct 16 22:11 lib

-rw-rw-r-- 1 kamran kamran 429K Oct 16 22:11 MAINTAINERS

-rw-rw-r-- 1 kamran kamran 61K Oct 16 22:11 Makefile



drwxrwxr-x 3 kamran kamran 4.0K Oct 16 22:11 mm

drwxrwxr-x 69 kamran kamran 4.0K Jan 28 2018 net

-rw-rw-r-- 1 kamran kamran 722 Jan 28 2018 README

drwxrwxr-x 28 kamran kamran 4.0K Jan 28 2018 samples

drwxrwxr-x 14 kamran kamran 4.0K Oct 16 22:11 scripts

...

drwxrwxr-x 4 kamran kamran 4.0K Jan 28 2018 virt

drwxrwxr-x 5 kamran kamran 4.0K Oct 16 22:11 zfs

$

Shell Box 11-5: The content of the Linux kernel code base

As you can see, there are directories that might seem familiar: fs , mm ,
net , arch , and so on. I should point out that we are not going to give
more details on each of these directories as it can vary massively from a
kernel to another, but one common feature is that all kernels follow almost
the same internal structure.

Now that we have the kernel source, we should begin to add our new Hello
World system call. However, before we do that, we need to choose a
unique numerical identifier for our system call; in this case, I give it the
name hello_world , and I choose 999  as its number.

Firstly, we need to add the system call function declaration to the end of
the include/linux/syscalls.h  header file. After this modification, the
file should look like this:

/*

* syscalls.h - Linux syscall interfaces (non-arch-specific)

*

* Copyright (c) 2004 Randy Dunlap

* Copyright (c) 2004 Open Source Development Labs

*

* This file is released under the GPLv2.

* See the file COPYING for more details.

*/

#ifndef _LINUX_SYSCALLS_H

#define _LINUX_SYSCALLS_H

struct epoll_event;

struct iattr;

struct inode;

...

asmlinkage long sys_statx(int dfd, const char __user *path,

unsigned flags,



unsigned mask, struct statx __user *buffer);

asmlinkage long sys_hello_world(const char __user *str,

const size_t str_len,

char __user *buf,

size_t buf_len);

#endif

Code Box 11-3 [include/linux/syscalls.h]: Declaration of the new Hello World system call

The description at the top says that this is a header file that contains the
Linux syscall  interfaces, which are not architecture specific. This means
that on all architectures, Linux exposes the same set of system calls.

At the end of the file, we have declared our system call function, which
accepts four arguments. As we have explained before, the first two
arguments are the input string and its length, and the second two
arguments are the output string and its length.

Note that input arguments are const , but the output arguments are not.
Additionally, the __user  identifier means that the pointers are pointing to
memory addresses within the user space. As you can see, every system call
has an integer value being returned as part of its function signature, which
will actually be its execution result. The range of returned values and their
meanings is different from one system call to another. In the case of our
system call, 0  means success and any other number is a failure.

We now need to define our system call. To do this, we must first create a
folder named hello_world  in the root directory, which we accomplish
using the following commands:

$ mkdir hello_world

$ cd hello_world

$

Shell Box 11-6: Creating the hello_world directory

Next, we create a file named sys_hello_world.c  inside the hello_world
directory. The contents of this file should be as follows:



#include <linux/kernel.h> // For printk

#include <linux/string.h> // For strcpy, strcat, strlen

#include <linux/slab.h> // For kmalloc, kfree

#include <linux/uaccess.h> // For copy_from_user,

copy_to_user

#include <linux/syscalls.h> // For SYSCALL_DEFINE4

// Definition of the system call

SYSCALL_DEFINE4(hello_world,

const char __user *, str, // Input name

const unsigned int, str_len, // Length of input name

char __user *, buf, // Output buffer

unsigned int, buf_len) { // Length of output buffer

// The kernel stack variable supposed to keep the content

// of the input buffer

char name[64];

// The kernel stack variable supposed to keep the final

// output message.

char message[96];

printk("System call fired!\n");

if (str_len >= 64) {

printk("Too long input string.\n");

return -1;

}

// Copy data from user space into kernel space

if (copy_from_user(name, str, str_len)) {

printk("Copy from user space failed.\n");

return -2;

}

// Build up the final message

strcpy(message, "Hello ");

strcat(message, name);

strcat(message, "!");

// Check if the final message can be fit into the output

binary

if (strlen(message) >= (buf_len - 1)) {

printk("Too small output buffer.\n");

return -3;

}

// Copy back the message from the kernel space to the user

space

if (copy_to_user(buf, message, strlen(message) + 1)) {

printk("Copy to user space failed.\n");

return -4;

}

// Print the sent message into the kernel log

printk("Message: %s\n", message);

return 0;

}



Code Box 11-4: The definition of the Hello World system call

In the Code Box 11-4, we have used the SYSCALL_DEFINE4  macro to define
our function definition, with the DEFINE4  suffix simply meaning that it
accepts four arguments.

At the beginning of the function body, we have declared two-character
arrays on the top of the kernel Stack. Much like ordinary processes, the
kernel process has an address space that contains a Stack. After we've
achieved that, we copy the data from the user space into the kernel space.
Following that, we create the greeting message by concatenating some
strings. This string is still in the kernel memory. Finally, we copy back the
message to the user space and make it available for the caller process.

In the case of errors, appropriate error numbers are returned in order to let
the caller process know about the result of the system call.

The next step to make our system call work is to update one more table.
There is only one system call table for both x86 and x64 architectures, and
the newly added system calls should be added to this table to become
exposed.

Only after this step the system calls are available in x86 and x64
machines. To add the system call to the table, we need to add hello_word
and its function name, sys_hello_world .

To do this, open the arch/x86/entry/syscalls/syscall_64.tbl  file and
add the following line to the end of the file:

999 64 hello_world __x64_sys_hello_world

Code Box 11-5: Adding the newly added Hello World system call to the system call table

After the modification, the file should look like this:

$ cat arch/x86/entry/syscalls/syscall_64.tbl

...



...

546 x32 preadv2 __x32_compat_sys_preadv64v2

547 x32 pwritev2 __x32_compat_sys_pwritev64v2

999 64 hello_world __x64_sys_hello_world

$

Shell Box 11-7: Hello World system call added to the system call table

Note the __x64_  prefix in the name of the system call. This is an
indication that the system call is only exposed in x64 systems.

The Linux kernel uses the Make build system to compile all the source
files and build the final kernel image. Moving on, you must make a file
named Makefile  in the hello_world  directory. Its content, which is a
single line of text, should be the following:

obj-y := sys_hello_world.o

Code Box 11-6: Makefile of the Hello World system call

Then, you need to add hello_world  directory to the main Makefile  in the
root directory. Change to the kernel's root directory, open the Makefile
file, and find the following line:

core-y += kernel/certs/mm/fs/ipc/security/crypto/block/

Code Box 11-7: The target line that should be modified in the root Makefile

Add hello_world/  to this list. All of these directories are simply the
directories that should be built as part of the kernel.

We need to add the directory of the Hello World system call in order to
include it in the build process and have it included in the final kernel
image. The line should look like the following code after the modification:

core-y +=

kernel/certs/mm/fs/hello_world/ipc/security/crypto/block/



Code Box 11-8: The target line after modification

The next step is to build the kernel.

Building the kernel

To build the kernel, we must first go back to the kernel's root directory
because before we start to build the kernel, you need to provide a
configuration. A configuration has a list of features and units that should
be built as part of the build process.

The following command tries to make the target configuration based on
the current Linux kernel's configuration. It uses the existing values in your
kernel and asks you about confirmation if a newer configuration value
exists in the kernel we are trying to build. If it does, you can simply accept
all newer versions by just pressing the Enter key:

$ make localmodconfig

...

...

#

# configuration written to .config

#

$

Shell Box 11-8: Creating a kernel configuration based on the current running kernel

Now you can start the build process. Since the Linux kernel contains a lot
of source files, the build can take hours to complete. Therefore, we need to
run the compilations in parallel.

If you're using a virtual machine, please configure your machine to have
more than one core in order to have an effective boost in the build process:

$ make -j4

SYSHDR arch/x86/include/generated/asm/unistd_32_ia32.h

SYSTBL arch/x86/include/generated/asm/syscalls_32.h

HOSTCC scripts/basic/bin2c



SYSHDR arch/x86/include/generated/asm/unistd_64_x32.h

...

...

UPD include/generated/compile.h

CC init/main.o

CC hello_world/sys_hello_world.o

CC arch/x86/crypto/crc32c-intel_glue.o

...

...

LD [M] net/netfilter/x_tables.ko

LD [M] net/netfilter/xt_tcpudp.ko

LD [M] net/sched/sch_fq_codel.ko

LD [M] sound/ac97_bus.ko

LD [M] sound/core/snd-pcm.ko

LD [M] sound/core/snd.ko

LD [M] sound/core/snd-timer.ko

LD [M] sound/pci/ac97/snd-ac97-codec.ko

LD [M] sound/pci/snd-intel8x0.ko

LD [M] sound/soundcore.ko

$

Shell Box 11-9: Output of the kernel build. Please note the line indicating the compilation of
the Hello World system call

Note:

Make sure that you have installed the prerequisite packages introduced in
the very first part of this section; otherwise, you will get compilation
errors.

As you can see, the build process has started with four jobs trying to
compile C files in parallel. You need to wait for it to complete. When it's
finished, you can easily install the new kernel and reboot the machine:

$ sudo make modules_install install

INSTALL arch/x86/crypto/aes-x86_64.ko

INSTALL arch/x86/crypto/aesni-intel.ko

INSTALL arch/x86/crypto/crc32-pclmul.ko

INSTALL arch/x86/crypto/crct10dif-pclmul.ko

...

...

run-parts: executing /et/knel/postinst.d/initam-tools 5.3.0+

/boot/vmlinuz-5.3.0+

update-iniras: Generating /boot/initrd.img-5.3.0+



run-parts: executing /etc/keneostinst.d/unattende-urades

5.3.0+ /boot/vmlinuz-5.3.0+

...

...

Found initrd image: /boot/initrd.img-4.15.0-36-generic

Found linux image: /boot/vmlinuz-4.15.0-29-generic

Found initrd image: /boot/initrd.img-4.15.0-29-generic

done.

$

Shell Box 11-10: Creating and installing the new kernel image

As you can see, a new kernel image for the version 5.3.0 has been created
and installed. Now we 're ready to reboot the system. Don't forget to check
the current kernel's version before rebooting if you don't know it. In my
case, my version is 4.15.0-36-generic . I've used the following
commands to find it out:

$ uname -r

4.15.0-36-generic $

Shell Box 11-11: Checking the version of the currently installed kernel

Now, reboot the system using the following command:

$ sudo reboot

Shell Box 11-12: Rebooting the system

While the system is booting up, the new kernel image will be picked up
and used. Note that boot loaders won't pick up the older kernels; therefore,
if you've had a kernel with version above 5.3, you are going to need to load
the built kernel image manually. This link can help you with that:
https://askubuntu.com/questions/82140/how-can-i-

boot-with-an-older-kernel-version.

When the operating system boot is complete, you should have the new
kernel running. Check the version. It must look like this:

https://askubuntu.com/questions/82140/how-can-i-boot-with-an-older-kernel-version


$ uname -r

5.3.0+

$

Shell Box 11-13: Checking the kernel version after the reboot.

If everything has gone well, the new kernel should be in place. Now we
can continue to write a C program that invokes our newly added Hello
World system call. It will be very similar to example 11.1, that called the
write  system call. You can find example 11.2 next:

// We need to have this to be able to use non-POSIX stuff

#define _GNU_SOURCE

#include <stdio.h>

#include <unistd.h>

// This is not part of POSIX!

#include <sys/syscall.h>

int main(int argc, char** argv) {

char str[20] = "Kam";

char message[64] = "";

// Call the hello world system call

int ret_val = syscall(999, str, 4, message, 64);

if (ret_val < 0) {

printf("[ERR] Ret val: %d\n", ret_val);

return 1;

}

printf("Message: %s\n", message);

return 0;

}

Code Box 11-9 [ExtremeC_examples_chapter11_2.c]: Example 11.2 invoking the newly
added Hello World system call

As you can see, we have invoked the system call with the number 999 . We
pass Kam  as the input, and we expect to receive Hello Kam!  as the
greeting message. The program waits for the result and prints the message
buffer that is filled by the system call in the kernel space.

In the following code, we build and run the example:

$ gcc ExtremeC_examples_chapter11_2.c -o ex11_2.out

$ ./ex11_2.out



Message: Hello Kam!

$

Shell Box 11-14: Compiling and running example 11.2

After running the example, and if you look at the kernel logs using the
dmesg  command, you will see the generated logs using printk :

$ dmesg

...

...

[ 112.273783] System call fired!

[ 112.273786] Message: Hello Kam!

$

Shell Box 11-15: Using dmesg to see the logs generated by the Hello World system call

If you run example 11.2 with strace , you can see that it actually calls
system call 999 . You can see it in the line starting with
syscall_0x3e7(...) . Note that 0x3e7  is the hexadecimal value for 999:

$ strace ./ex11_2.out

...

...

mprotect(0x557266020000, 4096, PROT_READ) = 0

mprotect(0x7f8dd6d2d000, 4096, PROT_READ) = 0

munmap(0x7f8dd6d26000, 27048) = 0

syscall_0x3e7(0x7fffe7d2af30, 0x4, 0x7fffe7d2af50, 0x40,

0x7f8dd6b01d80, 0x7fffe7d2b088) = 0

fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0),

...}) = 0

brk(NULL) = 0x5572674f2000

brk(0x557267513000)

...

...

exit_group(0) = ?

+++ exited with 0 +++

$

Shell Box 11-16: Monitoring the system calls made by example 11.2



In Shell Box 11-16, you can see that syscall_0x3e7  has been called and 0
has been returned. If you change the code in example 11.2 to pass a name
with more than 64 bytes, you will receive an error. Let's change the
example and run it again:

int main(int argc, char** argv) {

char name[84] = "A very very long message! It is really hard

to produce a big string!";

char message[64] = "";

...

return 0;

}

Code Box 11-10: Passing a long message (more than 64 bytes) to our Hello World system call

Let's compile and run it again:

$ gcc ExtremeC_examples_chapter11_2.c -o ex11_2.out

$ ./ex11_2.out

[ERR] Ret val: -1

$

Shell Box 11-17: Compiling and running example 11.2 after the modification

As you see, the system call returns -1  based on the logic we have written
for it. Running with strace  also shows that system call has returned -1 :

$ strace ./ex11_2.out

...

...

munmap(0x7f1a900a5000, 27048) = 0

syscall_0x3e7(0x7ffdf74e10f0, 0x54, 0x7ffdf74e1110, 0x40,

0x7f1a8fe80d80, 0x7ffdf74e1248) = -1 (errno 1)

fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0),

...}) = 0

brk(NULL) = 0x5646802e2000

...

...

exit_group(1) = ?

+++ exited with 1 +++

$



Shell Box 11-18: Monitoring the system calls made by example 11.2 after the modification

In the next section, we talk about the approaches we can take in designing
kernels. As part of our discussion, we introduce the kernel modules and
explore how they are used in kernel development.

Unix kernels
In this section, we are going to talk about the architectures that Unix
kernels have been developed with throughout the last 30 years. Before
talking about the different types of kernels, and there are not very many,
we should know that there is no standardization about the way a kernel
should be designed.

The best practices that we have obtained are based on our experiences over
the years, and they have led us to a high-level picture of the internal units
in a Unix kernel, which results in illustrations such as Figure 10-5 in the
previous chapter. Therefore, each kernel is somewhat different in
comparison to another. The main thing that all of them have in common is
that they should expose their functionalities through a system call
interface. However, every kernel has its own way of handling system calls.

This variety and the debates around it have made it one of the hottest
computer architecture-related topics of the 1990s, with large groups of
people taking part in these debates – the Tanenbaum-Torvalds debate being
considered the most famous one.

We are not going to go into the details of these debates, but we want to talk
a bit about the two major dominant architectures for designing a Unix
kernel: monolithic and microkernel. There are still other architectures,
such as hybrid kernels, nanokernels, and exokernels, all of which have
their own specific usages.



We, however, are going to focus on monolithic kernels and microkernels
by creating a comparison so that we can learn about their characteristics.

Monolithic kernels versus microkernels
In the previous chapter where we looked at Unix architecture, we
described the kernel as a single process containing many units, but in
reality, we were actually talking about a monolithic kernel.

A monolithic kernel is made up of one kernel process with one address
space that contains multiple smaller units within the same process.
Microkernels take the opposite approach. A microkernel is a minimal
kernel process that tries to push out services such as filesystem, device
drivers, and process management to the user space in order to make the
kernel process smaller and thinner.

Both of these architectures have advantages and disadvantages, and as a
result, they've been the topic of one of the most famous debates in the
history of operating systems. It goes back to 1992, just after the release of
the first version of Linux. A debate was started on Usenet by a post written
by Andrew S. Tanenbaum. The debate is known as the Tanenbaum-
Torvalds debate. You can read more at
https://en.wikipedia.org/wiki/Tanenbaum–

Torvalds_debate.

That post was the starting point for a flame war between the Linux creator
Linus Torvalds and Tanenbaum and a bunch of other enthusiasts, who
later became the first Linux developers. They were debating the nature of
monolithic kernels and microkernels. Many different aspects of kernel
design and the influence of hardware architecture on kernel design were
discussed as part of this flame war.

Further discussion of the debates and topics described would be lengthy
and complex and therefore beyond the scope of this book, but we want to
compare these two approaches and let you get familiar with the advantages
and disadvantages of each approach.

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate


The following is a list of differences between monolithic kernels and
microkernels:

A monolithic kernel is made up of a single process containing all the
services provided by the kernel. Most early Unix kernels were
developed like this, and it is considered to be an old approach.
Microkernels are different because they have separate processes for
every service the kernel offers.
A monolithic kernel process resides in the kernel space, whereas the
server processes in a microkernel are usually in the user space.
Server processes are those processes that provide the kernel's
functionalities, such as memory management, filesystem, and so on.
Microkernels are different in that they let server processes be in the
user space. This means some operating systems are more
microkernel-like than the others.
Monolithic kernels are usually faster. That's because all kernel
services are performed inside the kernel process, but microkernels
need to do some message passing between the user space and the
kernel space, hence more system calls and context switches.
In a monolithic kernel, all device drivers are loaded into the kernel.
Therefore, device drivers written by third-party vendors will be run as
a part of the kernel. Any flaw in any device driver or any other unit
inside the kernel may lead to a kernel crash. This is not the case with
microkernels because all of the device drivers and many other units
are run in the user space, which we could hypothesize as the reason
why monolithic kernels are not used in mission-critical projects.
In monolithic kernels, injecting a small piece of malicious code is
enough to compromise the whole kernel, and subsequently the whole
system. However, this can't happen easily in a microkernel because
many server processes are in the user space, and only a minimal set
of critical functionalities are concentrated in the kernel space.
In a monolithic kernel, even a simple change to the kernel source
needs the whole kernel to be compiled again, and a new kernel image
should be generated. Loading the new image also requires the
machine to be rebooted. But changes in a microkernel can lead to a
compilation of only a specific server process, and probably loading



the new functionality without rebooting the system. In monolithic
kernels, a similar functionality can be obtained to some extent using
kernel modules.

MINIX is one of the best-known examples of microkernels. It was written
by Andrew S. Tanenbaum and was initiated as an educational operating
system. Linus Torvalds used MINIX as his development environment to
write his own kernel, called Linux, in 1991 for the 80386 microprocessor.

As Linux has been the biggest and most successful defender of monolithic
kernels for nearly 30 years, we're going to talk more about Linux in the
next section.

Linux
You've already been introduced to the Linux kernel in the previous section
of this chapter, when we were developing a new system call for it. In this
section, we want to focus a bit more on the fact that Linux is monolithic
and that every kernel functionality is inside the kernel.

However, there should be a way to add a new functionality to the kernel
without needing it to be recompiled. New functionalities cannot be added
to the kernel as new system calls simply because, as you saw, by adding a
new system call, many fundamental files need to be changed, and this
means we need to recompile the kernel in order to have the new
functionalities.

The new approach is different. In this technique, kernel modules are
written and plugged into the kernel dynamically, which we will discuss in
the first section, before moving on to writing a kernel module for Linux.

Kernel modules
Monolithic kernels are usually equipped with another facility that enables
kernel developers to hot-plug new functionalities into an up-and-running



kernel. These pluggable units are called kernel modules. These are not the
same as server processes in microkernels.

Unlike server processes in a microkernel, which are in fact separate
processes using IPC techniques to communicate with each other, kernel
modules are kernel object files that are already compiled and can be
loaded dynamically into the kernel process. These kernel object files can
either become statically built as part of the kernel image or become loaded
dynamically when the kernel is up and running.

Note that the kernel object files are twin concepts to the ordinary object
files produced in C development.

It's worth noting again that if the kernel module does something bad inside
the kernel, a kernel crash can happen.

The way you communicate with kernel modules is different from system
calls, and they cannot be used by calling a function or using a given API.
Generally, there are three ways to communicate with a kernel module in
Linux and some similar operating systems:

Device files in the /dev directory: Kernel modules are mainly
developed to be used by device drivers, and that's why devices are the
most common way to communicate with kernel modules. As we
explained in the previous chapter, devices are accessible as device
files located in the /dev  directory. You can read from and write to
these files and, using them, you can send and receive data to/from the
modules.
Entries in procfs: Entries in the /proc  directory can be used to read
meta-information about a specific kernel module. These files can also
be used to pass meta-information or control commands to a kernel
module. We shortly demonstrate the usage of procfs in the next
example, example 11.3, as part of the following section.
Entries in sysfs: This is another filesystem in Linux that allows
scripts and users to control user processes and other kernel-related
units, such as kernel modules. It can be considered as a new version
of procfs.



In fact, the best way to see a kernel module is to write one, which is what
we are going to do in the next section, where we write a Hello World
kernel module for Linux. Note that kernel modules are not limited to
Linux; monolithic kernels such as FreeBSD also benefit from the kernel
module mechanism.

Adding a kernel module to Linux

In this section, we are going to write a new kernel module for Linux. This
is the Hello World kernel module, which creates an entry in procfs. Then,
using this entry, we read the greeting string.

In this section, you will become familiar with writing a kernel module,
compiling it, loading it into the kernel, unloading it from the kernel, and
reading data from a procfs entry. The main purpose of this example is to
get your hands dirty with writing a kernel module and, as a result more
development can be done by yourself.

Note:

Kernel modules are compiled into kernel object files that can be loaded
directly into the kernel at run-time. There is no need to reboot the system
after loading the kernel module object file as long as it doesn't do
something bad in the kernel that leads to a kernel crash. That's also true
for unloading the kernel module.

The first step is to create a directory that is supposed to contain all files
related to the kernel module. We name it ex11_3  since this is the third
example in this chapter:

$ mkdir ex11_3

$ cd ex11_3

$

Shell Box 11-19: Making the root directory for example 11.3



Then, create a file named hwkm.c , which is just an acronym made up of
the first letters of "Hello World Kernel Module," with the following
content:

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/init.h>

#include <linux/proc_fs.h>

// The structure pointing to the proc file

struct proc_dir_entry *proc_file;

// The read callback function

ssize_t proc_file_read(struct file *file, char __user *ubuf,

size_t count, loff_t *ppos) {

int copied = 0;

if (*ppos > 0) {

return 0;

}

copied = sprintf(ubuf, "Hello World From Kernel Module!\n");

*ppos = copied;

return copied;

}

static const struct file_operations proc_file_fops = {

.owner = THIS_MODULE,

.read = proc_file_read

};

// The module initialization callback

static int __init hwkm_init(void) {

proc_file = proc_create("hwkm", 0, NULL, &proc_file_fops);

if (!proc_file) {

return -ENOMEM;

}

printk("Hello World module is loaded.\n");

return 0;

}

// The module exit callback

static void __exit hkwm_exit(void) {

proc_remove(proc_file);

printk("Goodbye World!\n");

}

// Defining module callbacks

module_init(hwkm_init);

module_exit(hkwm_exit);

Code Box 11-11 [ex11_3/hwkm.c]: The Hello World kernel module

Using the two last statements in Code Box 11-11, we have registered the
module's initialization and exit callbacks. These functions are called when



the module is being loaded and unloaded respectively. The initialization
callback is the first code to be executed.

As you can see inside the hwkm_init  function, it creates a file named
hwkm  inside the /proc  directory. There is also an exit callback. Inside the
hwkm_exit  function, it removes the hwkm  file from the /proc  path. The
/proc/hwkm  file is the contact point for the user space to be able to
communicate with the kernel module.

The proc_file_read  function is the read callback function. This function
is called when the user space tries to read the /proc/hwkm  file. As you will
soon see, we use the cat  utility program to read the file. It simply copies
the Hello World From Kernel Module!  string to the user space.

Note that at this stage, the code written inside a kernel module has total
access to almost anything inside the kernel, and it can leak out any kind of
information to the user space. This is a major security issue, and further
reading about the best practices for writing a secure kernel module should
be undertaken.

To compile the preceding code, we need to use an appropriate compiler,
including possibly linking it with the appropriate libraries. In order to
make life easier, we create a file named Makefile  that will trigger the
necessary build tools in order to build the kernel module.

The following code box shows the content of the Makefile :

obj-m += hwkm.o

all:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD)

modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Code Box 11-12: Makefile of the Hello World kernel module

Then, we can run the make  command. The following shell box
demonstrates this:



$ make

make -C /lib/modules/54.318.0+/build

M=/home/kamran/extreme_c/ch11/codes/ex11_3 modules

make[1]: Entering directory '/home/kamran/linux'

CC [M] /home/kamran/extreme_c/ch11/codes/ex11_3/hwkm.o

Building modules, stage 2.

MODPOST 1 modules

WARNING: modpost: missing MODULE_LICENSE() in

/home/kamran/extreme_c/ch11/codes/ex11_3/hwkm.o

see include/linux/module.h for more information

CC /home/kamran/extreme_c/ch11/codes/ex11_3/hwkm.mod.o

LD [M] /home/kamran/extreme_c/ch11/codes/ex11_3/hwkm.ko

make[1]: Leaving directory '/home/kamran/linux'

$

Shell Box 11-20: Building the Hello World kernel module

As you can see, the compiler compiles the code and produces an object
file. Then, it continues by linking the object file with other libraries to
create a .ko  file. Now, if you look at the generated files, you find a file
named hwkm.ko .

Notice the .ko  extension, which simply means that the output file is a
kernel object file. It is something like a shared library that can be
dynamically loaded into the kernel and become running.

Please note that in Shell Box 11-20, the build process has produced a
warning message. It says that the module has no license associated with it.
It is a highly recommended practice to generate licensed modules when
developing or deploying kernel modules in test and production
environments.

The following shell box shows the list of files that can be found after
building the kernel module:

$ ls -l

total 556

-rw-rw-r-- 1 kamran kamran 154 Oct 19 00:36 Makefile

-rw-rw-r-- 1 kamran kamran 0 Oct 19 08:15 Module.symvers

-rw-rw-r-- 1 kamran kamran 1104 Oct 19 08:05 hwkm.c

-rw-rw-r-- 1 kamran kamran 272280 Oct 19 08:15 hwkm.ko

-rw-rw-r-- 1 kamran kamran 596 Oct 19 08:15 hwkm.mod.c



-rw-rw-r-- 1 kamran kamran 104488 Oct 19 08:15 hwkm.mod.o

-rw-rw-r-- 1 kamran kamran 169272 Oct 19 08:15 hwkm.o

-rw-rw-r-- 1 kamran kamran 54 Oct 19 08:15 modules.order

$

Shell Box 11-21: List of existing files after building the Hello World kernel module

Note:

We have used module build tools from Linux kernel version 5.3.0 You
might get a compilation error if you compile this example using a kernel
version below 3.10.

To load the hwkm  kernel module, we use the insmod  command in Linux,
which simply loads and installs the kernel module, as we have done in the
following shell box:

$ sudo insmod hwkm.ko

$

Shell Box 11-22: Loading and installing the Hello World kernel module

Now, if you look at the kernel logs, you will see the lines that are produced
by the initializer function. Just use the dmesg  command to see the latest
kernel logs, which is what we have done next:

$ dmesg

...

...

[ 7411.519575] Hello World module is loaded.

$

Shell Box 11-23: Checking the kernel log messages after installing the kernel module

Now, the module has been loaded, and the /proc/hwkm  file should have
been created. We can read it now by using the cat  command:

$ cat /proc/hwkm



Hello World From Kernel Module!

$ cat /proc/hwkm

Hello World From Kernel Module!

$

Shell Box 11-24: Reading the/proc/hwkm file using cat

As you can see in the preceding shell box, we have read the file twice, and
both times, it returns the same Hello World From Kernel Module!  string.
Note that the string is copied into the user space by the kernel module, and
the cat  program has just printed it to the standard output.

When it comes to unloading the module, we can use the rmmod  command
in Linux, as we have done next:

$ sudo rmmod hwkm

$

Shell Box 11-25: Unloading the Hello World kernel module

Now that the module has been unloaded, look at the kernel logs again to
see the goodbye message:

$ dmesg

...

...

[ 7411.519575] Hello World module is loaded.

[ 7648.950639] Goodbye World!

$

Shell Box 11-26: Checking the kernel log messages after unloading the kernel module

As you saw in the preceding example, kernel modules are very handy
when it comes to writing kernel codes.

To finish off this chapter, I believe it would be helpful to give you a list of
the features that we have seen so far regarding kernel modules:



Kernel modules can be loaded and unloaded without needing to
reboot the machine.
When loaded, they become part of the kernel and can access any unit
or structure within the kernel. This can be thought of as a
vulnerability, but a Linux kernel can be protected against installing
unwanted modules.
In the case of kernel modules, you only need to compile their source
code. But for system calls, you have to compile the whole kernel,
which can easily take an hour of your time.

Finally, kernel modules can be handy when you are going to develop a
code that needs to be run within the kernel behind a system call. The logic
that is going to be exposed using a system call can be loaded into the
kernel using a kernel module first, and after being developed and tested
properly, it can go behind a real system call.

Developing system calls from scratch can be a tedious job because you
have to reboot your machine countless times. Having the logic firstly
written and tested as part of a kernel module can ease the pain of kernel
development. Note that if your code is trying to cause a kernel crash, it
doesn't matter if it is in a kernel module or behind a system call; it causes
a kernel crash and you must reboot your machine.

In this section, we talked about various types of kernels. We also showed
how a kernel module can be used within a monolithic kernel to have
transient kernel logic by loading and unloading it dynamically.

Summary
We've now completed our two-chapter discussion about Unix. In this
chapter, we learned about the following:

What a system call is and how it exposes a certain functionality
What happens behind the invocation of a system call



How a certain system call can be invoked from C code directly
How to add a new system call to an existing Unix-like kernel (Linux)
and how to recompile the kernel
What a monolithic kernel is and how it differs from a microkernel
How kernel modules work within a monolithic kernel and how to
write a new kernel module for Linux

In the following chapter, we're going to talk about the C standards and the
most recent version of C, C18. You will become familiar with the new
features introduced as part of it.



Chapter 12
The Most Recent C

Change cannot be prevented, and C is no exception. The C programming
language is standardized by an ISO standard, and it is constantly under
revision by a group of people who are trying to make it better and bring
new features to it. This doesn't mean that the language will necessarily get
easier, however; we might see novel and complex features emerge in the
language as new content is added.

In this chapter, we are going to have a brief look at C11's features. You
might know that C11 has replaced the old C99 standard, and it has been
superseded by the C18 standard. In other words, C18 is the latest version
of the C standard, and just before that we had C11.

It's interesting to know that C18 doesn't offer any new features; it just
contains fixes for the issues found in C11. Therefore, talking about C11 is
basically the same as talking about C18, and it will lead us to the most
recent C standard. As you can see, we are observing constant improvement
in the C language… contrary to the belief that it is a long-dead language!

This chapter will give a brief overview of the following topics:

How to detect the C version and how to write a piece of C code which
is compatible with various C versions
New features for writing optimized and secure code, such as no-
return functions and bounds-checking functions
New data types and memory alignment techniques
Type-generic functions
Unicode support in C11, which was missing from the language in the
older standards



Anonymous structures and unions
Standard support for multithreading and synchronization techniques
in C11

Let's begin the chapter by talking about C11 and its new features.

C11
Gathering a new standard for a technology that has been in use for more
than 30 years is not an easy task. Millions (if not billions!) of lines of C
code exist, and if you are about to introduce new features, this must be
done while keeping previous code or features intact. New features
shouldn't create new problems for the existing programs, and they should
be bug-free. While this view seems to be idealistic, it is something that we
should be committed to.

The following PDF document resides on the Open Standards website and
contains the worries and thoughts that people in the C community had in
mind before starting to shape C11: http://www.open-
std.org/JTC1/SC22/wg14/www/docs/n1250.pdf. It would be
useful to give it a read because it will introduce you to the experience of
authoring a new standard for a programming language that several
thousand pieces of software have been built upon.

Finally, with these things in mind, we consider the release of C11. When
C11 came out, it was not in its ideal form and was in fact suffering from
some serious defects. You can see the list of these defects here:
http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n2244.htm.

Seven years after the launch of C11, C18 was introduced, which came
about to fix the defects found in C11. Note that C18 is also informally
referred to as C17, and both C17 and C18 refer to the same C standard. If
you open the previous link you will see the defects and their current
statuses. If the status of a defect is "C17," it means that the defect is

http://www.open-std.org/JTC1/SC22/wg14/www/docs/n1250.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2244.htm


solved as part of C18. This shows how hard and delicate process it is to
assemble a standard that has as many users as C does.

In the following sections, we'll talk about the new features of C11. Before
going through them however, we need a way to be sure that we are really
writing C11 code, and that we are using a compatible compiler. The
following section will address this requirement.

Finding a supported version of
C standard
At the time of writing, it has been almost 8 years since C11 came out.
Therefore, it would be expected that many compilers should support the
standard, and this is indeed the case. Open source compilers such as gcc
and clang  both support C11 perfectly, and they can switch back to C99 or
even older versions of C if needed. In this section, we show how to use
specific macros to detect the C version and, depending on the version, how
to use the supported features.

The first thing that is necessary when using a compiler that supports
different versions of the C standard is being able to identify which version
of the C standard is currently in use. Every C standard defines a special
macro that can be used to find out what version is being used. So far, we
have used gcc  in Linux and clang  in macOS systems. As of version 4.7,
gcc  offers C11 as one of its supported standards.

Let's look at the following example and see how already-defined macros
can be used to detect the current version of the C standard at runtime:

#include <stdio.h>

int main(int argc, char** argv) {

#if __STDC_VERSION__ >= 201710L

printf("Hello World from C18!\n");

#elif __STDC_VERSION__ >= 201112L

printf("Hello World from C11!\n");



#elif __STDC_VERSION__ >= 199901L

printf("Hello World from C99!\n");

#else

printf("Hello World from C89/C90!\n");

#endif

return 0;

}

Code Box 12-1 [ExtremeC_examples_chapter12_1.c]: Detecting the version of the C standard

As you can see, the preceding code can distinguish between various
versions of the C standard. In order to see how various C versions can lead
to various printings, we have to compile the preceding source code
multiple times with various versions of C standard that are supported by
the compiler.

To ask the compiler to use a specific version of the C standard, we have to
pass the - std=CXX  option to the C compiler. Look at the following
commands and the produced output:

$ gcc ExtremeC_examples_chapter12_1.c -o ex12_1.out

$ ./ex12_1.out

Hello World from C11!

$ gcc ExtremeC_examples_chapter12_1.c -o ex12_1.out -std=c11

$ ./ex12_1.out

Hello World from C11!

$ gcc ExtremeC_examples_chapter12_1.c -o ex12_1.out -std=c99

$ ./ex12_1.out

Hello World from C99!

$ gcc ExtremeC_examples_chapter12_1.c -o ex12_1.out -std=c90

$ ./ex12_1.out

Hello World from C89/C90!

$ gcc ExtremeC_examples_chapter12_1.c -o ex12_1.out -std=c89

$ ./ex12_1.out

Hello World from C89/C90!

$

Shell Box 12-1: Compiling example 12.1 with various versions of C standard

As you can see, the default C standard version in newer compilers is C11.
With older versions, you have to specify the version using the -std
option, if you want to enable C11. Note the comments made at the



beginning of the file. I have used /* ... */  comments (multiline
comments) instead of //  comments (one-line comments). That's because
one-line comments were not supported in standards before C99. Therefore,
we had to use multiline comments in order to have the preceding code
compiled with all C versions.

Removal of the gets function
In C11, the famous gets  function is removed. The gets  function was
subject to buffer overflow attacks, and in older versions it was decided to
make the function deprecated. Later, as part of the C11 standard, it was
removed. Therefore, older source code that uses the gets  function won't
be compiled using a C11 compiler.

The fgets  function can be used instead of gets . The following is an
excerpt from the gets  manual page (man page) in macOS:

SECURITY CONSIDERATIONS
The gets() function cannot be used securely. Because of its lack of
bounds checking, and the inability for the calling program to reliably
determine the length of the next incoming line, the use of this
function enables malicious users to arbitrarily change a running
program's functionality through a buffer overflow attack. It is
strongly suggested that the fgets() function be used in all cases. (See
the FSA.)

Changes to fopen function
The fopen  function is usually used for opening a file and returning a file
descriptor to that file. The concept of a file is very general in Unix, and by
using the term file, we don't necessarily mean a file located on the
filesystem. The fopen  function has the following signatures:



FILE* fopen(const char *pathname, const char *mode);

FILE* fdopen(int fd, const char *mode);

FILE* freopen(const char *pathname, const char *mode, FILE

*stream);

Code Box 12-2: Various signatures of the family of fopen functions

As you can see, all of the preceding signatures accept a mode  input. This
input parameter is a string that determines how the file should be opened.
The following description in Shell Box 12-2 is obtained from the FreeBSD
manual for the fopen  function and explains how mode  should be used:

$ man 3 fopen

...

The argument mode points to a string beginning with one of

the following letters:

"r" Open for reading. The stream is positioned at the

beginning

of the file. Fail if the file does not exist.

"w" Open for writing. The stream is positioned at the

beginning

of the file. Create the file if it does not exist.

"a" Open for writing. The stream is positioned at the end of

the file. Subsequent writes to the file will always end up

at the then current end of file, irrespective of

any intervening fseek(3) or similar. Create the file

if it does not exist.

An optional "+" following "r", "w", or "a" opens the file

for both reading and writing. An optional "x" following "w"

or

"w+" causes the fopen() call to fail if the file already

exists.

An optional "e" following the above causes the fopen() call

to set

the FD_CLOEXEC flag on the underlying file descriptor.

The mode string can also include the letter "b" after either

the "+" or the first letter.

...

$

Shell Box 12-2: An excerpt from the fopen's manual page in FreeBSD

The mode x , explained in the preceding extract from the fopen  manual
page, has been introduced as part of C11. To open a file in order to write to



it, the mode w  or w+  should be supplied to fopen . The problem is that, if
the file already exists, the w  or w+  mode will truncate (empty) the file.

Therefore, if the programmer wants to append to a file and keep its current
content, they have to use a different mode, a . Hence, they have to check
for the file's existence, using a filesystem API such as stat , before
calling fopen , and then choose the proper mode based on the result. Now
however, with the new mode x , the programmer first tries with the mode
wx  or w+x , and if the file already exists the fopen  will fail. Then the
programmer can continue with the a  mode.

Thus, less boilerplate code needs to be written to open a file without using
the filesystem API to check for the file's existence. From now on, fopen
is enough to open a file in every desired mode.

Another change in C11 was the introduction of the fopen_s  API. This
function serves as a secure fopen . According to the documentation for
fopen_s  found at
https://en.cppreference.com/w/c/io/fopen, performs extra
checking on the provided buffers and their boundaries in order to detect
any flaw in them.

Bounds-checking functions
One of the serious problems with C programs operating on strings and
byte arrays is the ability to go easily beyond the boundary defined for a
buffer or a byte array.

As a reminder, a buffer is a region of memory that is used as the place
holder for a byte array or a string variable. Going beyond the boundary of
a buffer causes a buffer overflow and based on that a malicious entity can
organize an attack (usually called a buffer overflow attack). This type of
attack either results in a denial of service (DOS) or in exploitation of the
victim C program.

https://en.cppreference.com/w/c/io/fopen


Most such attacks usually start in a function operating on character or byte
arrays. String manipulation functions found in string.h , such as strcpy
and strcat , are among the vulnerable functions that lack a boundary
checking mechanism to prevent buffer overflow attacks.

However, as part of C11, a new set of functions has been introduced.
Bounds-checking functions borrow the same name from the string
manipulation functions but with an _s  at the end. The suffix _s
distinguishes them as a secure or safe flavor of those functions that
conduct more runtime checks in order to shut down the vulnerabilities.
Functions such as strcpy_s  and strcat_s  have been introduced as part
of bounds-checking functions in C11.

These functions accept some extra arguments for the input buffers that
restrict them from performing dangerous operations. As an example, the
strcpy_s  function has the following signature:

errno_t strcpy_s(char *restrict dest, rsize_t destsz, const

char *restrict src);

Code Box 12-3: Signature of the strcpy_s function

As you can see, the second argument is the length of the dest  buffer.
Using that, the function performs some runtime checks, such as ensuring
that the src  string is shorter than or at the same size of the dest  buffer
in order to prevent writing to unallocated memory.

No-return functions
A function call can end either by using the return  keyword or by
reaching the end of the function's block. There are also situations in which
a function call never ends, and this is usually done intentionally. Look at
the following code example contained in Code Box 12-4:

void main_loop() {



while (1) {

...

}

}

int main(int argc, char** argv) {

...

main_loop();

return 0;

}

Code Box 12-4: Example of a function that never returns

As you can see, the function main_loop  performs the main task of the
program, and if we return from the function, the program could be
considered as finished. In these exceptional cases, the compiler can
perform some more optimizations, but somehow, it needs to know that the
function main_loop  never returns.

In C11, you have the ability to mark a function as a no-return function.
The _Noreturn  keyword from the stdnoreturn.h  header file can be used
to specify that a function never exits. So, the code in Code Box 12-4 can be
changed for C11 to look like this:

_Noreturn void main_loop() {

while (true) {

...

}

}

Code Box 12-5: Using the _Noreturn keyword to mark main_loop as a never-ending function

There are other functions, such as exit , quick_exit  (added recently as
part of C11 for quick termination of the program), and abort , that are
considered to be no-return functions. In addition, knowing about no-return
functions allows the compiler to recognize function calls that
unintentionally won't return and produce proper warnings because they
could be a sign of a logical bug. Note that if a function marked as
_Noreturn  returns, then this would be an undefined behavior and it is
highly discouraged.



Type generic macros
In C11, a new keyword has been introduced: _Generic . It can be used to
write macros that are type-aware at compile time. In other words, you can
write macros that can change their value based on the type of their
arguments. This is usually called generic selection. Look at the following
code example in Code Box 12-6:

#include <stdio.h>

#define abs(x) _Generic((x), \

int: absi, \

double: absd)(x)

int absi(int a) {

return a > 0 ? a : -a;

}

double absd(double a) {

return a > 0 ? a : -a;

}

int main(int argc, char** argv) {

printf("abs(-2): %d\n", abs(-2));

printf("abs(2.5): %f\n", abs(2.5));;

return 0;

}

Code Box 12-6: Example of a generic macro

As you can see in the macro definition, we have used different expressions
based on the type of the argument x . We use absi  if it is an integer
value, and absd  if it is a double value. This feature is not new to C11, and
you can find it in older C compilers, but it wasn't part of the C standard.
As of C11, it is now standard, and you can use this syntax to write type-
aware macros.

Unicode
One of the greatest features that has been added to the C11 standard is
support for Unicode through UTF-8, UTF-16, and UTF-32 encodings. C



was missing this feature for a long time, and C programmers had to use
third-party libraries such as IBM International Components for Unicode
(ICU) to fulfill their needs.

Before C11, we only had char  and unsigned char  types, which were 8-
bit variables used to store ASCII and Extended ASCII characters. By
creating arrays of these ASCII characters, we could create ASCII strings.

Note:

ASCII standard has 128 characters which can be stored in 7 bits.
Extended ASCII is an extension to ASCII which adds another 128
characters to make them together 256 characters. Then, an 8-bit or one-
byte variable is enough to store all of them. In the upcoming text, we will
only use the term ASCII, and by that we refer to both ASCII standard and
Extended ASCII.

Note that support for ASCII characters and strings is fundamental, and it
will never be removed from C. Thus, we can be confident that we will
always have ASCII support in C. From C11, they have added support for
new characters, and therefore new strings that use a different number of
bytes, not just one byte, for each character.

To explain this further, in ASCII, we have one byte for each character.
Therefore, the bytes and characters can be used interchangeably, but this is
not true in general. Different encodings define new ways to store a wider
range of characters in multiple bytes.

In ASCII, altogether we have 256 characters. Therefore, a single one-byte
(8-bit) character is enough to store all of them. If we are going to have
more than 256 characters, however, we must use more than one byte to
store their numerical values after 255. Characters that need more than one
byte to store their values are usually called wide characters. By this
definition, ASCII characters are not considered as wide characters.

The Unicode standard introduced various methods of using more than one
byte to encode all characters in ASCII, Extended ASCII, and wide
characters. These methods are called encodings. Through Unicode, there



are three well-known encodings: UTF-8, UTF-16, and UTF-32. UTF-8 uses
the first byte for storing the first half of the ASCII characters, and the next
bytes, usually up to 4 bytes, for the other half of ASCII characters together
with all other wide characters. Hence, UTF-8 is considered as a variable-
sized encoding. It uses certain bits in the first byte of the character to
denote the number of actual bytes that should be read to retrieve the
character fully. UTF-8 is considered a superset of ASCII because for
ASCII characters (not Extended ASCII characters) the representation is
the same.

Like UTF-8, UTF-16 uses one or two words (each word has 16 bits within)
for storing all characters; hence it is also a variable-sized encoding. UTF-
32 uses exactly 4 bytes for storing the values of all characters; therefore, it
is a fixed-sized encoding. UTF-8, and after that, UTF-16, are suitable for
the applications in which a smaller number of bytes should be used for
more frequent characters.

UTF-32 uses a fixed number of bytes even for ASCII characters. So, it
consumes more memory space to store strings using this encoding
compared to others; but it requires less computation power when using
UTF-32 characters. UTF-8 and UTF-16 can be considered as compressed
encodings, but they need more computation to return the actual value of a
character.

Note:

More information about UTF-8, UTF-16, and UTF-32 strings and how to
decode them can be found on Wikipedia or other sources like:

https://unicodebook.readthedocs.io/unicode_encoding

s.html

https://javarevisited.blogspot.com/2015/02/differen

ce-between-utf-8-utf-16-and-utf.html.

In C11 we have support for all the above Unicode encodings. Look at the
following example, example 12.3. It defines various ASCII, UTF-8, UTF-
16, and UTF-32 strings, and counts the number of actual bytes used to

https://unicodebook.readthedocs.io/unicode_encodings.html
https://javarevisited.blogspot.com/2015/02/difference-between-utf-8-utf-16-and-utf.html


store them and the number of characters observed within them. We present
the code in multiple steps in order to give additional comments on the
code. The following code box demonstrates the inclusions and declarations
required:

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#ifdef __APPLE__

#include <stdint.h>

typedef uint16_t char16_t;

typedef uint32_t char32_t;

#else

#include <uchar.h> // Needed for char16_t and char32_t

#endif

Code Box 12-7 [ExtremeC_examples_chapter12_3.c]: Inclusions and declarations required
for example 12.3 to get built

The preceding lines are the include  statements for example 12.3. As you
can see, in macOS we do not have the uchar.h  header and we have to
define new types for the char16_t  and char32_t  types. The whole
functionality of Unicode strings is supported, however. On Linux, we don't
have any issues with Unicode support in C11.

The next part of the code demonstrates the functions used for counting the
number of bytes and characters in various kinds of Unicode strings. Note
that no utility function is offered by C11 to operate on Unicode strings,
therefore we have to write a new strlen  for them. In fact, our versions of
strlen  functions do more just than returning the number of characters;
they return the number of consumed bytes as well. The implementation
details won't be described, but it is strongly recommended to give them a
read:

typedef struct {

long num_chars;

long num_bytes;

} unicode_len_t;

unicode_len_t strlen_ascii(char* str) {

unicode_len_t res;

res.num_chars = 0;



res.num_bytes = 0;

if (!str) {

return res;

}

res.num_chars = strlen(str) + 1;

res.num_bytes = strlen(str) + 1;

return res;

}

unicode_len_t strlen_u8(char* str) {

unicode_len_t res;

res.num_chars = 0;

res.num_bytes = 0;

if (!str) {

return res;

}

// Last null character

res.num_chars = 1;

res.num_bytes = 1;

while (*str) {

if ((*str | 0x7f) == 0x7f) { // 0x7f = 0b01111111

res.num_chars++;

res.num_bytes++;

str++;

} else if ((*str & 0xc0) == 0xc0) { // 0xc0 = 0b11000000

res.num_chars++;

res.num_bytes += 2;

str += 2;

} else if ((*str & 0xe0) == 0xe0) { // 0xe0 = 0b11100000

res.num_chars++;

res.num_bytes += 3;

str += 3;

} else if ((*str & 0xf0) == 0xf0) { // 0xf0 = 0b11110000

res.num_chars++;

res.num_bytes += 4;

str += 4;

} else {

fprintf(stderr, "UTF-8 string is not valid!\n");

exit(1);

}

}

return res;

}

unicode_len_t strlen_u16(char16_t* str) {

unicode_len_t res;

res.num_chars = 0;

res.num_bytes = 0;

if (!str) {

return res;

}

// Last null character



res.num_chars = 1;

res.num_bytes = 2;

while (*str) {

if (*str < 0xdc00 || *str > 0xdfff) {

res.num_chars++;

res.num_bytes += 2;

str++;

} else {

res.num_chars++;

res.num_bytes += 4;

str += 2;

}

}

return res;

}

unicode_len_t strlen_u32(char32_t* str) {

unicode_len_t res;

res.num_chars = 0;

res.num_bytes = 0;

if (!str) {

return res;

}

// Last null character

res.num_chars = 1;

res.num_bytes = 4;

while (*str) {

res.num_chars++;

res.num_bytes += 4;

str++;

}

return res;

}

Code Box 12-8 [ExtremeC_examples_chapter12_3.c]: The definitions of the functions used in
example 12.3

The last part is the main  function. It declares some different strings in
English, Persian, and some alien language to evaluate the preceding
functions:

int main(int argc, char** argv) {

char ascii_string[32] = "Hello World!";

char utf8_string[32] = u8"Hello World!";

char utf8_string_2[32] = u8"درود دنیا!";

char16_t utf16_string[32] = u"Hello World!";

char16_t utf16_string_2[32] = u"درود دنیا!";

char16_t utf16_string_3[32] = u"���!";



char32_t utf32_string[32] = U"Hello World!";

char32_t utf32_string_2[32] = U"درود دنیا!";

char32_t utf32_string_3[32] = U"���!";
unicode_len_t len = strlen_ascii(ascii_string);

printf("Length of ASCII string:\t\t\t %ld chars, %ld

bytes\n\n",

len.num_chars, len.num_bytes);

len = strlen_u8(utf8_string);

printf("Length of UTF-8 English string:\t\t %ld chars, %ld

bytes\n",

len.num_chars, len.num_bytes);

len = strlen_u16(utf16_string);

printf("Length of UTF-16 english string:\t %ld chars, %ld

bytes\n",

len.num_chars, len.num_bytes);

len = strlen_u32(utf32_string);

printf("Length of UTF-32 english string:\t %ld chars, %ld

bytes\n\n",

len.num_chars, len.num_bytes);

len = strlen_u8(utf8_string_2);

printf("Length of UTF-8 Persian string:\t\t %ld chars, %ld

bytes\n",

len.num_chars, len.num_bytes);

len = strlen_u16(utf16_string_2);

printf("Length of UTF-16 persian string:\t %ld chars, %ld

bytes\n",

len.num_chars, len.num_bytes);

len = strlen_u32(utf32_string_2);

printf("Length of UTF-32 persian string:\t %ld chars, %ld

bytes\n\n",

len.num_chars, len.num_bytes);

len = strlen_u16(utf16_string_3);

printf("Length of UTF-16 alien string:\t\t %ld chars, %ld

bytes\n",

len.num_chars, len.num_bytes);

len = strlen_u32(utf32_string_3);

printf("Length of UTF-32 alien string:\t\t %ld chars, %ld

bytes\n",

len.num_chars, len.num_bytes);

return 0;

}

Code Box 12-9 [ExtremeC_examples_chapter12_3.c]: The main function of example 12.3

Now, we must compile the preceding example. Note that the example can
only be compiled using a C11 compiler. You can try using older compilers
and take a look at the resulting errors. The following commands compile
and run the preceding program:



$ gcc ExtremeC_examples_chapter12_3.c -std=c11 -o ex12_3.out

$ ./ex12_3.out

Length of ASCII string: 13 chars, 13 bytes

Length of UTF-8 english string: 13 chars, 13 bytes

Length of UTF-16 english string: 13 chars, 26 bytes

Length of UTF-32 english string: 13 chars, 52 bytes

Length of UTF-8 persian string: 11 chars, 19 bytes

Length of UTF-16 persian string: 11 chars, 22 bytes

Length of UTF-32 persian string: 11 chars, 44 bytes

Length of UTF-16 alien string: 5 chars, 14 bytes

Length of UTF-32 alien string: 5 chars, 20 bytes

$

Shell Box 12-3: Compiling and running example 12.3

As you can see, the same string with the same number of characters uses a
different number of bytes to encode and store the same value. UTF-8 uses
the least number of bytes, especially when a large number of characters in
a text are ASCII characters, simply because most of the characters will use
only one byte.

As we go through the characters that are more distinct from the Latin
characters, such as characters in Asian languages, UTF-16 has a better
balance between the number of characters and the number of used bytes,
because most of the characters will use up to two bytes.

UTF-32 is rarely used, but it can be used in systems where having a fixed-
length code print for characters is useful; for example, if the system
suffers from low computational power or is benefiting from some parallel
processing pipelines. Therefore, UTF-32 characters can be used as keys in
mappings from the characters to any kind of data. In other words, they can
be used to build up some indexes to look up data very quickly.

Anonymous structures and
anonymous unions



Anonymous structures and anonymous unions are type definitions without
names, and they are usually used in other types as a nested type. It is
easier to explain them with an example. Here, you can see a type that has
both an anonymous structure and an anonymous union in one place,
displayed in Code Box 12-10:

typedef struct {

union {

struct {

int x;

int y;

};

int data[2];

};

} point_t;

Code Box 12-10: Example of an anonymous structure together with an anonymous union

The preceding type uses the same memory for the anonymous structure
and the byte array field data . The following code box shows how it can
be used in a real example:

#include <stdio.h>

typedef struct {

union {

struct {

int x;

int y;

};

int data[2];

};

} point_t;

int main(int argc, char** argv) {

point_t p;

p.x = 10;

p.data[1] = -5;

printf("Point (%d, %d) using an anonymous structure inside

an anonymous union.\n", p.x, p.y);

printf("Point (%d, %d) using byte array inside an anonymous

union.\n",

p.data[0], p.data[1]);

return 0;

}



Code box 12-11 [ExtremeC_examples_chapter12_4.c]: The main function using an
anonymous structure together with an anonymous union

In this example we are creating an anonymous union that has an
anonymous structure within. Therefore, the same memory region is used
to store an instance of the anonymous structure and the two-element
integer array. Next, you can see the output of the preceding program:

$ gcc ExtremeC_examples_chapter12_4.c -std=c11 -o ex12_4.out

$ ./ex12_4.out

Point (10, -5) using anonymous structure.

Point (10, -5) using anonymous byte array.

$

Shell Box 12-4: Compiling and running example 12.4

As you can see, any changes to the two-element integer array can be seen
in the structure variable, and vice versa.

Multithreading
Multithreading support has been available in C for a long time via POSIX
threading functions, or the pthreads  library. We have covered
multithreading thoroughly in Chapter 15, Thread Execution, and Chapter
16, Thread Synchronization.

The POSIX threading library, as the name implies, is only available in
POSIX-compliant systems such as Linux and other Unix-like systems.
Therefore, if you are on a non-POSIX compliant operating system such as
Microsoft Windows, you have to use the library provided by the operating
system. As part of C11, a standard threading library is provided that can be
used on all systems that are using standard C, regardless of whether it's
POSIX-compliant or not. This is the biggest change we see in the C11
standard.



Unfortunately, C11 threading is not implemented for Linux and macOS.
Therefore, we cannot provide working examples at the time of writing.

A bit about C18
As we've mentioned in the earlier sections, the C18 standard contains all
the fixes that were made in C11, and no new feature has been introduced
as part of it. As said before, the following link takes you to a page on
which you can see the issues created and being tracked for C11 and the
discussions around them: http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n2244.htm.

Summary
In this chapter, we went through C11, C18, and the most recent C
standards, and we explored C11's various new features. Unicode support,
anonymous structures and unions, and the new standard threading library
(despite the fact that it is not available in recent compilers and platforms
to date) are among the most important features that have been introduced
in modern C. We will look forward to seeing new versions of the C
standard in the future.

In the next chapter, we begin to talk about concurrency and the theory
behind concurrent systems. This will begin a long journey through six
chapters in which we'll cover multithreading and multi-processing in order
to fulfil our purpose to be able to write concurrent systems.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2244.htm


Chapter 13
Concurrency

Over the course of the next two chapters we are going to talk about
concurrency and the theoretical background that is required for developing
concurrent programs, not only in C, but necessarily in other languages as
well. As such, these two chapters won't contain any C code and instead use
pseudo-code to represent concurrent systems and their intrinsic properties.

The topic of concurrency, due to its length, has been split into two
chapters. In this chapter we will be looking at the basic concepts regarding
concurrency itself, before moving to Chapter 14, Synchronization, where
we will discuss concurrency-related issues and the synchronization
mechanisms used in concurrent programs to resolve said issues. The
collective end goal of these two chapters is to provide you with enough
theoretical knowledge to proceed with the multithreading and multi-
processing topics discussed in upcoming chapters.

The background knowledge we build in this chapter will also be useful
when working with the POSIX threading library, which we use throughout
this book.

In this first chapter on concurrency, we will be working on understanding:

How parallel systems differ from concurrent systems
When we need concurrency
What a task scheduler is, and what the widely used scheduling
algorithms are
How a concurrent program is run and what the interleavings are
What a shared state is and how various tasks can access it



Let's start our look into concurrency by giving an introduction to the
concept, and understanding broadly what it means for us.

Introducing concurrency
Concurrency simply means having multiple pieces of logic within a
program being executed simultaneously. Modern software systems are
often concurrent, as programs need to run various pieces of logic at the
same time. As such, concurrency is something that every program today is
using to a certain extent.

We can say that concurrency is a powerful tool that lets you write
programs that can manage different tasks at the same time, and the support
for it usually lies in the kernel, which is at the heart of the operating
system.

There are numerous examples in which an ordinary program manages
multiple jobs simultaneously. For example, you can surf the web while
downloading files. In this case, tasks are being executed in the context of
the browser process concurrently. Another notable example is in a video
streaming scenario, such as when you are watching a video on YouTube.
The video player might be in the middle of downloading future chunks of
the video while you are still watching previously downloaded chunks.

Even simple word-processing software has several concurrent tasks
running in the background. As I write this chapter on Microsoft Word, a
spell checker and a formatter are running in the background. If you were to
be reading this on the Kindle application on an iPad, what programs do
you think might be running concurrently as part of the Kindle program?

Having multiple programs being run at the same time sounds amazing, but
as with most technology, concurrency brings along with it several
headaches in addition to its benefits. Indeed, concurrency brings some of
the most painful headaches in the history of computer science! These
"headaches," which we will address later on, can remain hidden for a long



time, even for months after a release, and they are usually hard to find,
reproduce, and resolve.

We started this section describing concurrency as having tasks being
executed at the same time, or concurrently. This description implies that
the tasks are being run in parallel, but that's not strictly true. Such a
description is too simple, as well as inaccurate, because being concurrent
is different from being parallel, and we have not yet explained the
differences between the two. Two concurrent programs are different from
two parallel programs, and one of our goals in this chapter is to shine a
light on these differences and give some definitions used by the official
literature in this field.

In the following sections, we are going to explain some basic concurrency-
related concepts such as tasks, scheduling, interleavings, state, and shared
state, which are some of the terms you will come across frequently in this
book. It's worth pointing out that most of these concepts are abstract and
can be applied to any concurrent system, not just in C.

To understand the difference between parallel and concurrent, we are
going to briefly touch upon parallel systems.

Note that in this chapter we stick to simple definitions. Our sole purpose is
to give you a basic idea of how concurrent systems work, as going beyond
this would be outside of the scope of this book on C.

Parallelism
Parallelism simply means having two tasks run at the same time, or in
parallel. The phrase "in parallel" is the key element that differentiates
parallelism from concurrency. Why is this? Because parallel implies that
two things are happening simultaneously. This is not the case in a
concurrent system; in concurrent systems, you need to pause one task in
order to let another continue execution. Note that this definition can be too



simple and incomplete regarding the modern concurrent systems, but it is
sufficient for us to give you a basic idea.

We meet parallelism regularly in our daily lives. When you and your
friend are doing two separate tasks simultaneously, those tasks are being
done in parallel. To have a number of tasks in parallel, we need separate
and isolated processing units, each of which is assigned to a certain task.
For instance, in a computer system, each CPU core is a processor unit that
can handle one task at a time.

For a minute, look at yourself as the sole reader of this book. You cannot
read two books in parallel; you would have to pause in reading one of
them in order to read the other. Yet, if you added your friend into the mix,
then it's possible for two books to be read in parallel.

What would happen if you had a third book that needed to be read? Since
neither of you can read two books in parallel, then one of you would need
to pause in reading your book to continue with the third one. This simply
means that either you or your friend need to divide your time properly in
order to read all three books.

In a computer system, there must be at least two separate and independent
processing units in order to have two parallel tasks being executed on that
system. Modern CPUs have a number of cores inside, and those cores are
the actual processing units. For example, a 4-core CPU has 4 processing
units, and therefore can support 4 parallel tasks being run simultaneously.
For simplicity, in this chapter we will suppose that our imaginary CPU has
only one core inside and therefore cannot perform parallel tasks. There
will be some discussion regarding multi-core CPUs later, within relevant
sections.

Suppose that you get two laptops with our imaginary CPU inside, with one
playing a piece of music, and the other one finding the solution to a
differential equation. Both of them are functioning in parallel, but if you
want them to do both on the same laptop using only one CPU, and with
one core, then it cannot be parallel and it is in fact concurrent.



Parallelism is about tasks that can be parallelized. This means that the
actual algorithm can be divided and run on multiple processor units. But
most of the algorithms we write, as of today, are sequential and not
parallel in nature. Even in multithreading, each thread has a number of
sequential instructions that cannot be broken into some parallel execution
flows.

In other words, a sequential algorithm cannot be easily broken into some
parallel flows of execution automatically by the operating system, and this
should be done by a programmer. Therefore, with having a multi-core
CPU, you still need to assign each of the execution flows to a certain CPU
core, and in that core, if you have more than one flow assigned, you cannot
have both of them running in parallel, and you immediately observe a
concurrent behavior.

In short, of course having two flows, each assigned to a different core, can
end up in two parallel flows but assigning them to just one core, would
result in two concurrent flows. In multi-core CPUs we effectively observe
a mixed behavior, both parallelism between the cores, and concurrency on
the same core.

Despite its simple meaning and numerous everyday examples, parallelism
is a complex and tough topic in computer architecture. In fact, it is a
separate academic subject from concurrency, with its own theories, books,
and literature. Being able to have an operating system that can break a
sequential algorithm into some parallel execution flows is an open field of
research and the current operating systems cannot do that.

As stated, the purpose of this chapter is not to go into any depth in
parallelism, but only to provide an initial definition for the concept. Since
further depth of discussion about parallelism is beyond the scope of this
book, let's begin with the concept of concurrency.

Firstly, we'll talk about concurrent systems and what it really means in
comparison to parallelism.



Concurrency
You may have heard about multitasking – well, concurrency has the same
idea. If your system is managing multiple tasks at the same time, you need
to understand that it does not necessarily mean that the tasks are being run
in parallel. Instead, there can be a task scheduler in the middle; this
simply switches very quickly between the different tasks and performs a
tiny bit of each of them in a fairly small amount of time.

This certainly happens when you have just one processor unit. For the rest
of our discussion in this section, we assume that we are operating on just
one processor unit.

If a task scheduler is sufficiently fast and fair, you won't notice the
switching between the tasks, and they'll appear to be running in parallel
from your perspective. That's the magic of concurrency, and the very
reason why it is being used in most of the widely known operating
systems, including Linux, macOS, and Microsoft Windows.

Concurrency could be seen as a simulation of performing tasks in parallel,
using a single processor unit. In fact, the whole idea can be referred to as a
form of artificial parallelism. For old systems that only had a single CPU,
with only one core, it was a huge advance when people were able to use
that single core in a multitasking fashion.

As a side note, Multics was one of the first operating systems designed to
multitask and manage simultaneous processes. You'll remember that in
Chapter 10, Unix – History and Architecture, Unix was built based on the
ideas gained from the Multics project.

As we've explained previously, almost all operating systems can perform
concurrent tasks through multitasking, especially POSIX-compliant
operating systems, since the ability is clearly exposed in the POSIX
standard.



Task scheduler unit
As we've said before, all multitasking operating systems are required to
have a task scheduler unit, or simply a scheduler unit, in their kernel. In
this section, we're going to see how this unit works and how it contributes
to the seamless execution of some concurrent tasks.

Some facts regarding the task scheduler unit are listed as follows:

The scheduler has a queue for tasks waiting to be executed. Tasks or
jobs are simply the pieces of work that should be performed in
separate flows of execution.
This queue is usually prioritized, with the high-priority tasks being
chosen to start first.
The processor unit is managed and shared among all the tasks by the
task scheduler. When the processor unit is free (no task is using it),
the task scheduler must select another task from its queue before
letting it use the processor unit. When the task is finished, it releases
the processor unit and make it available again, then the task scheduler
selects another task. This goes on in a continuous loop. This is called
task scheduling, and it is the sole responsibility of the task scheduler
to do this.
There are many scheduling algorithms that the task scheduler can
operate, but all of them should address specific requirements. For
example, all of them should be fair, and no task should be starved in
the queue as a result of not being chosen for a prolonged period of
time.
Based on a chosen scheduling strategy, the scheduler should either
dedicate a specific time slice or time quantum to the task in order to
use the processor unit, or alternatively, the scheduler must wait for
the task to release the processor unit.
If the scheduling strategy is preemptive, the scheduler should be able
to forcefully take back the CPU core from the running task in order to
give it to the next task. This is called preemptive scheduling. There is



also another scheme in which the task releases the CPU voluntarily,
which is called cooperative scheduling.
Preemptive scheduling algorithms try to share time slices evenly and
fairly between different tasks. Prioritized tasks may get chosen more
frequently, or they may even get longer time slices depending upon
the implementation of the scheduler.

A task is a general abstract concept, used to refer to any piece of work that
should be done in a concurrent system, not necessarily a computer system.
We'll look at what exactly these non-computer systems are shortly.
Likewise, CPUs are not the only type of resource that can be shared
between tasks. Humans have been scheduling and prioritizing tasks for as
long as we have existed, when we are faced with tasks that we cannot
complete simultaneously. In the next few paragraphs, we will consider
such a situation as a good example for understanding scheduling.

Let's suppose that we are at the beginning of the twentieth century and
there is only one telephone booth in the street, and 10 people are waiting
to use the telephone. In this case, these 10 people should follow a
scheduling algorithm in order to share the booth fairly between
themselves.

First of all, they need to stand in a queue. This is the most basic decision
that enters the civilized mind in such a situation – to stand in the queue
and wait for your turn. However, this alone is not enough; we also need
some regulations to support this method. The first person, who is currently
using the phone, can't talk as much as they might like to when there are
nine other people waiting for the booth. The first person must leave the
booth after a certain amount of time in order to allow the next person in
the queue their turn.

In the rare case that they have not finished their conversation yet, the first
person should stop using the phone after a certain amount of time, leave
the booth, and go back to the end of the queue. They must then wait for
their next turn so that they can continue their talk. This way, each of the 10
people will need to continue entering the booth, until they have completed
their conversation.



This is just an example. We encounter examples of sharing resources
between a number of consumers every day, and humans have invented
many ways to share these resources fairly between themselves – to the
extent that human nature allows! In the next section, we return to
considering scheduling within the context of a computer system.

Processes and threads
Throughout this book, we are mainly interested in task scheduling within
computer systems. In an operating system, tasks are either processes or
threads. We'll explain them and their differences in the upcoming
chapters, but for now, you should know that most operating systems treat
both in basically the same way: as some tasks that need to be executed
concurrently.

An operating system needs to use a task scheduler to share the CPU cores
among the many tasks, be they processes or threads, that are willing to use
the CPU for their execution. When a new process or a new thread is
created, it enters the scheduler queue as a new task, and it waits to obtain a
CPU core before it starts running.

In cases in which a time-sharing or preemptive scheduler is in place, if the
task cannot finish its logic in a certain amount of time, then the CPU core
will be taken back forcefully by the task scheduler and the task enters the
queue again, just like in the telephone booth scenario.

In this case, the task should wait in the queue until it obtains the CPU core
once more, and then it can continue running. If it cannot finish its logic in
the second round, the same process continues until it is able to finish.

Every time a preemptive scheduler stops a process in the middle of
running and puts another process into the running state, it is said that a
context switch has occurred. The faster the context switches are, the more
a user will feel as if the tasks are being run in parallel. Interestingly, most



operating systems today use a preemptive scheduler, something that will
be our main focus for the rest of this chapter.

From now on, all schedulers are assumed to be preemptive. I will specify
in instances where this is not the case.

When a task is running, it may experience hundreds or even thousands of
context switches before being finished. However, context switches have a
very bizarre and unique characteristic – they are not predictable. In other
words, we are not able to predict when, or even at which instruction, a
context switch is going to happen. Even in two remarkably close
successive runs of a program on the same platform, the context switches
will happen differently.

The importance of this, and the impact it has, cannot be overstated;
context switches cannot be predicted! Shortly, through the given examples,
you'll observe the consequences of this for yourself.

Context switches are highly unpredictable, to such an extent that the best
way to deal with this uncertainty is to assume that the probability of
having a context switch on a specific instruction is the same for all
instructions. In other words, you should expect that all instructions are
subject to experiencing a context switch in any given run. What this
means, simply, is that you may have gaps between the execution of any
two adjacent instructions.

With that being said, let's now move on and take a look at the only
certainties that do exist in a concurrent environment.

Happens-before constraint
We established in the previous section that context switches are not
predictable; there is uncertainty about the time at which they are likely to



occur in our programs. Despite that, there is certainty about the
instructions that are being executed concurrently.

Let's continue with a simple example. To start with, we're going to work
on the basis that we've got a task like the one you see next in Code Box 13-
1, which has five instructions. Note that these instructions are abstract, and
they don't represent any real instructions like C or machine instructions:

Task P {

1. num = 5

2. num++

3. num = num – 2

4. x = 10

5. num = num + x

}

Code Box 13-1: A simple task with 5 instructions

As you can see, the instructions are ordered, which means that they must
be executed in that specified order in order to satisfy the purpose of the
task. We are certain about this. In technical terms, we say that we have a
happens-before constraint between every two adjacent instructions. The
instruction num++  must happen before num = num - 2  and this constraint
must be kept satisfied no matter how the context switches are happening.

Note that we still have uncertainty about when the context switches are
going to happen; it's key to remember that they can happen anywhere
between the instructions.

Here, we are going to present two possible executions of the preceding
task, with different context switches:

Run 1:

1. num = 5

2. num++

>>>>> Context Switch <<<<<

3. num = num – 2

4. x = 10

>>>>> Context Switch <<<<<

5. num = num + x



Code Box 13-2: One possible run of the above task together with the context switches

And for the second run, it is executed as the following:

Run 2:

num = 5

>> Context Switch <<

num++

num = num – 2

>> Context Switch <<

x = 10

>> Context Switch <<

num = num + x

Code Box 13-3: Another possible run together with the context switches

As you can see in Code Box 13-2, the number of context switches and the
places they occur can both change in each run. Yet, as we said before, there
are certain happens-before constraints that should be followed.

This is the reason we can have an overall deterministic behavior for a
specific task. No matter how context switches happen in different runs, the
overall state of a task remains the same. By the overall state of a task, we
mean the set of variables and their corresponding values after the
execution of the last instruction in the task. For example, for the preceding
task, we always have the final state, including the num  variables with a
value of 14 , and the variable x  with a value of 10 , regardless of the
context switches.

By knowing that the overall state of a single task does not change in
different runs, we might be tempted to conclude that due to having to
follow the order of execution and the happens-before constraints,
concurrency cannot affect the overall state of a task. Yet, we should be
careful about this conclusion.

Let's assume that we have a system of concurrent tasks, all having
read/write permissions over a shared resource, say a variable. If all the
tasks only read the shared variable and none of them are going to write to



it (change its value), we can say that no matter how context switches are
happening, and no matter how many times you run the tasks, we always
get the same results. Note that this is also true about a system of
concurrent tasks that have no shared variable at all.

Yet, if just one of the tasks is going to write to the shared variable, then the
context switches imposed by the task scheduler unit will affect the overall
state of all tasks. This means that it can be different from one run to
another! Consequently, a proper control mechanism should be employed to
avoid any unwanted results. This is all due to the fact that context switches
cannot be predicted, and the tasks' intermediate states can vary from one
run to another. An intermediate state, as opposed to overall state, is a set of
variables together with their values at a certain instruction. Every task has
only one overall state that is determined when it is finished, but it has
numerous intermediate states that correspond to the variables and their
values after executing a certain instruction.

In summary, when you have a concurrent system containing several tasks
with a shared resource that can be written to by any of those tasks, then
different runs of the system will yield different results. Hence, proper
synchronization methods should be used in order to cancel the effect of
context switches and obtain the same deterministic results in various runs.

We now have some of the basic concepts of concurrency, which is the
dominant topic of this chapter. The concepts explained in this section are
fundamental to our understanding of many topics, and you will hear them
again and again in future sections and chapters of this book.

You'll remember that we also said concurrency could be problematic and
in turn, it can make things more complicated for us. So, you may be
asking, when do we need it? In the next section of this chapter, we'll
answer that question.

When to use concurrency



Based on our explanations given so far, it seems that having only one task
is less problematic than having multiple tasks do the same thing
concurrently. This is quite right; if you can write a program that runs
acceptably without introducing concurrency, it is highly recommended that
you do so. There are some general patterns we can use to know when we
have to use concurrency.

In this section, we are going to walk through what these general patterns
are, and how they lead us to split a program into concurrent flows.

A program, regardless of the programming language used, is simply a set
of instructions that should be executed in sequence. In other words, a
given instruction won't be executed until the preceding instruction has
been executed. We call this concept a sequential execution. It doesn't
matter how long the current instruction takes to finish; the next instruction
must wait until the current one has been completed. It is usually said that
the current instruction is blocking the next instruction; this is sometimes
described as the current instruction being a blocking instruction.

In every program, all of the instructions are blocking, and the execution
flow is sequential in each flow of execution. We can only say a program is
running quickly if each instruction blocks the following instruction for a
relatively short time in terms of a few milliseconds. Yet, what happens if a
blocking instruction takes too much time (for example 2 seconds or 2000
milliseconds), or the time that it takes cannot be determined? These are
two patterns that tell us we need to have a concurrent program.

To elaborate further, every blocking instruction consumes an amount of
time when trying to get completed. For us, the best scenario is that a given
instruction takes a relatively short time to complete and after that, the next
instruction can be executed immediately. However, we are not always so
fortunate.

There are certain scenarios where we cannot determine the time that a
blocking instruction takes to complete. This usually happens when a
blocking instruction is waiting either for a certain event to occur, or for
some data to become available.



Let's continue with an example. Suppose that we have a server program
that is serving a number of client programs. There is an instruction in the
server program that waits for a client program to get connected. From the
server program's point of view, no one can say for sure when a new client
is about to connect. Therefore, the next instruction cannot be executed on
the server side because we don't know when we will be done with the
current one. It depends entirely on the time at which a new client tries to
connect.

A simpler example is when you read a string from the user. From the
program's point of view, no one can say for sure when the user will enter
their input; hence, future instructions cannot be executed. This is the first
pattern that leads to a concurrent system of tasks.

The first pattern for concurrency then, is when you have an instruction that
can block the flow of execution for an indefinite amount of time. At this
point you should split the existing flow into two separate flows or tasks.
You would do this if you need to have the later instructions being
executed, and you cannot wait for the current instruction to complete first.
More importantly for this scenario, we assume that the later instructions
are not dependent on the result of the current instructions being
completed.

By splitting our preceding flow into two concurrent tasks, while one of the
tasks is waiting for the blocking instruction to complete, the other task can
continue and execute those instructions that were blocked in the preceding
non-concurrent setup.

The following example that we're going to focus on in this section shows
how the first pattern can result in a system of concurrent tasks. We will be
using pseudo-code to represent the instructions in each task.

Note:

No prior knowledge of computer networks is needed to understand the
upcoming example.



The example we're going to focus on is about a server program that has
three objectives:

It calculates the sum of two numbers read from a client and returns
the result back to the client.
It writes the number of served clients to a file regularly, regardless of
whether any client is being served or not.
It must also be able to serve multiple clients at once.

Before talking about the final concurrent system that satisfies preceding
objectives, let's first suppose that in this example we are going to use only
one task (or flow) and then we are going to show that a single task cannot
accomplish the preceding objectives. You can see the pseudo-code for the
server program, in a single-task setup, in Code Box 13-4:

Calculator Server {

Task T1 {

1. N = 0

2. Prepare Server

3. Do Forever {

4. Wait for a client C

5. N = N + 1

6. Read the first number from C and store it in X

7. Read the second number from C and store it in Y

8. Z = X + Y

9. Write Z to C

10. Close the connection to C

11. Write N to file

}

}

}

Code Box 13-4: A server program operating using a single task

As you can see, our single flow waits for a client on the network to get
connected. It then reads two numbers from the client, then calculates their
sum and returns it to the client. Finally, it closes the client connection and
writes the number of served clients to a file before continuing to wait for
the next client to join in. Shortly, we'll show that the preceding code
cannot satisfy our aforementioned objectives.



This pseudo-code contains only one task, T1 . It has 12 lines of
instructions, and as we've said before, they are executed sequentially, and
all the instructions are blocking. So, what exactly is this code showing us?
Let's walk through it:

The first instruction, N = 0 , is simple and finishes very quickly.
The second instruction, Prepare Server , is expected to finish in a
reasonable time so that it won't block the execution of the server
program.
The third instruction is just starting the main loop and it should finish
quickly as we proceed to go inside the loop.
The fourth command, Wait for a client C , is a blocking instruction
with an unknown completion time. Therefore, commands 5, 6, and the
rest won't be executed. Hence, it seems that they must wait for a new
client to join in, and only after that, these instructions can be
executed.

As we said before, having instructions 5 to 10 wait for a new client is
must. In other words, those instructions are dependent on the output of
instruction 4 and they cannot be executed without having a client accepted.
However, instruction 11, Write N to file , needs to be executed
regardless of having a client or not. This is dictated by the second
objective that we've defined for this example. By the preceding
configuration, we write N  to file only if we have a client, despite this
being against our initial requirement, that is, we write N  to file regardless
of whether we have a client or not.

The preceding code has another problem in its flow of instructions; both
instructions 6 and 7 can potentially block the flow of execution. These
instructions wait for the client to enter two numbers, and since this is up to
the client we cannot predict exactly when these instructions are going to
finish. This prevents the program from continuing its execution.

More than that, these instructions potentially block the program from
accepting new clients. This is because the flow of executions won't reach
the command 4 again, if commands 6 and 7 are going to take a long time



to complete. Therefore, the server program cannot serve multiple clients at
once, which is again not in accordance with our defined objectives.

To resolve the aforementioned issues, we need to break our single task into
three concurrent tasks that together will satisfy our requirements for the
server program.

In the following pseudo-code in Code Box 13-5, you will find three flows
of execution, T1 , T2 , and T3 , that satisfy our defined objectives based
on a concurrent solution:

Calculator Server {

Shared Variable: N

Task T1 {

1. N = 0

2. Prepare Server

3. Spawn task T2

4. Do Forever {

5. Write N to file

6. Wait for 30 seconds

}

}

Task T2 {

1. Do Forever {

2. Wait for a client C

3. N = N + 1

4. Spawn task T3 for C

}

}

Task T3 {

1. Read first number from C and store it in X

2. Read first number from C and store it in Y

3. Z = X + Y

4. Write Z to C

5. Close the connection to C

}

}

Code Box 13-5: A server program operating using three concurrent tasks

The program starts by executing task T1 . T1  is said to be the main task of
the program because it is the first task that is going to be executed. Take
note that each program has at least one task and that all other tasks are
initiated by this task, either directly or indirectly.



In the preceding code box, we have two other tasks that are spawned by the
main task, T1 . There is also a shared variable, N , which stores the
number of served clients and can be accessed (read or written) by all the
tasks.

The program starts with the first instruction in task T1 ; through this, it
initializes the variable N  to zero. Then the second instruction prepares the
server. As part of this instruction, some preliminary steps should be taken
in order for the server program to be able to accept the incoming
connections. Note that so far there hasn't been any other concurrent task
running next to task T1 .

The third instruction in task T1  creates a new instance of task T2 . The
creation of a new task is usually fast and takes no time. Therefore, task T1
enters the infinite loop immediately after the creation of task T2 , where it
continues to write the value of the shared variable N  to a file every
30 seconds. This was our first objective defined for the server program
that has now been satisfied. Based on that, without having any interruption
or blockage from other instructions, task T1  writes the value of N  to a
file regularly, until the program finishes.

Let's talk about the spawned task. The sole responsibility of task T2  is to
accept the incoming clients as soon as they send the connection request.
It's also worth remembering that all the instructions in task T2  are run
inside an infinite loop. The second command in task T2  waits for a new
client. Here, it blocks other instructions in task T2  from executing, but
this is only applied to the instructions in task T2 . Note that if we had
spawned two instances of task T2  instead of one, having instructions
blocked in one of them would not block the instructions in the
other instance.

Other concurrent tasks, in this case only T1 , continue to execute their
instructions without any blockage. This is what concurrency enables;
while some tasks are blocked for a certain event, other tasks can continue
their work without any interruption. As we said before, this has an
important design principle at its core: Whenever you have a blocking
operation where either its finishing time is unknown, or it takes a long
time to complete, then you should break the task into two concurrent tasks.



Now, suppose that a new client joins. We've already seen in Code Box 13-
4, in the non-concurrent version of the server program, that the read
operations could block the acceptance of new clients. Based on the design
principle that we pointed out just now, since the read instructions are
blocking, we need to break the logic into two concurrent tasks, which is
why we have introduced task T3 .

Whenever a new client joins, task T2  spawns a new instance of task T3  in
order to communicate with the newly joined client. This was done by
instruction 4 in task T2 , which, to remind you, was the following
command:

4. Spawn task T3 for C

Code Box 13-6: Instruction 4 in task T2

It's important to note that before spawning a new task, task T2  increments
the value of the shared variable N  as an indication of having a new client
served. Again, a spawn instruction is fairly quick and doesn't block the
acceptance of new clients.

In task T2 , when instruction 4 is finished, the loop continues, and it goes
back to instruction 2, which waits for another client to join. Note that
based on the pseudo-code that we have, while we have only one instance of
task T1  and one instance of task T2 , we can have multiple instances of
T3  for every client.

The sole responsibility of task T3  is to communicate to the client and read
the input numbers. It then continues by calculating the sum and sending it
back to the client. As pointed out before, the blocking instructions inside
task T3  cannot block the execution of other tasks, and its blocking
behavior is limited to the same instance of T3 . Even the blocking
instructions in a specific instance of T3  cannot block the instructions in
another instance of T3 . This way, the server program can satisfy all of our
desired objectives in a concurrent way.



So, the next question might be, when do the tasks finish? We know that
generally, when all the instructions within a task are executed, the task is
finished. That being said, when we have an infinite loop wrapping all
instructions inside a task, the task won't finish, and its lifetime is
dependent on its parent task that has spawned it. We will discuss this
specifically regarding processes and threads in future chapters. For the
sake of our example, in our preceding concurrent program the parent task
of all instances of T3  is the only instance of task T2 . As you can see, a
specific instance of task T3  finishes either when it closes the connection
to the client after passing two blocking read instructions or when the only
instance of task T2  is finished.

In a rare but possible scenario, if all read operations take too much time to
complete (and this can be either intentional or accidental), and the number
of incoming clients increases rapidly, then there should be a moment
where we have too many instances of task T3  running and all of them are
waiting for their clients to provide their input numbers. This situation
would result in consuming a considerable amount of resources. Then, after
some time, by having more and more incoming connections, either the
server program would be terminated by the operating system, or it simply
cannot serve any more clients.

Whatever happens in the preceding case, the server program ceases to
serve the clients. When this occurs, it's called a denial of service (DoS).
Systems with concurrent tasks should be designed in such a way to
overcome these extreme situations that stop them from serving clients in a
reasonable fashion.

Note:

When under a DoS attack, congestion of resources on a server machine
occurs in order to bring it down and make it non-responsive. DoS attacks
belong to a group of network attacks that try to block a certain service in
order to make it unavailable to its clients. They cover a wide range of
attacks, including exploits, with the intention of stopping a service. This
can even include the flooding of a network in order to bring down the
network infrastructure.



In the preceding example of the server program, we described a situation
in which we had a blocking instruction whose completion time could not
be determined, and this was the first pattern for the use of concurrency.
There is another pattern that is similar to this, but slightly different.

If an instruction or a group of instructions take too much time to complete,
then we can put them in a separate task and run the new task concurrent to
the main task. This is different from the first pattern because, while we do
have an estimate of the completion time, albeit not a very accurate one, we
do know that it won't be soon.

The last thing to note about the preceding example, regarding the shared
variable, N , is that one of the tasks, specifically the instance of task T2 ,
could change its value. Based on our previous discussions in this chapter,
this system of concurrent tasks is therefore prone to concurrency problems
because of it having a shared variable that can be modified by one of the
tasks.

It's important to note that the solution we proposed for the server program
is far from perfect. In the next chapter, you'll be introduced to concurrency
issues, and through it you will see that the preceding example suffers from
a serious data race issue over the shared variable, N . As a result, proper
control mechanisms should be employed to resolve the issues created by
concurrency.

In the following and final section in this chapter, we are going to talk
about the states that are shared between some concurrent tasks. We will
also introduce the concept of interleaving and its important consequences
for a concurrent system with a modifiable shared state.

Shared states
In the previous section, we talked about the patterns suggesting that we
require a concurrent system of tasks. Before that, we also briefly explained
how the uncertainty in the pattern of context switches during the execution



of a number of concurrent tasks, together with having a modifiable shared
state, can lead to non-determinism occurring in the overall states of all
tasks. This section provides an example to demonstrate how this non-
determinism can be problematic in a simple program.

In this section, we are going to continue our discussion and bring in shared
states to see how they contribute to the non-determinism we talked about.
As a programmer, the term state should remind you of a set of variables
and their corresponding values at a specific time. Therefore, when we are
talking about the overall state of a task, as we defined it in the first
section, we are referring to the set of all existing non-shared variables,
together with their corresponding values, at the exact moment when the
last instruction of the task has been executed.

Similarly, an intermediate state of a task is the set of all existing non-
shared variables, together with their values when the task has executed a
certain instruction. Therefore, a task has a different intermediate state for
each of its instructions, and the number of intermediate states is equal to
the number of instructions. According to our definitions, the last
intermediate state is the same as the overall state of the task.

A shared state is also a set of variables together with their corresponding
values at a specific time which can be read or modified by a system of
concurrent tasks. A shared state is not owned by a task (it is not local to a
task), and it can be read or modified by any of the tasks running in the
system, and of course at any time.

Generally, we are not interested in shared states that are read-only. They
are usually safe to be read by many concurrent tasks, and they don't yield
any problem. However, a shared state that is modifiable usually yields
some serious problems if it is not protected carefully. Therefore, all the
shared states covered by this section are considered to be modifiable by at
least by one of the tasks.

Ask yourself this question: what can go wrong if a shared state is modified
by one of the concurrent tasks in a system? To answer this, we start by
giving an example of a system of two concurrent tasks accessing a single
shared variable, which, in this case, is a simple integer variable.



Let's suppose that we have the following system as displayed in Code Box
13-7:

Concurrent System {

Shared State {

X : Integer = 0

}

Task P {

A : Integer

1. A = X

2. A = A + 1

3. X = A

4. print X

}

Task Q {

B : Integer

1. B = X

2. B = B + 2

3. X = B

4. print X

}

}

Code Box 13-7: A system of two concurrent tasks with a modifiable shared state

Suppose that in the preceding system, tasks P  and Q  are not concurrently
run. Therefore, they become executed sequentially. Suppose that the
instructions in P  are executed first, before Q . If that was the case, then
the overall state of the whole system, regardless of the overall state of any
individual task, would be the shared variable, X , with a value of 3.

If you run the system in reverse order, first the instructions in Q  and then
the instructions in P , you will get the same overall state. However, this is
not usually the case and running two different tasks in a reversed order
probably leads to a different overall state.

As you can see, running these tasks sequentially produces a deterministic
result without worrying about context switches.

Now, suppose that they are run concurrently on the same CPU core. There
are many possible scenarios for putting the instructions of P  and Q  into



execution by considering various context switches occurring at various
instructions.

The following is a possible scenario:

Task P | Task Scheduler | Task Q

----------------------------------------------------

| Context Switch |

| | B = X

| | B = B + 2

| Context Switch |

A = X | |

| Context Switch |

| | X = B

| Context Switch |

A = A + 1 | |

X = A | |

| Context Switch |

| | print X

| Context Switch |

print X | |

| Context Switch |

Code Box 13-8: A possible interleaving of tasks P and Q when run concurrently

This scenario is only one of many possible scenarios with context switches
happening at certain places. Each scenario is called an interleaving. So, for
a system of concurrent tasks, there are a number of possible interleavings
based on the various places that context switches can happen, and in each
run only one of these many interleavings will happen. This, as a result,
makes them unpredictable.

For the preceding interleaving, as you can see in the first and last column,
the order of instructions and happens-before constraints are preserved, but
there could be gaps between the executions. These gaps are not
predictable, and as we trace the execution, the preceding interleaving leads
to a surprising result. Process P  prints the value 1  and process Q  prints
the value 2 , yet it was expected that both of them would print 3  as their
final result.



Note that in the preceding example, the constraint for accepting the final
result has been defined like this – the program should print two 3 s in the
output. This constraint could be something else, and independent of the
visible output of the program. More than that, there exist other critical
constraints that should remain invariant when facing unpredictable
context switches. These could include not having any data race or race
condition, having no memory leak at all, or even not to crash. All of these
constraints are far more important than the visible output of the program.
In many real applications, a program doesn't even have an output at all.

The following in Code Box 13-9 is another interleaving with a different
result:

Task P | Task Scheduler | Task Q

-------------------------------------------------

| Context Switch |

| | B = X

| | B = B + 2

| | X = B

| Context Switch |

A = X | |

A = A + 1 | |

| Context Switch |

| | print X

| Context Switch |

X = A | |

print X | |

| Context Switch |

Code Box 13-9: Another possible interleaving of tasks P and Q when run concurrently

In this interleaving, task P  prints 3 , but task Q  prints 2 . This occurs due
to the fact that task P  hasn't been lucky enough to update the value of the
shared variable X  before the third context switch. Therefore, task Q  just
printed the value of X , which was 2  at that moment. This condition is
called a data race over the variable X , and we explain this further in the
upcoming chapter.

In a real C program, we usually write X++  or X = X + 1  instead of firstly
copying X  into A  and then incrementing A , and finally putting it back
into X . You will see an example of this in Chapter 15, Thread Execution.



This clearly shows that a simple X++  statement in C consists of three
smaller instructions that won't be executed in a single time slice. In other
words, it is not an atomic instruction, but it has been made up of three
smaller atomic instructions. An atomic instruction cannot be broken down
into smaller operations and it cannot be interrupted by context switches.
We will see more of this in later chapters regarding multithreading.

There is another thing to consider regarding the preceding example. In the
preceding example, the tasks P  and Q  were not the only running tasks in
the system; there were also other tasks being executed concurrently to our
tasks P  and Q , but we didn't consider them in our analysis, and we only
discussed those two tasks. Why is that?

The answer to this question relies on the fact that the different
interleavings between any of these two tasks and the other tasks in the
system could not change the intermediate states of the task P  or Q . In
other words, the other tasks have no shared state with P  and Q , and as we
have explained before, when there are no shared resources between some
tasks, interleavings won't matter, as we can see in this case. Therefore, we
could assume that there are no other tasks besides P  and Q  in our
hypothetical system.

The only effect that the other tasks have upon P  and Q  is that, if there are
too many of them, they can make P  and Q 's execution slower. That's
simply a result of having long gaps between two successive instructions in
P  or Q . In other words, the CPU core needs to be shared among more
tasks. Therefore, tasks P  and Q  would need to wait in the queue more
often than normally, delaying their execution.

Using this example, you saw how even a single shared state between only
two concurrent tasks could lead to a lack of determinism in the overall
result. We have shown the problems associated with a lack of
determinism; we don't want to have a program that yields to a different
result in each run. The tasks in our example were relatively simple,
containing four trivial instructions, but real concurrent applications that
are present in the production environment are much more complex than
this.



More than that, we have various kinds of shared resources that don't
necessarily reside in the memory, such as files or services that are
available on the network.

Likewise, the number of tasks trying to access a shared resource can be
high, and therefore we need to study concurrency issues in a deeper sense
and find mechanisms to bring back determinism. In the next chapter, we'll
continue our discussions by talking about concurrency issues and the
solutions to fix them.

Before finishing this chapter, let's briefly talk about the task scheduler and
how it works. If we only have one CPU core, then, at any given moment,
we can only have one task using that CPU core.

We also know that the task scheduler itself is a piece of program that
needs a slice of the CPU core to be executed. So, how does it manage
different tasks in order to use the CPU core when another task is using it?
Let's suppose that the task scheduler itself is using the CPU core. Firstly, it
selects a task from its queue before it sets a timer for a timer interrupt to
happen, and it then leaves the CPU core and gives its resources over to the
selected task.

Now that we have assumed that the task scheduler will give each task a
certain amount of time, there is a time that the interrupt will act, and the
CPU core stops the execution of the current task and immediately loads
the task scheduler back into the CPU. Now, the scheduler stores the latest
status of the previous task and loads the next one from the queue. All of
this goes on until the kernel is up and running. Regarding a machine
having a CPU with multiple cores, this can change, and the kernel can use
various cores while scheduling the tasks for other cores.

In this section, we briefly went over the concept of shared states and the
way they participate in concurrent systems. The discussions will be
continued in the next chapter by talking about concurrency issues and
synchronization techniques.



Summary
In this chapter, we went through the basics of concurrency, and the
essential concepts and terminology that you need to know in order to
understand the upcoming topics of multithreading and multi-processing.

Specifically, we discussed the following:

The definitions of concurrency and parallelism – the fact that each
parallel task needs to have its own processor unit, while concurrent
tasks can share a single processor.
Concurrent tasks use a single processor unit while a task scheduler
manages the processor time and shares it between different tasks.
This will lead to a number context switches and different
interleavings for each task.
An introduction to blocking instructions. We also explained the
patterns that suggest when we require concurrency, and the way we
could break a single task into two or three concurrent tasks.
We described what a shared state is. We also showed how a shared
state could lead to serious concurrency issues like data races when
multiple tasks try to read and write the same shared state.

In the following chapter, we complete our discussion on the topic of
concurrency, and we explain the several types of issues that you will
experience in a concurrent environment. Talking about the solutions to
concurrency-related issues will also be a part of our discussions in the
following chapter.



Chapter 14
Synchronization

In the previous chapter, we went through the basic concepts and the widely
used terminology of concurrency. In this chapter, we are going to focus on
issues that might appear as a result of using concurrency in a program.
Like the previous chapter, we won't deal with any C source code; instead,
we'll place our focus solely on the concepts and the theoretical background
around concurrency issues and resolving them.

As part of this chapter, we're going to learn about:

Concurrency-related issues, namely, race conditions, and data
races: We will discuss the effect of having a shared state among
multiple tasks and how simultaneous access to the shared variable
can lead to issues.
Concurrency control techniques used to synchronize access to
a shared state: We will be mainly talking about these techniques
from a theoretical point of view, and we will be explaining the
approaches we could take to overcome concurrency-related issues.
Concurrency in POSIX: As part of this topic, we discuss how
POSIX can standardize the way we should develop concurrent
programs. We briefly explain and compare multithreaded and multi-
process programs.

In the first section, we will further discuss how the non-deterministic
nature of concurrent environments can lead to concurrency issues, as we
mentioned in the previous chapter. We will also talk about how we can
categorize such issues.



Concurrency issues
Throughout the previous chapter, we have seen that a modifiable shared
state can cause issues when some concurrent tasks are able to change the
shared state's value. Exploring this further we might ask, what kind of
issues may occur? What is the main reason behind them? We will answer
these questions within this section.

First of all, we need to distinguish the different types of concurrency
issues that might occur. Some concurrency issues only exist when no
concurrency control mechanism is in place, and some are introduced by
using a concurrency control technique.

Regarding the issues in the first group, they happen when you can see that
different interleavings result in different overall states. Upon identifying
one of these issues, the next step of course will be to begin thinking about
a suitable fix to resolve said issue.

Regarding the second group, they only arise following a fix being put in
place. This means that when you fix a concurrency issue, you may
introduce a new issue that has a totally different nature and a different root
cause; this is what makes concurrent programs problematic to deal with.

As an example, suppose that you have a number of tasks that all have
read/write access to the same shared data source. After running the tasks
multiple times, you find out that your algorithms, written for different
tasks, do not function as they are supposed to. This is leading to accidental
crashes or logical errors that occur randomly. Since the occurrences of
crashes and wrong results are random and not predictable in your case, you
could reasonably presume that it might be concurrency issues.

You begin to analyze the algorithms over and over again, and finally you
find the problem; there is a data race over the shared data source. Now
you need to come up with a fix that tries to control the access to the shared
data source. You implement a solution and run the system again, and
surprisingly you find out that sometimes some of the tasks never get the
chance to access the data source. We technically say that these tasks are



starved. A new issue, with a completely different nature from the first
issue, has been introduced by your changes!

Therefore, we now have two different groups of concurrency issues, these
being:

The issues that exist in a concurrent system while having no control
(synchronization) mechanism in place. We call them intrinsic
concurrency issues.
The issues that happen after the attempted resolution of an issue in
the first group. We call them post-synchronization issues.

The reason behind calling the first group intrinsic is due to the fact that
these issues are present intrinsically in all concurrent systems. You cannot
avoid them, and you have to deal with them via the use of control
mechanisms. In a way, they can be considered as a property of the
concurrent systems rather than being issues. Despite that, we treat them as
issues because their non-deterministic nature interferes with our ability to
develop the deterministic programs that we require.

The issues in the second group only happen when you use control
mechanisms in the wrong way. Note that control mechanisms are not
problematic at all and indeed are necessary to bring back the determinism
to our programs. If they are used in the wrong fashion, however, they can
lead to secondary concurrency problems. These secondary problems, or
post-concurrency issues, can be considered as new bugs being introduced
by a programmer, rather than being an intrinsic property of a concurrent
system.

In the following sections, we are going to introduce the issues in both
groups. First, we start with intrinsic issues and we discuss the main reason
behind having these intrinsic problematic properties in concurrent
environments.

Intrinsic concurrency issues



Every concurrent system with more than one task can have a number of
possible interleavings, which can be thought of as an intrinsic property of
the system. From what we've learned so far, we know that this property
has a non-deterministic nature, which causes the instructions of different
tasks to be executed in a chaotic order in each run, while still following
the happens-before constraints. Note that this is something that has
already been explained in the previous chapter.

Interleavings are not problematic by themselves and, as we've explained
before, they're an intrinsic property of a concurrent system. But in some
cases, this property dissatisfies some constraints that are meant to be
conserved. This is exactly when interleavings yield issues.

We know that it's possible to have many interleavings while a number of
tasks are being executed concurrently. Yet issues only arise when a
constraint of the system, which should have been invariant, happens to be
changed by the interleavings from one run to another. Therefore, our goal
is to employ some control mechanisms, which sometimes are referred to
as synchronization mechanisms, in order to keep that constraint unchanged
and invariant.

This constraint is usually expressed through a list of conditions and
criteria, which from now on we will refer to as invariant constraints.
These constraints can be about almost anything in a concurrent system.

The invariant constraints can be something very simple, like the example
we gave in previous chapters, in which the program should have printed
two 3s in its output. They can also be very complex, like conserving the
data integrity of all the external data sources in a huge concurrent
software program.

Note:

It's very hard to produce every possible interleaving. In some cases, a
specific interleaving is only possible with a very low probability. It might
happen one time in a million, if at all.

This is another dangerous aspect of concurrent development. While some
interleavings might only occur once in a million, when they do go



wrong, they go wrong badly. They can cause, for example, a plane crash
or a serious device malfunction during a brain surgery!

Every concurrent system has some least well-defined invariant constraints.
As we progress through the chapter, we give examples and for every
example, we shall discuss its invariant constraints. This is because we
need these constraints to be able to design a specific concurrent system
that will satisfy them and keep them invariant.

The interleavings happening in a concurrent system should satisfy the
already defined invariant constraints. If they do not, something is wrong
with the system. This is where invariant constraints become a very
important factor. Whenever there are interleavings that dissatisfy the
invariant constraints of a system, we say that we have a race condition in
the system.

A race condition is an issue that is caused by the intrinsic property of
concurrent systems, or in other words, the interleavings. Whenever we get
a race condition, the invariant constraints of the system are in danger of
being missed.

The consequences of failing to satisfy the invariant constraints can be
observed as either logical errors or sudden crashes. There are numerous
examples in which the values stored in the shared variables are not
reflecting the true state. This is mainly because of having different
interleavings that corrupt the data integrity of the shared variable.

We will explain data integrity-related issues later on in this chapter but,
for now, let's look at the following example. Like we said before, we have
to define the invariant constraints of an example before being able to jump
to it. Example 14.1 shown in Code Box 14-1 has only one invariant
constraint, and it is to have the final correct value in the shared Counter
variable, which should be 3 . There are three concurrent tasks in this
example. Every task is supposed to increment the Counter  by one, and
this is the logic that we have aimed for in the following code box:

Concurrent System {



Shared State {

Counter : Integer = 0

}

Task T1 {

A : Integer

1.1. A = Counter

1.2. A = A + 1

1.2. Counter = A

}

Task T2 {

B : Integer

2.1. B = Counter

2.2. B = B + 1

2.2. Counter = B

}

Task T3 {

A : Integer

3.1. A = Counter

3.2. A = A + 1

3.2. Counter = A

}

}

Code Box 14-1: A system of three concurrent tasks operating a single shared variable

In the preceding code box, you see a concurrent system written in pseudo-
code. As you can see, there are three tasks in the concurrent system. There
is also a section for shared states. In the preceding system, Counter  is the
only shared variable that is accessible by all three tasks.

Every task can have a number of local variables. These local variables are
private to the task and other tasks cannot see them. That's why we can
have two local variables with the same A , but every one of them is
different and local to its owner task.

Note that tasks cannot operate directly on the shared variables, and they
can only read their values or change their values. That's basically why you
need to have some local variables. As you can see, the tasks can only
increment a local variable and not the shared variable directly. This is in
close harmony with what we see in multithreading and multi-processing
systems, and that's why we've chosen the preceding configuration to
represent a concurrent system.



The example shown in Code Box 14-1 shows us how the race condition can
result in a logical error. It is easy to find an interleaving that results in
having the value 2  in the shared Counter  variable. Just look at the
interleaving in Code Box 14-2:

Task Scheduler | Task T1 | Task T2 | Task T3

---------------------------------------------------------

Context Switch | | |

| A = Counter | |

| A = A + 1 | |

| Counter = A | |

Context Switch | | |

| | B = Counter |

| | B = B + 1 |

Context Switch | | |

| | | A = Counter

Context Switch | | |

| | Counter = B |

Context Switch | | |

| | | A = A + 1

| | | Counter = A

Code Box 14-2: An interleaving violating the invariant constraint defined for Code Box 14.1

Here, it is easy to trace the interleaving. Instructions 2.3  and 3.3
(as seen in Code Box 14-1) both store the value 2  inside the shared
Counter  variable. The preceding situation is called a data race, something
that we explain in more detail later in this section.

The next example, shown in Code Box 14-3, demonstrates how a race
condition can result in a crash.

Note:

In the following section we will be using a C pseudo-codes example.
This is because we have not yet introduced the POSIX API, which is
necessary for writing C codes that create and manage threads or
processes.

The following code is an example that can result in a segmentation fault if
it is written with C:



Concurrent System {

Shared State {

char *ptr = NULL; // A shared char pointer which is

// supposed to point to a memory

// address in the Heap space. It

// becomes null by default.

}

Task P {

1.1. ptr = (char*)malloc(10 * sizeof(char));

1.2. strcpy(ptr, "Hello!");

1.3. printf("%s\n", ptr);

}

Task Q {

2.1. free(ptr);

2.2. ptr = NULL;

}

}

Code Box 14-3: An interleaving violating the invariant constraint of the example seen in Code
Box 14-1

One of the obvious invariant constraints that we are concerned about as
part of this example is to not let a task crash, something that is implicitly
included in our invariant constraints. If a task cannot survive to complete
its job, then having an invariant constraint is contradictory in the first
place.

There are some interleavings that cause the preceding tasks to crash. Next,
we explain two of them:

Firstly, suppose that instruction 2.1  is executed first. Since ptr  is
null, then task Q  will crash, while task P  continues. As a result, and
in the multithreading use case where both tasks (threads) belong to
the same process, the whole program containing two tasks will crash.
The main reason behind the crash is deleting a null pointer.
The other interleaving is when instruction 2.2  is executed before
1.2  but after 1.1 . In this case, task P  will crash, while task Q
finishes without a problem. The main reason behind the crash is
dereferencing a null pointer.



Therefore, as you see in the previous examples, having a race condition in
a concurrent system can lead to different situations, like logical errors or
sudden crashes. Two occurrences that obviously need to be resolved
properly.

It's worth taking a moment to make sure that we understand that not all
race conditions in a concurrent system can be easily identified. Some of
the race conditions remain hidden until they show themselves much later.
This is why I opened this chapter by saying that concurrent programs are
problematic to deal with.

With that said, sometimes we'll use race detectors to find the existing race
conditions in branches of code that would be executed less often. They can
be used in fact to identify the interleavings leading to a race condition.

Note:

The race condition can be detected by a group of programs called race
detectors. They are grouped based on being static or dynamic.

Static race detectors will go through the source code and try to produce
all the interleavings based on the observed instructions, while dynamic
race detectors run the program first and then wait for a code execution
that is suspected to be a race condition. Both are used in combination to
mitigate the risk of having race conditions.

Now, it is time for a question. Is there a single primary reason behind all
race conditions? We need to answer this question in order to come up with
a solution that removes the race conditions. We know that whenever an
interleaving dissatisfies the invariant constraint, a race condition happens.
Therefore, to answer the question, we need to conduct a deeper analysis of
the possible invariant constraints and see how they can be missed.

From what we've observed across various concurrent systems, in order to
keep an invariant constraint satisfied there are always a number of
instructions found in different tasks that should be executed in a strict
order across all interleavings.



Hence, those interleavings that follow this order don't violate the invariant
constraint. We are satisfied with regard to these interleavings, and we
observe the desired output. The interleavings that don't keep to the strict
order will dissatisfy the invariant constraint and thus can be considered as
problematic interleavings.

For these interleavings, we need to employ mechanisms to restore the
order and make sure that the invariant constraints are always satisfied.
Example 14.2 can be seen in Code Box 14-4. The constraint that should
remain invariant is to have 1 printed in the output. While this constraint
is a bit immature, and you won't see it in real concurrent applications, it
serves to help us understand the concepts we are discussing:

Concurrent System {

Shared State {

X : Integer = 0

}

Task P {

1.1. X = 1

}

Task Q {

2.1. print X

}

}

Code Box 14-4: A very simple concurrent system suffering from a race condition

The preceding example can have two different outputs based on the
interleavings it has. If we want to have 1  printed in the output, which is
enforced by the invariant constraint, then we need to define a strict order
for the instructions in the two different tasks.

For this purpose, the print instructions, 2.1 , must be executed only after
instruction 1.1 . Since there is another interleaving that easily violates
such order, hence the invariant constraint, then we have a race condition.
We need a strict order between these instructions. However, putting them
in the desired order is not an easy job. We will be discussing the ways to
restore this order later on in this chapter.



Let's look at example 14.3, below. In the following code, we have a system
of three tasks. We should note that there is no shared state in this system.
Yet, with that being said, we have a race condition. Let's define the
invariant constraint of the following system to be printing always 1 first,
2 second, and 3 last:

Concurrent System {

Shared State {

}

Task P {

1.1. print 3

}

Task Q {

2.1. print 1

}

Task R {

3.1. print 2

}

}

Code Box 14-5: Another very simple concurrent system suffering from race condition but
without having any shared state

Even in this very simple system, you cannot guarantee which task is going
to begin first, and because of that, we have a race condition. Therefore, to
satisfy the invariant constraint, we need to execute the instructions in the
following order: 2.1 , 3.1 , 1.1 . This order must be kept in all possible
interleavings.

The preceding example reveals an important feature of race conditions,
that is: To have a race condition in a concurrent system, we don't need to
have a shared state. Instead, to avoid having a race condition, we need to
keep some of the instructions in a strict order all the time. We should take
note that race conditions only happen because a small set of instructions,
usually known as a critical section, that are executed out of order, while
other instructions can be executed in any order.

Having both a writable shared state and a specific invariant constraint in
regard to the shared state can impose a strict order between the read and
write instructions targeting that shared state. One of the most important



constraints about a writable shared state is the data integrity. It simply
means that all tasks should always be able to read the latest and the
freshest value of the shared state, in addition to being aware of any update
made to the shared state before continuing with their own instructions that
modify the shared state.

Example 14.4, shown in Code Box 14-6, explains the data integrity
constraint and, more importantly, how it can be missed easily:

Concurrent System {

Shared State {

X : Integer = 2

}

Task P {

A : Integer

1.1. A = X

1.2. A = A + 1

1.3. X = A

}

Task Q {

B : Integer

2.1. B = X

2.2. B = B + 3

2.3. X = B

}

}

Code Box 14-6: A concurrent system suffering from a data race over shared variable X

Consider the following interleaving. Firstly, instruction 1.1  is executed.
Therefore, the value of X  is copied to the local variable A . However, task
P  is not so lucky, so a context switch happens, and the CPU is granted to
task Q . Instruction 2.1  is then executed, and then the value of X  is
copied to the local variable B . Therefore, both variables A  and B  have
the same value, 2 .

Now, task Q  is lucky and can continue its execution. Instruction 2.2  is
then executed, and B  becomes 5 . Task Q  continues and writes the value
5  to the shared state X . So, X  becomes 5 .



Now, the next context switch happens, and the CPU is given back to task
P . It continues with instruction 1.2 . This is where the integrity
constraint is missed.

The shared state X  has been updated by task Q , but task P  is using the
old value 2  for the rest of its calculations. Eventually, it resets the value
of X  to 3 , something that can hardly be a result that the programmer
wishes for. To keep the constraint of the data integrity satisfied, we have to
make sure that instruction 1.1  is executed only after instruction 2.3 , or
that instruction 2.1  is executed only after instruction 1.3 , otherwise the
data integrity is potentially compromised.

Note:

You may ask yourself why we have used the local variables A  and B
when we could easily write X = X + 1  or X = X + 3 .

As we explained in the previous chapter, the instruction X = X + 1 ,
which in C is written as X++ , is not an atomic instruction. It simply
means that it cannot be done in just one instruction and it needs more
than one. This is because we never have direct access to a variable in
memory when doing an operation on it.

We always use a temporary variable, or a CPU register, to keep the latest
value and perform the operation on the temporary variable or register and
then transfer the result back to memory. Therefore, no matter how you
write it, there is always a temporary variable locally associated to the
task.

You will see that the situation is even worse in systems with more than
one CPU core. We have also CPU caches that cache the variables and
don't transfer the result back to the variable in the main memory
immediately.

Let's talk about another definition. Whenever some interleavings
invalidate the constraint of the data integrity related to a shared state, it is
said that we have a data race over that shared state.

Data races are very similar to race conditions, but to have a data race we
need to have a shared state among different tasks and that shared state
must be modifiable (writable) by at least one of the tasks. In other words,



the shared state should not be read-only for all tasks, and there should be
at least one task which may write to the shared state based on its logic.

As we said before, for a read-only shared state, we can't have a data race.
This is due to the fact that one cannot ruin the data integrity of a read-only
shared state since the value of the shared state cannot be modified.

Example 14.5, shown in Code Box 14-7, shows how we can have a race
condition, while at the same time no data race is possible over a read-only
shared state:

Concurrent System {

Shared State {

X : Integer (read-only) = 5

}

Task P {

A : Integer

1.1. A = X

1.2. A = A + 1

1.2. print A

}

Task Q {

2.1. print X

}

Task R {

B : Integer

3.1. B = X + 1

3.2. B = B + 1

3.3. print B

}

}

Code Box 14-7: A concurrent system with a read-only shared state

Suppose that the invariant constraint of the preceding example is to keep
the data integrity of X and first print 5, then 6, and finally 7. Certainly,
we have a race condition because a strict order is required among different
print  instructions.

However, since the shared variable is read-only, there is no data race. Note
that instructions 1.2  and 3.2  only modify their local variables, and thus
they cannot be considered as modifications to the shared state.



As the final note in this section: Don't expect race conditions to be
resolved easily! You will certainly need to employ some synchronization
mechanisms in order to create the required order between certain
instructions from different tasks. This will force all possible interleavings
follow the given order. In fact, you will see in the next section that we
have to introduce some new interleavings that obey the desired order.

We will talk about these mechanisms later in this chapter; before that, we
need to explain the concurrency-related issues occurring after using some
synchronization methods. The next section is all about post-
synchronization issues and how they are different from intrinsic issues.

Post-synchronization issues
Next, we're going to talk about three of the key issues that are expected to
occur as a result of misusing the control mechanisms. You could
experience one or even all of these issues together because they have
different root causes:

New intrinsic issues: Applying control mechanisms may result in
having different race conditions or data races. Control mechanisms
are to enforce a strict order between instructions, and this may cause
newer intrinsic issues to occur. The fact that control mechanisms
introduce new interleavings is the basis of experiencing new
concurrency-related behaviors and issues. As a consequence of
having new race conditions and new data races, new logical errors
and crashes can occur. You'll have to go through the employed
synchronization techniques and tune them based on your program's
logic in order to fix these new issues.
Starvation: When a task in a concurrent system doesn't have access
to a shared resource for a long period of time, mainly because of
employing a specific control mechanism, it is said that the task has
become starved. A starved task cannot access the shared resource, and
thus it cannot execute its purpose effectively. If other tasks rely on



the cooperation of a starved task, they themselves may also get
starved.
Deadlock: When all the tasks in a concurrent system are waiting for
each other and none of them is advancing, we say that a deadlock is
reached. It happens mainly due to a control mechanism being applied
in the wrong way, which in turn makes tasks enter an infinite loop
waiting for the other task to release a shared resource or unlock a lock
object, and so on. This is usually called a circular wait. While the
tasks are waiting, none of them will be able to continue their
execution, and as a result, the system will go into a coma-like
situation. Some illustration describing a deadlock situation can be
found on the Wikipedia page found at:
https://en.wikipedia.org/wiki/Deadlock.

In a deadlock situation, all the tasks are stuck and waiting for each
other. But there are often situations in which only a portion of tasks,
only one or two of them, are stuck and the rest can continue. We call
them semi-deadlock situations. We are going to see more of these
semi-deadlock situations in the upcoming sections.

Priority inversion: There are situations in which, after employing a
synchronization technique, a task with a higher priority to use a
shared resource is blocked behind a low priority task and this way,
their priorities are reversed. This is another type of secondary issues
that can happen because of a wrongly implemented synchronization
technique.

Starvation doesn't exist by default in a concurrent system; when no
synchronization technique is imposed upon the operating system's task
scheduler, the system is fair and doesn't allow any task to become starved.
Only having some control mechanisms employed by the programmer can
lead to starvation. Likewise, the occurrence of a deadlock also doesn't
exist within a concurrent system until the programmer gets involved. The
main reason for most deadlock situations is when locks are employed in
such a way that all tasks in a concurrent system are waiting for each other
to release the lock. Generally, deadlocks are a more common issue than
starvation within a concurrent system.

https://en.wikipedia.org/wiki/Deadlock


Now, we should move on and talk about the control mechanisms. In the
next section, we will be talking about various synchronization techniques
that can be used to overcome race conditions.

Synchronization techniques
In this section, we're going to talk about the synchronization techniques, or
concurrency control techniques, or concurrent control mechanisms, that
are used to overcome intrinsic concurrency-related issues. Looking back at
what we've explained so far, control mechanisms try to overcome the
problems that a portion of interleavings may cause in a system.

Each concurrent system has its own invariant constraints, and not all
interleavings are going to keep all of them satisfied. For those
interleavings that dissatisfy the system's invariant constraints, we need to
invent a method to impose a specific order between instructions. In other
words, we should create new interleavings that satisfy the invariant
constraint and replace the bad interleavings with them. After using a
certain synchronization technique, we will have a totally new concurrent
system with some new interleavings, and our hope is that the new system
is going to keep the invariant constraints satisfied and not to produce any
post-synchronization issues.

Note that in order to employ a synchronization technique, we will need to
both write new code and change the existing code. When you change the
existing code, you are effectively changing the order of instructions, and
hence the interleavings. Changing the code simply creates a new
concurrent system with new interleavings.

How does having new interleavings solve our concurrent issues? By
introducing newly added engineered interleavings we impose some extra
happens-before constraints between different instructions from different
tasks, which keeps the invariant constraints satisfied.



Note that happens-before constraints always exist between two adjacent
instructions in a single task, but we don't have them between two
instructions from two different tasks in a concurrent system and by using
synchronization techniques, we define some new happens-before
constraints that govern the order of execution between two different tasks.

Having a totally new concurrent system means having new, different,
issues. The first-hand concurrent system was a natural system in which the
task scheduler was the only entity driving the context switches. But in the
later system, we are facing an artificial and engineered concurrent system
where the task scheduler is not the only effective element. The
concurrency control mechanisms employed to conserve the system's
invariant constraints are other important factors. Therefore, newer issues
called post-synchronization issues, which were discussed in the previous
section, will show up.

Employing a proper control technique to synchronize a number of tasks
and make them obey a specific order is dependent on the first-hand
concurrent environment. As an example, the control mechanisms used in a
multi-processing program can be different from the methods that are used
in a multithreading program.

Because of this, we cannot discuss the control mechanisms here in great
detail without using real C code. We will therefore discuss them in an
abstract way that is true for all concurrent systems, regardless of their
implementation methods. The following techniques and concepts are
therefore valid in all concurrent systems, but their implementations are
greatly dependent upon the true nature of the surrounding environment and
the system itself.

Busy-waits and spin locks
As a generic solution, in order to force an instruction from a task to be
executed after another instruction from another task, the former task
should wait for the later task to execute its instruction first. In the
meantime, the former task may gain the CPU because of a context switch,



but it shouldn't continue execution, and it should still wait. In other words,
the former task should pause and wait until the later task has executed its
instruction.

When the latter task is able to complete the execution of its instruction,
then there are two options available. Either the former task itself checks
again and sees that the latter task has done its job or there should be a way
for the latter task to notify the former task and let it know that it can now
continue to execute its instruction.

The scenario described is similar to a situation in which two people try to
do something in a defined order. One of them must wait for the other to
complete their job, and only then the other person can continue to do their
own job. We can say that almost all control mechanisms use an approach
analogous to this, but the implementations of this are diverse, and they are
mostly dependent on the available mechanisms in a specific environment.
We'll explain one of these environments, a POSIX-compliant system, and
the available mechanisms in it, as part of the last section in this chapter.

Let's explain the preceding control technique, which is central to all other
techniques, using an example. Example 14.6, shown in Code Box 14-8, is a
system of two concurrent tasks, and we want to define the invariant
constraint as having first A, and then B printed in the output. Without
any control mechanism in place, it looks like the following code box:

Concurrent System {

Task P {

1.1. print 'A'

}

Task Q {

2.1. print 'B'

}

}

Code Box 14-8: A concurrent system representing example 14.6 before introducing an control
mechanism

It is clear that we have a race condition based on the defined invariant
constraint. The interleaving {2.1, 1.1}  prints B  and then A , which is



against the invariant constraint. Therefore, we need to use a control
mechanism to keep a specific order between the preceding instructions.

We want to have 2.1  executed only when instruction 1.1  has been
executed. The following pseudo-code shown in Code Box 14-9
demonstrates how we design and employ the previously-explained
approach in order to bring back the order between the instructions:

Concurrent System {

Shared State {

Done : Boolean = False

}

Task P {

1.1. print 'A'

1.2. Done = True

}

Task Q {

2.1. While Not Done Do Nothing

2.2. print 'B'

}

}

Code Box 14-9: A solution for example 14.6 using busy-waiting

As you can see, we had to add more instructions to synchronize the tasks.
Therefore, it seems we have added a bunch of new interleavings. To be
more precise, we are facing a completely new concurrent system in
comparison to the previous one. This new system has its own set of
interleavings that are in no way comparable to interleavings in the old
system.

One thing is common among all these new interleavings, and that is the
fact that instruction 1.1  always happens before instruction 2.2 ; this is
what we wanted to achieve by adding the control mechanism. No matter
which interleaving is chosen or how the context switches occur, we have
enforced a happens-before constraint between instructions 1.1  and 2.2 .

How is this possible? In the preceding system, we introduced a new shared
state, Done , which is a Boolean variable initially set to False . Whenever
task P  prints A , it sets Done  to True . Then, task Q , which was waiting



for Done  to become True , exits the while  loop at line 2.1  and prints B .
In other words, task Q  waits in a while  loop until the shared state Done
becomes True  and it is an indication that the task P  has completed its
print  command. Everything seems to be fine with the proposed solution,
and in fact, it just works fine.

Try to imagine the following interleaving. When task P  loses the CPU
core and task Q  gains the CPU core, if Done  is not true, then task Q
remains in the loop until it loses the CPU core again. This means, while
the task Q  has the CPU core, the required condition is not met yet, it
doesn't leave the loop, and it tries to use its time slice to do almost nothing
other than polling and checking whether the condition has been met. It
does it until the CPU core is taken back. In other words, the task Q  waits
and wastes its time until the CPU core is granted back to task P  and task
P  can now print A .

In technical language, we say that the task Q  is in a busy-wait until a
specific condition is met. It monitors (or polls) a condition continuously in
a busy-wait until it becomes true and then it exits the busy-wait. Whatever
you call it, the task Q  is wasting the CPU's precious time despite the fact
that the preceding solution solves our problem perfectly.

Note:

Busy-waiting is not an efficient approach to wait for an event to happen,
but it is a simple one. Since inside a busy-wait nothing special can be
done by a task, it wastes its given time slice completely. Busy-waits are
avoided in long waits. That wasted time of CPU could be granted to some
other task in order to complete a portion of its job. However, in some
circumstances in which the waiting times are expected to be short, busy-
waits are used.

In real C programs, and also in other programming languages, locks are
usually used to enforce some strict order. A lock is simply an object, or a
variable, that we use to wait for a condition to be met or an event to
happen. Note that in the previous example, Done  is not a lock but a flag.



To comprehend the term lock, we can think of it as if we were trying to
acquire a lock before executing instruction 2.2 . Only once the lock is
acquired can you continue and exit the loop. Inside the loop, we are
waiting for the lock to become available. We can have various types of
locks, which we explain in future sections.

In the next section, we're going to do the waiting scenario discussed
previously, but this time using a more efficient approach that doesn't waste
the CPU core's time. It has many names, but we can call it wait/notify or
the sleep/notify mechanism.

Sleep/notify mechanism
Rather than using a busy-wait loop as discussed in the previous section, a
different scenario can also be imagined. Task Q  could go to sleep instead
of busy-waiting on the Done  flag and the task P  could notify it about the
change in the flag when it made the flag True .

In other words, task Q  goes to sleep as soon as it finds the flag is not
True  and lets the task P  acquire the CPU core faster and execute its
logic. In return, the task P  will awaken the task Q  after modifying the
flag to True . In fact, this approach is the de facto implementation in most
operating systems to avoid busy-waits and bring control mechanisms into
the play more efficiently.

The following pseudo-code demonstrates how to use this approach to
rewrite the solution to the example given in the previous section:

Concurrent System {

Task P {

1.1. print 'A'

1.2. Notify Task Q

}

Task Q {

2.1. Go To Sleep Mode

2.2. print 'B'

}

}



Code Box 14-10: A solution for example 14.6 using sleep/notify

We'll need to review some new concepts before being able to explain the
preceding pseudo-code. The first is how a task can sleep. As long as a task
is asleep, it won't get any CPU share. When a task puts itself into the
sleeping mode, the task scheduler will become aware of this. After this,
the task scheduler won't give any time slice to the asleep task.

What is the benefit of tasks going to sleep? The tasks that go to sleep
won't waste the CPU's time by going into a busy-wait. Instead of starting a
busy-wait to poll a condition, the tasks go to sleep and get notified when
the condition has been met. This will significantly increase the CPU
utilization factor, and the tasks that really need the CPU share will obtain
it.

When a task goes into the sleeping mode, there should be a mechanism to
wake it up. This mechanism is normally done by notifying or signaling the
asleep task. A task can be notified to leave the sleeping mode, and as soon
as it becomes awake and notified, the task scheduler puts it back in the
queue and gives it the CPU again. Then the task will continue execution
just after the line that has put it into sleeping mode.

In the code we wrote, the task Q  enters the sleeping mode as soon as it
starts to execute. When it goes into sleeping mode, it won't have any CPU
share until it becomes notified and awakened by task P . Task P  notifies
task Q  only when it has printed A . Then, task Q  becomes awake and it
obtains the CPU, and it continues and prints B .

With this method there's no busy-wait, and there is no wasting of the
CPU's time. Note when going to the sleeping mode and notifying an asleep
task, both have specific system calls and are supported in most operating
systems, especially the POSIX-compliant ones.

At first glance, it seems that the preceding solution has solved our
problem, and in an efficient manner – indeed, it does! Yet, there is an
interleaving that yields a post-synchronization issue. It happens when you
have the following order of execution in the preceding system:



1.1 print 'A'

1.2. Notify Task Q

2.1. Go To Sleep Mode

2.2. print 'B'

Code Box 14-11: An interleaving that puts the concurrent system presented in Code Box 14-
10 into a semi-deadlock situation

In the preceding interleaving, the task P  has printed A , and then it has
notified task Q , which is not asleep yet because it hasn't yet obtained the
CPU. When the task Q  gains the CPU, it goes into sleeping mode
immediately. However, there are no other tasks running to notify it.
Therefore, task Q  won't obtain the CPU anymore simply because the task
scheduler doesn't give the CPU core to an asleep task. This is the first
example of employing a synchronization technique and observing its
consequence as a post-synchronization issue.

For solving this issue, we need to use a Boolean flag again. Now, task Q
should check the flag before going to sleep. Here is our final solution:

Concurrent System {

Shared State {

Done : Boolean = False

}

Task P {

1.1. print 'A'

1.2. Done = True

1.3. Notify Task Q

}

Task Q {

2.1. While Not Done {

2.2. Go To Sleep Mode If Done is False (Atomic)

2.3. }

2.4. print 'B'

}

}

Code Box 14-12: An improved solution for example 14.6 based on the sleep/notify approach

As you see in the preceding pseudo-code, task Q  sleeps if the flag Done
has not been set to True . Instruction 2.2  is put inside a loop that simply
checks the flag and goes to sleep only if Done  is False . One important



note about instruction 2.2  is that it must be an atomic instruction,
otherwise the solution is not complete, and it would suffer from the same
problem.

Note:

For those of you who have some experience with concurrent systems,
having this instruction declared as atomic might seem a bit surprising.
The main reason behind this is the fact that regarding the preceding
example, a true tangible synchronization only happens when we define a
clear critical section and protect it using a mutex. As we go forward, this
becomes more evident and after going through more conceptual topics,
we can finally provide a tangible and real solution.

The loop is required because an asleep task could be notified by anything
in the system, not only the task P . In real systems, operating systems and
other tasks can notify a task but here, we are only interested in
notifications received from task P .

Therefore, when the task is notified and awakened, it should check the flag
again and go back to sleep if the flag has not yet been set. As we explained
before, this solution seems to be working based on the explanations that
we've given so far, but it's not a complete solution, as it can also cause a
semi-deadlock situation on a machine with multiple CPU cores. We
explain this further in the section, Multiple processor units.

Note:

Solutions based on the wait/notify mechanism are usually developed
using condition variables. Condition variables also have counterparts in
POSIX API, and we will cover them conceptually in a dedicated section,
which comes shortly.

All synchronization mechanisms have some sort of waiting involved. This
is the only way you can keep some tasks synchronized. At some point,
some of them should wait, and some others should continue. This is the
point that we need to introduce semaphores; these are the standard tools



for making a piece of logic wait or continue in a concurrent environment.
We focus on this in the next section.

Semaphores and mutexes
It was in the 1960s when Edsger Dijkstra, a very well-known Dutch
computer scientist and mathematician, together with his team designed a
new operating system called THE Multiprogramming System or THE OS
for the Electrologica X8 computer, which had its own unique architecture
at the time.

It was less than 10 years before the invention of Unix, and later C, by Bell
Labs. They were using assembly for wiring THE OS. THE OS was a
multitasking operating system, and it had a multi-level architecture. The
highest level was the user, and the lowest level was the task scheduler. In
Unix terminology, the lowest level was equivalent to having task scheduler
and process management unit together in the kernel ring. One of the ideas
that Dijkstra and his team invented to overcome certain concurrency-
related difficulties, and for sharing different resources among different
tasks, was the concept of semaphores.

Semaphores are simply variables, or objects, which are used to
synchronize access to a shared resource. We are going to explain them
thoroughly in this section and introduce a specific type of semaphores,
mutexes that are used widely in concurrent programs and exist in almost
any programming language today.

When a task is going to access a shared resource, which can be a simple
variable or a shared file, the task should check a predefined semaphore
first and ask for permission to continue and access the shared resource. We
can use an analogous example to explain a semaphore and its role.

Imagine a doctor, and some patients wishing to be visited by the doctor.
Suppose that there is no mechanism for having a prescheduled
appointment, and the patients can go to the doctor whenever they want.



Our doctor has a secretary who manages the patients, keeps them in a
queue, and grants them permission to go into the doctor's room.

We assume that the doctor can see multiple patients (up to a certain
number) at a time, which is a bit unusual based on our daily experiences,
but you can assume that our doctor is extraordinary and can see multiple
patients at once; perhaps multiple patients are happy to sit together within
one consultation. In certain real use cases, semaphores protect resources
that can be used by many consumers. So, please bear with the preceding
assumption for now.

Whenever a new patient arrives at the doctor's office, they should go to the
secretary first in order to be registered. The secretary has a list that is
simply written on a piece of paper, where they'll write the name of the new
patient. Now, the patient should wait for the secretary to summon them
and grant them access to the doctor's room. On the other hand, whenever a
patient leaves the doctor's room, this information goes to the secretary,
who will remove the patient's name from the list.

At each moment, the secretary's list reflects the patients inside the doctor's
room and being visited plus those patients who are waiting to be visited.
When a new patient leaves the doctor's room, a new patient who is waiting
on the list can enter the doctor's room. This process continues until all the
patients have seen the doctor.

Now, let's map it to a concurrent computer system to see how semaphores
do the same thing as the secretary in our analogy.

In the example, the doctor is a shared resource. They can be accessed by a
number of patients, which are analogous to the tasks wishing to access the
shared resource. The secretary is a semaphore. Like the secretary who has
a list, each semaphore has a queue of pending tasks that are waiting to
obtain access to the shared resource. The doctor's room can be considered
as a critical section.

A critical section is simply a set of instructions that are protected by a
semaphore. Tasks cannot enter it without waiting behind a semaphore. On
the other hand, it is the semaphore's job to protect the critical section.



Whenever a task tries to enter a critical section, it should let a specific
semaphore know about it.

Likewise, when a task is done and wants to exit the critical section, it
should let the same semaphore know about it. As you can see, there is a
very good correspondence between our doctor example and the
semaphores. Let's continue with a more programmatic example and try to
find the semaphores and other elements in it.

Note:

Critical sections should satisfy certain conditions. These conditions will
be explained as we progress through the chapter.

The following example, example 14.7, shown in Code Box 14-13, is again
about two tasks trying to increment a shared counter. We have already
discussed this example in previous sections in multiple places, but this
time, we are going to give a solution based on semaphores:

Concurrent System {

Shared State {

S : Semaphore which allows only 1 task at a time

Counter: Integer = 0

}

Task P {

A : Local Integer

1.1. EnterCriticalSection(S)

1.2. A = Counter

1.3. A = A + 1

1.4. Counter = A

1.5. LeaveCriticalSection(S)

}

Task Q {

B : Local Integer

2.1. EnterCriticalSection(S)

2.2. B = Counter

2.3. B = B + 2

2.4. Counter = B

2.5. LeaveCriticalSection(S)

}

}



Code Box 14-13: Using semaphores to synchronize two tasks

In the preceding system, we have two different shared states: a shared
semaphore S  that is supposed to protect the access to another shared
variable Counter . S  only allows one task at a time to enter a critical
section being protected by it. The critical sections are the instructions
encompassed by EnterCriticalSection(S)  and
LeaveCriticalSection(S)  instructions, and as you can see, each task has
a different critical section protected by S .

To enter a critical section, a task should execute the instruction
EnterCriticalSection(S) . If another task is already in its own critical
section, the instruction EnterCriticalSection(S)  becomes blocking and
doesn't finish, and so the current task should wait until the semaphore
allows it to pass and enter its critical section.

The EnterCriticalSection(S)  instruction can have various
implementations depending on the scenario. It can be simply a busy-wait,
or it can just make the waiting task go to the sleeping mode. The latter
approach is more common, and the tasks waiting for their critical sections
usually go to sleep.

In the preceding example, the semaphore S  was used in a way that only
one task could enter its critical section. But semaphores are more generic,
and they can allow more than one task (up to a certain number defined
when creating the semaphore) to enter their critical sections. A semaphore
that only allows one task to enter the critical section at a time is usually
called a binary semaphore or a mutex. Mutexes are far more common than
semaphores, and you will always see them in concurrent codes. The
POSIX API exposes both semaphores and mutexes, and you can use them
depending on the situation.

The term mutex stands for mutual exclusion. Suppose that we have two
tasks and each of them have a critical section accessing the same shared
resource. In order to have a solution based on mutual exclusion that is race
condition free, the following conditions should be met regarding the tasks:



Only one of them can enter the critical section at any time, and the
other task should wait until the former task leaves the critical section.
The solution should be deadlock free. A task waiting behind a critical
section should be able to enter it eventually. In some cases, an upper
limit for the waiting time (the contention time) is assumed.
The task in the critical section cannot be pulled out by preemption in
order to let the other task enter the critical section. In other words, the
solution should be preemption free and collaborative.

Mutexes exist to allow such solutions based on mutual exclusion to be
developed. Note that the critical sections should also follow similar
conditions. They should allow only one task inside, and they should be
deadlock free. Note that the semaphores also satisfy the last two
conditions, but they can allow more than one task to enter their critical
sections at a time.

We can say that mutual exclusion is the most important concept in
concurrency and is a dominant factor in various control mechanisms that
we have at hand. In other words, in every synchronization technique that
you might know, you will see a footprint of mutual exclusion through
using semaphores and mutexes (but mostly mutexes).

Semaphores and mutexes are said to be lockable objects. In a different but
more formal terminology, the act of waiting for a semaphore and entering
the critical section is the same as locking the semaphore. Likewise, the act
of leaving a critical section and updating the semaphore is the same as to
unlocking the semaphore.

Therefore, locking and unlocking the semaphores can be considered as two
algorithms used to wait and acquire the access to the critical section and to
release the critical section respectively. As an example, spin locking is
acquiring access to a critical section by busy-waiting on a semaphore, and
certainly, we can have other types of locking and unlocking algorithms as
well. We will explain these various locking algorithms while we are
developing concurrent programs using POSIX API in Chapter 16, Thread
Synchronization.



If we are going to write the preceding solution based on locking and
unlocking terminology, it would be like the following:

Concurrent System {

Shared State {

S : Semaphore which allows only 1 task at a time

Counter: Integer = 0

}

Task P {

A : Local Integer

1.1. Lock(S)

1.2. A = Counter

1.3. A = A + 1

1.4. Counter = A

1.5. Unlock(S)

}

Task Q {

B : Local Integer

2.1. Lock(S)

2.2. B = Counter

2.3. B = B + 2

2.4. Counter = B

2.5. Unlock(S)

}

}

Code Box 14-14: Using lock and unlock operations to work with semaphores

From now on, we will be using the locking and unlocking terminology in
our pseudo-code snippets, and this terminology has been used throughout
the POSIX API as well.

We are going to finish this section by giving the final definition. When a
number of tasks are willing to enter a critical section, they are trying to
lock a semaphore, but only a certain number of them (depending on the
semaphore) can acquire the lock and enter the critical section. The other
tasks will be waiting to acquire the lock. The act of waiting to acquire a
lock over a semaphore is called contention. More tasks yield more
contention, and the contention time is a measure of how much the
execution of tasks is slowed down.

Obviously, it takes some time for the tasks in contention to acquire the
lock, and as more tasks we get, the more they should wait to enter their



critical sections. The amount of time that a task waits in the contention
state is usually called the contention time. The contention time can be a
non-functional requirement for a concurrent system that should be
monitored carefully to prevent any performance degradation.

We could conclude that mutexes are our primary tool to synchronize some
concurrent tasks. We also have mutexes in POSIX threading API and
almost every programming language that supports concurrency. Apart
from mutexes, condition variables also play an important role when we
need to wait for an indefinite amount of time in order to satisfy a certain
condition.

We are going to discuss the condition variables, but before that, we need to
talk about memory barriers and concurrent environments with multiple
processor units, either multiple CPUs or a CPU with multiple cores.
Therefore, the next section is dedicated to this topic.

Multiple processor units
When you have only one processor unit in your computer system, a CPU
with only one core, the tasks trying to access a specific address in the main
memory always read the latest and freshest value even if that address is
cached in the CPU core. It's a common practice to cache the value of
certain memory addresses inside the CPU core as part of its local cache
and even keep the changes made to those addresses inside the cache as
well. This will increase the performance by reducing the number of
reading and writing operations on the main memory. On certain events, the
CPU core will propagate the changes in its local cache back to the main
memory in order to keep its cache and the main memory synchronized.

These local caches still exist when you have more than one processor unit.
By multiple processor units, we mean either one CPU with more than one
core or multiple CPUs with any number of cores. Note that every CPU
core has its own local cache.



Therefore, when two different tasks are executed on two different CPU
cores, working on the same address in the main memory, each CPU core
has cached the value of the same memory address in its own local cache.
This means if one of them tries to write to the shared memory address, the
changes are only applied to its local cache, and not to the main memory
and the other CPU core's local cache.

Doing this leads to many different problems because when the task
running in the other CPU core tries to read the latest value from the shared
memory address, it cannot see the latest changes since it would read from
its local cache, which doesn't have the latest changes.

This problem, which comes from having a different local cache for each
CPU core, is solved by introducing a memory coherence protocol among
CPU cores. Therefore, by following a coherence protocol, all tasks running
on different CPU cores will see the same value in their local caches when
the value is changed in one of the CPU cores. In other words, we say that
the memory address is visible to all other processors. Following a memory
coherence protocol brings memory visibility to all tasks running on
different processor units. Cache coherence and memory visibility are two
important factors that should be considered in concurrent systems being
run on more than one processor unit.

Let's go back to our first sleep-notify-based solution for example 14.6 that
was explained in the previous two sections. The invariant constraint for
example 14.6 was to have first A and then B in the output.

The following pseudo-code was our final solution, and we used the
sleep/notify mechanism to enforce the desired ordering between print
instructions. We said that the solution is not bug-free and can yield post-
synchronization issues. In the following paragraph, we will explain how
the problem shows up:

Concurrent System {

Shared State {

Done : Boolean = False

}

Task P {

1.1. print 'A'



1.2. Done = True

1.3. Notify Task Q

}

Task Q {

2.1. While Not Done {

2.2. Go To Sleep Mode If Done is False (Atomic)

2.3. }

2.4. print 'B'

}

}

Code Box 14-15: The solution proposed for example 14.6 based on the sleep/notify technique

Suppose that the tasks P  and Q  are running on different CPU cores. In
this case, each CPU core has an entry for the shared variable Done  in its
local cache. Note that, again, we have declared instruction 2.2  to be
atomic, and note that this is an essential assumption until we come up with
a proper mutex-based solution to resolve this. Suppose an interleaving in
which the task P  executes instruction 1.2  and notifies task Q , which
could be sleeping. Therefore, task P  updates the value of Done  in its local
cache, but it doesn't mean that it writes it back to the main memory or it
updates the other CPU core's local cache.

With that being said, there's no guarantee that we will see a change in the
main memory and the task Q 's local cache. Therefore, there is a chance
that when the task Q  obtains CPU and reads its local cache, it sees that
Done  has the value False  and goes into the sleeping mode while task P
is finished and has sent its notification signal a while ago, and no more
notifying signals will be emitted by the task P . Eventually, the task Q
goes to sleep forever and a semi-deadlock situation happens.

To resolve this issue, one needs to use memory barriers or memory fences.
They are instructions that act like a barrier and upon executing (passing)
them, all values updated in just one local cache are propagated into the
main memory and other local caches. They become visible to all tasks
executing in other CPU cores. In other words, memory barriers
synchronize all CPU cores' local caches and the main memory.

Finally, we can propose our complete solution as follows. Note that, again,
we have declared instruction 2.3  to be atomic, and note that this is an



essential assumption until we come up with a proper mutex-based solution
to resolve this:

Concurrent System {

Shared State {

Done : Boolean = False

}

Task P {

1.1. print 'A'

1.2. Done = True

1.3. Memory Barrier

1.4. Notify Task Q

}

Task Q {

2.1. Do {

2.2. Memory Barrier

2.3. Go To Sleep Mode If Done is False (Atomic)

2.4. } While Not Done

2.5. print 'B'

}

}

Code Box 14-16: Improving the solution proposed for example 14.6 using memory barriers

By employing memory barriers in the preceding pseudo-code, we are
certain that any updates to the shared variable Done  can be seen by task
Q . It would be a good idea for you to go through different possible
interleavings and see for yourself how the memory barrier helps to make
the shared variable Done  visible to task Q  and prevent any unwanted
semi-deadlock situation.

Note that creating a task, locking a semaphore, and unlocking a semaphore
are three operations that act as memory barriers and synchronize all the
CPU cores' local caches and main memory, and propagate the recent
changes made to the shared states.

The following pseudo-code is the same as the preceding solution but using
mutexes this time. As part of the following solution, we are going to use a
mutex and finally resolve the issue that made us declare the instruction Go
To Sleep Mode If Done  is False  as atomic. Though take note that
mutexes are semaphores, which allows only one task to be in the critical



section at each time and, like semaphores, locking and unlocking mutexes
can act as a memory barrier:

Concurrent System {

Shared State {

Done : Boolean = False

M : Mutex

}

Task P {

1.1. print 'A'

1.2. Lock(M)

1.3. Done = True

1.4. Unlock(M)

1.5. Notify Task Q

}

Task Q {

2.1. Lock(M)

2.2. While Not Done {

2.3. Go To Sleep Mode And Unlock(M) (Atomic)

2.4. Lock(M)

2.5. }

2.6. Unlock(M)

2.7. print 'B'

}

}

Code Box 14-17: Improving the solution proposed for example 14.6 using a mutex

The instructions Lock(M)  and Unlock(M)  act as memory barriers so
guarantees memory visibility in all tasks. As a reminder, the instructions
between Lock(M)  and Unlock(M)  are considered as critical sections in
each task.

Note that when a task locks a mutex (or semaphore), there are three
occasions in which the mutex gets unlocked automatically:

The task uses the Unlock  command to unlock a mutex.
When a task is finished, all the locked mutexes become unlocked.
When a task goes into sleeping mode, the locked mutexes become
unlocked.



Note:

The third bullet point in the preceding list is not generally true. If a
task wants to sleep for a certain amount of time inside a critical
section being protected by a mutex, it is certainly possible to sleep
without needing to unlock the mutex. That's why we have declared
instruction 2.3  as atomic and we have added Unlock(M)  to
it. For a complete appreciation of such scenarios, we need to touch
on condition variables, which come shortly in the upcoming
sections.

Therefore, when instruction 2.3  is executed as an atomic instruction, the
already locked mutex M  becomes unlocked. When the task is notified
again, it will reobtain the lock using instruction 2.4 , and then it can
proceed into its critical section again.

As a final note in this section, when a task has locked a mutex, it cannot
lock it again, and attempting to lock it further usually leads to a deadlock
situation. Only a recursive mutex can be locked many times by a single
task. Note that while a recursive mutex is locked (no matter how many
times), all other tasks will be blocked upon trying to lock it. Lock and
unlock operations always come in pairs, therefore if a task has locked a
recursive mutex twice, it should unlock it twice as well.

So far, we have discussed and used the sleep/notify technique in a number
of examples. You will get a full appreciation of sleep/notify technique
only when you become introduced to a new concept: condition variables.
Condition variables together with mutexes have built a basis for
implementing control techniques, which effectively synchronize many
tasks on a single shared resource. But before that, let's talk about another
possible solution to example 14.6.

Spin locks
Before starting to talk about the condition variables and the true way that
the sleep/notify technique should get implemented, let's go back a little bit



and use busy-waiting together with mutexes to write a new solution for
example 14.6. As a reminder, the example was about having first A and
then B printed in the standard output.

The following is the proposed solution that uses a mutex equipped with the
spin locking algorithm. The mutex acts as a memory barrier, so we won't
have any memory visibility issues, and it effectively synchronizes the
tasks P  and Q  over the Done  shared flag:

Concurrent System {

Shared State {

Done : Boolean = False

M : Mutex

}

Task P {

1.1. print 'A'

1.2. SpinLock(M)

1.2. Done = True

1.3. SpinUnlock(M)

}

Task Q {

2.1 SpinLock(M)

2.2. While Not Done {

2.3. SpinUnlock(M)

2.4. SpinLock(M)

2.5. }

2.6. SpinUnlock(M)

2.4. print 'B'

}

}

Code Box 14-18: The solution for example 14.6 using a mutex and spin locking algorithms

The preceding pseudo-code is the first solution that can be written as a
valid C code using the POSIX threading API. None of the previously given
pseudo-codes could be written as real programs because either they were
too abstract to be implemented or they were problematic in certain
scenarios, like being run in a system with multiple processor units. But the
preceding pseudo-code can be translated into any programming language
that supports concurrency.



In the preceding code, we are using spinlocks, which are simply busy-
waiting algorithms. Whenever you lock a spinlock mutex, it goes into a
busy-wait loop until the mutex becomes available and then it continues.

I think everything in the preceding pseudo-code is easy to follow, except
instructions 2.3  and 2.4 , which are strange successive lock and unlock
instructions inside a loop! Actually, this is the most beautiful part of the
code. A series of locking and unlocking the spinlock mutex M  is in
progress while the task Q  obtains the CPU core.

What if we didn't have instructions 2.3  and 2.4 ? Then the lock at
instruction 2.1  would have kept the mutex locked until instruction 2.6 ,
which means that task P  never could find a chance to get the access to the
shared flag Done . Those locking and unlocking instructions allow the task
P  to find a chance and update the flag Done  via instruction 1.2 .
Otherwise, the mutex will be held by the task Q  all the time and the task
P  can never proceed to instruction 1.2 . In other words, the system goes
into a semi-deadlock situation. The pseudo-code demonstrates a beautiful
harmony of locking/unlocking operations, which nicely solves our
problem using spinlocks.

Note that in high-performance systems in which putting a task into
sleeping mode is very expensive in comparison to the rate of events
happening in the system, spin locks are very common. When using spin
locks, the tasks should be written in a way that they can unlock a mutex as
soon as possible. For this to happen, the critical sections should be small
enough. As you can see in our code, we have a critical section with only
one Boolean check (the loop condition).

In the next section, we explore condition variables and their properties.

Condition variables
The solutions we have provided in the previous sections to satisfy example
14.6 cannot be implemented using a programming language because we
don't know how to put a task into sleep mode and how to notify another



task programmatically. In this section, we are going to introduce condition
variables, a new concept that can help us to make a task wait and get
notified accordingly.

Condition variables are simple variables (or objects) that can be used to
put a task into sleeping mode or notify other sleeping tasks and wake them
up. Note that sleeping mode discussed here is different from sleeping for a
number of seconds or milliseconds to make a delay and it particularly
means that the task doesn't want to receive any more CPU share. Like
mutexes that are used to protect a critical section, condition variables are
used to enable signaling between different tasks.

Again, like mutexes that have associated lock and unlock operations, the
condition variables have sleep and notify operations. However, every
programming language has its own terminology here, and in some of them
you may find wait and signal instead of sleep and notify, but the logic
behind them remains the same.

A condition variable must be used together with a mutex. Having a
solution that uses a condition variable without a mutex simply lacks the
mutual exclusion property. Remember that a condition variable must be
shared between multiple tasks to be helpful and, as a shared resource, we
need synchronized access to it. This is often achieved with a mutex that
guards the critical sections. The following pseudo-code shows how we can
use condition variables and mutexes to wait for a certain condition, or an
event in general, and specifically to wait for the shared flag Done  to
become True  in example 14.6:

Concurrent System {

Shared State {

Done : Boolean = False

CV : Condition Variable

M : Mutex

}

Task P {

1.1. print 'A'

1.2. Lock(M)

1.3. Done = True

1.4. Notify(CV)

1.5. Unlock(M)



}

Task Q {

2.1. Lock(M)

2.2. While Not Done {

2.3. Sleep(M, CV)

2.4. }

2.5. Unlock(M)

2.6. print 'B'

}

}

Code Box 14-19: The solution for example 14.6 using a condition variable

The preceding solution is the most genuine way to use condition variables
to implement strict ordering between two instructions in a concurrent
system. Instructions 1.4  and 2.3  are using the condition variable CV . As
you can see, the operation Sleep  needs to know about both the mutex M
and the condition variable CV  because it needs to unlock M  when the task
Q  is going to sleep and reacquiring the lock over M  when it has become
notified.

Note that when the task Q  is notified, it continues its logic that is inside
the Sleep  operation, and locking M  again is part of that. Instruction 1.4
also only works when you have acquired the lock over M , otherwise race
conditions happen. It would be a good and beneficial challenge to go
through possible interleavings and see how the preceding mutex and
condition variable are going to enforce the desired order between
instructions 1.1  and 2.6  all the time.

As a final definition in this section, a mutex object together with a
condition variable is usually referred to as a monitor object. We also have
a concurrency-related design pattern called monitor object, which is about
employing the preceding technique to reorder instructions in some
concurrent tasks.

In the previous sections, we showed how semaphores, mutexes, and
condition variables together with locking, unlocking, sleep, and notify
algorithms can be used to implement control mechanisms that are used to
enforce a strict order between some instructions in various concurrent
tasks and to protect critical sections. These concepts will be used in the



upcoming chapters in order to write multithreaded and multi-process
programs in C. The next section will talk about the concurrency support in
the POSIX standard that has been implemented and provided by many
Unix-like operating systems.

Concurrency in POSIX
As we explained in the previous sections, concurrency or multitasking
is a functionality provided by the kernel of an operating system. Not all
kernels have been concurrent since their birth, but most of them support
concurrency today. It is nice to know that the first version of Unix was not
concurrent, but it gained this feature very soon after its birth.

If you remember Chapter 10, Unix – History and Architecture, we
explained how single Unix specification and POSIX tried to standardize
the API exposed by the shell ring in a Unix-like operating system.
Concurrency has been part of these standards for a long time, and so far, it
has allowed many developers to write concurrent programs for POSIX-
compliant operating systems. The concurrency support in POSIX has been
widely used and implemented in a vast range of operating systems, such as
Linux and macOS.

Concurrency in a POSIX-compliant operating system is generally
provided in two ways. You can either have a concurrent program executing
as some different processes, which is called multi-processing, or you can
have your concurrent program running as some different threads as part of
the same process, which is called multithreading. In this section, we are
going to talk about these two methods and compare them from a
programmer's point of view. But before that, we need to know more about
the internals of a kernel supporting concurrency. The next section briefly
explains what you will find in such a kernel.

Kernels supporting concurrency



Almost all kernels being developed and maintained today are
multitasking. As we already know, every kernel has a task scheduler unit
that shares CPU cores among many running processes and threads that
were generally referred to as tasks in this and the previous chapter.

Before being able to move on, we need to describe processes and threads
and their differences with respect to concurrency. Whenever you run a
program, a new process is created, and the program's logic is run inside
that process. Processes are isolated from each other, and one process
cannot have access to another process's internals, like its memory.

Threads are very similar to processes, but they are local to a certain
process. They are used to bring concurrency into a single process through
having multiple threads of execution that together execute multiple series
of instructions in a concurrent way. A single thread cannot be shared
between two processes, and it is local and bound to its owner process. All
threads in a process are able to access their owner process's memory as a
shared resource, while every thread has its own Stack region that of course
is accessible by other threads in the same process. In addition, both
processes and threads can use CPU share, and the task scheduler in most
kernels uses the same scheduling algorithm for sharing the CPU cores
among them.

Note that when we're talking at the kernel level, we prefer to use the term
task instead of the terms thread or process. From the kernel's point of
view, there is a queue of tasks waiting to have a CPU core to execute their
instructions, and it is the duty of the task scheduler unit to provide this
facility to all of them in a fair fashion.

Note:

In Unix-like kernels, we usually use the term task for both processes and
threads. In fact, the terms thread or process are userspace terms, and they
cannot be used in kernel terminology. Therefore, Unix-like kernels have
task scheduler units that try to fairly manage access to CPU cores among
various tasks.



In different kernels, the task schedulers use different strategies and
algorithms to do the scheduling. But most of them can be grouped into two
giant categories of scheduling algorithms:

Cooperative scheduling
Preemptive scheduling

Cooperative scheduling is about granting the CPU core to a task and
waiting for the task's cooperation to release the CPU core. This approach
is not preemptive in the sense that in most normal cases, there is no force
employed to take back the CPU core from the task. There should be a high
priority preemptive signal to make the scheduler to take back the CPU
core by preemption. Otherwise, the scheduler and all tasks in the system
should wait until the active task releases the CPU core at will. Modern
kernels are not usually designed this way, but you can still find kernels
employing cooperative scheduling for very specific applications, like real-
time processing. Early versions of macOS and Windows used cooperative
scheduling, but nowadays they use a preemptive scheduling approach.

In contrast to cooperative scheduling, we have preemptive scheduling. In
preemptive scheduling, a task is allowed to use a CPU core until it is taken
back by the scheduler. In a specific type of preemptive scheduling, a task
is allowed to use the given CPU core for a certain amount of time. This
type of preemptive scheduling is called time-sharing, and it is the most
employed scheduling strategy in current kernels. The time interval that has
been given to a task to use the CPU has various names, and it can be called
a time slice, a time slot, or a quantum in various academic sources.

There are also various types of time-sharing scheduling based on the
algorithm used. Round-robin is the most widely used time-sharing
algorithm and has been employed by various kernels, with some
modifications of course. The round-robin algorithm allows fair and
starvation-free access to a shared resource, which is a CPU core in
this case.

Despite the fact that the round-robin algorithm is simple and not
prioritized, it can be modified to allow multiple priority levels for tasks.



Having different priority levels is usually a requirement for modern
kernels because there are certain types of tasks that are initiated by the
kernel itself or other important units inside the kernel, and these tasks
should be served before any other ordinary task.

As we said before, there are two ways of bringing concurrency into a piece
of software. The first approach is multi-processing, which uses user
processes to do parallel tasks in a multitasking environment. The second
approach is multithreading, which uses user threads to break tasks into
parallel flows of execution inside a single process. It is also very common
to use a combination of both techniques in a big software project. Despite
the fact that both techniques bring concurrency to software, they have
fundamental differences in respect to their different natures.

In the following two sections, we will talk about multi-processing and
multithreading in greater detail. In the next two chapters, we will cover
multithreaded development in C, and in the two chapters after that, we will
discuss multi-processing.

Multi-processing
Multi-processing simply means using processes to do concurrent tasks. A
very good example is the Common Gateway Interface (CGI) standard in
web servers. The web servers employing this technique launch a new
interpreter process for each HTTP request. This way, they can serve
multiple requests simultaneously.

On such web servers, for a high throughput of requests, you might see that
many interpreter processes are spawned and running at the same time,
each of which is handling a different HTTP request. Since they are
different processes, they are isolated and cannot see the memory regions
of each other. Fortunately, in the CGI use case, the interpreter processes
don't need to communicate with each other or share data. But this is not
always the case.



There are many examples in which a number of processes are doing some
concurrent tasks, and they need to share crucial pieces of information in
order to let the software continue functioning. As an example, we can refer
to the Hadoop infrastructure. There are many nodes in a Hadoop cluster,
and each node has a number of processes keeping the cluster running.

These processes need to constantly share pieces of information in order to
keep the cluster up and running. There are many more examples of such
distributed systems with multiple nodes, like Gluster, Kafka, and
cryptocurrency networks. All of them need a great deal of
intercommunication and message-passing between processes located on
different nodes in order to remain up and running.

As long as the processes or threads are functioning without having a
shared state in the middle, there is not much difference between multi-
processing and multithreading. You probably can use processes instead of
threads and vice versa. But with introducing a shared state between them,
we see a huge difference between using processes or threads, or even a
combination of both. One difference is in the available synchronization
techniques. While the APIs exposed to use these mechanisms are more or
less the same, the complexity of working in multi-process environments is
much higher and the underlying implementations are different. Another
difference between multi-processing and multithreading is the techniques
we use for having shared states. While threads are able to use all the
techniques available to processes, they have the luxury that they can use
the same memory region to share a state. As you see in the upcoming
chapters, this makes a big difference.

To elaborate more, a process has a private memory, and other processes
cannot read or modify it, so it's not that easy to use the process's memory
for sharing something with other processes. But this is much simpler with
threads. All threads within the same process have access to the same
process's memory; hence they can use it for storing a shared state.

Next, you can find the techniques that can be used by processes to access a
shared state among themselves. More information regarding these
techniques will be given in upcoming chapters:



File system: This can be considered as the simplest way to share data
between a number of processes. This approach is very old and is
supported by almost all operating systems. An example is
configuration files that are read by many processes in a software
project. If the file is going to be written by one of the processes,
synchronization techniques should be employed in order to prevent
data races and other concurrency-related issues.
Memory-mapped file: In all POSIX-compliant operating systems
and Microsoft Windows, we can have memory regions that are
mapped to files on disk. These memory regions can be shared among
a number of processes to be read and modified.

This technique is very similar to the file system approach, but it has
fewer headaches caused by streaming data to and from a file
descriptor using the File API. Proper synchronization mechanisms
should be employed if the content of the mapped region can be
modified by any of the processes that have access to it.

Network: For processes located on different computers, the only way
to communicate is by using the network infrastructure and the socket
programming API. The socket programming API is a great part of the
SUS and POSIX standards, and it exists in almost every operating
system.

The details regarding this technique are huge, and many books exist
just to cover this technique. Various protocols, various architectures,
different methods for handling data flow, and many more details all
exist as subparts of this technique. We try to cover part of it in
Chapter 20, Socket Programming, but it may need a completely
separate book to go through the different aspects of IPC via networks.

Signals: Processes being run within the same operating system can
send signals to each other. While this is more used for passing
command signals, it can be also used for sharing a small state
(payload). The value for the shared state can be carried on the signal
and intercepted by the target process.



Shared memory: In POSIX-compliant operating systems and
Microsoft Windows, we can have a region of memory shared among a
number of processes. Therefore, they can use this shared region to
store variables and share some values. Shared memory is not
protected against data races, so the processes willing to use it as a
placeholder for their modifiable shared states need to employ a
proper synchronization mechanism in order to avoid any concurrency
problems. A shared memory region can be used by many processes at
the same time.
Pipes: In POSIX-compliant operating systems and Microsoft
Windows, pipes are one-way communication channels. They can be
used in order to transfer a shared state between two processes. One of
the processes writes to the pipe, and the other one reads from it.

A pipe can be either named or anonymous, each of which has its own
specific use cases. We will give more details and examples in
Chapter 19, Single-Host IPC and Sockets, when talking about various
available IPC techniques on a single machine.

Unix domain sockets: In POSIX-compliant operating systems, and
recently Windows 10, we have communication endpoints known as
Unix sockets. Processes located on the same machine and running
within the same operating system can use Unix domain sockets to
pass information over a full-duplex channel. Unix domain sockets are
very similar to network sockets, but all the data is transferred through
the kernel, hence it provides a very fast way of transferring data.
Multiple processes can use the same Unix domain socket in order to
communicate and share data. Unix domain sockets can also be used
for special use cases, like transferring a file descriptor between
processes on the same machine. The good thing about Unix domain
sockets is that we need to use the same socket programming API as if
they were network sockets.
Message queue: This exists in almost every operating system. A
message queue is maintained in the kernel that can be used by various
processes to send and receive a number of messages. The processes
are not required to know about each other, and it is enough for them
to only have access to the message queue.



This technique is only used to make processes on the same machine
able to communicate with each other.

Environment variables: Unix-like operating systems and Microsoft
Windows offer a set of variables that are kept in the operating system
itself.

These variables are called environment variables, and they can be
accessible to processes within the system.

As an example, this method is heavily used in CGI implementations
introduced in the first paragraph of this section, especially when the main
webserver process wants to pass HTTP request data to the spawned
interpreter process.

Regarding the control techniques to make a number of threads/processes
synchronized, you will see that the techniques used in multi-processing
and multithreading environments share a very similar API provided by the
POSIX standard. But probably the underlying implementation of a mutex
or a condition variable is different in multithreading and multiprocessing
usages. We will give examples of this in the upcoming chapters.

Multithreading
Multithreading is about employing user threads to perform parallel tasks
in a concurrent environment. It's very rare to find a non-trivial program
that has only a single thread; almost every program you'll encounter is
multithreaded. Threads can only exist inside processes; we cannot have
any thread without an owner process. Each process has at least one thread,
which is usually called the main thread. A program that is using a single
thread to perform all its tasks is called a single-threaded program. All
threads within a process have access to the same memory regions, and this
means that we won't have to come up with a complex scenario to share a
piece of data, like we do in multi-processing.



Since threads are very similar to processes, they can use all the techniques
that processes use to share or transfer a state. Therefore, all the techniques
explained in the previous section can be employed by threads to access a
shared state or transfer data among themselves. But threads have another
advantage over processes in this sense, and that's having access to the
same memory regions. Hence, one of the common methods of sharing a
piece of data among a number of threads is to use the memory by
declaring some variables.

Since each thread has its own Stack memory, it can be used as a
placeholder for keeping shared states. A thread can give an address
pointing to somewhere inside its Stack to another thread, and it can be
easily accessed by the other thread because all of these memory addresses
belong to the process's Stack segment. The threads can also easily access
the same Heap space owned by the process and use it as a place holder to
store their shared states. We will give several examples of using the Stack
and Heap regions as some placeholders for shared states in the
next chapter.

The synchronization techniques are also very similar to the techniques
used by the processes. Even the POSIX API remains the same between
processes and threads. It's likely due to the fact that a POSIX-compliant
operating system treats processes and threads in almost the same way. In
the next chapter, we will explain how to use the POSIX API to declare
semaphores, mutexes, and condition variables and more in a multithreaded
program.

As a final note on Windows, regarding the POSIX Threading API
(pthreads), Microsoft Windows doesn't support it. Therefore, Windows has
its own API, which creates and manages threads. This API is part of the
Win32 native library, which we won't go through in this book, but you can
certainly find many resources on the web that cover it.

Summary



In this chapter, we discussed the issues we might expect to encounter
while developing a concurrent program, and the solutions we should
employ to resolve them. The following are the main points that we
covered in this chapter.

We covered concurrency issues. Intrinsic issues exist in all concurrent
systems when different interleavings dissatisfy the invariant
constraints of a system.
We discussed post-synchronization issues that only occur after
employing a synchronization technique in a poor and wrong way.
We explored the control mechanisms employed to keep the invariant
constraints satisfied.
Semaphores are key tools in implementing control mechanisms.
Mutexes are a special category of semaphores that allow only one
task at a time to enter a critical section based on mutual exclusion
conditions.
Monitor objects that encapsulate a mutex and a condition variable can
be used in situations when a task is waiting for a condition to be met.
We finally took the first step towards concurrency development by
introducing multi-processing and multithreading in the POSIX
standard.

The next chapter is the first of a pair of chapters (Chapter 15, Thread
Execution, and Chapter 16, Thread Synchronization) that discuss
multithreaded development in POSIX-compliant operating systems.
Chapter 15, Thread Execution mainly talks about threads and how they are
executed. Chapter 16, Thread Synchronization goes through the available
concurrency control mechanisms for multithreaded environments, and
together they convey all the topics required for writing a multithreaded
program.



Chapter 15
Thread Execution

As we explained in the previous chapter, concurrency can be implemented
using only one of the multithreading or multi-processing approaches
within a POSIX-compliant system. Since these two approaches are such
large topics to discuss, they've been split into four separate chapters in
order to give each topic the coverage that it needs:

The multithreading approach will be discussed in both this chapter
and Chapter 16, Thread Synchronization
The multi-processing approach will be covered in Chapter 17,
Process Execution, and Chapter 18, Process Synchronization.

In this chapter, we're going to look at the anatomy of a thread and the APIs
that can be used to create and manage threads. In the next chapter, Chapter
16, Thread Synchronization, we will go through the concurrency control
mechanisms in a multithreaded environment to study how they are
supposed to resolve concurrency-related issues.

Multi-processing is all about the idea of bringing concurrency into
software by breaking its logic into concurrent processes, which eventually
leads to multi-process software. Because of the existing differences
between multithreading and multi-processing, we decided to move the
discussion of multi-processing to two separate chapters.

In comparison, multithreading, the focus of the first two chapters, is
limited to a single-process system. This is the most basic fact about
threads and is the reason why we're focusing on it first.

In the previous chapter, we briefly explained the differences and
similarities between multithreading and multi-processing. In this chapter,



we are going to focus on multithreading, coupled with an exploration of
the way they should be used in order to have several threads of execution
running flawlessly in a single process.

The following topics are covered in this chapter:

We begin by talking about threads. Both user threads and kernel
threads are explained in this section, and some of the most important
properties of threads are discussed. These properties help us to better
understand a multithreaded environment.
Then we move onto the next section, which is dedicated to basic
programming using the POSIX threading library, or for short, the
pthread library. This library is the main standard library that allows
us to develop concurrent programs on POSIX systems, but it doesn't
mean that non-POSIX-compliant operating systems don't support
concurrency. For non-compliant operating systems like Microsoft
Windows, they are still able to provide their own API for developing
concurrent programs. The POSIX threading library provides support
for both threads and processes. However, in this chapter, our focus is
on the threading part, where we are looking at how the pthread library
can both be used to create a thread and manage it further.
In a further step, we also demonstrate a race condition together with a
data race produced in some example C codes that are using the
pthread library. This develops the basis for continuing our discussion
in the next chapter regarding thread synchronization.

Note:

To be able to fully grasp the discussions that we are going to have in
regard to the multithreading approach, it's highly recommended that you
complete this chapter before moving onto Chapter 16, Thread
Synchronization. This is because the themes introduced in this chapter
are featured throughout the second part of our look into thread
synchronization, which will come in the next chapter.

Before going any further, please bear in mind that we will only be
covering the basic use of the POSIX threading library in this chapter. It's



beyond the scope of this book to dive into the multiple and fascinating
elements of the POSIX threading library and therefore, it is recommended
that you take some time to explore the pthread library in more detail and
gain sufficient practice through written examples to enable you to be
comfortable with it. The more advanced usage of the POSIX threading
library will be demonstrated across the remaining chapters of this book.

For now, though, let's delve deep into the concept of threads by beginning
with an overview looking at everything we know about them. This is a key
element in our understanding, as we are going to be introducing the other
key concepts that we will be learning about in the remaining pages of this
chapter.

Threads
In the previous chapter, we discussed threads as part of the multithreading
approach that you can use when wanting to write concurrent programs in
a POSIX-compliant operating system.

In this section, you will find a recap on everything you should know about
threads. We will also bring in some new information that is relevant to
topics we will discuss later. Remember that all of this information will act
as a foundation for continuing to develop multithreaded programs.

Every thread is initiated by a process. It will then belong to that process
forever. It is not possible to have a shared thread or transfer the ownership
of a thread to another process. Every process has at least one thread that is
its main thread. In a C program, the main  function is executed as part of
the main thread.

All the threads share the same Process ID (PID). If you use utilities like
top  or htop , you can easily see the threads are sharing the same process
ID, and are grouped under it. More than that, all the attributes of the owner
process are inherited by all of its threads for example, group ID, user ID,



current working directory, and signal handlers. As an example, the current
working directory of a thread is the same as its owner process.

Every thread has a unique and dedicated Thread ID (TID). This ID can be
used to pass signals to that thread or track it while debugging. You will see
that in POSIX threads, the thread ID is accessible via the pthread_t
variable. In addition, every thread has also a dedicated signal mask that
can be used to filter out the signals it may receive.

All of the threads within the same process have access to all of the file
descriptors opened by other threads in that process. Therefore, all the
threads can both read or modify the resources behind those file
descriptors. This is also true regarding socket descriptors and opened
sockets. In upcoming chapters, you'll learn more about file descriptors and
sockets.

Threads can use all the techniques used by processes introduced in chapter
14 to share or transfer a state. Take note of the fact that having a shared
state in a shared place (like a database) is different from transmitting it on
a network for example, and this results in two different categories of IPC
techniques. We will come back to this point in future chapters.

Here, you can find a list of methods that can be used by threads to share or
transfer a state in a POSIX-compliant system:

Owner process's memory (Data, Stack, and Heap segments). This
method is only specific to threads and not processes.
Filesystem.
Memory-mapped files.
Network (using internet sockets).
Signal passing between threads.
Shared memory.
POSIX pipes.
Unix domain sockets.
POSIX message queues.



Environment variables.

To proceed with the thread properties, all of the threads within the same
process can use the same process's memory space to store and maintain a
shared state. This is the most common way of sharing a state among a
number of threads. The Heap segment of the process is usually used for
this purpose.

The lifetime of a thread is dependent on the lifetime of its owner process.
When a process gets killed or terminated, all the threads belonging to that
process will also get terminated.

When the main thread ends, the process quits immediately. However, if
there are other detached threads running, the process waits for all of them
to be finished before getting terminated. Detached threads will be
explained while explaining the thread creation in POSIX.

The process that creates a thread can be the kernel process. At the same
time, it can also be a user process initiated in the user space. If the process
is the kernel, the thread is called a kernel-level thread or simply a kernel
thread, otherwise, the thread is called a user-level thread. Kernel threads
typically execute important logic, and because of this they have higher
priorities than that of user threads. As an example, a device driver may be
using a kernel thread to wait for a hardware signal.

Similar to user threads that have access to the same memory region, kernel
threads are also able to access the kernel's memory space and,
subsequently, all the procedures and units within the kernel.

Throughout this book we will be mainly talking about user threads, not
kernel threads. That's because the required API for working with user
threads is provided by the POSIX standard. But there is no standard
interface for creating and managing a kernel thread and they are only
specific to each kernel.

Creating and managing kernel threads is beyond the scope of this book.
Thus, from this point on, when we are using the term thread, we are
referring to user threads and not kernel threads.



A user cannot create a thread directly. The user needs to spawn a process
first, as only then can that process's main thread initiate another thread.
Note that only threads can create threads.

Regarding the memory layout of threads, every thread has its own Stack
memory region that can be considered as a private memory region
dedicated to that thread. In practice, however, it can be accessed by other
threads (within the same process) when having a pointer addressing it.

You should remember that all these Stack regions are part of the same
process's memory space and can be accessed by any thread within the
same process.

Regarding synchronization techniques, the same control mechanisms that
are used to synchronize processes can be used to synchronize a number of
threads. Semaphores, mutexes, and condition variables are part of the tools
that can be used to synchronize threads, as well as processes.

When its threads are synchronized and no further data race or race
condition can be observed, a program is usually referred to as a thread-
safe program. Similarly, a library or a set of functions that can be easily
used in a multithreaded program without introducing any new concurrency
issue is called a thread-safe library. Our goal as programmers is to
produce a thread safe piece of code.

Note:

In the following link, you can find more information about POSIX
threads and the properties they share. The following link is about the
NTPL implementation of the POSIX threading interface. This is dedicated
to a Linux environment but most of it is applicable to other Unix-like
operating systems.

http://man7.org/linux/man-

pages/man7/pthreads.7.html.

In this section we looked at some foundational concepts and properties
concerning threads in order to better understand the upcoming sections.

http://man7.org/linux/man-pages/man7/pthreads.7.html


You will see many of these properties in action later as we talk about
various multithreaded examples.

The next section will introduce you to the first code examples on how to
create a POSIX thread. The section is going to be simple because it only
addresses the basics of threading in POSIX. These basics will lead us into
more advanced topics afterwards.

POSIX threads
This section is dedicated to the POSIX threading API, better known as the
pthread library. This API is very important because it's the main API used
for creating and managing the threads in a POSIX-compliant operating
system.

In non-POSIX-compliant operating systems such as Microsoft Windows,
there should be another API designed for this purpose and it can be found
in the documentation of that operating system. For example, in the case of
Microsoft Windows, the threading API is provided as part of the Windows
API, known as the Win32 API. This is the link to Microsoft's
documentation regarding Windows' threading API:
https://docs.microsoft.com/en-

us/windows/desktop/procthread/process-and-thread-

functions.

However, as part of C11, we expect to have a unified API to work with
threads. In other words, regardless of whether you're writing a program for
a POSIX system or a non-POSIX system, you should be able to use the
same API provided by C11. While this is highly desirable, not much
support exists for such universal APIs among the various C standard
implementations, like glibc, at this point in time.

To proceed with the topic, the pthread library is simply a set of headers
and functions that can be used to write multithreaded programs in POSIX-
compliant operating systems. Each operating system has its own

https://docs.microsoft.com/en-us/windows/desktop/procthread/process-and-thread-functions


implementation for pthread library. These implementations could be
totally different from what another POSIX-compliant operating system
have, but at the end of the day, they all expose the same interface (API).

One famous example is the Native POSIX Threading Library, or NPTL
for short, which is the main implementation of pthread library for the
Linux operating system.

As described by the pthread API, all threading functionality is available by
including the header pthread.h . There are also some extensions to the
pthread library that are only available if you include semaphore.h . As an
example, one of the extensions involves operations that are semaphore-
specific, for example, creating a semaphore, initializing it, destroying it,
and so on.

The POSIX threading library exposes the following functionalities. They
should be familiar to you since we have given detailed explanations to
them in the previous chapters:

Thread management, which includes thread creation, joining threads,
and detaching threads
Mutexes
Semaphores
Condition variables
Various types of locks like spinlocks and recursive locks

To explain the preceding functionalities, we must start with the pthread_
prefix. All pthread functions start with this prefix. This is true in all cases
except for semaphores, which have not been part of the original POSIX
threading library and have been added later as an extension. In this case,
the functions will start with the sem_  prefix.

In the following sections of this chapter, we will see how to use some of
the preceding functionalities when writing a multithreaded program. To
start with, we'll learn how to create a POSIX thread in order to run a code
concurrent with the main thread. Here, we will learn about the



pthread_create  and pthread_join  functions, which belong to the main
API used for creating and joining threads, respectively.

Spawning POSIX threads
Having gone through all the fundamental concepts like interleaving, locks,
mutexes, and condition variables, in the previous chapters, and introducing
the concept of POSIX threads in this chapter, it is the time to write some
code.

The first step is to create a POSIX thread. In this section, we are going to
demonstrate how we can use the POSIX threading API to create new
threads within a process. Following example 15.1 describes how to create a
thread that performs a simple task like printing a string to the output:

#include <stdio.h>

#include <stdlib.h>

// The POSIX standard header for using pthread library

#include <pthread.h>

// This function contains the logic which should be run

// as the body of a separate thread

void* thread_body(void* arg) {

printf("Hello from first thread!\n");

return NULL;

}

int main(int argc, char** argv) {

// The thread handler

pthread_t thread;

// Create a new thread

int result = pthread_create(&thread, NULL, thread_body,

NULL);

// If the thread creation did not succeed

if (result) {

printf("Thread could not be created. Error number: %d\n",

result);

exit(1);

}

// Wait for the created thread to finish

result = pthread_join(thread, NULL);

// If joining the thread did not succeed

if (result) {



printf("The thread could not be joined. Error number: %d\n",

result);

exit(2);

}

return 0;

}

Code Box 15-1 [ExtremeC_examples_chapter15_1.c]: Spawning a new POSIX thread

The example code, seen in Code Box 15-1, creates a new POSIX thread.
This is the first example in this book that has two threads. All previous
examples were single-threaded, and the code was running within the main
thread all the time.

Let's explain the code we've just looked at. At the top, we have included a
new header file: pthread.h . This is the standard header file that exposes
all the pthread functionalities. We need this header file so that we can
bring in the declarations of both pthread_create  and pthread_join
functions.

Just before the main  function, we have declared a new function:
thread_body . This function follows a specific signature. It accepts a
void*  pointer and returns another void*  pointer. As a reminder, void*  is
a generic pointer type that can represent any other pointer type, like int*
or double* .

Therefore, this signature is the most general signature that a C function
can have. This is imposed by the POSIX standard that all functions willing
to be the companion function for a thread (being used as thread logic)
should follow this generic signature. That's why we have defined the
thread_body  function like this.

Note:

The main  function is a part of the main thread's logic. When the main
thread is created, it executes the main  function as part of its logic. This
means that there might be other code that is executed before and after the
main  function.



Back to the code, as the first instruction in the main  function, we have
declared a variable of type pthread_t . This is a thread handle variable,
and upon its declaration, it doesn't refer to any specific thread. In other
words, this variable doesn't hold any valid thread ID yet. Only after
creating a thread successfully does this variable contain a valid handle to
the newly created thread.

After creating the thread, the thread handle actually refers to the thread ID
of the recently created thread. While thread ID is the thread identifier in
the operating system, the thread handle is the representative of the thread
in the program. Most of the time, the value stored in the thread handle is
the same as thread ID. Every thread is able to access its thread ID through
obtaining a pthread_t  variable that refers to itself. A thread can use the
pthread_self  function to obtain a self-referring handle. We are going to
demonstrate the usage of these functions in future examples.

Thread creation happens when the pthread_create  function is called. As
you can see, we have passed the address of the thread  handle variable to
the pthread_create  function in order to have it filled with a proper handle
(or thread ID), referring to the newly created thread.

The second argument determines the thread's attributes. Every thread has
some attributes like stack size, stack address, and detach state that can be
configured before spawning the thread.

We show more examples of how to configure these attributes and how they
affect the way the threads behave. If a NULL  is passed as the second
argument, it means that the new thread should use the default values for its
attributes. Therefore, in the preceding code, we have created a thread that
has attributes with default values.

The third argument passed to pthread_create  is a function pointer. This is
pointing to the thread's companion function, which contains the thread's
logic. In the preceding code, the thread's logic is defined in the
thread_body function. Therefore, its address should be passed in order to
get bound to the handle variable thread .



The fourth and last argument is the input argument for the thread's logic,
which in our case is NULL . This means that we don't want to pass anything
to the function. Therefore, the parameter arg  in the thread_body
function would be NULL  upon the thread's execution. In the examples
provided in the next section, we'll look at how we can pass a value to this
function instead of a NULL .

All pthread functions, including pthread_create , are supposed to return
zero upon successful execution. Therefore, if any number other than zero
is returned, then it means that the function has failed, and an error number
has been returned.

Note that creating a thread using pthread_create  doesn't mean that the
thread's logic is being executed immediately. It is a matter of scheduling
and cannot be predicted when the new thread gains one of the CPU cores
and starts its execution.

After creating the thread, we join the newly created thread, but what
exactly does that mean? As we explained before, each process starts with
exactly one thread, which is the main thread. Except for the main thread,
whose parent is the owning process, all other threads have a parent thread.
In a default scenario, if the main thread is finished, the process will also
be finished. When the process gets terminated, all other running or
sleeping threads will also get terminated immediately.

So, if a new thread is created and it hasn't started yet (because it hasn't
gained the use of the CPU) and in the meantime, the parent process is
terminated (for whatever reason), the thread will die before even executing
its first instruction. Therefore, the main thread needs to wait for the
second thread to become executed and finished by joining it.

A thread becomes finished only when its companion function returns. In
the preceding example, the spawned thread becomes finished when the
thread_body  companion function returns, and this happens when the
function returns NULL . When the newly spawned thread is finished, the
main thread, which was blocked behind calling pthread_join , is released
and can continue, which eventually leads to successful termination of the
program.



If the main thread didn't join the newly created thread, then it is unlikely
that the newly spawned thread can be executed at all. As we've explained
before, this happens due to the fact that the main thread exits even before
the spawned thread has entered into its execution phase.

We should also remember that creating a thread is not enough to have it
executed. It may take a while for the created thread to gain access to a
CPU core, and through this eventually start running. If, in the meantime,
the process gets terminated, then the newly created thread has no chance
of running successfully.

Now that we've talked through the design of the code, Shell Box 15-1
shows the output of running example 15.1:

$ gcc ExtremeC_examples_chapter15_1.c -o ex15_1.out -

lpthread

$ ./ex15_1.out

Hello from first thread!

$

Shell Box 15-1: Building and running example 15.1

As you see in the preceding shell box, we need to add the -lpthread
option to the compilation command. This is done because we need to link
our program with the existing implementation of the pthread library. In
some platforms, like macOS, your program might get linked without the -
lpthread  option as well; however, it is strongly recommended to use this
option while you are linking programs that use pthread library. The
importance of this advice is to make your build scripts working on any
platform and prevent any cross-compatibility issues while building your C
projects.

A thread that can be joined is known as joinable. The threads are joinable
by default. Opposite to joinable threads, we have detached threads.
Detached threads cannot be joined.

In example 15.1, the main thread could detach the newly spawned thread
instead of joining it. This way, we would have let the process know that it



must wait for the detached thread to become finished before it can get
terminated. Note that in this case, the main thread can exit without the
parent process being terminated.

In the final code of this section, we want to rewrite the preceding example
using detached threads. Instead of joining the newly created thread, the
main thread makes it detached and then exits. This way, the process
remains running until the second thread finishes, despite the fact that the
main thread has already exited:

#include <stdio.h>

#include <stdlib.h>

// The POSIX standard header for using pthread library

#include <pthread.h>

// This function contains the logic which should be run

// as the body of a separate thread

void* thread_body(void* arg) {

printf("Hello from first thread!\n");

return NULL;

}

int main(int argc, char** argv) {

// The thread handler

pthread_t thread;

// Create a new thread

int result = pthread_create(&thread, NULL, thread_body,

NULL);

// If the thread creation did not succeed

if (result) {

printf("Thread could not be created. Error number: %d\n",

result);

exit(1);

}

// Detach the thread

result = pthread_detach(thread);

// If detaching the thread did not succeed

if (result) {

printf("Thread could not be detached. Error number: %d\n",

result);

exit(2);

}

// Exit the main thread

pthread_exit(NULL);

return 0;

}



Code Box 15-2 [ExtremeC_examples_chapter15_1_2.c]: Example 15.1 spawning a detached
thread

The output of the preceding code is exactly the same as the previous code
written using joinable threads. The only difference is the that way we
managed the newly created thread.

Right after the creation of the new thread, the main thread has detached it.
Then following that, the main thread exits. The instruction
pthread_exit(NULL)  was necessary in order to let the process know that it
should wait for other detached threads to be finished. If the threads were
not detached, the process would get terminated upon the exit of the main
thread.

Note:

The detach state is one of the thread attributes that can be set before
creating a new thread in order to have it detached. This is another method
to create a new detached thread instead of calling pthread_detach
on a joinable thread. The difference is that this way, the newly created
thread is detached from the start.

In the next section, we're going to introduce our first example
demonstrating a race condition. We will be using all the functions
introduced in this section in order to write future examples. Therefore,
you'll have a second chance to revisit them again in different scenarios.

Example of race condition
For our second example, we're going to look at a more problematic
scenario. Example 15.2, shown in Code Box 15-3, shows just how
interleavings happen and how we cannot reliably predict the final output
of the example in practice, mainly because of the non-deterministic nature



of concurrent systems. The example involves a program that creates three
threads at almost the same time, and each of them prints a different string.

The final output of the following code contains the strings printed by three
different threads but in an unpredictable order. If the invariant constraint
(introduced in the previous chapter) for the following example was to see
the strings in a specific order in the output, the following code would have
failed at satisfying that constraint, mainly because of the unpredictable
interleavings. Let's look at the following code box:

#include <stdio.h>

#include <stdlib.h>

// The POSIX standard header for using pthread library

#include <pthread.h>

void* thread_body(void* arg) {

char* str = (char*)arg;

printf("%s\n", str);

return NULL;

}

int main(int argc, char** argv) {

// The thread handlers

pthread_t thread1;

pthread_t thread2;

pthread_t thread3;

// Create new threads

int result1 = pthread_create(&thread1, NULL,

thread_body, "Apple");

int result2 = pthread_create(&thread2, NULL,

thread_body, "Orange");

int result3 = pthread_create(&thread3, NULL,

thread_body, "Lemon");

if (result1 || result2 || result3) {

printf("The threads could not be created.\n");

exit(1);

}

// Wait for the threads to finish

result1 = pthread_join(thread1, NULL);

result2 = pthread_join(thread2, NULL);

result3 = pthread_join(thread3, NULL);

if (result1 || result2 || result3) {

printf("The threads could not be joined.\n");

exit(2);

}

return 0;

}



Code Box 15-3 [ExtremeC_examples_chapter15_2.c]: Example 15.2 printing three different
strings to the output

The code we've just looked at is very similar to the code written for
example 15.1, but it creates three threads instead of the one. In this
example, we use the same companion function for all three threads.

As you can see in the preceding code, we have passed a fourth argument to
the pthread_create  function, whereas in our previous example, 15.1, it
was NULL . These arguments will be accessible by the thread through the
generic pointer parameter arg  in the thread_body  companion function.

Inside the thread_body  function, the thread casts the generic pointer arg
to a char*  pointer and prints the string starting at that address using the
printf  function. This is how we are able to pass arguments to the threads.
Likewise, it doesn't matter how big they are since we are only passing a
pointer.

If you have multiple values that need to be sent to a thread upon their
creation, you could use a structure to contain those values and pass a
pointer to a structure variable filled by the desired values. We will
demonstrate to how to do this in the next chapter, Thread Synchronization.

Note:

The fact that we can pass a pointer to a thread implies that the new
threads should have access to the same memory region that the main
thread has access to. However, access is not limited to a specific segment
or region in the owning process's memory and all threads have full
access to the Stack, Heap, Text, and Data segments in a process.

If you take example 15.2 and run it several times, you'll see that the order
of the printed strings can vary, as each run is expected to print the same
strings but in a different order.

Shell Box 15-2 shows the compilation and the output of example 15.2 after
three consecutive runs:



$ gcc ExtremeC_examples_chapter15_2.c -o ex15_2.out -

lpthread

$ ./ex15_2.out

Apple

Orange

Lemon

$ ./ex15_2.out

Orange

Apple

Lemon

$ ./ex15_2.out

Apple

Orange

Lemon

$

Shell Box 15-2: Running example 15.2 three times to observe the existing race condition and
various interleavings

It is easy to produce the interleavings in which the first and second threads
print their strings before the third thread, but it would be difficult to
produce an interleaving in which the third thread prints its string, Lemon ,
as the first or second string in the output. However, this will certainly
happen, albeit with a low probability. You might need to run the example
many more times in order to produce that interleaving. This may require
some patience.

The preceding code is also said to not be thread safe. This is an important
definition; a multithreaded program is thread safe if, and only if, it has no
race condition according to the defined invariant constraints. Therefore,
since the preceding code has a race condition, it is not thread safe. Our job
would be to make the preceding code thread safe through the use of proper
control mechanisms that will be introduced in the next chapter.

As you see in the output of the preceding example, we don't have any
interleaving between the characters of Apple  or Orange . For example, we
don't see the following output:

$ ./ex15_2.out

AppOrle

Ange



Lemon

$

Shell Box 15-3: An imaginary output that does not happen for the above example

This shows a fact that the printf  function is thread safe and it simply
means that it doesn't matter how interleavings happen, when one of the
threads is in the middle of printing a string, printf  instances in other
threads don't print anything.

In addition, in the preceding code, the thread_body  companion function
was run three times in the context of three different threads. In the
previous chapters and before giving multithreaded examples, all functions
were being executed in the context of the main thread. From now on, every
function call occurs in the context of a specific thread (not necessarily the
main thread).

It's not possible for two threads to initiate a single function call. The
reason is obvious because each function call needs to create a stack frame
that should be put on top of the Stack of just one thread, and two different
threads have two different Stack regions. Therefore, a function call can
only be initiated by just one thread. In other words, two threads can call
the same function separately and it results into two separate function calls,
but they cannot share the same function call.

We should note that the pointer passed to a thread should not be a dangling
pointer. It causes some serious memory issues that are hard to track. As a
reminder, a dangling pointer points to an address in the memory where
there is no allocated variable. More specifically, this is the case that at
some moment in time; there might have been a variable or an array there
originally, but as of the time when the pointer is about to be used, it's
already been freed.

In the preceding code, we passed three literals to each thread. Since the
memory required for these string literals are allocated from the Data
segment and not from Heap or Stack segments, their addresses never
become freed and the arg  pointers won't become dangling.



It would be easy to write the preceding code in a way in which the pointers
become dangling. The following is the same code but with dangling
pointers, and you will see shortly that it leads to bad memory behaviors:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// The POSIX standard header for using pthread library

#include <pthread.h>

void* thread_body(void* arg) {

char* str = (char*)arg;

printf("%s\n", str);

return NULL;

}

int main(int argc, char** argv) {

// The thread handlers

pthread_t thread1;

pthread_t thread2;

pthread_t thread3;

char str1[8], str2[8], str3[8];

strcpy(str1, "Apple");

strcpy(str2, "Orange");

strcpy(str3, "Lemon");

// Create new threads

int result1 = pthread_create(&thread1, NULL, thread_body,

str1);

int result2 = pthread_create(&thread2, NULL, thread_body,

str2);

int result3 = pthread_create(&thread3, NULL, thread_body,

str3);

if (result1 || result2 || result3) {

printf("The threads could not be created.\n");

exit(1);

}

// Detach the threads

result1 = pthread_detach(thread1);

result2 = pthread_detach(thread2);

result3 = pthread_detach(thread3);

if (result1 || result2 || result3) {

printf("The threads could not be detached.\n");

exit(2);

}

// Now, the strings become deallocated.

pthread_exit(NULL);

return 0;

}



Code Box 15-4 [ExtremeC_examples_chapter15_2_1.c]: Example 15.2 with literals allocated
from the main thread's Stack region

The preceding code is almost the same as the code given in example 15.2,
but with two differences.

Firstly, the pointers passed to the threads are not pointing to the string
literals residing in Data segment, instead they point to character arrays
allocated from the main thread's Stack region. As part of the main
function, these arrays have been declared and in the following lines, they
have been populated by some string literals.

We need to remember that the string literals still reside in the Data
segment, but the declared arrays now have the same values as the string
literals after being populated using the strcpy  function.

The second difference is regarding how the main thread behaves. In the
previous code it joined the threads, but in this code, it detaches the threads
and exits immediately. This will deallocate the arrays declared on top of
the main thread's Stack, and in some interleavings other threads may try to
read those freed regions. Therefore, in some interleavings, the pointers
passed to the threads can become dangling.

Note:

Some constraints, like having no crashes, having no dangling pointers,
and generally having no memory-related issues, can always be thought
of as being part of the invariant constraints for a program. Therefore, a
concurrent system that yields a dangling pointer issue in some
interleavings is definitely suffering from a serious race condition.

To be able to detect the dangling pointers, you need to use a memory
profiler. As a simpler approach, you could run the program several times
and wait for a crash to happen. However, you are not always fortunate
enough to be able to see that and we are not lucky to see crashes in this
example either.



To detect bad memory behavior in this example, we are going to use
valgrind . You remember that we introduced this memory profiler in
Chapter 4, Process Memory Structure, and Chapter 5, Stack and Heap, for
finding the memory leaks. Back in this example, we want to use it to find
the places where bad memory access has happened.

It's worth remembering that using a dangling pointer, and accessing its
content, will not necessarily lead to a crash. This is especially true in the
preceding code, in which the strings are placed on top of the main thread's
Stack.

While the other threads are running, the Stack segment remains the same
as it was when the main thread exited, therefore you can access the strings
even though the str1 , str2 , and str3  arrays are deallocated while
leaving the main  function. In other words, in C or C++, the runtime
environment does not check if a pointer is dangling or not, it just follows
the sequence of statements.

If a pointer is dangling and its underlying memory is changed, then bad
things like crash or logical errors can happen but as long as the underlying
memory is untouched then using the dangling pointers may not lead to a
crash, and this is very dangerous and hard to track.

In short, just because you can access a memory region through a dangling
pointer, that doesn't mean that you are allowed to access that region. This
is the reason why we need to use a memory profiler like valgrind  that
will report on these invalid memory accesses.

In the following shell box, we compile the program and we run it with
valgrind  twice. In the first run, nothing bad happens but in the second
run, valgrind  reports a bad memory access.

Shell Box 15-4 shows the first run:

$ gcc -g ExtremeC_examples_chapter15_2_1.c -o ex15_2_1.out -

lpthread

$ valgrind ./ex15_2_1.out

==1842== Memcheck, a memory error detector



==1842== Copyright (C) 2002-2017, and GNU GPL'd, by Julian

Seward et al.

==1842== Using Valgrind-3.13.0 and LibVEX; rerun with -h for

copyright info

==1842== Command: ./ex15_2_1.out

==1842==

Orange

Apple

Lemon

==1842==

==1842== HEAP SUMMARY:

==1842== in use at exit: 0 bytes in 0 blocks

==1842== total heap usage: 9 allocs, 9 frees, 3,534 bytes

allocated

==1842==

==1842== All heap blocks were freed -- no leaks are possible

==1842==

==1842== For counts of detected and suppressed errors, rerun

with: -v

==1842== ERROR SUMMARY: 0 errors from 0 contexts

(suppressed: 0 from 0)

$

Shell Box 15-4: Running example 15.2 with valgrind for the first time

In the second run, valgrind  reports some memory access issues (note that
the full output will be viewable when you run it, but for purpose of length,
we've refined it.):

$ valgrind ./ex15_2_1.out

==1854== Memcheck, a memory error detector

==1854== Copyright (C) 2002-2017, and GNU GPL'd, by Julian

Seward et al.

==1854== Using Valgrind-3.13.0 and LibVEX; rerun with -h for

copyright info

==1854== Command: ./ex15_2_1.out

==1854==

Apple

Lemon

==1854== Thread 4:

==1854== Conditional jump or move depends on uninitialised

value(s)

==1854== at 0x50E6A65: _IO_file_xsputn@@GLIBC_2.2.5

(fileops.c:1241)

==1854== by 0x50DBA8E: puts (ioputs.c:40)

==1854== by 0x1087C9: thread_body

(ExtremeC_examples_chapter15_2_1.c:17)



==1854== by 0x4E436DA: start_thread (pthread_create.c:463)

==1854== by 0x517C88E: clone (clone.S:95)

==1854==

...

==1854==

==1854== Syscall param write(buf) points to uninitialised

byte(s)

==1854== at 0x516B187: write (write.c:27)

==1854== by 0x50E61BC: _IO_file_write@@GLIBC_2.2.5

(fileops.c:1203)

==1854== by 0x50E7F50: new_do_write (fileops.c:457)

==1854== by 0x50E7F50: _IO_do_write@@GLIBC_2.2.5

(fileops.c:433)

==1854== by 0x50E8402: _IO_file_overflow@@GLIBC_2.2.5

(fileops.c:798)

==1854== by 0x50DBB61: puts (ioputs.c:41)

==1854== by 0x1087C9: thread_body

(ExtremeC_examples_chapter15_2_1.c:17)

==1854== by 0x4E436DA: start_thread (pthread_create.c:463)

==1854== by 0x517C88E: clone (clone.S:95)

...

==1854==

Orange

==1854==

==1854== HEAP SUMMARY:

==1854== in use at exit: 272 bytes in 1 blocks

==1854== total heap usage: 9 allocs, 8 frees, 3,534 bytes

allocated

==1854==

==1854== LEAK SUMMARY:

==1854== definitely lost: 0 bytes in 0 blocks

==1854== indirectly lost: 0 bytes in 0 blocks

==1854== possibly lost: 272 bytes in 1 blocks

==1854== still reachable: 0 bytes in 0 blocks

==1854== suppressed: 0 bytes in 0 blocks

==1854== Rerun with --leak-check=full to see details of

leaked memory

==1854==

==1854== For counts of detected and suppressed errors, rerun

with: -v

==1854== Use --track-origins=yes to see where uninitialised

values come from

==1854== ERROR SUMMARY: 13 errors from 3 contexts

(suppressed: 0 from 0)

$

Shell Box 15-5: Running example 15.2 with valgrind for the second time



As you can see, the first run went well, with no memory access issues,
even though the aforementioned race condition is still clear to us. In the
second run, however, something goes wrong when one of the threads tries
to access the string Orange  pointed to by str2 .

What this means is that the passed pointer to the second thread has
become dangling. In the preceding output, you can clearly see that the
stack trace points to line inside the thread_body  function where there is
the printf  statement. Note that the stack trace actually refers to the puts
function because our C compiler has replaced the printf  statement with
the equivalent puts  statement. The preceding output also shows that the
write  system call is using a pointer named buf  that points to a memory
region that is not initialized or allocated.

Looking at the preceding example, valgrind  doesn't conclude whether a
pointer is dangling or not. It simply reports the invalid memory access.

Before the error messages regarding the bad memory access, you can see
that the string Orange  is printed even though the access for reading it is
invalid. This just goes to show how easily things can get complicated
when we have code running in a concurrent fashion.

In this section, we've taken a significant step forward in seeing how easy it
is to write code that is not thread safe. Moving on, we're now going to
demonstrate another interesting example that produces a data race. Here,
we will see a more complex use of the pthread library and its various
functions.

Example of data race
Example 15.3 demonstrates a data race. In previous examples, we didn't
have a shared state, but in this example, we are going to have a variable
shared between two threads.



The invariant constraint of this example is to protect the data integrity of
the shared state, plus all other obvious constraints, like having no crashes,
having no bad memory accesses, and so on. In other words, it doesn't
matter how the output appears, but a thread must not write new values
while the value of the shared variable has been changed by the other thread
and the writer thread doesn't know the latest value. This is what we mean
by "data integrity":

#include <stdio.h>

#include <stdlib.h>

// The POSIX standard header for using pthread library

#include <pthread.h>

void* thread_body_1(void* arg) {

// Obtain a pointer to the shared variable

int* shared_var_ptr = (int*)arg;

// Increment the shared variable by 1 by writing

// directly to its memory address

(*shared_var_ptr)++;

printf("%d\n", *shared_var_ptr);

return NULL;

}

void* thread_body_2(void* arg) {

// Obtain a pointer to the shared variable

int* shared_var_ptr = (int*)arg;

// Increment the shared variable by 2 by writing

// directly to its memory address

*shared_var_ptr += 2;

printf("%d\n", *shared_var_ptr);

return NULL;

}

int main(int argc, char** argv) {

// The shared variable

int shared_var = 0;

// The thread handlers

pthread_t thread1;

pthread_t thread2;

// Create new threads

int result1 = pthread_create(&thread1, NULL,

thread_body_1, &shared_var);

int result2 = pthread_create(&thread2, NULL,

thread_body_2, &shared_var);

if (result1 || result2) {

printf("The threads could not be created.\n");

exit(1);

}

// Wait for the threads to finish

result1 = pthread_join(thread1, NULL);



result2 = pthread_join(thread2, NULL);

if (result1 || result2) {

printf("The threads could not be joined.\n");

exit(2);

}

return 0;

}

Code Box 15-5 [ExtremeC_examples_chapter15_3.c]: Example 15.3 with two threads
operating on a single shared variable

The shared state has been declared as the first line in the main  function. In
this example, we are dealing with a single integer variable allocated form
the Stack region of the main thread, but in real applications it can be far
more complex. The initial value of the integer variable is zero, and each
thread contributes directly to an increase in its value by writing to its
memory location.

In this example, there is no local variable that is keeping a copy of the
shared variable's value in each thread. However, you should be careful
about the increment operations in threads because they are not atomic
operations, and therefore are subject to experiencing different
interleavings. We have explained this thoroughly in the previous chapter.

Each thread is able to change the value of the shared variable by using the
pointer that it receives inside its companion function through the argument
arg . As you can see in both calls to pthread_create , we are passing the
address of the variable shared_var  as the fourth argument.

It's worth noting that the pointer never becomes dangling in threads
because the main thread doesn't exit, and it waits for the threads to finish
by joining them.

Shell Box 15-6 shows us the outputs of multiple runs of the preceding code
in order to produce different interleavings. Remember that we want data
integrity to be preserved for the shared variable shared_var .

So, based on the logic defined in thread_body_1  and thread_body_2 , we
can only have 1 3  and 2 3  as the acceptable outputs:



$ gcc ExtremeC_examples_chapter15_3.c -o ex15_3.out -

lpthread

$ ./ex15_3.out

1

3

$

...

...

...

$ ./ex15_3.out

3

1

$

...

...

...

$ ./ex15_3.out

1

2

$

Shell Box 15-6: Multiple runs of example 15.3, in which we eventually see that the data
integrity of the shared variable is not preserved

As you can see, the last run reveals that the data integrity condition has not
been met for the shared variable.

In the last run, the first thread, the thread that has thread_body_1  as its
companion function, has read the value of the shared variable and it is 0 .

The second thread, the thread that has thread_body_2  as its companion
function, has also read the shared value and it is 0 . After this point, both
threads try to increment the value of the shared variable and print it
immediately. This is a breach of data integrity because when one thread is
manipulating a shared state, the other thread shouldn't be able to write to
it.

As we explained before, we have a clear data race over shared_var  in this
example.

Note:



When executing example 15.3 yourself, be patient and wait to see the 1
2  output. It might happen after running the executable 100 times! I
could have observed the data race on both macOS and Linux.

In order to resolve the preceding data race, we need to use a control
mechanism, such as a semaphore or a mutex, to synchronize the access to
the shared variable. In the next chapter, we will introduce a mutex to the
preceding code that will do that for us.

Summary
This chapter was our first step towards writing multithreaded programs in
C using the POSIX threading library. As part of this chapter:

We went through the basics of the POSIX threading library, which is
the main tool for writing multithreaded applications in POSIX-
compliant systems.
We explored the various properties of threads and their memory
structure.
We gave some insight about the available mechanisms for threads to
communicate and share a state.
We explained that how the memory regions available to all threads
within the same process are the best way to share data and
communicate.
We talked about the kernel threads and the user-level threads and how
they differ.
We explained the joinable and detached threads and how they differ
from the execution point of view.
We demonstrated how to use the pthread_create  and pthread_join
functions and what arguments they receive.
Examples of a race condition and a data race were demonstrated
using actual C code, and you saw how using dangling pointer can



cause serious memory issues and eventually a crash or a logical error
might occur.

In the following chapter, we will continue and develop our discussion into
multithreading by looking at the concurrency-related issues and the
available mechanisms to both prevent and resolve them.



Chapter 16
Thread Synchronization

In the previous chapter, we explained how to create and manage a POSIX
thread. We also demonstrated two of the most common concurrency
issues: race conditions and data races.

In this chapter, we are going to complete our discussion about
multithreaded programming using the POSIX threading library and give
you the required skills to control a number of threads.

If you remember from Chapter 14, Synchronization, we showed that
concurrency-related problems are not actually issues; rather, they are
consequences of the fundamental properties of a concurrent system.
Therefore, you are likely to encounter them in any concurrent system.

We showed in the previous chapter that we could indeed produce such
issues with the POSIX threading library as well. Examples 15.2 and 15.3
from the previous chapter demonstrated the race condition and data race
issues. Therefore, they will be our starting point to use the synchronization
mechanisms provided by the pthread library in order to synchronize a
number of threads.

In this chapter, we will cover the following topics:

Using POSIX mutexes to protect critical sections accessing a shared
resource.
Using POSIX condition variables to wait for a specific condition.
Using various types of locks together with mutexes and condition
variables.



Using POSIX barriers and the way they can help synchronize a
number of threads.
The concept of the semaphore and its counterpart object in the
pthread library: the POSIX semaphore. You are going to find out that
mutexes are just binary semaphores.
The memory structure of a thread and how this structure can affect
memory visibility in a multi-core system.

We start this chapter with a general talk about concurrency control. The
following sections give you the necessary tools and constructs to write
well-behaved multithreaded programs.

POSIX concurrency control
In this section, we are going to have a look at possible control mechanisms
that are offered by the pthread library. Semaphores, mutexes, and
condition variables alongside different types of locks are used in various
combinations to bring determinism to multithreaded programs. First, we
start with POSIX mutexes.

POSIX mutexes

The mutexes introduced in the pthread library can be used to synchronize
both processes and threads. In this section, we are going to use them in a
multithreaded C program in order to synchronize a number of threads.

As a reminder, a mutex is a semaphore that only allows one thread at a
time to enter the critical section. Generally, a semaphore has the potential
to let more than one thread enter its critical section.

Note:

Mutexes are also called binary semaphores because they are semaphores
that accept only two states.



We start this section by resolving the data race issue observed as part of
example 15.3 in the previous chapter, using a POSIX mutex. The mutex
only allows one thread at a time to enter the critical section and performs
read and write operations on the shared variable. This way, it guarantees
the data integrity of the shared variable. The following code box contains
the solution to the data race issue:

#include <stdio.h>

#include <stdlib.h>

// The POSIX standard header for using pthread library

#include <pthread.h>

// The mutex object used to synchronize the access to

// the shared state.

pthread_mutex_t mtx;

void* thread_body_1(void* arg) {

// Obtain a pointer to the shared variable

int* shared_var_ptr = (int*)arg;

// Critical section

pthread_mutex_lock(&mtx);

(*shared_var_ptr)++;

printf("%d\n", *shared_var_ptr);

pthread_mutex_unlock(&mtx);

return NULL;

}

void* thread_body_2(void* arg) {

int* shared_var_ptr = (int*)arg;

// Critical section

pthread_mutex_lock(&mtx);

*shared_var_ptr += 2;

printf("%d\n", *shared_var_ptr);

pthread_mutex_unlock(&mtx);

return NULL;

}

int main(int argc, char** argv) {

// The shared variable

int shared_var = 0;

// The thread handlers

pthread_t thread1;

pthread_t thread2;

// Initialize the mutex and its underlying resources

pthread_mutex_init(&mtx, NULL);

// Create new threads

int result1 = pthread_create(&thread1, NULL,

thread_body_1, &shared_var);

int result2 = pthread_create(&thread2, NULL,

thread_body_2, &shared_var);

if (result1 || result2) {



printf("The threads could not be created.\n");

exit(1);

}

// Wait for the threads to finish

result1 = pthread_join(thread1, NULL);

result2 = pthread_join(thread2, NULL);

if (result1 || result2) {

printf("The threads could not be joined.\n");

exit(2);

}

pthread_mutex_destroy(&mtx);

return 0;

}

Code Box 16-1 [ExtremeC_examples_chapter15_3_mutex.c]: Using a POSIX mutex to
resolve the data race issue found as part of example 15.3 in the previous chapter

If you compile the preceding code and run it as many times as you like,
you will see only 1 3  or 2 3  in the output. That's because we are using a
POSIX mutex object to synchronize the critical sections in the preceding
code.

At the beginning of the file, we have declared a global POSIX mutex
object as mtx . Then inside the main  function, we have initialized the
mutex with default attributes using the function pthread_mutex_init . The
second argument, which is NULL , could be custom attributes specified by
the programmer. We will go through an example of how to set these
attributes in the upcoming sections.

The mutex is used in both threads to protect the critical sections embraced
between the the pthread_mutex_lock(&mtx)  and
pthread_mutex_unlock(&mtx)  statements.

Finally, before leaving the main  function, we destroy the mutex object.

The first pair of pthread_mutex_lock(&mtx)  and
pthread_mutex_unlock(&mtx)  statements, in the companion function
thread_body_1 , is making up the critical section for the first thread. Also,
the second pair in the companion function thread_body_2  is making up
the critical section for the second thread. Both critical sections are
protected by the mutex, and at each time, only one of the threads can be in



its critical section and the other thread should wait outside of its critical
section until the busy thread leaves.

As soon as a thread enters the critical section, it locks the mutex, and the
other thread should wait behind the pthread_mutex_lock(&mtx)  statement
to have the mutex unlocked again.

By default, a thread waiting for a mutex to become unlocked goes into
sleeping mode and doesn't do a busy-wait. But what if we wanted to do
busy-waiting instead of going to sleep? Then we could use a spinlock. It
would be enough to use the following functions instead of all the
preceding mutex-related functions. Thankfully, pthread uses a consistent
convention in naming the functions.

The spinlock-related types and functions are as follows.

pthread_spin_t : The type used for creating a spinlock object. It is
similar to the pthread_mutex_t  type.
pthread_spin_init : Initializes a spinlock object. It is similar to
pthread_mutex_init .
pthread_spin_destroy : Similar to pthread_mutex_destory .
pthread_spin_lock : Similar to pthread_mutex_lock .
pthread_spin_unlock : Similar to pthread_mutex_unlock .

As you see, it's pretty easy to just replace the preceding mutex types and
functions with spinlock types and functions to have a different behavior,
busy-waiting in this case, while waiting for a mutex object to become
released.

In this section, we introduced POSIX mutexes and how they can be used to
resolve a data race issue. In the next section, we will demonstrate how to
use a condition variable in order to wait for a certain event to occur. We
will be addressing the race condition that occurred in example 15.2, but we
will make some modifications to the original example.

POSIX condition variables



If you remember from example 15.2 in the previous chapter, we faced a
race condition. Now, we want to bring up a new example that is very
similar to example 15.2, but one where it would be simpler to use a
condition variable. Example 16.1 has two threads instead of three (which
was the case for example 15.2), and they are required to print the
characters A  and B  to the output, but we want them to be always in a
specific order; first A  and then B .

Our invariant constraint for this example is to see first A and then B in the
output (plus data integrity for all shared states, no bad memory access, no
dangling pointer, no crashes, and other obvious constraints). The following
code demonstrates how we use a condition variable to come up with a
working solution written in C for this example:

#include <stdio.h>

#include <stdlib.h>

// The POSIX standard header for using pthread library

#include <pthread.h>

#define TRUE 1

#define FALSE 0

typedef unsigned int bool_t;

// A structure for keeping all the variables related

// to a shared state

typedef struct {

// The flag which indicates whether 'A' has been printed or

not

bool_t done;

// The mutex object protecting the critical sections

pthread_mutex_t mtx;

// The condition variable used to synchronize two threads

pthread_cond_t cv;

} shared_state_t;

// Initializes the members of a shared_state_t object

void shared_state_init(shared_state_t *shared_state) {

shared_state->done = FALSE;

pthread_mutex_init(&shared_state->mtx, NULL);

pthread_cond_init(&shared_state->cv, NULL);

}

// Destroy the members of a shared_state_t object

void shared_state_destroy(shared_state_t *shared_state) {

pthread_mutex_destroy(&shared_state->mtx);

pthread_cond_destroy(&shared_state->cv);

}

void* thread_body_1(void* arg) {

shared_state_t* ss = (shared_state_t*)arg;



pthread_mutex_lock(&ss->mtx);

printf("A\n");

ss->done = TRUE;

// Signal the threads waiting on the condition variable

pthread_cond_signal(&ss->cv);

pthread_mutex_unlock(&ss->mtx);

return NULL;

}

void* thread_body_2(void* arg) {

shared_state_t* ss = (shared_state_t*)arg;

pthread_mutex_lock(&ss->mtx);

// Wait until the flag becomes TRUE

while (!ss->done) {

// Wait on the condition variable

pthread_cond_wait(&ss->cv, &ss->mtx);

}

printf("B\n");

pthread_mutex_unlock(&ss->mtx);

return NULL;

}

int main(int argc, char** argv) {

// The shared state

shared_state_t shared_state;

// Initialize the shared state

shared_state_init(&shared_state);

// The thread handlers

pthread_t thread1;

pthread_t thread2;

// Create new threads

int result1 =

pthread_create(&thread1, NULL, thread_body_1,

&shared_state);

int result2 =

pthread_create(&thread2, NULL, thread_body_2,

&shared_state);

if (result1 || result2) {

printf("The threads could not be created.\n");

exit(1);

}

// Wait for the threads to finish

result1 = pthread_join(thread1, NULL);

result2 = pthread_join(thread2, NULL);

if (result1 || result2) {

printf("The threads could not be joined.\n");

exit(2);

}

// Destroy the shared state and release the mutex

// and condition variable objects

shared_state_destroy(&shared_state);

return 0;



}

Code Box 16-2 [ExtremeC_examples_chapter16_1_cv.c]: Using a POSIX condition variable
to dictate a specific order between two threads

In the preceding code, it's good to use a structure in order to encapsulate
the shared mutex, the shared condition variable, and the shared flag into a
single entity. Note that we are only able to pass a single pointer to each
thread. Therefore, we had to stack up the needed shared variables into a
single structure variable.

As the second type definition (after bool_t ) in the example, we have
defined a new type, shared_state_t , as follows:

typedef struct {

bool_t done;

pthread_mutex_t mtx;

pthread_cond_t cv;

} shared_state_t;

Code Box 16-3: Putting all shared variables required for example 16.1 into one structure

After the type definitions, we defined two functions in order to initialize
and destroy the shared_state_t  instances. They can be thought of as the
constructor and destructor functions for the type shared_state_t
respectively. To read more about constructor and destructor functions,
please refer to Chapter 6, OOP and Encapsulation.

This is how we use a condition variable. A thread can wait (or sleep) on a
condition variable, and then in the future, it becomes notified to wake up.
More than that, a thread can notify (or wake up) all other threads waiting
(or sleeping) on a condition variable. All these operations must be
protected by a mutex, and that's why you should always use a condition
variable together with a mutex.

We did the very same in the preceding code. In our shared state object, we
have a condition variable, together with a companion mutex that is
supposed to protect the condition variable. To emphasize again, a



condition variable is supposed to be used only in critical sections
protected by its companion mutex.

So, what happens in the preceding code? In the thread that is supposed to
print A , it tries to lock the mtx  mutex using a pointer to the shared state
object. When the lock is acquired, the thread prints A , it sets the flag
done , and it finally notifies the other thread, which could be waiting on
the condition variable cv , by calling the pthread_cond_signal  function.

On the other hand, if in the meantime the second thread becomes active
and the first thread has not printed A  yet, the second thread tries to
acquire the lock over mtx . If it succeeds, it checks the flag done , and if
it's false, it simply means that the first thread has not entered its critical
section yet (otherwise the flag should have been true). Therefore, the
second thread waits on the condition variable and immediately releases the
CPU by calling the pthread_cond_wait  function.

It is very important to note that upon waiting on a condition variable, the
associated mutex becomes released and the other thread can continue.
Also, upon becoming active and exiting the waiting state, the associated
mutex should be acquired again. For some good practice in condition
variables, you could go through other possible interleavings.

Note:

The function pthread_cond_signal  can only be used to notify just
one single thread. If you're going to notify all the threads waiting for a
condition variable, you have to use the pthread_cond_broadcast
function. We are going to give an example of this shortly.

But why did we use a while  loop for checking the flag done  when it
could be a simple if  statement? That's because the second thread can be
notified by other sources rather than just the first thread. In those cases, if
the thread could obtain the lock over its mutex upon exiting the wait and
become active again, it could check the loop's condition, and if it is not
met yet, it should wait again. It is an accepted technique to wait for a



condition variable inside a loop, until its condition matches what we are
waiting for.

The preceding solution satisfies the memory visibility constraint too. As
we've explained in the previous chapters, all locking and unlocking
operations are liable to trigger a memory coherence among various CPU
cores; therefore, the values seen in different cached versions of the flag
done  are always recent and equal.

The race condition issue observed in examples 15.2 and 16.1 (in case of
having no control mechanism in place), could also be resolved using
POSIX barriers. In the next section, we are going to talk about them and
rewrite example 16.1 using a different approach.

POSIX barriers

POSIX barriers use a different approach for synchronizing a number of
threads. Just like a group of people who are planning to do some tasks in
parallel and at some points need to rendezvous, reorganize, and continue,
the same thing can happen for threads (or even processes). Some threads
do their tasks faster, and others are slower. But there can be a checkpoint
(or rendezvous point) at which all threads must stop and wait for the
others to join them. These checkpoints can be simulated by using POSIX
barriers.

The following code uses barriers to propose a solution to the issues seen in
example 16.1. As a reminder, in example 16.1, we had two threads. One of
them was to print A , and the other thread was to print B , and we
wanted to always see A  first and B  second in the output, regardless of
various interleavings:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

// The barrier object

pthread_barrier_t barrier;

void* thread_body_1(void* arg) {

printf("A\n");

// Wait for the other thread to join



pthread_barrier_wait(&barrier);

return NULL;

}

void* thread_body_2(void* arg) {

// Wait for the other thread to join

pthread_barrier_wait(&barrier);

printf("B\n");

return NULL;

}

int main(int argc, char** argv) {

// Initialize the barrier object

pthread_barrier_init(&barrier, NULL, 2);

// The thread handlers

pthread_t thread1;

pthread_t thread2;

// Create new threads

int result1 = pthread_create(&thread1, NULL,

thread_body_1, NULL);

int result2 = pthread_create(&thread2, NULL,

thread_body_2, NULL);

if (result1 || result2) {

printf("The threads could not be created.\n");

exit(1);

}

// Wait for the threads to finish

result1 = pthread_join(thread1, NULL);

result2 = pthread_join(thread2, NULL);

if (result1 || result2) {

printf("The threads could not be joined.\n");

exit(2);

}

// Destroy the barrier object

pthread_barrier_destroy(&barrier);

return 0;

}

Code Box 16-4 [ExtremeC_examples_chapter16_1_barrier.c]: A solution for example 16.1
using POSIX barriers

As you can see, the preceding code is much smaller than the code we
wrote using condition variables. Using POSIX barriers, it would be very
easy to synchronize some threads at some certain points during their
execution.

First, we have declared a global barrier object of type pthread_barrier_t .
Then, inside the main  function, we have initialized the barrier object
using the function pthread_barrier_init .



The first argument is a pointer to the barrier object. The second argument
is the custom attributes of the barrier object. Since we are passing NULL , it
means that the barrier object will be initialized using the default values for
its attributes. The third argument is important; it is the number of threads
that should become waiting on the same barrier object by calling the
function pthread_barrier_wait  and only after that are all of them
released and allowed to continue.

For the preceding example, we set it to 2. Therefore, only when there are
two threads waiting on the barrier object, both of them are unblocked and
they can continue. The rest of the code is pretty similar to previous
examples, and has been explained in the previous section.

A barrier object can be implemented using a mutex and a condition
variable similar to what we did in the previous section. In fact, a POSIX-
compliant operating system doesn't provide such a thing as a barrier in its
system call interface, and most implementations are made using a mutex
and a condition variable.

That's basically why some operating systems like macOS does not provide
implementations for POSIX barriers. The preceding code cannot be
compiled in a macOS machine since the POSIX barrier functions are not
defined. The preceding code is tested both in Linux and FreeBSD and
works on both of them. Therefore, be careful about using barriers, because
using them makes your code less portable.

The fact that macOS doesn't provide POSIX barrier functions simply
means that it is partially POSIX-compliant and the programs using
barriers (which is standard of course) cannot be compiled on macOS
machines. This is against the C philosophy, which is to write once, and
compile anywhere.

As the final note in this section, POSIX barriers guarantee memory
visibility. Similarly to lock and unlock operations, waiting on barriers
ensures that all the cached versions of the same variable are synchronized
throughout various threads while they are going to leave the barrier point.



In the next section, we will be giving an example of semaphores. They are
not used often in concurrent development, but they have their own special
usages.

A specific type of semaphore, binary semaphores (interchangeably
referred to as mutexes), is used often and you have seen a number of
examples relating to that in the previous sections.

POSIX semaphores

In most cases, mutexes (or binary semaphores) are enough to synchronize
a number of threads accessing a shared resource. That's because, in order
to make read and write operations sequentially, only one thread should be
able to enter the critical section at a time. It's known as mutual exclusion,
hence, "mutex."

In some scenarios however, you might want to have more than one thread
to enter the critical section and operate on the shared resource. This is the
scenario in which you should use general semaphores.

Before we go into an example regarding general semaphores, let's bring up
an example regarding a binary semaphore (or a mutex). We won't be using
the pthread_mutex_*  functions in this example; instead, we will be using
sem_*  functions which are supposed to expose semaphore-related
functionalities.

Binary semaphores

The following code is the solution made using semaphores for example
15.3. As a reminder, it involved two threads; each of them incrementing a
shared integer by a different value. We wanted to protect the data integrity
of the shared variable. Note that we won't be using POSIX mutexes in the
following code:

#include <stdio.h>

#include <stdlib.h>

// The POSIX standard header for using pthread library

#include <pthread.h>



// The semaphores are not exposed through pthread.h

#include <semaphore.h>

// The main pointer addressing a semaphore object used

// to synchronize the access to the shared state.

sem_t *semaphore;

void* thread_body_1(void* arg) {

// Obtain a pointer to the shared variable

int* shared_var_ptr = (int*)arg;

// Waiting for the semaphore

sem_wait(semaphore);

// Increment the shared variable by 1 by writing directly

// to its memory address

(*shared_var_ptr)++;

printf("%d\n", *shared_var_ptr);

// Release the semaphore

sem_post(semaphore);

return NULL;

}

void* thread_body_2(void* arg) {

// Obtain a pointer to the shared variable

int* shared_var_ptr = (int*)arg;

// Waiting for the semaphore

sem_wait(semaphore);

// Increment the shared variable by 1 by writing directly

// to its memory address

(*shared_var_ptr) += 2;

printf("%d\n", *shared_var_ptr);

// Release the semaphore

sem_post(semaphore);

return NULL;

}

int main(int argc, char** argv) {

// The shared variable

int shared_var = 0;

// The thread handlers

pthread_t thread1;

pthread_t thread2;

#ifdef __APPLE__

// Unnamed semaphores are not supported in OS/X. Therefore

// we need to initialize the semaphore like a named one

using

// sem_open function.

semaphore = sem_open("sem0", O_CREAT | O_EXCL, 0644, 1);

#else

sem_t local_semaphore;

semaphore = &local_semaphore;

// Initiliaze the semaphore as a mutex (binary semaphore)

sem_init(semaphore, 0, 1);

#endif

// Create new threads



int result1 = pthread_create(&thread1, NULL,

thread_body_1, &shared_var);

int result2 = pthread_create(&thread2, NULL,

thread_body_2, &shared_var);

if (result1 || result2) {

printf("The threads could not be created.\n");

exit(1);

}

// Wait for the threads to finish

result1 = pthread_join(thread1, NULL);

result2 = pthread_join(thread2, NULL);

if (result1 || result2) {

printf("The threads could not be joined.\n");

exit(2);

}

#ifdef __APPLE__

sem_close(semaphore);

#else

sem_destroy(semaphore);

#endif

return 0;

}

Code Box 16-5 [ExtremeC_examples_chapter15_3_sem.c]: A solution for example 15.3
using POSIX semaphores

The first thing you might notice in the preceding code is the different
semaphore functions that we've used in Apple systems. In Apple operating
systems (macOS, OS X, and iOS), unnamed semaphores are not supported.
Therefore, we couldn't just use sem_init  and sem_destroy  functions.
Unnamed semaphores don't have names (surprisingly enough) and they
can only be used inside a process, by a number of threads. Named
semaphores, on the other hand, are system-wide and can be seen and used
by various processes in the system.

In Apple systems, the functions required for creating unnamed semaphores
are marked as deprecated, and the semaphore object won't get initialized
by sem_init . So, we had to use sem_open  and sem_close  functions in
order to define named semaphores instead.

Named semaphores are used to synchronize processes, and we will explain
them in Chapter 18, Process Synchronization. In other POSIX-compliant
operating systems, Linux specifically, we still can use unnamed



semaphores and have them initialized and destroyed by using the
sem_init  and sem_destroy  functions respectively.

In the preceding code, we have included an extra header file,
semaphore.h . As we've explained before, semaphores have been added as
an extension to the POSIX threading library, and therefore, they are not
exposed as part of the pthread.h  header file.

After the header inclusion statements, we have declared a global pointer to
a semaphore object. This pointer is going to point to a proper address
addressing the actual semaphore object. We have to use a pointer here
because, in Apple systems, we have to use the sem_open  function, which
returns a pointer.

Then, inside the main  function, and in Apple systems, we create a named
semaphore sem0 . In other POSIX-compliant operating systems, we
initialize the semaphore using sem_init . Note that in this case the pointer
semaphore  points to the variable local_sempahore  allocated on top of the
main thread's Stack. The pointer semaphore  won't become a dangling
pointer because the main thread doesn't exit and waits for the threads to
get complete by joining them.

Note that we could distinguish between Apple and not - Apple systems by
using the macro __APPLE__ . This is a macro that is defined by default in C
preprocessors being used in Apple systems. Therefore, we can rule out the
code that is not supposed to be compiled on Apple systems by using this
macro.

Let's look inside the threads. In companion functions, the critical sections
are protected by sem_wait  and sem_post  functions which correspond to
pthread_mutex_lock  and pthread_mutex_unlock  functions in the POSIX
mutex API respectively. Note that sem_wait  may allow more than one
thread to enter the critical section.

The maximum number of threads that are allowed to be in the critical
section is determined when initializing the semaphore object. We have
passed the value 1  for the maximum number of threads as the last



argument to the sem_open  and sem_init  functions; therefore, the
semaphore is supposed to behave like a mutex.

To get a better understanding of semaphores, let's dive a bit more into the
details. Each semaphore object has an integer value. Whenever a thread
waits for a semaphore by calling the sem_wait  function, if the
semaphore's value is greater than zero, then the value is decreased by 1
and the thread is allowed to enter the critical section. If the semaphore's
value is 0, the thread must wait until the semaphore's value becomes
positive again. Whenever a thread exits the critical section by calling the
sem_post  function, the semaphore's value is incremented by 1. Therefore,
by specifying the initial value 1 , we will eventually get a binary
semaphore.

We end the preceding code by calling sem_destroy  (or sem_close  in
Apple systems) which effectively releases the semaphore object with all
its underlying resources. Regarding the named semaphores, since they can
be shared among a number of processes, more complex scenarios can
occur when closing a semaphore. We will cover these scenarios in Chapter
18, Process Synchronization.

General semaphores

Now, it's time to give a classic example that uses general semaphores. The
syntax is pretty similar to the preceding code, but the scenario in which
multiple threads are allowed to enter the critical section could be
interesting.

This classic example involves the creation of 50 water molecules. For 50
water molecules, you need to have 50 oxygen atoms and 100 hydrogen
atoms. If we simulate each atom using a thread, we require two hydrogen
threads, and one oxygen thread to enter their critical sections, in order to
generate one water molecule and have it counted.

In the following code, we firstly create 50 oxygen threads and 100
hydrogen threads. For protecting the oxygen thread's critical section, we
use a mutex, but for the hydrogen threads' critical sections, we use a



general semaphore that allows two threads to enter the critical section
simultaneously.

For signaling purposes, we use POSIX barriers, but since barriers are not
implemented in Apple systems, we need to implement them using mutexes
and condition variables. The following code box contains the code:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <limits.h>

#include <errno.h> // For errno and strerror function

// The POSIX standard header for using pthread library

#include <pthread.h>

// Semaphores are not exposed through pthread.h

#include <semaphore.h>

#ifdef __APPLE__

// In Apple systems, we have to simulate the barrier

functionality.

pthread_mutex_t barrier_mutex;

pthread_cond_t barrier_cv;

unsigned int barrier_thread_count;

unsigned int barrier_round;

unsigned int barrier_thread_limit;

void barrier_wait() {

pthread_mutex_lock(&barrier_mutex);

barrier_thread_count++;

if (barrier_thread_count >= barrier_thread_limit) {

barrier_thread_count = 0;

barrier_round++;

pthread_cond_broadcast(&barrier_cv);

} else {

unsigned int my_round = barrier_round;

do {

pthread_cond_wait(&barrier_cv, &barrier_mutex);

} while (my_round == barrier_round);

}

pthread_mutex_unlock(&barrier_mutex);

}

#else

// A barrier to make hydrogen and oxygen threads

synchronized

pthread_barrier_t water_barrier;

#endif

// A mutex in order to synchronize oxygen threads

pthread_mutex_t oxygen_mutex;

// A general semaphore to make hydrogen threads synchronized



sem_t* hydrogen_sem;

// A shared integer counting the number of made water

molecules

unsigned int num_of_water_molecules;

void* hydrogen_thread_body(void* arg) {

// Two hydrogen threads can enter this critical section

sem_wait(hydrogen_sem);

// Wait for the other hydrogen thread to join

#ifdef __APPLE__

barrier_wait();

#else

pthread_barrier_wait(&water_barrier);

#endif

sem_post(hydrogen_sem);

return NULL;

}

void* oxygen_thread_body(void* arg) {

pthread_mutex_lock(&oxygen_mutex);

// Wait for the hydrogen threads to join

#ifdef __APPLE__

barrier_wait();

#else

pthread_barrier_wait(&water_barrier);

#endif

num_of_water_molecules++;

pthread_mutex_unlock(&oxygen_mutex);

return NULL;

}

int main(int argc, char** argv) {

num_of_water_molecules = 0;

// Initialize oxygen mutex

pthread_mutex_init(&oxygen_mutex, NULL);

// Initialize hydrogen semaphore

#ifdef __APPLE__

hydrogen_sem = sem_open("hydrogen_sem",

O_CREAT | O_EXCL, 0644, 2);

#else

sem_t local_sem;

hydrogen_sem = &local_sem;

sem_init(hydrogen_sem, 0, 2);

#endif

// Initialize water barrier

#ifdef __APPLE__

pthread_mutex_init(&barrier_mutex, NULL);

pthread_cond_init(&barrier_cv, NULL);

barrier_thread_count = 0;

barrier_thread_limit = 0;

barrier_round = 0;

#else

pthread_barrier_init(&water_barrier, NULL, 3);



#endif

// For creating 50 water molecules, we need 50 oxygen atoms

and

// 100 hydrogen atoms

pthread_t thread[150];

// Create oxygen threads

for (int i = 0; i < 50; i++) {

if (pthread_create(thread + i, NULL,

oxygen_thread_body, NULL)) {

printf("Couldn't create an oxygen thread.\n");

exit(1);

}

}

// Create hydrogen threads

for (int i = 50; i < 150; i++) {

if (pthread_create(thread + i, NULL,

hydrogen_thread_body, NULL)) {

printf("Couldn't create an hydrogen thread.\n");

exit(2);

}

}

printf("Waiting for hydrogen and oxygen atoms to react

...\n");

// Wait for all threads to finish

for (int i = 0; i < 150; i++) {

if (pthread_join(thread[i], NULL)) {

printf("The thread could not be joined.\n");

exit(3);

}

}

printf("Number of made water molecules: %d\n",

num_of_water_molecules);

#ifdef __APPLE__

sem_close(hydrogen_sem);

#else

sem_destroy(hydrogen_sem);

#endif

return 0;

}

Code Box 16-6 [ExtremeC_examples_chapter16_2.c]: Using a general semaphore to simulate
the process of creating 50 water molecules out of 50 oxygen atoms and 100 hydrogen atoms

In the beginning of the code, there are a number of lines that are
surrounded by #ifdef __APPLE__  and #endif . These lines are only
compiled in Apple systems. These lines are mainly the implementation
and variables required for simulating POSIX barrier behavior. In other



POSIX-compliant systems other than Apple, we use an ordinary POSIX
barrier. We won't go through the details of the barrier implementation on
Apple systems here, but it is worthwhile to read the code and understand it
thoroughly.

As part of a number of global variables defined in the preceding code, we
have declared the mutex oxygen_mutex , which is supposed to protect the
oxygen threads' critical sections. At each time, only one oxygen thread (or
oxygen atom) can enter the critical section.

Then in its critical section, an oxygen thread waits for two other hydrogen
threads to join and then it continues to increment the water molecule
counter. The increment happens within the oxygen's critical section.

To elaborate more on the things that happen inside the critical sections, we
need to explain the role of the general semaphore. In the preceding code,
we have also declared the general semaphore hydrogen_sem , which is
supposed to protect hydrogen threads' critical sections. At each time, only
a maximum of two hydrogen threads can enter their critical sections, and
they wait on the barrier object shared between the oxygen and hydrogen
threads.

When the number of waiting threads on the shared barrier object
reaches two, it means that we have got one oxygen and two hydrogens, and
then voilà: a water molecule is made, and all waiting threads can continue.
Hydrogen threads exit immediately, but the oxygen thread exists only after
incrementing the water molecules counter.

We close this section with this last note. In example 16.2, we used the
pthread_cond_broadcast  function when implementing the barriers for
Apple systems. It signals all threads waiting on the barrier's condition
variable that are supposed to continue after having other threads joining
them.

In the next section, we are going to talk about the memory model behind
POSIX threads and how they interact with their owner process's memory.
We will also look at examples about using the Stack and Heap segments
and how they can lead to some serious memory-related issues.



POSIX threads and memory
This section is going to talk about the interactions between the threads and
the process's memory. As you know, there are multiple segments in a
process's memory layout. The Text segment, Stack segment, Data segment,
and Heap segment are all part of this memory layout, and we covered them
in Chapter 4, Process Memory Structure. Threads interact differently with
each of these memory segments. As part of this section, we only discuss
Stack and Heap memory regions because they are the most used and
problematic areas when writing multithreaded programs.

In addition, we discuss how thread synchronization and a true
understanding of the memory model behind a thread can help us develop
better concurrent programs. These concepts are even more evident
regarding the Heap memory because the memory management is manual
there and in a concurrent system, threads are responsible for allocating and
releasing Heap blocks. A trivial race condition can cause serious memory
issues, therefore proper synchronization should be in place to avoid such
disasters.

In the next subsection, we are going to explain how the Stack segment is
accessed by different threads and what precautions should be taken.

Stack memory

Each thread has its own Stack region that is supposed to be private to that
thread only. A thread's Stack region is part of the owner process's Stack
segment and all threads, by default, should have their Stack regions
allocated from the Stack segment. It is also possible that a thread has a
Stack region that is allocated from the Heap segment. We will show in
future examples how to do this, but for now, we assume that a thread's
Stack is part of the process's Stack segment.

Since all threads within the same process can read and modify the
process's Stack segment, they can effectively read and modify each other's
Stack regions, but they should not. Note that working with other threads'
Stack regions is considered dangerous behavior because the variables



defined on top of the various Stack regions are subject to deallocation at
any time, especially when a thread exits or a function returns.

That's why we try to assume that a Stack region is only accessible by its
owner thread and not by the other threads. So, local variables (those
variables declared on top the Stack) are considered to be private to the
thread and should not be accessed by other threads.

In single-threaded applications, we have always one thread which is the
main thread. Therefore, we use its Stack region like we use the process's
Stack segment. That's because, in a single-threaded program, there is no
boundary between the main thread and the process itself. But the situation
is different for a multithreaded program. Each thread has its own Stack
region which is different from another thread's Stack region.

When creating a new thread, a memory block is allocated for the Stack
region. If not specified by the programmer upon creation, the Stack region
will have a default Stack Size, and it will be allocated from the Stack
segment of the process. The default Stack size is platform dependent and
varies from one architecture to another. You can use the command ulimit
-s  to retrieve the default Stack size in a POSIX-compliant system.

On my current platform, which is macOS on an Intel 64-bit machine, the
default Stack size is 8 MB:

$ ulimit -s

8192

$

Shell Box 16-1: Reading the default Stack size

The POSIX threading API allows you to set the Stack region for a new
thread. In the following example, example 16.3, we have two threads. For
one of them, we use the default Stack settings, and for the other one, we
will allocate a buffer from the Heap segment and set it as the Stack region
of that thread. Note that, when setting the Stack region, the allocated
buffer should have a minimum size; otherwise it cannot be used as a Stack
region:



#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include <pthread.h>

void* thread_body_1(void* arg) {

int local_var = 0;

printf("Thread1 > Stack Address: %p\n", (void*)&local_var);

return 0;

}

void* thread_body_2(void* arg) {

int local_var = 0;

printf("Thread2 > Stack Address: %p\n", (void*)&local_var);

return 0;

}

int main(int argc, char** argv) {

size_t buffer_len = PTHREAD_STACK_MIN + 100;

// The buffer allocated from heap to be used as

// the thread's stack region

char *buffer = (char*)malloc(buffer_len * sizeof(char));

// The thread handlers

pthread_t thread1;

pthread_t thread2;

// Create a new thread with default attributes

int result1 = pthread_create(&thread1, NULL,

thread_body_1, NULL);

// Create a new thread with a custom stack region

pthread_attr_t attr;

pthread_attr_init(&attr);

// Set the stack address and size

if (pthread_attr_setstack(&attr, buffer, buffer_len)) {

printf("Failed while setting the stack attributes.\n");

exit(1);

}

int result2 = pthread_create(&thread2, &attr,

thread_body_2, NULL);

if (result1 || result2) {

printf("The threads could not be created.\n");

exit(2);

}

printf("Main Thread > Heap Address: %p\n", (void*)buffer);

printf("Main Thread > Stack Address: %p\n",

(void*)&buffer_len);

// Wait for the threads to finish

result1 = pthread_join(thread1, NULL);

result2 = pthread_join(thread2, NULL);

if (result1 || result2) {

printf("The threads could not be joined.\n");

exit(3);

}

free(buffer);



return 0;

}

Code Box 16-7 [ExtremeC_examples_chapter16_3.c]: Setting a Heap block as a thread's
Stack region

To start the program, we create the first thread with the default Stack
settings. Therefore, its Stack should be allocated from the Stack segment
of the process. After that, we create the second thread by specifying the
memory address of a buffer supposed to be the Stack region of the thread.

Note that the specified size is 100  bytes more than the already defined
minimum Stack size indicated by the PTHREAD_STACK_MIN  macro. This
constant has different values on different platforms, and it is included as
part of the header file limits.h .

If you build the preceding program and run it on a Linux device, you will
see something like the following:

$ gcc ExtremeC_examples_chapter16_3.c -o ex16_3.out -

lpthread

$ ./ex16_3.out

Main Thread > Heap Address: 0x55a86a251260

Main Thread > Stack Address: 0x7ffcb5794d50

Thread2 > Stack Address: 0x55a86a2541a4

Thread1 > Stack Address: 0x7fa3e9216ee4

$

Shell Box 16-2: Building and running example 16.3

As is clear from the output seen in Shell Box 16-2, the address of the local
variable local_var  that is allocated on top of the second thread's Stack
belongs to a different address range (the range of the Heap space). This
means that the Stack region of the second thread is within the Heap. This
is not true for the first thread, however.

As the output shows, the address of the local variable in the first thread
falls within the address range of the Stack segment of the process. As a
result, we could successfully set a new Stack region allocated from the
Heap segment, for a newly created thread.



The ability to set the Stack region of a thread can be crucial in some use
cases. For example, in memory-constrained environments where the total
amount of memory is low for having big Stacks, or in high-performance
environments in which the cost of allocating the Stack for each thread
cannot be tolerated, using some preallocated buffers can be useful and the
preceding procedure can be employed to set a preallocated buffer as the
Stack region of a newly created thread.

The following example demonstrates how sharing an address in one
thread's Stack can lead to some memory issues. When an address from a
thread is shared, the thread should remain alive otherwise all pointers
keeping that address become dangling.

The following code is not thread-safe, therefore we expect to see crashes
from time to time in successive runs. The threads also have the default
Stack settings which means their Stack regions are allocated from the
process's Stack segment:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

int* shared_int;

void* t1_body(void* arg) {

int local_var = 100;

shared_int = &local_var;

// Wait for the other thread to print the shared integer

usleep(10);

return NULL;

}

void* t2_body(void* arg) {

printf("%d\n", *shared_int);

return NULL;

}

int main(int argc, char** argv) {

shared_int = NULL;

pthread_t t1;

pthread_t t2;

pthread_create(&t1, NULL, t1_body, NULL);

pthread_create(&t2, NULL, t2_body, NULL);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

return 0;

}



Code Box 16-8 [ExtremeC_examples_chapter16_4.c]: Trying to read a variable allocated
from another thread's Stack region

At the beginning, we have declared a global shared pointer. Since it is a
pointer, it can accept any address regardless of where the address points to
in the process's memory layout. It could be from the Stack segment or the
Heap segment or even the Data segment.

In the preceding code, inside the t1_body  companion function, we store
the address of a local variable in the shared pointer. This variable belongs
to the first thread, and it is allocated on top of the first thread's Stack.

From now on, if the first thread exits, the shared pointer becomes
dangling, and any dereferencing probably leads to a crash, a logical error,
or a hidden memory issue in the best case. In some interleavings, this
would happen, and you see crashes from time to time if you run the
preceding program multiple times.

As an important note, proper synchronization techniques should be
employed if one thread is willing to use a variable allocated from another
thread's Stack region. Since the lifetime of a Stack variable is bound to its
scope, the synchronization should aim at keeping the scope alive until the
consumer thread is done with the variable.

Note that for simplicity we didn't check the results of the pthread
functions. It is always advised to do so and check the return values. Not all
pthread functions behave the same on different platforms; if something
goes wrong, you will become aware by checking the return values.

In this section, generally speaking, we showed why the addresses
belonging to Stack regions shouldn't be shared, and why shared states
better not be allocated from Stack regions. The next section talks about
Heap memory, which is the most common place for storing shared states.
As you might have guessed, working with the Heap is also tricky, and you
should be careful about memory leaks.

Heap memory



The Heap segment and the Data segment are accessible by all threads.
Unlike the Data segment, which is generated at compile time, the Heap
segment is dynamic, and it is shaped at runtime. Threads can both read and
modify the contents of the Heap. In addition, the contents of the Heap can
stay as long as the process lives, and stay independent of the lifetime of
the individual threads. Also, big objects can be put inside the Heap. All
these factors together have caused the Heap to be a great place for storing
states that are going to be shared among some threads.

Memory management becomes a nightmare when it comes to Heap
allocation, and that is because of the fact that allocated memory should be
deallocated at some point by one of the running threads otherwise it could
lead to memory leaks.

Regarding concurrent environments, interleavings can easily produce
dangling pointers; hence crashes show up. The critical role of
synchronization is to put things in a specific order where no dangling
pointer can be produced, and this is the hard part.

Let's look at the following example, example 16.5. There are five threads
in this example. The first thread allocates an array from the Heap. The
second and third threads populate the array in this form. The second thread
populates the even indices in the array with the capital alphabet letters
starting from Z and moving backward to A, and the third thread populates
the odd indices with small alphabet letters starting from a and moving
forward to z. The fourth thread prints the array. And finally, the fifth thread
deallocates the array and reclaims the Heap memory.

All the techniques described in the previous sections about POSIX
concurrency control should be employed in order to keep these threads
from misbehaving within the Heap. The following code has no control
mechanism in place, and obviously, it is not thread-safe. Note that the code
is not complete. The complete version with the concurrency control
mechanisms in place will come in the next code box:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>



#include <pthread.h>

#define CHECK_RESULT(result) \

if (result) { \

printf("A pthread error happened.\n"); \

exit(1); \

}

int TRUE = 1;

int FALSE = 0;

// The pointer to the shared array

char* shared_array;

// The size of the shared array

unsigned int shared_array_len;

void* alloc_thread_body(void* arg) {

shared_array_len = 20;

shared_array = (char*)malloc(shared_array_len *

sizeof(char*));

return NULL;

}

void* filler_thread_body(void* arg) {

int even = *((int*)arg);

char c = 'a';

size_t start_index = 1;

if (even) {

c = 'Z';

start_index = 0;

}

for (size_t i = start_index; i < shared_array_len; i += 2) {

shared_array[i] = even ? c-- : c++;

}

shared_array[shared_array_len - 1] = '\0';

return NULL;

}

void* printer_thread_body(void* arg) {

printf(">> %s\n", shared_array);

return NULL;

}

void* dealloc_thread_body(void* arg) {

free(shared_array);

return NULL;

}

int main(int argc, char** argv) {

… Create threads ...

}

Code Box 16-9 [ExtremeC_examples_chapter16_5_raw.c]: Example 16.5 without any
synchronization mechanism in place



It is easy to see that the preceding code is not thread-safe and it causes
serious crashes because of the interference of the deallocator thread in
deallocating the array.

Whenever the deallocator thread obtains the CPU, it frees the Heap-
allocated buffer immediately, and after that the pointer shared_array
becomes dangling, and other threads start to crash. Proper synchronization
techniques should be used to ensure that the deallocation thread runs last
and the proper order of logic in different threads are run.

In the following code block, we decorate the preceding code with POSIX
concurrency control objects to make it thread-safe:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

#define CHECK_RESULT(result) \

if (result) { \

printf("A pthread error happened.\n"); \

exit(1); \

}

int TRUE = 1;

int FALSE = 0;

// The pointer to the shared array

char* shared_array;

// The size of the shared array

size_t shared_array_len;

pthread_barrier_t alloc_barrier;

pthread_barrier_t fill_barrier;

pthread_barrier_t done_barrier;

void* alloc_thread_body(void* arg) {

shared_array_len = 20;

shared_array = (char*)malloc(shared_array_len *

sizeof(char*));

pthread_barrier_wait(&alloc_barrier);

return NULL;

}

void* filler_thread_body(void* arg) {

pthread_barrier_wait(&alloc_barrier);

int even = *((int*)arg);

char c = 'a';

size_t start_index = 1;

if (even) {

c = 'Z';

start_index = 0;



}

for (size_t i = start_index; i < shared_array_len; i += 2) {

shared_array[i] = even ? c-- : c++;

}

shared_array[shared_array_len - 1] = '\0';

pthread_barrier_wait(&fill_barrier);

return NULL;

}

void* printer_thread_body(void* arg) {

pthread_barrier_wait(&fill_barrier);

printf(">> %s\n", shared_array);

pthread_barrier_wait(&done_barrier);

return NULL;

}

void* dealloc_thread_body(void* arg) {

pthread_barrier_wait(&done_barrier);

free(shared_array);

pthread_barrier_destroy(&alloc_barrier);

pthread_barrier_destroy(&fill_barrier);

pthread_barrier_destroy(&done_barrier);

return NULL;

}

int main(int argc, char** argv) {

shared_array = NULL;

pthread_barrier_init(&alloc_barrier, NULL, 3);

pthread_barrier_init(&fill_barrier, NULL, 3);

pthread_barrier_init(&done_barrier, NULL, 2);

pthread_t alloc_thread;

pthread_t even_filler_thread;

pthread_t odd_filler_thread;

pthread_t printer_thread;

pthread_t dealloc_thread;

pthread_attr_t attr;

pthread_attr_init(&attr);

int res = pthread_attr_setdetachstate(&attr,

PTHREAD_CREATE_DETACHED);

CHECK_RESULT(res);

res = pthread_create(&alloc_thread, &attr,

alloc_thread_body, NULL);

CHECK_RESULT(res);

res = pthread_create(&even_filler_thread,

&attr, filler_thread_body, &TRUE);

CHECK_RESULT(res);

res = pthread_create(&odd_filler_thread,

&attr, filler_thread_body, &FALSE);

CHECK_RESULT(res);

res = pthread_create(&printer_thread, &attr,

printer_thread_body, NULL);

CHECK_RESULT(res);

res = pthread_create(&dealloc_thread, &attr,



dealloc_thread_body, NULL);

CHECK_RESULT(res);

pthread_exit(NULL);

return 0;

}

Code Box 16-10 [ExtremeC_examples_chapter16_5.c]: Example 16.5 with synchronization
mechanisms in place

To make the code found in Code Box 16-9 thread-safe, we have only used
the POSIX barriers in the new code. It is the easiest approach to form a
sequential execution order between a number of threads.

If you compare Code Boxes 16-9 and 16-10, you see how POSIX barriers
are used to impose an order between various threads. The only exception is
between two filler threads. The filler threads can be running independently
without blocking each other, and since they are changing odd and even
indices separately, no concurrent issue can be raised. Note that the
preceding code cannot be compiled on Apple systems. You need to
simulate the barrier behavior using mutexes and condition variables in
these systems (as we did for example 16.2).

The following is the output of the preceding code. No matter how many
times you run the program, it never crashes. In other words, the preceding
code is guarded against the various interleavings, and it is thread-safe:

$ gcc ExtremeC_examples_chapter16_5.c -o ex16_5 -lpthread

$ ./ex16_5

>> ZaYbXcWdVeUfTgShRiQ

$ ./ex16_5

>> ZaYbXcWdVeUfTgShRiQ

$

Shell Box 16-3: Building and running example 16.5

In this section, we gave an example of using the Heap space as a place
holder for shared states. Unlike the Stack memory, where memory
deallocation happens automatically, Heap space deallocation should be
performed explicitly. Otherwise, memory leaks are an imminent side
effect.



The easiest and sometimes the best available place to keep the shared
states, in terms of least memory management effort for the programmer, is
the Data segment in which both allocation and deallocation happen
automatically. Variables residing in the Data segment are considered
global, and have the longest possible lifetime, from the very beginning
moments of the process's birth until its very last moments. But this long
lifetime can be considered negative in certain use cases, especially when
you're going to keep a big object in the Data segment.

In the next section, we will talk about memory visibility and how POSIX
functions guarantee that.

Memory visibility

We explained memory visibility and cache coherency in the previous
chapters, regarding the systems with more than one CPU core. In this
section, we want to look at the pthread library and see how it guarantees
memory visibility.

As you know, a cache coherency protocol among CPU cores ensures that
all cached versions of a single memory address in all CPU cores remain
synchronized and updated regarding the latest changes made in one of the
CPU cores. But this protocol should be triggered somehow.

There are APIs in the system call interface to trigger the cache coherency
protocol and make the memory visible to all CPU cores. In pthread also,
there are a number of functions that guarantee the memory visibility
before their execution.

You may have encountered some of these functions before. A list of them
is presented below:

pthread_barrier_wait

pthread_cond_broadcast

pthread_cond_signal

pthread_cond_timedwait



pthread_cond_wait

pthread_create

pthread_join

pthread_mutex_lock

pthread_mutex_timedlock

pthread_mutex_trylock

pthread_mutex_unlock

pthread_spin_lock

pthread_spin_trylock

pthread_spin_unlock

pthread_rwlock_rdlock

pthread_rwlock_timedrdlock

pthread_rwlock_timedwrlock

pthread_rwlock_tryrdlock

pthread_rwlock_trywrlock

pthread_rwlock_unlock

pthread_rwlock_wrlock

sem_post

sem_timedwait

sem_trywait

sem_wait

semctl

semop

Other than local caches in CPU cores, the compilers can also introduce
caching mechanisms for the frequently used variables. For this to happen,
the compiler needs to analyze the code and optimize it in a way that means
frequently used variables are written to and read from the compiler caches.
These are software caches that are put in the final binary by the compiler
in order to optimize and boost the execution of the program.



While these caches can be beneficial, they potentially add another
headache while writing multithreaded code and raise some memory
visibility issues. Therefore, sometimes these caches must be disabled for
specific variables.

The variables that are not supposed to be optimized by the compiler via
caching can be declared as volatile. Note that a volatile variable still can
be cached at the CPU level, but the compiler won't optimize it by keeping
it in compiler caches. A variable can be declared as volatile using the
keyword volatile . Following is a declaration of an integer that is
volatile:

volatile int number;

Code Box 16-11: Declaring a volatile integer variable

The important thing about volatile variables is that they don't solve the
memory visibility problems in multi-threaded systems. In order to solve
this issue, you need to use the preceding POSIX functions in their proper
places in order to ensure memory visibility.

Summary
In this chapter, we covered the concurrent control mechanisms provided
by the POSIX threading API. We have discussed:

POSIX mutexes and how they should be used
POSIX condition variables and barriers and how they should be used
POSIX semaphores, and how binary semaphores and general
semaphores differ
How threads interact with the Stack region
How to define a new Heap-allocated Stack region for a thread
How threads interact with the Heap space



Memory visibility and POSIX functions that guarantee memory
visibility
Volatile variables and compiler caches

In the next chapter, we will continue our discussion and we will talk about
another approach for having concurrency in a software system: multi-
processing. We will discuss how a process can be executed and how it is
different from a thread.



Chapter 17
Process Execution

We are now ready to talk about the software systems consisting of more
than one process in their overall architecture. These systems are usually
called multi-process or multiple-process systems. This chapter, together
with the next chapter, is trying to cover the concepts of multi-processing
and conduct a pros-and-cons analysis in order to compare it with
multithreading, which we covered in Chapter 15, Thread Execution, and
Chapter 16, Thread Synchronization.

In this chapter, our focus is the available APIs and techniques to start a
new process and how process execution actually happens, and in the next
chapter, we'll go through concurrent environments consisting of more than
one process. We are going to explain how various states can be shared
among a number of processes and what common ways of accessing shared
state in a multi-processing environment are.

A proportion of this chapter is based on comparing multi-processing and
multithreading environments. In addition, we briefly talk about single-host
multi-processing systems and distributed multi-processing systems.

Process execution APIs
Every program is executed as a process. Before we have a process, we just
have an executable binary file that contains some memory segments and
probably lots of machine-level instructions. Conversely, every process is
an individual instance of a program being executed. Therefore, a single
compiled program (or an executable binary file) can be executed multiple



times through different processes. In fact, that's why our focus is on the
processes in this chapter, rather than upon the programs themselves.

In two previous chapters, we talked about threads in single-process
software, but to follow our objective in this chapter, we are going to be
talking about software with multiple processes. But first, we need to know
how, and by using which API, a new process can be spawned.

Note that our main focus is on executing processes in Unix-like operating
systems since all of them follow the Unix onion architecture and expose
very well-known and similar APIs. Other operating systems can have their
own ways for executing processes, but since most of them, more or less,
follow the Unix onion architecture, we expect to see similar methods for
process execution.

In a Unix-like operating system, there are not many ways to execute a
process at the system call level. If you remember the kernel ring from
Chapter 11, System Calls and Kernel, it is the most inner ring after the
hardware ring, and it provides the system call interface to outer rings,
shell, and user, in order to let them execute various kernel-specific
functionalities. Two of these exposed system calls are dedicated to process
creation and process execution; respectively, fork  and exec  ( execve  in
Linux though). In process creation, we spawn a new process, but in
process execution we use an existing process as the host, and we replace it
with a new program; therefore, no new process is spawned in process
execution.

As a result of using these systems calls, a program is always executed as a
new process, but this process is not always spawned! The fork  system
call spawns a new process while the exec  system call replaces the caller
(the host) process with a new one. We talk about the differences between
the fork  and exec  system calls later. Before that, let's see how these
system calls are exposed to the outer rings.

As we explained in Chapter 10, Unix – History and Architecture, we have
two standards for Unix-like operating systems, specifically about the
interface they should expose from their shell ring. These standards are
Single Unix Specification (SUS) and POSIX. For more information



regarding these standards, along with their similarities and differences,
please refer to Chapter 10, Unix – History and Architecture.

The interface that should be exposed from the shell ring is thoroughly
specified in the POSIX interface, and indeed, there are parts in the
standard that deal with process execution and process management.

Therefore, we would expect to find headers and functions for process
creation and process execution within POSIX. Such functions do indeed
exist, and we find them in different headers that provide the desired
functionality. Following is a list of POSIX functions responsible for
process creation and process execution:

The function fork  that can be found in the unistd.h  header file is
responsible for process creation.
The posix_spawn  and posix_spawnp  functions that can be found in
the spawn.h  header file. These functions are responsible for process
creation.
The group of exec*  functions, for example, execl  and execlp , that
can be found in the unistd.h  header file. These functions are
responsible for process execution.

Note that the preceding functions should not be mistaken for the fork  and
exec  system calls. These functions are part of the POSIX interface
exposed from the shell ring while the system calls are exposed from the
kernel ring. While most Unix-like operating systems are POSIX-
compliant, we can have a non-Unix-like system that is also POSIX-
compliant. Then, the preceding functions exist in that system, but the
underlying mechanism for spawning a process can be different at the
system call level.

A tangible example is using Cygwin or MinGW to make Microsoft
Windows POSIX-compliant. By installing these programs, you can write
and compile standard C programs that are using the POSIX interface, and
Microsoft Windows becomes partially POSIX-compliant, but there are no
fork  or exec  system calls in Microsoft Windows! This is in fact very
confusing and very important at the same time, and you should know that



the shell ring does not necessarily expose the same interface that is
exposed by the kernel ring.

Note:

You can find the implementation details of the fork  function in
Cygwin here:
https://github.com/openunix/cygwin/blob/master/wins

up/cygwin/fork.cc. Note that it doesn't call the fork  system call
that usually exists in Unix-like kernels; instead, it includes headers from
the Win32 API and calls functions that are well-known functions
regarding process creation and process management.

According to the POSIX standard, the C standard library is not the only
thing that is exposed from the shell ring on a Unix-like system. When
using a Terminal, there are prewritten shell utility programs that are used
to provide a complex usage of the C standard API. About the process
creation, whenever the user enters a command in the Terminal, a new
process is created.

Even a simple ls  or sed  command spawns a new process that might only
last less than a second. You should know that these utility programs are
mostly written in C language and they are consuming the same exact
POSIX interface which you would have been using when writing your own
programs.

Shell scripts are also executed in a separate process but in a slightly
different fashion. We will discuss them in future sections on how a process
is executed within a Unix-like system.

Process creation happens in the kernel, especially in monolithic kernels.
Whenever a user process spawns a new process or even a new thread, the
request is received by the system call interface, and it gets passed down to
the kernel ring. There, a new task is created for the incoming request,
either a process or a thread.

Monolithic kernels like Linux or FreeBSD keep track of the tasks (process
and threads) within their kernel, and this makes it reasonable to have

https://github.com/openunix/cygwin/blob/master/winsup/cygwin/fork.cc


processes being created in the kernel itself.

Note that whenever a new task is created within the kernel, it is placed in
the queue of the task scheduler unit and it might take a bit of time for it to
obtain the CPU and begin execution.

In order to create a new process, a parent process is needed. That's why
every process has a parent. In fact, each process can have only one parent.
The chain of parents and grandparents goes back to the first user process,
which is usually called init, and the kernel process is its parent.

It is the ancestor to all other processes within a Unix-like system and
exists until the system shuts down. Regularly, the init process becomes the
parent of all orphan processes that have had their parent processes
terminated, so that no process can be left without a parent process.

This parent-child relationship ends up in a big process tree. This tree can
be examined by the command utility pstree. We are going to show how to
use this utility in future examples.

Now, we know the API that can execute a new process, and we need to give
some real C examples on how these methods actually work. We start with
the fork API, which eventually calls the fork  system call.

Process creation
As we mentioned in the previous section, the fork API can be used to
spawn a new process. We also explained that a new process can only be
created as a child of a running process. Here, we see a few examples of
how a process can fork a new child using the fork API.

In order to spawn a new child process, a parent process needs to call the
fork  function. The declaration of the fork  function can be included from
the unistd.h  header file which is part of the POSIX headers.

When the fork  function is called, an exact copy of the caller process
(which is called the parent process) is created, and both processes continue



to run concurrently starting from the very next instruction after the fork
invocation statement. Note that the child (or forked) process inherits many
things from the parent process including all the memory segments
together with their content. Therefore, it has access to the same variables
in the Data, Stack, and Heap segments, and also the program instructions
found in the Text segment. We talk about other inherited things in the
upcoming paragraphs, after talking about the example.

Since we have two different processes now, the fork  function returns
twice; once in the parent process and another time in the child process. In
addition, the fork  function returns different values to each process. It
returns 0 to the child process, and it returns the PID of the forked (or
child) process to the parent process. Example 17.1 shows how fork  works
in one of its simplest usages:

#include <stdio.h>

#include <unistd.h>

int main(int argc, char** argv) {

printf("This is the parent process with process ID: %d\n",

getpid());

printf("Before calling fork() ...\n");

pid_t ret = fork();

if (ret) {

printf("The child process is spawned with PID: %d\n", ret);

} else {

printf("This is the child process with PID: %d\n",

getpid());

}

printf("Type CTRL+C to exit ...\n");

while (1);

return 0;

}

Code Box 17-1 [ExtremeC_examples_chapter17_1.c]: Create a child process using the fork
API

In the preceding code box, we have used printf  to print out some logs in
order to track the activity of the processes. As you see, we have invoked
the fork  function in order to spawn a new process. As is apparent, it
doesn't accept any argument, and therefore, its usage is very easy and
straightforward.



Upon calling the fork  function, a new process is forked (or cloned) from
the caller process, which is now the parent process, and after that, they
continue to work concurrently as two different processes.

Surely, the call to the fork  function will cause further invocations on the
system call level, and only then, the responsible logic in the kernel can
create a new forked process.

Just before the return  statement, we have used an infinite loop to keep
both processes running and prevent them from exiting. Note that the
processes should reach this infinite loop eventually because they have
exactly the same instructions in their Text segments.

We want to keep the processes running intentionally in order to be able to
see them in the list of processes shown by the pstree  and top
commands. Before that, we need to compile the preceding code and see
how the new process is forked, as shown in Shell Box 17-1:

$ gcc ExtremeC_examples_chapter17_1.c -o ex17_1.out

$ ./ex17_1.out

This is the parent process with process ID: 10852

Before calling fork() …

The child process is spawned with PID: 10853

This is the child process with PID: 10853

Type CTRL+C to exit ...

$

Shell Box 17-1: Building and running example 17.1

As you can see, the parent process prints its PID, and that is 10852 . Note
that the PID is going to change in each run. After forking the child
process, the parent process prints the PID returned by the fork  function,
and it is 10853 .

On the next line, the child process prints its PID, which is again 10853
and it is in accordance with what the parent has received from the fork
function. And finally, both processes enter the infinite loop, giving us
some time to observe them in the probing utilities.



As you see in Shell Box 17-1, the forked process inherits the same stdout
file descriptor and the same terminal from its parent. Therefore, it can
print to the same output that its parent writes to. A forked process inherits
all the open file descriptors at the time of the fork  function call from its
parent process.

In addition, there are also other inherited attributes, which can be found in
fork 's manual pages. The fork 's manual page for Linux can be found
here: http://man7.org/linux/man-
pages/man2/fork.2.html.

If you open the link and look through the attributes, you are going to see
that there are attributes that are shared between the parent and forked
processes, and there are other attributes that are different and specific to
each process, for example, PID, parent PID, threads, and so on.

The parent-child relationship between processes can be easily seen using a
utility program like pstree . Every process has a parent process, and all of
the processes contribute to building a big tree. Remember that each
process has exactly one parent, and a single process cannot have two
parents.

While the processes in the preceding example are stuck within their
infinite loops, we can use the pstree  utility command to see the list of all
processes within the system displayed as a tree. The following is the
output of the pstree  usage in a Linux machine. Note that the pstree
command is installed on Linux systems by default, but it might need to be
installed in other Unix-like operating systems:

$ pstree -p

systemd(1)─┬─accounts-daemon(877)─┬─{accounts-daemon}(960)

│ └─{accounts-daemon}(997)

...

...

...

├─systemd-logind(819)

├─systemd-network(673)

├─systemd-resolve(701)

├─systemd-timesyn(500)───{systemd-timesyn}(550)

├─systemd-udevd(446)

http://man7.org/linux/man-pages/man2/fork.2.html


└─tmux: server(2083)─┬─bash(2084)───pstree(13559)

└─bash(2337)───ex17_1.out(10852)───ex17_1.out(10853)

$

Shell Box 17-2: Use pstree to find the processes spawned as part of example 17.1

As can be seen in the last line of Shell Box 17-2, we have two processes
with PIDs 10852  and 10853  that are in the parent-child relationship. Note
that process 10852  has a parent with PID 2337 , which is a bash process.

It's interesting to note that on the line before the last line, we can see the
pstree  process itself as the child of the bash process with PID 2084 .
Both of the bash processes belong to the same tmux terminal emulator
with PID 2083 .

In Linux, the very first process is the scheduler process, which is part of
the kernel image, and it has the PID 0. The next process, which is usually
called init, has the PID 1, and it is the first user process which is created
by the scheduler process. It exists from system startup until its shutdown.
All other user processes are directly or indirectly the children of the init
process. The processes which lose their parent processes become orphan
processes, and they become abducted by the init process as its direct
children.

However, in the newer versions of almost all famous distributions of
Linux, the init process has been replaced by the systemd daemon, and that's
why you see systemd(1)  on the first line in Shell Box 17-2. The following
link is a great source to read more about the differences between init  and
systemd  and why Linux distro developers have made such a decision:
https://www.tecmint.com/systemd-replaces-init-in-

linux.

When using the fork API, the parent and forked processes are executed
concurrently. This means that we should be able to detect some behaviors
of concurrent systems.

The best-known behavior that can be observed is some interleavings. If
you are not familiar with this term or you have not heard it before, it is

https://www.tecmint.com/systemd-replaces-init-in-linux


strongly recommended to have a read of Chapter 13, Concurrency, and
Chapter 14, Synchronization.

The following example, example 17.2, shows how the parent and forked
processes can have non-deterministic interleavings. We are going to print
some strings and observe how some various interleavings can happen in
two successive runs:

#include <stdio.h>

#include <unistd.h>

int main(int argc, char** argv) {

pid_t ret = fork();

if (ret) {

for (size_t i = 0; i < 5; i++) {

printf("AAA\n");

usleep(1);

}

} else {

for (size_t i = 0; i < 5; i++) {

printf("BBBBBB\n");

usleep(1);

}

}

return 0;

}

Code Box 17-2 [ExtremeC_examples_chapter17_2.c]: Two processes that print some lines to
the standard output

The preceding code is very similar to the code we wrote for example 17.1.
It creates a forked process, and after that, the parent and forked processes
print some lines of text to the standard output. The parent process prints
AAA  5 times, and the forked process prints BBBBBB  five times. The
following is the output of the two consecutive runs of the same compiled
executable:

$ gcc ExtremeC_examples_chapter17_2.c -o ex17_2.out

$ ./ex17_2.out

AAA

AAA

AAA

AAA

AAA



BBBBBB

BBBBBB

BBBBBB

BBBBBB

BBBBBB

$ ./ex17_2.out

AAA

AAA

BBBBBB

AAA

AAA

BBBBBB

BBBBBB

BBBBBB

AAA

BBBBBB

$

Shell Box 17-3: Output of two successive runs of example 17.2

It is clear from the preceding output that we have different interleavings.
This means we can be potentially suffering from a race condition here if
we define our invariant constraint according to what we see in the standard
output. This would eventually lead to all the issues we faced while writing
multithreaded code, and we need to use similar methods to overcome these
issues. In the next chapter, we will discuss such solutions in greater detail.

In the following section, we are going to talk about process execution and
how it can be achieved using exec*  functions.

Process execution
Another way to execute a new process is by using the family of exec*
functions. This group of functions takes a different approach to execute a
new process in comparison to the fork API. The philosophy behind exec*
functions is to create a simple base process first and then, at some point,
load the target executable and replace it as a new process image with the
base process. A process image is the loaded version of a executable that
has its memory segments allocated, and it is ready to be executed. In the



future sections, we will discuss the different steps of loading an
executable, and we will explain process images in greater depth.

Therefore, while using the exec*  functions, no new process is created,
and a process substitution happens. This is the most important difference
between fork  and exec*  functions. Instead of forking a new process, the
base process is totally substituted with a new set of memory segments and
code instructions.

Code Box 17-3, containing example 17.3, shows how the execvp  function,
one of the functions in the family of exec*  functions, is used to start an
echo process. The execvp  function is one of the functions in the group of
exec*  functions that inherits the environment variable PATH  from the
parent process and searches for the executables as the parent process did:

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

int main(int argc, char** argv) {

char *args[] = {"echo", "Hello", "World!", 0};

execvp("echo", args);

printf("execvp() failed. Error: %s\n", strerror(errno));

return 0;

}

Code Box 17-3 [ExtremeC_examples_chapter17_3.c]: Demonstration of how execvp works

As you see in the preceding code box, we have invoked the function
execvp . As we explained before, the execvp  function inherits the
environment variable PATH , together with the way it looks for the existing
executables, from the base process. It accepts two arguments; the first is
the name of the executable file or the script which should be loaded and
executed, and the second is the list of arguments that should be passed to
the executable.

Note that we are passing echo  and not an absolute path. Therefore,
execvp  should locate the echo  executable first. These executable files
can be anywhere in a Unix-like operating system, from /usr/bin  to
/usr/local/bin  or even other places. The absolute location of the echo



can be found by going through all directory paths found in the PATH
environment variable.

The exec*  functions can execute a range of executable files.
Following is a list of some file formats that can be executed by exec*
functions:

ELF executable files
Script files with a shebang line indicating the interpreter of the
script
Traditional a.out  format binary files
ELF FDPIC executable files

After finding the echo  executable file, the execvp  does the rest. It calls
the exec  ( execve  in Linux) system call with a prepared set of arguments
and subsequently, the kernel prepares a process image from the found
executable file. When everything is ready, the kernel replaces the current
process image with the prepared one, and the base process is gone forever.
Now, the control returns to the new process, and it becomes executing
from its main  function, just like a normal execution.

As a result of this process, the printf  statement after the execvp
function call statement cannot be executed if the execvp  has been
successful, because now we have a whole new process with new memory
segments and new instructions. If the execvp  statement wasn't successful,
then the printf  should have been executed, which is a sign for the failure
of execvp  function call.

Like we said before, we have a group of exec*  functions, and the execvp
function is only one of them. While all of them behave similarly, they
have slight differences. Next, you can find a comparison of these
functions:

execl(const char* path, const char* arg0, ..., NULL) : Accepts
an absolute path to the executable file and a series of arguments that
should be passed to the new process. They must end with a null
string, 0  or NULL . If we wanted to rewrite example 17.3 using



execl , we would use execl("/usr/bin/echo", "echo", "Hello",
"World", NULL) .
execlp(const char* file, const char* arg0, ..., NULL) : Accepts
a relative path as its first argument, but since it has access to the
PATH  environment variable, it can locate the executable file easily.
Then, it accepts a series of arguments that should be passed to the
new process. They must end with a null string, 0  or NULL . If we
wanted to rewrite example 17.3 using execlp , we would use
execlp("echo", "echo," "Hello," "World," NULL) .
excele(const char* path, const char* arg0, ..., NULL, const

char* env0, ..., NULL) : Accepts an absolute path to the executable
file as its first argument. Then, it accepts a series of arguments that
should be passed to the new process followed by a null string.
Following that, it accepts a series of strings representing the
environment variables. They must also end with a null string. If we
wanted to rewrite example 17.3 using execle , we would use
execle("/usr/bin/echo", "echo", "Hello", "World", NULL, "A=1",

"B=2", NULL) . Note that in this call we have passed two new
environment variables, A  and B , to the new process.
execv(const char* path, const char* args[]) : Accepts an absolute
path to the executable file and an array of the arguments that should
be passed to the new process. The last element in the array must be a
null string, 0  or NULL . If we wanted to rewrite example 17.3 using
execl , we would use execl("/usr/bin/echo", args)  in which args
is declared like this: char* args[] = {"echo", "Hello", "World",
NULL} .
execvp(const char* file, const char* args[]) : It accepts a
relative path as its first argument, but since it has access to the PATH
environment variable, it can locate the executable file easily. Then, it
accepts an array of the arguments that should be passed to the new
process. The last element in the array must be a null string, 0  or
NULL . This is the function that we used in example 17.3.

When exec*  functions are successful, the previous process is gone, and a
new process is created instead. Therefore, there isn't a second process at
all. For this reason, we cannot demonstrate interleavings as we did for the



fork  API. In the next section, we compare the fork  API and the exec*
functions for executing a new program.

Comparing process creation and process
execution
Based on our discussion and the given examples in previous sections, we
can make the following comparison between the two methods used for
executing a new program:

A successful invocation of the fork  function results in two separate
processes; a parent process that has called the fork  function and a
forked (or child) process. But a successful invocation of any exec*
function results in having the caller process substituted by a new
process image and therefore no new process is created.
Calling the fork  function duplicates all memory contents of the
parent process, and the forked process sees the same memory
contents and variables. But calling the exec*  functions destroys the
memory layout of the base process and creates a new layout based on
the loaded executable.
A forked process has access to certain attributes of the parent process,
for example, open file descriptors but using exec*  functions. The
new process doesn't know anything about it, and it doesn't inherit
anything from the base process.
In both APIs, we end up with a new process that has only one main
thread. The threads in the parent process are not forked using the fork
API.
The exec*  API can be used to run scripts and external executable
files, but the fork  API can be used only to create a new process that
is actually the same C program.

In the next section, we'll talk about the steps that most kernels take to load
and execute a new process. These steps and their details vary from one
kernel to another, but we try to cover the general steps taken by most
known kernels to execute a process.



Process execution steps
To have a process executed from an executable file, the user space and the
kernel space take some general steps in most operating systems. As we
noted in the previous section, executable files are mostly executable object
files, for example, ELF, Mach, or script files that need an interpreter to
execute them.

From the user ring's point of view, a system call like exec  should be
invoked. Note that we don't explain the fork  system call here because it
is not actually an execution. It is more of a cloning operation of the
currently running process.

When the user space invokes the exec  system call, a new request for the
execution of the executable file is created within the kernel. The kernel
tries to find a handler for the specified executable file based on its type
and according to that handler, it uses a loader program to load the contents
of the executable file.

Note that for the script files, the executable binary of the interpreter
program that is usually specified in the shebang line on the first line of the
script. The loader program has the following duties in order to execute a
process:

It checks the execution context and the permissions of the user that
has requested the execution.
It allocates the memory for the new process from the main memory.
It copies the binary contents of the executable file into the allocated
memory. This mostly involves the Data, and Text segments.
It allocates a memory region for the Stack segment and prepares the
initial memory mappings.
The main thread and its Stack memory region are created.
It copies the command-line arguments as a stack frame on top of the
Stack region of the main thread.
It initializes the vital registers that are needed for the execution.



It executes the first instruction of the program entry point.

In the case of script files, the path to the script files is copied as the
command-line argument of the interpreter process. The preceding general
steps are taken by most kernels, but the implementation details can vary
greatly from a kernel to another.

For more information on a specific operating system, you need to go to its
documentation or simply search for it on Google. The following articles
from LWN are a great start for those seeking more details about the
process execution in Linux:
https://lwn.net/Articles/631631/ and
https://lwn.net/Articles/630727/.

In the next section, we'll start to talk about concurrency-related topics. We
prepare the ground for the next chapter, which is going to talk about multi-
processing-specific synchronization techniques in great depth. We start
here by discussing shared states, which can be used in multi-process
software systems.

Shared states
As with threads, we can have some shared states between processes. The
only difference is that the threads are able to access the same memory
space owned by their owner process, but processes cannot have that luxury.
Therefore, other mechanisms should be employed to share a state among a
number of processes.

In this section, we are going to discuss these techniques and as part of this
chapter, we focus on some of them that function as storage. In the first
section, we will be discussing different techniques and trying to group
them based on their nature.

Sharing techniques

https://lwn.net/Articles/631631/
https://lwn.net/Articles/630727/


If you look at the ways you can share a state (a variable or an array)
between two processes, it turns out that it can be done in a limited number
of ways. Theoretically, there are two main categories of sharing a state
between a number of processes, but in a real computer system, each of
these categories has some subcategories.

You either have to put a state in a "place" that can be accessed by a number
of processes, or you must have your state sent or transferred as a message,
signal, or event to other processes. Similarly, you either have to pull or
retrieve an existing state from a "place," or receive it as a message, signal,
or event. The first approach needs storage or a medium like a memory
buffer or a filesystem, and the second approach requires you to have a
messaging mechanism or a channel in place between the processes.

As an example for the first approach, we can have a shared memory region
as a medium with an array inside that can be accessed by a number of
processes to read and modify the array. As an example for the second
approach, we can have a computer network as the channel to allow some
messages to be transmitted between a number of processes located on
different hosts in that network.

Our current discussion on how to share states between some processes is
not in fact limited to just processes; it can be applied to threads as well.
Threads can also have signaling between themselves to share a state or
propagate an event.

In different terminology, the techniques found in the first group that
requires a medium such as storage to share states are called pull-based
techniques. That's because the processes that want to read states have to
pull them from storage.

The techniques in the second group that require a channel to transmit
states are called push-based techniques. That's because the states are
pushed (or delivered) through the channel to the receiving process and it
doesn't need to pull them from a medium. We will be using these terms
from now on to refer to these techniques.



The variety in push-based techniques has led to various distributed
architectures in the modern software industry. The pull-based techniques
are considered to be legacy in comparison to push-based techniques, and
you can see it in many enterprise applications where a single central
database is used to share various states throughout the entire system.

However, the push-based approach is gaining momentum these days and
has led to techniques such as event sourcing and a number of other similar
distributed approaches used for keeping all parts of a big software system
consistent with each other without having all data stored in a central place.

Between the two approaches discussed, we are particularly interested in
the first approach throughout this chapter. We will focus more upon the
second approach in Chapter 19, Single-Host IPC and Sockets, and Chapter
20, Socket Programming. In those chapters we are going to introduce the
various channels available to transmit messages between processes as part
of Inter-Process Communication (IPC) techniques. Only then will we be
able to explore the various push-based techniques and give some real
examples for the observed concurrency issues and the control mechanisms
that can be employed.

The following is a list of pull-based techniques that are supported by the
POSIX standard and can be used widely in all POSIX-compliant operating
systems:

Shared memory: This is simply a region in the main memory that is
shared and accessible to a number of processes, and they can use it to
store variables and arrays just like an ordinary memory block. A
shared memory object is not a file on disk, but it is the actual
memory. It can exist as a standalone object in the operating system
even when there is no process using it. Shared memory objects can be
removed whether by a process when not needed anymore or by
rebooting the system. Therefore, in terms of surviving reboots, shared
memory objects can be thought of as temporary objects.
Filesystem: Processes can use files to share states. This technique is
one of the oldest techniques to share some states throughout a
software system among a number of processes. Eventually,



difficulties with synchronizing access to the shared files, together
with many other valid reasons, have led to the invention of Database
Management Systems (DBMSes), but still, the shared files are being
used in certain use cases.
Network services: Once available to all processes, processes can use
network storage or a network service to store and retrieve a shared
state. In this scenario, the processes do not know exactly what is
going on behind the scenes. They just use a network service through a
well-defined API that allows them to perform certain operations on a
shared state. As some examples, we can name Network Filesystems
(NFS) or DBMSes. They offer network services that allow
maintaining states through a well-defined model and a set of
companion operations. To give a more specific example, we can
mention Relational DBMSes, which allow you to store your states in a
relational model through using SQL commands.

In the following subsections, we will be discussing each of the above
methods found as part of the POSIX interface. We start with POSIX shared
memory, and we show how it can lead to familiar data races known from
Chapter 16, Thread Synchronization.

POSIX shared memory
Supported by POSIX standard, shared memory is one of the widely used
techniques to share a piece of information among a number of processes.
Unlike threads that can access the same memory space, processes do not
have this power and access to the memory of other processes is prohibited
by the operating system. Therefore, we need a mechanism in order to share
a portion of memory between two processes, and shared memory is
exactly that technique.

In the following examples, we go through the details of creating and using
a shared memory object, and we start our discussion by creating a shared
memory region. The following code shows how to create and populate a
shared memory object within a POSIX-compliant system:



#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <errno.h>

#include <string.h>

#include <sys/mman.h>

#define SH_SIZE 16

int main(int argc, char** argv) {

int shm_fd = shm_open("/shm0", O_CREAT | O_RDWR, 0600);

if (shm_fd < 0) {

fprintf(stderr, "ERROR: Failed to create shared memory:

%s\n",

strerror(errno));

return 1;

}

fprintf(stdout, "Shared memory is created with fd: %d\n",

shm_fd);

if (ftruncate(shm_fd, SH_SIZE * sizeof(char)) < 0) {

fprintf(stderr, "ERROR: Truncation failed: %s\n",

strerror(errno));

return 1;

}

fprintf(stdout, "The memory region is truncated.\n");

void* map = mmap(0, SH_SIZE, PROT_WRITE, MAP_SHARED, shm_fd,

0);

if (map == MAP_FAILED) {

fprintf(stderr, "ERROR: Mapping failed: %s\n",

strerror(errno));

return 1;

}

char* ptr = (char*)map;

ptr[0] = 'A';

ptr[1] = 'B';

ptr[2] = 'C';

ptr[3] = '\n';

ptr[4] = '\0';

while(1);

fprintf(stdout, "Data is written to the shared memory.\n");

if (munmap(ptr, SH_SIZE) < 0) {

fprintf(stderr, "ERROR: Unmapping failed: %s\n",

strerror(errno));

return 1;

}

if (close(shm_fd) < 0) {

fprintf(stderr, "ERROR: Closing shared memory failed: %s\n",

strerror(errno));

return 1;

}

return 0;

}



Code Box 17-4 [ExtremeC_examples_chapter17_4.c]: Creating and writing to a POSIX
shared memory object

The preceding code creates a shared memory object named /shm0  with 16
bytes in it. Then it populates the shared memory with the literal ABC\n
and finally, it quits by unmapping the shared memory region. Note that the
shared memory object remains in place even when the process quits.
Future processes can open and read the same shared memory object over
and over again. A shared memory object is destructed either by rebooting
the system or by getting unlinked (removed) by a process.

Note:

In FreeBSD, the names of the shared memory objects should start with
/ . This is not mandatory in Linux or macOS, but we did the same for

both of them to remain compatible with FreeBSD.

In the preceding code, we firstly open a shared memory object using the
shm_open  function. It accepts a name and the modes that the shared
memory object should be created with. O_CREAT  and O_RDWR  mean that
the shared memory should be created, and it can be used for both reading
and writing.

Note the creation won't fail if the shared memory object already exists.
The last argument indicates the permissions of the shared memory object.
0600  means that it is available for reading and write operations performed
by the processes that are initiated only by the owner of the shared memory
object.

On the following lines, we define the size of the shared memory region by
truncating it using ftruncate  function. Note that this is a necessary step
if you're about to create a new shared memory object. For the preceding
shared memory object, we have defined 16 bytes to be allocated and then
truncated.



As we proceed, we map the shared memory object to a region accessible
by the process using the mmap  function. As a result of this, we have a
pointer to the mapped memory and that can be used to access the shared
memory region behind. This is also a necessary step that makes the shared
memory accessible to our C program.

The function mmap  is usually used to map a file or a shared memory
region (originally allocated from the kernel's memory space) to an address
space that is accessible to the caller process. Then, the mapped address
space can be accessed as a regular memory region using ordinary pointers.

As you can see, the region is mapped as a writable region indicated by
PROT_WRITE  and as a shared region among processes indicated by the
MAP_SHARED  argument. MAP_SHARED  simply means any changes to the
mapped area will be visible to other processes mapping the same region.

Instead of MAP_SHARED , we could have MAP_PRIVATE ; this means that the
changes to the mapped region are not propagated to other processes and
are, rather, private to the mapper process. This usage is not common
unless you want to use the shared memory inside a process only.

After mapping the shared memory region, the preceding code writes a
null-terminated string ABC\n  into the shared memory. Note the new line
feed character at the end of the string. As the final steps, the process
unmaps the shared memory region by calling the munmap  function and
then it closes the file descriptor assigned to the shared memory object.

Note:

Every operating system offers a different way to create an unnamed or
anonymous shared memory object. In FreeBSD, it is enough to pass
SHM_ANON  as the path of the shared memory object to the
shm_open  function. In Linux, one can create an anonymous file using

a memfd_create  function instead of creating a shared memory object
and use the returned file descriptor to create a mapped region. An
anonymous shared memory is private to the owner process and cannot be
used to share states among a number of processes.



The preceding code can be compiled on macOS, FreeBSD, and Linux
systems. In Linux systems, shared memory objects can be seen inside the
directory /dev/shm . Note that this directory doesn't have a regular
filesystem and those you see are not files on a disk device. Instead,
/dev/shm  uses the shmfs  filesystem. It is meant to expose the temporary
objects created inside the memory through a mounted directory, and it is
only available in Linux.

Let's compile and run example 17.4 in Linux and examine the contents of
the /dev/shm  directory. In Linux, it is mandatory to link the final binary
with the rt  library in order to use shared memory facilities, and that's
why you see the option -lrt  in the following shell box:

$ ls /dev/shm

$ gcc ExtremeC_examples_chapter17_4.c -lrt -o ex17_4.out

$ ./ex17_4.out

Shared memory is created with fd: 3

The memory region is truncated.

Data is written to the shared memory.

$ ls /dev/shm

shm0

$

Shell Box 17-4: Building and running example 17.4 and checking if the shared memory
object is created

As you can see on the first line, there are no shared memory objects in the
/dev/shm  directory. On the second line, we build example 17.4, and on the
third line, we execute the produced executable file. Then we check
/dev/shm , and we see that we've got a new shared memory object, shm0 ,
there.

The output of the program also confirms the creation of the shared
memory object. Another important thing about the preceding shell box is
the file descriptor 3 , which is assigned to the shared memory object.

For every file you open, a new file descriptor is opened in each process.
This file is not necessarily on disk, and it can be a shared memory object,



standard output, and so on. In each process, file descriptors start from 0
and go up to a maximum allowed number.

Note that in each process, the file descriptors 0 , 1 , and 2  are
preassigned to the stdout , stdin , and stderr  streams, respectively.
These file descriptors are opened for every new process before having its
main  function run. That's basically why the shared memory object in the
preceding example gets 3  as its file descriptor.

Note:

On macOS systems, you can use the pics  utility to check active IPC
objects in the system. It can show you the active message queues and
shared memories. It shows you the active semaphores as well.

The /dev/shm  directory has another interesting property. You can use the
cat  utility to see the contents of shared memory objects, but again this is
only available in Linux. Let's use it on our created shm0  object. As you
see in the following shell box, the contents of the shared memory object
are displayed. It is the string ABC  plus a new line feed character \n :

$ cat /dev/shm/shm0

ABC

$

Shell Box 17-5 Using the cat program to see the content of the shared memory object created
as part of example 17.4

As we explained before, a shared memory object exists as long as it is
being used by at least one process. Even if one of the processes has already
asked the operating system to delete (or unlink) the shared memory, it
won't be actually deleted until the last process has used it. Even when
there is no process unlinking a shared memory object, it would be deleted
when a reboot happens. Shared memory objects cannot survive reboots,
and the processes should create them again in order to use them for
communication.



The following example shows how a process can open and read from an
already existing shared memory object and how it can unlink it finally.
Example 17.5 reads from the shared memory object created in example
17.4. Therefore, it can be considered as complementary to what we did in
example 17.4:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <errno.h>

#include <string.h>

#include <sys/mman.h>

#define SH_SIZE 16

int main(int argc, char** argv) {

int shm_fd = shm_open("/shm0", O_RDONLY, 0600);

if (shm_fd < 0) {

fprintf(stderr, "ERROR: Failed to open shared memory: %s\n",

strerror(errno));

return 1;

}

fprintf(stdout, "Shared memory is opened with fd: %d\n",

shm_fd);

void* map = mmap(0, SH_SIZE, PROT_READ, MAP_SHARED, shm_fd,

0);

if (map == MAP_FAILED) {

fprintf(stderr, "ERROR: Mapping failed: %s\n",

strerror(errno));

return 1;

}

char* ptr = (char*)map;

fprintf(stdout, "The contents of shared memory object:

%s\n",

ptr);

if (munmap(ptr, SH_SIZE) < 0) {

fprintf(stderr, "ERROR: Unmapping failed: %s\n",

strerror(errno));

return 1;

}

if (close(shm_fd) < 0) {

fprintf(stderr, "ERROR: Closing shared memory fd filed:

%s\n",

strerror(errno));

return 1;

}

if (shm_unlink("/shm0") < 0) {

fprintf(stderr, "ERROR: Unlinking shared memory failed:

%s\n",

strerror(errno));



return 1;

}

return 0;

}

Code Box 17-5 [ExtremeC_examples_chapter17_5.c]: Reading from the shared memory
object created as part of example 17.4

As the first statement in the main  function, we have opened an existing
shared memory object named /shm0 . If there is no such shared memory
object, we will generate an error. As you can see, we have opened the
shared memory object as read-only, meaning that we are not going to write
anything to the shared memory.

On the following lines, we map the shared memory region. Again, we have
indicated that the mapped region is read-only by passing the PROT_READ
argument. After that, we finally get a pointer to the shared memory region,
and we use it to print its contents. When we're done with the shared
memory, we unmap the region. Following this, the assigned file descriptor
is closed, and lastly the shared memory object is registered for removal by
unlinking it through using the shm_unlink  function.

After this point, when all other processes that are using the same shared
memory are done with it, the shared memory object gets removed from the
system. Note that the shared memory object exists as long as there is a
process using it.

The following is the output of running the preceding code. Note the
contents of /dev/shm  before and after running example 17.5:

$ ls /dev/shm

shm0

$ gcc ExtremeC_examples_chapter17_5.c -lrt -o ex17_5.out

$ ./ex17_5.out

Shared memory is opened with fd: 3

The contents of the shared memory object: ABC

$ ls /dev/shm

$



Shell Box 17-6: Reading from the shared memory object created in example 17.4 and finally
removing it

Data race example using shared memory

Now, it's time to demonstrate a data race using the combination of the fork
API and shared memory. It would be analogous to the examples given in
Chapter 15, Thread Execution, to demonstrate a data race among a number
of threads.

In example 17.6, we have a counter variable that is placed inside a shared
memory region. The example forks a child process out of the main running
process, and both of them try to increment the shared counter. The final
output shows a clear data race over the shared counter:

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <errno.h>

#include <string.h>

#include <sys/mman.h>

#include <sys/wait.h>

#define SH_SIZE 4

// Shared file descriptor used to refer to the

// shared memory object

int shared_fd = -1;

// The pointer to the shared counter

int32_t* counter = NULL;

void init_shared_resource() {

// Open the shared memory object

shared_fd = shm_open("/shm0", O_CREAT | O_RDWR, 0600);

if (shared_fd < 0) {

fprintf(stderr, "ERROR: Failed to create shared memory:

%s\n",

strerror(errno));

exit(1);

}

fprintf(stdout, "Shared memory is created with fd: %d\n",

shared_fd);

}

void shutdown_shared_resource() {



if (shm_unlink("/shm0") < 0) {

fprintf(stderr, "ERROR: Unlinking shared memory failed:

%s\n",

strerror(errno));

exit(1);

}

}

void inc_counter() {

usleep(1);

int32_t temp = *counter;

usleep(1);

temp++;

usleep(1);

*counter = temp;

usleep(1);

}

int main(int argc, char** argv) {

// Parent process needs to initialize the shared resource

init_shared_resource();

// Allocate and truncate the shared memory region

if (ftruncate(shared_fd, SH_SIZE * sizeof(char)) < 0) {

fprintf(stderr, "ERROR: Truncation failed: %s\n",

strerror(errno));

return 1;

}

fprintf(stdout, "The memory region is truncated.\n");

// Map the shared memory and initialize the counter

void* map = mmap(0, SH_SIZE, PROT_WRITE,

MAP_SHARED, shared_fd, 0);

if (map == MAP_FAILED) {

fprintf(stderr, "ERROR: Mapping failed: %s\n",

strerror(errno));

return 1;

}

counter = (int32_t*)map;

*counter = 0;

// Fork a new process

pid_t pid = fork();

if (pid) { // The parent process

// Increment the counter

inc_counter();

fprintf(stdout, "The parent process sees the counter as

%d.\n",

*counter);

// Wait for the child process to exit

int status = -1;

wait(&status);

fprintf(stdout, "The child process finished with status

%d.\n",

status);



} else { // The child process

// Incrmenet the counter

inc_counter();

fprintf(stdout, "The child process sees the counter as

%d.\n",

*counter);

}

// Both processes should unmap shared memory region and

close

// its file descriptor

if (munmap(counter, SH_SIZE) < 0) {

fprintf(stderr, "ERROR: Unmapping failed: %s\n",

strerror(errno));

return 1;

}

if (close(shared_fd) < 0) {

fprintf(stderr, "ERROR: Closing shared memory fd filed:

%s\n",

strerror(errno));

return 1;

}

// Only parent process needs to shutdown the shared resource

if (pid) {

shutdown_shared_resource();

}

return 0;

}

Code Box 17-6 [ExtremeC_examples_chapter17_6.c]: Demonstration of a data race using a
POSIX shared memory and the fork API

There are three functions in the preceding code other than the main
function. The function init_shared_resource  creates the shared memory
object. The reason that I've named this function init_shared_resource
instead of init_shared_memory  is the fact that we could use another pull-
based technique in the preceding example and having a general name for
this function allows the main  function to remain unchanged in the future
examples.

The function shutdown_shared_resource  destructs the shared memory and
unlinks it. In addition, the function inc_counter  increments the shared
counter by 1.

The main  function truncates and maps the shared memory region just like
we did in example 17.4. After having the shared memory region mapped,



the forking logic beings. By calling the fork  function, a new process is
spawned, and both processes (the forked process and the forking process)
try to increment the counter by calling the inc_counter  function.

When the parent process writes to the shared counter, it waits for the child
process to finish, and only after that, it tries to unmap, close, and unlink
the shared memory object. Note that the unmapping and the closure of the
file descriptor happen in both processes, but only the parent process
unlinks the shared memory object.

As you can see as part of Code Box 17-6, we have used some unusual
usleep  calls in the inc_counter  function. The reason is to force the
scheduler to take back the CPU core from one process and give it to
another process. Without these usleep  function calls, the CPU core is not
usually transferred between the processes, and you cannot see the effect of
different interleavings very often.

One of the reasons for such an effect is having a small number of
instructions in each process. If the number of instructions per process
increases significantly, one can see the non-deterministic behavior of
interleavings even without sleep calls. As an example, having a loop in
each process that counts for 10,000 times and increments the shared
counter in each iteration is very likely to reveal the data race. You can try
this yourself.

As the final note about the preceding code, the parent process creates and
opens the shared memory object and assigns a file descriptor to it before
forking the child process. The forked process doesn't open the shared
memory object, but it can use the same file descriptor. The fact that all
open file descriptors are inherited from the parent process helped the child
process to continue and use the file descriptor, referring to the same
shared memory object.

The following in Shell Box 17-7 is the output of running example 17.6 for
a number of times. As you can see, we have a clear data race over the
shared counter. There are moments when the parent or the child process
updates the counter without obtaining the latest modified value, and this
results in printing 1  by both processes:



$ gcc ExtremeC_examples_chapter17_6 -o ex17_6.out

$ ./ex17_6.out

Shared memory is created with fd: 3

The memory region is truncated.

The parent process sees the counter as 1.

The child process sees the counter as 2.

The child process finished with status 0.

$ ./ex17_6

...

...

...

$ ./ex17_6.out

Shared memory is created with fd: 3

The memory region is truncated.

The parent process sees the counter as 1.

The child process sees the counter as 1.

The child process finished with status 0.

$

Shell Box 17-7: Running example 17.6 and demonstration of the data race happening over the
shared counter

In this section, we showed how to create and use shared memory. We also
demonstrated a data race example and the way concurrent processes
behave while accessing a shared memory region. In the following section,
we're going to talk about the filesystem as another widely used pull-based
method to share a state among a number of processes.

File system
POSIX exposes a similar API for working with files in a filesystem. As
long as the file descriptors are involved and they are used to refer to
various system objects, the same API as that introduced for working with
shared memory can be used.

We use file descriptors to refer to actual files in a filesystem like ext4,
together with shared memory, pipes, and so on; therefore, the same
semantic for opening, reading, writing, mapping them to a local memory
region, and so on can be employed. Therefore, we'd expect to see similar



discussion and perhaps similar C code regarding the filesystem as we had
for the shared memory. We see this in example 17.7.

Note:

We usually map file descriptors. There are some exceptional cases,
however, where socket descriptors can be mapped. Socket descriptors
are similar to file descriptors but are used for network or Unix sockets.
This link provides an interesting use case for mapping the kernel buffer
behind a TCP socket which is referred to as a zero-copy receive
mechanism: https://lwn.net/Articles/752188/.

Note that it's correct that the API employed for using the filesystem is
very similar to the one we used for shared memory, but it doesn't mean
that their implementation is similar as well. In fact, a file object in a
filesystem backed by a hard disk is fundamentally different from a shared
memory object. Let's briefly discuss some differences:

A shared memory object is basically in the memory space of the
kernel process while a file in a filesystem is located on a disk. At
most, such a file has some allocated buffers for reading and writing
operations.
The states written to shared memory are wiped out by rebooting the
system, but the states written to a shared file, if it is backed by a hard
disk or permanent storage, can be retained after the reboot.
Generally, accessing shared memory is far faster than accessing the
filesystem.

The following code is the same data race example that we gave for the
shared memory in the previous section. Since the API used for the
filesystem is pretty similar to the API we used for the shared memory, we
only need to change two functions from example 17.6;
init_shared_resource  and shutdown_shared_resource . The rest will be
the same. This is a great achievement that is accomplished by using the
same POSIX API operating on the file descriptors. Let's get into the code:

#include <stdio.h>

https://lwn.net/Articles/752188/


#include <stdint.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <errno.h>

#include <string.h>

#include <sys/mman.h>

#include <sys/wait.h>

#define SH_SIZE 4

// The shared file descriptor used to refer to the shared

file

int shared_fd = -1;

// The pointer to the shared counter

int32_t* counter = NULL;

void init_shared_resource() {

// Open the file

shared_fd = open("data.bin", O_CREAT | O_RDWR, 0600);

if (shared_fd < 0) {

fprintf(stderr, "ERROR: Failed to create the file: %s\n",

strerror(errno));

exit(1);

}

fprintf(stdout, "File is created and opened with fd: %d\n",

shared_fd);

}

void shutdown_shared_resource() {

if (remove("data.bin") < 0) {

fprintf(stderr, "ERROR: Removing the file failed: %s\n",

strerror(errno));

exit(1);

}

}

void inc_counter() {

... As exmaple 17.6 ...

}

int main(int argc, char** argv) {

... As exmaple 17.6 ...

}

Code Box 17-7 [ExtremeC_examples_chapter17_7.c]: Demonstration of a data race using
regular files and the fork API

As you see, the majority of the preceding code is obtained from example
17.6. The rest is a substitute for using the open  and remove  functions
instead of the shm_open  and shm_unlink  functions.



Note that the file data.bin  is created in the current directory since we've
not given an absolute path to the open  function. Running the preceding
code also produces the same data race over the shared counter. It can be
examined similarly to our approach for example 17.6.

So far, we have seen that we can use shared memory and shared files to
store a state and access it from a number of processes concurrently. Now,
it's time to talk about multithreading and multi-processing in a greater
sense and compare them thoroughly.

Multithreading versus multi-
processing
After discussing multithreading and multi-processing in Chapter 14,
Synchronization, together with concepts we have covered throughout the
recent chapters, we are in a good position to compare them and give a
high-level description of situations in which each of the approaches should
be employed. Suppose that we are going to design a piece of software that
aims to process a number of input requests concurrently. We discuss this in
the context of three different situations. Let's start with the first one.

Multithreading
The first situation is when you can write a piece of software that has only
one process, and all the requests go into the same process. All the logic
should be written as part of the same process, and as a result, you get a fat
process that does everything in your system. Since this is single-process
software, if you want to handle many requests concurrently, you need to do
it in a multithreaded way by creating threads to handle multiple requests.
Further, it can be a better design decision to go for a thread pool that has a
limited number of threads.



There are the following considerations regarding concurrency and
synchronization which should be taken care of. Note that we don't talk
about using event loops or asynchronous I/O in this situation, while it can
still be a valid alternative to multithreading.

If the number of requests increases significantly, the limited number of
threads within the thread pool should be increased to overcome the
demand. This literally means upgrading the hardware and resources on the
machine on which the main process is running. This is called scaling up or
vertical scaling. It means that you upgrade the hardware you have on a
single machine to be able to respond to more requests. In addition to the
possible downtime that clients experience while upgrading to the new
hardware (though it can be prevented), the upgrade is costly, and you have
to do another scale up when the number of requests grows again.

If processing the requests ends up in manipulating a shared state or a data
store, synchronization techniques can be implemented easily, by knowing
the fact that threads have access to the same memory space. Of course,
this is needed whether they have a shared data structure that should be
maintained or they have access to remote data storage that is not
transactional.

All the threads are running on the same machine, and thus they can use all
the techniques used for sharing a state that we explained so far, used by
both threads and processes. This is a great feature and mitigates a lot of
pain when it comes to thread synchronization.

Let's talk about the next situation, when we can have more than one
process but all of them are on the same machine.

Single-host multi-processing
In this situation, we write a piece of software that has multiple processes,
but all are deployed on a single machine. All of these processes can be
either single-threaded, or they can have a thread pool inside that allows
each of them to handle more than one request at a time.



When the number of requests increases, one can create new processes
instead of creating more threads. This is usually called scaling out or
horizontal scaling. When you have only one single machine, however, you
must scale it up, or in other words, you must upgrade its hardware. This
can cause the same issues we mentioned for the scaling up of a
multithreaded program in the previous subsection.

When it comes to concurrency, the processes are being executed in a
concurrent environment. They can only use the multi-processing ways of
sharing a state or synchronizing the processes. Surely, it is not as
convenient as writing multithreaded code. In addition, processes can use
both pull-based or push-based techniques to share states.

Multi-processing on a single machine is not very effective, and it seems
multithreading is more convenient when it comes to the effort of coding.

The next subsection talks about the distributed multi-processing
environment, which is the best design to create modern software.

Distributed multi-processing
In the final situation, we have written a program that is run as multiple
processes, running on multiple hosts, all connected to each other through
a network, and on a single host we can have more than one process
running. The following features can be seen in such a deployment.

When faced with significant growth in the number of requests, this system
can be scaled out without limits. This is a great feature that enables you to
use commodity hardware when you face such high peaks. Using the
clusters of commodity hardware instead of powerful servers was one of
the ideas that enabled Google to run its Page Rank and Map Reduce
algorithms on a cluster of machines.

The techniques discussed in this chapter barely help because they have an
important prerequisite: that all the processes are running within the same
machine. Therefore, a completely different set of algorithms and
techniques should be employed to make the processes synchronized and



make shared states available to all processes within the system. Latency,
fault tolerance, availability, data consistency, and many more factors
should be studied and tuned regarding such a distributed system.

Processes on different hosts use network sockets to communicate in a
push-based manner, but the processes on the same host may use local IPC
techniques, for example, message queues, shared memory, pipes, and so
on, to transfer messages and share state.

As a final word in this section, in the modern software industry, we prefer
scaling out rather than scaling up. This will give rise to many new ideas
and technologies for data storage, synchronization, message passing, and
so on. It can even have an impact on the hardware design to make it
suitable for horizontal scaling.

Summary
In this chapter, we explored multi-processing systems and the various
techniques that can be used to share a state among a number of processes.
The following topics were covered in this chapter:

We introduced the POSIX APIs used for process execution. We
explained how the fork  API and exec*  functions work.
We explained the steps that a kernel takes to execute a process.
We discussed the ways that a state can be shared among a number of
processes.
We introduced the pull-based and push-based techniques as the two
top-level categories for all other available techniques.
Shared memory and shared files on a filesystem are among common
techniques to share a state in a pull-based manner.
We explained the differences and similarities of multithreading and
multi-processing deployments and the concepts of vertical and
horizontal scaling in a distributed software system.



In the next chapter, we are going to talk about concurrency in single-host
multi-processing environments. It will consist of discussions about
concurrency issues and the ways to synchronize a number of processes in
order to protect a shared resource. The topics are very similar to the ones
you encountered in Chapter 16, Thread Synchronization, but their focus is
on the processes rather than the threads.



Chapter 18
Process Synchronization

This chapter continues our discussion in the previous chapter, Process
Execution, and our main focus will be on process synchronization. Control
mechanisms in multi-process programs are different from the control
techniques we met in multi-threaded programs. It is not just the memory
which differs; there are other factors that you cannot find in a multi-
threaded program, and they exist in a multi-process environment.

Despite threads that are bound to a process, processes can live freely on
any machine, with any operating system, located anywhere within a
network as big as the internet. As you might imagine, things become
complicated. It will not be easy to synchronize a number of processes in
such a distributed system.

This chapter is dedicated to process synchronization happening in just one
machine. In other words, it mainly talks about single-host synchronization
and the techniques around it. We discuss briefly the process
synchronization in distributed systems, but we won't go into extensive
detail.

This chapter covers the following topics:

Firstly, we describe multi-process software where all processes are
being run on the same machine. We introduce the techniques that are
available in single-host environments. We use the knowledge from
the previous chapter in order to give some examples that demonstrate
these techniques.
In our first attempt to synchronize a number of processes, we use
named POSIX semaphores. We explain how they should be used and



then we give an example that resolves a race condition issue we
encountered in the previous chapters.
After that, we talk about named POSIX mutexes and we show how we
can use shared memory regions to have named mutexes up and
working. As an example, we solve the same race condition resolved
by semaphores, this time using named mutexes.
As the last technique to synchronize a number of processes, we
discuss named POSIX condition variables. Like named mutexes, they
need to be put in a shared memory region to become accessible to a
number of processes. We give a thorough example regarding this
technique which shows how named POSIX condition variables can be
used to synchronize a multi-process system.
As our final discussion in this chapter, we briefly talk about the
multi-process systems which have their own processes distributed
around a network. We discuss their features and the problematic
differences that they have in comparison to a single-host multi-
process system.

Let us start the chapter with talking a bit more about single-host
concurrency control and what techniques are available as part of it.

Single-host concurrency control
It is pretty common to be in situations where there are a number of
processes running on a single machine that, at the same time, need to have
simultaneous access to a shared resource. Since all of the processes are
running within the same operating system, they have access to all the
facilities which their operating system provides.

In this section, we show how to use some of these facilities to create a
control mechanism that synchronizes the processes. Shared memory plays
a key role in most of these control mechanisms; therefore, we heavily rely
on what we explained about shared memory in the previous chapter.



The following is a list of POSIX-provided control mechanisms that can be
employed while all processes are running on the same POSIX-compliant
machine:

Named POSIX semaphores: The same POSIX semaphores that we
explained in Chapter 16, Thread Synchronization, but with one
difference: they have a name now and can be used globally
throughout the system. In other words, they are not anonymous or
private semaphores anymore.
Named mutexes: Again, the same POSIX mutexes with the same
properties which were explained in Chapter 16, Thread
Synchronization, but now named and can be used throughout the
system. These mutexes should be placed inside a shared memory in
order to be available to multiple processes.
Named condition variables: The same POSIX condition variables
which we explained in Chapter 16, Thread Synchronization, but like
mutexes, they should be placed inside a shared memory object in
order to be available to a number of processes.

In the upcoming sections, we discuss all the above techniques and give
examples to demonstrate how they work. In the following section, we are
going to discuss named POSIX semaphores.

Named POSIX semaphores
As you saw in Chapter 16, Thread Synchronization, semaphores are the
main tool to synchronize a number of concurrent tasks. We saw them in
multi-threaded programs and saw how they help to overcome the
concurrency issues.

In this section, we are going to show how they can be used among some
processes. Example 18.1 shows how to use a POSIX semaphore to solve
the data races we encountered in examples 17.6 and 17.7 given in the
previous chapter, Process Execution. The example is remarkably similar



to example 17.6, and it again uses a shared memory region for storing the
shared counter variable. But it uses named semaphores to synchronize the
access to the shared counter.

The following code boxes show the way that we use a named semaphore to
synchronize two processes while accessing a shared variable. The
following code box shows the global declarations of example 18.1:

#include <stdio.h>

...

#include <semaphore.h> // For using semaphores

#define SHARED_MEM_SIZE 4

// Shared file descriptor used to refer to the

// shared memory object

int shared_fd = -1;

// The pointer to the shared counter

int32_t* counter = NULL;

// The pointer to the shared semaphore

sem_t* semaphore = NULL;

Code Box 18-1 [ExtremeC_examples_chapter18_1.c]: The global declarations of example
18.1

In Code Box 18-1, we have declared a global counter and a global pointer
to a semaphore object which will be set later. This pointer will be used by
both parent and child processes to have synchronized access to the shared
counter, addressed by the counter pointer.

The following code shows the function definitions supposed to do the
actual process synchronization. Some of the definitions are the same as we
had in example 17.6 and those lines are removed from the following code
box:

void init_control_mechanism() {

semaphore = sem_open("/sem0", O_CREAT | O_EXCL, 0600, 1);

if (semaphore == SEM_FAILED) {

fprintf(stderr, "ERROR: Opening the semaphore failed: %s\n",

strerror(errno));

exit(1);

}

}

void shutdown_control_mechanism() {



if (sem_close(semaphore) < 0) {

fprintf(stderr, "ERROR: Closing the semaphore failed: %s\n",

strerror(errno));

exit(1);

}

if (sem_unlink("/sem0") < 0) {

fprintf(stderr, "ERROR: Unlinking failed: %s\n",

strerror(errno));

exit(1);

}

}

void init_shared_resource() {

... as in the example 17.6 ...

}

void shutdown_shared_resource() {

... as in the example 17.6 ...

}

Code Box 18-2 [ExtremeC_examples_chapter18_1.c]: The definition of synchronization
functions

We have added two new functions compared to example 17.6:
init_control_mechanism  and shutdown_control_mechanism . We also
made some changes to the inc_counter  function (shown in Code Box 18-
3) to use the semaphore and form a critical section inside.

Inside the init_control_mechanism  and shutdown_control_mechanism
functions, we are using a similar API to the shared memory API to open,
close, and unlink a named semaphore.

The functions sem_open , sem_close , and sem_unlink  can be seen as
similar to shm_open , shm_close , and shm_unlink . There is one difference
and that is that the function sem_open  returns a semaphore pointer instead
of a file descriptor.

Note that the API used for working with the semaphore in this example is
the same as we have seen before, so the rest of the code can remain
unchanged as with example 17.6. In this example, the semaphore is
initialized with value 1 , which makes it a mutex. The following code box
shows the critical section and how the semaphore is used to synchronize
the read and write operations performed on the shared counter:



void inc_counter() {

usleep(1);

sem_wait(semaphore); // Return value should be checked.

int32_t temp = *counter;

usleep(1);

temp++;

usleep(1);

*counter = temp;

sem_post(semaphore); // Return value should be checked.

usleep(1);

}

Code Box 18-3 [ExtremeC_examples_chapter18_1.c]: The critical section where the shared
counter is being incremented

Comparing to example 17.6, in the function inc_counter , the functions
sem_wait  and sem_post  are used to enter and exit the critical sections,
respectively.

In the following code box, you can see the function main . It is almost the
same as example 17.6 and we only see some changes in the initial and final
parts, and that is in accordance with the addition of two new functions
seen in Code Box 18-2:

int main(int argc, char** argv) {

// Parent process needs to initialize the shared resource

init_shared_resource();

// Parent process needs to initialize the control mechanism

init_control_mechanism();

... as in the example 17.6 ...

// Only parent process needs to shut down the shared

resource

// and the employed control mechanism

if (pid) {

shutdown_shared_resource();

shutdown_control_mechanism();

}

return 0;

}

Code Box 18-4 [ExtremeC_examples_chapter18_1.c]: The main function of example 18.1



In the following shell box, you can see the output for two successive runs
of example 18.1:

$ gcc ExtremeC_examples_chapter18_1.c -lrt -lpthread -o

ex18_1.out

$ ./ex18_1.out

Shared memory is created with fd: 3

The memory region is truncated.

The child process sees the counter as 1.

The parent process sees the counter as 2.

The child process finished with status 0.

$ ./ex18_1.out

Shared memory is created with fd: 3

The memory region is truncated.

The parent process sees the counter as 1.

The child process sees the counter as 2.

The child process finished with status 0.

$

Shell Box 18-1: Building in Linux and two successive runs of example 18.1

Note that we need to link the above code with the pthread  library because
we are using POSIX semaphores. We need also to link it with the rt
library in Linux in order to use the shared memories.

The preceding output is clear. Sometimes the child process gets the CPU
first and increments the counter, and sometimes the parent process does
so. There is no time when both enter the critical section, and therefore they
satisfy the data integrity of the shared counter.

Note that it is not required to use the fork API in order to use named
semaphores. Completely separated processes, which are not parent and
child, can still open and use the same semaphores if they are run on the
same machine and inside the same operating system. In example 18.3, we
show how this is possible.

As the final note in this section, you should know that we have two types
of named semaphores in Unix-like operating systems. One is System V
Semaphores, and the other is POSIX semaphores. In this section, we
explained the POSIX semaphores because they have a better reputation for
their nice API and performance. The following link is a Stack Overflow



question which nicely explains the differences between System V
semaphores and POSIX semaphores:
https://stackoverflow.com/questions/368322/differe

nces-between-system-v-and-posix-semaphores.

Note:

Microsoft Windows is not POSIX-compliant in terms of using
semaphores, and it has its own API to create and manage semaphores.

In the next section, we discuss named mutexes. In short, named mutexes
are ordinary mutex objects that are put into a shared memory region.

Named mutexes
POSIX mutexes work simply in multi-threaded programs; we
demonstrated this in Chapter 16, Thread Synchronization. This would not
be the case with regard to multiple process environments, however. To
have a mutex work among a number of processes, it would need to be
defined within a place that is accessible to all of them.

The best choice for a shared place such as this is a shared memory region.
Therefore, to have a mutex that works in a multi-process environment, it
should be distributed in a shared memory region.

The first example
The following example, example 18.2, is a clone of example 18.1, but it
solves the potential race condition using named mutexes instead of named
semaphores. It also shows how to make a shared memory region and use it
to store a shared mutex.

https://stackoverflow.com/questions/368322/differences-between-system-v-and-posix-semaphores


Since each shared memory object has a global name, a mutex stored in a
shared memory region can be considered named and can be accessed by
other processes throughout the system.

The following code box shows the declarations required for example 18.2.
It shows what is needed for having a shared mutex:

#include <stdio.h>

...

#include <pthread.h> // For using pthread_mutex_* functions

#define SHARED_MEM_SIZE 4

// Shared file descriptor used to refer to shared memory

object

int shared_fd = -1;

// Shared file descriptor used to refer to the mutex's

shared

// memory object

int mutex_shm_fd = -1;

// The pointer to the shared counter

int32_t* counter = NULL;

// The pointer to shared mutex

pthread_mutex_t* mutex = NULL;

Code Box 18-5 [ExtremeC_examples_chapter18_2.c]: The global declarations of example
18.2

As you can see, we have declared:

A global file descriptor for pointing to a shared memory region that is
meant to store the shared counter variable
A global file descriptor for the shared memory region storing the
shared mutex
A pointer to the shared counter
A pointer to the shared mutex

These variables will be populated accordingly by the upcoming logic.

The following code boxes show all the functions we had in example 18.1,
but as you see, the definitions are updated to work with a named mutex
instead of a named semaphore:



void init_control_mechanism() {

// Open the mutex shared memory

mutex_shm_fd = shm_open("/mutex0", O_CREAT | O_RDWR, 0600);

if (mutex_shm_fd < 0) {

fprintf(stderr, "ERROR: Failed to create shared memory:

%s\n"

, strerror(errno));

exit(1);

}

// Allocate and truncate the mutex's shared memory region

if (ftruncate(mutex_shm_fd, sizeof(pthread_mutex_t)) < 0) {

fprintf(stderr, "ERROR: Truncation of mutex failed: %s\n",

strerror(errno));

exit(1);

}

// Map the mutex's shared memory

void* map = mmap(0, sizeof(pthread_mutex_t),

PROT_READ | PROT_WRITE, MAP_SHARED, mutex_shm_fd, 0);

if (map == MAP_FAILED) {

fprintf(stderr, "ERROR: Mapping failed: %s\n",

strerror(errno));

exit(1);

}

mutex = (pthread_mutex_t*)map;

// Initialize the mutex object

int ret = -1;

pthread_mutexattr_t attr;

if ((ret = pthread_mutexattr_init(&attr))) {

fprintf(stderr, "ERROR: Failed to init mutex attrs: %s\n",

strerror(ret));

exit(1);

}

if ((ret = pthread_mutexattr_setpshared(&attr,

PTHREAD_PROCESS_SHARED))) {

fprintf(stderr, "ERROR: Failed to set the mutex attr: %s\n",

strerror(ret));

exit(1);

}

if ((ret = pthread_mutex_init(mutex, &attr))) {

fprintf(stderr, "ERROR: Initializing the mutex failed:

%s\n",

strerror(ret));

exit(1);

}

if ((ret = pthread_mutexattr_destroy(&attr))) {

fprintf(stderr, "ERROR: Failed to destroy mutex attrs :

%s\n"

, strerror(ret));

exit(1);

}



}

Code Box 18-6 [ExtremeC_examples_chapter18_2.c]: The function init_control_mechanism
in example 18.2

As part of the function init_control_mechanism , we have created a new
shared memory object named /mutex0 . The size of the shared memory
region is initialized to sizeof(pthread_mutex_t)  which shows our
intention to share a POSIX mutex object there.

Following that, we get a pointer to the shared memory region. Now we
have a mutex which is allocated from the shared memory, but it still needs
to be initialized. The next step is therefore to initialize the mutex object
using the function pthread_mutex_init , with attributes that indicate that
the mutex object should be shared and accessible by other processes. This
is especially important; otherwise, the mutex does not work in a multi-
process environment, even though it is placed inside a shared memory
region. As you have seen in the preceding code box and as part of the
function init_control_mechanism , we have set the attribute
PTHREAD_PROCESS_SHARED  to mark the mutex as shared. Let's look at the
next function:

void shutdown_control_mechanism() {

int ret = -1;

if ((ret = pthread_mutex_destroy(mutex))) {

fprintf(stderr, "ERROR: Failed to destroy mutex: %s\n",

strerror(ret));

exit(1);

}

if (munmap(mutex, sizeof(pthread_mutex_t)) < 0) {

fprintf(stderr, "ERROR: Unmapping the mutex failed: %s\n",

strerror(errno));

exit(1);

}

if (close(mutex_shm_fd) < 0) {

fprintf(stderr, "ERROR: Closing the mutex failed: %s\n",

strerror(errno));

exit(1);

}

if (shm_unlink("/mutex0") < 0) {

fprintf(stderr, "ERROR: Unlinking the mutex failed: %s\n",

strerror(errno));

exit(1);



}

}

Code Box 18-7 [ExtremeC_examples_chapter18_2.c]: The function
destroy_control_mechanism in example 18.2

In the function destroy_control_mechanism  we destroy the mutex object,
and after that we close and unlink its underlying shared memory region.
This is the same way that we destroy an ordinary shared memory object.
Let's continue with other codes in the example:

void init_shared_resource() {

... as in the example 18.1 ...

}

void shutdown_shared_resource() {

... as in the example 18.1 ...

}

Code Box 18-8 [ExtremeC_examples_chapter18_2.c]: These functions are the same as we
have seen in example 18.1

As you see, the preceding functions are not changed at all and they are the
same as we had in example 18.1. Let's look at the critical section inside the
function inc_counter  which now uses a named mutex instead of a named
semaphore.

void inc_counter() {

usleep(1);

pthread_mutex_lock(mutex); // Should check the return value.

int32_t temp = *counter;

usleep(1);

temp++;

usleep(1);

*counter = temp;

pthread_mutex_unlock(mutex); // Should check the return

value.

usleep(1);

}

int main(int argc, char** argv) {

... as in the example 18.1 ...

}



Code Box 18-9 [ExtremeC_examples_chapter18_2.c]: The critical section now uses a named
mutex to protect the shared counter

Generally, as you see in the preceding code boxes, a few places are
different from example 18.1, and we have had to change only three
functions greatly. For instance, the function main  has not changed at all,
and it is the same as in example 18.1. This is simply because we have used
a different control mechanism in comparison to example 18.1, and the
remaining logic is the same.

As the final note about Code Box 18-9, in the function inc_counter , we
have used the mutex object exactly as we did in a multi-threaded program.
The API is the same, and it is designed in a way that mutexes can be used
both in multi-threaded and multi-process environments using the same
API. This is a great feature of POSIX mutexes because it enables us to use
the same written code in both multi-threaded and multi-process
environments when consuming these objects – while of course, the
initialization and destruction can be different.

The output of the preceding code is very similar to what we observed for
example 18.1. While the shared counter is protected by a mutex in this
example, it was being protected by a semaphore in the previous example.
The semaphore used in the previous example was actually a binary
semaphore, and as we have explained in Chapter 16, Thread
Synchronization, a binary semaphore can mimic a mutex. Therefore, not
much is new in example 18.2, apart from replacing the binary semaphore
with a mutex.

The second example
The named shared memories and mutexes can be used throughout the
system by any process. It is not mandatory to have a forked process to be
able to use these objects. The following example, example 18.3, tries to
show how we can use a shared mutex and a shared memory to
simultaneously terminate a number of processes that are all running at the



same time. We expect to have all processes terminated after pressing the
key combination Ctrl + C in only one of them.

Note that the code is going to be provided in multiple steps. The
comments related to each step are provided right after it. Let's present the
first step.

Step 1 – Global declarations

In this example, we write a single source file that can be compiled and
executed multiple times to create multiple processes. The processes use
some shared memory regions to synchronize their execution. One of the
processes is elected to be the owner of the shared memory regions and
manages their creation and destruction. Other processes just use the
created shared memories.

The first step is going to declare some global objects that we need
throughout the code. We will initialize them later on in the code. Note that
the global variables defined in the following code box, such as mutex , are
not actually shared between the processes. They have these variables in
their own memory space but each of the processes maps their own global
variable to the objects or variables located in the various shared memory
regions:

#include <stdio.h>

...

#include <pthread.h> // For using pthread_mutex_* functions

typedef uint16_t bool_t;

#define TRUE 1

#define FALSE 0

#define MUTEX_SHM_NAME "/mutex0"

#define SHM_NAME "/shm0"

// Shared file descriptor used to refer to the shared memory

// object containing the cancel flag

int cancel_flag_shm_fd = -1;

// A flag which indicates whether the current process owns

the

// shared memory object

bool_t cancel_flag_shm_owner = FALSE;

// Shared file descriptor used to refer to the mutex's

shared



// memory object

int mutex_shm_fd = -1;

// The shared mutex

pthread_mutex_t* mutex = NULL;

// A flag which indicates whether the current process owns

the

// shared memory object

bool_t mutex_owner = FALSE;

// The pointer to the cancel flag stored in the shared

memory

bool_t* cancel_flag = NULL;

Code Box 18-10 [ExtremeC_examples_chapter18_3.c]: The global declaration in example
18.3

In the preceding code, we can see the global declarations used in the code.
We are going to use a shared flag to let the processes know about the
cancellation signal. Note that, in this example, we are going to take the
busy-wait approach to wait for the cancellation flag to become true .

We have a dedicated shared memory object for the cancellation flag and
another shared memory object for the mutex protecting the flag as we did
in example 18.2. Note that we could construct a single structure and define
both the cancellation flag and the mutex object as its fields, and then use a
single shared memory region to store them. But we have chosen to use
separate shared memory regions to fulfill our purpose.

In this example, one important note about the shared memory objects is
that the cleanup should be performed by the process which has created and
initialized them in the first place. Since all processes are using the same
code, somehow, we need to know which process has created a certain
shared memory object and make that process the owner of that object.
Then, while cleaning up the objects, only the owner process can proceed
and do the actual cleanup. Therefore, we had to declare two Boolean
variables for this purpose: mutex_owner  and cancel_flag_shm_owner .

Step 2 – Cancellation flag's shared memory

The following code box shows the initialization of the shared memory
region dedicated to the cancellation flag:



void init_shared_resource() {

// Open the shared memory object

cancel_flag_shm_fd = shm_open(SHM_NAME, O_RDWR, 0600);

if (cancel_flag_shm_fd >= 0) {

cancel_flag_shm_owner = FALSE;

fprintf(stdout, "The shared memory object is opened.\n");

} else if (errno == ENOENT) {

fprintf(stderr,

"WARN: The shared memory object doesn't exist.\n");

fprintf(stdout, "Creating the shared memory object ...\n");

cancel_flag_shm_fd = shm_open(SHM_NAME,

O_CREAT | O_EXCL | O_RDWR, 0600);

if (cancel_flag_shm_fd >= 0) {

cancel_flag_shm_owner = TRUE;

fprintf(stdout, "The shared memory object is created.\n");

} else {

fprintf(stderr,

"ERROR: Failed to create shared memory: %s\n",

strerror(errno));

exit(1);

}

} else {

fprintf(stderr,

"ERROR: Failed to create shared memory: %s\n",

strerror(errno));

exit(1);

}

if (cancel_flag_shm_owner) {

// Allocate and truncate the shared memory region

if (ftruncate(cancel_flag_shm_fd, sizeof(bool_t)) < 0) {

fprintf(stderr, "ERROR: Truncation failed: %s\n",

strerror(errno));

exit(1);

}

fprintf(stdout, "The memory region is truncated.\n");

}

// Map the shared memory and initialize the cancel flag

void* map = mmap(0, sizeof(bool_t), PROT_WRITE, MAP_SHARED,

cancel_flag_shm_fd, 0);

if (map == MAP_FAILED) {

fprintf(stderr, "ERROR: Mapping failed: %s\n",

strerror(errno));

exit(1);

}

cancel_flag = (bool_t*)map;

if (cancel_flag_shm_owner) {

*cancel_flag = FALSE;

}

}



Code Box 18-11 [ExtremeC_examples_chapter18_3.c]: Initialization of the cancellation flag's
shared memory

The approach we took is different from what we did in example 18.2.
That's because whenever a new process is run, it should check whether the
shared memory object has already been created by another process. Note
that we are not using the fork API to create new processes as part of this
example and the user can use their shell and start a new process at will.

For this reason, a new process first tries to open the shared memory region
by only providing the flag O_RDWR . If it succeeds, then it's a sign that the
current process is not the owner of that region, and it proceeds with
mapping the shared memory region. If it fails, it means that the shared
memory region does not exist, and it is an indication that the current
process should create the region and becomes its owner. So, it proceeds
and tries to open the region with different flags; O_CREAT  and O_EXCL .
These flags create a shared memory object if it does not exist.

If the creation succeeds, the current process is the owner, and it continues
by truncating and mapping the shared memory region.

There is a small chance that between the two successive calls of the
shm_open  function in the previous scenario, another process creates the
same shared memory region, and therefore the second shm_open  fails. The
flag O_EXCL  prevents the current process from creating an object which
already exists, and then it quits by showing a proper error message. If this
happens, which should be very rare, we can always try to run the process
again and it won't face the same issue in the second run.

The following code is the reverse operation for destructing the
cancellation flag and its shared memory region:

void shutdown_shared_resource() {

if (munmap(cancel_flag, sizeof(bool_t)) < 0) {

fprintf(stderr, "ERROR: Unmapping failed: %s\n",

strerror(errno));

exit(1);

}



if (close(cancel_flag_shm_fd) < 0) {

fprintf(stderr,

"ERROR: Closing the shared memory fd filed: %s\n",

strerror(errno));

exit(1);

}

if (cancel_flag_shm_owner) {

sleep(1);

if (shm_unlink(SHM_NAME) < 0) {

fprintf(stderr,

"ERROR: Unlinking the shared memory failed: %s\n",

strerror(errno));

exit(1);

}

}

}

Code Box 18-12 [ExtremeC_examples_chapter18_3.c]: Closing the resources allocated for
the cancellation flag's shared memory

As you can see in Code Box 18-12, the written logic is very similar to what
we've seen so far, as part of previous examples, about releasing a shared
memory object. But there is a difference here and it is the fact that only
the owner process can unlink the shared memory object. Note that the
owner process waits for 1 second before unlinking the shared memory
object, in order to let other processes finalize their resources. This wait is
not usually necessary due to the fact that, in most POSIX-compliant
systems, the shared memory object remains in place until all depending
processes quit.

Step 3 – Named mutex's shared memory

The following code box shows how to initialize the shared mutex and its
associated shared memory object:

void init_control_mechanism() {

// Open the mutex shared memory

mutex_shm_fd = shm_open(MUTEX_SHM_NAME, O_RDWR, 0600);

if (mutex_shm_fd >= 0) {

// The mutex's shared object exists and I'm now the owner.

mutex_owner = FALSE;

fprintf(stdout,

"The mutex's shared memory object is opened.\n");



} else if (errno == ENOENT) {

fprintf(stderr,

"WARN: Mutex's shared memory doesn't exist.\n");

fprintf(stdout,

"Creating the mutex's shared memory object ...\n");

mutex_shm_fd = shm_open(MUTEX_SHM_NAME,

O_CREAT | O_EXCL | O_RDWR, 0600);

if (mutex_shm_fd >= 0) {

mutex_owner = TRUE;

fprintf(stdout,

"The mutex's shared memory object is created.\n");

} else {

fprintf(stderr,

"ERROR: Failed to create mutex's shared memory: %s\n",

strerror(errno));

exit(1);

}

} else {

fprintf(stderr,

"ERROR: Failed to create mutex's shared memory: %s\n",

strerror(errno));

exit(1);

}

if (mutex_owner) {

// Allocate and truncate the mutex's shared memory region

}

if (mutex_owner) {

// Allocate and truncate the mutex's shared memory region

if (ftruncate(mutex_shm_fd, sizeof(pthread_mutex_t)) < 0) {

fprintf(stderr,

"ERROR: Truncation of the mutex failed: %s\n",

strerror(errno));

exit(1);

}

}

// Map the mutex's shared memory

void* map = mmap(0, sizeof(pthread_mutex_t),

PROT_READ | PROT_WRITE, MAP_SHARED, mutex_shm_fd, 0);

if (map == MAP_FAILED) {

fprintf(stderr, "ERROR: Mapping failed: %s\n",

strerror(errno));

exit(1);

}

mutex = (pthread_mutex_t*)map;

if (mutex_owner) {

int ret = -1;

pthread_mutexattr_t attr;

if ((ret = pthread_mutexattr_init(&attr))) {

fprintf(stderr,

"ERROR: Initializing mutex attributes failed: %s\n",



strerror(ret));

exit(1);

}

if ((ret = pthread_mutexattr_setpshared(&attr,

PTHREAD_PROCESS_SHARED))) {

fprintf(stderr,

"ERROR: Setting the mutex attribute failed: %s\n",

strerror(ret));

exit(1);

}

if ((ret = pthread_mutex_init(mutex, &attr))) {

fprintf(stderr,

"ERROR: Initializing the mutex failed: %s\n",

strerror(ret));

exit(1);

}

if ((ret = pthread_mutexattr_destroy(&attr))) {

fprintf(stderr,

"ERROR: Destruction of mutex attributes failed: %s\n",

strerror(ret));

exit(1);

}

}

}

Code Box 18-13 [ExtremeC_examples_chapter18_3.c]: Initializing the shared mutex and its
underlying shared memory region

Similarly to what we did while trying to create the shared memory region
associated with the cancellation flag, we have done the same thing to
create and initialize the shared memory region beneath the shared mutex.
Note that, just like in example 18.2, the mutex has been marked as
PTHREAD_PROCESS_SHARED , which allows it to be used by multiple
processes.

The following code box shows how to finalize the shared mutex:

void shutdown_control_mechanism() {

sleep(1);

if (mutex_owner) {

int ret = -1;

if ((ret = pthread_mutex_destroy(mutex))) {

fprintf(stderr,

"WARN: Destruction of the mutex failed: %s\n",

strerror(ret));

}



}

if (munmap(mutex, sizeof(pthread_mutex_t)) < 0) {

fprintf(stderr, "ERROR: Unmapping the mutex failed: %s\n",

strerror(errno));

exit(1);

}

if (close(mutex_shm_fd) < 0) {

fprintf(stderr, "ERROR: Closing the mutex failed: %s\n",

strerror(errno));

exit(1);

}

if (mutex_owner) {

if (shm_unlink(MUTEX_SHM_NAME) < 0) {

fprintf(stderr, "ERROR: Unlinking the mutex failed: %s\n",

strerror(errno));

exit(1);

}

}

}

Code Box 18-14 [ExtremeC_examples_chapter18_3.c]: Closing the shared mutex and its
associated shared memory region

Again, the owner process can only unlink the shared memory object of the
shared mutex.

Step 4 – Setting the cancellation flag

The following code box shows the functions which allow the processes to
read or set the cancellation flag:

bool_t is_canceled() {

pthread_mutex_lock(mutex); // Should check the return value

bool_t temp = *cancel_flag;

pthread_mutex_unlock(mutex); // Should check the return

value

return temp;

}

void cancel() {

pthread_mutex_lock(mutex); // Should check the return value

*cancel_flag = TRUE;

pthread_mutex_unlock(mutex); // Should check the return

value

}



Code Box 18-15 [ExtremeC_examples_chapter18_3.c]: The synchronized functions that read
and set the cancellation flag protected by the shared mutex

The preceding two functions allow us to have synchronized access to the
shared cancellation flag. The function is_canceled  is used to check the
value of the flag, and the function cancel  is used to set the flag. As you
see, both are protected by the same shared mutex.

Step 5 – The main function

And finally, the following code box shows the main  function and a signal
handler which we explain shortly:

void sigint_handler(int signo) {

fprintf(stdout, "\nHandling INT signal: %d ...\n", signo);

cancel();

}

int main(int argc, char** argv) {

signal(SIGINT, sigint_handler);

// Parent process needs to initialize the shared resource

init_shared_resource();

// Parent process needs to initialize the control mechanism

init_control_mechanism();

while(!is_canceled()) {

fprintf(stdout, "Working ...\n");

sleep(1);

}

fprintf(stdout, "Cancel signal is received.\n");

shutdown_shared_resource();

shutdown_control_mechanism();

return 0;

}

Code Box 18-16 [ExtremeC_examples_chapter18_3.c]: The function main and the signal
handler function as part of example 18.3

As you see, the logic inside the main  function is clear and
straightforward. It initializes the shared flag and mutex and then goes into
a busy-wait until the cancellation flag becomes true . Finally, it shuts
down all shared resources and terminates.



One thing which is new here is the usage of the signal  function which
assigns a signal handler to a specific set of signals. Signals are one of the
facilities provided by all POSIX-compliant operating systems and using it,
the processes within the system can send signals to each other. The
terminal is just one normal process that the user interacts with and it can
be used to send signals to other processes. Pressing Ctrl + C is one
convenient way to send SIGINT  to the foreground process running in a
terminal.

SIGINT  is the interrupt signal which can be received by a process. In the
preceding code, we assign the function sigint_handler  to be the handler
of the SIGINT  signal. In other words, whenever the signal SIGINT  is
received by the process, the function sigint_handler  will be called. If the
signal SIGINT  is not handled, the default routine is to terminate the
process, but this can be overridden using signal handlers like above.

There are many ways to send a SIGINT  signal to a process, but one of the
easiest is to press the Ctrl + C keys on the keyboard. The process will
immediately receive the SIGINT  signal. As you see, within the signal
handler, we set the shared cancellation flag to true , and after this point,
all the processes start to exit their busy-wait loops.

Following is a demonstration of how the preceding code compiles and
works. Let's build the preceding code and run the first process:

$ gcc ExtremeC_examples_chapter18_3.c -lpthread -lrt -o

ex18_3.out

$ ./ex18_3.out

WARN: The shared memory object doesn't exist.

Creating a shared memory object ...

The shared memory object is created.

The memory region is truncated.

WARN: Mutex's shared memory object doesn't exist.

Creating the mutex's shared memory object ...

The mutex's shared memory object is created.

Working ...

Working ...

Working ...

Shell Box 18-2: Compilation of example 18.3 and running the first process



As you see, the preceding process is the first to be run, and therefore, it is
the owner of the mutex and cancellation flag. The following is the run of
the second process:

$ ./ex18_3.out

The shared memory object is opened.

The mutex's shared memory object is opened.

Working ...

Working ...

Working ...

Shell Box 18-3: Running the second process

As you see, the second process only opens the shared memory objects, and
it is not the owner. The following output is showing when Ctrl + C has
been pressed on the first process:

...

Working ...

Working ...

^C

Handling INT signal: 2 ...

Cancel signal is received.

$

Shell Box 18-4: The output of the first process when Ctrl + C has been pressed

As you see, the first process prints that it is handling a signal with the
number 2  which is the standard signal number of the SIGINT . It sets the
cancellation flag, and it exits immediately. And following it, the second
process exits. The following is the output of the second process:

...

Working ...

Working ...

Working ...

Cancel signal is received.

$

Shell Box 18-5: The output of the second process when it sees that the cancellation flag is set



Also, you can send SIGINT  to the second process and the result will be the
same; both processes will get the signal and will quit. Also, you can create
more than two processes and all of them will synchronously quit using the
same shared memory and mutex.

In the next section, we demonstrate how to use condition variables. Like
named mutexes, if you place a condition variable inside a shared memory
region, it can be accessed and used by multiple processes using the shared
memory's name.

Named condition variables
As we explained before, similar to named POSIX mutexes, we need to
allocate a POSIX condition variable from a shared memory region in order
to use it in a multi-processing system. The following example, example
18.4, shows how to do so in order to make a number of processes count in
a specific order. As you know from Chapter 16, Thread Synchronization,
every condition variable should be used together with a companion mutex
object which protects it. Therefore, we will have three shared memory
regions in example 18.4; one for the shared counter, one for the shared
named condition variable, and one for the shared named mutex protecting
the shared condition variable.

Note that instead of having three different shared memories, we could also
use a single shared memory. This is possible by defining a structure that
encompasses all the required objects. In this example, we are not going to
take this approach and we will define a separate shared memory region for
each object.

Example 18.4 is about a number of processes which should count in an
ascending order. Each process is given a number, starting from 1 and up to
the number of processes, and the given number indicates the process's rank
within the other processes. The process must wait for the other processes
with smaller numbers (ranks) to count first and then it can count its turn



and exit. Of course, the process assigned the number 1 counts first, even if
it is the latest spawned process.

Since we are going to have three different shared memory regions, each of
which requiring its own steps to get initialized and finalized, we would
have a lot of code duplication if we wanted to take the same approach as
we have so far in the previous examples. For reducing the amount of code
that we write, and factoring out the duplications into some functions, and
having a better-organized code, we are going to make it object-oriented
according to the topics and procedures discussed in Chapter 6, OOP and
Encapsulation, Chapter 7, Composition and Aggregation, and Chapter 8,
Inheritance and Polymorphism. We are going to write example 18.4 in an
object-oriented manner and use inheritance to reduce the amount of
duplicated code.

We will define a parent class for all classes which need to be built upon a
shared memory region. Therefore, while having the parent shared memory
class, there will be one child class defined for the shared counter, one
child class for the shared named mutex, and another child class for the
shared named condition variable. Each class will have its own pair of
header and source files, and all of them will be used finally in the main
function of the example.

The following sections go through the mentioned classes one by one. First
of all, let's being with the parent class: shared memory.

Step 1 – Class of shared memory
The following code box shows the declarations of the shared memory
class:

struct shared_mem_t;

typedef int32_t bool_t;

struct shared_mem_t* shared_mem_new();

void shared_mem_delete(struct shared_mem_t* obj);

void shared_mem_ctor(struct shared_mem_t* obj,

const char* name,

size_t size);



void shared_mem_dtor(struct shared_mem_t* obj);

char* shared_mem_getptr(struct shared_mem_t* obj);

bool_t shared_mem_isowner(struct shared_mem_t* obj);

void shared_mem_setowner(struct shared_mem_t* obj, bool_t

is_owner);

Code Box 18-17 [ExtremeC_examples_chapter18_4_shared_mem.h]: The public interface of
the shared memory class

The preceding code contains the declarations (public API) needed to use a
shared memory object. The functions shared_mem_getptr ,
shared_mem_isowner , and shared_mem_setowner  are the behaviors of this
class.

If this syntax is not familiar to you, please have a read of Chapter 6, OOP
and Encapsulation, Chapter 7, Composition and Aggregation, and Chapter
8, Inheritance and Polymorphism.

The following code box shows the definitions of the functions declared as
part of the public interface of the class, as seen in Code Box 18-17:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <errno.h>

#include <fcntl.h>

#include <sys/mman.h>

#define TRUE 1

#define FALSE 0

typedef int32_t bool_t;

bool_t owner_process_set = FALSE;

bool_t owner_process = FALSE;

typedef struct {

char* name;

int shm_fd;

void* map_ptr;

char* ptr;

size_t size;

} shared_mem_t;

shared_mem_t* shared_mem_new() {

return (shared_mem_t*)malloc(sizeof(shared_mem_t));

}

void shared_mem_delete(shared_mem_t* obj) {



free(obj->name);

free(obj);

}

void shared_mem_ctor(shared_mem_t* obj, const char* name,

size_t size) {

obj->size = size;

obj->name = (char*)malloc(strlen(name) + 1);

strcpy(obj->name, name);

obj->shm_fd = shm_open(obj->name, O_RDWR, 0600);

if (obj->shm_fd >= 0) {

if (!owner_process_set) {

owner_process = FALSE;

owner_process_set = TRUE;

}

printf("The shared memory %s is opened.\n", obj->name);

} else if (errno == ENOENT) {

printf("WARN: The shared memory %s does not exist.\n",

obj->name);

obj->shm_fd = shm_open(obj->name,

O_CREAT | O_RDWR, 0600);

if (obj->shm_fd >= 0) {

if (!owner_process_set) {

owner_process = TRUE;

owner_process_set = TRUE;

}

printf("The shared memory %s is created and opened.\n",

obj->name);

if (ftruncate(obj->shm_fd, obj->size) < 0) {

fprintf(stderr, "ERROR(%s): Truncation failed: %s\n",

obj->name, strerror(errno));

exit(1);

}

} else {

fprintf(stderr,

"ERROR(%s): Failed to create shared memory: %s\n",

obj->name, strerror(errno));

exit(1);

}

} else {

fprintf(stderr,

"ERROR(%s): Failed to create shared memory: %s\n",

obj->name, strerror(errno));

exit(1);

}

obj->map_ptr = mmap(0, obj->size, PROT_READ | PROT_WRITE,

MAP_SHARED, obj->shm_fd, 0);

if (obj->map_ptr == MAP_FAILED) {

fprintf(stderr, "ERROR(%s): Mapping failed: %s\n",

name, strerror(errno));

exit(1);



}

obj->ptr = (char*)obj->map_ptr;

}

void shared_mem_dtor(shared_mem_t* obj) {

if (munmap(obj->map_ptr, obj->size) < 0) {

fprintf(stderr, "ERROR(%s): Unmapping failed: %s\n",

obj->name, strerror(errno));

exit(1);

}

printf("The shared memory %s is unmapped.\n", obj->name);

if (close(obj->shm_fd) < 0) {

fprintf(stderr,

"ERROR(%s): Closing the shared memory fd failed: %s\n",

obj->name, strerror(errno));

exit(1);

}

printf("The shared memory %s is closed.\n", obj->name);

if (owner_process) {

if (shm_unlink(obj->name) < 0) {

fprintf(stderr,

"ERROR(%s): Unlinking the shared memory failed: %s\n",

obj->name, strerror(errno));

exit(1);

}

printf("The shared memory %s is deleted.\n", obj->name);

}

}

char* shared_mem_getptr(shared_mem_t* obj) {

return obj->ptr;

}

bool_t shared_mem_isowner(shared_mem_t* obj) {

return owner_process;

}

void shared_mem_setowner(shared_mem_t* obj, bool_t is_owner)

{

owner_process = is_owner;

}

Code Box 18-18 [ExtremeC_examples_chapter18_4_shared_mem.c]: The definitions of all
functions found in the shared memory class

As you see, we have just copied the code we wrote for shared memories as
part of the previous examples. The structure shared_mem_t  encapsulates
all we need to address a POSIX shared memory object. Note the global
Boolean variable process_owner . It indicates whether the current process
is the owner of all shared memory regions. It is set only once.



Step 2 – Class of shared 32-bit integer
counter
The following code box contains the declaration of the shared counter
class which is a 32-bit integer counter. This class inherits from the shared
memory class. As you might have noticed, we are using the second
approach we described as part of Chapter 8, Inheritance and
Polymorphism, to implement the inheritance relationship:

struct shared_int32_t;

struct shared_int32_t* shared_int32_new();

void shared_int32_delete(struct shared_int32_t* obj);

void shared_int32_ctor(struct shared_int32_t* obj,

const char* name);

void shared_int32_dtor(struct shared_int32_t* obj);

void shared_int32_setvalue(struct shared_int32_t* obj,

int32_t value);

void shared_int32_setvalue_ifowner(struct shared_int32_t*

obj,

int32_t value);

int32_t shared_int32_getvalue(struct shared_int32_t* obj);

Code Box 18-19 [ExtremeC_examples_chapter18_4_shared_int32.h]: The public interface of
the shared counter class

And the following code box shows the implementations of the preceding
declared functions:

#include "ExtremeC_examples_chapter18_4_shared_mem.h"

typedef struct {

struct shared_mem_t* shm;

int32_t* ptr;

} shared_int32_t;

shared_int32_t* shared_int32_new(const char* name) {

shared_int32_t* obj =

(shared_int32_t*)malloc(sizeof(shared_int32_t));

obj->shm = shared_mem_new();

return obj;

}

void shared_int32_delete(shared_int32_t* obj) {

shared_mem_delete(obj->shm);

free(obj);



}

void shared_int32_ctor(shared_int32_t* obj, const char*

name) {

shared_mem_ctor(obj->shm, name, sizeof(int32_t));

obj->ptr = (int32_t*)shared_mem_getptr(obj->shm);

}

void shared_int32_dtor(shared_int32_t* obj) {

shared_mem_dtor(obj->shm);

}

void shared_int32_setvalue(shared_int32_t* obj, int32_t

value) {

*(obj->ptr) = value;

}

void shared_int32_setvalue_ifowner(shared_int32_t* obj,

int32_t value) {

if (shared_mem_isowner(obj->shm)) {

*(obj->ptr) = value;

}

}

int32_t shared_int32_getvalue(shared_int32_t* obj) {

return *(obj->ptr);

}

Code Box 18-20 [ExtremeC_examples_chapter18_4_shared_int32.c]: The definitions of all
functions found in the shared counter class

As you can see, we have written a lot less code thanks to inheritance. All
the necessary code for managing the associated shared memory object has
been brought in by the field shm  in the structure shared_int32_t .

Step 3 – Class of shared mutex
The following code box contains the declaration of the shared mutex class:

#include <pthread.h>

struct shared_mutex_t;

struct shared_mutex_t* shared_mutex_new();

void shared_mutex_delete(struct shared_mutex_t* obj);

void shared_mutex_ctor(struct shared_mutex_t* obj,

const char* name);

void shared_mutex_dtor(struct shared_mutex_t* obj);

pthread_mutex_t* shared_mutex_getptr(struct shared_mutex_t*

obj);

void shared_mutex_lock(struct shared_mutex_t* obj);



void shared_mutex_unlock(struct shared_mutex_t* obj);

#if !defined(__APPLE__)

void shared_mutex_make_consistent(struct shared_mutex_t*

obj);

#endif

Code Box 18-21 [ExtremeC_examples_chapter18_4_shared_mutex.h]: The public interface
of the shared mutex class

As you see, the above class has three exposed behaviors as expected;
shared_mutex_lock , shared_mutex_unlock , and
shared_mutex_make_consistent . But there is one exception, which is that
the behavior shared_mutex_make_consistent  is only available in POSIX
systems which are not macOS (Apple) based. That's because robust
mutexes are not supported by Apple systems. We will discuss what a
robust mutex is in the upcoming paragraphs. Note that we have used the
macro __APPLE__  to detect whether we are compiling on an Apple system
or not.

The following code box shows the implementation of the preceding class:

#include "ExtremeC_examples_chapter18_4_shared_mem.h"

typedef struct {

struct shared_mem_t* shm;

pthread_mutex_t* ptr;

} shared_mutex_t;

shared_mutex_t* shared_mutex_new() {

shared_mutex_t* obj =

(shared_mutex_t*)malloc(sizeof(shared_mutex_t));

obj->shm = shared_mem_new();

return obj;

}

void shared_mutex_delete(shared_mutex_t* obj) {

shared_mem_delete(obj->shm);

free(obj);

}

void shared_mutex_ctor(shared_mutex_t* obj, const char*

name) {

shared_mem_ctor(obj->shm, name, sizeof(pthread_mutex_t));

obj->ptr = (pthread_mutex_t*)shared_mem_getptr(obj->shm);

if (shared_mem_isowner(obj->shm)) {

pthread_mutexattr_t mutex_attr;

int ret = -1;

if ((ret = pthread_mutexattr_init(&mutex_attr))) {



fprintf(stderr,

"ERROR(%s): Initializing mutex attrs failed: %s\n",

name, strerror(ret));

exit(1);

}

#if !defined(__APPLE__)

if ((ret = pthread_mutexattr_setrobust(&mutex_attr,

PTHREAD_MUTEX_ROBUST))) {

fprintf(stderr,

"ERROR(%s): Setting the mutex as robust failed: %s\n",

name, strerror(ret));

exit(1);

}

#endif

if ((ret = pthread_mutexattr_setpshared(&mutex_attr,

PTHREAD_PROCESS_SHARED))) {

fprintf(stderr,

"ERROR(%s): Failed to set as process-shared: %s\n",

name, strerror(ret));

exit(1);

}

if ((ret = pthread_mutex_init(obj->ptr, &mutex_attr))) {

fprintf(stderr,

"ERROR(%s): Initializing the mutex failed: %s\n",

name, strerror(ret));

exit(1);

}

if ((ret = pthread_mutexattr_destroy(&mutex_attr))) {

fprintf(stderr,

"ERROR(%s): Destruction of mutex attrs failed: %s\n",

name, strerror(ret));

exit(1);

}

}

}

void shared_mutex_dtor(shared_mutex_t* obj) {

if (shared_mem_isowner(obj->shm)) {

int ret = -1;

if ((ret = pthread_mutex_destroy(obj->ptr))) {

fprintf(stderr,

"WARN: Destruction of the mutex failed: %s\n",

strerror(ret));

}

}

shared_mem_dtor(obj->shm);

}

pthread_mutex_t* shared_mutex_getptr(shared_mutex_t* obj) {

return obj->ptr;

}

#if !defined(__APPLE__)



void shared_mutex_make_consistent(shared_mutex_t* obj) {

int ret = -1;

if ((ret = pthread_mutex_consistent(obj->ptr))) {

fprintf(stderr,

"ERROR: Making the mutex consistent failed: %s\n",

strerror(ret));

exit(1);

}

}

#endif

void shared_mutex_lock(shared_mutex_t* obj) {

int ret = -1;

if ((ret = pthread_mutex_lock(obj->ptr))) {

#if !defined(__APPLE__)

if (ret == EOWNERDEAD) {

fprintf(stderr,

"WARN: The owner of the mutex is dead ...\n");

shared_mutex_make_consistent(obj);

fprintf(stdout, "INFO: I'm the new owner!\n");

shared_mem_setowner(obj->shm, TRUE);

return;

}

#endif

fprintf(stderr, "ERROR: Locking the mutex failed: %s\n",

strerror(ret));

exit(1);

}

}

void shared_mutex_unlock(shared_mutex_t* obj) {

int ret = -1;

if ((ret = pthread_mutex_unlock(obj->ptr))) {

fprintf(stderr, "ERROR: Unlocking the mutex failed: %s\n",

strerror(ret));

exit(1);

}

}

Code Box 18-22 [ExtremeC_examples_chapter18_4_shared_mutex.c]: The definitions of all
functions found in the shared named mutex class

In the preceding code, we do only the POSIX mutex initialization,
finalization, and exposing some of the trivial behaviors such as locking
and unlocking. Everything else regarding the shared memory object is
being handled in the shared memory class. That's a benefit of using
inheritance.



Note that in the constructor function shared_mutex_ctor , we set the
mutex as a shared process mutex to be accessible to all processes. This is
absolutely necessary to multi-process software. Note that in systems
which are not Apple-based, we go further and configure the mutex as a
robust mutex.

For an ordinary mutex that is locked by a process, if the process should
suddenly die then the mutex goes into a non-consistent state. For a robust
mutex, if this happens, the mutex can be put back in a consistent state. The
next process, which is usually waiting for the mutex, can lock the mutex
only by making it consistent. You can see how it can be done in the
function shared_mutex_lock . Note that this functionality is not present in
Apple systems.

Step 4 – Class of shared condition variable
The following code box shows the declaration of the shared condition
variable class:

struct shared_cond_t;

struct shared_mutex_t;

struct shared_cond_t* shared_cond_new();

void shared_cond_delete(struct shared_cond_t* obj);

void shared_cond_ctor(struct shared_cond_t* obj,

const char* name);

void shared_cond_dtor(struct shared_cond_t* obj);

void shared_cond_wait(struct shared_cond_t* obj,

struct shared_mutex_t* mutex);

void shared_cond_timedwait(struct shared_cond_t* obj,

struct shared_mutex_t* mutex,

long int time_nanosec);

void shared_cond_broadcast(struct shared_cond_t* obj);

Code Box 18-23 [ExtremeC_examples_chapter18_4_shared_cond.h]: The public interface of
the shared condition variable class

Three behaviors are exposed; shared_cond_wait ,
shared_cond_timedwait , and shared_cond_broadcast . If you remember



from Chapter 16, Thread Synchronization, the behavior
shared_cond_wait  waits for a signal on a condition variable.

Above, we have added a new version of waiting behavior;
shared_cond_timedwait . It waits for the signal for a specified amount of
time and then it gets timed out if the condition variable doesn't receive a
signal. On the other hand, the shared_cond_wait  never exists until it
receives some sort of signal. We will use the timed version of waiting in
example 18.4. Note that both waiting behavior functions receive a pointer
to the companion shared mutex just like what we saw in multi-threaded
environments.

The following code box contains the actual implementation of the shared
condition variable class:

#include "ExtremeC_examples_chapter18_4_shared_mem.h"

#include "ExtremeC_examples_chapter18_4_shared_mutex.h"

typedef struct {

struct shared_mem_t* shm;

pthread_cond_t* ptr;

} shared_cond_t;

shared_cond_t* shared_cond_new() {

shared_cond_t* obj =

(shared_cond_t*)malloc(sizeof(shared_cond_t));

obj->shm = shared_mem_new();

return obj;

}

void shared_cond_delete(shared_cond_t* obj) {

shared_mem_delete(obj->shm);

free(obj);

}

void shared_cond_ctor(shared_cond_t* obj, const char* name)

{

shared_mem_ctor(obj->shm, name, sizeof(pthread_cond_t));

obj->ptr = (pthread_cond_t*)shared_mem_getptr(obj->shm);

if (shared_mem_isowner(obj->shm)) {

pthread_condattr_t cond_attr;

int ret = -1;

if ((ret = pthread_condattr_init(&cond_attr))) {

fprintf(stderr,

"ERROR(%s): Initializing cv attrs failed: %s\n",

name, strerror(ret));

exit(1);

}

if ((ret = pthread_condattr_setpshared(&cond_attr,



PTHREAD_PROCESS_SHARED))) {

fprintf(stderr,

"ERROR(%s): Setting as process shared failed: %s\n",

name, strerror(ret));

exit(1);

}

if ((ret = pthread_cond_init(obj->ptr, &cond_attr))) {

fprintf(stderr,

"ERROR(%s): Initializing the cv failed: %s\n",

name, strerror(ret));

exit(1);

}

if ((ret = pthread_condattr_destroy(&cond_attr))) {

fprintf(stderr,

"ERROR(%s): Destruction of cond attrs failed: %s\n",

name, strerror(ret));

exit(1);

}

}

}

void shared_cond_dtor(shared_cond_t* obj) {

if (shared_mem_isowner(obj->shm)) {

int ret = -1;

if ((ret = pthread_cond_destroy(obj->ptr))) {

fprintf(stderr, "WARN: Destruction of the cv failed: %s\n",

strerror(ret));

}

}

shared_mem_dtor(obj->shm);

}

void shared_cond_wait(shared_cond_t* obj,

struct shared_mutex_t* mutex) {

int ret = -1;

if ((ret = pthread_cond_wait(obj->ptr,

shared_mutex_getptr(mutex)))) {

fprintf(stderr, "ERROR: Waiting on the cv failed: %s\n",

strerror(ret));

exit(1);

}

}

void shared_cond_timedwait(shared_cond_t* obj,

struct shared_mutex_t* mutex,

long int time_nanosec) {

int ret = -1;

struct timespec ts;

ts.tv_sec = ts.tv_nsec = 0;

if ((ret = clock_gettime(CLOCK_REALTIME, &ts))) {

fprintf(stderr,

"ERROR: Failed at reading current time: %s\n",

strerror(errno));



exit(1);

}

ts.tv_sec += (int)(time_nanosec / (1000L * 1000 * 1000));

ts.tv_nsec += time_nanosec % (1000L * 1000 * 1000);

if ((ret = pthread_cond_timedwait(obj->ptr,

shared_mutex_getptr(mutex), &ts))) {

#if !defined(__APPLE__)

if (ret == EOWNERDEAD) {

fprintf(stderr,

"WARN: The owner of the cv's mutex is dead ...\n");

shared_mutex_make_consistent(mutex);

fprintf(stdout, "INFO: I'm the new owner!\n");

shared_mem_setowner(obj->shm, TRUE);

return;

} else if (ret == ETIMEDOUT) {

#else

if (ret == ETIMEDOUT) {

#endif

return;

}

fprintf(stderr, "ERROR: Waiting on the cv failed: %s\n",

strerror(ret));

exit(1);

}

}

void shared_cond_broadcast(shared_cond_t* obj) {

int ret = -1;

if ((ret = pthread_cond_broadcast(obj->ptr))) {

fprintf(stderr, "ERROR: Broadcasting on the cv failed:

%s\n",

strerror(ret));

exit(1);

}

}

Code Box 18-24 [ExtremeC_examples_chapter18_4_shared_cond.c]: The definitions of all
functions found in the shared condition variable class

In our shared condition variable class, we have only exposed the
broadcasting behavior. We could also expose the signaling behavior. As
you might remember from Chapter 16, Thread Synchronization, signaling
a condition variable wakes up only one of the many waiting processes,
without the ability to specify or predict which one. Broadcasting in
contrast will wake all the waiting processes. In example 18.4 we'll only use
broadcasting, and that's why we have only exposed that function.



Note that since every condition variable has a companion mutex, the
shared mutex class should be able to use an instance of the shared mutex
class, and that's why we have declared shared_mutex_t  as a forward
declaration.

Step 5 – The main logic
The following code box contains the main logic implemented for our
example:

#include "ExtremeC_examples_chapter18_4_shared_int32.h"

#include "ExtremeC_examples_chapter18_4_shared_mutex.h"

#include "ExtremeC_examples_chapter18_4_shared_cond.h"

int int_received = 0;

struct shared_cond_t* cond = NULL;

struct shared_mutex_t* mutex = NULL;

void sigint_handler(int signo) {

fprintf(stdout, "\nHandling INT signal: %d ...\n", signo);

int_received = 1;

}

int main(int argc, char** argv) {

signal(SIGINT, sigint_handler);

if (argc < 2) {

fprintf(stderr,

"ERROR: You have to provide the process number.\n");

exit(1);

}

int my_number = atol(argv[1]);

printf("My number is %d!\n", my_number);

struct shared_int32_t* counter = shared_int32_new();

shared_int32_ctor(counter, "/counter0");

shared_int32_setvalue_ifowner(counter, 1);

mutex = shared_mutex_new();

shared_mutex_ctor(mutex, "/mutex0");

cond = shared_cond_new();

shared_cond_ctor(cond, "/cond0");

shared_mutex_lock(mutex);

while (shared_int32_getvalue(counter) < my_number) {

if (int_received) {

break;

}

printf("Waiting for the signal, just for 5 seconds ...\n");

shared_cond_timedwait(cond, mutex, 5L * 1000 * 1000 * 1000);

if (int_received) {

break;



}

printf("Checking condition ...\n");

}

if (int_received) {

printf("Exiting ...\n");

shared_mutex_unlock(mutex);

goto destroy;

}

shared_int32_setvalue(counter, my_number + 1);

printf("My turn! %d ...\n", my_number);

shared_mutex_unlock(mutex);

sleep(1);

// NOTE: The broadcasting can come after unlocking the

mutex.

shared_cond_broadcast(cond);

destroy:

shared_cond_dtor(cond);

shared_cond_delete(cond);

shared_mutex_dtor(mutex);

shared_mutex_delete(mutex);

shared_int32_dtor(counter);

shared_int32_delete(counter);

return 0;

}

Code Box 18-25 [ExtremeC_examples_chapter18_4_main.c]: The main function of example
18.4

As you can see, the program accepts an argument indicating its number. As
soon as the process finds out about its number, it starts to initialize the
shared counter, the shared mutex, and the shared condition variable. It
then enters a critical section being protected by the shared mutex.

Inside a loop, it waits for the counter to become equal to its number. Since
it waits for 5 seconds, there could be a timeout and we may leave the
shared_cond_timedwait  function after 5 seconds. This basically means
that the condition variable has not been notified during that 5 seconds. The
process then checks the condition again and it goes to sleep for another 5
seconds. This continues until the process gets the turn.

When this happens, the process prints its number, increments the shared
counter, and by broadcasting a signal on the shared condition variable
object, it notifies the rest of the waiting processes about the modification
which it has made to the shared counter. Only then does it prepare to quit.



In the meantime, if the user presses Ctrl + C, the signal handler defined as
part of the main logic sets the local flag int_received  and as soon as the
process leaves the function shared_mutex_timedwait  when it is inside the
main loop, it notices the interrupt signal and exits the loop.

The following shell box shows how to compile example 18.4. We are going
to compile it in Linux:

$ gcc -c ExtremeC_examples_chapter18_4_shared_mem.c -o

shared_mem.o

$ gcc -c ExtremeC_examples_chapter18_4_shared_int32.c -o

shared_int32.o

$ gcc -c ExtremeC_examples_chapter18_4_shared_mutex.c -o

shared_mutex.o

$ gcc -c ExtremeC_examples_chapter18_4_shared_cond.c -o

shared_cond.o

$ gcc -c ExtremeC_examples_chapter18_4_main.c -o main.o

$ gcc shared_mem.o shared_int32.o shared_mutex.o

shared_cond.o \ main.o -lpthread -lrt -o ex18_4.out

$

Shell Box 18-6: Compiling the sources of example 18.4 and producing the final executable
file

Now that we have got the final executable file ex18_4.out , we can run
three processes and see how they count in sequence, no matter how you
assign them the numbers and in what order they are run. Let's run the first
process. We assign to this process the the number 3, by passing the number
as an option to the executable file:

$ ./ex18_4.out 3

My number is 3!

WARN: The shared memory /counter0 does not exist.

The shared memory /counter0 is created and opened.

WARN: The shared memory /mutex0 does not exist.

The shared memory /mutex0 is created and opened.

WARN: The shared memory /cond0 does not exist.

The shared memory /cond0 is created and opened.

Waiting for the signal, just for 5 seconds ...

Checking condition ...

Waiting for the signal, just for 5 seconds ...

Checking condition ...

Waiting for the signal, just for 5 seconds ...



Shell Box 18-7: Running the first process which takes the number 3

As you see in the preceding output, the first process creates all the
required shared objects and becomes the owner of the shared resources.
Now, let's run the second process in a separate Terminal. It takes the
number 2:

$ ./ex18_4.out 2

My number is 2!

The shared memory /counter0 is opened.

The shared memory /mutex0 is opened.

The shared memory /cond0 is opened.

Waiting for the signal, just for 5 seconds ...

Checking condition ...

Waiting for the signal, just for 5 seconds ...

Shell Box 18-8: Running the second process which takes the number 2

And finally, the last process takes the number 1. Since this process has
been assigned the number 1, it prints its number immediately, increments
the shared counter, and notifies the rest of the processes about it:

$ ./ex18_4.out 1

My number is 1!

The shared memory /counter0 is opened.

The shared memory /mutex0 is opened.

The shared memory /cond0 is opened.

My turn! 1 ...

The shared memory /cond0 is unmapped.

The shared memory /cond0 is closed.

The shared memory /mutex0 is unmapped.

The shared memory /mutex0 is closed.

The shared memory /counter0 is unmapped.

The shared memory /counter0 is closed.

$

Shell Box 18-9: Running the third process which takes the number 1. This process will exit
immediately since it has the number 1.

Now, if you go back to the second process, it prints out its number,
increments the shared counter, and notifies the third process about that:



...

Waiting for the signal, just for 5 seconds ...

Checking condition ...

My turn! 2 ...

The shared memory /cond0 is unmapped.

The shared memory /cond0 is closed.

The shared memory /mutex0 is unmapped.

The shared memory /mutex0 is closed.

The shared memory /counter0 is unmapped.

The shared memory /counter0 is closed.

$

Shell Box 18-10: The second process prints its number and exits

Finally, going back to the first process, it gets notified by the second
process, then it prints out its number and exits.

...

Waiting for the signal, just for 5 seconds ...

Checking condition ...

My turn! 3 ...

The shared memory /cond0 is unmapped.

The shared memory /cond0 is closed.

The shared memory /cond0 is deleted.

The shared memory /mutex0 is unmapped.

The shared memory /mutex0 is closed.

The shared memory /mutex0 is deleted.

The shared memory /counter0 is unmapped.

The shared memory /counter0 is closed.

The shared memory /counter0 is deleted.

$

Shell Box 18-11: The first process prints its number and exits. It also deletes all shared
memory entries.

Since the first process is the owner of all shared memories, it should
delete them upon exiting. Releasing the allocated resources in a multi-
processing environment can be quite tricky and complex because a simple
mistake is enough to cause all the processes to crash. Further
synchronization is required when a shared resource is going to be removed
from the system.



Suppose that, in the preceding example, we'd run the first process with the
number 2 and the second process with the number 3. Therefore, the first
process should print its number before the second process. When the first
process exits since it's the creator of all shared resources, it deletes the
shared objects and the second process crashes as soon as it wants to access
them.

This is just a simple example of how finalization can be tricky and
problematic in multi-process systems. In order to mitigate the risk of such
crashes, one needs to introduce further synchronization among processes.

During the previous sections, we covered the mechanisms which can be
employed to synchronize a number of processes while all of them are
running on the same host. In the following section, we are going to briefly
talk about distributed concurrency control mechanisms and their features.

Distributed concurrency control
So far in this chapter we have assumed that all processes exist within the
same operating system, and hence the same machine. In other words, we
were constantly talking about a single-host software system.

But real software systems usually go beyond that. Conversely to the
single-host software system, we have distributed software systems. These
systems have processes distributed throughout a network, and they
function through communicating over the network.

Regarding a distributed system of processes, we can see more challenges
in some aspects that are not present in a centralized or single-host system
in that degree. Next, we discuss some of them briefly:

In a distributed software system, you are probably experiencing
parallelism instead of concurrency. Since each process runs on a
separate machine, and each process has its own specific processor, we
will be observing parallelism instead of concurrency. Concurrency is



usually limited to the borders of a single machine. Note that
interleavings still exist and we might experience the same non-
determinism as we saw in concurrent systems.
Not all processes within a distributed software system are written
using a single programming language. It is pretty common to see
various programming languages being used in a distributed software
system. It is also common to see the same diversity in the processes
of a single-host software system. Despite our implicit assumption
about the processes within a system, which is that all of them have
been written using C, we can have processes written using any other
language. Different languages provide different ways of having
concurrency and control mechanisms. Therefore, for example, in
some languages, you may not be able to use a named mutex very
easily. Diverse technologies and programming languages used in a
software system, single-host or distributed, force us to use
concurrency control mechanisms that are abstract enough to be
available in all of them. This might limit us to using a specific
synchronization technique which is available in a certain technology
or a programming language.
In a distributed system, you always have a network as the
communication channel between two processes not residing on the
same machine. This is converse to our implicit assumption about the
single-host system where all processes are running within the same
operating system and using the available messaging infrastructures to
communicate with each other.
Having a network in the middle means that you have latency.
There is a slight latency in single-host systems as well, but it is
determined and manageable. It is also much lower than the latency
you might experience in a network. Latency simply means that a
process may not receive a message immediately because of many
reasons having roots in the networking infrastructure. Nothing should
be considered immediate in these systems.
Having a network in the middle also results in security issues.
When you have all the processes in one system, and all of them are
communicating within the same boundary using mechanisms with
extremely low latency, the security issues are greatly different. One



has to firstly access the system itself in order to attack the system,
but in a distributed system, all message passing is being done through
the network. You might get an eavesdropper in the middle to sniff or,
even worse, alter the messages. Regarding our discussion about
synchronization in distributed systems, this is also applicable to
messages meant to synchronize the processes within a distributed
system.
Other than latency and security issues, you might have delivery
issues that happen far less frequently in single-host multi-process
systems. Messages should be delivered to be processed. When a
process sends a message to another process within the system,
somehow the sender process should make sure that its message is
received by the other end. Delivery guarantee mechanisms are
possible, but they're costly and, in some scenarios, it is just not
possible to use them at all. In those situations, a special kind of
messaging problem is seen, which is usually modeled by the famous
Two Generals Problem.

The preceding differences and possible issues are enough to force us to
invent new ways of synchronization among processes and various
components of giant distributed systems. Generally, there are two ways to
make a distributed system transactional and synchronized:

Centralized process synchronization: These techniques need a
central process (or node) that manages the processes. All the other
processes within the system should be in constant communication
with this central node, and they need its approval in order to enter
their critical sections.
Distributed (or peer-to-peer) process synchronization: Having a
process synchronization infrastructure that does not have a central
node is not an easy task. This is actually an active field of research,
and there are some ad hoc algorithms.

In this section, we tried to shine a little light over the complexity of
concurrency control in a distributed multi-process system. Further
discussions about distributed concurrency control would be out of the
scope of this book.



Summary
In this chapter, we completed our discussion regarding multi-processing
environments. As part of this chapter, we discussed the following:

What a named semaphore is and how it can be created and used by
multiple processes.
What a named mutex is and how it should be used using a shared
memory region.
We gave an example which was about termination orchestration in
which a number of processes were waiting for a sign to get
terminated and the signal was received and handled by one of the
processes and propagated to others. We implemented this example
using shared mutexes.
What a named condition variable is and how it can become shared
and named using a shared memory region.
We demonstrated another example of counting processes. As part of
this example, we used inheritance to reduce the amount of code
duplication for mutex and condition variable objects having an
associated shared memory region.
We briefly explored the differences and challenges found in a
distributed system.
We briefly discussed the methods which can be employed to bring
concurrency control into distributed software.

In the upcoming chapter, we start our discussions regarding Inter-Process
Communication (IPC) techniques. Our discussions will span two chapters
and we will cover many topics such as computer networks, transport
protocols, socket programming, and many more useful topics.



Chapter 19
Single-Host IPC and Sockets

In the previous chapter, we discussed the techniques by which two
processes could operate on the same shared resource concurrently and in a
synchronized fashion. In this chapter, we are going to expand these
techniques and introduce a new category of methods that allow two
processes to transmit data. These techniques, both those introduced in the
previous chapter and the ones we are going to discuss in this chapter, are
together referred to as Inter-Process Communication (IPC) techniques.

In this and the following chapter, we are going to talk about the IPC
techniques that, despite the methods we discussed in the previous chapter,
involve a kind of message passing or signaling between two processes.
The transmitting messages are not stored in any shared place like a file or
a shared memory, rather they are emitted and received by the processes.

In this chapter we cover two major topics. Firstly, we underpin the IPC
techniques and we discuss single-host IPC and the POSIX API. Secondly,
we begin to introduce socket programming and the surrounding topics.
These topics include computer networks, the listener-connector model,
and the sequences that exist for two processes to establish a connection.

As part of this chapter, we are going to discuss the following topics:

Various IPC techniques. We introduce push-based and pull-based IPC
techniques and as part of this section, we define the techniques
discussed in the previous chapter to be pull-based IPC techniques.
Communication protocols and the characteristics that a protocol
usually has. We introduce what serialization and deserialization mean
and how they contribute to a fully operational IPC.



File descriptors and how they play a key role in establishing an IPC
channel.
The exposed API for POSIX signals, POSIX pipes, and POSIX
message queues are discussed as part of this chapter. For each
technique, an example is provided to demonstrate the basic usage.
Computer networks and how two processes can communicate over an
existing network.
The listener-connector model and how two processes can establish
a transport connection over a number of networks. This is the basis
for our future discussions regarding socket programming.
What socket programming is and what socket objects are.
The sequences that exist for each of the processes participating in
a listener-connector connection, and the API that they have to use
from the POSIX socket library.

In the first section, we are going to revisit IPC techniques.

IPC techniques
An IPC technique generally refers to any means that is used by processes
to communicate and transmit data. In the previous chapter, we discussed
filesystems and shared memory as our beginning approach to share data
between two processes. We didn't use the term 'IPC' for these techniques at
that point, but this is in fact what they are! In this chapter, we will add a
few more IPC techniques to the ones that we have encountered already, but
we should remember that they are different in a number of ways. Before
jumping to the differences and trying to categorize them, let's list some
IPC techniques:

Shared memory
Filesystem (both on disk and in memory)
POSIX signals



POSIX pipes
POSIX message queues
Unix domain sockets
Internet (or network) sockets

From the programming point of view, the shared memory and filesystem
techniques are similar in certain ways and because of that they can be put
into the same group, known as pull-based IPC techniques. The rest of the
techniques stand out and they have their own category. We refer to them as
push-based IPC techniques. This chapter together with the next chapter are
dedicated to push-based IPC, and various techniques are discussed.

Note that the IPC techniques all are responsible for transmitting a number
of messages between two processes. Since we are going to use the term
message heavily in the upcoming paragraphs, it is worth defining it first.

Every message contains a series of bytes that are put together according to
a well-defined interface, protocol, or standard. The structure of a message
should be known by both processes dealing with that message, and it is
usually covered as part of a communication protocol.

A list of differences between pull-based and push-based techniques can be
seen as follows:

In pull-based techniques, we have a shared resource or medium
external to both processes and available in the user space. Files,
shared memories, and even a network service like an Network
Filesystem (NFS) server can be the shared resource. These mediums
are the main place holders for the messages created and consumed by
the processes. While in push-based techniques, there is no such a
shared resource or medium and instead, there is a channel. Processes
send and receive messages through this channel, and these messages
are not stored in any intermediate medium.
In pull-based techniques, each process must pull the available
messages from the medium. In push-based techniques, the incoming
messages are pushed (delivered) to the receiver end.



In pull-based techniques, because of having a shared resource or
medium, concurrent access to the medium must be synchronized.
That's why we explored the various synchronization techniques for
such IPC techniques in the previous chapter. Note that this is not the
case regarding push-based techniques and there is no synchronization
needed.
In pull-based techniques, the processes can operate independently.
That's because the messages can be stored in a shared resource and it
can be fetched later. In other words, the processes can operate in an
async fashion. Conversely, in a push-based IPC technique, both
processes should be up and running at the same time, and because the
messages are pushed instantly, the receiver process may lose some of
the incoming messages if it's down. In other words, the processes
operate in a sync fashion.

Note:

In push-based techniques, we have a temporary message buffer for
each process that holds the incoming pushed messages. This
message buffer resides in the kernel and lives as long as the
process is running. This message buffer might be accessed
concurrently, but the synchronization must be guaranteed by the
kernel itself.

Messages being either transmitted in an IPC channel when using a push-
based technique, or stored in an IPC medium when using a pull-based
technique, should have a content that is understandable by the receiving
process. This means that both processes – the sender end and the receiver
end – must know how to create and parse the messages. Since messages
are made up of bytes, this implies that both processes must know how to
translate an object (a text or video) into a series of bytes, and how to
resurrect the same object from the received bytes. We'll see shortly that
the inter-operability of the processes is covered by a common
communication protocol adapted by both of them.

In the following section, we'll discuss communication protocols in greater
depth.



Communication protocols
Having just a communication channel or medium is not enough. Two
parties willing to communicate over a shared channel need to understand
one another, too! A very simple example is when two people want to talk
to each other using the same language, such as English or Japanese. Here,
the language can be considered as the protocol used by two parties in order
to communicate.

In the context of IPC, processes are no exception; they need a common
language so they can communicate. Technically, we use the term protocol
to refer to this common language between any two parties. As part of this
section, we are going to discuss communication protocols and their
various characteristics such as the message length and the message
content. Before being able to talk about these characteristics, we need to
describe a communication protocol in a deeper sense. Note that our main
focus in this chapter is IPC techniques; therefore, we only talk about
communication protocols between two processes. Any kind of
communication happening between parties other than processes cannot be
covered as part of this chapter.

Processes can only transmit bytes. This effectively means that every piece
of information must be translated into a series of bytes before being
transmitted by one of the IPC techniques. This is called serialization or
marshalling. A paragraph of text, a piece of audio, a music track, or any
other kind of object must be serialized before being sent over an IPC
channel, or being stored in an IPC medium. Hence, regarding the IPC
communication protocols, this means that the messages transmitted
between processes are a series of bytes in a very specific and well-defined
order.

Conversely, when a process receives a series of bytes from an IPC channel,
it should be able to reconstruct the original object out of the incoming
bytes. This is called deserialization or unmarshaling.

To explain serialization and deserialization in the same flow, when a
process wants to send an object to another process over any already



established IPC channel, the sender process first serializes the object into
a byte array. Then it transmits the byte array to the other party. On the
receiver side, the process deserializes the incoming bytes and it resurrects
the sent object. As you can see, these operations are the inverse of each
other, and they are used by both ends in order to use a byte-oriented IPC
channel to transmit information. This is something you can't escape from,
and every IPC-based technology (RPC, RMI, and so on) relies heavily on
the serialization and deserialization of various objects. From now on, we
use the term serialization to refer to both serialization and deserialization
operations.

Note that serialization is not limited to push-based IPC techniques that we
have discussed so far. In pull-based IPC techniques such as filesystem or
shared memory, we still need serialization. That's because the underlying
mediums in these techniques can store a series of bytes and if a process
wants to store an object in a shared file, for instance, it has to serialize it
before being able to store it there. Therefore, serialization is universal to
all IPC techniques; no matter which IPC method you are using, you have
to deal with a great amount of serialization and deserialization while using
the underlying channel or medium.

Choosing a communication protocol implicitly dictates the serialization
because, as part of a protocol, we define the order of bytes very carefully.
This is crucial because a serialized object must be deserialized back to the
same object on the receiver side. Therefore, both the serializer and
deserializer must obey the same rules dictated by the protocol. Having an
incompatible serializer and deserializer at both ends effectively means no
communication at all, simply because the receiver end cannot reconstruct
the transmitted object.

Note:

Sometimes, we use the term parsing as a synonym for deserialization,
but they are in fact fundamentally different.

To make the discussion more tangible, let's talk about some real examples.
A web server and a web client communicate using Hyper Text Transfer



Protocol (HTTP). Therefore, both sides are required to use compatible
HTTP serializers and deserializers to speak to each other. As another
example, let's talk about the Domain Name Service (DNS) protocol. Both
the DNS client and server must use compatible serializers and
deserializers so that they can communicate. Note that unlike HTTP, which
has textual content, DNS is a binary protocol. We discuss this shortly in
the upcoming sections.

Since serialization operations can be used in various components in a
software project, they are usually provided as some libraries that can be
added to any component wishing to use them. For famous protocol such as
HTTP, DNS, and FTP, there are well-known third-party libraries that can
be used without hassle. But for custom protocols specially designed for a
project, the serialization libraries must be written by the team itself.

Note:

Well-known protocols such as HTTP, FTP, and DNS are standards and
they are described in some official open documents called request for
comments (RFC). For example, the HTTP/1.1 protocol is described in
RFC-2616. A simple Google search will take you to the RFC page.

As a further note regarding serialization libraries, they can be provided in
various programming languages. Note that a specific serialization itself is
not dependent on any programming language because it only talks about
the order of bytes and how they should be interpreted. Therefore, the
serialization and deserialization algorithms can be developed using any
programming language. That's a crucial requirement. In a big software
project, we can have multiple components written in various programming
languages, and there are situations in which these components must
transmit information. Hence, we need the same serialization algorithms
written in various languages. For instance, we have HTTP serializers
written in C, C++, Java, Python, and so on.

To sum up the main point of this section, we need a well-defined protocol
between two parties in order for them to talk to each other. An IPC
protocol is a standard that dictates how the overall communication must



take place and what details must be obeyed regarding the byte order and
their meaning in various messages. We have to use some serialization
algorithms in order to consume a byte-oriented IPC channel to transmit
objects.

In the following section, we describe the characteristics of IPC protocols.

Protocol characteristics
IPC protocols have various characteristics. Briefly, every protocol can
specify a different content type for the messages transmitted over an IPC
channel. In another protocol, the messages can have a fixed length or a
variable length. Some protocols dictate that the provided operations must
be consumed in a synchronous fashion, while there are protocols that
allow asynchronous usage. In the following sections, we will be covering
these distinguishing factors. Note that the existing protocols can be
categorized based on these characteristics.

Content type

Messages sent over IPC channels can have textual content or binary
content or a combination of both of them. Binary content has bytes with
values ranging over all possible numerical values between 0 to 255. But
textual content has only characters that are used in text. In other words,
only alphanumerical characters together with some symbols are allowed in
textual content.

While textual content can be considered as a special case of binary
content, we try to keep them separate and treat them differently. For
instance, textual messages are good candidates to be compressed before
sending, while binary messages suffer from a poor compression ratio (the
actual size divided by the compressed size). It is good to know that some
protocols are purely textual, such as JSON, and some others are fully
binary, such as DNS. There are also protocols such as BSON and HTTP
that allow message contents to be a combination of both textual and binary



data. In these protocols, raw bytes can be mixed with text to form the final
message.

Note that binary content can be sent as text. There are various encodings
that allow you to represent binary content using textual characters. Base64
is one of the most famous binary-to-text encoding algorithms that allows
such a transformation. These encoding algorithms are widely used in
purely textual protocols such as JSON to send binary data.

Length of messages

The messages produced according to an IPC protocol can be either fixed-
length or variable-length. By fixed-length, we mean that all messages
have the same length. Conversely, by variable-length, we mean that the
produced messages can have different lengths. Receiving either fixed-
length messages or variable-length messages have an immediate impact
on the receiver side while deserializing the content of a message. Using a
protocol that always produces fixed-length messages can reduce the
burden of parsing receiving messages because the receiver already knows
the number of bytes that it should read from the channel, and messages
with the same size usually (not always) have the same structure. When
reading fixed-length messages from an IPC channel, if all of them follow
the same structure, we have a nice opportunity to use C structures to refer
to those bytes through some already-defined fields, similar to what we did
for objects placed in shared memories in the previous chapter.

With protocols that produce variable-length messages, finding where an
individual message ends is not that easy, and the receiver side somehow
(which we explain shortly) should decide whether it has read a complete
message or more bytes must be read from the channel. Note that the
receiver might read multiple chunks from the channel before reading a
complete message, and a single chunk may contain data from two adjacent
messages. We will see an example of this in the next chapter.

Since most protocols are variable-length and you usually don't have the
luxury of dealing with fixed-length messages, it is worth discussing the
methods that various protocols adopt to make their variable-length



messages distinguishable or separable. In other words, these protocols use
a mechanism to mark the end of a message and, this way, the receiver can
use those marks to indicate that it has read a complete message. Next, you
can see some of these methods:

Using a delimiter or a separator: A delimiter or separator is a series
of bytes (in binary messages) or characters (in textual messages) that
indicates the end of a message. The delimiter should be chosen
depending on the content of the messages, because it should be easily
distinguishable from the actual content.
Length-prefix framing: In these protocols, each message has a
fixed-length prefix (usually 4 bytes or even more) that carries the
number of bytes that should be read by the receiver in order to have a
complete message. Various protocols such as all Tag-Value-Length
(TLV) protocols, with Abstract Syntax Notation (ASN) as an
example, use this technique.
Using a finite-state machine: These protocols follow a regular
grammar that can be modeled by a finite-state machine. The receiver
side should be aware of the grammar of the protocol, and it should
use a proper deserializer that works based on a finite-state machine to
read a complete message from the IPC channel.

Sequentiality

In most protocols, we have a conversation happening between two
processes that follows a request-response scheme. One of the parties sends
a request and the other side replies. This scheme is usually used in client-
server scenarios. The listener process, often the server process, waits for a
message, and when the message is received, it replies accordingly.

If the protocol is synchronous or sequential, the sender (client) will wait
until the listener (server) completes the request and sends back the reply.
In other words, the sender stays in a blocking state until the listener
replies. In an asynchronous protocol, the sender process isn't blocked, and
it can continue with another task while the request is being processed by



the listener. That is, the sender won't get blocked while the reply is being
prepared.

In an asynchronous protocol, there should be a pulling or pushing
mechanism in place, which allows the sender to check for the reply. In a
pulling scenario, the sender will regularly ask the listener about the result.
In a pushing scenario, the listener will push back the reply to the sender
via the same or a different communication channel.

The sequentiality of a protocol is not limited to request-response
scenarios. Messaging applications usually use this technique to have the
maximum responsiveness both on the server-side and on the client-side.

Single-host communication
In this section, we are going to talk about single-host IPC. Multiple-host
IPC will be the subject of our discussion in the next chapter. There are four
main techniques that can be used by processes to communicate when they
reside on the same machine:

POSIX signals
POSIX pipes
POSIX message queues
Unix domain sockets

POSIX signals, unlike the other preceding techniques, don't create a
communication channel between the processes, but can be used as a way to
notify a process about an event. In certain scenarios, such signals can be
used by processes to notify each other about specific events in the system.

Before jumping to the first IPC technique, POSIX signals, let's discuss file
descriptors. Other than POSIX signals, no matter which IPC technique you
use, you will be dealing with file descriptors of some sort. Therefore, we'll
now dedicate a separate section to them and discuss them further.



File descriptors
Two communicating processes can be running either on the same machine
or on two different machines connected by a computer network. In this
section and much of this chapter, our focus is on the first case, in which
processes reside on the same machine. That's where file descriptors
become immensely important. Note that in multiple-host IPC we will still
be dealing with file descriptors, but they are called sockets there. We will
discuss them thoroughly in the upcoming chapter.

A file descriptor is an abstract handle to an object within the system that
can be used to read and write data. As you can see, despite the name, file
descriptors can refer to a wide range of available mechanisms that deal
with reading and modifying byte streams.

Regular files are certainly among the objects that can be referred to by file
descriptors. Such files are located on filesystems, either on a hard disk or
in memory.

Other things that can be referred to and accessed via file descriptors are
devices. As we saw in Chapter 10, Unix - History and Architecture, each
device can be accessed using a device file, which is usually found in the
/dev  directory.

Regarding push-based IPC techniques, a file descriptor can represent an
IPC channel. In this case, the file descriptor can be used to read and write
data from and to the represented channel. That's why the first step in
setting up an IPC channel is to define a number of file descriptors.

Now that you know more about file descriptors and what they represent,
we can move on and discuss the first IPC technique that can be used in
single-host multi-process system; however, POSIX signals don't use file
descriptors. You are going to hear more about file descriptors in the future
sections dedicated to POSIX pipes and POSIX message queues. Let's begin
with POSIX signals.



POSIX signals
In POSIX systems, processes and threads can send and receive a number
of predefined signals. A signal can be sent either by a process, or a thread,
or by the kernel itself. Signals are actually meant to notify a process or a
thread about an event or error. For example, when the system is going to
be rebooted, the system sends a SIGTERM  signal to all processes to let
them know that a rebooting is in progress and they must immediately quit.
Once a process receives this signal, it should react accordingly. In some
cases, nothing should be done, but in some cases, the current state of the
process should be persisted.

The following table shows the available signals in a Linux system. The
table is extracted from the Linux signals manual page that can be found at
http://www.man7.org/linux/man-

pages/man7/signal.7.html:

Signal Standard Action Comment

───────────────────────────────────────────────────────────

SIGABRT P1990 Core Abort signal from abort(3)SIGALRM P1990

Term Timer signal from alarm(2)SIGBUS P2001 Core Bus error

(bad memory access)SIGCHLD P1990 Ign Child stopped or

terminated SIGCLD - Ign A synonym for SIGCHLD SIGCONT P1990

Cont Continue if stopped SIGEMT - Term Emulator trap SIGFPE

P1990 Core Floating-point exception SIGHUP P1990 Term Hangup

detected on controlling terminal or death of controlling

process SIGILL P1990 Core Illegal Instruction SIGINFO - A

synonym for SIGPWR SIGINT P1990 Term Interrupt from keyboard

SIGIO - Term I/O now possible (4.2BSD)SIGIOT - Core IOT

trap. A synonym for SIGABRT SIGKILL P1990 Term Kill signal

SIGLOST - Term File lock lost (unused)SIGPIPE P1990 Term

Broken pipe: write to pipe with no readers; see

pipe(7)SIGPOLL P2001 Term Pollable event (Sys V). Synonym

for SIGIO SIGPROF P2001 Term Profiling timer expired SIGPWR

- Term Power failure (System V)SIGQUIT P1990 Core Quit from

keyboard SIGSEGV P1990 Core Invalid memory reference

SIGSTKFLT - Term Stack fault on coprocessor (unused)SIGSTOP

P1990 Stop Stop process SIGTSTP P1990 Stop Stop typed at

terminal SIGSYS P2001 Core Bad system call (SVr4); see also

seccomp(2)SIGTERM P1990 Term Termination signal SIGTRAP

P2001 Core Trace/breakpoint trap SIGTTIN P1990 Stop Terminal

input for background process SIGTTOU P1990 Stop Terminal

output for background process SIGUNUSED - Core Synonymous

with SIGSYS SIGURG P2001 Ign Urgent condition on socket

http://www.man7.org/linux/man-pages/man7/signal.7.html


(4.2BSD)SIGUSR1 P1990 Term User-defined signal 1 SIGUSR2

P1990 Term User-defined signal 2 SIGVTALRM P2001 Term

Virtual alarm clock (4.2BSD)SIGXCPU P2001 Core CPU time

limit exceeded (4.2BSD); see setrlimit(2)SIGXFSZ P2001 Core

File size limit exceeded (4.2BSD); see setrlimit(2)SIGWINCH

- Ign Window resize signal (4.3BSD, Sun)

Table 19-1: List of all available signals in a Linux system

As you can see in the preceding table, not all of the signals are POSIX, and
Linux has got its own signals. While most of the signals correspond to
well-known events, there are two POSIX signals that can be defined by the
user. This is mostly used in scenarios when you want to invoke a certain
functionality in your program while the process is running. Example 19.1
demonstrates how to use signals and how they can be handled in a C
program. Next, you can find the code for example 19.1:

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

void handle_user_signals(int signal) {

switch (signal) {

case SIGUSR1:

printf("SIGUSR1 received!\n");

break;

case SIGUSR2:

printf("SIGUSR2 received!\n");

break;

default:

printf("Unsupported signal is received!\n");

}

}

void handle_sigint(int signal) {

printf("Interrupt signal is received!\n");

}

void handle_sigkill(int signal) {

printf("Kill signal is received! Bye.\n");

exit(0);

}

int main(int argc, char** argv) {

signal(SIGUSR1, handle_user_signals);

signal(SIGUSR2, handle_user_signals);

signal(SIGINT, handle_sigint);

signal(SIGKILL, handle_sigkill);

while (1);

return 0;



}

Code Box 19-1 [ExtremeC_examples_chapter19_1.c]: Handling POSIX signals

In the preceding example, we have used the signal  function to assign
various signal handlers to some specific signals. As you can see, we have
one signal handler for the user-defined signals, one handler for the SIGINT
signal, and one for the SIGKILL  signal.

The program is merely a never-ending loop, and all we want to do is to
handle some signals. The following commands show how to compile and
run the example in the background:

$ gcc ExtremeC_examples_chapter19_1.c -o ex19_1.out

$ ./ex19_1.out &

[1] 4598

$

Shell Box 19-1: Compiling and running example 19.1

Now that we know the PID of the program, we can send it some signals.
The PID is 4598 and the program is running in the background. Note that
the PID will be different for you. You can use the kill  command to send
a signal to a process. The following command is used to examine the
preceding example:

$ kill -SIGUSR2 4598

SIGUSR2 received!

$ kill -SIGUSR1 4598

SIGUSR2 received!

$ kill -SIGINT 4598

Interrupt signal is received!

$ kill -SIGKILL 4598

$

[1]+ Stopped ./ex19_1.out

$

Shell Box 19-2: Sending different signals to the background process



As you can see, the program handles all signals except the SIGKILL  signal.
SIGKILL  cannot be handled by any process and, usually, a parent process
that has spawned the process can be notified about its child being killed.

Note that the SIGINT  signal, or the interrupt signal, can be sent to a
foreground program by pressing Ctrl + C. Therefore, whenever you press
this combination of keys, you are actually sending an interrupt signal to
the running program. The default handler just stops the program, but as
you can see in the preceding example, we can handle the SIGINT  signal
and ignore it.

In addition to the ability to send a signal to a process using shell
commands, a process also can send a signal to another process if it knows
the target process's PID. You can use the kill  function (declared in
signal.h ), which does exactly the same as its command-line version. It
accepts two parameters: the first is the target PID and the second is the
signal number. It is also possible for a process or a thread to use the kill
or raise  functions to send a signal to itself. Note that the raise  function
sends the signal to the current thread. These functions can be quite useful
in scenarios in which you want to notify another part of your program
about an event.

The last note about the preceding example is that, as you saw in Shell Box
19-2, it doesn't matter that the main thread is busy with the never-ending
loop, the signals are delivered asynchronously. Therefore, you can be sure
that you always receive the incoming signals.

Now it's time to talk about POSIX pipes as another single-host IPC
technique that can be useful in certain circumstances.

POSIX pipes
POSIX Pipes in Unix are unidirectional channels that can be used between
two processes that need to exchange messages. Upon creating a POSIX
pipe, you will get two file descriptors. One file descriptor is used to write



to the pipe, and the other one is used to read from the pipe. The following
example shows the basic usage of a POSIX pipe:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

int main(int argc, char** argv) {

int fds[2];

pipe(fds);

int childpid = fork();

if (childpid == -1) {

fprintf(stderr, "fork error!\n");

exit(1);

}

if (childpid == 0) {

// Child closes the read file descriptor

close(fds[0]);

char str[] = "Hello Daddy!";

// Child writes to the write file descriptor

fprintf(stdout, "CHILD: Waiting for 2 seconds ...\n");

sleep(2);

fprintf(stdout, "CHILD: Writing to daddy ...\n");

write(fds[1], str, strlen(str) + 1);

} else {

// Parent closes the write file descriptor

close(fds[1]);

char buff[32];

// Parent reads from the read file descriptor

fprintf(stdout, "PARENT: Reading from child ...\n");

int num_of_read_bytes = read(fds[0], buff, 32);

fprintf(stdout, "PARENT: Received from child: %s\n", buff);

}

return 0;

}

Code Box 19-2 [ExtremeC_examples_chapter19_2.c]: Example 19.2 on using a POSIX pipe

As you can see, in the second line of the main  function, we have used the
pipe  function. As we've already said, it accepts an array of two file
descriptors and opens two file descriptors, one for reading from the pipe
and the other one for writing to it. The first file descriptor, found at index
0, should be used for reading; and the second file descriptor, located at
index 1, should be used for writing to the pipe.



In order to have two processes, we have used the fork API. As we've
explained in Chapter 17, Process Execution, the fork API clones the parent
process and creates a new child process. Therefore, the opened file
descriptors are available to the child process after calling the fork
function.

When the child process is spawned, the parent process enters the else
block and the child process enters the if  block. Firstly, each process
should close the file descriptor that it is not going to use. In this example,
the parent wants to read from the pipe and the child wants to write to the
pipe. That's why the parent process closes the second file descriptor (the
write file descriptor) and the child process closes the first file descriptor
(the read file descriptor). Note that a pipe is unidirectional and reverse
communication is not possible.

The following shell box shows the output of the preceding example:

$ gcc ExtremeC_examples_chapter19_2.c -o ex19_2.out

$ ./ex19_2.out

PARENT: Reading from child ...

CHILD: Waiting for 2 seconds ...

CHILD: Writing to daddy ...

PARENT: Received from child: Hello Daddy!

$

Shell Box 19-3: Output of running example 19.2

As you can see in Code Box 19-2, for reading and writing operations we
use the read  and write  functions. As we mentioned before, in push-
based IPC, a file descriptor refers to a byte channel, and when you have a
file descriptor pointing to a channel, you can use the file descriptor's
related functions. The read  and write  functions accept a file descriptor
and no matter what kind of IPC channel is behind, they operate on the
underlying channel the same way.

In the previous example, we used the fork API to spawn a new process. If a
situation arises in which we have two different processes spawned
separately, the question is, how can they communicate through a shared
pipe? If a process demands access to a pipe object within the system, it



should have the corresponding file descriptor. There are two options
available:

One of the processes should set up the pipe and transfer the
corresponding file descriptors to the other process.
The processes should use a named pipe.

In the first scenario, the processes must use a Unix domain socket channel
in order to exchange file descriptors. The problem is that if such a channel
exists between the two processes, they could use it for further
communication and there would be no need to set up another channel
(POSIX pipe) that has a less friendly API than Unix domain sockets.

The second scenario seems to be more promising. One of the processes
could use the mkfifo  function and create a queue file by providing a path.
Then, the second process could use the path to the already created file and
open it for further communication. Note that the channel is still
unidirectional and, depending on the scenario, one of the processes should
open the file in read-only mode and the other should open it in write-only
mode.

One more point should be discussed about the previous example. As you
can see, the child process waits for 2 seconds before writing to the pipe. In
the meantime, the parent process is blocked on the read  function. So,
while there is no message written to the pipe, the process reading from the
pipe becomes blocked.

As the final note in this section, we know that POSIX pipes are push-
based. As we've explained this before, push-based IPC techniques have a
corresponding temporary kernel buffer for holding the incoming pushed
messages. POSIX pipes are no exception and the kernel holds the written
messages until they are read. Note that if the owner process quits, the pipe
object and its corresponding kernel buffer are destroyed.

In the following section, we will discuss POSIX message queues.



POSIX message queues
Kernel-hosted message queues are part of the POSIX standard. They differ
significantly from POSIX pipes in a number of ways. Here, we examine
the fundamental differences:

The elements inside a pipe are bytes. Instead, message queues hold
messages. Pipes are not aware of any existing structure in the written
bytes, while message queues keep actual messages and each call to
the write  function results in a new message being added to the
queue. Message queues preserve the boundaries between written
messages. To elaborate more on this, suppose that we have three
messages: the first one has 10 bytes, the second one has 20 bytes, and
the third one has 30 bytes. We write these messages both to a POSIX
pipe and to a POSIX message queue. The pipe only knows that it has
60 bytes inside, and it allows a program to read 15 bytes. But the
message queue only knows that it has 3 messages and it doesn't allow
a program to read 15 bytes because we don't have any messages with
15 bytes.
Pipes have a maximum size, the unit of which is the number of bytes.
Message queues instead have a maximum number of messages. In
message queues, every message has a maximum size in terms of
bytes.
Every message queue, like a named shared memory or a named
semaphore, opens a file. While these files are not regular files, they
can be used by future processes to access the same message queue
instance.
Message queues can be prioritized, while pipes don't care about the
priority of bytes.

And they have the following properties in common:

Both are unidirectional. In order to have bidirectional
communication, you need to create two instances of pipes or queues.
Both have limited capacity; you cannot write any number of bytes or
messages that you want.



Both are represented using file descriptors in most POSIX systems;
therefore, I/O functions such as read  and write  can be used.
Both techniques are connection-less. In other words, if two different
processes write two different messages, it is possible for one of them
to read the other process's message. In other words, there is no
ownership defined for the messages and any process can read them.
This would be a problem, especially when there is more than one
process operating on the same pipe or message queue concurrently.

Note:

POSIX message queues explained in this chapter should not be confused
with message queue brokers being used in the Message Queue
Middleware (MQM) architecture.

There are various resources on the internet that explain POSIX message
queues. The following link explains POSIX message queues specifically
for the QNX operating system, but most of the content is still applicable to
other POSIX systems:
https://users.pja.edu.pl/~jms/qnx/help/watcom/clib

ref/mq_overview.html.

Now it is time to have an example. Example 16.3 has the same scenario as
we had in example 16.2, but it uses a POSIX message queue instead of a
POSIX pipe. All the functions related to POSIX message queues are
declared in the mqueue.h  header file. We will explain some of them
shortly.

Note that the following code doesn't compile on macOS because OS/X
doesn't support POSIX message queues:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <mqueue.h>

int main(int argc, char** argv) {

// The message queue handler

https://users.pja.edu.pl/~jms/qnx/help/watcom/clibref/mq_overview.html


mqd_t mq;

struct mq_attr attr;

attr.mq_flags = 0;

attr.mq_maxmsg = 10;

attr.mq_msgsize = 32;

attr.mq_curmsgs = 0;

int childpid = fork();

if (childpid == -1) {

fprintf(stderr, "fork error!\n");

exit(1);

}

if (childpid == 0) {

// Child waits while the parent is creating the queue

sleep(1);

mqd_t mq = mq_open("/mq0", O_WRONLY);

char str[] = "Hello Daddy!";

// Child writes to the write file descriptor

fprintf(stdout, "CHILD: Waiting for 2 seconds ...\n");

sleep(2);

fprintf(stdout, "CHILD: Writing to daddy ...\n");

mq_send(mq, str, strlen(str) + 1, 0);

mq_close(mq);

} else {

mqd_t mq = mq_open("/mq0", O_RDONLY | O_CREAT, 0644, &attr);

char buff[32];

fprintf(stdout, "PARENT: Reading from child ...\n");

int num_of_read_bytes = mq_receive(mq, buff, 32, NULL);

fprintf(stdout, "PARENT: Received from child: %s\n", buff);

mq_close(mq);

mq_unlink("/mq0");

}

return 0;

}

Code Box 19-3 [ExtremeC_examples_chapter19_3.c]: Example 19.3 on using a POSIX
message queues

In order to compile the preceding code, run the following commands. Note
that the preceding code should be linked with the rt  library on Linux:

$ gcc ExtremeC_examples_chapter19_3.c -lrt -o ex19_3.out

$

Shell Box 19-4: Building example 19.3 on Linux



The following shell box demonstrates the output of example 19.3. As you
can see, the output is exactly the same as we had for example 19.2 but it
uses POSIX message queues to perform the same logic that we wrote in
example 19.2:

$ ./ex19_3.out

PARENT: Reading from child ...

CHILD: Waiting for 2 seconds ...

CHILD: Writing to daddy ...

PARENT: Received from child: Hello Daddy!

$

Shell Box 19-5: Running example 19.3 on Linux

Note that both POSIX pipes and message queues have a limited buffer in
the kernel. Therefore, writing to pipes and message queues without having
a consumer that reads their content can lead to all write operations being
blocked. In other words, any write  function call would remain blocked
until a consumer reads a message from the message queue or some bytes
from the pipe.

In the following section, we will briefly explain Unix domain sockets.
They are usually the first choice when connecting two local processes in a
single-host setup.

Unix domain sockets
Another technique that can be used by a number of processes to
communicate in a single-host deployment is using Unix domain sockets.
They are special kind of sockets that only operate within the same
machine. Therefore, they are different from network sockets, which allow
two processes from two different machines to talk to each other over an
existing network. Unix domain sockets have various characteristics that
make them important and sophisticated in comparison to POSIX pipes and
POSIX message queues. The most important characteristic is the fact that
Unix domain sockets are bidirectional. Therefore, a single socket object is
enough to read from and write to the underlying channel. In other words,



the channels operated by Unix domain sockets are full-duplex. In addition,
Unix domain sockets can be both session-aware and message-aware. This
makes them even more flexible. We will discuss session-awareness and
message-awareness in the following sections.

Since Unix domain sockets cannot be discussed without knowing the
basics of socket programming, we won't go any further than this in this
chapter. Instead, in the following sections, we introduce socket
programming and the concepts around it. A full discussion regarding Unix
domain sockets will be given in the following chapter. Let's begin with
socket programming.

Introduction to socket
programming
As part of this chapter, we decided to discuss socket programming before
going through the real C code examples as part of the next chapter. That's
because there are some fundamental concepts that you need to know
before jumping to the code.

Socket programming can be done both on single-host and multi-host
deployments. As you might have guessed, the socket programming in a
single-host system is done through Unix domain sockets. In a multi-host
setup, socket programming is about creating and using network sockets.
Both Unix sockets and network sockets more or less use the same API and
share the same concepts, so it would make sense to cover them together in
the next chapter.

One of the key concepts before using network sockets is how computer
networks work. In the following section, we are going to talk about this
and introduce you to computer networks. There are many terms and
concepts that you should know before being able to write your first socket
programming example.



Computer networks
The approach we take to explain the networking concepts in this section is
different from the usual texts you might find about this topic. Our goal is
to create a basic understanding of how things work in a computer network,
especially between two processes. We want to look at this concept from a
programmer's point of view. And the main actors in our discussion are
processes, not computers. Therefore, you might find the order of sections a
bit odd at first, but it will help you to get the idea of how IPC works over a
computer network.

Note that this section shouldn't be considered a complete description of
computer networks and, of course, it cannot be done in a few pages and in
just one section.

Physical layer

First, let's forget about processes and just consider the computers, or
simply the machines. Before moving forward, note that we use various
terms to refer to a computer in a network. We can call it a computer,
machine, host, node, or even a system. Of course, the context helps you to
find out the true meaning behind a given term.

The first step toward having multi-host software is a number of computers
that are connected together through a network or, more precisely, a
computer network. For now, let's focus on two computers that we want to
connect. In order to connect these two physical machines to one other, we
certainly need some sort of physical medium such as a piece of wire or a
wireless setup.

Of course, without such a physical medium (which doesn't need to be
visible, like in a wireless network), the connection would not be possible.
These physical connections are analogous to roads between cities. We will
stick to this analogy because it can explain what is happening inside a
computer network very closely.



All the hardware equipment required to connect two machines physically
are considered to be part of the physical layer. This is the first and the
most basic layer that we explore. Without having this layer, it is
impossible to transmit data between two computers and assume them to be
connected. Everything above this layer is not physical and all you find is a
set of various standards regarding how the data should be transmitted.

Let's talk about the next layer, the link layer.

Link layer

While merely having roads is not sufficient for traffic to move along
them, the same is true for the physical connections between computers. In
order to use roads, we need laws and regulations about the vehicles, signs,
materials, borders, speed, lanes, directions, and so on, and without them,
traveling along the roads would be chaotic and problematic. Similar rules
are needed for direct physical connections between two computers.

While the physical components and devices required to connect a number
of computers all belong to the physical layer, the mandatory regulations
and protocols that govern the way data is transmitted along the physical
layer all belong to an upper layer called the link layer.

As part of the regulations enforced by the link protocols, messages should
be broken into pieces called frames. This is analogous to the regulations in
a road system that defines a maximum length of the vehicles traveling on
a certain road. You cannot drive a 1 km-long trailer (presuming that it is
physically possible) on a road. You have to break it down into smaller
segments, or into smaller vehicles. Similarly, a long piece of data should
be broken into multiple frames, and each frame must be traveling along
the network freely, independent of the other frames.

It is worth mentioning that networks can exist between any two
computational devices. They don't necessarily need to be computers. There
are many devices and machines in industry that can be connected to each
other to form a network. Industrial networks have their own standards for



their physical wiring, connectors, terminators, and so on, and they have
their own link protocols and standards.

Many standards describe such link connections, for instance, how a
desktop computer can get connected to an industrial machine. One of the
most prominent link protocols that is designed to connect a number of
computers via a wire is Ethernet. Ethernet describes all the rules and
regulations governing data transmission over computer networks. We have
another widely used link protocol called IEEE 802.11, which governs
wireless networks.

A network consisting of computers (or any other groups of homogenous
computing machines or devices) connected by a physical connection via a
specific link protocol is called a Local Area Network (LAN). Note that
any device willing to join a LAN must use a physical component called a
network adapter or a Network Interface Controller (NIC) attached to it.
For instance, the computers wanting to join an Ethernet network must have
an Ethernet NIC.

A computer can have multiple NICs attached. Each NIC can connect to a
specific LAN, therefore a computer with three NICs is able to connect to
three different LANs simultaneously.

It is also possible that it uses all its three NICs to connect to the same
LAN. The way that you configure NICs and how you connect computers to
various LANs should be designed beforehand and a precise plan should be
in place.

Every NIC has a specific and unique address defined by the governing link
protocol. This address will be used for data transmission between the
nodes inside a LAN. The Ethernet and IEEE 802.11 protocols define a
media access control (MAC) address for every compatible NIC.
Therefore, any Ethernet NIC or IEEE 802.11 Wi-Fi adapter should have a
unique MAC address in order to join a compatible LAN. Inside a LAN, the
assigned MAC addresses should be unique. Note that ideally, any MAC
address should be unique universally and unchangeable. However, this is
not the case, and you can even set the MAC address of a NIC.



To summarize what we have explained so far, we have a stack of two
layers, the physical layer beneath and the link layer above. This is enough
to connect a number of computers on a single LAN. But it doesn't end
here. We need another layer on top of these two layers to be able to
connect computers from various LANs with or without any intermediate
LANs in between.

Network layer

So far, we've seen that MAC addresses are used in Ethernet LANs in order
to connect a number of nodes. But what happens if two computers from
two different LANs need to connect to each other? Note that these LAN
networks are not necessarily compatible.

For instance, one of the LANs could be a wired Ethernet network, while
the other one could be a fiber distributed data interface (FDDI) network
mainly using fiber optic as the physical layer. Another example is
industrial machines connected to an Industrial Ethernet (IE) LAN that
need to connect to operators' computers, which are on an ordinary Ethernet
LAN. These examples and many more show that we need another layer on
top of the aforementioned protocols in order to connect various nodes
from different LANs. Note that we even need this third layer in order to
connect compatible LANs. This would be even more crucial if we are
going to transmit data from one LAN to another (compatible or
heterogeneous) through a number of intermediate LANs. We explain this
further in the upcoming paragraphs.

Just like the frames in the link layer, we have packets in the network layer.
Long messages are broken into smaller pieces called packets. While
frames and packets are referring to two different concepts in two different
layers, for simplicity, we consider them the same and we stick to the term
packet for the rest of this chapter.

As a key difference, you should know that frames encapsulate packets, in
other words, a frame contains a packet. We won't go any deeper regarding
frames and packets, but you can find numerous sources on the internet that
describe various aspects of these concepts.



The network protocol fills the gap between various LANs in order to
connect them to each other. While each LAN can have its own specific
physical layer and its own specific link layer standards and protocols, the
governing network protocol should be the same for all of them. Otherwise,
heterogeneous (not compatible) LANs cannot connect to each other. The
most famous network protocol at the moment is the Internet Protocol
(IP). It is extensively used in large computer networks that usually consist
of smaller Ethernet or Wi-Fi LANs. IP has two versions based on the
length of its addresses: IPv4 and IPv6.

But how can two computers from two different LANs be connected? The
answer lies in the routing mechanism. In order to receive data from an
external LAN, there should be a router node. Suppose that we are going to
connect two different LANs: LAN1 and LAN2. A router is simply another
node that resides in both networks by having two NICs. One NIC is in
LAN1 and the other one is in LAN2. Then, a special routing algorithm
decides which packets to transfer and how they should be transferred
between networks.

With the routing mechanism, multiple networks can have a bidirectional
flow of data through the router nodes. For this to happen, within every
LAN there should be a router node. Therefore, when you want to send data
to a computer located in a different geographical zone, it could be that
your data is being transmitted through tens of routers before hitting its
target. I'm not going to go any further than this into the routing concept,
but there are tons of great information about this mechanism on the web.

Note:

There is a utility program called traceroute that allows you to see the
routers between your computer and the target computer.

At this point, two hosts from two different LANs can be connected to each
other, with or without having intermediate LANs in between. Any further
effort to make more specific connections should be done on top of this
layer. Therefore, any communication happening between two programs,
residing on two different nodes, must take place on top of a stack of three



layers of protocols: the physical layer, the link layer, and finally the
network layer. But what does it exactly mean when we say that two
computers are connected to each other?

It is a bit vague to say that two nodes are connected, at least for
programmers. To be more precise, the operating systems of these nodes
are connected to each other, and they are the actors who transmit data. The
ability to join a network and talk to other nodes in the same LAN or in a
different LAN is intrinsically encoded in most current operating systems.
Unix-based operating systems, which are our main focus in this book, are
all operating systems that support networking, and they can be installed on
the nodes participating in a network.

Linux, Microsoft Windows, and almost any modern operating system
supports networking. Indeed, it is unlikely that an operating system could
survive if it could not operate in a network. Note that it is the kernel, or to
be precise a unit within the kernel, that manages network connections and,
therefore, it is more exact to say that the actual networking functionality is
provided by the kernel.

Since the networking functionality is provided by the kernel, any process
in the user space can benefit from that, and it can get connected to another
process residing on a different node within the network. As a programmer,
you don't need to worry about the layers (physical, link, and network
layers) operated by the kernel, and you can focus on the layers above
them, those that relate to your code.

Every node in an IP network has an IP address. Like we said before, we
have two versions of IP addresses: IP version 4 (IPv4) and IP version 6
(IPv6). An IPv4 address consists of four segments, each of which can hold
a numerical value between 0 and 255. Therefore, IPv4 addresses start from
0.0.0.0  and go up to 255.255.255.255 . As you can see, we only need 4
bytes (or 32 bits) in order to store an IPv4 address. For IPv6 addresses,
this goes up to 16 bytes (or 128 bits). Also, we have private and public IP
addresses, but the details are way beyond the subject of this chapter. It's
sufficient for us to know that every node in an IP network has a unique IP
address.



Building on the previous section, in a single LAN, every node has a link
layer address together with an IP address, but we will use the IP address to
make connections to that node and not the link layer address. As an
example, in an Ethernet LAN, every node has two addresses; one is a MAC
address and the other one is an IP address. The MAC address is used by
the link layer protocols to transmit data within the LAN, and the IP
address is used by the programs residing on various nodes to make
network connections either within the same LAN or over a number of
LANs.

The main functionality of the network layer is to connect two or more
LANs. This will eventually lead to a big mesh of networks that are
connected to each other, and they form a giant network with many
individual LAN networks within it. In fact, such a network exists, and we
know it as the internet.

Like any other network, every node that is accessible on the internet must
have an IP address. But the main difference between a node that is
accessible on the internet and a node that is not is that an internet node
must have a public IP address, while a node that is not accessible through
the internet usually has a private address.

To give an example, your home network might be connected to the
internet, but an external node on the internet cannot get connected to your
laptop because your laptop has a private IP address and not a public IP
address. While your laptop is still accessible inside your home network, it
is not available on the internet. Therefore, if your software is going to be
available on the internet, it should be run on a machine that has a public IP
address.

There is a tremendous amount of information about IP networking, and we
are not going to cover all of it, but as a programmer it is important to
know the difference between private and public addresses.

While in a network, ensuring the connectivity between the nodes is not the
programmer's responsibility; it is considered part of your skillset to be
able to detect network defects. This is very important because it can let
you know whether a bug or misbehavior has roots in your code, or it is an



infrastructure (or network) issue. That's why we have to touch on some
more concepts and tools here.

The basic tool that guarantees that two hosts (nodes), either in the same
LAN or located on different LANs, are capable of transmitting data, or
that they can "see" each other, is the ping tool. You may already know of
it. It sends a number of Internet Control Message Protocol (ICMP)
packets that, if a reply is sent back, means that the other host is up,
connected, and responding.

Note:

ICMP is another network layer protocol that is mainly used for
monitoring and management of IP-based networks in case of
connectivity or quality of service issues and failures.

Suppose you are going to check whether your computer can see the public
IP address 8.8.8.8  (which it should if it is connected to the internet). The
following commands will help you to check the connectivity:

$ ping 8.8.8.8

PING 8.8.8.8 (8.8.8.8): 56 data bytes

64 bytes from 8.8.8.8: icmp_seq=0 ttl=123 time=12.190 ms

64 bytes from 8.8.8.8: icmp_seq=1 ttl=123 time=25.254 ms

64 bytes from 8.8.8.8: icmp_seq=2 ttl=123 time=15.478 ms

64 bytes from 8.8.8.8: icmp_seq=3 ttl=123 time=22.287 ms

64 bytes from 8.8.8.8: icmp_seq=4 ttl=123 time=21.029 ms

64 bytes from 8.8.8.8: icmp_seq=5 ttl=123 time=28.806 ms

64 bytes from 8.8.8.8: icmp_seq=6 ttl=123 time=20.324 ms

^C

--- 8.8.8.8 ping statistics ---

7 packets transmitted, 7 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 12.190/20.767/28.806/5.194

ms

$

Shell Box 19-6: Using the ping utility to check the connectivity to the internet

As you can see in the output, it says that it has sent 7 ICMP ping packets
and none of them have been lost during transmission. This means that the



operating system behind the IP address 8.8.8.8  is up and responsive.

Note:

The public IP address 8.8.8.8  refers to the Google Public DNS
service. More can be read here:
https://en.wikipedia.org/wiki/Google_Public_DNS.

In this section, we explained how two computers can get connected via a
network. Now, we are getting close to the point where two processes can
actually get connected to each other and transmit data over a number of
LANs. For this purpose, we need another layer on top of the network layer.
That's where network programming begins.

Transport layer

So far, we have seen that two computers can get connected to each other
via a stack of three layers: the physical layer, the link layer, and the
network layer. For inter-process communication, we actually need two
processes to be connected and talking to each other. But with two
computers connected through these three layers, we can have many
processes running on each of them, and any process running on the first
machine might want to establish a connection with another process located
on the second machine. Therefore, having a connection just based on the
network layer is too general to support several distinct connections
initiated by various processes.

That's why we need another layer on top of the network layer. The
transport layer is there to address this need. While hosts are connected
through the network layer, the processes running on those hosts can get
connected through the transport layer established on top of the network
layer. Like any other layer that has its own unique identifiers or unique
addresses, this layer has a new concept as its unique identifier, usually
known as a port. We will elaborate more on this in the upcoming sections,
but before that, we have to explain the listener-connector model, which
allows two parties to communicate over a channel. In the next section, we

https://en.wikipedia.org/wiki/Google_Public_DNS


start to explain this model by giving an analogy between computer
networks and telephone networks.

Analogy of telephone networks

The best example to start with is the Public Switched Telephone Network
(or PSTN). While the similarity between computer networks and
telephone networks might not seem very promising, there are strong
similarities that allow us to explain the transport layer in a sensible
fashion.

In our analogy, the people using the telephone network are like processes
in a computer network. Therefore, a telephone call is equivalent to a
transport connection. The people are able to make calls only if the
necessary infrastructure has been installed. This is analogous to the
networking infrastructure that should be in place in order to enable
processes to communicate.

We suppose that the required underlying infrastructure is in place and it
works perfectly and, based on that, we want to have two entities residing
in these systems to make a channel and transmit data. This is analogous to
two people in the PSTN and two processes residing on two different hosts
in a computer network.

Anyone who wants to use PSTN needs to have a telephone device. This is
analogous to the requirement of having a NIC for a computer node. On top
of these devices, there are multiple layers consisting of various protocols.
These layers building up the underlying infrastructure make the creation
of a transport channel possible.

Now, in PSTN, one of the telephone devices that is connected to the PSTN
waits until it receives a call. We call this the listener side. Note that a
telephone device plugged into the PSTN always waits for a call signal
from the network and, as soon as it receives the signal, it rings.

Now, let's talk about the other side, which makes the call. Note that
making a call is equivalent to creating a transport channel. The other side
also has a telephone device that is used to make a call. The listener is



accessible through a telephone number, which can be thought of as the
address of the listener. The connector side must know this telephone
number in order to make the call. Therefore, the connector dials the
listener's telephone number and the underlying infrastructure lets the
listener know that there is an incoming call.

When the listener side answers the telephone, it accepts the incoming
connection and a channel is established between the listener and the
connector. From now on, it is up to the people sitting at each end to talk
and continue the discussion over the created PSTN channel. Note that if
one of the parties cannot understand the language of the other party, the
communication cannot continue and one of the parties hangs up the phone,
and the channel would be destroyed.

Connection-less versus connection-oriented transport
communication

The preceding analogy tries to explain the transport communication in a
computer network but, in fact, it describes connection-oriented
communication. Here, we are going to introduce and describe another type
of communication: connection-less communication. But before that, let's
have a deeper look at connection-oriented communication.

In connection-oriented communication, a specific and dedicated channel is
created for a connector. Therefore, if we have one listener communicating
with three connectors, we have three dedicated channels. It doesn't matter
how big the transmitting message is, the message will reach the other
party in the correct form without any loss inside the channel. If multiple
messages are sent to the same location, the order of the sent messages is
preserved, and the receiving process won't notice any disturbances in the
underlying infrastructure.

As we've explained in the previous sections, any message is always broken
into smaller chunks called packets while being transmitted over a
computer network. In a connection-oriented scheme however, none of the
parties, neither the listener nor the connector, will notice anything about
the underlying packet switching. Even if the sent packets are received in a



different order, the receiver's operating system will rearrange the packets
in order to reconstruct the message in its true form, and the receiver
process won't notice anything.

More than that, if one of the packets gets lost while being transmitted, the
receiver's operating system will request it again in order to revive the full
message. As an example, Transport Control Protocol (TCP) is a
transport layer protocol that behaves exactly as we have explained above.
Therefore, TCP channels are connection-oriented.

Along with connection-oriented channels, we also have connection-less
communication. In connection-oriented communication, we guarantee two
factors: the delivery of the individual packets, and the sequence of the
packets. A connection-oriented transport protocol such as TCP preserves
these factors at the same time. Conversely, a connection-less transport
protocol doesn't guarantee them.

In other words, you might have no guarantee for the delivery of the
individual packets that the message is broken into, or you might not have a
guarantee that all the packets will be in the correct order. Or you might not
have both! For instance, the User Datagram Protocol (UDP) doesn't
guarantee packet delivery or the order of the packets. Note that the
guarantee of the correctness of contents of an individual packet is
provided by the protocol in the network layer and the link layer.

Now it's time to explain two terms that are commonly used in network
programming. The stream is the sequence of bytes that is transmitted over
a connection-oriented channel. This means that connection-less
transmission effectively doesn't offer a stream of data. We have a specific
term for a unit of data being transmitted over a connection-less channel.
We call it a datagram. A datagram is a piece of data that can be delivered
as a whole in a connection-less channel. Any piece of data bigger than the
maximum datagram size cannot be surely delivered or the final sequence
might be wrong. Datagram is a concept defined in the transport layer, and
it is the counterpart concept to packet in the network layer.

For instance, regarding UDP packets, it is guaranteed that every individual
UDP datagram (packet) is transmitted correctly, but nothing more can be



said about the correlation between two adjacent datagrams (packets). It is
accepted that no integrity should exist beyond a UDP datagram, but this is
not true of TCP. In TCP, because of the guarantee of delivery and
preserving the sequence of the sent packets, we can put individual packets
aside and look at it as a stream of bytes being transmitted between two
processes.

Transport initialization sequences

In this subsection, we are going to talk about the steps that each process
takes in order to establish a transport communication. We have different
sequences for connection-oriented and connection-less schemes, so we are
going to talk about them in two following subsections separately. Note that
the difference appears only in the initialization of the channel, and after
that, both sides will use more or less the same API in order to read from
and write to the created channel.

The listener process always binds an endpoint (usually an IP address
together with a port) and the connector process always connects to that
endpoint. This is regardless of being a connection-oriented or a
connection-less channel.

Note that in the following sequences, we have assumed that there is an
IP network established between the computers hosting the listener and
connector processes.

Connection-less initialization sequences

In order to establish a connection-less communication channel, the listener
process will do the following:

1. The listener process binds a port on one of existing NICs, or even all
of them. This means that the listener process asks its host operating
system to redirect the incoming data to that port and, hence, to the
listener process. The port is simply a number between 0 and 65535 (2
bytes) and must not be already bound by another listener process.
Trying to bind a port that's already in use results in an error. Note that



in the case of binding a port on a specific NIC, the operating system
will redirect all incoming packets that are targeted at that bound port
and received on that specific NIC to the listener process.

2. The process waits and reads the messages that become available on
the created channel and responds to them by writing back to the
channel.

And the connector process will do the following:

3. It must know the IP address and the port number of the listener
process. Therefore, it tries to connect to the listener side by providing
the IP address and the port number to its host operating system. If the
target process is not listening on the specified port, or the IP address
points to an invalid or the wrong host, the connection will fail.

4. When the connection is successfully established, the connector
process can write to the channel and read from it in almost the same
way, meaning the same API that the listener process uses.

Note that beside taking the preceding steps, the listener and connector
processes should both be using the same transport protocol, otherwise the
messages cannot be read and understood by their host operating systems.

Connection-oriented initialization sequences

In a connection-oriented scenario, the listener process will follow the
following sequence in order to get initialized:

1. Bind a port, just like the connection-less scenario explained
previously. The port is exactly the same as explained in the previous
section and it follows the same constraints.

2. The listener process continues by configuring the size of its backlog.
The backlog is a queue of pending connections that are not accepted
yet by the listener process. In connection-oriented communication,
the listener side should accept incoming connections before being
able to transmit any data. After configuring the backlog, the listener
process enters listening mode.



3. Now, the listener process begins to accept incoming connections. This
is an essential step in establishing a transport channel. Only after
accepting an incoming connection can they transmit data. Note that if
the connector process sends a connection to the listener process, but
the listener process cannot accept that connection, it will remain in
the backlog until it gets either accepted or timed out. This can happen
when the listener process is too busy with other connections and it
cannot accept any further new connection. Then, the incoming
connections will pile up in the backlog and when the backlog
becomes full, new connections will be rejected immediately by the
host operating system.

The sequence of the connector process is very similar to what we
explained for the connection-less communication in the previous section.
The connector connects to a certain endpoint by providing the IP address
and the port, and after being accepted by the listener process, it can use the
same API to read from and write to the connection-oriented channel.

Since the established channel is connection-oriented, the listener process
has a dedicated channel to the connector side; therefore, they can exchange
a stream of bytes that doesn't have an upper limit in terms of the number
of bytes. Therefore, the two processes can transmit a huge amount of data,
and its correctness is guaranteed by the governing transport and network
protocols.

As the last note about the transport layer, we mentioned that the listener
processes (regardless of the underlying channel being connection-oriented
and connection-less) are required to bind an endpoint. Regarding UDP and
TCP specifically, this endpoint is made up of an IP address and a port
number.

Application layer

When a transport channel is established between two processes residing on
two different ends, they should be able to talk to each other. By talking, we
mean transmitting a series of bytes that can be understood by both ends.
As we explained in the earlier sections in this chapter, a communication



protocol is required here. Since this protocol resides in the application
layer and it is used by the processes (or the applications running as
processes), it is called an application protocol.

While there aren't many protocols used in link, network, and transport
layers and they are mostly well-known, we have numerous application
protocols that are used in the application layer. This is again analogous to
telecommunication networks. While there aren't many standards for
telephone networks, the number of languages that people use to
communicate is large, and they differ greatly. In computer networks, every
application run as a process needs to use an application protocol in order
to communicate with another process.

Therefore, the programmers either use a well-known application protocol
such as HTTP or FTP or they have to use a custom application protocol
that is designed and built locally within a team.

So far, we have discussed five layers; physical, link, network, transport,
and application. Now it's time to put all of them into a single body and use
it as a reference to design and deploy computer networks. In the following
section, we talk about the internet protocol suite.

Internet protocol suite

The network model that we see every day and that is widely applied is the
Internet Protocol Suite (IPS). IPS is mainly used on the internet, and
since pretty much all computers want to have access to the internet, they
have universally adapted to use IPS, which is not officially the standard
approved by ISO. The standard model for computer networks is Open
System Interconnections (OSI) model, which is more a theoretical model
and is almost never publicly deployed and used. IPS has the following
layers. Note that the prominent protocols in each layer are mentioned in
the following list:

Physical layer
Link layer: Ethernet, IEEE 802.11 Wi-Fi
Internet layer: IPv4, IPv6, and ICMP



Transport layer: TCP, UDP
Application layer: Numerous protocols such as HTTP, FTP, DNS, and
DHCP, and so on.

As you can see, the layers have a nice correspondence to the layers that we
discussed in this chapter, but with only one exception; the network layer is
renamed the internet layer. This is because as part of IPS, the network
protocols that are prominent in this layer are only IPv4 and IPv6. The rest
of the explanations can be applied to IPS layers. IPS is the main model
that we will be dealing with throughout this book and in the actual work
environment.

Now that we know how computer networks work, we are in a good
position to proceed and see what socket programming is. As part of the
rest of this chapter and the upcoming chapter, you will see that there is a
deep correspondence between the concepts discussed in the transport layer
and the concepts we have in socket programming.

What is socket programming?
Now that we know about the IPS model and the various network layers, it
is much easier to explain what socket programming is. Before delving into
the technical discussions regarding the socket programming, we should
define it as an IPC technique that allows us to connect two processes
residing on either the same node or two different nodes having a network
connectivity between them. If we put the single-host socket programming
aside, the other form requires us to have an operational network between
the two nodes. This very fact ties socket programming with computer
networks and all we have explained so far.

To make it more technical, we should say that socket programming mainly
happens in the transport layer. As we have already said, the transport layer
is responsible for connecting two processes over an existing internet layer
(network layer). Therefore, the transport layer is the key layer for
establishing a socket programming context. Basically, that's why you as a
programmer should know more about the transport layer and its various



protocols. Some socket programming-related bugs have their origins in the
underlying transport channel.

In socket programming, sockets are the main tools for establishing a
transport channel. Note that despite what we have discussed so far, socket
programming can go beyond transport layer or process-to-process
communications and it can include internet layer (network layer) or host-
to-host communications as well. This means that we can have internet-
layer-specific sockets as well as transport layer sockets. With this in mind,
most of the sockets that we see and work with are transport sockets and for
the rest of this chapter and the next chapter, we will mainly be talking
about transport sockets.

What is a socket?

As we have explained in the previous section, the transport layer is where
the actual socket programming is taking place. Everything above it just
makes the socket programming more specific; however, the actual
underlying channel has been established in the transport layer.

We also discussed that the internet connection (network connection) on
which the transport channel has been established is actually the connection
between the operating systems, or more specifically the kernels of those
operating systems. Therefore, there should be a concept in the kernel that
resembles a connection. More than that, there could be many established
connections initiated or accepted by the same kernel simply because there
can be several processes running and hosted in that operating system and
willing to have network connections.

The concept that we are looking for is the socket. For any established or
soon-to-be-established connection in a system, there is a dedicated socket
that identifies that connection. For a single connection made between two
processes, there is exactly one socket on each side that addresses the same
connection. As we explained before, one of these sockets belongs to the
connector side and the other one belongs to the listener side. The API that
allows us to define and manage a socket object is described by the socket
library exposed by the operating system.



Since we are mainly talking about POSIX systems, we expect to have such
a socket library as part of the POSIX API and, in fact, we do have such a
library. In the rest of this chapter, we discuss the POSIX socket library and
we explain how it can be used to establish a connection between two
processes.

POSIX socket library

Every socket object has three attributes: domain, type, and protocol. While
the manual pages of an operating system explain these attributes very
well, we want to talk about some of the values that are commonly used for
these attributes. We start with the domain attribute, which is also known as
address family (AF) or protocol family (PF). Some of the values that are
widely used can be seen in the following list. Note that these address
families support both connection-oriented and connection-less transport
connections.

AF_LOCAL  or AF_UNIX : These are local sockets, which work only
when both connector and listener processes are located on the same
host.
AF_INET : These sockets allow two processes to connect to each other
over an IPv4 connection.
AF_INET6 : These sockets allow two processes to connect to each
other over an IPv6 connection.

Note:

In some POSIX systems, in the constants used for the domain attribute,
you might find the prefix PF_  instead of AF_ . It is often the case that
AF_  constants have the same values as PF_  constants, so they can be

used interchangeably.

In the next chapter, we will demonstrate the usage of the AF_UNIX  and
AF_INET  domains, but it should be easy to find examples that use the
AF_INET6  domain. Also, there could be address families that are specific
to a certain operating system and cannot be found on other systems.



The most well-known values for the type attribute of a socket object are as
follows:

SOCK_STREAM : This means that the socket will represent a connection-
oriented transport communication that guarantees delivery,
correctness, and the order of the sent content. As we've explained
streams in the previous sections, the term STREAM  also suggests this.
Note that, at this point, you cannot predict that the actual underlying
transport protocol is TCP because this is not true regarding local
sockets that belong to the AF_UNIX  address family.
SOCK_DGRAM : This means that the socket will represent a connection-
less transport communication. Note that the term datagram,
abbreviated as DGRAM , like we explained in the previous sections,
refers to a series of bytes that cannot be seen as a stream. Instead,
they can be seen as some individual chunks of data that are called
datagrams. In a more technical context, a datagram represents a
packet of data transmitted over a network.
SOCK_RAW : A raw socket can represent both connection-oriented and
connection-less channels. The main difference between SOCK_RAW
and SOCK_DGRAM  or SOCK_STREAM  is that the kernel actually knows
about the underlying used transport protocol (UDP or TCP) and it can
parse a packet and extract the header and the content. But with a raw
socket, it doesn't do so, and it is up to the program that has opened the
socket to read and extract various sections.

In other words, when using SOCK_RAW , the packets are delivered
directly to the program and it should extract and understand the
packet structure itself. Note that if the underlying channel is a stream
channel (connection-oriented), the recovery of lost packets and
packet reordering are not done by the kernel, and the program should
do them itself. This implies that recovery and packet reordering are
actually done by the kernel when you select TCP as your transport
protocol.

The third attribute, protocol, identifies the protocol that should be used for
the socket object. Since most address families, together with the type,
determine a certain protocol, this attribute can be chosen by the operating



system upon the socket creation. In circumstances when we have multiple
possible protocols, this attribute should be defined.

Socket programming offers solutions for both single-host and multiple-
host IPC. In other words, while it is quite possible to connect two
processes located on two different hosts and in two different LANs using
internet (network) sockets, it is totally possible to connect two processes
residing on the same host using Unix domain sockets.

As the last note in this section, we should add that socket connections are
bidirectional and full-duplex. This means that both parties can read from
and write to the underlying channel without interfering with the other end.
This is a desired feature because it is usually a requirement in most IPC-
related scenarios.

Now that you have been introduced to the concept of sockets, we have to
revisit the sequences that we explained in the previous sections regarding
listener and connector processes. But this time, we dive into more detail
and describe how sockets can be used to perform these sequences.

Revisiting listener-connector sequences

As we mentioned before, as part of computer networks, in almost every
connection one of the ends is always listening for incoming connections,
and the other end tries to connect to the listener side. We also discussed an
example regarding a telephone network, explaining how a telephone is
used to listen to an incoming call, and how it can be used to make calls
and connect to other listening devices. A similar situation exists in socket
programming. Here, we want to explore the sequences that should be
followed by the processes at two different ends in order to establish a
successful transport connection.

In the following subsections, we will go deeper into the details of socket
creation and the various operations that should be performed by both
processes that want to engage in a connection. The sequences explained in
the following subsections for the listener and connector processes are
infrastructure agnostic and benefit from the generalization that socket
programming provides over the various underlying transport connections.



As you should remember, we discussed the listener and connector
sequences regarding connection-oriented and connection-less
communications separately. We take the same approach here, and we
firstly start with the stream (connection-oriented) listener sequence.

Stream listener sequence

The following steps should be followed by a process that wants to listen
for new stream connections. You have been introduced to the binding,
listening, and accepting phases in the previous sections, but here we will
talk about them from a socket programming perspective. Note that most of
the actual functionality is provided by the kernel and the process only
needs to call the right functions from the socket library in order to put
itself into listening mode:

1. The process should create a socket object using the socket  function.
This socket object is usually called a listener socket. The socket
object represents the whole listener process, and it will be used to
accept new connections. Depending on the underlying channel, the
arguments sent to the socket  function can vary. We could pass either
AF_UNIX  or AF_INET  as the address family of the socket, but we have
to use SOCK_STREAM  as the type of the socket because we are going to
have a stream channel. The protocol attribute of the socket object can
be determined by the operating system. For example, if you choose
AF_INET  and SOCK_STREAM  for a socket object, TCP will be selected
by default for the protocol attribute.

2. Now, the socket must be bound to an endpoint that is reachable by the
connector processes using the bind  function. The details of the
chosen endpoint heavily depend on the chosen address family. For
example, for an internet channel, the endpoint should be a
combination of an IP address and a port. For a Unix domain socket,
the endpoint should be the path to a socket file located on the
filesystem.

3. The socket must be configured for listening. Here, we use the listen
function. As we have explained before, it simply creates a backlog for
the listener socket. The backlog is a list of awaiting connections that
have not yet been accepted by the listener process. While the listener



process cannot accept new incoming connections, the kernel will keep
the incoming connections in the corresponding backlog until the
listener process becomes free and starts to accept them. Once the
backlog is full, any further incoming connections will be rejected by
the kernel. Choosing a low size for the backlog can lead to many
connections being rejected when the listener process is congested and
choosing a large size can lead to a pile of awaiting connections that
will eventually get timed out and disconnected. The backlog size
should be chosen according to the dynamics of the listener program.

4. After configuring the backlog, it is time to accept the incoming
connections. For every incoming connection, the accept  function
should be called. Therefore, it is a widely used pattern to have the
accept  called in a never-ending loop. Whenever the listener process
stops accepting new connections, the connector processes are put into
the backlog and once the backlog is full, they get rejected. Note that
every call to the accept  function simply picks up the next
connection waiting in the socket's backlog. If the backlog is empty
and if the listener socket is configured to be blocking, then any call to
the accept  function will be blocked until a new connection comes in.

Note that the accept  function returns a new socket object. This means
that the kernel dedicates a new unique socket object to every accepted
connection. In other words, a listener process that has accepted 100 clients
is using at least 101 sockets: 1 for the listener socket and 100 sockets for
its incoming connections. The returned socket from the accept  function
should be used for further communication with the client sitting at the
other end of the channel.

Note that this sequence of function calls remains the same for all types of
the stream (connection-oriented) socket-based IPC. In the next chapter, we
show real examples of how these steps should be programmed using C. In
the next subsection, we deal with the stream connector sequence.

Stream connector sequence

When the connector process wants to connect to a listener process that is
already in listening mode, it should follow the following sequence. Note



that the listener process should be in listening mode, otherwise the
connection will get refused by the kernel of the target host:

1. The connector process should create a socket by calling the socket
function. This socket will be used to connect to the target process.
The characteristics of this socket should be similar or at least
compatible with those we set for the listener socket, otherwise, we
cannot establish a connection. Therefore, we need to set the same
address family that we set for the listener socket. And the type should
remain SOCK_STREAM .

2. Then it should use the connect  function by passing the arguments
that uniquely identify the listener endpoint. The listener endpoint
should be reachable by the connector process and it should have been
made available by the target process. If the connect  function
succeeds, it means that the connection has been accepted by the target
process. Before this point, the connection might be waiting in the
backlog of the target process. If the specified target endpoint is not
available for any reason, the connection will fail, and the connector
process will receive an error.

Just like accept  function call in the listener process, the connect
function returns a socket object. This socket identifies the connection and
should be used for further communication with the listener process. In the
upcoming chapter, we will give a demonstration of the preceding
sequences in the calculator example.

Datagram listener sequence

A datagram listener process will do the following in order to get
initialized:

1. Like the stream listener, the datagram listener process creates a
socket object by calling the socket  function. But this time, it must
set the socket's type attribute as SOCK_DGRAM .

2. Now that the listener socket has been created, the listener process
should bind it to an endpoint. The endpoint and its constraints are



very similar to the stream listener end. Note that there won't be a
listening mode or an accepting phase for a datagram listener socket
because the underlying channel is connection-less, and we can't have
a dedicated session for each incoming connection.

As explained, there is no listening mode or accepting phase with a
datagram server socket. Also, the datagram listeners should use the
recvfrom  and sendto  functions in order to read from and write back to a
connector process. Reads can still be done using the read  function, but
writing the responses cannot be done just using a simple write  function
call. You will see why when we look at the datagram listener example as
part of the upcoming chapter.

Datagram connector sequence

A datagram connector has almost the same sequence as a stream
connector. The only difference is the socket type, which must be
SOCK_DGRAM  for the datagram connector. One special case for datagram
Unix domain connector sockets is that they have to bind to a Unix domain
socket file in order to receive the responses from the server. We will
elaborate on this in the upcoming chapter as part of the datagram
calculator example when using Unix domain sockets.

Now that we have gone through all the possible sequences, it's time to
explain how sockets and socket descriptors are related. This is last section
in this chapter, and by starting the next chapter, we will be giving real C
examples that cover all the sequences.

Sockets have their own descriptors!

Unlike other push-based IPC techniques that work with file descriptors,
socket-based techniques deal with socket objects. Every socket object is
referred to by an integer value, which is a socket descriptor inside the
kernel. This socket descriptor can be used to refer to the underlying
channel.

Note that file descriptors and socket descriptors are different. File
descriptors refer to a regular file or a device file while socket descriptors



refer to socket objects created by socket , accept , and connect  function
calls.

While the file descriptors and socket descriptors are different, we still can
use the same API or set of functions to read from and write to them.
Therefore, it is possible to use read  and write  functions to work with
sockets just like files.

These descriptors have another similarity; both of them can be configured
to be non-blocking via the same API. Non-blocking descriptors can be
used to work with the behind file or socket in a non-blocking fashion.

Summary
In this chapter, we started to talk about IPC techniques that allow two
processes to communicate and transmit data. Our discussion in this
chapter will be complete in the upcoming chapter where we talk
specifically about socket programming, and we will give various real C
examples.

As part of this chapter, we covered the following topics:

Pull-based and push-based IPC techniques and how they are different
and similar.
We compared single-host IPC techniques versus multiple-host IPC
techniques.
You learned about communication protocols and their various
characteristics.
We went over the serialization and deserialization concepts and how
they operate to fulfill a certain communication protocol.
We explained how the content, length, and the sequentiality features
of protocols can affect receiver processes.
We explained POSIX pipes and demonstrated how to use them with
an example.



You saw what a POSIX message queue is and how it can be used to
enable two processes to communicate.
We briefly explained Unix domain sockets and their basic properties.
We explained what computer networks are and how the stack of
various network layers can lead to a transport connection.
We explained what socket programming is.
We explained the initialization sequences of listener and connector
processes and the steps they take to become initialized.
We compared file descriptors and socket descriptors.

In the next chapter, we continue our discussion about socket programming
with a focus on providing real C examples. We will define an example of a
calculator client and a calculator server. After that, we will use both Unix
domain sockets and internet sockets to establish a fully functional client-
server communication between the calculator client and its server.



Chapter 20
Socket Programming

In the previous chapter, we discussed single-host IPC and gave an
introduction to socket programming. In this chapter, we want to complete
our introduction and address socket programming in depth using a real
client-server example: the calculator project.

The order of topics in this chapter might seem a bit unusual, but the
purpose is to give you a better understanding about various types of
sockets and how they behave in a real project. As part of this chapter, we
discuss the following topics:

Firstly, we give a review on what we explained in the previous
chapter. Note that this review is just a short recap, and it is a must for
you to read the second part of the previous chapter dedicated to
socket programming.
As part of the recap we discuss various types of sockets, stream and
datagram sequences, and some other topics that are essential for our
continuation of our calculator example.
The client-server example, the calculator project, is described and
fully analyzed. This prepares us to continue with various components
in the example and to present C code.
As a critical component of the example, a serializer/deserializer
library is developed. This library is going to represent the main
protocol used between a calculator client and its server.
It is crucial to understand that a calculator client and a calculator
server must be able to communicate over any type of socket.
Therefore, we present various types of sockets integrated within the



example and as the starting point, Unix domain sockets (UDS) are
introduced.
We show in our example how they are used to establish a client-
server connection in a single-host setup.
To continue with other types of sockets, we discuss network sockets.
We present how TCP and UDP sockets can be integrated within the
calculator project.

Let's begin the chapter with a summary of what we know about sockets
and socket programming in general. It is highly recommended that you
familiarize yourself with the second half of the previous chapter before
delving into this chapter, as we assume some pre-existing knowledge here.

Socket programming review
In this section, we are going to discuss what sockets are, what their various
types are, and generally what it means if we say that we are doing socket
programming. This is going to be a short review, but it is essential to build
this basis so that we can continue into deeper discussion in subsequent
sections.

If you remember from the previous chapters, we have two categories of
IPC techniques to be used by two or more processes to communicate and
share data. The first category contains pull-based techniques that require
an accessible medium (such as a shared memory or a regular file) to store
data to and retrieve data from. The second category contains push-based
techniques. These techniques require a channel to be established and the
channel should be accessible by all processes. The main difference
between these categories is regarding the way that data is retrieved from a
medium in pull-based techniques, or a channel in push-based techniques.

To put it simply, in pull-based techniques, the data should be pulled or read
from the medium, but in push-based techniques the data is pushed or
delivered to the reader process automatically. In pull-based techniques,



since the processes pull data from a shared medium, it is prone to race
conditions if a number of them can write to that medium.

To be more exact about push-based techniques, the data is always
delivered to a buffer in the kernel and that buffer is accessible to the
receiver process through using a descriptor (file or socket).

Then the receiver process can either block until some new data is available
on that descriptor or it can poll the descriptor to see if the kernel has
received some new data on that descriptor and if not, continue to some
other work. The former approach is blocking I/O and the latter is non-
blocking I/O or asynchronous I/O. In this chapter, all push-based
techniques use the blocking approach.

We know that socket programming is a special type of IPC that belongs to
the second category. Therefore, all socket-based IPCs are push-based. But
the main characteristic that distinguishes socket programming from other
push-based IPC techniques is the fact that in socket programming we use
sockets. Sockets are special objects in Unix-like operating systems, even
in Microsoft Windows which is not Unix-like, that represent two-way
channels.

In other words, a single socket object can be used to both read from and
write to the same channel. This way, two processes located at two sides of
the same channel can have two-way communication.

In the previous chapter, we saw that sockets are represented by socket
descriptors, just like files that are represented by file descriptors. While
socket descriptors and file descriptors are similar in certain ways such as
I/O operation and being poll-able, they are in fact different. A single
socket descriptor always represents a channel, but a file descriptor can
represent a medium such as a regular file, or a channel like a POSIX pipe.
Therefore, certain operations related to files such as seek are not supported
for socket descriptors, and even for a file descriptor when it represents a
channel.

Socket-based communication can be connection-oriented or connection-
less. In connection-oriented communication, the channel represents a



stream of bytes being transmitted between two specific processes, while in
connection-less communication, datagrams can be transmitted along the
channel and there is no specific connection between two processes. A
number of processes can use the same channel for sharing states or
transmitting data.

Therefore, we have two types of channels: stream channels and datagram
channels. In a program, every stream channel is represented by a stream
socket and every datagram channel is represented by a datagram socket.
When setting up a channel, we have to decide if it should be either stream
or datagram. We shortly see that our calculator example can support both
channels.

Sockets have various types. Each type of socket exists for a certain usage
and a certain situation. Generally, we have two types of socket: UDS and
network sockets. As you may know and as we've explained in the previous
chapter, UDS can be used whenever all the processes willing to participate
in an IPC are located on the same machine. In other words, UDS can be
used only in single-host deployments.

In contrast, network sockets can be used in almost any deployment no
matter how processes are deployed and where they are located. They can
be all on the same machine, or they can be distributed throughout a
network. In case of having a single-host deployment, UDS are preferred
because they are faster, and they have less overhead in comparison to
network sockets. As part of our calculator example, we provide the support
for both UDS and network sockets.

UDS and network sockets can represent both stream and datagram
channels. Therefore, we have four varieties: UDS over a stream channel,
UDS over a datagram channel, network socket over a stream channel, and
finally network socket over a datagram channel. All these four variations
are covered by our example.

A network socket offering a stream channel is usually a TCP socket. That's
because, most of the time, we are using TCP as the transport protocol for
such a socket. Likewise, a network socket offering a datagram channel is
usually a UDP socket. That's because, most of the time, we are using UDP



as the transport protocol for such a socket. Note that UDS socket offering
either stream or datagram channels don't have any specific names because
there is no underlying transport protocol.

In order to write actual C code for the different types of sockets and
channels, it is better to do it when you are working on a real example.
That's basically why we have taken this unusual approach. This way, you'll
notice the common parts between various types of sockets and the
channels, and we can extract them as units of code that can be reused
again. In the next section, we are going to discuss the calculator project
and its internal structure.

Calculator project
We are dedicating a separate section to explain the purpose of the
calculator project. It is a lengthy example and thus it will be helpful to
have a firm grounding before diving into it. The project should help you to
achieve the following goals:

Observe a fully functional example that has a number of simple and
well-defined functionalities.
Extract common parts among the various types of sockets and
channels and have them as some reusable libraries. This reduces the
amount of code we write significantly, and from a learning point of
view, it shows you the boundaries that are common between various
types of sockets and channels.
Maintain communication using a well-defined application protocol.
Ordinary socket programming examples lack this very important
feature. They generally address very simple, and usually one-time,
communication scenarios between a client and its server.
Work on an example that has all the ingredients required for a fully
functional client-server program such as an application protocol,
supporting various types of channels, having serializer/deserializer,



and so on, giving you a different perspective regarding socket
programming.

With all that being said, we are going to present this project as our main
example in this chapter. We do it step by step, and I will guide you through
the various steps that culminate in a complete and working project.

The first step is to come up with a relatively simple and complete
application protocol. This protocol is going to be used between the clients
and the server. As we explained before, without a well-defined application
protocol, the two parties cannot communicate. They can be connected and
transmit data because that's the functionality that the socket programming
offers, but they cannot understand each other.

That's why we have to dedicate a bit of time to understand the application
protocol used in the calculator project. Before talking about the
application protocol, let's present the source hierarchy that can be seen in
the project code base. Then, we can find the application protocol and the
associated serializer/deserializer library much easier in the project code
base.

Source hierarchy
From a programmer's point of view, the POSIX socket programming API
treats all the stream channels the same no matter whether the associated
socket object is a UDS or a network socket. If you remember from the
previous chapter, for stream channels, we had certain sequences for the
listener-side and for the connector-side, and these sequences remain the
same for different types of stream sockets.

Therefore, if you are going to support various types of sockets, together
with various types of channels, it is better to extract the common part and
write it once. That's exactly the approach that we take regarding the
calculator project and that's what you see in the source code. Therefore, it
is expected to see various libraries in the project and some of them contain
the common code that is reused by other parts of the code.



Now, it's time to delve into the code base. First of all, the source code of
the project can be found here:
https://github.com/PacktPublishing/Extreme-

C/tree/master/ch20-socket-programming. If you open the
link and have a look at the code base, you see there are a number of
directories that contain multiple source files. Obviously, we cannot
demonstrate all of them because this would take too long, but we are going
to explain important parts of the code. You are encouraged to look at the
code and go through it, then try to build and run it; this will give you an
idea of how the example has been developed.

Note that all the code relating to the examples of UDS, UDP sockets, and
TCP sockets has been put in a single hierarchy. Next, we are going to
explain the source hierarchy and the directories you find as part of the
code base.

If you go to the root of the example and use the tree  command to show
the files and directories, you will find something similar to Shell Box 20-1.

The following shell box demonstrates how to clone the book's GitHub
repository and how to navigate to the root of the example:

$ git clone https://github.com/PacktPublishing/Extreme-C

Cloning into 'Extreme-C'...

...

Resolving deltas: 100% (458/458), done.

$ cd Extreme-C/ch20-socket-programming

$ tree

.

├── CMakeLists.txt

├── calcser

...

├── calcsvc

...

├── client

│   ├── CMakeLists.txt

│   ├── clicore

...

│   ├── tcp

│   │   ├── CMakeLists.txt

│   │   └── main.c

│   ├── udp

https://github.com/PacktPublishing/Extreme-C/tree/master/ch20-socket-programming


│   │   ├── CMakeLists.txt

│   │   └── main.c

│   └── Unix

│   ├── CMakeLists.txt

│   ├── datagram

│   │   ├── CMakeLists.txt

│   │   └── main.c

│   └── stream

│   ├── CMakeLists.txt

│   └── main.c

├── server

│   ├── CMakeLists.txt

│   ├── srvcore

...

│   ├── tcp

│   │   ├── CMakeLists.txt

│   │   └── main.c

│   ├── udp

│   │   ├── CMakeLists.txt

│   │   └── main.c

│   └── Unix

│   ├── CMakeLists.txt

│   ├── datagram

│   │   ├── CMakeLists.txt

│   │   └── main.c

│   └── stream

│   ├── CMakeLists.txt

│   └── main.c

└── types.h

18 directories, 49 files

$

Shell Box 20-1: Cloning the calculator project's code base and listing the files and directories

As you can see in the listing of files and directories, the calculator project
is made up of a number of parts, some of them being libraries, and each of
them having its own dedicated directory. Next, we explain these
directories:

/calcser : This is the serializer/deserializer library. It contains the
serialization/deserialization-related source files. This library dictates
the application protocol that is defined between a calculator client
and a calculator server. This library is eventually built into a static
library file named libcalcser.a .



/calcsvc : This library contains the sources for the calculation
service. The calculation service is different from the server process.
This service library contains the core functionality of the calculator
and it is agnostic regarding being behind a server process and can be
used individually as a separate standalone C library. This library
eventually gets built into a static library file named libcalcsvc.a .
/server/srvcore : This library contains the sources that are common
between the stream and the datagram server processes, regardless of
the socket type. Therefore, all calculator server processes, whether
using UDS or network sockets, and whether operating on stream or
datagram channels, can rely on this common part. The final output of
this library is a static library file named libsrvcore.a .
/server/unix/stream : This directory contains the sources for a
server program using stream channels behind a UDS. The final build
result of this directory is an executable file named
unix_stream_calc_server . This is one of the possible output
executables in this project that we can use to bring up a calculator
server, this one listening on a UDS to receive stream connections.
/server/unix/datagram : This directory contains the sources for a
server program using datagram channels behind a UDS. The final
build result of this directory is an executable file named
unix_datagram_calc_server . This is one of the possible output
executables in this project that we can use to bring up a calculator
server, this one listening on a UDS to receive datagram messages.
/server/tcp : This directory contains the sources for a server
program using stream channels behind a TCP network socket. The
final build result of this directory is an executable file named
tcp_calc_server . This is one of the possible output executables in
this project that we can use to bring up a calculator server, this one
listening on a TCP socket to receive stream connections.
/server/udp : This directory contains the sources for a server
program using datagram channels behind a UDP network socket. The
final build result of this directory is an executable file named
udp_calc_server . This is one of the possible output executables in
this project that we can use to bring up a calculator server, this one
listening on a UDP socket to receive datagram messages.



/client/clicore : This library contains the sources that are common
between the stream and the datagram client processes, regardless of
the socket type. Therefore, all calculator client processes, no matter
whether they are using UDS or network sockets, and no matter
operating on stream or datagram channels, can rely on this common
part. It would be built into a static library file named libclicore.a .
/client/unix/stream : This directory contains the sources for a client
program using stream channels behind a UDS. The final build result
of this directory is an executable file named
unix_stream_calc_client . This is one of the possible output
executables in this project that we can use to start a calculator client,
this one connecting to a UDS endpoint and establishing a stream
connection.
/client/unix/datagram : This directory contains the sources for a
client program using datagram channels behind a UDS. The final
build result of this directory is an executable file named
unix_datagram_calc_client . This is one of the possible output
executables in this project that we can use to start a calculator client,
this one connecting to a UDS endpoint and sending some datagram
messages.
/client/tcp : This directory contains the sources for a client
program using stream channels behind a TCP socket. The final build
result of this directory is an executable file named tcp_calc_client .
This is one of the possible output executables in this project that we
can use to start a calculator client, this one connecting to a TCP
socket endpoint and establishing a stream connection.
/client/udp : This directory contains the sources for a client
program using datagram channels behind a UDP socket. The final
build result of this directory is an executable file named
udp_calc_client . This is one of the possible output executables in
this project that we can use to start a calculator client, this one
connecting to a UDP socket endpoint and sending some datagram
messages.

Build the project



Now that we have gone through all the directories in the project, we need
to show how to build it. The project uses CMake, and you should have it
installed before moving on to build the project.

In order to build the project, run the following commands in the chapter's
root directory:

$ mkdir -p build

$ cd build

$ cmake ..

...

$ make

...

$

Shell Box 20-2: The commands to build the calculator project

Run the project
There is nothing like running a project to see for yourself how it works.
Therefore, before delving into technical details, I want you to bring up a
calculator server, and then a calculator client, and finally see how they talk
to each other.

Before running the processes, you need to have two separate Terminals (or
shells) in order to enter two separate commands. In the first Terminal, in
order to run a stream server listening on UDS, type the following
command.

Note that you need to be in the build  directory before entering the
following command. The build  directory was made as part of the
previous section, Build the Project:

$ ./server/unix/stream/unix_stream_calc_server

Shell Box 20-3: Running a stream server listening on a UDS



Ensure the server is running. In the second Terminal, run the stream client
built for using UDS:

$ ./client/unix/stream/unix_stream_calc_client

? (type quit to exit) 3++4

The req(0) is sent.

req(0) > status: OK, result: 7.000000

? (type quit to exit) mem

The req(1) is sent.

req(1) > status: OK, result: 7.000000

? (type quit to exit) 5++4

The req(2) is sent.

req(2) > status: OK, result: 16.000000

? (type quit to exit) quit

Bye.

$

Shell Box 20-4: Running the calculator client and sending some requests

As you see in the preceding shell box, the client process has its own
command line. It receives some commands from the user, turns them into
some requests according to the application protocol, and sends them to the
server for further processing. Then, it waits for the response and, as soon
as it receives it, prints the result. Note that this command line is part of the
common code written for all clients and therefore, no matter the channel
type or socket type the client is using, you always see the client command
line.

Now, it's time to jump into the details of the application protocol and see
how request and response messages look like.

Application protocol
Any two processes willing to communicate must obey an application
protocol. This protocol can be custom, like the calculator project, or it can
be one of the well-known protocols like HTTP. We call our protocol the
calculator protocol.



The calculator protocol is a variable-length protocol. In other words, every
message has its own length and every message should be separated from
the next one using a delimiter. There is only one type of request message
and one type of response message. The protocol is also textual. It means
that we use only alphanumerical characters together with a few other
characters as valid characters in request and response messages. In other
words, the calculator messages are human-readable.

The request message has four fields: request ID, method, first operand,
and second operand. Every request has a unique ID and the server uses this
ID to relate a response to its corresponding request.

The method is an operation that can be performed by the calculator
service. Next, you can see the calcser/calc_proto_req.h  header file. This
file describes the calculator protocol's request message:

#ifndef CALC_PROTO_REQ_H

#define CALC_PROTO_REQ_H

#include <stdint.h>

typedef enum {

NONE,

GETMEM, RESMEM,

ADD, ADDM,

SUB, SUBM,

MUL, MULM,

DIV

} method_t;

struct calc_proto_req_t {

int32_t id;

method_t method;

double operand1;

double operand2;

};

method_t str_to_method(const char*);

const char* method_to_str(method_t);

#endif

Code Box 20-1 [calcser/calc_proto_req.h]: Definition of the calculator request object

As you can see, we have nine methods defined as part of our protocol. As a
good calculator, our calculator has an internal memory, and because of that



we have memory operations associated with addition, subtraction, and
multiplication.

For example, the ADD  method simply adds two float numbers, but the
ADDM  method is a variation of the ADD  method that adds those two
numbers together with the value stored in the internal memory, and finally
it updates the value in the memory for further use. It is just like when you
use the memory button on your desktop calculator. You can find that
button marked as +M.

We also have a special method for reading and resetting the calculator's
internal memory. The division method cannot be performed on the internal
memory, so we don't have any other variation.

Suppose that the client wants to create a request with ID 1000 , using the
ADD  method, and with 1.5  and 5.6  as the operands. In C, it needs to
create an object from the calc_proto_req_t  type (the structure declared
in the preceding header as part of Code Box 20-1) and fill it with the
desired values. Next, you can see how to do it:

struct calc_proto_req_t req;

req.id = 1000;

req.method = ADD;

req.operand1 = 1.5;

req.operand2 = 5.6;

Code Box 20-2: Creating a calculator request object in C

As we explained in the previous chapter, the req  object in the preceding
code box needs to be serialized to a request message before being sent to
the server. In other words, we need to serialize the preceding request
object to the equivalent request message. The serializer in the calculator
project, according to our application protocol, serializes the req  object as
follows:

1000#ADD#1.5#5.6$

Code Box 20-3: The serialized message equivalent to the req object defined in Code Box 20-2



As you can see, the #  character is used as the field delimiter, and the $
character is used as the message separator. In addition, each request
message has exactly four fields. A deserializer object on the other side of
the channel uses these facts to parse the incoming bytes and revive the
request object again.

Conversely, the server process needs to serialize the response object while
replying to a request. A calculator response object has three fields: request
ID, status, and result. The request ID determines the corresponding
request. Every request has a unique ID and this way, the server specifies
the request that it wants to respond to.

The calcser/calc_proto_resp.h  header file describes what a calculator
response should look like, and you can see it in the following code box:

#ifndef CALC_PROTO_RESP_H

#define CALC_PROTO_RESP_H

#include <stdint.h>

#define STATUS_OK 0

#define STATUS_INVALID_REQUEST 1

#define STATUS_INVALID_METHOD 2

#define STATUS_INVALID_OPERAND 3

#define STATUS_DIV_BY_ZERO 4

#define STATUS_INTERNAL_ERROR 20

typedef int status_t;

struct calc_proto_resp_t {

int32_t req_id;

status_t status;

double result;

};

#endif

Code Box 20-4 [calcser/calc_proto_resp.h]: Definition of the calculator response object

Similarly, in order to create a response object for the preceding request
object, req , mentioned in Code Box 20-2, the server process should do
this:

struct calc_proto_resp_t resp;

resp.req_id = 1000;

resp.status = STATUS_OK;

resp.result = 7.1;



Code Box 20-5: Creating a response object for the request object req defined as part of Code
Box 20-2

The preceding response object is serialized as follows:

1000#0#7.1$

Code Box 20-6: The serialized response message equivalent to the resp object created in the
Code Box 20-5

Again, we use #  as the field delimiter and $  as the message separator.
Note that the status is numerical, and it indicates the success or failure of
the request. In the case of failure, it is a non-zero number, and its meaning
is described in the response header file, or to be exact, in the calculator
protocol.

Now, it is time to talk a bit more about the serialization/deserialization
library and what its internals look like.

Serialization/deserialization library
In the previous section, we described how the request and response
messages look like. In this section, we are going to talk a bit more about
the serializer and deserializer algorithms used in the calculator project. We
are going to use the serializer  class, with calc_proto_ser_t  as its
attribute structure, for providing the serialization and deserialization
functionalities.

As said before, these functionalities are provided to other parts of the
project as a static library named libcalcser.a . Here, you can see the
public API of the serializer  class found in calcser/calc_proto_ser.h :

#ifndef CALC_PROTO_SER_H

#define CALC_PROTO_SER_H

#include <types.h>

#include "calc_proto_req.h"



#include "calc_proto_resp.h"

#define ERROR_INVALID_REQUEST 101

#define ERROR_INVALID_REQUEST_ID 102

#define ERROR_INVALID_REQUEST_METHOD 103

#define ERROR_INVALID_REQUEST_OPERAND1 104

#define ERROR_INVALID_REQUEST_OPERAND2 105

#define ERROR_INVALID_RESPONSE 201

#define ERROR_INVALID_RESPONSE_REQ_ID 202

#define ERROR_INVALID_RESPONSE_STATUS 203

#define ERROR_INVALID_RESPONSE_RESULT 204

#define ERROR_UNKNOWN 220

struct buffer_t {

char* data;

int len;

};

struct calc_proto_ser_t;

typedef void (*req_cb_t)(

void* owner_obj,

struct calc_proto_req_t);

typedef void (*resp_cb_t)(

void* owner_obj,

struct calc_proto_resp_t);

typedef void (*error_cb_t)(

void* owner_obj,

const int req_id,

const int error_code);

struct calc_proto_ser_t* calc_proto_ser_new();

void calc_proto_ser_delete(

struct calc_proto_ser_t* ser);

void calc_proto_ser_ctor(

struct calc_proto_ser_t* ser,

void* owner_obj,

int ring_buffer_size);

void calc_proto_ser_dtor(

struct calc_proto_ser_t* ser);

void* calc_proto_ser_get_context(

struct calc_proto_ser_t* ser);

void calc_proto_ser_set_req_callback(

struct calc_proto_ser_t* ser,

req_cb_t cb);

void calc_proto_ser_set_resp_callback(

struct calc_proto_ser_t* ser,

resp_cb_t cb);

void calc_proto_ser_set_error_callback(

struct calc_proto_ser_t* ser,

error_cb_t cb);

void calc_proto_ser_server_deserialize(

struct calc_proto_ser_t* ser,

struct buffer_t buffer,

bool_t* req_found);



struct buffer_t calc_proto_ser_server_serialize(

struct calc_proto_ser_t* ser,

const struct calc_proto_resp_t* resp);

void calc_proto_ser_client_deserialize(

struct calc_proto_ser_t* ser,

struct buffer_t buffer,

bool_t* resp_found);

struct buffer_t calc_proto_ser_client_serialize(

struct calc_proto_ser_t* ser,

const struct calc_proto_req_t* req);

#endif

Code Box 20-7 [calcser/calc_proto_ser.h]: The public interface of the Serializer class

Apart from the constructor and destructor functions required for creating
and destroying a serializer object, we have a pair of functions that should
be used by the server process, and another pair of functions that should be
used by the client process.

On the client side, we serialize the request object and we deserialize the
response message. Meanwhile on the server side, we deserialize the
request message and we serialize the response object.

In addition to serialization and deserialization functions, we have three
callback functions:

A callback for receiving a request object that has been deserialized
from the underlying channel
A callback for receiving a response object that has been deserialized
from the underlying channel
A callback for receiving the error when a serialization or a
deserialization has failed

These callbacks are used by client and server processes to receive
incoming requests and responses and also the errors that are found during
serialization and deserialization of a message.

Now, let's have a deeper look at serialization/deserialization functions for
the server side.



Server-side serializer/deserializer functions

We have two functions for the server process to serialize a response object
and deserialize a request message. We begin with the response
serialization function.

The following code box contains the code for the response serialization
function calc_proto_ser_server_serialize :

struct buffer_t calc_proto_ser_server_serialize(

struct calc_proto_ser_t* ser,

const struct calc_proto_resp_t* resp) {

struct buffer_t buff;

char resp_result_str[64];

_serialize_double(resp_result_str, resp->result);

buff.data = (char*)malloc(64 * sizeof(char));

sprintf(buff.data, "%d%c%d%c%s%c", resp->req_id,

FIELD_DELIMITER, (int)resp->status, FIELD_DELIMITER,

resp_result_str, MESSAGE_DELIMITER);

buff.len = strlen(buff.data);

return buff;

}

Code Box 20-8 [calcser/calc_proto_ser.c]: The server-side response serializer function

As you can see, resp  is a pointer to a response object that needs to be
serialized. This function returns a buffer_t object , which is declared as
follows as part of the calc_proto_ser.h  header file:

struct buffer_t {

char* data;

int len;

};

Code Box 20-9 [calcser/calc_proto_ser.h]: The definition of buffer_t

The serializer code is simple and it consists mainly of a sprintf
statement that creates the response string message. Now, let's look at the
request deserializer function. Deserialization is usually more difficult to
implement, and if you go to the code base and follow the function calls,
you see how complicated it can be.



Code Box 20-9 contains the request deserialization function:

void calc_proto_ser_server_deserialize(

struct calc_proto_ser_t* ser,

struct buffer_t buff,

bool_t* req_found) {

if (req_found) {

*req_found = FALSE;

}

_deserialize(ser, buff, _parse_req_and_notify,

ERROR_INVALID_REQUEST, req_found);

}

Code Box 20-9 [calcser/calc_proto_ser.c]: The server-side request deserialization function

The preceding function seems to be simple, but in fact it uses the
_deserialize  and _parse_req_and_notify  private functions. These
functions are defined in the calc_proto_ser.c  file, which contains the
actual implementation of the Serializer  class.

It would be intense and beyond the scope of this book to bring in and
discuss the code we have for the mentioned private functions, but to give
you an idea, especially for when you want to read the source code, the
deserializer uses a ring buffer with a fixed length and tries to find $  as the
message separator.

Whenever it finds $ , it calls the function pointer, which in this case
points to the _parse_req_and_notify  function (the third argument passed
in the _deserialize  function). The _parse_req_and_notify  function tries
to extract the fields and resurrect the request object. Then, it notifies the
registered observer, in this case the server object that is waiting for a
request through the callback functions, to proceed with the request object.

Now, let's look at the functions used by the client side.

Client-side serializer/deserializer functions

Just as for the server side, we have two functions on the client side. One
for serializing the request object, and the other one meant to deserialize



the incoming response.

We begin with the request serializer. You can see the definition in Code
Box 20-10:

struct buffer_t calc_proto_ser_client_serialize(

struct calc_proto_ser_t* ser,

const struct calc_proto_req_t* req) {

struct buffer_t buff;

char req_op1_str[64];

char req_op2_str[64];

_serialize_double(req_op1_str, req->operand1);

_serialize_double(req_op2_str, req->operand2);

buff.data = (char*)malloc(64 * sizeof(char));

sprintf(buff.data, "%d%c%s%c%s%c%s%c", req->id,

FIELD_DELIMITER,

method_to_str(req->method), FIELD_DELIMITER,

req_op1_str, FIELD_DELIMITER, req_op2_str,

MESSAGE_DELIMITER);

buff.len = strlen(buff.data);

return buff;

}

Code Box 20-10 [calcser/calc_proto_ser.c]: The client-side request serialization function

As you can see, it accepts a request object and returns a buffer  object,
totally similar to the response serializer on the server side. It even uses the
same technique; a sprintf  statement for creating the request message.

Code Box 20-11 contains the response deserializer function:

void calc_proto_ser_client_deserialize(

struct calc_proto_ser_t* ser,

struct buffer_t buff, bool_t* resp_found) {

if (resp_found) {

*resp_found = FALSE;

}

_deserialize(ser, buff, _parse_resp_and_notify,

ERROR_INVALID_RESPONSE, resp_found);

}

Code Box 20-11 [calcser/calc_proto_ser.c]: The client-side response deserialization function



As you can see, the same mechanism is employed, and some similar
private functions have been used. It is highly recommended to read these
sources carefully, in order to get a better understanding of how the various
parts of the code have been put together to have the maximum reuse of the
existing parts.

We won't go any deeper than this into the Serializer  class; it's up to you
to dig into the code and finds out how it works.

Now that we have the serializer library, we can proceed and write our
client and server programs. Having a library that serializes objects and
deserializes messages based on an agreed application protocol is a vital
step in writing multi-process software. Note that it doesn't matter if the
deployment is single-host or contains multiple hosts; the processes should
be able to understand each other, and proper application protocols should
have been defined.

Before jumping to code regarding socket programming, we have to explain
one more thing: the calculator service. It is at the heart of the server
process and it does the actual calculation.

Calculator service
The calculator service is the core logic of our example. Note that this logic
should work independently of the underlying IPC mechanism. The
upcoming code shows the declaration of the calculator service class.

As you can see, it is designed in such a way that it can be used even in a
very simple program, with just a main  function, such that it doesn't even
do any IPC at all:

#ifndef CALC_SERVICE_H

#define CALC_SERVICE_H

#include <types.h>

static const int CALC_SVC_OK = 0;

static const int CALC_SVC_ERROR_DIV_BY_ZERO = -1;

struct calc_service_t;

struct calc_service_t* calc_service_new();



void calc_service_delete(struct calc_service_t*);

void calc_service_ctor(struct calc_service_t*);

void calc_service_dtor(struct calc_service_t*);

void calc_service_reset_mem(struct calc_service_t*);

double calc_service_get_mem(struct calc_service_t*);

double calc_service_add(struct calc_service_t*, double,

double b,

bool_t mem);

double calc_service_sub(struct calc_service_t*, double,

double b,

bool_t mem);

double calc_service_mul(struct calc_service_t*, double,

double b,

bool_t mem);

int calc_service_div(struct calc_service_t*, double,

double, double*);

#endif

Code Box 20-12 [calcsvc/calc_service.h]: The public interface of the calculator service class

As you can see, the preceding class even has its own error types. The input
arguments are pure C types, and it is in no way dependent on IPC-related
or serialization-related classes or types. Since it is isolated as a standalone
logic, we compile it into an independent static library named
libcalcsvc.a .

Every server process must use the calculator service objects in order to do
the actual calculations. These objects are usually called the service
objects. Because of this, the final server program must get linked against
this library.

An important note before we go further: if, for a specific client, the
calculations don't need a specific context, then having just one service
object is enough. In other words, if a service for a client doesn't require us
to remember any state from the previous requests of that client, then we
can use a singleton service object. We call this a stateless service object.

Conversely, if handling the current request demands knowing something
from the previous requests, then for every client, we need to have a
specific service object. This is the case regarding our calculator project.
As you know, the calculator has an internal memory that is unique for each



client. Therefore, we cannot use the same object for two clients. These
objects are known as stateful service objects.

To summarize what we said above, for every client, we have to create
a new service object. This way, every client has its own calculator with its
own dedicated internal memory. Calculator service objects are stateful and
they need to load some state (the value of the internal memory).

Now, we are in a good position to move forward and talk about various
types of sockets, with examples given in the context of the calculator
project.

Unix domain sockets
From the previous chapter, we know that if we are going to establish a
connection between two processes on the same machine, UDS are one of
the best options. In this chapter, we expanded our discussion and talked a
bit more about push-based IPC techniques, as well as stream and datagram
channels. Now it's time to gather our knowledge from previous and current
chapters and see UDS in action.

In this section, we have four subsections dedicated to processes being on
the listener side or the connector side and operating on a stream or a
datagram channel. All of these processes are using UDS. We go through
the steps they should take to establish the channel, based on the sequences
we discussed in the previous chapter. As the first process, we start with the
listener process operating on a stream channel. This would be the stream
server.

UDS stream server
If you remember from the previous chapter, we had a number of sequences
for listener and connector sides in a transport communication. A server
stands in the position of a listener. Therefore, it should follow the listener



sequence. More specifically, since we are talking about stream channels in
this section, it should follow a stream listener sequence.

As part of that sequence, the server needs to create a socket object first. In
our calculator project, the stream server process willing to receive
connections over a UDS must follow the same sequence.

The following piece of code is located in the main function of the
calculator server program, and as can be seen in Code Box 20-13, the
process firstly creates a socket  object:

int server_sd = socket(AF_UNIX, SOCK_STREAM, 0);

if (server_sd == -1) {

fprintf(stderr, "Could not create socket: %s\n",

strerror(errno));

exit(1);

}

Code Box 20-13 [server/unix/stream/main.c]: Creating a stream UDS object

As you can see, the socket  function is used to create a socket object. This
function is included from <sys/socket.h> , which is a POSIX header. Note
that this is just a socket object, and yet it is not determined whether this is
going to be a client socket or a server socket. Only the subsequent function
calls determine this.

As we explained in the previous chapter, every socket object has three
attributes. These attributes are determined by the three arguments passed
to the socket  function. These arguments specify the address family, the
type, and the protocol used on that socket object respectively.

According to the stream listener sequence and especially regarding the
UDS after creating the socket object, the server program must bind it to
a socket file. Therefore, the next step is to bind the socket to a socket file.
Code Box 20-14 has been used in the calculator project to bind the socket
object to a file located at a predetermined path specified by the sock_file
character array:

struct sockaddr_un addr;



memset(&addr, 0, sizeof(addr));

addr.sun_family = AF_UNIX;

strncpy(addr.sun_path, sock_file, sizeof(addr.sun_path) -

1);

int result = bind(server_sd, (struct sockaddr*)&addr,

sizeof(addr));

if (result == -1) {

close(server_sd);

fprintf(stderr, "Could not bind the address: %s\n",

strerror(errno));

exit(1);

}

Code Box 20-14 [server/unix/stream/main.c]: Binding a stream UDS object to a socket file
specified by the sock_file char array

The preceding code has two steps. The first step is to create an instance,
named addr , of the type struct sockaddr_un  and then initialize it by
pointing it to a socket file. In the second step, the addr  object is passed to
the bind  function in order to let it know which socket file should be
bound to the socket object. The bind  function call succeeds only if there
is no other socket object bound to the same socket file. Therefore, with
UDS, two socket objects, probably being in different processes, cannot be
bound to the same socket file.

Note:

In Linux, UDS can be bound to abstract socket addresses. They are
useful mainly when there is no filesystem mounted to be used for having
a socket file. A string starting with a null character, \0 , can be used to
initialize the address structure, addr  in the preceding code box, and
then the provided name is bound to the socket object inside the kernel.
The provided name should be unique in the system and no other socket
object should be bound to it.

On a further note about the socket file path, the length of the path cannot
exceed 104 bytes on most Unix systems. However, in Linux systems, this
length is 108 bytes. Note that the string variable keeping the socket file
path always include an extra null character at the end as a char  array in C.
Therefore, effectively, 103 and 107 bytes can be used as part of the socket
file path depending on the operating system.



If the bind  function returns 0 , it means that the binding has been
successful, and you can proceed with configuring the size of the backlog;
the next step in the stream listener sequence after binding the endpoint.

The following code shows how the backlog is configured for the stream
calculator server listening on a UDS:

result = listen(server_sd, 10);

if (result == -1) {

close(server_sd);

fprintf(stderr, "Could not set the backlog: %s\n",

strerror(errno));

exit(1);

}

Code Box 20-15 [server/unix/stream/main.c]: Configuring the size of the backlog for a bound
stream socket

The listen  function configures the size of the backlog for an already
bound socket. As we have explained in the previous chapter, when a busy
server process cannot accept any more incoming clients, a certain number
of these clients can wait in the backlog until the server program can
process them. This is an essential step in preparing a stream socket before
accepting the clients.

According to what we have in the stream listener sequence, after having
the stream socket bound and having its backlog size configured, we can
start accepting new clients. Code Box 20-16 shows how new clients can be
accepted:

while (1) {

int client_sd = accept(server_sd, NULL, NULL);

if (client_sd == -1) {

close(server_sd);

fprintf(stderr, "Could not accept the client: %s\n",

strerror(errno));

exit(1);

}

...

}



Code Box 20-16 [server/unix/stream/main.c]: Accepting new clients on a stream listener
socket

The magic is the accept  function, which returns a new socket object
whenever a new client is received. The returned socket object refers to the
underlying stream channel between the server and the accepted client.
Note that every client has its own stream channel, and hence its own
socket descriptor.

Note that if the stream listener socket is blocking (which it is by default),
the accept  function would block the execution until a new client is
received. In other words, if there is no incoming client, the thread calling
the accept  function is blocked behind it.

Now, it's time to see the above steps together in just one place. The
following code box shows the stream server from the calculator project,
which listens on a UDS:

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <unistd.h>

#include <stdlib.h>

#include <pthread.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <stream_server_core.h>

int main(int argc, char** argv) {

char sock_file[] = "/tmp/calc_svc.sock";

// ----------- 1. Create socket object ------------------

int server_sd = socket(AF_UNIX, SOCK_STREAM, 0);

if (server_sd == -1) {

fprintf(stderr, "Could not create socket: %s\n",

strerror(errno));

exit(1);

}

// ----------- 2. Bind the socket file ------------------

// Delete the previously created socket file if it exists.

unlink(sock_file);

// Prepare the address

struct sockaddr_un addr;

memset(&addr, 0, sizeof(addr));

addr.sun_family = AF_UNIX;



strncpy(addr.sun_path, sock_file, sizeof(addr.sun_path) -

1);

int result = bind(server_sd,

(struct sockaddr*)&addr, sizeof(addr));

if (result == -1) {

close(server_sd);

fprintf(stderr, "Could not bind the address: %s\n",

strerror(errno));

exit(1);

}

// ----------- 3. Prepare backlog ------------------

result = listen(server_sd, 10);

if (result == -1) {

close(server_sd);

fprintf(stderr, "Could not set the backlog: %s\n",

strerror(errno));

exit(1);

}

// ----------- 4. Start accepting clients ---------

accept_forever(server_sd);

return 0;

}

Code Box 20-17 [server/unix/stream/main.c]: The main function of the stream calculator
service listening on a UDS endpoint

It should be easy to find the code blocks that perform the aforementioned
steps in initializing a server socket. The only thing that is missing is the
client-accepting code. The actual code for accepting new clients is put in a
separate function that is called accept_forever . Note that this function is
blocking and blocks the main thread until the server stops.

In the following code box, you can see the definition of the
accept_forever  function. The function is part of the server common
library located in the srvcore  directory. This function should be there
because its definition remains the same for other stream sockets such as
TCP sockets. Therefore, we can reuse the existing logic instead of writing
it again:

void accept_forever(int server_sd) {

while (1) {

int client_sd = accept(server_sd, NULL, NULL);

if (client_sd == -1) {

close(server_sd);



fprintf(stderr, "Could not accept the client: %s\n",

strerror(errno));

exit(1);

}

pthread_t client_handler_thread;

int* arg = (int *)malloc(sizeof(int));

*arg = client_sd;

int result = pthread_create(&client_handler_thread, NULL,

&client_handler, arg);

if (result) {

close(client_sd);

close(server_sd);

free(arg);

fprintf(stderr, "Could not start the client handler

thread.\n");

exit(1);

}

}

}

Code Box 20-18 [server/srvcore/stream_server_core.c]: The function accepting new clients on
a stream socket listening on a UDS endpoint

As you can see in the preceding code box, upon accepting a new client, we
spawn a new thread that is in charge of handling the client. This
effectively entails reading bytes from the client's channel, passing the read
bytes into the deserializer, and producing proper responses if a request has
been detected.

Creating a new thread for every client is usually the pattern for every
server process that operates on a blocking stream channel, no matter what
the type of socket is. Therefore, in such use cases, multithreading and all
the surrounding topics become enormously important.

Note:

Regarding non-blocking stream channels, a different approach known as
event loop is usually used.

When you have the socket object of a client, you can use it for reading
from the client, as well writing to the client. If we follow the path that
we've taken so far in the srvcore  library, the next step is to look into the



companion function of a client's thread; client_handler . The function
can be found next to the accept_forever  in the code base. Next, you can
see the code box containing the function's definition:

void* client_handler(void *arg) {

struct client_context_t context;

context.addr = (struct client_addr_t*)

malloc(sizeof(struct client_addr_t));

context.addr->sd = *((int*)arg);

free((int*)arg);

context.ser = calc_proto_ser_new();

calc_proto_ser_ctor(context.ser, &context, 256);

calc_proto_ser_set_req_callback(context.ser,

request_callback);

calc_proto_ser_set_error_callback(context.ser,

error_callback);

context.svc = calc_service_new();

calc_service_ctor(context.svc);

context.write_resp = &stream_write_resp;

int ret;

char buffer[128];

while (1) {

int ret = read(context.addr->sd, buffer, 128);

if (ret == 0 || ret == -1) {

break;

}

struct buffer_t buf;

buf.data = buffer; buf.len = ret;

calc_proto_ser_server_deserialize(context.ser, buf, NULL);

}

calc_service_dtor(context.svc);

calc_service_delete(context.svc);

calc_proto_ser_dtor(context.ser);

calc_proto_ser_delete(context.ser);

free(context.addr);

return NULL;

}

Code Box 20-19 [server/srvcore/stream_server_core.c]: The companion function of the client-
handling thread

There are many details regarding the preceding code, but there are a few
important ones that I want to mention. As you see, we are using the read
function to read chunks from the client. If you remember, the read
function accepts a file descriptor but here we are passing a socket



descriptor. This shows, despite the differences between file descriptors and
socket descriptors, regarding I/O functions, we can use the same API.

In the preceding code, we read chunks of bytes from the input and we pass
them to the deserializer by calling the
calc_proto_ser_server_deserialize  function. It is possible to call this
function three or four times before having a request fully deserialized.
This is highly dependent on the chunk size that you read from the input
and the length of the messages transmitting on the channel.

On a further note, every client has its own serializer object. This is also
true for the calculator service object. These objects are created and
destroyed as part of the same thread.

And as the last note about the preceding code box, we are using a function
to write responses back to the client. The function is
stream_write_response  and it is meant to be used on a stream socket.
This function can be found in the same file as the preceding code boxes.
Next, you can see the definition of this function:

void stream_write_resp(

struct client_context_t* context,

struct calc_proto_resp_t* resp) {

struct buffer_t buf =

calc_proto_ser_server_serialize(context->ser, resp);

if (buf.len == 0) {

close(context->addr->sd);

fprintf(stderr, "Internal error while serializing

response\n");

exit(1);

}

int ret = write(context->addr->sd, buf.data, buf.len);

free(buf.data);

if (ret == -1) {

fprintf(stderr, "Could not write to client: %s\n",

strerror(errno));

close(context->addr->sd);

exit(1);

} else if (ret < buf.len) {

fprintf(stderr, "WARN: Less bytes were written!\n");

exit(1);

}

}



Code Box 20-20 [server/srvcore/stream_server_core.c]: The function used for writing the
responses back to the client

As you see in the preceding code, we are using the write  function to write
a message back to the client. As we know, the write  function can accept
file descriptors, but it seems socket descriptors can also be used. So, it
clearly shows that the POSIX I/O API works for both file descriptors and
socket descriptors.

The above statement is also true about the close  function. As you can
see, we have used it to terminate a connection. It is enough to pass the
socket descriptor while we know that it works for file descriptors as well.

Now that we have gone through some of the most important parts of the
UDS stream server and we have an idea of how it operates, it is time to
move on and discuss the UDS stream client. For sure, there are plenty
places in the code that we haven't discussed but you should dedicate time
and go through them.

UDS stream client
Like the server program described in the previous section, the client also
needs to create a socket object first. Remember that we need to follow the
stream connector sequence now. It uses the same piece of code as server
does, with exactly the same arguments, to indicate that it needs a UDS.
After that, it needs to connect to the server process by specifying a UDS
endpoint, similarly to how the server did. When the stream channel is
established, the client process can use the opened socket descriptor to read
from and write to the channel.

Next, you can see the main  function of the stream client connecting to a
UDS endpoint:

int main(int argc, char** argv) {

char sock_file[] = "/tmp/calc_svc.sock";

// ----------- 1. Create socket object ------------------



int conn_sd = socket(AF_UNIX, SOCK_STREAM, 0);

if (conn_sd == -1) {

fprintf(stderr, "Could not create socket: %s\n",

strerror(errno));

exit(1);

}

// ----------- 2. Connect to server ---------------------

// Prepare the address

struct sockaddr_un addr;

memset(&addr, 0, sizeof(addr));

addr.sun_family = AF_UNIX;

strncpy(addr.sun_path, sock_file, sizeof(addr.sun_path) -

1);

int result = connect(conn_sd,

(struct sockaddr*)&addr, sizeof(addr));

if (result == -1) {

close(conn_sd);

fprintf(stderr, "Could no connect: %s\n", strerror(errno));

exit(1);

}

stream_client_loop(conn_sd);

return 0;

}

Code Box 20-21 [client/unix/stream/main.c]: The main function of the stream client
connecting to a UDS endpoint

As you can see, the first part of the code is very similar to the server code
but afterward, the client calls connect  instead of bind . Note that the
address preparation code is exactly the same as that of the server.

When connect  returns successfully, it has already associated the
conn_sd  socket descriptor to the opened channel. Therefore, from now on,
conn_sd  can be used to communicate with the server. We pass it to the
stream_client_loop  function, which brings up the client's command line
and does the rest of the actions performed by the client. It is a blocking
function that runs the client until it quits.

Note that the client also uses read  and write  functions to transmit
messages back and forth from and to the server. Code Box 20-22 contains
the definition of the stream_client_loop  function, which is part of the
client common library that is used by all stream clients, regardless of the



socket type and is shared between UDS and TCP sockets. As you see, it
uses the write  function to send a serialized request message to the server:

void stream_client_loop(int conn_sd) {

struct context_t context;

context.sd = conn_sd;

context.ser = calc_proto_ser_new();

calc_proto_ser_ctor(context.ser, &context, 128);

calc_proto_ser_set_resp_callback(context.ser, on_response);

calc_proto_ser_set_error_callback(context.ser, on_error);

pthread_t reader_thread;

pthread_create(&reader_thread, NULL,

stream_response_reader, &context);

char buf[128];

printf("? (type quit to exit) ");

while (1) {

scanf("%s", buf);

int brk = 0, cnt = 0;

struct calc_proto_req_t req;

parse_client_input(buf, &req, &brk, &cnt);

if (brk) {

break;

}

if (cnt) {

continue;

}

struct buffer_t ser_req =

calc_proto_ser_client_serialize(context.ser, &req);

int ret = write(context.sd, ser_req.data, ser_req.len);

if (ret == -1) {

fprintf(stderr, "Error while writing! %s\n",

strerror(errno));

break;

}

if (ret < ser_req.len) {

fprintf(stderr, "Wrote less than anticipated!\n");

break;

}

printf("The req(%d) is sent.\n", req.id);

}

shutdown(conn_sd, SHUT_RD);

calc_proto_ser_dtor(context.ser);

calc_proto_ser_delete(context.ser);

pthread_join(reader_thread, NULL);

printf("Bye.\n");

}



Code Box 20-22 [client/clicore/stream_client_core.c]: The function executing a stream client

As you can see in the preceding code, every client process has only one
serializer object and it makes sense. This is opposite to the server process,
where every client had a separate serializer object.

More than that, the client process spawns a separate thread for reading the
responses from the server side. That's because reading from the server
process is a blocking task and it should be done in a separate flow of
execution.

As part of the main thread, we have the client's command line, which
receives inputs from a user through the Terminal. As you see, the main
thread joins the reader thread upon exiting and it waits for its completion.

On a further note regarding the preceding code, the client process uses the
same I/O API for reading from and writing to the stream channel. Like we
said before, the read  and write  functions are used and the usage of the
write  function can be seen in Code Box 20-22.

In the following section, we talk about datagram channels but still using
the UDS for that purpose. We start with the datagram server first.

UDS datagram server
If you remember from the previous chapter, datagram processes had their
own listener and connector sequences regarding transport transmission.
Now it's time to demonstrate how a datagram server can be developed
based on UDS.

According to the datagram listener sequence, the process needs to create a
socket object first. The following code box demonstrates that:

int server_sd = socket(AF_UNIX, SOCK_DGRAM, 0);

if (server_sd == -1) {

fprintf(stderr, "Could not create socket: %s\n",



strerror(errno));

exit(1);

}

Code Box 20-23 [server/unix/datagram/main.c]: Creating a UDS object meant to operate on a
datagram channel

You see that we have used SOCK_DGRAM  instead of SOCK_STREAM . This
means that the socket object is going to operate on a datagram channel.
The other two arguments remain the same.

As the second step in the datagram listener sequence, we need to bind the
socket to a UDS endpoint. As we said before, this is a socket file. This step
is exactly the same as for the stream server, and therefore we don't bother
to demonstrate it below and you can see it in Code Box 20-14.

For a datagram listener process, these steps were the only ones to be
performed, and there is no backlog associated to a datagram socket to be
configured. More than that, there is no client-accepting phase because we
can't have stream connections on some dedicated 1-to-1 channels.

Next, you can see the main  function of the datagram server listening on a
UDS endpoint, as part of the calculator project:

int main(int argc, char** argv) {

char sock_file[] = "/tmp/calc_svc.sock";

// ----------- 1. Create socket object ------------------

int server_sd = socket(AF_UNIX, SOCK_DGRAM, 0);

if (server_sd == -1) {

fprintf(stderr, "Could not create socket: %s\n",

strerror(errno));

exit(1);

}

// ----------- 2. Bind the socket file ------------------

// Delete the previously created socket file if it exists.

unlink(sock_file);

// Prepare the address

struct sockaddr_un addr;

memset(&addr, 0, sizeof(addr));

addr.sun_family = AF_UNIX;

strncpy(addr.sun_path, sock_file, sizeof(addr.sun_path) -

1);

int result = bind(server_sd,



(struct sockaddr*)&addr, sizeof(addr));

if (result == -1) {

close(server_sd);

fprintf(stderr, "Could not bind the address: %s\n",

strerror(errno));

exit(1);

}

// ----------- 3. Start serving requests ---------

serve_forever(server_sd);

return 0;

}

Code Box 20-24 [server/unix/datagram/main.c]: The main function of the datagram server
listening on a UDS endpoint

As you know, datagram channels are connection-less, and they don't
operate like stream channels. In other words, there cannot be a dedicated
1-to-1 connection between two processes. Therefore, the processes can
only transmit datagrams along the channel. A client process can only send
some individual and independent datagrams and likewise, the server
process can only receive datagrams and send back some other datagrams
as responses.

So, the crucial thing about a datagram channel is that the request and
response messages should be fit into a single datagram. Otherwise, they
cannot be split between two datagrams and the server or client cannot
handle the message. Fortunately, our messages in the calculator project are
mostly short enough to be fit into a single datagram.

The size of a datagram is highly dependent on the underlying channel. For
example, regarding datagram UDS this is quite flexible because it happens
through the kernel, but regarding UDP sockets, you are bound to the
configuration of the network. Regarding the UDS the following link can
give you a better idea of how to set the correct size:
https://stackoverflow.com/questions/21856517/whats

-the-practical-limit-on-the-size-of-single-packet-

transmitted-over-domain.

Another difference that we can mention regarding datagram and stream
sockets is the I/O API that is used to transmit data along them. While the

https://stackoverflow.com/questions/21856517/whats-the-practical-limit-on-the-size-of-single-packet-transmitted-over-domain


read  and write  functions can still be used for datagram sockets just like
the stream sockets, we use other functions for reading from and sending to
a datagram channel. The recvfrom  and sendto  functions are usually
used.

That's because in stream sockets the channel is dedicated, and when you
write to a channel both ends are determined. Regarding datagram sockets,
we have only one channel that is being used by many parties. Therefore,
we can lose track of the process owning a specific datagram. These
functions can keep track of and send the datagram back to the desired
process.

Next, you can find the definition for the serve_forever  function used in
Code Box 20-24 at the end of the main  function. This function belongs to
the server common library and is specific to datagram servers, regardless
of the socket type. You can clearly see how the recvfrom  function has
been used:

void serve_forever(int server_sd) {

char buffer[64];

while (1) {

struct sockaddr* sockaddr = sockaddr_new();

socklen_t socklen = sockaddr_sizeof();

int read_nr_bytes = recvfrom(server_sd, buffer,

sizeof(buffer), 0, sockaddr, &socklen);

if (read_nr_bytes == -1) {

close(server_sd);

fprintf(stderr, "Could not read from datagram socket: %s\n",

strerror(errno));

exit(1);

}

struct client_context_t context;

context.addr = (struct client_addr_t*)

malloc(sizeof(struct client_addr_t));

context.addr->server_sd = server_sd;

context.addr->sockaddr = sockaddr;

context.addr->socklen = socklen;

context.ser = calc_proto_ser_new();

calc_proto_ser_ctor(context.ser, &context, 256);

calc_proto_ser_set_req_callback(context.ser,

request_callback);

calc_proto_ser_set_error_callback(context.ser,

error_callback);



context.svc = calc_service_new();

calc_service_ctor(context.svc);

context.write_resp = &datagram_write_resp;

bool_t req_found = FALSE;

struct buffer_t buf;

buf.data = buffer;

buf.len = read_nr_bytes;

calc_proto_ser_server_deserialize(context.ser, buf,

&req_found);

if (!req_found) {

struct calc_proto_resp_t resp;

resp.req_id = -1;

resp.status = ERROR_INVALID_RESPONSE;

resp.result = 0.0;

context.write_resp(&context, &resp);

}

calc_service_dtor(context.svc);

calc_service_delete(context.svc);

calc_proto_ser_dtor(context.ser);

calc_proto_ser_delete(context.ser);

free(context.addr->sockaddr);

free(context.addr);

}

}

Code Box 20-25 [server/srvcore/datagram_server_core.c]: The function handling the
datagrams found in the server common library, and dedicated to the datagram servers

As you see in the preceding code box, the datagram server is a single-
threaded program and there is no multithreading around it. More than that,
it operates on every datagram individually and independently. It receives a
datagram, deserializes its content and creates the request object, handles
the request through the service object, serializes the response object and
puts it in a new datagram, and sends it back to the process owning the
original datagram. It does the same cycle over and over again for every
incoming datagram.

Note that every datagram has its own serializer object and its own service
object. We could design this in a way that we had only one serializer and
one service object for all the datagrams. This might be something
interesting for you to think about with regard to how it is possible and why
that might not be possible for the calculator project. This is a debatable
discussion and you might receive different opinions from various people.



Note that in Code Box 20-25, we store the client address of a datagram
upon receiving it. Later, we can use this address to write directly back to
that client. It is worth having a look at how we write back the datagram to
the sender client. Just like the stream server, we are using a function for
this purpose. Code Box 20-26 shows the definition of the
datagram_write_resp  function. The function is in the datagram servers'
common library next to the serve_forever  function:

void datagram_write_resp(struct client_context_t* context,

struct calc_proto_resp_t* resp) {

struct buffer_t buf =

calc_proto_ser_server_serialize(context->ser, resp);

if (buf.len == 0) {

close(context->addr->server_sd);

fprintf(stderr, "Internal error while serializing

object.\n");

exit(1);

}

int ret = sendto(context->addr->server_sd, buf.data,

buf.len,

0, context->addr->sockaddr, context->addr->socklen);

free(buf.data);

if (ret == -1) {

fprintf(stderr, "Could not write to client: %s\n",

strerror(errno));

close(context->addr->server_sd);

exit(1);

} else if (ret < buf.len) {

fprintf(stderr, "WARN: Less bytes were written!\n");

close(context->addr->server_sd);

exit(1);

}

}

Code Box 20-26 [server/srvcore/datagram_server_core.c]: The function writing datagrams
back to the clients

You can see that we use the sorted client address and we pass it to the
sendto  function together with the serialized response message. The rest is
taken care of by the operating system and the datagram is sent back
directly to the sender client.



Now that we know enough about the datagram server and how the socket
should be used, let's look at the datagram client, which is using the same
type of socket.

UDS datagram client
From a technical point of view, stream clients and datagram clients are
very similar. It means that you should see almost the same overall
structure but with some differences regarding transmitting datagrams
instead of operating on a stream channel.

But there is a big difference between them, and this is quite unique and
specific to datagram clients connecting to UDS endpoints.

The difference is that the datagram client is required to bind a socket file,
just like the server program, in order to receive the datagrams directed at
it. This is not true for datagram clients using network sockets, as you will
see shortly. Note that the client should bind a different socket file, and not
the server's socket file.

The main reason behind this difference is the fact that the server program
needs an address to send the response back to, and if the datagram client
doesn't bind a socket file, there is no endpoint bound to the client socket
file. But regarding network sockets, a client always has a corresponding
socket descriptor that is bound to an IP address and a port, so this problem
cannot occur.

If we put aside this difference, we can see how similar the code is. In Code
Box 20-26 you can see the main  function of the datagram calculator
client:

int main(int argc, char** argv) {

char server_sock_file[] = "/tmp/calc_svc.sock";

char client_sock_file[] = "/tmp/calc_cli.sock";

// ----------- 1. Create socket object ------------------

int conn_sd = socket(AF_UNIX, SOCK_DGRAM, 0);

if (conn_sd == -1) {

fprintf(stderr, "Could not create socket: %s\n",



strerror(errno));

exit(1);

}

// ----------- 2. Bind the client socket file ------------

// Delete the previously created socket file if it exists.

unlink(client_sock_file);

// Prepare the client address

struct sockaddr_un addr;

memset(&addr, 0, sizeof(addr));

addr.sun_family = AF_UNIX;

strncpy(addr.sun_path, client_sock_file,

sizeof(addr.sun_path) - 1);

int result = bind(conn_sd,

(struct sockaddr*)&addr, sizeof(addr));

if (result == -1) {

close(conn_sd);

fprintf(stderr, "Could not bind the client address: %s\n",

strerror(errno));

exit(1);

}

// ----------- 3. Connect to server --------------------

// Prepare the server address

memset(&addr, 0, sizeof(addr));

addr.sun_family = AF_UNIX;

strncpy(addr.sun_path, server_sock_file,

sizeof(addr.sun_path) - 1);

result = connect(conn_sd,

(struct sockaddr*)&addr, sizeof(addr));

if (result == -1) {

close(conn_sd);

fprintf(stderr, "Could no connect: %s\n", strerror(errno));

exit(1);

}

datagram_client_loop(conn_sd);

return 0;

}

Code Box 20-26 [server/srvcore/datagram_server_core.c]: The function writing datagrams
back to the clients

As we explained earlier, and as can be seen in the code, the client is
required to bind a socket file. And of course, we have to call a different
function to start the client loop, at the end of the main  function. The
datagram client calls the datagram_client_loop  function.

If you look at the function datagram_client_loop , you still see many
similarities between the stream client and the datagram client. Despite the



small differences, a big difference is using the recvfrom  and sendto
functions instead of the read  and write  functions. The same explanation
given for these functions as part of the previous section, still holds true for
the datagram client.

Now it's time to talk about network sockets. As you will see, the main
function in the client and server programs is the only code that changes
when moving from UDS to network sockets.

Network sockets
The other socket address family that is widely used is AF_INET . It simply
refers to any channel established on top of a network connection. Unlike
the UDS stream and datagram sockets, which have no protocol name
assigned to them, there are two well-known protocols on top of network
sockets. TCP sockets establish a stream channel between every two
processes, and UDP sockets establish a datagram channel that can be used
by a number of processes.

In the following sections, we are going to explain how to develop
programs using TCP and UDP sockets and see real some examples as part
of the calculator project.

TCP server
A program using a TCP socket to listen and accept a number of clients, in
other words a TCP server, is different from a stream server listening on a
UDS endpoint in two ways: firstly, it specifies a different address family,
AF_INET  instead of AF_UNIX , when calling the socket  function. And
secondly, it uses a different structure for the socket address required for
binding.

Despite these two differences, everything else would be the same for a
TCP socket in terms of I/O operation. We should note that a TCP socket is



a stream socket, therefore the code written for a stream socket using UDS
should work for a TCP socket as well.

If we go back to the calculator project, we expect to see the differences
just in the main  functions where we create the socket object and bind it to
an endpoint. Other than that, the rest of the code should remain unchanged.
In fact, this is what we actually see. The following code box contains the
main  function of the TCP calculator server:

int main(int argc, char** argv) {

// ----------- 1. Create socket object ------------------

int server_sd = socket(AF_INET, SOCK_STREAM, 0);

if (server_sd == -1) {

fprintf(stderr, "Could not create socket: %s\n",

strerror(errno));

exit(1);

}

// ----------- 2. Bind the socket file ------------------

// Prepare the address

struct sockaddr_in addr;

memset(&addr, 0, sizeof(addr));

addr.sin_family = AF_INET;

addr.sin_addr.s_addr = INADDR_ANY;

addr.sin_port = htons(6666);

...

// ----------- 3. Prepare backlog ------------------

...

// ----------- 4. Start accepting clients ---------

accept_forever(server_sd);

return 0;

}

Code Box 20-27 [server/tcp/main.c]: The main function of the TCP calculator client

If you compare the preceding code with the main  function seen in Code
Box 20-17, you will notice the differences we explained earlier. Instead of
using the sockaddr_un structure, we are using the sockaddr_in  structure
for the bound endpoint address. The listen  function is used the same,
and even the same accept_forever  function has been called to handle the
incoming connections.



As a final note, regarding I/O operations on a TCP socket, since a TCP
socket is a stream socket, it inherits all the properties from a stream
socket; therefore, it can be used just like any other stream socket. In other
words, the same read , write , and close  functions can be used.

Let's now talk about the TCP client.

TCP client
Again, everything should be very similar to the stream client operating on
a UDS. The differences mentioned in the previous section are still true for
a TCP socket on a connector side. The changes are again limited to the
main  function.

Next, you can see the main  function of the TCP calculator client:

int main(int argc, char** argv) {

// ----------- 1. Create socket object ------------------

int conn_sd = socket(AF_INET, SOCK_STREAM, 0);

if (conn_sd == -1) {

fprintf(stderr, "Could not create socket: %s\n",

strerror(errno));

exit(1);

}

// ------------ 2. Connect to server-- ------------------

// Find the IP address behind the hostname

...

// Prepare the address

struct sockaddr_in addr;

memset(&addr, 0, sizeof(addr));

addr.sin_family = AF_INET;

addr.sin_addr = *((struct in_addr*)host_entry->h_addr);

addr.sin_port = htons(6666);

...

stream_client_loop(conn_sd);

return 0;

}

Code Box 20-27 [server/tcp/main.c]: The main function of the TCP calculator server



The changes are very similar to the ones we saw for the TCP server
program. A different address family and a different socket address
structure have been used. Apart from that, the rest of the code is the same,
and we therefore do not need to discuss the TCP client in detail.

Since TCP sockets are stream sockets, we can use the same common code
for handling the new clients. You can see this by calling the
stream_client_loop  function, which is part of the client common library
in the calculator project. Now, you should get the idea of why we extracted
two common libraries, one for the client programs and one for the server
programs, in order to write less code. When we can use the same code for
two different scenarios, it is always best to extract it as a library and reuse
it in the scenarios.

Let's look at UDP server and client programs; we will see that they are
more or less similar to what we saw regarding TCP programs.

UDP server
UDP sockets are network sockets. Other than that, they are datagram
sockets. Therefore, we expect to observe a high degree of similarity
between the code we wrote for the TCP server together with the code we
wrote for the datagram server operating on a UDS.

In addition, the main difference between a UDP socket and a TCP socket,
regardless of being used in a client or server program, is the fact that the
socket type is SOCK_DGRAM  for the UDP socket. The address family
remains the same, because both of them are network sockets. The
following code box contains the main function of the calculator UDP
server:

int main(int argc, char** argv) {

// ----------- 1. Create socket object ------------------

int server_sd = socket(AF_INET, SOCK_DGRAM, 0);

if (server_sd == -1) {

fprintf(stderr, "Could not create socket: %s\n",

strerror(errno));

exit(1);



}

// ----------- 2. Bind the socket file ------------------

// Prepare the address

struct sockaddr_in addr;

memset(&addr, 0, sizeof(addr));

addr.sin_family = AF_INET;

addr.sin_addr.s_addr = INADDR_ANY;

addr.sin_port = htons(9999);

...

// ----------- 3. Start serving requests ---------

serve_forever(server_sd);

return 0;

}

Code Box 20-28 [server/udp/main.c]: The main function of the UDP calculator server

Note that UDP sockets are datagram sockets. Therefore, all the code
written for datagram sockets operating on UDS is still valid for them. For
instance, we have to use the recvfrom  and sendto  functions to work with
UDP sockets. So, as you can see, we have used the same serve_forever
function to serve incoming datagrams. This function is part of the server
common library meant to contain the datagram-related code.

We've said enough regarding the UDP server's code. Let's see what the
UDP client's code looks like.

The UDP client
UDP client code is very similar to the TCP client code, but it uses a
different socket type and it calls a different function for handling the
incoming messages, which is the same function that the datagram client
based on UDS used. You can see the following main  function:

int main(int argc, char** argv) {

// ----------- 1. Create socket object ------------------

int conn_sd = socket(AF_INET, SOCK_DGRAM, 0);

if (conn_sd == -1) {

fprintf(stderr, "Could not create socket: %s\n",

strerror(errno));

exit(1);

}



// ------------ 2. Connect to server-- ------------------

...

// Prepare the address

...

datagram_client_loop(conn_sd);

return 0;

}

Code Box 20-28 [client/udp/main.c]: The main function of the UDP calculator client

That was the final concept for this chapter. In this chapter, we went
through the various well-known socket types and together with that, we
showed how the listener and connector sequences for both stream and
datagram channels can be implemented in C.

There are many things in the calculator project that we didn't even talk
about. Therefore, it is highly recommended to go through the code, find
those places, and try to read and understand it. Having a fully working
example can help you to examine the concepts in real applications.

Summary
In this chapter, we went through the following topics:

We introduced various types of communications, channels, mediums,
and sockets as part of our review of IPC techniques.
We explored a calculator project by describing its application
protocol and the serialization algorithm that it uses.
We demonstrated how UDS can be used to establish a client-server
connection, and we showed how they are used in the
calculator project.
We discussed the stream and datagram channels established using
Unix domain sockets, separately.
We demonstrated how TCP and UDP sockets can be used to make a
client-server IPC channel, and we used them in the calculator



example.

The next chapter is about integrating of C with other programming
languages. By doing so, we can have a C library loaded and used in
another programming language like Java. As part of the next chapter, we
cover integration with C++, Java, Python, and Golang.



Chapter 21
Integration with Other

Languages
Knowing how to write a C program or library can be more valuable than
you might expect. Due to the important role of C in developing operating
systems, C is not limited to its own world. C libraries have the potential to
be loaded and used in other programming languages as well. While you
are reaping the benefits of writing code in a higher-level programming
language, you can have the rocket power of C as a loaded library inside
your language environment.

In this chapter we are going to talk more about this, and demonstrate how
C shared libraries can be integrated with some well-known programming
languages.

In this chapter, we will cover the following key topics:

We discuss why integration is possible in the first place. The
discussion is important because it gives you the basic idea of how
integration works.
We design a C stack library. We build it as a shared object file. This
shared object file is going to be used by a number of other
programming languages.
We go through C++, Java, Python, and Golang and see how the stack
library can be loaded first and then used.

As a general note in this chapter, since we are going to work on five
different subprojects, each having different programming languages, we
only present the builds for Linux in order to prevent any issues regarding



the builds and executions. Of course, we give enough information about
the macOS system, but our focus is to build and run sources on Linux.
Further scripts are available in the book's GitHub repository that help you
to build the sources for macOS.

The first section talks about the integration itself. We see why the
integration with other programming languages is possible and it makes a
basis for expanding our discussion within other environments rather than
C.

Why integration is possible?
As we have explained in Chapter 10, Unix – History and Architecture, C
revolutionized the way we were developing operating systems. That's not
the only magic of C; it also gave us the power to build other general-
purpose programming languages on top of it. Nowadays, we call them
higher-level programming languages. The compilers of these languages
are mostly written in C and if not, they've been developed by other tools
and compilers written in C.

A general-purpose programming language that is not able to use or
provide the functionalities of a system is not doing anything at all. You
can write things with it, but you cannot execute it on any system. While
there could be usages for such a programming language from a theoretical
point of view, certainly it is not plausible from an industrial point of view.
Therefore, the programming language, especially through its compiler,
should be able to produce programs that work. As you know, the
functionalities of a system are exposed through the operating system.
Regardless of the operating system itself, a programming language should
be able to provide those functionalities, and the programs written in that
language, and being run on that system, should be able to use them.

This is where C comes in. In Unix-like operating systems, the C standard
library provides the API to use the available functionalities of the system.
If a compiler wants to create a working program, it should be able to allow



the compiled program to use the C standard library in an indirect fashion.
No matter what the programming language is and whether it offers some
specific and native standard library, like Java, which offers Java Standard
Edition (Java SE), any request for a specific functionality made by the
written program (such as opening a file) should be passed down to the C
standard library and from there, it can reach the kernel and get performed.

As an example, let's talk a bit more about Java. Java programs are
compiled to an intermediate language called bytecode. In order to execute
a Java bytecode, one needs to have Java Runtime Environment (JRE)
installed. JRE has a virtual machine at its heart that loads the Java
bytecode and runs it within itself. This virtual machine must be able to
simulate the functionalities and services exposed by the C standard library
and provide them to the program running within. Since every platform can
be different in terms of the C standard library and its compliance with
POSIX and SUS standards, we need to have some virtual machines built
specifically for each platform.

As a final note about the libraries that can be loaded in other languages,
we can only load shared object files and it is not possible to load and use
static libraries. Static libraries can only be linked to an executable or a
shared object file. Shared object files have the .so  extension in most
Unix-like systems but they have the .dylib  extension in macOS.

In this section, despite its short length, I tried to give you a basic idea of
why we are able to load C libraries, shared libraries specifically, and how
most programming languages are already using C libraries, since the
ability to load a shared object library and use it exists in most of them.

The next step would be writing a C library and then loading it in various
programming languages in order to use it. That's exactly what we want to
do soon but before that you need to know how to get the chapter material
and how to run the commands seen in the shell boxes.



Obtaining the necessary
materials
Since this chapter is full of sources from five different programming
languages, and my hope is to have you all able to build and run the
examples, I dedicated this section to going through some basic notes that
you should be aware of regarding building the source code.

First of all, you need to obtain the chapter material. As you should know
by now, the book has a repository in which this chapter has a specific
directory named ch21-integration-with-other-languages . The following
commands show you how to clone the repository and change to the
chapter's root directory:

$ git clone https://github.com/PacktPublishing/Extreme-C.git

...

$ cd Extreme-C/ch21-integration-with-other-languages

$

Shell Code 21-1: Cloning the book's GitHub repository and changing to the chapter's root
directory

Regarding the shell boxes in this chapter, we assume that before executing
the commands in a shell box, we are located in the root of the chapter, in
the ch21-integration-with-other-languages  folder. If we needed to
change to other directories, we provide the required commands for that,
but everything is happening inside the chapter's directory.

In addition, in order to be able to build source code, you need to have Java
Development Kit (JDK), Python, and Golang installed on your machine.
Depending on whether you're using Linux or macOS, and on your Linux
distribution, the installation commands can be different.

As the final note, the source code written in other languages than C should
be able to use the C stack library that we discuss in the upcoming section.
Building those sources requires that you've already built the C library.



Therefore, make sure that you read the following section first and have its
shared object library built before moving on to the next sections. Now that
you know how to obtain the chapter's material, we can proceed to discuss
our target C library.

Stack library
In this section, we are going to write a small library that is going to be
loaded and used by programs written in other programming languages.
The library is about a Stack class that offers some basic operations like
push or pop on stack objects. Stack objects are created and destroyed by
the library itself and there is a constructor function, as well as a destructor
function, to fulfill this purpose.

Next, you can find the library's public interface, which exists as part of the
cstack.h  header file:

#ifndef _CSTACK_H_

#define _CSTACK_H_

#include <unistd.h>

#ifdef __cplusplus

extern "C" {

#endif

#define TRUE 1

#define FALSE 0

typedef int bool_t;

typedef struct {

char* data;

size_t len;

} value_t;

typedef struct cstack_type cstack_t;

typedef void (*deleter_t)(value_t* value);

value_t make_value(char* data, size_t len);

value_t copy_value(char* data, size_t len);

void free_value(value_t* value);

cstack_t* cstack_new();

void cstack_delete(cstack_t*);

// Behavior functions

void cstack_ctor(cstack_t*, size_t);

void cstack_dtor(cstack_t*, deleter_t);



size_t cstack_size(const cstack_t*);

bool_t cstack_push(cstack_t*, value_t value);

bool_t cstack_pop(cstack_t*, value_t* value);

void cstack_clear(cstack_t*, deleter_t);

#ifdef __cplusplus

}

#endif

#endif

Code Box 21-1 [cstack.h]: The public interface of the Stack library

As we have explained in Chapter 6, OOP and Encapsulation, the
preceding declarations introduce the public interface of the Stack class. As
you see, the companion attribute structure of the class is cstack_t . We
have used cstack_t  instead of stack_t  because the latter is used in the C
standard library and I prefer to avoid any ambiguity in this code. By the
preceding declarations, the attribute structure is forward declared and has
no fields in it. Instead, the details will come in the source file that does the
actual implementation. The class also has a constructor, a destructor, and
some other behaviors such as push and pop. As you can see, all of them
accept a pointer of type cstack_t  as their first argument that indicates the
object they should act on. The way we wrote the Stack class is explained
as part of implicit encapsulation in Chapter 6, OOP and Encapsulation.

Code Box 21-2 contains the implementation of the stack class. It also
contains the actual definition for the cstack_t  attribute structure:

#include <stdlib.h>

#include <assert.h>

#include "cstack.h"

struct cstack_type {

size_t top;

size_t max_size;

value_t* values;

};

value_t copy_value(char* data, size_t len) {

char* buf = (char*)malloc(len * sizeof(char));

for (size_t i = 0; i < len; i++) {

buf[i] = data[i];

}

return make_value(buf, len);

}

value_t make_value(char* data, size_t len) {



value_t value;

value.data = data;

value.len = len;

return value;

}

void free_value(value_t* value) {

if (value) {

if (value->data) {

free(value->data);

value->data = NULL;

}

}

}

cstack_t* cstack_new() {

return (cstack_t*)malloc(sizeof(cstack_t));

}

void cstack_delete(cstack_t* stack) {

free(stack);

}

void cstack_ctor(cstack_t* cstack, size_t max_size) {

cstack->top = 0;

cstack->max_size = max_size;

cstack->values = (value_t*)malloc(max_size *

sizeof(value_t));

}

void cstack_dtor(cstack_t* cstack, deleter_t deleter) {

cstack_clear(cstack, deleter);

free(cstack->values);

}

size_t cstack_size(const cstack_t* cstack) {

return cstack->top;

}

bool_t cstack_push(cstack_t* cstack, value_t value) {

if (cstack->top < cstack->max_size) {

cstack->values[cstack->top++] = value;

return TRUE;

}

return FALSE;

}

bool_t cstack_pop(cstack_t* cstack, value_t* value) {

if (cstack->top > 0) {

*value = cstack->values[--cstack->top];

return TRUE;

}

return FALSE;

}

void cstack_clear(cstack_t* cstack, deleter_t deleter) {

value_t value;

while (cstack_size(cstack) > 0) {

bool_t popped = cstack_pop(cstack, &value);



assert(popped);

if (deleter) {

deleter(&value);

}

}

}

Code Box 21-2 [cstack.c]: The definition of the stack class

As you see, the definition implies that every stack object is backed with an
array, and more than that, we can store any value in the stack. Let's build
the library and produce a shared object library out of it. This would be the
library file that is going to be loaded by other programming languages in
the upcoming sections.

The following shell box shows how to create a shared object library using
the existing source files. The commands found in the text box work in
Linux and they should be slightly changed in order to work in macOS.
Note that before running the build commands, you should be in this
chapter's root directory as explained before:

$ gcc -c -g -fPIC cstack.c -o cstack.o

$ gcc -shared cstack.o -o libcstack.so

$

Shell Box 21-2: Building the stack library and producing the shared object library file in
Linux

As a side note, in macOS, we can run the preceding exact commands if the
gcc  is a known command and it is pointing to the clang  compiler.
Otherwise, we can use the following commands to build the library on
macOS. Note that the extension of shared object files is . dylib  in macOS:

$ clang -c -g -fPIC cstack.c -o cstack.o

$ clang -dynamiclib cstack.o -o libcstack.dylib

$

Shell Box 21-3: Building the stack library and producing the shared object library file in
macOS



We now have the shared object library file, and we can write programs in
other languages that can load it. Before giving our demonstration on how
the preceding library can be loaded and used in other environments, we
need to write some tests in order to verify its functionality. The following
code creates a stack and performs some of the available operations and
checks the results against the expectations:

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#include "cstack.h"

value_t make_int(int int_value) {

value_t value;

int* int_ptr = (int*)malloc(sizeof(int));

*int_ptr = int_value;

value.data = (char*)int_ptr;

value.len = sizeof(int);

return value;

}

int extract_int(value_t* value) {

return *((int*)value->data);

}

void deleter(value_t* value) {

if (value->data) {

free(value->data);

}

value->data = NULL;

}

int main(int argc, char** argv) {

cstack_t* cstack = cstack_new();

cstack_ctor(cstack, 100);

assert(cstack_size(cstack) == 0);

int int_values[] = {5, 10, 20, 30};

for (size_t i = 0; i < 4; i++) {

cstack_push(cstack, make_int(int_values[i]));

}

assert(cstack_size(cstack) == 4);

int counter = 3;

value_t value;

while (cstack_size(cstack) > 0) {

bool_t popped = cstack_pop(cstack, &value);

assert(popped);

assert(extract_int(&value) == int_values[counter--]);

deleter(&value);

}

assert(counter == -1);

assert(cstack_size(cstack) == 0);



cstack_push(cstack, make_int(10));

cstack_push(cstack, make_int(20));

assert(cstack_size(cstack) == 2);

cstack_clear(cstack, deleter);

assert(cstack_size(cstack) == 0);

// In order to have something in the stack while

// calling destructor.

cstack_push(cstack, make_int(20));

cstack_dtor(cstack, deleter);

cstack_delete(cstack);

printf("All tests were OK.\n");

return 0;

}

Code Box 21-3 [cstack_tests.c]: The code testing the functionality of the Stack class

As you can see, we have used assertions to check the returned values. The
following is the output of the preceding code after being built and
executed in Linux. Again, note that we are in the chapter's root directory:

$ gcc -c -g cstack_tests.c -o tests.o

$ gcc tests.o -L$PWD -lcstack -o cstack_tests.out

$ LD_LIBRARY_PATH=$PWD ./cstack_tests.out

All tests were OK.

$

Shell Box 21-4: Building and running the library tests

Note that in the preceding shell box, when running the final executable file
cstack_tests.out , we have to set the environment variable
LD_LIBRARY_PATH  to point to the directory that contains the libcstack.so ,
because the executed program needs to find the shared object libraries and
load them.

As you see in Shell Box 21-4, all tests have passed successfully. This
means that from the functional point of view, our library is performing
correctly. It would be nice to check the library against a non-functional
requirement like memory usage or having no memory leaks.

The following command shows how to use valgrind  to check the
execution of the tests for any possible memory leaks:



$ LD_LIBRARY_PATH=$PWD valgrind --leak-check=full

./cstack_tests.out

==31291== Memcheck, a memory error detector

==31291== Copyright (C) 2002-2017, and GNU GPL'd, by Julian

Seward et al.

==31291== Using Valgrind-3.13.0 and LibVEX; rerun with -h

for copyright info

==31291== Command: ./cstack_tests.out

==31291==

All tests were OK.

==31291==

==31291== HEAP SUMMARY:

==31291== in use at exit: 0 bytes in 0 blocks

==31291== total heap usage: 10 allocs, 10 frees, 2,676 bytes

allocated

==31291==

==31291== All heap blocks were freed -- no leaks are

possible

==31291==

==31291== For counts of detected and suppressed errors,

rerun with: -v

==31291== ERROR SUMMARY: 0 errors from 0 contexts

(suppressed: 0 from 0)

$

Shell Box 21-5: Running the tests using valgrind

As you can see, we don't have any memory leaks, and this gives us more
trust in the library that we have written. Therefore, if we see any memory
issue in another environment, the root cause should be investigated there
first.

In the following chapter, we will cover unit testing in C. As a proper
replacement for the assert  statements seen in Code Box 21-3, we could
write unit tests and use a unit testing framework like CMocka to execute
them.

In the following sections, we are going to integrate the stack library in
programs written by four programming languages. We'll start with C++.



Integration with C++
Integration with C++ can be assumed as the easiest. C++ can be thought of
as an object-oriented extension to C. A C++ compiler produces similar
object files to those that a C compiler produces. Therefore, a C++ program
can load and use a C shared object library easier than any other
programming language. In other words, it doesn't matter whether a shared
object file is the output of a C or C++ project; both can be consumed by a
C++ program. The only thing that can be problematic in some cases is the
C++ name mangling feature that is described in Chapter 2, Compilation
and Linking. As a reminder, we'll briefly review it in the following
section.

Name mangling in C++
To elaborate more on this, we should say that symbol names corresponding
to functions (both global and member functions in classes) are mangled in
C++. Name mangling is mainly there to support namespaces and function
overloading, which are missing in C. Name mangling is enabled by
default, therefore if C code gets compiled using a C++ compiler, we
expect to see mangled symbol names. Look at the following example in
Code Box 21-4:

int add(int a, int b) {

return a + b;

}

Code Box 21-4 [test.c]: A simple function in C

If we compile the preceding file using a C compiler, in this case clang ,
we see the following symbols in the generated object file, shown in Shell
Box 21-6. Note that the file test.c  doesn't exist in the book's GitHub
repository:

$ clang -c test.c -o test.o



$ nm test.o

0000000000000000 T _add

$

Shell Box 21-6: Compiling test.c with a C compiler

As you see, we have a symbol named _add  that refers to the function add
defined above. Now, let's compile the file with a C++ compiler, in this
case clang++ :

$ clang++ -c test.c -o test.o

clang: warning: treating 'c' input as 'c++' when in C++

mode, this behavior is deprecated [-Wdeprecated]

$ nm test.o

0000000000000000 T __Z3addii

$

Shell Box 21-7: Compiling test.c with a C++ compiler

As you can see, clang++  has generated a warning that says that in the near
future, the support for compiling C code as C++ code will be dropped. But
since this behavior is not removed yet (and it is just deprecated), we see
that the symbol name generated for the preceding function is mangled and
is different from the one generated by clang . This can definitely lead to
problems in the linking phase when looking for a specific symbol.

To eliminate this issue, one needs to wrap the C code inside a special
scope that prevents a C++ compiler from mangling the symbol names.
Then, compiling it with clang  and clang++  produces the same symbol
names. Look at the following code in Code Box 21-5, which is a changed
version of the code introduced in Code Box 21-4:

#ifdef __cplusplus

extern "C" {

#endif

int add(int a, int b) {

return a + b;

}

#ifdef __cplusplus

}

#endif



Code Box 21-5 [test.c]: Putting the function declaration into the special C scope

The preceding function is put in the scope extern "C" { ... }  only if the
macro __cplusplus  is already defined. Having the macro __cplusplus  is
a sign that the code is being compiled by a C++ compiler. Let's compile
the preceding code with clang++  again:

$ clang++ -c test.c -o test.o

clang: warning: treating 'c' input as 'c++' when in C++

mode, this behavior is deprecated [-Wdeprecated]

$ nm test.o

0000000000000000 T _add

$

Shell Box 21-8: Compiling the new version of test.c with clang++

As you see, the generated symbol is not mangled anymore. Regarding our
stack library, based on what we explained so far, we need to put all
declarations in the scope extern "C" { … }  and this is exactly the reason
behind having that scope in Code Box 21-1. Therefore, when linking a C++
program with the stack library, the symbols can be found inside
libcstack.so  (or libcstack.dylib ).

Note:

extern "C"  is a linkage specification. More information can be
found via the following links:

https://isocpp.org/wiki/faq/mixing-c-and-cpp

https://stackoverflow.com/questions/1041866/what-

is-the-effect-of-extern-c-in-c.

Now, it's time to write the C++ code that uses our stack library. As you'll
see shortly, it's an easy integration.

https://isocpp.org/wiki/faq/mixing-c-and-cpp
https://stackoverflow.com/questions/1041866/what-is-the-effect-of-extern-c-in-c


C++ code
Now that we know how to disable name mangling when bringing C code
into a C++ project, we can proceed by writing a C++ program that uses the
stack library. We start by wrapping the stack library in a C++ class, which
is the main building block of an object-oriented C++ program. It is more
appropriate to expose the stack functionality in an object-oriented fashion
instead of having the stack library's C functions be called directly.

Code Box 21-6 contains the class that wraps the stack functionality derived
from the stack library:

#include <string.h>

#include <iostream>

#include <string>

#include "cstack.h"

template<typename T>

value_t CreateValue(const T& pValue);

template<typename T>

T ExtractValue(const value_t& value);

template<typename T>

class Stack {

public:

// Constructor

Stack(int pMaxSize) {

mStack = cstack_new();

cstack_ctor(mStack, pMaxSize);

}

// Destructor

~Stack() {

cstack_dtor(mStack, free_value);

cstack_delete(mStack);

}

size_t Size() {

return cstack_size(mStack);

}

void Push(const T& pItem) {

value_t value = CreateValue(pItem);

if (!cstack_push(mStack, value)) {

throw "Stack is full!";

}

}

const T Pop() {

value_t value;

if (!cstack_pop(mStack, &value)) {



throw "Stack is empty!";

}

return ExtractValue<T>(value);

}

void Clear() {

cstack_clear(mStack, free_value);

}

private:

cstack_t* mStack;

};

Code Box 21-6 [c++/Stack.cpp]: A C++ class that wraps the functionalities exposed by the
stack library

Regarding the preceding class, we can point out the following important
notes:

The preceding class keeps a private pointer to a cstack_t  variable.
This pointer addresses the object created by the static library's
cstack_new  function. This pointer can be thought of as a handle to an
object that exists at the C level, created and managed by a separate C
library. The pointer mStack  is analogous to a file descriptor (or file
handle) that refers to a file.
The class wraps all behavior functions exposed by the stack library.
This is not essentially true for any object-oriented wrapper around a
C library, and usually a limited set of functionalities is exposed.
The preceding class is a template class. This means that it can operate
on a variety of data types. As you can see, we have declared two
template functions for serializing and deserializing objects with
various types: CreateValue  and ExtractValue . The preceding class
uses these functions to create a byte array from a C++ object
(serialization) and to create a C++ object from a byte array
(deserialization) respectively.
We define a specialized template function for the type std::string .
Therefore, we can use the preceding class to store values with the
std::string  type. Note that std::string  is the standard type in
C++ for having a string variable.
As part of the stack library, you can have multiple values from
different types pushed into a single stack instance. The value can be



converted to/from a character array. Look at the value_t  structure in
Code Box 21-1. It only needs a char  pointer and that's all. Unlike the
stack library, the preceding C++ class is type-safe and every instance
of it can operate only on a specific data type.
In C++, every class has at least one constructor and one destructor.
Therefore, it would be easy to initialize the underlying stack object as
part of the constructor and finalize it in the destructor. That's exactly
what you see in the preceding code.

We want our C++ class to be able to operate on string values. Therefore,
we need to write proper serializer and deserializer functions that can be
used within the class. The following code contains the function definitions
that convert a C char array to an std::string  object and vice versa:

template<>

value_t CreateValue(const std::string& pValue) {

value_t value;

value.len = pValue.size() + 1;

value.data = new char[value.len];

strcpy(value.data, pValue.c_str());

return value;

}

template<>

std::string ExtractValue(const value_t& value) {

return std::string(value.data, value.len);

}

Code Box 21-7 [c++/Stack.cpp]: Specialized template functions meant for
serialization/deserialization of the std::string type. These functions are used as part of the C++

class.

The preceding functions are std::string  specialization for the declared
template function used in the class. As you can see, it defines how a
std::string  object should be converted to a C char array, and conversely
how a C char array can be turned into an std::string  object.

Code Box 21-8 contains the main  method that uses the C++ class:

int main(int argc, char** argv) {

Stack<std::string> stringStack(100);

stringStack.Push("Hello");



stringStack.Push("World");

stringStack.Push("!");

std::cout << "Stack size: " << stringStack.Size() <<

std::endl;

while (stringStack.Size() > 0) {

std::cout << "Popped > " << stringStack.Pop() << std::endl;

}

std::cout << "Stack size after pops: " <<

stringStack.Size() << std::endl;

stringStack.Push("Bye");

stringStack.Push("Bye");

std::cout << "Stack size before clear: " <<

stringStack.Size() << std::endl;

stringStack.Clear();

std::cout << "Stack size after clear: " <<

stringStack.Size() << std::endl;

return 0;

}

Code Box 21-8 [c++/Stack.cpp]: The main function using the C++ stack class

The preceding scenario covers all the functions exposed by the stack
library. We execute a number of operations and we check their results.
Note that the preceding code uses a Stack<std::string>  object for testing
functionality. Therefore, one can only push/pop std::string  values
into/from the stack.

The following shell box shows how to build and run the preceding code.
Note that all the C++ code that you've seen in this section is written using
C++11, hence it should be compiled using a compliant compiler. Like we
said before, we are running the following commands when we are in the
chapter's root directory:

$ cd c++

$ g++ -c -g -std=c++11 -I$PWD/.. Stack.cpp -o Stack.o

$ g++ -L$PWD/.. Stack.o -lcstack -o cstack_cpp.out

$ LD_LIBRARY_PATH=$PWD/.. ./cstack_cpp.out

Stack size: 3

Popped > !

Popped > World

Popped > Hello

Stack size after pops: 0

Stack size before clear: 2

Stack size after clear: 0



$

Shell Box 21-9: Building and running the C++ code

As you can see, we have indicated that we are going to use a C++11
compiler by passing the -std=c++11  option. Note the -I  and -L  options,
which are used for specifying custom include and library directories
respectively. The option -lcstack  asks the linker to link the C++ code
with the library file libcstack.so . Note that on macOS systems, the
shared object libraries have the .dylib  extension, and therefore you
might find libcstack.dylib  instead of libcstack.so .

For running the cstack_cpp.out  executable file, the loader needs to find
libcstack.so . Note that this is different from building the executable.
Here we want to run it, and the library file must be located before having
the executable run. Therefore, by changing the environment variable
LD_LIBRARY_PATH , we let the loader know where it should look for the
shared objects. We have discussed more regarding this in Chapter 2,
Compilation and Linking.

The C++ code should also be tested against memory leaks. valgrind
helps us to see the memory leaks and we use it to analyze the resulting
executable. The following shell box shows the output of valgrind  running
the cstack_cpp.out  executable file:

$ cd c++

$ LD_LIBRARY_PATH=$PWD/.. valgrind --leak-check=full

./cstack_cpp.out

==15061== Memcheck, a memory error detector

==15061== Copyright (C) 2002-2017, and GNU GPL'd, by Julian

Seward et al.

==15061== Using Valgrind-3.13.0 and LibVEX; rerun with -h

for copyright info

==15061== Command: ./cstack_cpp.out

==15061==

Stack size: 3

Popped > !

Popped > World

Popped > Hello

Stack size after pops: 0

Stack size before clear: 2



Stack size after clear: 0

==15061==

==15061== HEAP SUMMARY:

==15061== in use at exit: 0 bytes in 0 blocks

==15061== total heap usage: 9 allocs, 9 frees, 75,374 bytes

allocated

==15061==

==15061== All heap blocks were freed -- no leaks are

possible

==15061==

==15061== For counts of detected and suppressed errors,

rerun with: -v

==15061== ERROR SUMMARY: 0 errors from 0 contexts

(suppressed: 0 from 0)

$

Shell Box 21-10: Building and running the C++ code using valgrind

As is clear from the preceding output, we don't have any leaks in the code.
Note that having 1081 bytes in the still reachable  section doesn't mean
that you have had a leak in your code. You can find more about this in
valgrind 's manual.

In this section, we explained how to write a C++ wrapper around our C
stack library. While mixing C and C++ code seems to be easy, some extra
care about name mangling rules in C++ should be taken. In the next
section, we are going to briefly talk about the Java programming language
and the way that we are going to load our C library in a program written in
Java.

Integration with Java
Java programs are compiled by a Java compiler into Java bytecode. Java
bytecode is analogous to the object file format specified in the
Application Binary Interface (ABI). Files containing Java bytecode
cannot be executed like ordinary executable files, and they need a special
environment to be run.



Java bytecode can only be run within a Java Virtual Machine (JVM).
The JVM is itself a process that simulates a working environment for the
Java bytecode. It is usually written in C or C++ and has the power to load
and use the C standard library and the functionalities exposed in that layer.

The Java programming language is not the only language that can be
compiled into Java bytecode. Scala, Kotlin, and Groovy are among
programming languages that can be compiled to Java bytecode hence
they can be run within a JVM. They are usually called JVM languages.

In this section, we are going to load our already built stack library into a
Java program. For those who have no prior knowledge of Java, the steps
we take may seem complicated and hard to grasp. Therefore, it is strongly
recommended that readers come into this section with some basic
knowledge about Java programming.

Writing the Java part
Suppose that we have a C project that it is built into a shared object
library. We want to bring it into Java and use its functions. Fortunately, we
can write and compile the Java part without having any C (or native) code.
They are well separated by the native methods in Java. Obviously, you
cannot run the Java program with just the Java part, and have the C
functions called, without the shared object library file being loaded. We
give the necessary steps and source code to make this happen and run a
Java program that loads a shared object library and invokes its functions
successfully.

The JVM uses Java Native Interface (JNI) to load shared object libraries.
Note that JNI is not part of the Java programming language; rather, it is
part of the JVM specification, therefore an imported shared object library
can be used in all JVM languages such as Scala.

In the following paragraphs, we show how to use JNI to load our target
shared object library file.



As we said before, JNI uses native methods. Native methods don't have
any definition in Java; their actual definitions are written using C or C++
and they reside in external shared libraries. In other words, native methods
are ports for the Java programs to communicate to the world outside of the
JVM. The following code shows a class that contains a number of static
native methods and it is supposed to expose the functionalities provided
by our stack library:

package com.packt.extreme_c.ch21.ex1;

class NativeStack {

static {

System.loadLibrary("NativeStack");

}

public static native long newStack();

public static native void deleteStack(long stackHandler);

public static native void ctor(long stackHandler, int

maxSize);

public static native void dtor(long stackHandler);

public static native int size(long stackHandler);

public static native void push(long stackHandler, byte[]

item);

public static native byte[] pop(long stackHandler);

public static native void clear(long stackHandler);

}

Code Box 21-9 [java/src/com/packt/extreme_c/ch21/ex1/Main.java]: The NativeStack class

As the method signatures imply, they correspond to the functions we have
in the C stack library. Note that the first operand is a long  variable. It
contains a native address read from the native library and acts as a pointer
that should be passed to other methods to denote the stack instance. Note
that, for writing the preceding class, we don't need to have a fully working
shared object file beforehand. The only thing we need is the list of
required declarations to define the stack API.

The preceding class has also a static constructor. The constructor loads a
shared object library file located on the filesystem and tries to match the
native methods with the symbols found in that shared object library. Note
that the preceding shared object library is not libcstack.so . In other
words, this is not the shared object file that we produced for our stack
library. JNI has a very precise recipe for finding symbols that correspond



to native methods. Therefore, we cannot use our symbols defined in
libcstack.so ; instead we need to create the symbols that JNI is looking
for and then use our stack library from there.

This might be a bit unclear at the moment, but in the following section, we
clarify this and you'll see how this can be done. Let's continue with the
Java part. We still need to add some more Java code.

The following is a generic Java class named Stack<T>  that wraps the
native methods exposed by JNI. Generic Java classes can be regarded as
twin concepts for the template classes that we had in C++. They are used
to specify some generic types that can operate on other types.

As you see in the Stack<T>  class, there is a marshaller object, from the
type Marshaller<T> , that is used to serialize and deserialize the methods'
input arguments (from type T ) in order to put them into, or retrieve them
from, the underlying C stack:

interface Marshaller<T> {

byte[] marshal(T obj);

T unmarshal(byte[] data);

}

class Stack<T> implements AutoCloseable {

private Marshaller<T> marshaller;

private long stackHandler;

public Stack(Marshaller<T> marshaller) {

this.marshaller = marshaller;

this.stackHandler = NativeStack.newStack();

NativeStack.ctor(stackHandler, 100);

}

@Override

public void close() {

NativeStack.dtor(stackHandler);

NativeStack.deleteStack(stackHandler);

}

public int size() {

return NativeStack.size(stackHandler);

}

public void push(T item) {

NativeStack.push(stackHandler, marshaller.marshal(item));

}

public T pop() {

return marshaller.unmarshal(NativeStack.pop(stackHandler));

}



public void clear() {

NativeStack.clear(stackHandler);

}

}

Code Box 21-10 [java/src/com/packt/extreme_c/ch21/ex1/Main.java]: The Stack<T> class and
the Marshaller<T> interface

The following points seem to be noticeable regarding the preceding code:

The class Stack<T>  is a generic class. It means that its different
instances can operate on various classes like String , Integer ,
Point , and so on, but every instance can operate only on the type
specified upon instantiation.
The ability to store any data type in the underlying stack requires the
stack to use an external marshaller to perform serialization and
deserialization of the objects. The C stack library is able to store byte
arrays in a stack data structure and higher-level languages willing to
use its functionalities should be able to provide that byte array
through serialization of the input objects. You will see shortly the
implementation of the Marshaller  interface for the String  class.
We inject the Marshaller  instance using the constructor. This means
that we should have an already created marshaller instance that is
compatible with the generic type of the class T .
The Stack<T>  class implements the AutoCloseable  interface. This
simply means that it has some native resources that should be freed
upon destruction. Note that the actual stack is created in the native
code and not in the Java code. Therefore, the JVM's garbage collector
cannot free the stack when it is not needed anymore. AutoCloseable
objects can be used as resources which have a specific scope and
when they are not needed anymore, their close  method is called
automatically. Shortly, you will see how we use the preceding class in
a test scenario.
As you see, we have the constructor method and we have initialized
the underlying stack using the native methods. We keep a handler to
the stack as a long  field in the class. Note that unlike in C++, we
don't have any destructors in the class. Therefore, it is possible not to



have the underlying stack freed and for it eventually to become a
memory leak. That's why we have marked the class as an
AutoCloseable . When an AutoCloseable  object is not needed
anymore, its close  method is called and as you see in the preceding
code, we call the destructor function from the C stack library to
release the resources allocated by the C stack.

Generally, you cannot trust the garbage collector mechanism to call
finalizer methods on Java objects and using the AutoCloseable
resources is the correct way to manage native resources.

The following is the implementation of StringMarshaller . The
implementation is very straightforward thanks to the great support of the
String  class in working with byte arrays:

class StringMarshaller implements Marshaller<String> {

@Override

public byte[] marshal(String obj) {

return obj.getBytes();

}

@Override

public String unmarshal(byte[] data) {

return new String(data);

}

}

Code Box 21-11 [java/src/com/packt/extreme_c/ch21/ex1/Main.java]: The StringMarshaller
class

The following code is our Main  class that contains the test scenario for
demonstration of C stack functionalities through Java code:

public class Main {

public static void main(String[] args) {

try (Stack<String> stack = new Stack<>(new

StringMarshaller())) {

stack.push("Hello");

stack.push("World");

stack.push("!");

System.out.println("Size after pushes: " + stack.size());



while (stack.size() > 0) {

System.out.println(stack.pop());

}

System.out.println("Size after pops: " + stack.size());

stack.push("Ba");

stack.push("Bye!");

System.out.println("Size after before clear: " +

stack.size());

stack.clear();

System.out.println("Size after clear: " + stack.size());

}

}

}

Code Box 21-12 [java/src/com/packt/extreme_c/ch21/ex1/Main.java]: The Main class that
contains the test scenario to check the functionalities of the C stack library

As you see, the reference variable stack  is being created and used inside
a try  block. This syntax is usually called try-with-resources and it has
been introduced as part of Java 7. When the try  block is finished, the
method close  is called on the resource object and the underlying stack
becomes freed. The test scenario is the same as the scenario we wrote for
C++ in the previous section, but this time in Java.

In this section, we covered the Java part and all the Java code that we need
to import the native part. All the sources above can be compiled but you
cannot run them because you need the native part as well. Only together
can they lead to an executable program. In the next section, we talk about
the steps we should take to write the native part.

Writing the native part
The most important thing we introduced in the previous section was the
idea of native methods. Native methods are declared within Java, but their
definitions reside outside of the JVM in a shared object library. But how
does the JVM find the definition of a native method in the loaded shared
object files? The answer is simple: by looking up certain symbol names in
the shared object files. The JVM extracts a symbol name for every native
method based on its various properties like the package, the containing



class, and its name. Then, it looks for that symbol in the loaded shared
object libraries and if it cannot find it, it gives you an error.

Based on what we established in the previous section, the JVM forces us to
use specific symbol names for the functions we write as part of the loaded
shared object file. But we didn't use any specific convention while creating
the stack library. So, the JVM won't be able to find our exposed functions
from the stack library and we must come up with another way. Generally,
C libraries are written without any assumption about being used in a JVM
environment.

Figure 21-1 shows how we can use an intermediate C or C++ library to act
as a glue between the Java part and the native part. We give the JVM the
symbols it wants, and we delegate the function calls made to the functions
representing those symbols to the correct function inside the C library.
This is basically how JNI works.

We'll explain this with an imaginary example. Suppose that we want to
make a call to a C function, func , from Java, and the definition of the
function can be found in the libfunc.so  shared object file. We also have a
class Clazz  in the Java part with a native function called doFunc . We
know that the JVM would be looking for the symbol Java_Clazz_doFunc
while trying to find the definition of the native function doFunc . We
create an intermediate shared object library libNativeLibrary.so  that
contains a function with exactly the same symbol that the JVM is looking
for. Then, inside that function, we make a call to the func  function. We
can say that the function Java_Clazz_doFunc  acts as a relay and delegates
the call to the underlying C library and eventually the func  function.





Figure 21-1: The intermediate shared object libNativeStack.so which is used to delegate function
calls from Java to the actual underlying C stack library, libcstack.so.

In order to stay aligned with JVM symbol names, the Java compiler
usually generates a C header file out of the native methods found in a Java
code. This way, you only need to write the definitions of those functions
found in the header file. This prevents us from making any mistakes in the
symbol names that the JVM eventually would be looking for.

The following commands demonstrate how to compile a Java source file
and how to ask the compiler to generate a header file for the found native
methods in it. Here, we are going to compile our only Java file,
Main.java , which contains all the Java code introduced in the previous
code boxes. Note that we should be in the chapter's root directory when
running the following commands:

$ cd java

$ mkdir -p build/headers

$ mkdir -p build/classes

$ javac -cp src -h build/headers -d build/classes \

src/com/packt/extreme_c/ch21/ex1/Main.java

$ tree build

build

├── classes

│   └── com

│   └── packt

│   └── extreme_c

│   └── ch21

│   └── ex1

│   ├── Main.class

│   ├── Marshaller.class

│   ├── NativeStack.class

│   ├── Stack.class

│   └── StringMarshaller.class

└── headers

└── com_packt_extreme_c_ch21_ex1_NativeStack.h

7 directories, 6 files

$

Shell Box 21-11: Compiling the Main.java while generating a header for native methods
found in the file



As shown in the preceding shell box, we have passed the option -h  to
javac,  which is the Java compiler. We have also specified a directory that
all headers should go to. The tree  utility shows the content of the build
directory in a tree-like format. Note the .class  files. They contain the
Java bytecode which will be used when loading these classes into a JVM
instance.

In addition to class files we see a header file,
com_packt_extreme_c_ch21_ex1_NativeStack.h , that contains the
corresponding C function declarations for the native methods found in the
NativeStack  class.

If you open the header file, you will see something like Code Box 21-13. It
has a number of function declarations with long and strange names each of
which being made up of the package name, the class name, and the name
of the corresponding native method:

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class com_packt_extreme_c_ch21_ex1_NativeStack

*/

#ifndef _Included_com_packt_extreme_c_ch21_ex1_NativeStack

#define _Included_com_packt_extreme_c_ch21_ex1_NativeStack

#ifdef __cplusplus

extern "C" {

#endif

/*

* Class: com_packt_extreme_c_ch21_ex1_NativeStack

* Method: newStack

* Signature: ()J

*/

JNIEXPORT jlong JNICALL

Java_com_packt_extreme_1c_ch21_ex1_NativeStack_newStack

(JNIEnv *, jclass);

/*

* Class: com_packt_extreme_c_ch21_ex1_NativeStack

* Method: deleteStack

* Signature: (J)V

*/

JNIEXPORT void JNICALL

Java_com_packt_extreme_1c_ch21_ex1_NativeStack_deleteStack

(JNIEnv *, jclass, jlong);

...

...



...

#ifdef __cplusplus

}

#endif

#endif

Code Box 21-13: The (incomplete) content of the generated JNI header file

The functions declared in the preceding header file carry the symbol
names that the JVM would be looking for when loading the corresponding
C function for a native method. We have modified the preceding header
file and used macros to make it compact in order to have all the function
declarations in a smaller area. You can see it in Code Box 21-14:

// Filename: NativeStack.h

// Description: Modified JNI generated header file

#include <jni.h>

#ifndef _Included_com_packt_extreme_c_ch21_ex1_NativeStack

#define _Included_com_packt_extreme_c_ch21_ex1_NativeStack

#define JNI_FUNC(n)

Java_com_packt_extreme_1c_ch21_ex1_NativeStack_##

#ifdef __cplusplus

extern "C" {

#endif

JNIEXPORT jlong JNICALL JNI_FUNC(newStack)(JNIEnv* ,

jclass);

JNIEXPORT void JNICALL JNI_FUNC(deleteStack)(JNIEnv* ,

jclass, jlong);

JNIEXPORT void JNICALL JNI_FUNC(ctor)(JNIEnv* , jclass,

jlong, jint);

JNIEXPORT void JNICALL JNI_FUNC(dtor)(JNIEnv* , jclass,

jlong);

JNIEXPORT jint JNICALL JNI_FUNC(size)(JNIEnv* , jclass,

jlong);

JNIEXPORT void JNICALL JNI_FUNC(push)(JNIEnv* , jclass,

jlong, jbyteArray);

JNIEXPORT jbyteArray JNICALL JNI_FUNC(pop)(JNIEnv* , jclass,

jlong);

JNIEXPORT void JNICALL JNI_FUNC(clear)(JNIEnv* , jclass,

jlong);

#ifdef __cplusplus

}

#endif

#endif



Code Box 21-14 [java/native/NativeStack.h]: The modified version of the generated JNI
header file

As you see, we have created a new macro JNI_FUNC  that factors out a big
portion of the function name that is common for all of the declarations.
We have also removed the comments in order to make the header file even
more compact.

We will be using the macro JNI_FUNC  in both the header file and the
following source file, which are shown as part of Code Box 21-15.

Note:

It is not an accepted behavior to modify the generated header file. We did
it because of educational purposes. In real build environments, it is
desired to use the generated files directly without any modification.

In Code Box 21-15, you will find the definitions of the preceding
functions. As you see, the definitions only relay the calls to the underlying
C functions included from the C stack library:

#include <stdlib.h>

#include "NativeStack.h"

#include "cstack.h"

void defaultDeleter(value_t* value) {

free_value(value);

}

void extractFromJByteArray(JNIEnv* env,

jbyteArray byteArray,

value_t* value) {

jboolean isCopy = false;

jbyte* buffer = env->GetByteArrayElements(byteArray,

&isCopy);

value->len = env->GetArrayLength(byteArray);

value->data = (char*)malloc(value->len * sizeof(char));

for (size_t i = 0; i < value->len; i++) {

value->data[i] = buffer[i];

}

env->ReleaseByteArrayElements(byteArray, buffer, 0);

}

JNIEXPORT jlong JNICALL JNI_FUNC(newStack)(JNIEnv* env,



jclass clazz) {

return (long)cstack_new();

}

JNIEXPORT void JNICALL JNI_FUNC(deleteStack)(JNIEnv* env,

jclass clazz,

jlong stackPtr) {

cstack_t* cstack = (cstack_t*)stackPtr;

cstack_delete(cstack);

}

JNIEXPORT void JNICALL JNI_FUNC(ctor)(JNIEnv *env,

jclass clazz,

jlong stackPtr,

jint maxSize) {

cstack_t* cstack = (cstack_t*)stackPtr;

cstack_ctor(cstack, maxSize);

}

JNIEXPORT void JNICALL JNI_FUNC(dtor)(JNIEnv* env,

jclass clazz,

jlong stackPtr) {

cstack_t* cstack = (cstack_t*)stackPtr;

cstack_dtor(cstack, defaultDeleter);

}

JNIEXPORT jint JNICALL JNI_FUNC(size)(JNIEnv* env,

jclass clazz,

jlong stackPtr) {

cstack_t* cstack = (cstack_t*)stackPtr;

return cstack_size(cstack);

}

JNIEXPORT void JNICALL JNI_FUNC(push)(JNIEnv* env,

jclass clazz,

jlong stackPtr,

jbyteArray item) {

value_t value;

extractFromJByteArray(env, item, &value);

cstack_t* cstack = (cstack_t*)stackPtr;

bool_t pushed = cstack_push(cstack, value);

if (!pushed) {

jclass Exception = env->FindClass("java/lang/Exception");

env->ThrowNew(Exception, "Stack is full!");

}

}

JNIEXPORT jbyteArray JNICALL JNI_FUNC(pop)(JNIEnv* env,

jclass clazz,

jlong stackPtr) {

value_t value;

cstack_t* cstack = (cstack_t*)stackPtr;

bool_t popped = cstack_pop(cstack, &value);

if (!popped) {

jclass Exception = env->FindClass("java/lang/Exception");

env->ThrowNew(Exception, "Stack is empty!");



}

jbyteArray result = env->NewByteArray(value.len);

env->SetByteArrayRegion(result, 0,

value.len, (jbyte*)value.data);

defaultDeleter(&value);

return result;

}

JNIEXPORT void JNICALL JNI_FUNC(clear)(JNIEnv* env,

jclass clazz,

jlong stackPtr) {

cstack_t* cstack = (cstack_t*)stackPtr;

cstack_clear(cstack, defaultDeleter);

}

Code Box 21-15 [java/native/NativeStack.cpp]: The definitions of the functions declared in
the JNI header file

The preceding code is written in C++. It is possible to write the definitions
in C as well. The only thing demanding attention is the conversion from C
byte arrays into Java byte arrays happening in push and pop functions. The
function extractFromJByteArray  has been added to create a C byte array
based on a Java byte array received from the Java part.

The following commands create the intermediate shared object
libNativeStack.so  in Linux, which is going to be loaded and used by the
JVM. Note that you need to set the environment variable JAVA_HOME
before running the following commands:

$ cd java/native

$ g++ -c -fPIC -I$PWD/../.. -I$JAVA_HOME/include \

-I$JAVA_HOME/include/linux NativeStack.cpp -o NativeStack.o

$ g++ -shared -L$PWD/../.. NativeStack.o -lcstack -o

libNativeStack.so

$

Shell Box 21-12: Building the intermediate shared object library libNativeStack.so

As you see, the final shared object file is linked against the C stack
library's shared object file libcstack.so  which simply means the
libNativeStack.so  has to load libcstack.so  in order to work. Therefore,
the JVM loads the libNativeStack.so  library and then it loads



libcstack.so  library, and eventually the Java part and the native part can
cooperate and let the Java program be executed.

The following commands run the test scenario shown in Code Box 21-12:

$ cd java

$ LD_LIBRARY_PATH=$PWD/.. java -

Djava.library.path=$PWD/native \

-cp build/classes com.packt.extreme_c.ch21.ex1.Main

Size after pushes: 3

!

World

Hello

Size after pops: 0

Size after before clear: 2

Size after clear: 0

$

Shell Box 21-13: Running the Java test scenario

As you see, we have passed the option -Djava.library.path=...  to the
JVM. It specifies the place where shared object libraries can be found. As
you see, we have specified the directory which should contain the
libNativeStack.so  shared object library.

In this section, we showed how to load a native C library into the JVM and
use it together with other Java source code. The same mechanism can be
applied for loading bigger and multi-part native libraries.

Now, it's time to go through the Python integration and see how the C
stack library can be used from Python code.

Integration with Python
Python is an interpreted programming language. This means that the
Python code is read and run by an intermediate program that is called an
interpreter. If we are going to use an external native shared library, it is



the interpreter that loads the shared library and makes it available to the
Python code. Python has a special framework for loading external shared
libraries. It is called ctypes and we are going to use it in this section.

Loading the shared libraries using ctypes  is very straightforward. It only
requires loading the library and defining the inputs and output of the
functions that are going to be used. The following class wraps the ctypes-
related logic and makes it available to our main Stack  class, shown in the
upcoming code boxes:

from ctypes import *

class value_t(Structure):

_fields_ = [("data", c_char_p), ("len", c_int)]

class _NativeStack:

def __init__(self):

self.stackLib = cdll.LoadLibrary(

"libcstack.dylib" if platform.system() == 'Darwin'

else "libcstack.so")

# value_t make_value(char*, size_t)

self._makevalue_ = self.stackLib.make_value

self._makevalue_.argtypes = [c_char_p, c_int]

self._makevalue_.restype = value_t

# value_t copy_value(char*, size_t)

self._copyvalue_ = self.stackLib.copy_value

self._copyvalue_.argtypes = [c_char_p, c_int]

self._copyvalue_.restype = value_t

# void free_value(value_t*)

self._freevalue_ = self.stackLib.free_value

self._freevalue_.argtypes = [POINTER(value_t)]

# cstack_t* cstack_new()

self._new_ = self.stackLib.cstack_new

self._new_.argtypes = []

self._new_.restype = c_void_p

# void cstack_delete(cstack_t*)

self._delete_ = self.stackLib.cstack_delete

self._delete_.argtypes = [c_void_p]

# void cstack_ctor(cstack_t*, int)

self._ctor_ = self.stackLib.cstack_ctor

self._ctor_.argtypes = [c_void_p, c_int]

# void cstack_dtor(cstack_t*, deleter_t)

self._dtor_ = self.stackLib.cstack_dtor

self._dtor_.argtypes = [c_void_p, c_void_p]

# size_t cstack_size(cstack_t*)

self._size_ = self.stackLib.cstack_size

self._size_.argtypes = [c_void_p]

self._size_.restype = c_int



# bool_t cstack_push(cstack_t*, value_t)

self._push_ = self.stackLib.cstack_push

self._push_.argtypes = [c_void_p, value_t]

self._push_.restype = c_int

# bool_t cstack_pop(cstack_t*, value_t*)

self._pop_ = self.stackLib.cstack_pop

self._pop_.argtypes = [c_void_p, POINTER(value_t)]

self._pop_.restype = c_int

# void cstack_clear(cstack_t*, deleter_t)

self._clear_ = self.stackLib.cstack_clear

self._clear_.argtypes = [c_void_p, c_void_p]

Code Box 21-17 [python/stack.py]: The ctypes-related code that makes the stack library's C
functions available to the rest of Python

As you can see, all the functions required to be used in our Python code
are put in the class definition. The handles to the C functions are stored as
private fields in the class instance (private fields have _  on both sides)
and they can be used to call the underlying C function. Note that in the
above code, we have loaded the libcstack.dylib , as we are in a macOS
system. And for Linux systems, we need to load libcstack.so .

The following class is the main Python component that uses the above
wrapper class. All other Python code uses this class to have the stack
functionality:

class Stack:

def __enter__(self):

self._nativeApi_ = _NativeStack()

self._handler_ = self._nativeApi_._new_()

self._nativeApi_._ctor_(self._handler_, 100)

return self

def __exit__(self, type, value, traceback):

self._nativeApi_._dtor_(self._handler_,

self._nativeApi_._freevalue_)

self._nativeApi_._delete_(self._handler_)

def size(self):

return self._nativeApi_._size_(self._handler_)

def push(self, item):

result = self._nativeApi_._push_(self._handler_,

self._nativeApi_._copyvalue_(item.encode('utf-8'),

len(item)));

if result != 1:

raise Exception("Stack is full!")

def pop(self):



value = value_t()

result = self._nativeApi_._pop_(self._handler_,

byref(value))

if result != 1:

raise Exception("Stack is empty!")

item = string_at(value.data, value.len)

self._nativeApi_._freevalue_(value)

return item

def clear(self):

self._nativeApi_._clear_(self._handler_,

self._nativeApi_._freevalue_)

Code Box 21-16 [python/stack.py]: The Stack class in Python that uses the loaded C functions
from the stack library

As you see, the Stack class keeps a reference to the _NativeStack  class in
order to be able to call the underlying C functions. Note that the preceding
class overrides __enter__  and __exit__  functions. This allows the class
to be used as a resource class and be consumed in the with  syntax in
Python. You will see shortly what the syntax looks like. Please note that
the preceding Stack class only operates on string items.

The following is the test scenario, which is very similar to the Java and
C++ test scenarios:

if __name__ == "__main__":

with Stack() as stack:

stack.push("Hello")

stack.push("World")

stack.push("!")

print("Size after pushes:" + str(stack.size()))

while stack.size() > 0:

print(stack.pop())

print("Size after pops:" + str(stack.size()))

stack.push("Ba");

stack.push("Bye!");

print("Size before clear:" + str(stack.size()))

stack.clear()

print("Size after clear:" + str(stack.size()))

Code Box 21-18 [python/stack.py]: The test scenario written in Python and using the Stack
class

In the preceding code, you can see Python's with  statement.



Upon entering the with  block, the __enter__  function is called and an
instance of the Stack  class is referenced by the stack  variable. When
leaving the with  block, the __exit__  function is called. This gives us the
opportunity to free the underlying native resources, the C stack object in
this case, when they are not needed anymore.

Next, you can see how to run the preceding code. Note that all the Python
code boxes exist within the same file named stack.py . Before running the
following commands, you need to be in the chapter's root directory:

$ cd python

$ LD_LIBRARY_PATH=$PWD/.. python stack.py

Size after pushes:3

!

World

Hello

Size after pops:0

Size before clear:2

Size after clear:0

$

Shell Box 21-14: Running the Python test scenario

Note that the interpreter should be able to find and load the C stack shared
library; therefore, we set the LD_LIBRARY_PATH  environment variable to
point to the directory that contains the actual shared library file.

In the following section, we show how to load and use the C stack library
in the Go language.

Integration with Go
The Go programming language (or simply Golang) has an easy integration
with native shared libraries. It can be considered as the next generation of
the C and C++ programming languages and it calls itself a system
programming language. Therefore, we expect to load and use the native
libraries easily when using Golang.



In Golang, we use a built-in package called cgo to call C code and load the
shared object files. In the following Go code, you see how to use the cgo
package and use it to call the C functions loaded from the C stack library
file. It also defines a new class, Stack , which is used by other Go code to
use the C stack functionalities:

package main

/*

#cgo CFLAGS: -I..

#cgo LDFLAGS: -L.. -lcstack

#include "cstack.h"

*/

import "C"

import (

"fmt"

)

type Stack struct {

handler *C.cstack_t

}

func NewStack() *Stack {

s := new(Stack)

s.handler = C.cstack_new()

C.cstack_ctor(s.handler, 100)

return s

}

func (s *Stack) Destroy() {

C.cstack_dtor(s.handler, C.deleter_t(C.free_value))

C.cstack_delete(s.handler)

}

func (s *Stack) Size() int {

return int(C.cstack_size(s.handler))

}

func (s *Stack) Push(item string) bool {

value := C.make_value(C.CString(item), C.ulong(len(item) +

1))

pushed := C.cstack_push(s.handler, value)

return pushed == 1

}

func (s *Stack) Pop() (bool, string) {

value := C.make_value(nil, 0)

popped := C.cstack_pop(s.handler, &value)

str := C.GoString(value.data)

defer C.free_value(&value)

return popped == 1, str

}

func (s *Stack) Clear() {

C.cstack_clear(s.handler, C.deleter_t(C.free_value))

}



Code Box 21-19 [go/stack.go]: The Stack class using the loaded libcstack.so shared object file

In order to use the cgo package, one needs to import the C  package. It
loads the shared object libraries specified in the pseudo #cgo  directives.
As you see, we have specified the libcstack.so  library to be loaded as
part of the directive #cgo LDFLAGS: -L.. -lcstack . Note that the CFLAGS
and LDFLAGS  contain the flags that are directly passed to the C compiler
and to the linker respectively.

We have also indicated the path that should be searched for the shared
object file. After that, we can use the C  struct to call the loaded native
functions. For example, we have used C.cstack_new()  to call the
corresponding function from the stack library. It is pretty easy with cgo.
Note that the preceding Stack  class only works on string items.

The following code shows the test scenario written in Golang. Note that
we have to call the Destroy  function on the stack  object when quitting
the main  function:

func main() {

var stack = NewStack()

stack.Push("Hello")

stack.Push("World")

stack.Push("!")

fmt.Println("Stack size:", stack.Size())

for stack.Size() > 0 {

_, str := stack.Pop()

fmt.Println("Popped >", str)

}

fmt.Println("Stack size after pops:", stack.Size())

stack.Push("Bye")

stack.Push("Bye")

fmt.Println("Stack size before clear:", stack.Size())

stack.Clear()

fmt.Println("Stack size after clear:", stack.Size())

stack.Destroy()

}

Code Box 21-20 [go/stack.go]: The test scenario written in Go and using the Stack class



The following shell box demonstrates how to build and run the test
scenario:

$ cd go

$ go build -o stack.out stack.go

$ LD_LIBRARY_PATH=$PWD/.. ./stack.out

Stack size: 3

Popped > !

Popped > World

Popped > Hello

Stack size after pops: 0

Stack size before clear: 2

Stack size after clear: 0

$

Shell Box 21-15: Running the Go test scenario

As you see in Golang, unlike Python, you need to compile your program
first, and then run it. In addition, we still need to set the LD_LIBRARY_PATH
environment variable in order to allow the executable to locate the
libcstack.so  library and load it.

In this section, we showed how to use the cgo  package in Golang to load
and use shared object libraries. Since Golang behaves like a thin wrapper
around C code, it has been easier than using Python and Java to load an
external shared object library and use it.

Summary
In this chapter, we went through the integration of C within other
programming languages. As part of this chapter:

We designed a C library that was exposing some stack functionality
such as push, pop, and so on. We built the library and as the final
output we generated a shared object library to be used by other
languages.



We discussed the name mangling feature in C++, and how we should
avoid it in C when using a C++ compiler.
We wrote a C++ wrapper around the stack library that could load the
library's shared object file and execute the loaded functionalities
within C++.
We continued by writing a JNI wrapper around the C library. We used
native methods to achieve that.
We showed how to write native code in JNI and connect the native
part and Java part together, and finally run a Java program that uses
the C stack library.
We managed to write Python code that was using the ctypes package
to load and use the library's shared object file.
As the final section, we wrote a program in Golang that could load
the library's shared object file with help from the cgo  package.

The next chapter is about unit testing and debugging in C. We will
introduce some C libraries meant for writing unit tests. More than that, we
talk about debugging in C, and some of the existing tools that could be
used to debug or monitor a program.



Chapter 22
Unit Testing and Debugging

It doesn't really matter which programming language you are using or
what type of application you are developing, it is always important to
thoroughly test it before delivering it to the customer.

Writing tests is not a new thing and as of today, you can find hundreds or
even thousands of tests in almost every software project. Nowadays
writing tests for software is a must and delivering a piece of code or
feature without having it tested properly is strongly discouraged. That's
why we have a dedicated chapter to talk about testing software written in
C, and various libraries that exist today for this purpose.

Testing is not the only topic in this chapter, however. We will also be
discussing the debugging tools and techniques that can be used to
troubleshoot a C program. Testing and debugging have complimented one
another from the start, and whenever a test fails, a series of investigations
are followed and debugging the target code is a common follow-up action.

In this chapter, we won't go through the philosophy of testing and we
assume that testing is good. Instead, we will give you a short introduction
about the basic terminology and the guidelines that a developer should
follow in order to write testable code.

This chapter has two sections. In the first section, we talk about testing
and the existing libraries that can be used in modern C development. The
second section of this chapter is going to talk about debugging, starting
with a discussion about various categories of bugs. Memory issues,
concurrency issues, and performance issues are the most common cases in
which further debugging seems to be necessary in order to establish a
successful investigation.



We will also cover the most used debugging tools available for C (and
C++). The final goal of this chapter is to let you know about the testing
and debugging utilities available for C and give you some basic
background knowledge about them.

The first section introduces you to the basic terminology of software
testing in general. It is not specific to C, and the ideas and concepts can be
applied to other programming languages and technologies as well.

Software testing
Software testing is a big and important subject in computer programming,
and it has its own specific terminology and many concepts. In this section,
we are going to give you a very basic introduction to software testing. Our
purpose is to define some terms that we are going to use in the first half of
this chapter. Therefore, you should be aware that this is not a thorough
chapter about testing and further study is strongly encouraged.

When it comes to testing software, the first question that comes to mind
is, what are we testing, and what is this testing about? In general, we test
an aspect of a software system. This aspect can be functional or non-
functional. In other words, the aspect may be related to a certain
functionality of the system, or it can be related to a certain variable of a
system when performing a functionality. Next, we give some examples.

Functional testing is about testing a defined functionality requested as part
of the functional requirements. These tests provide a certain input to a
software element such as a function, a module, a component, or a software
system, and expect a certain output from them. Only if the expected output
is seen as part of a test is that test considered as passed.

Non-functional testing is about the quality level to which a software
element, such as a function, a module, a component, or a software system
as a whole, completes a specific functionality. These tests are usually
supposed to measure various variables like memory usage, time to



completion, lock contention, and level of security, and assess how well that
element has done its job. A test is passed only when the measured
variables are within the expected ranges. The expectations for these
variables are derived from the non-functional requirements defined for the
system.

Apart from functional and non-functional testing, we can have different
levels of testing. These levels are designed in a way to cover some
orthogonal aspects. Some of these aspects are size of the tested element,
the actor of the test, and the extent of the functionalities that should be
tested.

For instance, regarding the size of the element, these levels are defined
from the smallest possible piece of functionality, which we know as a
function (or a method), up to the biggest possible piece of functionality
that it is exposed from a software system as a whole.

In the following section, we are going to introduce these levels in a deeper
sense

Testing levels

For every software system, the following levels of testing can be
considered and planned. These are not the only existing testing levels and
you can find more of them in other references:

Unit testing
Integration testing
System testing
Acceptance testing
Regression testing

In unit testing, we test a unit of functionality. This unit can be a function
that performs a certain job, or a group of functions together to satisfy a
need, or a class that has a final goal to perform a certain functionality, or
even a component that has a specific task to do. A component is a part of a



software system that has a well-defined set of functionalities and, together
with other components, joins and becomes the whole software system.

In the case of having components as units, we call the testing process
component testing. Both functional and non-functional testing can be done
at the level of units. When testing a unit, that unit should become isolated
from its surrounding units, and for this to happen, the surrounding
environment should be simulated in some way. This level would be the
only level that we cover as part of this chapter and we provide real code to
demonstrate how unit testing and component testing can be done in C.

When the units join together, they form a component. In component
testing, a component is tested alone in isolation. But when we group some
of these components, we need a different level of testing that checks the
functionality or the variables for that specific group of components. This
level is integration testing. As the name implies, the tests in this level
check if the integration of some of the components works well and they
together still satisfy the defined requirements for the system.

At a different level, we test the functionality of the whole system. This
will contain a complete set of all components fully integrated. This way,
we test if the exposed system functionalities and system variables are in
accordance with the requirements defined for the software system.

On a different level, we evaluate a software system to check if it is in
accordance with the business requirements defined for that system from
the stakeholder or end user point of view. This level is called acceptance
testing. While both system testing and acceptance testing is about the
whole software system, they are actually quite different. To name a few
differences:

System testing is done by developers and testers, but acceptance
testing is usually done by the end user or the stakeholder.
System testing is about checking both functional and non-functional
requirements, but acceptance testing is only about functional
requirements.



In system testing, we usually use a prepared small set of data as the
input, but in acceptance testing, the actual real-time data is fed to the
system.

A great link that explains all the differences can be found at
https://www.javatpoint.com/acceptance-testing.

When a change is introduced to a software system, it is required to check
if the current functional and non-functional tests are still in a good shape.
This is done at a different level known as regression testing. The purpose
of regression testing is to confirm that there is no regression after
introducing a change. As part of regression testing, all the functional and
non-functional tests found as unit tests, integration tests, and end-to-end
(system) tests are run again to see if any of them fail following a change.

In this section, we introduced various levels of testing. For the rest of this
chapter, we are going to discuss unit testing. In the upcoming section, we
start talking about it by giving a C example and trying to write test cases
for it.

Unit testing
As we explained in the previous section, as part of unit testing, we test
isolated units and a unit can be as small as a function or as big as a
component. In C, it can be a function or a whole component written in C.
The same discussion can be applied to C++ as well, but there we can have
other units like classes.

The most important thing about unit testing is that units should be tested
in isolation. For example, if the target function depends on the output of
another function, we need to find a way to test the target function in
isolation. We are going to explain this using a real example.

Example 22.1 prints the factorials of even numbers less than 10, but not in
the usual way. The code is well-organized in one header and two source

https://www.javatpoint.com/acceptance-testing


files. The example is about two functions; one of them generates the even
numbers less than 10 and the other function receives a function pointer
and uses it as a source for reading an integer number, and finally
calculates its factorial.

The following code box contains the header file containing the function
declarations:

#ifndef _EXTREME_C_EXAMPLE_22_1_

#define _EXTREME_C_EXAMPLE_22_1_

#include <stdint.h>

#include <unistd.h>

typedef int64_t (*int64_feed_t)();

int64_t next_even_number();

int64_t calc_factorial(int64_feed_t feed);

#endif

Code Box 22-1 [ExtremeC_examples_chapter22_1.h]: The header file of example 22.1

As you can see, the function calc_factorial  accepts a function pointer
that returns an integer. It will use the function pointer in order to read an
integer and calculate its factorial. The following code is the definition of
the preceding functions:

#include "ExtremeC_examples_chapter22_1.h"

int64_t next_even_number() {

static int feed = -2;

feed += 2;

if (feed >= 10) {

feed = 0;

}

return feed;

}

int64_t calc_factorial(int64_feed_t feed) {

int64_t fact = 1;

int64_t number = feed();

for (int64_t i = 1; i <= number; i++) {

fact *= i;

}

return fact;

}



Code Box 22-2 [ExtremeC_examples_chapter22_1.c]: The definitions of the functions used in
example 22.1

The next_even_number  function has an internal static variable that acts as
a feed for the caller function. Note that it never exceeds 8 and after that, it
goes back to 0. Therefore, you can simply call this function as many times
as you like, and you never get a number greater than 8 and lower than zero.
The following code box contains the content of the source file that
contains the main  function:

#include <stdio.h>

#include "ExtremeC_examples_chapter22_1.h"

int main(int argc, char** argv) {

for (size_t i = 1; i <= 12; i++) {

printf("%lu\n", calc_factorial(next_even_number));

}

return 0;

}

Code Box 22-3 [ExtremeC_examples_chapter22_1_main.c]: The main function of example
22.1

As you see, the main  function calls the calc_function  12 times and
prints the returned factorials. In order to run the preceding example, you
need to compile both source files first and then link their corresponding
relocatable object files together. The following shell box contains the
required commands to build and run the example:

$ gcc -c ExtremeC_examples_chapter22_1.c -o impl.o

$ gcc -c ExtremeC_examples_chapter22_1_main.c -o main.o

$ gcc impl.o main.o -o ex22_1.out

$ ./ex22_1.out

1

2

24

720

40320

1

2

24

720



40320

1

2

$

Shell Box 22-1: Building and running example 22.1

In order to write tests for the preceding functions, we need to give a bit of
introduction first. As you can see, we have two functions (not including
the main  function) in the example. Therefore, there are two different
units, in this case functions, that should be tested separately and in
isolation from each other; one is the next_even_number  function and the
other one is the calc_factorial  function. But as it is clear in the main
function, the calc_factorial  function depends on the next_even_number
function and one might think that this dependency is going to make the
isolation of the calc_factorial  function much harder than we
anticipated. But this is not true.

In fact, the calc_factorial  function does not depend on the
next_even_number  function at all. It only depends on the signature of
next_even_number  and not its definition. Therefore, it is possible to
replace next_even_number  with a function that follows the same signature,
but always returns a fixed integer. In other words, we can provide a
simplified version of next_even_number  that is intended to be used only in
the test cases.

So, what is a test case? As you know, there are various scenarios to test a
specific unit. The simplest example is to provide various inputs to a
certain unit and expect a predetermined output. In the preceding example,
we can provide 0  as the input for the calc_factorial  function and wait
for 1  as its output. We can also provide -1  and wait for 1 .

Every one of these scenarios can be a test case. Therefore, regarding a
single unit, we can have multiple test cases addressing all different corner
cases of that unit. A collection of test cases is called a test suite. All the
test cases found in a test suite are not necessarily related to the same unit.

We start by creating a test suite for the next_even_number  function. Since
next_even_number  can be easily tested in isolation, there is no need for



extra work. Following are the test cases written for the next_even_number
function:

#include <assert.h>

#include "ExtremeC_examples_chapter22_1.h"

void

TESTCASE_next_even_number__even_numbers_should_be_returned()

{

assert(next_even_number() == 0);

assert(next_even_number() == 2);

assert(next_even_number() == 4);

assert(next_even_number() == 6);

assert(next_even_number() == 8);

}

void TESTCASE_next_even_number__numbers_should_rotate() {

int64_t number = next_even_number();

next_even_number();

next_even_number();

next_even_number();

next_even_number();

int64_t number2 = next_even_number();

assert(number == number2);

}

Code Box 22-4 [ExtremeC_examples_chapter22_1 __next_even_number__tests.c]: The test
cases written for the next_even_number function

As you see, we have defined two test cases in the preceding test suite. Note
that I have used my own convention to give names to the above test cases;
however, there is no standard regarding this. The whole purpose of naming
test cases is to realize what a test case does from its name and more
important than that, to find it easily in the code when the test case fails or
needs to be modified.

I used the capital TESTCASE  as a prefix to function names to make them
distinguished from other ordinary functions. The names of the functions
also try to describe the test case and the concern it is addressing.

Both test cases have assert  at the end. This is the thing that all test case
functions do when evaluating the expectations. If the condition inside the
parentheses of assert  is not true, the test runner, a program that is
running the tests, quits and an error message is printed. More than that, the



test runner returns a non-zero exit code that indicates one or more of the
test cases have failed. The test runner program must return 0 when all tests
have been successful.

It would be nice to go through the test cases on your own and try to
understand how they evaluate our expectations by calling the
next_even_number  function in the preceding two scenarios.

Now, it's time to write test cases for the calc_factorial  function. Writing
test cases for the calc_factorial  function needs a stub function as its
feed that returns the test input. We explain what stubs are shortly.

Following are three test cases that are only testing the calc_factorial
unit:

#include <assert.h>

#include "ExtremeC_examples_chapter22_1.h"

int64_t input_value = -1;

int64_t feed_stub() {

return input_value;

}

void TESTCASE_calc_factorial__fact_of_zero_is_one() {

input_value = 0;

int64_t fact = calc_factorial(feed_stub);

assert(fact == 1);

}

void TESTCASE_calc_factorial__fact_of_negative_is_one() {

input_value = -10;

int64_t fact = calc_factorial(feed_stub);

assert(fact == 1);

}

void TESTCASE_calc_factorial__fact_of_5_is_120() {

input_value = 5;

int64_t fact = calc_factorial(feed_stub);

assert(fact == 120);

}

Code Box 22-5 [ExtremeC_examples_chapter22_1 __calc_factorial__tests.c]: The test cases
written for the calc_factorial function

As you can see, we have defined three test cases for the calc_factorial
function. Note the feed_stub  function. It follows the same contract that
next_even_number  is following, as can be seen in Code Box 22-2, but it



has a very simple definition. It just returns a value stored in the static
variable input_value . This variable can be set by the test cases before
calling the calc_facorial  function.

Using the preceding stub function, we could isolate calc_factorial  and
test it individually. The same approach is valid for object-oriented
programming languages like C++ or Java, but there we define stub classes
and stub objects.

In C, a stub is a function definition that conforms to a function declaration
that the target unit would use as part of its logic, and more importantly, the
stub doesn't have a complex logic and it just returns a value that is going
to be used just by the test case.

In C++, a stub can still be a function definition that conforms to a function
declaration, or a class that implements an interface. In other object-
oriented languages where you cannot have standalone functions, for
instance Java, a stub can only be a class that implements an interface.
Then, a stub object is an object from such stub classes. Note that in all
cases, a stub should have a simple definition that is only usable in tests,
and not in production.

Finally, we need to be able to run the test cases. As we said previously, we
need a test runner to run tests. Therefore, we need a specific source file
with a main  function that only runs the test cases one after another. The
following code box contains the code of the test runner:

#include <stdio.h>

void

TESTCASE_next_even_number__even_numbers_should_be_returned()

;

void TESTCASE_next_even_number__numbers_should_rotate();

void TESTCASE_calc_factorial__fact_of_zero_is_one();

void TESTCASE_calc_factorial__fact_of_negative_is_one();

void TESTCASE_calc_factorial__fact_of_5_is_120();

int main(int argc, char** argv) {

TESTCASE_next_even_number__even_numbers_should_be_returned()

;

TESTCASE_next_even_number__numbers_should_rotate();

TESTCASE_calc_factorial__fact_of_zero_is_one();

TESTCASE_calc_factorial__fact_of_negative_is_one();



TESTCASE_calc_factorial__fact_of_5_is_120();

printf("All tests are run successfully.\n");

return 0;

}

Code Box 22-6 [ExtremeC_examples_chapter22_1 _tests.c]: The test runner used in example
22.1

The above code returns 0  only if all the test cases within the main
functions are executed successfully. For building the test runner, we need
to run the following commands. Note the -g  option that adds debugging
symbols to the final test runner executable. Performing a debug build is
the most common way to build tests since if a test case fails, we
immediately need the precise stack trace and further debugging
information to proceed with investigation. More than that, the assert
statements are usually removed from release builds, but we need to have
them in the test runner executable:

$ gcc -g -c ExtremeC_examples_chapter22_1.c -o impl.o

$ gcc -g -c

ExtremeC_examples_chapter22_1__next_even_number__tests.c -o

tests1.o

$ gcc -g -c

ExtremeC_examples_chapter22_1__calc_factorial__tests.c -o

tests2.o

$ gcc -g -c ExtremeC_examples_chapter22_1_tests.c -o main.o

$ gcc impl.o tests1.o tests2.o main.o -o ex22_1_tests.out

$ ./ex22_1_tests.out

All tests are run successfully.

$ echo $?

0

$

Shell Box 22-2: Building and running the test runner of example 22.1

The preceding shell box shows that all the tests have been passed. You can
also check the exit code of the test runner process by using the echo $?
command and see that it has returned zero.

Now, by applying a simple change in one of the functions, we can fail the
tests. Let's see what happens when we change calc_factorial  as follows:



int64_t calc_factorial(int64_feed_t feed) {

int64_t fact = 1;

int64_t number = feed();

for (int64_t i = 1; i <= (number + 1); i++) {

fact *= i;

}

return fact;

}

Code Box 22-7: Changing the calc_factorial function to fail the tests

With the preceding change, shown in bold font, the test cases about the 0
and negative inputs still pass, but the last test case, which is about the
calculation of the factorial of 5 , fails. We are going to build the test
runner again and the following is the output of the execution on a macOS
machine:

$ gcc -g -c ExtremeC_examples_chapter22_1.c -o impl.o

$ gcc -g -c ExtremeC_examples_chapter22_1_tests.c -o main.o

$ ./ex22_1_tests.out

Assertion failed: (fact == 120), function

TESTCASE_calc_factorial__fact_of_5_is_120,

file

.../22.1/ExtremeC_examples_chapter22_1__calc_factorial__test

s.c, line 29.

Abort trap: 6

$ echo $?

134

$

Shell Box 22-3: Building and running the test runner after changing the calc_factorial function

As you can see, Assertion failed  appears in the output and the exit code
is 134 . This exit code is usually used and reported by the systems running
the tests periodically, such as Jenkins, to check if the tests have been run
successfully.

As a rule of thumb, whenever you have a unit that should be tested in
isolation, you need to find a way to provide its dependencies as some kind
of input. Therefore, the unit itself should be written in a way that makes it
testable. Not all code is testable, and testability is not limited to unit



testing, and this is very important to be aware of. This link provides good
information on how to write testable code:
https://blog.gurock.com/highly-testable-code/.

To clarify the above discussion, suppose that we have written the
calc_factorial  function like below to use the next_even_number
function directly instead of using a function pointer. Note that in the
following code box, the function doesn't receive a function pointer
argument and it calls the next_even_number  function directly:

int64_t calc_factorial() {

int64_t fact = 1;

int64_t number = next_even_number();

for (int64_t i = 1; i <= number; i++) {

fact *= i;

}

return fact;

}

Code Box 22-8: Changing the calc_factorial function's signature to not accept a function
pointer

The preceding code is less testable. There is no way to test
calc_factorial  without having the next_even_number  called – that is,
without employing some hacks to change the definition behind the symbol
next_even_number  as part of the final executable, as we do in example
22.2.

In fact, both versions of calc_factorial  do the same thing, but the
definition in Code Box 22-2 is more testable because we could test it in
isolation. Writing testable code is not easy, and you should always think
carefully in order to implement code and have it be testable.

Writing testable code usually demands more work. There are various
opinions about the overhead percentage of writing testable code but it is
certain that writing tests brings some extra cost in terms of time and
effort. But this extra cost surely has great benefits. Without having tests
for a unit, you will lose track of it as time goes by and more changes are
introduced to the unit.

https://blog.gurock.com/highly-testable-code/


Test doubles
In the preceding example, while writing test cases, we introduced stub
functions. There are a few other terms about the objects that try to mimic a
unit's dependencies. These objects are called test doubles. Next, we are
going to introduce two other test doubles: mock and fake functions. First,
let's briefly explain again what stub functions are.

Note two things in this short section. Firstly, there are never-ending
debates on the definition of these test doubles, and we try to give a proper
definition that matches our usage in this chapter. Secondly, we keep our
discussion only relevant to C, so there is no object and everything we have
is a function.

When a unit is dependent on another function, it simply depends on the
signature of that function, therefore that function can be replaced by a new
one. This new function, based on some properties that it might have, can
be called a stub, a mock, or a fake function. These functions are just
written to satisfy the test requirements and they cannot be used in
production.

We explained a stub to be a function that is very simple, usually just
returning a constant value. As you saw in example 22.1, it was indirectly
returning a value just set by the running test case. In the following link,
you can read more about the test doubles that we are talking about and a
few more of them:
https://en.wikipedia.org/wiki/Test_double. If you open
the link, a stub is defined as something that provides an indirect input to
the testing code. If you accept this definition, the feed_stub  function seen
in Code Box 22-5 is a stub function.

Mock functions, or generally mock objects as part of object-oriented
languages, can be manipulated by specifying the output for a certain input.
This way, you set whatever should be returned from a mock function for a
certain input before running the test logic and during the logic it will act
as you have set beforehand. Mock objects in general can have expectations
as well and they perform the required assertions accordingly. As stated in

https://en.wikipedia.org/wiki/Test_double


the preceding link, for mock objects, we set expectations before running
the test. We are going to give a C example of mock functions as part of the
component testing section.

Finally, a fake function can be used to give a very simplified functionality
for a real and maybe complex functionality as part of the running test. For
example, instead of using a real filesystem, one may use some simplified
in-memory storage. In component testing, for instance, other components
that have complex functionalities can be replaced by fake implementations
in the tests.

Before ending this section, I want to talk about code coverage. In theory,
all units should have corresponding test suites and each test suite should
contain all test cases that go through all possible branches of code. As we
said, this is in theory, but in practice you usually have test units only for
a percentage of units. Often, you don't have test cases that cover all
possible branches of code.

The proportion of units that have proper test cases is called code coverage
or test coverage. The higher the proportion, the better placed you are for
getting notified about unwanted modifications. These unwanted
modifications are not usually introduced by bad developers. In fact, these
breaking changes are usually introduced while someone is working on a
piece of code for fixing a bug or implementing a new feature.

Having covered test doubles, we talk about component testing in the next
section.

Component testing
As we explained in the previous section, units can be defined as a single
function, a group of functions, or a whole component. Therefore,
component testing is a special type of unit testing. In this section, we want
to define a hypothetical component as part of example 22.1 and put the two
functions found in the example into this component. Note that a



component usually results in an executable or a library. We can suppose
that our hypothetical component would result in a library that contains the
two functions.

As we said before, we have to be able to test the functionality of a
component. In this section, we still want to write test cases but the
difference between the tests written in this section and the previous
section is to do with the units that should be isolated. In the previous
section, we had functions that should have been isolated, but in this
section, we have a component, compromising of two functions working
hand in hand, that needs to be isolated. So, the functions must be tested
when they are working together.

Next, you can find the test cases we have written for the component
defined as part of example 22.1:

#include <assert.h>

#include "ExtremeC_examples_chapter22_1.h"

void TESTCASE_component_test__factorials_from_0_to_8() {

assert(calc_factorial(next_even_number) == 1);

assert(calc_factorial(next_even_number) == 2);

assert(calc_factorial(next_even_number) == 24);

assert(calc_factorial(next_even_number) == 720);

assert(calc_factorial(next_even_number) == 40320);

}

void TESTCASE_component_test__factorials_should_rotate() {

int64_t number = calc_factorial(next_even_number);

for (size_t i = 1; i <= 4; i++) {

calc_factorial(next_even_number);

}

int64_t number2 = calc_factorial(next_even_number);

assert(number == number2);

}

int main(int argc, char** argv) {

TESTCASE_component_test__factorials_from_0_to_8();

TESTCASE_component_test__factorials_should_rotate();

return 0;

}

Code Box 22-9 [ExtremeC_examples_chapter22_1_component_tests.c]: Some component
tests written for our hypothetical component as part of example 22.1



As you see, we have written two test cases. Like we said before, in our
hypothetical component, the functions calc_factorial  and
next_even_number  must work together, and as you see, we have passed
next_even_number  as the feed to calc_factorial . The preceding test
cases, and other similar test cases, should guarantee that the component is
working properly.

It requires a lot of effort to prepare a basis for writing test cases.
Therefore, it is very common to use a testing library for this purpose.
These libraries prepare the playground for the test cases; they initialize
every test case, run the test case, and finally tear down the test case. In the
upcoming section, we are going to talk about two of the testing libraries
available for C.

Testing libraries for C
In this section, we are going to demonstrate two of the well-known
libraries used to write tests for C programs. For unit testing in C, we use
libraries that are written in C or C++. That's because we can integrate them
easily and use the units directly from a C or C++ testing environment. In
this section, our focus is on unit testing and component testing in C.

For integration testing, we are free to choose other programming
languages. Generally, the integration and system testing are much more
complex, and we therefore need to use some testing automation
frameworks in order to write tests easier and run them without too much
hassle. Using a domain-specific language (DSL) is part of this
automation, in order to write test scenarios more easily and make test
execution much simpler. Many languages can be used for this purpose, but
scripting languages like Unix shell, Python, JavaScript, and Ruby are
among the most favorite ones. Some other programming languages like
Java are also used heavily in test automation.

The following is a list of some well-known unit testing frameworks which
can be used to write unit tests for C programs. This list below can be found



at the following link:
http://check.sourceforge.net/doc/check_html/check_

2.html#SEC3:

Check (from the author of the preceding link)
AceUnit
GNU Autounit
cUnit
CUnit
CppUnit
CuTest
embUnit
MinUnit
Google Test
CMocka

In the following sections, we will introduce two popular testing
frameworks: CMocka, which is written in C, and Google Test, which is
written in C++. We won't explore all features of these frameworks, but this
is just to give you an initial feeling about a unit testing framework. Further
study is highly encouraged in this domain.

In the next section, we are going to write unit tests for example 22.1 using
CMocka.

CMocka
The first great thing about CMocka is that it is written purely in C, and it
only depends on the C standard library – not on any other libraries. So, you
can use a C compiler to compile the tests, and this gives you the
confidence that the test environment is very close to the actual production
environment. CMocka is available on many platforms like macOS, Linux,
and even Microsoft Windows.

http://check.sourceforge.net/doc/check_html/check_2.html#SEC3


CMocka is the de facto framework for unit testing in C. It supports test
fixtures. Test fixtures may allow you to initialize and clear the testing
environment before and after each test case. CMocka also supports
function mocking, which is very useful when trying to mock any C
function. As a reminder, a mock function can be configured to return a
certain value when a certain input is provided. We will give an example of
mocking the rand  standard function used in example 22.2.

The following code box contains the same test cases that we saw for
example 22.1 but written in CMocka this time. We have put all test cases
in just one file, which has its own main  function:

// Required by CMocka

#include <stdarg.h>

#include <stddef.h>

#include <setjmp.h>

#include <cmocka.h>

#include "ExtremeC_examples_chapter22_1.h"

int64_t input_value = -1;

int64_t feed_stub() {

return input_value;

}

void calc_factorial__fact_of_zero_is_one(void** state) {

input_value = 0;

int64_t fact = calc_factorial(feed_stub);

assert_int_equal(fact, 1);

}

void calc_factorial__fact_of_negative_is_one(void** state) {

input_value = -10;

int64_t fact = calc_factorial(feed_stub);

assert_int_equal(fact, 1);

}

void calc_factorial__fact_of_5_is_120(void** state) {

input_value = 5;

int64_t fact = calc_factorial(feed_stub);

assert_int_equal(fact, 120);

}

void

next_even_number__even_numbers_should_be_returned(void**

state) {

assert_int_equal(next_even_number(), 0);

assert_int_equal(next_even_number(), 2);

assert_int_equal(next_even_number(), 4);

assert_int_equal(next_even_number(), 6);

assert_int_equal(next_even_number(), 8);

}



void next_even_number__numbers_should_rotate(void** state) {

int64_t number = next_even_number();

for (size_t i = 1; i <= 4; i++) {

next_even_number();

}

int64_t number2 = next_even_number();

assert_int_equal(number, number2);

}

int setup(void** state) {

return 0;

}

int tear_down(void** state) {

return 0;

}

int main(int argc, char** argv) {

const struct CMUnitTest tests[] = {

cmocka_unit_test(calc_factorial__fact_of_zero_is_one),

cmocka_unit_test(calc_factorial__fact_of_negative_is_one),

cmocka_unit_test(calc_factorial__fact_of_5_is_120),

cmocka_unit_test(next_even_number__even_numbers_should_be_re

turned),

cmocka_unit_test(next_even_number__numbers_should_rotate),

};

return cmocka_run_group_tests(tests, setup, tear_down);

}

Code Box 22-10 [ExtremeC_examples_chapter22_1_cmocka_tests.c]: CMocka test cases for
example 22.1

In CMocka, every test case should return void  and receive a void**
argument. The pointer argument will be used to receive a piece of
information, called a state , which is specific to a test case. In the main
function, we create a list of test cases, and then finally we call the
cmocka_run_group_tests  function to run all the unit tests.

In addition to test case functions, you see two new functions: setup  and
tear_down . As we said before, these functions are called test fixtures. Test
fixtures are called before and after every test case and their responsibility
is to set up and tear down the test case. The fixture setup  is called before
every test case and the fixture tear_down  is called after every test case.
Note that the names are optional, and they could be named anything, but
we use setup  and tear_down  for clarity.



Another important difference between the test cases we wrote before and
the test cases written using CMocka is the use of different assertion
functions. This is one of the advantages of using a unit testing framework.
There are a wide range of assertion functions as part of a testing library
that can give you more information about their failure, rather than the
standard assert  function, which terminates the program immediately and
without giving much information. As you can see, we have used
assert_int_equal  in the preceding code, which checks the equality of two
integers.

In order to compile the preceding program, you need to have CMocka
installed first. On a Debian-based Linux system, it is enough to run sudo
apt-get install libcmocka-dev , and on macOS systems, it is enough to
install it by using the command brew install cmocka . There will be a lot
of help available online that can help you get through the installation
process.

After having CMocka installed, you can use the following commands to
build the preceding code:

$ gcc -g -c ExtremeC_examples_chapter22_1.c -o impl.o

$ gcc -g -c ExtremeC_examples_chapter22_1_cmocka_tests.c -o

cmocka_tests.o

$ gcc impl.o cmocka_tests.o -lcmocka -o

ex22_1_cmocka_tests.out

$ ./ex22_1_cmocka_tests.out

[==========] Running 5 test(s).

[ RUN ] calc_factorial__fact_of_zero_is_one

[ OK ] calc_factorial__fact_of_zero_is_one

[ RUN ] calc_factorial__fact_of_negative_is_one

[ OK ] calc_factorial__fact_of_negative_is_one

[ RUN ] calc_factorial__fact_of_5_is_120

[ OK ] calc_factorial__fact_of_5_is_120

[ RUN ] next_even_number__even_numbers_should_be_returned

[ OK ] next_even_number__even_numbers_should_be_returned

[ RUN ] next_even_number__numbers_should_rotate

[ OK ] next_even_number__numbers_should_rotate

[==========] 5 test(s) run.

[ PASSED ] 5 test(s).

$

Shell Box 22-4: Building and running CMocka unit tests written for example 22.1



As you can see, we had to use -lcmocka  in order to link the preceding
program with the installed CMocka library. The output shows the test case
names and the number of passed tests. Next, we change one of the test
cases to make it fail. We just modify the first assertion in the
next_even_number__even_numbers_should_be_returned  test case:

void

next_even_number__even_numbers_should_be_returned(void**

state) {

assert_int_equal(next_even_number(), 1);

...

}

Code Box 22-11: Changing one of the CMocka test cases in example 22.1

Now, build the tests and run them again:

$ gcc -g -c ExtremeC_examples_chapter22_1_cmocka_tests.c -o

cmocka_tests.o

$ gcc impl.o cmocka_tests.o -lcmocka -o

ex22_1_cmocka_tests.out

$ ./ex22_1_cmocka_tests.out

[==========] Running 5 test(s).

[ RUN ] calc_factorial__fact_of_zero_is_one

[ OK ] calc_factorial__fact_of_zero_is_one

[ RUN ] calc_factorial__fact_of_negative_is_one

[ OK ] calc_factorial__fact_of_negative_is_one

[ RUN ] calc_factorial__fact_of_5_is_120

[ OK ] calc_factorial__fact_of_5_is_120

[ RUN ] next_even_number__even_numbers_should_be_returned

[ ERROR ] --- 0 != 0x1

[ LINE ] ---

.../ExtremeC_examples_chapter22_1_cmocka_tests.c:37: error:

Failure!

[ FAILED ] next_even_number__even_numbers_should_be_returned

[ RUN ] next_even_number__numbers_should_rotate

[ OK ] next_even_number__numbers_should_rotate

[==========] 5 test(s) run.

[ PASSED ] 4 test(s).

[ FAILED ] 1 test(s), listed below:

[ FAILED ] next_even_number__even_numbers_should_be_returned

1 FAILED TEST(S)

$



Shell Box 22-5: Building and running CMocka unit tests after modifying one of them

In the preceding output, you see that one of the test cases has been failed
and the reason is shown as an error in the middle of the logs. It shows an
integer equality assertion failure. As we have explained before, using
assert_int_equal  instead of using an ordinary assert  call allows
CMocka to print a helpful message in the execution log instead of just
terminating the program.

Our next example is about using CMocka's function mocking feature.
CMocka allows you to mock a function and this way, you can instrument
the function to return a specific result when a certain input is provided.

In the next example, example 22.2, we want to demonstrate how to use the
mocking feature. In this example, the standard function rand  is used to
generate random numbers. There is also a function, named
random_boolean , that returns a Boolean based on the oddity of the number
returned from the rand  function. Before showing CMocka's mocking
feature, we want to show how to create a stub for the rand  function. You
see that this example is different from example 22.1. Next, you can see the
declaration of the random_boolean  function:

#ifndef _EXTREME_C_EXAMPLE_22_2_

#define _EXTREME_C_EXAMPLE_22_2_

#define TRUE 1

#define FALSE 0

typedef int bool_t;

bool_t random_boolean();

#endif

Code Box 22-12 [ExtremeC_examples_chapter22_2.h]: The header file of example 22.2

And the following code box contains the definition:

#include <stdlib.h>

#include <stdio.h>

#include "ExtremeC_examples_chapter22_2.h"

bool_t random_boolean() {

int number = rand();



return (number % 2);

}

Code Box 22-13 [ExtremeC_examples_chapter22_2.c]: The definition of the random_boolean
function in example 22.2

First of all, we cannot let random_boolean  use the actual rand  definition
in the tests because, as its name implies, it generates random numbers and
we cannot have a random element in our tests. Tests are about checking
expectations and the expectations, and the provided inputs, must be
predictable. More than that, the definition of the rand  function is part of
the C standard library, for instance glibc in Linux, and using a stub
function for it won't be easy like what we did in example 22.1.

In the previous example, we could send a function pointer to the stub
definition very easily. But in this example, we are using the rand  function
directly. We cannot change the definition of random_boolean , and we have
to come up with another trick to use the stub function for rand .

In order to use a different definition for the rand  function, one of the
easiest ways in C is to play with symbols in the final object file. In the
symbol table of the resulting object file, there is an entry for rand  which
refers to its actual definition in the C standard library. If we change this
entry to refer to a different definition of the rand  function in our testing
binaries, we can easily substitute the definition of rand  with our stub one.

In the following code box, you can see how we have defined the stub
function and the tests together. This would be very similar to what we did
for example 22.1:

#include <stdlib.h>

// Required by CMocka

#include <stdarg.h>

#include <stddef.h>

#include <setjmp.h>

#include <cmocka.h>

#include "ExtremeC_examples_chapter22_2.h"

int next_random_num = 0;

int __wrap_rand() {

return next_random_num;

}



void test_even_random_number(void** state) {

next_random_num = 10;

assert_false(random_boolean());

}

void test_odd_random_number(void** state) {

next_random_num = 13;

assert_true(random_boolean());

}

int main(int argc, char** argv) {

const struct CMUnitTest tests[] = {

cmocka_unit_test(test_even_random_number),

cmocka_unit_test(test_odd_random_number)

};

return cmocka_run_group_tests(tests, NULL, NULL);

}

Code Box 22-14 [ExtremeC_examples_chapter22_2_cmocka_tests_with_stub.c]: Writing
CMocka test cases using a stub function

As you can see, the preceding code is mostly following the same pattern
that we saw as part of the CMocka tests written for example 22.1 in Code
Box 22-10. Let's build the preceding file and run the tests. What we expect
is to have all tests failed because, no matter how you define the stub
function, the random_boolean  is picking the rand  from the C standard
library:

$ gcc -g -c ExtremeC_examples_chapter22_2.c -o impl.o

$ gcc -g -c

ExtremeC_examples_chapter22_2_cmocka_tests_with_stub.c -o

tests.o

$ gcc impl.o tests.o -lcmocka -o

ex22_2_cmocka_tests_with_stub.out

$ ./ex22_2_cmocka_tests_with_stub.out

[==========] Running 2 test(s).

[ RUN ] test_even_random_number

[ ERROR ] --- random_boolean()

[ LINE ] ---

ExtremeC_examples_chapter22_2_cmocka_tests_with_stub.c:23:

error: Failure!

[ FAILED ] test_even_random_number

[ RUN ] test_odd_random_number

[ ERROR ] --- random_boolean()

[ LINE ] ---

ExtremeC_examples_chapter22_2_cmocka_tests_with_stub.c:28:

error: Failure!

[ FAILED ] test_odd_random_number



[==========] 2 test(s) run.

[ PASSED ] 0 test(s).

[ FAILED ] 2 test(s), listed below:

[ FAILED ] test_even_random_number

[ FAILED ] test_odd_random_number

2 FAILED TEST(S)

$

Shell Box 22-6: Building and running CMocka unit tests for example 22.2

Now it's time do the trick and change the definition behind the rand
symbol defined as part of the ex22_2_cmocka_tests_with_stub.out
executable file. Note that the following commands are only applicable to
Linux systems. We do it as follows:

$ gcc impl.o tests.o -lcmocka -Wl,--wrap=rand -o

ex22_2_cmocka_tests_with_stub.out

$ ./ex22_2_cmocka_tests_with_stub.out

[==========] Running 2 test(s).

[ RUN ] test_even_random_number

[ OK ] test_even_random_number

[ RUN ] test_odd_random_number

[ OK ] test_odd_random_number

[==========] 2 test(s) run.

[ PASSED ] 2 test(s).

$

Shell Box 22-7: Building and running CMocka unit tests for example 22.2 after wrapping the
rand symbol

As you see in the output, the standard rand  function is not being called
anymore and instead, the stub function returns what we have told it to
return. The main trick that makes the function __wrap_rand  be called
instead of standard rand  function lies in using the option -Wl , --
wrap=rand  in the gcc  link command.

Note that this option is only available for the ld  program in Linux and
you have to use other tricks like inter-positioning to call a different
function in macOS or other systems using a linker other than the GNU
linker.



The option --wrap=rand  tells the linker to update the entry for the symbol
rand  in the final executable's symbol table, which is going to refer to the
definition of the __wrap_rand  function. Note that this is not a custom
name and you have to name the stub function like that. The function
__wrap_rand  is said to be a wrapper function. After updating the symbol
table, any call to the rand  function results in calling the __wrap_func
function. This can be verified by looking at the symbol table of the final
test binary.

Apart from updating the rand  symbol in the symbol table, the linker also
creates another entry. The new entry has the symbol __real_rand , which
refers to the actual definition of the standard rand  function. Therefore, if
we needed to run the standard rand , we still can use the function name
__real_rand . This is a great usage of the symbol table and the symbols in
it, in order to call a wrapper function, despite the fact that some people
don't like it and they prefer to preload a shared object that wraps the actual
rand  function. Whichever method you use, you need to finally redirect
the calls to the rand  symbol to another stub function.

The preceding mechanism would be the basis to demonstrate how function
mocking works in CMocka. Instead of having a global variable
next_random_num , as seen in Code Box 22-14, we can use a mocked
function to return the specified value. Next, you can see the same CMocka
tests but using a mocked function to read the test inputs:

#include <stdlib.h>

// Required by CMocka

#include <stdarg.h>

#include <stddef.h>

#include <setjmp.h>

#include <cmocka.h>

#include "ExtremeC_examples_chapter22_2.h"

int __wrap_rand() {

return mock_type(int);

}

void test_even_random_number(void** state) {

will_return(__wrap_rand, 10);

assert_false(random_boolean());

}

void test_odd_random_number(void** state) {

will_return(__wrap_rand, 13);



assert_true(random_boolean());

}

int main(int argc, char** argv) {

const struct CMUnitTest tests[] = {

cmocka_unit_test(test_even_random_number),

cmocka_unit_test(test_odd_random_number)

};

return cmocka_run_group_tests(tests, NULL, NULL);

}

Code Box 22-15 [ExtremeC_examples_chapter22_2_cmocka_tests_with_mock.c]: Writing
CMocka test cases using a mock function

Now that we know how the wrapper function __wrap_rand  is called, we
can explain the mocking part. Mocking functionality is provided by the
pair of functions will_return  and mock_type . First, will_return  should
be called, which specifies the value that the mock function should return.
Then, when the mock function, in this case __wrap_rand , is called, the
function mock_type  returns the specified value.

As an example, we define 10  to be returned from __wrap_rand  by using
will_return(__wrap_rand, 10) , and then the value 10  is returned when
the function mock_type  is called inside __wrap_rand . Note that every
will_return  must pair with a mock_type  call; otherwise, the test fails.
Therefore, if __wrap_rand  is not called because of any reason, the test
fails.

As the last note in this section, the output of the preceding code would be
the same as we saw in Shell Boxes 22-6 and 22-7. In addition, the same
commands, of course for the source file
ExtremeC_examples_chapter22_2_cmocka_tests_with_mock.c , must be
used to build the code and run the tests.

In this section, we showed how we can use the CMocka library to write
test cases, perform assertions, and write mock functions. In the next
section, we talk about Google Test, another testing framework that can be
used to unit test C programs.

Google Test



Google Test is a C++ testing framework that can be used for unit testing
both C and C++ programs. Despite being developed in C++, it can be used
for testing C code. Some consider this as a bad practice, because the test
environment is not set up using the same compiler and linker that you are
going to use for setting up the production environment.

Before being able to use Google Test for writing test cases for example
22.1, we need to modify the header file in example 22.1 a bit. The
following is the new header file:

#ifndef _EXTREME_C_EXAMPLE_22_1_

#define _EXTREME_C_EXAMPLE_22_1_

#include <stdint.h>

#include <unistd.h>

#if __cplusplus

extern "C" {

#endif

typedef int64_t (*int64_feed_t)();

int64_t next_even_number();

int64_t calc_factorial(int64_feed_t feed);

#if __cplusplus

}

#endif

#endif

Code Box 22-16 [ExtremeC_examples_chapter22_1.h]: The modified header file as part of
example 22.1

As you can see, we have put the declarations in the extern C { ... }
block. We do that only if the macro _cplusplus  is defined. The preceding
change simply means that when the compiler is C++, we want to have the
symbols unmangled in the resulting object files, otherwise we will get link
errors when the linker tries to find definitions for mangled symbols. If you
don't know about C++ name mangling, please refer to the last section in
Chapter 2, Compilation and Linking.

Now, let's continue and write the test cases using Google Test:

// Required by Google Test

#include <gtest/gtest.h>

#include "ExtremeC_examples_chapter22_1.h"



int64_t input_value = -1;

int64_t feed_stub() {

return input_value;

}

TEST(calc_factorial, fact_of_zero_is_one) {

input_value = 0;

int64_t fact = calc_factorial(feed_stub);

ASSERT_EQ(fact, 1);

}

TEST(calc_factorial, fact_of_negative_is_one) {

input_value = -10;

int64_t fact = calc_factorial(feed_stub);

ASSERT_EQ(fact, 1);

}

TEST(calc_factorial, fact_of_5_is_120) {

input_value = 5;

int64_t fact = calc_factorial(feed_stub);

ASSERT_EQ(fact, 120);

}

TEST(next_even_number, even_numbers_should_be_returned) {

ASSERT_EQ(next_even_number(), 0);

ASSERT_EQ(next_even_number(), 2);

ASSERT_EQ(next_even_number(), 4);

ASSERT_EQ(next_even_number(), 6);

ASSERT_EQ(next_even_number(), 8);

}

TEST(next_even_number, numbers_should_rotate) {

int64_t number = next_even_number();

for (size_t i = 1; i <= 4; i++) {

next_even_number();

}

int64_t number2 = next_even_number();

ASSERT_EQ(number, number2);

}

int main(int argc, char** argv) {

::testing::InitGoogleTest(&argc, argv);

return RUN_ALL_TESTS();

}

Code Box 22-17 [ExtremeC_examples_chapter22_1_gtests.cpp]: The test cases written using
Google Test for example 22.1

The test cases are defined using the TEST(...)  macro. This is an example
of how well macros can be used to form a DSL. There are also other
macros like TEST_F(...)  and TEST_P(...) , which are C++ specific. The
first argument passed to the macro is the test's class name (Google Test is
written for object-oriented C++), which can be thought of as the test suite



that contains a number of test cases. The second argument is the name of
the test case.

Note the ASSERT_EQ  macro, which is used to assert the equality of objects,
not just integers. There are a great number of expectation checker macros
in Google Test, which makes it a complete unit testing framework. The
final part is the main  function, which runs all the defined tests. Note that
the above code should be compiled using a C++11-compliant compiler
like g++  and clang++ .

The following commands build the preceding code. Note using the g++
compiler and the option -std=c++11  which is passed to it. It indicates that
C++11 should be used:

$ gcc -g -c ExtremeC_examples_chapter22_1.c -o impl.o

$ g++ -std=c++11 -g -c

ExtremeC_examples_chapter22_1_gtests.cpp -o gtests.o

$ g++ impl.o gtests.o -lgtest -lpthread -o ex19_1_gtests.out

$ ./ex19_1_gtests.out

[==========] Running 5 tests from 2 test suites.

[----------] Global test environment set-up.

[----------] 3 tests from calc_factorial

[ RUN ] calc_factorial.fact_of_zero_is_one

[ OK ] calc_factorial.fact_of_zero_is_one (0 ms)

[ RUN ] calc_factorial.fact_of_negative_is_one

[ OK ] calc_factorial.fact_of_negative_is_one (0 ms)

[ RUN ] calc_factorial.fact_of_5_is_120

[ OK ] calc_factorial.fact_of_5_is_120 (0 ms)

[----------] 3 tests from calc_factorial (0 ms total)

[----------] 2 tests from next_even_number

[ RUN ] next_even_number.even_numbers_should_be_returned

[ OK ] next_even_number.even_numbers_should_be_returned (0

ms)

[ RUN ] next_even_number.numbers_should_rotate

[ OK ] next_even_number.numbers_should_rotate (0 ms)

[----------] 2 tests from next_even_number (0 ms total)

[----------] Global test environment tear-down

[==========] 5 tests from 2 test suites ran. (1 ms total)

[ PASSED ] 5 tests.

$

Shell Box 22-8: Building and running Google Test unit tests for example 22.1



The above output shows a similar output to the CMocka output. It
indicates that five test cases have been passed. Let's change the same test
case as we did for CMocka to break the test suite:

TEST(next_even_number, even_numbers_should_be_returned) {

ASSERT_EQ(next_even_number(), 1);

...

}

Code Box 22-18: Changing one of the test cases written in Google Test

Let's build the tests again and run them:

$ g++ -std=c++11 -g -c

ExtremeC_examples_chapter22_1_gtests.cpp -o gtests.o

$ g++ impl.o gtests.o -lgtest -lpthread -o ex22_1_gtests.out

$ ./ex22_1_gtests.out

[==========] Running 5 tests from 2 test suites.

[----------] Global test environment set-up.

[----------] 3 tests from calc_factorial

[ RUN ] calc_factorial.fact_of_zero_is_one

[ OK ] calc_factorial.fact_of_zero_is_one (0 ms)

[ RUN ] calc_factorial.fact_of_negative_is_one

[ OK ] calc_factorial.fact_of_negative_is_one (0 ms)

[ RUN ] calc_factorial.fact_of_5_is_120

[ OK ] calc_factorial.fact_of_5_is_120 (0 ms)

[----------] 3 tests from calc_factorial (0 ms total)

[----------] 2 tests from next_even_number

[ RUN ] next_even_number.even_numbers_should_be_returned

.../ExtremeC_examples_chapter22_1_gtests.cpp:34: Failure

Expected equality of these values:

next_even_number()

Which is: 0

1

[ FAILED ] next_even_number.even_numbers_should_be_returned

(0 ms)

[ RUN ] next_even_number.numbers_should_rotate

[ OK ] next_even_number.numbers_should_rotate (0 ms)

[----------] 2 tests from next_even_number (0 ms total)

[----------] Global test environment tear-down

[==========] 5 tests from 2 test suites ran. (0 ms total)

[ PASSED ] 4 tests.

[ FAILED ] 1 test, listed below:

[ FAILED ] next_even_number.even_numbers_should_be_returned

1 FAILED TEST



$

Shell Box 22-9: Building and running Google Test unit tests for example 22.1 after modifying
one of the test cases

As you can see and exactly like CMocka, Google Test also prints out
where the tests are broken and shows a helpful report. As a final note on
Google Test, it supports test fixtures but not in the same way that CMocka
supports. Test fixtures should be defined in a test class.

Note:

For having mock objects and the mocking functionality, the Google
Mock (or gmock) library can be used, but we don't cover it in this book.

In this section, we went through two of the most well-known unit testing
libraries for C. In the next part of the chapter, we dive into the topic of
debugging, which is of course a necessary skill for every programmer.

Debugging
There are situations in which one test or a group of tests fail. Also, there
are times when you find a bug. In both of these situations, there is a bug,
and you need to find the root cause and fix it. This involves many sessions
of debugging and going through the source code to search for the cause of
the bug and planning the required fixes. But what does it mean to debug a
piece of software?

Note:

It is a popularly held belief that the term "debug" originates from the days
when computers were so large that real bugs (such as moths) could get
caught in the system's machinery and lead to malfunctions. Therefore,
some people, officially called debuggers, were sent into the hardware



room to remove the bugs from the equipment. See this link for more
information: https://en.wikipedia.org/wiki/Debugging.

Debugging is an investigative task to find the root cause of an observed
bug by looking inside and/or outside of a program. When running a
program, you usually look at it as a black box. When something is wrong
with the results or something interrupts the execution, however, you need
to have a deeper look inside and see how the issue is produced. This means
that you have to observe the program as a white box in which everything
can be seen.

That's basically why we can have two different builds for a program:
release and build. In release builds, the focus is on the execution and the
functionality, and the program is mostly seen as a black box, but in debug
builds, we can trace all the events happening and see the inside of the
program as a white box. Debug builds are generally useful for
development and test environments, but release builds are targeted at
deployment and production environments.

In order to have a debug build, all of the products of a software project, or
a limited set of them, need to contain debugging symbols, which enable a
developer to track and see the stack trace and the execution flow of the
program. Usually, a release product (executable or libraries) is not suitable
for debugging purposes because it is not transparent enough to let an
observer examine the internals of a program. In Chapter 4, Process
Memory Structure, and Chapter 5, Stack and Heap, we discussed how we
can build C sources for debugging purposes.

For debugging a program, we mainly use debuggers. Debuggers are
standalone programs that attach to the target process in order to control or
monitor it. While debuggers are our main tools for our investigation when
working on an issue, other debugging tools can also be used to study the
memory, concurrent execution flows, or the performance of a program. We
will talk about these tools in the following sections.

A great portion of bugs are reproducible, but there are bugs that cannot be
reproduced or observed in debugging sessions; this is mostly because of

https://en.wikipedia.org/wiki/Debugging


the observer effect. It says, when you want to look at the internals of a
program, you alter the way it works, and it might prevent some bugs from
happening. These sorts of issues are disastrous, and they are usually very
hard to fix because you cannot use your debugging tools to investigate the
root cause of the problem!

Some threading bugs in high-performance environments can be
categorized in this group.

In the following sections, we are going to talk about different categories of
bugs. Then, we introduce the tools that we use in modern C/C++
development in order to investigate bugs.

Bug categories
There can be thousands of bugs reported in a piece of software throughout
the years that it is in use by a customer. But if you look at the types of
these bugs, they are not many. Next, you can see a list of bug categories
that we think are important and require special skills to deal with. For
sure, this list is not complete and there can be other types of bugs that we
are missing:

Logical bugs: In order to investigate these bugs, you need to know
the code and the execution flow of the code. To see the actual
execution flow of a program, a debugger should be attached to a
running process. Only then, the execution flow can be traced and
analyzed. Execution logs can also be used when debugging a program,
especially when debugging symbols are not available in the final
binaries or a debugger cannot be used to attach to an actual running
instance of the program.
Memory bugs: These bugs are memory related. They occur usually
because of dangling pointers, buffer overflows, double frees, and so
on. These bugs should be investigated using a memory profiler, which
acts as a debugging tool for observing and monitoring memory.
Concurrency bugs: Multi-processing and multithreading programs
have always been the birthplace of some of the hardest-to-solve bugs



found in the software industry. You need special tools like thread
sanitizers in order to detect particularly difficult issues such as race
conditions and data races.
Performance bugs: New developments may result in performance
degradation or performance bugs. These bugs should be investigated
using further and more focused testing and even debugging.
Execution logs, which contain annotated historical data for the
previous executions, can be useful in order to find the exact change or
changes that have initiated the degradation.

In the following sections, we are going to talk about various tools
introduced in the preceding list.

Debuggers
We have talked about debuggers, especially gdb , in Chapter 4, Process
Memory Structure, and we used it to see inside a process's memory. In this
section, we are going to give debuggers a second look and describe their
role in daily software development. The following is a list of common
features provided by most modern debuggers:

A debugger is a program, and like all other programs, it runs as a
process. The debugger process can attach to another process given the
target process ID.
A debugger can control the execution of the instructions in the target
process after a successful attachment; therefore, the user is able to
pause and continue the flow of the execution in the target process,
using an interactive debugging session.
Debuggers can see inside the protected memory of a process. They
can also modify the contents, therefore a developer can run the same
group of instructions while the memory content is being changed
deliberately.
Almost all of the known debuggers, if the debugging symbols are
provided while compiling the sources to relocatable object files, can
trace back the instructions to the source code. In other words, when



you pause on an instruction, you can go to its corresponding line of
code in the source file.
If the debugging symbols are not provided in the target object file,
the debugger can show the disassembly code of a target instruction,
which can still be useful.
Some debuggers are language-specific, but most of them are not.
Java Virtual Machine (JVM) languages such as Java, Scala, and
Groovy have to use JVM debuggers in order to see and control the
internals of a JVM instance.
Interpreted languages like Python have also their own debuggers,
which can be used to pause and control a script. While the low-level
debuggers like gdb  are still usable for JVM or scripting languages,
they try to debug the JVM or interpreter processes instead of the
executing Java bytecode or Python script.

A list of the debuggers can be found on Wikipedia as part of the following
link:
https://en.wikipedia.org/wiki/List_of_debuggers.
From this list, the following debuggers are eye-catching:

1. Advanced Debugger (adb): The default Unix debugger. It has
different implementations based on the actual Unix implementation.
It has been the default debugger on Solaris Unix.

2. GNU Debugger (gdb): The GNU version of the Unix debugger,
which is the default debugger on many Unix-like operating systems
including Linux.

3. LLDB: A debugger mainly designed for debugging object files
produced by LLVM compilers.

4. Python Debugger: Used in Python to debug Python script.
5. Java Platform Debugger Architecture (JPDA): This one is not a

debugger, but it is an API designed for debugging programs running
inside a JVM instance.

6. OllyDbg: A debugger and disassembler used in Microsoft Windows
for debugging GUI applications.

https://en.wikipedia.org/wiki/List_of_debuggers


7. Microsoft Visual Studio Debugger: The main debugger used by
Microsoft Visual Studio.

In addition to gdb , one can use cgdb . The cgdb  program shows a
terminal code editor next to the gdb  interactive shell that allows you to
move between the code lines easier.

In this section, we discussed debuggers as the main tools for investigating
an issue. In the next section, we will be talking about memory profilers,
which are vital for investigating memory-related bugs.

Memory checkers
Sometimes when you encounter a memory-related bug or a crash, a
debugger alone cannot help much. You need another tool that can detect
the memory corruptions and invalid read or writes to the memory cells.
The tool you need is a memory checker or a memory profiler. It could be
part of a debugger, but it is usually provided as a separate program and the
way it detects memory misbehaviors is different from a debugger.

We usually can expect the following features from a memory checker:

Reporting the total amount of allocated memory, freed memory, used
static memory, Heap allocations, Stack allocations, and so on.
Memory-leak detection, which can be considered as the most
important feature that a memory checker provides.
Detection of invalid memory read/write operations like out-of-bound
access regarding buffers and arrays, writes to an already freed
memory region, and so on.
Detection of a double free issue. It happens when a program tries to
free an already freed memory region.

So far, we have seen memory checkers like Memcheck (one of the
Valgrind's tools) in some of the chapters, particularly Chapter 5, Stack and
Heap. We have also discussed the different types of memory checkers and



memory profilers in chapter 5. Here, we want to explain them again, and
give more details about each of them.

Memory checkers all do the same thing, but the underlying technique they
use to monitor memory operations can be different. Therefore, we group
them based on the technique they use:

1. Compile-time overriding: For using a memory checker employing
this technique, you need to make some, usually slight, changes to
your source code like including a header file from the memory
checker library. Then, you need to compile your binaries again.
Sometimes, it is necessary to link the binaries against the libraries
provided by the memory checker. The advantage is that the
performance drop of the executing binary is less than the other
techniques, but the disadvantage is that you need to recompile your
binaries. LLVM AddressSanitizer (ASan), Memwatch, Dmalloc, and
Mtrace are memory profilers using this technique.

2. Link-time overriding: This group of memory checkers is like the
previous group of memory checkers, but the difference is that you
don't need to change your source code. Instead, you only have to link
the resulting binaries with the provided libraries from the memory
checker and no change is made to the source code. The heap checker
utility in gperftools can be used as a link-time memory checker.

3. Runtime interception: A memory checker using this technique sits
between the program and the OS and tries to intercept and track all
memory-related operations and report whenever a misbehavior or
invalid access is seen. It also can give leak reports based on the total
allocations and freed memory blocks. The main advantage of using
this technique is that you don't need to recompile or relink your
program in order to use the memory checker. The big disadvantage is
the significant overhead it introduces to the execution of the program.
Also, the memory footprint would be much higher than when running
the program without the memory checker. This is definitely not an
ideal environment to debug high-performance and embedded
programs. The Memcheck tool in Valgrind can be used as a runtime
interceptor memory checker. These memory profilers should be used
with a debug build of the code base.



4. Preloading libraries: Some memory checkers use inter-positioning
in order to wrap standard memory functions. Therefore, by preloading
the memory checker's shared libraries using the LD_PRELOAD
environment variable, the program can use the wrapper functions and
the memory checker can intercept the calls to underlying standard
memory functions. The heap checker utility in gperftools can be used
like this.

Usually, it is not enough to use a specific tool for all memory issues
because each of them has its own advantages and disadvantages, which
make that tool specific to a certain context.

In this section, we went through the available memory profilers and
categorized them based on the technique they use to record memory
allocations and deallocations. In the next section, we are going to talk
about thread sanitizers.

Thread debuggers
Thread sanitizers or thread debuggers are programs that are used to debug
multithreading programs to find concurrency-related issues while the
program is running. Some of the issues they can find are as follows:

Data races, and the exact places in different threads where the
read/write operations have caused the data race
Misusing the threading API, especially POSIX threading API in
POSIX-compliant systems
Possible deadlocks
Lock ordering issues

Both thread debuggers and memory checkers can detect issues as false
positives. In other words, they may find and report some issues but after
being investigated, it becomes clear that they are not issues. This really
depends on the technique these libraries use for tracking the events, and
making a final decision about that event.



In the following list, you can find a number of well-known available
thread debuggers:

Helgrind (from Valgrind): It is another tool inside Valgrind mainly
used for thread debugging. DRD is also another thread debugger as
part of the Valgrind toolkit. The list of features and differences can be
seen in these links:
http://valgrind.org/docs/manual/hg-manual.html

and http://valgrind.org/docs/manual/drd-
manual.html. Like all other tools from Valgrind, using Helgrind
doesn't need you to modify your source. For running Helgrind, you
need to run the command valgrind --tool=helgrind [path-to-
executable] .
Intel Inspector: This successor to Intel Thread Checker performs an
analysis of threading errors and memory issues. Therefore, it is a
thread debugger as well as a memory checker. It is not free like
Valgrind, and proper licenses must be purchased in order to use the
tool.
LLVM ThreadSanitizer (TSan): This is part of the LLVM toolkit,
and it comes with LLVM AddressSanitizer, described in the previous
section. Some slight compile-time modifications are needed in order
to use the debugger and the code base should be recompiled.

In this section, we discussed thread debuggers and we introduced some of
the available thread debuggers in order to debug threading issues. In the
next section, we provide the programs and toolkits that are used to tune the
performance of a program.

Performance profilers
Sometimes the results of a group of non-functional tests indicate a
degradation in performance. There are specialized tools for investigating
the cause of the degradation. In this section, we are going to have a quick
look at the tools which can be used to analyze performance and find
performance bottlenecks.

http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/drd-manual.html


These performance debuggers usually offer a subset of the following
features:

Gather statistics about every single function call
Provide a function call graph used to trace function calls
Gather memory-related statistics for each function call
Gather lock contention statistics
Gather memory allocation/deallocation statistics
Cache analysis, giving cache usage statistics and showing parts of the
code that are not cache-friendly
Gather statistics about threading and synchronization events

The following is a list of the most well-known programs and toolkits that
can be used for performance profiling:

Google Performance Tools (gperftools): This is actually a
performant malloc  implementation, but as it says on its home page,
it provides some performance analytics tools like heap checker,
which was introduced in the previous sections as a memory profiler.
It should be linked with the final binary in order to be usable.
Callgrind (as part of Valgrind): Mainly gathers statistics about the
function calls and the caller/callee relationship between two
functions. There is no need to change the source code or link the final
binaries and it can be used on the fly, with a debug build, of course.
Intel VTune: This is a performance profiling suite from Intel that is
a complete set of all the features given in the preceding list. Proper
licenses must be purchased in order to use it.

Summary
This chapter was about unit testing and debugging C programs. As a
summary, in this chapter:



We talked about testing, and why it is important to us as software
engineers and development teams.
We also discussed the different levels of testing like unit testing,
integration testing, and system testing.
Functional and non-functional testing were also covered.
Regression testing was explained.
CMocka and Google Test, as two well-known testing libraries for C,
were explored and some examples were given.
We talked about debugging and various types of bugs.
We discussed debuggers, memory profilers, thread debuggers, and
performance debuggers which can help us to have a more successful
investigation while working on a bug.

The next chapter is about the build systems available for C projects. We
will discuss what a build system is and what features it can bring in, which
will eventually help us to automate the process of building a huge C
project.



Chapter 23
Build Systems

For us programmers, building a project and running its various
components is the first step in developing a new feature or fixing a
reported bug in a project. In fact, this is not limited to C or C++; almost
any project with a component written in a compiled programming
language, such as C, C++, Java, or Go, needs to be built first.

Therefore, being able to build a software project quickly and easily is a
fundamental demand required by almost any party working in the software
production pipeline, whether they be developers, testers, integrators,
DevOps engineers, or even customer support.

More than that, when you join a team as a newbie, the first thing you do
is to build the code base that you are going to work on. Considering all
this, then, it's clear that addressing the ability to build a software project is
justified, given its importance within the software development process.

Programmers need to build code bases frequently in order to see the
results of their changes. Building a project with only a few source files
seems to be easy and fast, but when the number of source files grows (and
believe me, it happens), building a code base frequently becomes a real
obstacle to development tasks. Therefore, a proper mechanism for
building a software project is crucial.

People used to write shell scripts to build a huge number of source files.
Even though it worked, it took a lot of effort and maintenance to keep the
scripts general enough to be used in various software projects. Following
that, around 1976 at Bell Labs, the first (or, at least, one of the earliest
ones) build system, named Make, was developed and it was used in
internal projects.



After that, Make was used on a massive scale in all C and C++ projects,
and even in other projects in which C/C++ were n-ot the main languages.

In this chapter, we are going to talk about widely used build systems and
build script generators for C and C++ projects. As part of this chapter, we
will talk about the following topics:

First, we will look at what build systems are and what they are good
for.
Then, we will cover what Make is and how Makefiles should be used.
CMake is the next topic. You will read about build script generators
and you will learn how to write simple CMakeLists.txt  files.
We'll see what Ninja is and how it is different from Make.
The chapter will also explore how CMake should be used to generate
Ninja build scripts.
We'll delve into what Bazel is and how it should be used. You will
learn about WORKSPACE  and BUILD  files and how they should be
written in a simple use case.
Finally, you will be given links to some already-published
comparisons of various build systems.

Note that the build tools used in this chapter all need to be installed on
your system beforehand. Proper resources and documentation should be
available on the internet, since these build tools are being used on a
massive scale.

In the first section, we are going to explore what a build system actually
is.

What is a build system?
Put simply, a build system is a set of programs and companion text files
that collectively build a software code base. Nowadays, every



programming language has its own set of build systems. For instance, in
Java, you have Ant, Maven, Gradle, and so on. But what does "building a
code base" mean?

Building a code base means producing final products from source files.
For example, for a C code base, the final products can be executable files,
shared object files, or static libraries, and the goal of a C build system is to
produce these products out of the C source files found in the code base.
The details of the operations needed for this purpose depend heavily on the
programming language or the languages involved in the code base.

Many modern build systems, especially in projects written in a JVM
language such as Java or Scala, provide an extra service.

They do dependency management as well. This means that the build
system detects the dependencies of the target code base, and it downloads
all of them and uses the downloaded artifacts during the build process.
This is very handy, especially if there are a great many dependencies
in a project, which is usually the case in big code bases.

For instance, Maven is one of the most famous building systems for Java
projects; it uses XML files and supports dependency management.
Unfortunately, we don't have great tools for dependency management in
C/C++ projects. Why we haven't got Maven-like build systems for C/C++
projects yet is a matter for debate, but the fact that they have not been
developed yet could be a sign that we don't need them.

Another aspect of a build system is the ability to build a huge project with
multiple modules inside. Of course, this is possible using shell scripts and
writing recursive Makefiles that go through any level of modules, but we
are talking about the intrinsic support of such a demand. Unfortunately,
Make does not offer this intrinsically. Another famous build tool, CMake,
does offer that, however. We will talk more about this in the section
dedicated to CMake.

As of today, many projects still use Make as their default build system,
however, through using CMake. Indeed, this is one of the points that
makes CMake very important, and you need to learn it before joining a



C/C++ project. Note that CMake is not limited to C and C++ and can be
used in projects using various programming languages.

In the following section, we are going to discuss the Make build system
and how it builds a project. We will give an example of a multi-module C
project and use it throughout this chapter to demonstrate how various
build systems can be used to build this project.

Make
The Make build system uses Makefiles. A Makefile is a text file with the
name "Makefile" (exactly this and without any extension) in a source
directory, and it contains build targets and commands that tell Make how
to build the current code base.

Let's start with a simple multi-module C project and equip it with Make.
The following shell box shows the files and directories found in the
project. As you can see, it has one module named calc , and another
module named exec  is using it.

The output of the calc  module would be a static object library, and the
output of the exec  module is an executable file:

$ tree ex23_1

ex23_1/

├── calc

│ ├── add.c

│ ├── calc.h

│ ├── multiply.c

│ └── subtract.c

└── exec

└── main.c

2 directories, 5 files

$

Shell Box 23-1: The files and directories found in the target project



If we want to build the above project without using a build system, we
must run the following commands in order to build its products. Note that
we have used Linux as the target platform for this project:

$ mkdir -p out

$ gcc -c calc/add.c -o out/add.o

$ gcc -c calc/multiply.c -o out/multiply.o

$ gcc -c calc/subtract.c -o out/subtract.o

$ ar rcs out/libcalc.a out/add.o out/multiply.o

out/subtract.o

$ gcc -c -Icalc exec/main.c -o out/main.o

$ gcc -Lout out/main.o -lcalc -o out/ex23_1.out

$

Shell Box 23-2: Building the target project

As you can see, the project has two artifacts: a static library, libcalc.a ,
and an executable file, ex23_1.out . If you don't know how to compile a C
project, or the preceding commands are strange to you, please read
Chapter 2, Compilation and Linking, and Chapter 3, Object Files.

The first command in Shell Box 23-2 creates a directory named out. This
directory is supposed to contain all the relocatable object files and the
final products.

Following that, the next three commands use gcc  to compile the source
files in the calc  directory and produce their corresponding relocatable
object files. Then, these object files are used in the fifth command to
produce the static library libcalc.a .

Finally, the last two commands compile the file main.c  from the exec
directory and finally link it together with libcalc.a  to produce the final
executable file, ex23_1.out . Note that all these files are put inside the out
directory.

The preceding commands can grow as the number of source files grows.
We could maintain the preceding commands in a shell script file called a
build script, but there are some aspects that we should think about
beforehand:



Are we going to run the same commands on all platforms? There are
some details that differ in various compilers and environments;
therefore, the commands might vary from one system to another. In
the simplest scenario, we should maintain different shell scripts for
different platforms. Then, it effectively means that our script is not
portable.
What happens when a new directory or a new module is added to the
project? Do we need to change the build script?
What happens to the build script if we add new source files?
What happens if we need a new product, like a new library or a new
executable file?

A good build system should handle all or most of the situations covered
above. Let's present our first Makefile. This file is going to build the
above project and generate its products. All the files written for build
systems, in this section and the following sections, can be used to build
this particular project and nothing more than that.

The following code box shows the content of the simplest Makefile that
we can write for the above project:

build:

mkdir -p out

gcc -c calc/add.c -o out/add.o

gcc -c calc/multiply.c -o out/multiply.o

gcc -c calc/subtract.c -o out/subtract.o

ar rcs out/libcalc.a out/add.o out/multiply.o out/subtract.o

gcc -c -Icalc exec/main.c -o out/main.o

gcc -Lout -lcalc out/main.o -o out/ex23_1.out

clean:

rm -rfv out

Code Box 23-1 [Makefile-very-simple]: A very simple Makefile written for the target project

The preceding Makefile contains two targets: build  and clean . Targets
have a set of commands, which should be executed when the target is
summoned. This set of commands is called the recipe of the target.



In order to run the commands in a Makefile, we need to use the make
command. You need to tell the make  command which target to run, but if
you leave it empty, make always executes the first target.

To build the preceding project using the Makefile, it is enough to copy the
lines from Code Box 23-1 to a file named Makefile  and put it in the root
of the project. The content of the project's directory should be similar to
what we see in the following shell box:

$ tree ex23_1

ex23_1/

├── Makefile

├── calc

│ ├── add.c

│ ├── calc.h

│ ├── multiply.c

│ └── subtract.c

└── exec

└── main.c

2 directories, 6 files

$

Shell Box 23-3: The files and directories found in the target project after adding the Makefile

Following that, you can just run the make command. The make  program
automatically looks for the Makefile  file in the current directory and
executes its first target. If we wanted to run the clean  target, we would
have to use the make clean  command. The clean  target can be used to
remove the files produced as part of the build process, and this way, we
can start a fresh build from scratch.

The following shell box shows the result of running the make  command:

$ cd ex23_1

$ make

mkdir -p out

gcc -c -Icalc exec/main.c -o out/main.o

gcc -c calc/add.c -o out/add.o

gcc -c calc/multiply.c -o out/multiply.o

gcc -c calc/subtract.c -o out/subtract.o

ar rcs out/libcalc.a out/add.o out/multiply.o out/subtract.o

gcc -Lout -lcalc out/main.o -o out/ex23_1.out



$

Shell Box 23-4: Building the target project using the very simple Makefile

You might ask, "What is the difference between a build script (written in a
shell script), and the above Makefile?" You'd be right to ask this! The
preceding Makefile does not represent the way we usually use Make to
build our projects.

In fact, the preceding Makefile is a naive usage of the Make build system,
and it doesn't benefit from the features we know that Make has to offer.

In other words, so far, a Makefile has been remarkably similar to a shell
script, and we could still just use shell scripting (though, of course, that
would involve more effort). Now we get to the point where Makefiles
become interesting and really different.

The following Makefile is still simple, but it introduces more of the
aspects of the Make build system that we are interested in:

CC = gcc

build: prereq out/main.o out/libcalc.a

${CC} -Lout -lcalc out/main.o -o out/ex23_1.out

prereq:

mkdir -p out

out/libcalc.a: out/add.o out/multiply.o out/subtract.o

ar rcs out/libcalc.a out/add.o out/multiply.o out/subtract.o

out/main.o: exec/main.c calc/calc.h

${CC} -c -Icalc exec/main.c -o out/main.o

out/add.o: calc/add.c calc/calc.h

${CC} -c calc/add.c -o out/add.o

out/subtract.o: calc/subtract.c calc/calc.h

${CC} -c calc/subtract.c -o out/subtract.o

out/multiply.o: calc/multiply.c calc/calc.h

${CC} -c calc/multiply.c -o out/multiply.o

clean: out

rm -rf out

Code Box 23-2 [Makefile-simple]: A new, but still simple, Makefile written for the target
project



As you can see, we can declare a variable in a Makefile and use it in
various places, just as we have declared CC in the preceding code box.
Variables, together with conditions in a Makefile, allow us to write
flexible build instructions with less effort than it takes to write a shell
script that would achieve the same flexibility.

Another cool feature of Makefiles is the ability to include other Makefiles.
This way, you can benefit from existing Makefiles that you have written in
your previous projects.

As you can see in the preceding Makefile, each Makefile can have several
targets. Targets start at the beginning of a line and end with a colon, ":".
One tab character must be used to indent all the instructions within a target
(the recipe) in order to make them recognizable by the make  program.
Here is the cool thing about targets: they can be dependent on the other
targets.

For example, in the preceding Makefile, the build  target depends on the
prereq , out /main.o , and out/libcalc.a  targets. Then, whenever the
build  target is invoked, first, its depending targets will be checked, and if
they are not yet produced, then those targets will be invoked first. Now, if
you pay more attention to the targets in the preceding Makefile, you
should be able to see the flow of execution between targets.

This is definitely something that we miss in a shell script; a lot of control
flow mechanisms (loops, conditions, and so on) would be needed to make
a shell script work like this. Makefiles are less verbose and more
declarative, and that is why we use them. We want to only declare what
needs to be built, and we do not need to know about the path it takes to get
built. While this is not totally achieved by using Make, it is a start to
having a fully featured build system.

Another feature of the targets in a Makefile is that if they are referring to a
file or a directory on the disk, such as out/multiply.o , the make  program
checks for recent modifications to that file or directory, and if there is no
modification since the last build, it skips that target. This is also true for
the dependency of out/multiply.o , which is calc/multiply.c . If the
source file, calc/multiply.c , has not been changed recently and it has



been compiled before, it doesn't make sense to compile it again. This is
again a feature that you cannot simply obtain by writing shell scripts.

By having this feature, you only compile the source files that have been
modified from the last build, and this reduces a huge amount of
compilation for sources that have not been changed since the last build. Of
course, this feature will work after having the whole project compiled at
least once. After that, only modified sources will trigger a compilation or
linkage.

Another crucial point in the preceding Makefile is the calc/calc.h  target.
As you can see, there are multiple targets, mostly source files, that are
dependent on the header file, calc/calc.h . Therefore, based on the
functionality we explained before, a simple modification to the header file
can trigger multiple compilations for the source files depending on that
header file.

This is exactly why we try to include only the required header files in a
source file, and use forward declarations wherever possible instead of
inclusion. Forward declarations are not usually made in source files
because there, we often demand access to the actual definition of a
structure or a function, but it can be easily done in header files.

Having a lot of dependencies between header files usually leads to build
disasters. Even a small modification to a header file included by many
other header files, and eventually included by many source files, can
trigger building the whole project or something on that scale. This will
effectively reduce the quality of development as well as lead to a
developer having to wait for minutes between builds.

The preceding Makefile is still too verbose. We have to change the targets
whenever we add a new source file. We expect to change the Makefile
upon adding a new source file, but not by adding a new target and
changing the overall structure of a Makefile. This effectively prevents us
from reusing the same Makefile in another project similar to the current
one.



More than that, many targets follow the same pattern, and we can benefit
from the pattern matching feature available in Make to reduce the number
of targets and write less code in a Makefile. This is another super feature
of Make whose effect you cannot easily achieve by writing shell scripts.

The following Makefile will be our last one for this project, but still is not
the best Makefile that a Make professional can write:

BUILD_DIR = out

OBJ = ${BUILD_DIR}/calc/add.o \

${BUILD_DIR}/calc/subtract.o \

${BUILD_DIR}/calc/multiply.o \

${BUILD_DIR}/exec/main.o

CC = gcc

HEADER_DIRS = -Icalc

LIBCALCNAME = calc

LIBCALC = ${BUILD_DIR}/lib${LIBCALCNAME}.a

EXEC = ${BUILD_DIR}/ex23_1.out

build: prereq ${BUILD_DIR}/exec/main.o ${LIBCALC}

${CC} -L${BUILD_DIR} -l${LIBCALCNAME}

${BUILD_DIR}/exec/main.o -o ${EXEC}

prereq:

mkdir -p ${BUILD_DIR}

mkdir -p ${BUILD_DIR}/calc

mkdir -p ${BUILD_DIR}/exec

${LIBCALC}: ${OBJ}

ar rcs ${LIBCALC} ${OBJ}

${BUILD_DIR}/calc/%.o: calc/%.c

${CC} -c ${HEADER_DIRS} $< -o $@

${BUILD_DIR}/exec/%.o: exec/%.c

${CC} -c ${HEADER_DIRS} $< -o $@

clean: ${BUILD_DIR}

rm -rf ${BUILD_DIR}

Code Box 23-3 [Makefile-by-pattern]: A new Makefile written for the target project that uses
pattern matching

The preceding Makefile uses pattern matching in its targets. The variable
OBJ  keeps a list of the expected relocatable object files, and it is used in
all other places when a list of object files is needed.

This is not a book on how Make's pattern matching works, but you can see
that there are a bunch of wildcard characters, such as % , $< , and $@ , that
are used in the patterns.



Running the preceding Makefile will produce the same results as the other
Makefiles, but we can benefit from the various nice features that Make
offers, and eventually have a reusable and maintainable Make script.

The following shell box shows how to run the preceding Makefile and
what the output is:

$ make

mkdir -p out

mkdir -p out/calc

mkdir -p out/exec

gcc -c -Icalc exec/main.c -o out/exec/main.o

gcc -c -Icalc calc/add.c -o out/calc/add.o

gcc -c -Icalc calc/subtract.c -o out/calc/subtract.o

gcc -c -Icalc calc/multiply.c -o out/calc/multiply.o

ar rcs out/libcalc.a out/calc/add.o out/calc/subtract.o

out/calc/multiply.o out/exec/main.o

gcc -Lout -lcalc out/exec/main.o -o out/ex23_1.out

$

Shell Box 23-5: Building the target project using the final Makefile

In the following sections, we will be talking about CMake, a great tool for
generating true Makefiles. In fact, a while after Make became popular, a
new generation of build tools emerged, build script generators, which
could generate Makefiles or scripts from other build systems based on a
given description. CMake is one of them, and it is probably the most
popular one.

Note:

Here is the main link to read more about GNU Make, which is the
implementation of Make made for the GNU project:
https://www.gnu.org/software/make/manual/html_node/

index.html.

CMake – not a build system!

https://www.gnu.org/software/make/manual/html_node/index.html


CMake is a build script generator and acts as a generator for other build
systems such as Make and Ninja. It is a tedious and complex job to write
effective and cross-platform Makefiles. CMake or similar tools, like
Autotools, are developed to deliver finely tuned cross-platform build
scripts such as Makefiles or Ninja build files. Note that Ninja is another
build system and will be introduced in the next section.

Note:

You can read more about Autotools here:
https://www.gnu.org/software/automake/manual/html_n

ode/Autotools-Introduction.html.

Dependency management is also important, which is not delivered through
Makefiles. These generator tools can also check for installed dependencies
and won't generate the build scripts if a required dependency is missing
from the system. Checking the compilers and their versions, and finding
their locations, their supported features, and so on is all part of what these
tools do before generating a build script.

Like Make, which looks for a file named Makefile , CMake looks for a
file named CMakeLists.txt . Wherever you find this file in a project, it
means that CMake can be used to generate proper Makefiles. Fortunately,
and unlike Make, CMake supports nested modules. In other words, you
can have multiple CMakeLists.txt  in other directories as part of your
project and all of them can be found and proper Makefiles would be
generated for all of them, just by running CMake in the root of your
project.

Let's continue this section by adding CMake support to our example
project. For this purpose, we add three CMakeLists.txt  files. Next, you
can see the hierarchy of the project after adding these files:

$ tree ex23_1

ex23_1/

├── CMakeLists.txt

├── calc

│ ├── CMakeLists.txt

https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html


│ ├── add.c

│ ├── calc.h

│ ├── multiply.c

│ └── subtract.c

└── exec

├── CMakeLists.txt

└── main.c

2 directories, 8 files

$

Shell Box 23-6: The project hierarchy after introducing three CMakeLists.txt files

As you can see, we have three CMakeLists.txt  files: one in the root
directory, one in the calc  directory, and the other one in the exec
directory. The following code box shows the content of the
CMakeLists.txt  file found in the root directory. As you can see, it adds
subdirectories of calc  and exec .

These subdirectories must have a CMakeLists.txt  file inside and, in fact,
they do, according to our setup:

cmake_minimum_required(VERSION 3.8)

include_directories(calc)

add_subdirectory(calc)

add_subdirectory(exec)

Code Box 23-4 [CMakeLists.txt]: The CMakeLists.txt file found in the root directory of the
project

The preceding CMake file adds the calc  directory to the include
directories that will be used by the C compiler when compiling the source
files. Like we said before, it also adds two subdirectories: calc  and exec .
These directories have their own CMakeLists.txt  files that explain how to
compile their content. The following is the CMakeLists.txt  file found in
the calc  directory:

add_library(calc STATIC

add.c

subtract.c

multiply.c

)



Code Box 23-5 [calc/CMakeLists.txt]: The CMakeLists.txt file found in the calc directory

As you can see, it is just a simple target declaration for the calc  target,
meaning that we need to have a static library named calc  (actually
libcalc.a  after build) that should contain the corresponding relocatable
object files for the source files, add.c , subtract.c , and multiply.c .
Note that CMake targets usually represent the final products of a code
base. Therefore, specifically for the calc  module, we have only one
product, which is a static library.

As you can see, nothing else is specified for the calc  target. For instance,
we didn't specify the extension of the static library or the filename of the
library (even though we could). All other configurations required to build
this module are either inherited from the parent CMakeLists.txt  file or
have been obtained from the default configuration of CMake itself.

For example, we know that the extension for shared object files is
different on Linux and macOS. Therefore, if the target is a shared library,
there is no need to specify the extension as part of the target declaration.
CMake is able to handle this very platform-specific difference, and the
final shared object file will have the correct extension based on the
platform that it is being built on.

The following CMakeLists.txt  file is the one found in the exec
directory:

add_executable(ex23_1.out

main.c

)

target_link_libraries(ex23_1.out

calc

)

Code Box 23-6 [exec/CMakeLists.txt]: The CMakeLists.txt file found in the exec directory

As you can see, the target declared in the preceding CMakeLists.txt  is an
executable, and it should be linked to the calc  target that is already
declared in another CMakeLists.txt  file.



This really gives you the power to create libraries in one corner of your
project and use them in another corner just by writing some directives.

Now it's time to show you how to generate a Makefile based on the
CMakeLists.txt  file found in the root directory. Note that we do this in a
separate directory named build  in order to have the resulting relocatable
and final object files kept separated from the actual sources.

If you're using a source control management (SCM) system like git, you
can ignore the build  directory because it should be generated on each
platform separately. The only files that matter are the CMakeLists.txt
files, which are always kept in a source control repository.

The following shell box demonstrates how to generate build scripts (in this
case, a Makefile) for the CMakeLists.txt  file found in the root directory:

$ cd ex23_1

$ mkdir -p build

$ cd build

$ rm -rfv *

...

$ cmake ..

-- The C compiler identification is GNU 7.4.0

-- The CXX compiler identification is GNU 7.4.0

-- Check for working C compiler: /usr/bin/cc

-- Check for working C compiler: /usr/bin/cc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Detecting C compile features

-- Detecting C compile features - done

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Detecting CXX compile features

-- Detecting CXX compile features - done

-- Configuring done

-- Generating done

-- Build files have been written to:

.../extreme_c/ch23/ex23_1/build

$



Shell Box 23-7: Generating a Makefile based on the CMakeLists.txt file found in the root
directory

As you can see from the output, the CMake command has been able to
detect the working compilers, their ABI info (for more on ABI, refer to
Chapter 3, Object Files), their features, and so on, and finally it has
generated a Makefile in the build  directory.

Note:

In Shell Box 23-7, we assumed that we could have had the build
directory in place; therefore, we removed all of its content first.

You can see the content of the build  directory and the generated
Makefile:

$ ls

CMakeCache.txt CMakeFiles Makefile calc cmake_install.cmake

exec

$

Shell Box 23-8: Generated Makefile in the build directory

Now that you've got a Makefile in your build  directory, you're free to run
the make command. It will take care of the compilation and display its
progress nicely for you.

Note that you should be in the build  directory before running the make
command:

$ make

Scanning dependencies of target calc

[ 16%] Building C object calc/CMakeFiles/calc.dir/add.c.o

[ 33%] Building C object

calc/CMakeFiles/calc.dir/subtract.c.o

[ 50%] Building C object

calc/CMakeFiles/calc.dir/multiply.c.o

[ 66%] Linking C static library libcalc.a



[ 66%] Built target calc

Scanning dependencies of target ex23_1.out

[ 83%] Building C object

exec/CMakeFiles/ex23_1.out.dir/main.c.o

[100%] Linking C executable ex23_1.out

[100%] Built target ex23_1.out

$

Shell Box 23-9: Executing the generated Makefile

Currently, many big projects use CMake, and you can build their sources
by using more or less the same commands that we've shown in the
previous shell boxes. Vim is one such project. Even CMake itself is built
using CMake after having a minimum CMake system built by Autotools!
CMake now has lots of versions and features and it would take a whole
book to discuss them in extensive detail.

Note:

The following link is the official documentation of the latest version of
CMake and it can help you to get an idea of how it works and what
features it has:
https://cmake.org/cmake/help/latest/index.html.

As a final note in this section, CMake can create build script files for
Microsoft Visual Studio, Apple's Xcode, and other development
environments.

In the following section, we will be discussing the Ninja build system, a
fast alternative to Make that has been gaining momentum recently. We
also explain how CMake can be used to generate Ninja build script files
instead of Makefiles.

Ninja

https://cmake.org/cmake/help/latest/index.html


Ninja is an alternative to Make. I hesitate to call it a replacement, but it is
a faster alternative. It achieves its high performance by removing some of
the features that Make offers, such as string manipulation, loops, and
pattern matching.

Ninja has less overhead by removing these features, and because of that, it
is not wise to write Ninja build scripts from scratch.

Writing Ninja scripts can be compared to writing shell scripts, the
downsides of which we explained in the previous section. That's why it is
recommended to use it together with a build script generator tool like
CMake.

In this section, we show how Ninja can be used when Ninja build scripts
are generated by CMake. Therefore, in this section, we won't go through
the syntax of Ninja, as we did for Makefiles. That's because we are not
going to write them ourselves; instead, we are going to ask CMake to
generate them for us.

Note:

For more information on Ninja syntax, please follow this link:
https://ninja-

build.org/manual.html#_writing_your_own_ninja_files

.

As we explained before, it is best to use a build script generator to produce
Ninja build script files. In the following shell box, you can see how to use
CMake to generate a Ninja build script, build.ninja , instead of a
Makefile for our target project:

$ cd ex23_1

$ mkdir -p build

$ cd build

$ rm -rfv *

...

$ cmake -GNinja ..

-- The C compiler identification is GNU 7.4.0

-- The CXX compiler identification is GNU 7.4.0

https://ninja-build.org/manual.html#_writing_your_own_ninja_files


-- Check for working C compiler: /usr/bin/cc

-- Check for working C compiler: /usr/bin/cc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Detecting C compile features

-- Detecting C compile features - done

-- Check for working CXX compiler: /usr/bin/c++

-- Check for working CXX compiler: /usr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Detecting CXX compile features

-- Detecting CXX compile features - done

-- Configuring done

-- Generating done

-- Build files have been written to:

.../extreme_c/ch23/ex23_1/build

$

Shell Box 23-10: Generating build.ninja based on CMakeLists.txt found in the root directory

As you can see, we have passed the option -GNinja  to let CMake know
that we are demanding Ninja build script files instead of Makefiles.
CMake generates the build.ninja  file and you can find it in the build
directory as follows:

$ ls

CMakeCache.txt CMakeFiles build.ninja calc

cmake_install.cmake exec rules.ninja

$

Shell Box 23-11: Generated build.ninja in the build directory

To compile the project, it is enough to run the ninja  command as follows.
Note that just as the make  program looks for the Makefile  in the current
directory, the ninja  program looks for build.ninja  in the current
directory:

$ ninja

[6/6] Linking C executable exec/ex23_1.out

$

Shell Box 23-12: Executing generated build.ninja



In the following section, we are going to talk about Bazel, another build
system that can be used for building C and C++ projects.

Bazel
Bazel is a build system developed at Google to address the internal need to
have a fast and scalable build system that can build any project no matter
what the programming language is. Bazel supports building C, C++, Java,
Go, and Objective-C projects. More than that, it can be used to build
Android and iOS projects.

Bazel became open source around 2015. It is a build system, so it can be
compared with Make and Ninja, but not CMake. Almost all of Google's
open source projects use Bazel for their builds. For example, we can name
Bazel itself, gRPC, Angular, Kubernetes, and TensorFlow.

Bazel is written in Java. It is famous for parallel and scalable builds, and it
really makes a difference in big projects. Parallel builds are also available
in Make and Ninja, both by passing the -j  option (Ninja is parallel by
default, however).

Note:

The official documentation of Bazel can be found here:
https://docs.bazel.build/versions/master/bazel-

overview.html.

The way to use Bazel is similar to what we did for Make and Ninja. Bazel
requires two kinds of files to be present in a project: WORKSPACE  and
BUILD  files. The WORKSPACE  file should be in the root directory, and the
BUILD  files should be put into the modules that should be built as part of
the same workspace (or project). This is more or less similar to the case
with CMake, where we had three CMakeLists.txt  files distributed in the

https://docs.bazel.build/versions/master/bazel-overview.html


project, but note that, here, Bazel itself is the build system and we are not
going to generate any build script for another build system.

If we want to add the Bazel support to our project, we should obtain the
following hierarchy in the project:

$ tree ex23_1

ex23_1/

├── WORKSPACE

├── calc

│ ├── BUILD

│ ├── add.c

│ ├── calc.h

│ ├── multiply.c

│ └── subtract.c

└── exec

├── BUILD

└── main.c

2 directories, 8 files

$

Shell Box 23-13: The project hierarchy after introducing Bazel files

The content of the WORKSPACE  file would be empty in our example. It is
usually used to indicate the root of the code base. Note that you need to
refer to the documentation to see how these files, WORKSPACE  and BUILD ,
should be propagated throughout the code base if you have even more
nested and deeper modules.

The content of the BUILD  file indicates the targets that should be built in
that directory (or module). The following code box shows the BUILD  file
for the calc  module:

c_library(

name = "calc",

srcs = ["add.c", "subtract.c", "multiply.c"],

hdrs = ["calc.h"],

linkstatic = True,

visibility = ["//exec:__pkg__"]

)

Code Box 23-7 [calc/BUILD]: The BUILD file found in the calc directory



As you see, a new target, calc , is declared. It is a static library and
contains the three source files found in the directory. The library is also
visible to the targets residing in the exec  directory.

Let's look at the BUILD  file in the exec directory:

cc_binary(

name = "ex23_1.out",

srcs = ["main.c"],

deps = [

"//calc:calc"

],

copts = ["-Icalc"]

)

Code Box 23-8 [exec/BUILD]: The BUILD file found in the exec directory

With the preceding files in their places, we can now run Bazel and build
the project. You need to go to the project's root directory. Note that there is
no need to have a build directory as we did for CMake:

$ cd ex23_1

$ bazel build //...

INFO: Analyzed 2 targets (14 packages loaded, 71 targets

configured).

INFO: Found 2 targets...

INFO: Elapsed time: 1.067s, Critical Path: 0.15s

INFO: 6 processes: 6 linux-sandbox.

INFO: Build completed successfully, 11 total actions

$

Shell Box 23-14: Building the example project using Bazel

Now, if you look at the bazel-bin  directory found in the root directory,
you should be able to find the products:

$ tree bazel-bin

bazel-bin

├── calc

│ ├── _objs

│ │ └── calc

│ │ ├── add.pic.d



│ │ ├── add.pic.o

│ │ ├── multiply.pic.d

│ │ ├── multiply.pic.o

│ │ ├── subtract.pic.d

│ │ └── subtract.pic.o

│ ├── libcalc.a

│ └── libcalc.a-2.params

└── exec

├── _objs

│ └── ex23_1.out

│ ├── main.pic.d

│ └── main.pic.o

├── ex23_1.out

├── ex23_1.out-2.params

├── ex23_1.out.runfiles

│ ├── MANIFEST

│ └── __main__

│ └── exec

│ └── ex23_1.out -> .../bin/exec/ex23_1.out

└── ex23_1.out.runfiles_manifest

9 directories, 15 files

$

Shell Box 23-15: The content of bazel-bin after running the build

As you can see in the preceding list, the project is built successfully, and
the products have been located.

In the next section, we are going to close our discussion in this chapter and
compare various build systems that exist for C and C++ projects.

Comparing build systems
In this chapter, we tried to introduce three of the most well-known and
widely used build systems. We also introduced CMake as a build script
generator. You should know that there are other build systems that can be
used to build C and C++ projects.

Note that your choice of build system should be considered as a long-term
commitment; if you start a project with a specific build system, it would



take significant effort to change it to another one.

Build systems can be compared based on various properties. Dependency
management, being able to handle a complex hierarchy of nested projects,
build speed, scalability, integration with existing services, flexibility to
add a new logic, and so on can all be used to make a fair comparison. I'm
not going to finish this book with a comparison of build systems because it
is a tedious job to do, and, more than that, there are already some great
online articles covering the topic.

A nice Wiki page on Bitbucket that does a pros/cons comparison on
available build systems, together with build script generator systems can
be found here:
https://bitbucket.org/scons/scons/wiki/SconsVsOthe

rBuildTools.

Note that the result of a comparison can be different for anyone. You
should choose a build system based on your project's requirements and the
resources available to you. The following links lead to supplementary
resources that can be used for further study and comparison:

https://www.reddit.com/r/cpp/comments/8zm66h/an_ov

erview_of_build_systems_mostly_for_c_projects/

https://github.com/LoopPerfect/buckaroo/wiki/Build

-Systems-Comparison

https://medium.com/@julienjorge/an-overview-of-

build-systems-mostly-for-c-projects-ac9931494444

Summary
In this chapter, we discussed the common build tools available for
building a C or C++ project. As part of this chapter:

https://bitbucket.org/scons/scons/wiki/SconsVsOtherBuildTools
https://www.reddit.com/r/cpp/comments/8zm66h/an_overview_of_build_systems_mostly_for_c_projects/
https://github.com/LoopPerfect/buckaroo/wiki/Build-Systems-Comparison
https://medium.com/@julienjorge/an-overview-of-build-systems-mostly-for-c-projects-ac9931494444


We discussed the need for a build system.
We introduced Make, one of the oldest build systems available for C
and C++ projects.
We introduced Autotools and CMake, two famous build script
generators.
We showed how CMake can be used to generate the required
Makefiles.
We discussed Ninja and we showed how CMake can be used to
generate Ninja build scripts.
We demonstrated how Bazel can be used to build a C project.
Finally, we provided some links to a number of online discussions
regarding the comparison of various build systems.



Epilogue
And the final words ...

If you are reading this, it means that our journey has come to an end! We
went through several topics and concepts as part of this book, and I hope
that the journey has made you a better C programmer. Of course, it cannot
give you the experience; you must obtain that by working on various
projects. The methods and tips we discussed in this book will ramp up
your level of expertise, and this will enable you to work on more serious
projects. Now you know more about software systems, from a broader
point of view, and possess a top-notch knowledge about the internal
workings.

Though this book was heavier and lengthier than your usual read, it still
could not cover all the topics found within C, C++, and system
programming. Therefore, a weight remains on my shoulders; the journey
is not yet done! I would like to continue to work on more Extreme topics,
maybe more specific areas, such as Asynchronous I/O, Advanced Data
Structures, Socket Programming, Distributed Systems, Kernel
Development, and Functional Programming, in time.

Hope to see you again on the next journey!

Kamran
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