

Praise for other books by Michael W Lucas

SSH Mastery, 1st edition

 “SSH Mastery is another must-have, must-read for anyone working in IT. I imagine that most
of us use OpenSSH and/or PuTTY every day, but I am sure each of us will learn something
about these tools and the SSH protocol after reading SSH Mastery.” — Richard Bejtlich, CSO,
Mandiant, and TaoSecurity blogger

“…one of those technical books that you wouldn’t keep on your bookshelf. It’s one of
the books that will have its bindings bent, and many pages bookmarked sitting near the
keyboard.” — Steven K Hicks, SKH:TEC

 “…SSH Mastery is a title that Unix users and system administrators like myself will want to
keep within reach…” — Peter Hansteen, author of The Book of PF

“This stripping-down of the usual tech-book explanations gives it the immediacy of extended
documentation on the Internet. Not the multipage how-to articles used as vehicles for
advertising, but an in-depth presentation from someone who used OpenSSH to do a number
of things, and paid attention while doing it.” — DragonFlyBSD Digest

PAM Mastery

“Michael W Lucas nailed it.” — nixCraft

“Fantastic.” —Kris Moore, BSDNow #171

FreeBSD Mastery: ZFS

“Once again, a great FreeBSD book to read.” — Wendy Michele, nixCraft

“ZFS Mastery covers what everyone using or administering these filesystems needs to know
to work with them every day. It’s fascinating to see how the system is used, having seen how
it is implemented.” — George V. Neville-Neil, co-author of “Design and Implementation of the
FreeBSD Operating System”

Networking for Systems Administrators

“There is a lot of useful information packed into this book. I recommend it!” — Sunday
Morning Linux Review, episode 145

After reading this book, you’ll have a strong footing in networking. Lucas explains concepts
in practical ways; he makes sure to teach tools in both Unix/Linux and Windows; and he gives
you the terms you’ll use to explain what you’re seeing to the network folks. Along the way
there’s a lot of hard-won knowledge sprinkled throughout…” — Slashdot

FreeBSD Mastery: Specialty Filesystems

“a joy and treasure to read” — Vivek Gite, nixCraft

“I’m a fan of his books… he presents them in a way that makes them much more
understandable. He has the right mix of humor and information.” — Sunday Morning Linux
Review

Sudo Mastery

“It’s awesome, it’s Lucas, it’s sudo. Buy it now.” — Slashdot

“Michael W Lucas has always been one of my favorite authors because he brings exceptional
narrative to information that has the potential to be rather boring. Sudo Mastery is no
exception.” — Chris Sanders, author of Practical Packet Analysis

Absolute OpenBSD, 2nd Edition

“Michael Lucas has done it again.” — cryptednets.org

“After 13 years of using OpenBSD, I learned something new and useful!” — Peter Hessler,
OpenBSD Journal

“This is truly an excellent book. It’s full of essential material on OpenBSD presented with a
sense of humor and an obvious deep knowledge of how this OS works. If you’re coming to
this book from a Unix background of any kind, you’re going to find what you need to quickly
become fluent in OpenBSD – both how it works and how to manage it with expertise. I doubt
that a better book on OpenBSD could be written.” — Sandra Henry-Stocker, ITWorld.com

“It quickly becomes clear that Michael actually uses OpenBSD and is not a hired gun with a
set word count to satisfy... In short, this is not a drive-by book and you will not find any hand
waving.” – Michael Dexter, callfortesting.org

DNSSEC Mastery

“When Michael descends on a topic and produces a book, you can expect the result to contain
loads of useful information, presented along with humor and real-life anecdotes so you will
want to explore the topic in depth on your own systems.” — Peter Hansteen, author of The
Book of PF

“Pick up this book if you want an easy way to dive into DNSSEC.” — psybermonkey.net

Network Flow Analysis

“Combining a great writing style with lots of technical info, this book provides a learning
experience that’s both fun and interesting. Not too many technical books can claim that.” —
;login: Magazine, October 2010

“This book is worth its weight in gold, especially if you have to deal with a shoddy ISP who
always blames things on your network.” — Utahcon.com

“The book is a comparatively quick read and will come in handy when troubleshooting and
analyzing network problems.” — Dr. Dobbs

“Network Flow Analysis is a pick for any library strong in network administration and data
management. It’s the first to show system administrators how to assess, analyze and debut
a network using flow analysis, and comes from one of the best technical writers in the
networking and security environments.” — Midwest Book Review

FreeBSD Mastery: Storage Essentials

“If you’re a FreeBSD (or Linux, or Unix) sysadmin, then you need this book; it has a lot of
hard-won knowledge, and will save your butt more than you’ll be comfortable admitting. If
you’ve read anything else by Lucas, you also know we need him writing more books. Do the
right thing and buy this now.” — Slashdot

“There’s plenty of coverage of GEOM, GELI, GDBE, and the other technologies specific to
FreeBSD. I for one did not know how GEOM worked, with its consumer/producer model –
and I imagine it’s complex to dive into when you’ve got a broken machine next to you. If you
are administering FreeBSD systems, especially ones that deal with dedicated storage, you will
find this useful.” — DragonFlyBSD Digest

Absolute FreeBSD, 2nd Edition

“I am happy to say that Michael Lucas is probably the best system administration author I’ve
read. I am amazed that he can communicate top-notch content with a sense of humor, while
not offending the reader or sounding stupid. When was the last time you could physically feel
yourself getting smarter while reading a book? If you are a beginning to average FreeBSD user,
Absolute FreeBSD 2nd Ed (AF2E) will deliver that sensation in spades. Even more advanced
users will find plenty to enjoy.” — Richard Bejtlich, CSO, MANDIANT, and TaoSecurity blogger

“Master practitioner Lucas organizes features and functions to make sense in the development
environment, and so provides aid and comfort to new users, novices, and those with
significant experience alike.” — SciTech Book News

“…reads well as the author has a very conversational tone, while giving you more than enough
information on the topic at hand. He drops in jokes and honest truths, as if you were talking
to him in a bar.” — Technology and Me Blog

Cisco Routers for the Desperate, 2nd Edition

“If only Cisco Routers for the Desperate had been on my bookshelf a few years ago! It would
have definitely saved me many hours of searching for configuration help on my Cisco routers.”
— Blogcritics Magazine

“For me, reading this book was like having one of the guys in my company who lives and
breathes Cisco sitting down with me for a day and explaining everything I need to know to
handle problems or issues likely to come my way. There may be many additional things I
could potentially learn about my Cisco switches, but likely few I’m likely to encounter in my
environment.” — IT World

“This really ought to be the book inside every Cisco Router box for the very slim chance
things go goofy and help is needed ‘right now.’“ — MacCompanion

Absolute OpenBSD

“My current favorite is Absolute OpenBSD: Unix for the Practical Paranoid by Michael W.
Lucas from No Starch Press. Anyone should be able to read this book, download OpenBSD,
and get it running as quickly as possible.” — Infoworld

“I recommend Absolute OpenBSD to all programmers and administrators working with the
OpenBSD operating system (OS), or considering it.” — UnixReview

“Absolute OpenBSD by Michael Lucas is a broad and mostly gentle introduction into the
world of the OpenBSD operating system. It is sufficiently complete and deep to give someone
new to OpenBSD a solid footing for doing real work and the mental tools for further
exploration… The potentially boring topic of systems administration is made very readable
and even fun by the light tone that Lucas uses.” — Chris Palmer, President, San Francisco
OpenBSD Users Group

PGP & GPG

“...The World’s first user-friendly book on email privacy...unless you’re a cryptographer, or
never use email, you should read this book.” — Len Sassaman, CodeCon Founder

“An excellent book that shows the end-user in an easy to read and often entertaining style just
about everything they need to know to effectively and properly use PGP and OpenPGP.” —
Slashdot

“PGP & GPG is another excellent book by Michael Lucas. I thoroughly enjoyed his other
books due to their content and style. PGP & GPG continues in this fine tradition. If you
are trying to learn how to use PGP or GPG, or at least want to ensure you are using them
properly, read PGP & GPG.” — TaoSecurity

Tarsnap Mastery

 “This book is a great way to feel confident about backing up your data securely in cloud
or through off-site backups, without compromising security or burning your pocket with
enterprise grade products from IT vendors. If you use a Unix-like system I highly recommend
Tarsnap service and “Tarsnap Mastery.” — Wendy Michele, nixCraft

“If you use any nix-type system, and need offsite backups, then you need Tarsnap. If you want
to use Tarsnap efficiently, you need Tarsnap Mastery.” – Sunday Morning Linux Review episode
148

Relayd and Httpd Mastery

“Overall an excellent book which is typical Michael W Lucas’ writing style. Easy to follow,
clear cut instructions, and tons of new stuff to learn.” — Vivek Gite, nixCraft

Ed Mastery
The Standard Unix

Text Editor

Michael W Lucas

ed Mastery
Copyright 2018 by Michael W Lucas (https://mwl.io).

All rights reserved.

Authors: Michael W Lucas
Copyediting: Amanda Robinson
Cover art: Eddie Sharam

ISBN-13: 978-1-64235-003-6
ISBN-10: 1-64235-003-6

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including but not limited to photo-
copying, recording, vi or emacs recovery files, or by any information storage or re-
trieval system, without the prior written permission of the copyright holder and the
publisher. For information on book distribution, translations, or other rights, please
contact Tilted Windmill Press (accounts@tiltedwindmillpress.com).

The information in this book is provided on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor Tilted Windmill Press shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in it.

Tilted Windmill Press
https://www.tiltedwindmillpress.com

Ed Mastery

Michael W Lucas

More Tech Books from Michael W Lucas

Absolute BSD
Absolute OpenBSD (1st and 2nd edition)

Cisco Routers for the Desperate (1st and 2nd edition)
PGP and GPG

Absolute FreeBSD
Network Flow Analysis

Absolute FreeBSD 3rd edition (coming 2018)

the IT Mastery Series

SSH Mastery (1st and 2nd edition)
DNSSEC Mastery

Sudo Mastery
FreeBSD Mastery: Storage Essentials

Networking for Systems Administrators
Tarsnap Mastery

FreeBSD Mastery: ZFS
FreeBSD Mastery: Specialty Filesystems

FreeBSD Mastery: Advanced ZFS
PAM Mastery

Relayd and Httpd Mastery

Novels (as Michael Warren Lucas)

git commit murder
git sync murder (coming 2018)

Immortal Clay
Kipuka Blues

Bones Like Water (coming 2018)
Butterfly Stomp Waltz

Hydrogen Sleets

Brief Contents

Chapter 0: Introduction ..1

Chapter 1: Ed Essentials ...5

Chapter 10: Addresses ..11

Chapter 11: Text Editing ...19

Chapter 100: File Management and Shell Escapes27

Chapter 101: Regular Expressions and Searches35

Chapter 110: Substitution ...51

Chapter 111: Scripting ..69

Afterword ...75

Sponsors ..79

Patrons ..81

Appendix A: Jabberwocky ...83

Complete Contents

Chapter 0: Introduction ..1

Chapter 1: Ed Essentials ...5
Starting Ed...5
Commands and Modes ...6
Switching Modes ..9
Saving and Exiting ...10

Chapter 10: Addresses ..11
Setting Your Address ...12
Finding Your Address ..13
Address Ranges...14
Relative Addresses ..15
Scrolling ...16
Displaying Addresses ...17
Viewing Trailing Space ..17
Bookmarks ..18

Chapter 11: Text Editing ...19
Changing Lines ...19
Inserting Amidst the File ..20
Moving Text ..20
Deleting Lines ...22
Undo ..23
Inserting Text from Files ...23
Joining Lines ...24
Copying Lines ...25
Appending Lines to Another File ..26

Chapter 100: File Management and Shell Escapes27
The Empty Buffer ...27
The Default Filename ..28
Switching Files ..29
Saving Part of the Buffer ...30
Shell Escapes ...31
Send to a Program ..33
Starting with an Escape ...33

Chapter 101: Regular Expressions and Searches35
Regular Expression Format ...35
Searching in Ed ...37
Running Commands on Searches ..39
Interactive Searching ...41
Inverted Matches ..43
Character Classes ...43
Anchors ...44
Inverted Classes ..45
Multiple Matches and Wildcards ...46
Commands and Searches ..50

Chapter 110: Substitution ...51
Combining Searches and Substitution ..54
Subexpressions and Backreferences ...56
Multiple Substitutions ...59
Underlining via Substitution ..62
Partial Underlining ..64
Shortcuts and Alternates ...67

Chapter 111: Scripting ..69
The Ed Command File ..69
Ed in Shell Scripts ..72

Afterword ...75

Sponsors ..79
Print Sponsors ..79

Patrons ..81

Appendix A: Jabberwocky ...83

Acknowledgements
My entire career—indeed, modern life for every one of us—would not
have been possible without those giants who wrote entire operating
systems using ed and its predecessors. We owe those giants a debt of
gratitude.

More personally, though, I want to thank my technical reviewers
who were kind enough to share their immense edpertise: Tim Chase,
Josh Grosse, and Kurt Mosiejczuk. Any errors in this book crept in
despite these fine folks’ best efforts.

Many examples in this book were inspired by the
fine presentations at the ed(1) Conference, available on
Twitter at https://twitter.com/ed1conf and on Mastodon at
https://bsd.network/@ed1conf. Attending the world’s premier
conference for text editing at 300 baud will help keep your ed skills
razor-sharp.

After receiving rare but tediously ongoing complaints about
my use of mixed male and female third-person pronouns in my
technology books, I’ve prepared two editions of this book. Any
third-person singular pronouns that appear in the standard edition,
for normal people, are female. Those who believe that women don’t
belong in tech books are welcome to purchase the special “Manly
McManface” edition, where all third-party singular pronouns are
masculine. To compensate for this edition’s much smaller market,
though, the Manly edition is pricier than the standard edition. That’s
basic economics.

Also, one dollar of my proceeds from each sale of the Manly
McManface Edition will be donated to my local chapter of
Soroptimists International.

1

Chapter 0: Introduction
Let me be very clear here: ed(1) is the standard Unix text editor.

Dennis Ritchie, co-creator of Unix, declared it so. Who are you
to argue with someone who can write a complete operating system
without using a glass teletype?1

Many younger sysadmins naively hoist their pennants to defend
overblown, overwrought, overdesigned text editors like ex, vi, or even
the impossibly bloated nvi. A few are so lost as to devote themselves
to turgid editors meant for mere users, such as vim and Emacs. This
way lies not only appalling sysadmin skills, but an absence of moral
fiber. As a sysadmin, you must have enough brain power to remember
what you typed, to hold your own context in your head, and to truly
commune with the machine on a deep and personal level.

Most Unix hosts exist to perform real work, such as supporting
databases or serving web pages. When you specced out the system’s
memory, processor, and disk I/O, you considered the amount of
hardware needed to run those tasks. Any system resources above that
are intended to support atypical peak loads, not some pathetically
overengineered text editor. When you suck up extra kilobytes—or,
worse, megabytes—to run a fancy editor, you steal from the host.

Sysadmins dependent on something like vim? They actively harm
systems. Do not trust them.

1 You know, a glass teletype. That toy that kids keep calling a
“monitor,” even though we all know monitors are reference speakers
used in audio production.

Ed Mastery

2

For a random user, there’s no shame in being unable to use ed.
I’m not qualified to become a Navy SEAL. I’m not even qualified to
become the kind of seal that lies on a beach and barks. That’s okay. The
world is full of computers. If you cannot handle the undiluted glory
that is ed, use one of those friendly pointy-clicky systems. You’re who
they exist for. I recommend those tablet computers that don’t have a
keyboard, though, as those bright, colorful icons are very helpful to
the non-educatable.

It’s not that using ed(1) is the pinnacle of systems administration
achievement; it’s the minimum requirement. You must be this
competent to manage this computer.

If you’re reading this book, it’s because you want to join the elite.
You want to count amongst the Navy SEALS of information technology.
You want to be a real sysadmin, not one of those posers that need
fancy toys like a “monitor.” Yes, I own monitors, but only because these
wimpy modern laptops don’t come with built-in line printers.

Real sysadmins not only can work, they truly thrive on their wits
and line printers alone. We welcome anyone who proves worthy of
joining us.

This book covers standard ed. Many operating system developers
can’t resist the urge to add additional features to ed. That’s how the
tragedies of ex and vi happened, after all. While these developers’
urge to become part of something as momentous as ed is perfectly
understandable, ed is feature complete. This book won’t cover OS-
specific extensions, such as Linux’s x and y commands and FreeBSD’s
encryption support.2

I should warn you, though: some sysadmins object to this book.
They sincerely believe that the best sysadmins learn from studying

2 Why add encryption to ed? That’s what crypt(1) is for.

Chapter 0: Introduction

3

the operating system source code or, at worst, reading the man page.
Many of those folks forget their own youth, though. You can’t learn
computing on your own. Even the most sagacious Unix admins had
mentors.

In this bleak age when search engine algorithms dredge up
shoddily-assembled HOWTOs and pass them off as authoritative
documents, providing for the next generation of sysadmins is one of
the most vital tasks we face as a profession. I don’t want the servers
storing my retirement funds managed by so-called sysadmins who
struggle against the pomposity of ex(1). Study the ed(1) source with
this book at your side, in combination with a good C reference,
such as the 1978 edition of “The C Programming Language” by the
esteemed Brian Kernighan and Dennis Ritchie. If they could write
a complete operating system using a line printer for output, you can
handle your itty-bitty tasks.

Only a jerk would belittle you for attempting to transcend your
limitations and become a proper sysadmin. Sadly, due to social stigma,
I can’t blame you if you hold owning this book a precious secret. If
necessary, you can get instructions for making a protective book cover
out of a brown paper bag from your nearest Gopher site.

Real sysadmins understand how the computer works. We
understand that the long-sought “What You See Is What You Get”
(WYSIWYG) editor is nothing but a pernicious lie from the marketing
department. We know in our bones that a file ending in .txt isn’t
necessarily a text file—indeed, that a text file can have any name.
Transcending these deceits is a necessary step to achieving true
sysadmin mastery. The standard Unix editor does not pretend to be
anything other than an engine for manipulating text.

And what a magnificent engine it is.

5

Chapter 1: Ed Essentials
At its heart, ed(1) is a text editor. It was written when computers didn’t
have monitors, though. Computers could write data to tape or to a
printer. The printers of that day didn’t wastefully run whole sheets of
paper at a time, though; like ticker tape machines and typewriters,
these line printers printed a single line at a time.

The sysadmin would enter commands, printing results only when
necessary. Or, if you prefer, a clattering printer announced to everyone
within hearing every time you lost your train of thought. Real
sysadmins can concentrate on their work and remember context.

Ed is a line editor. It works on lines of text, as printed by a printer.
It’ll work perfectly well on one of those new-fangled “monitor” things,
if you’re unlucky enough to be stuck with one.

We’ll begin exploring ed with a few basic tasks: starting the
program, considering modes, saving, and quitting.

Starting Ed

Run ed(1) by entering ed and the name of the file you want to edit.
Here I want to edit a text file containing my favorite poem, Lewis
Carroll’s Jabberwocky.

$ ed jabberwocky.poem
963

The number 963 does not appear anywhere within the poem. Why
is it here?

When you edit a file, ed reads the whole file into a memory buffer.
Like everything else in memory, the buffer disappears when the system

Ed Mastery

6

shuts down or the program exits. When you edit the file, you change
the copy in the buffer. At some point you might overwrite the original
file with the buffer, also known as “saving your changes.” You could
write the buffer to a different file, or a new file. When you start ed,
it tells you how many bytes it read into the buffer. Remember, real
software uses no more memory than necessary.

Where’s the text? This is your file. Don’t you already know what’s
in it? You don’t really want to waste however many lines of paper auto-
printing every file you open, do you? Next time try using head(1) to
peek at the contents of your file before loading it into the editor, or
flipping back through old printouts to identify the file.

Commands and Modes

Ed is command-driven, which is a fancy way of saying it’s a text
manipulation shell. You’ll issue commands at the ed command
prompt. Try it now by hitting ENTER.

?

Ed has one error message, a single question mark. It means “I
don’t understand you.” When you get the error message, examine the
command you typed and figure out what you did wrong. ENTER is
not a valid ed command. All ed commands are letters, numbers, and
standard keyboard symbols.3

The h command asks ed to explain the last error. With verbose
error messages off, try ENTER again, then use h to explain the error.

?
h
invalid address

3 Ed is UTF-8 compliant, of course. While it can handle emoji,
doing so imperils your immortal soul almost as much as using nano.

Chapter 1: Ed Essentials

7

Everything’s perfectly clear now, right? Probably not, but we’ll
discuss addresses in Chapter 10.

If you have an unlimited ink budget, you could enable verbose
error messages. Enter H by itself to toggle verbose error messages on
and off.

H

Ed echoes your command to the printer. Now try ENTER again.

?
invalid address

Turning on verbose error messages by default wastes both paper
and reading time, but we’ve all had that experience where we stare at
our command for far too long trying to figure out what we did wrong.
We all need help to learn.

Another command you might find useful is turning the command
prompt on and off. The ed command prompt is a single asterisk. It’s
useful when you’re reviewing old printouts and need to identify your
commands, or if you’ve got a fancy system with a video terminal. Enter
P to turn the command prompt on or off.

P

If you’re using a video terminal, you’ll see the command prompt
straight away. Printer users will get the command prompt in the line
that displays their next command.

Enter ed commands individually. Some of those commands, such
as for regular expressions (Chapter 101) can be very complicated
and contain many characters, but each command needs its own line.
Here I try to simultaneously turn on verbose error messages and the
command prompt.

Ed Mastery

8

HP
?

I’ve confused ed. Let’s get some detail.

h
invalid command suffix

Ed sees that I’ve used the H command and added the P suffix.
An ed command suffix is much like a command-line argument; it
modifies the command. The H command doesn’t take P as a suffix, so
ed spits an error in your face and declares you unworthy. Instead, enter
each command separately.

$ ed jabberwocky.poem
963
H
P
*

You now have verbose errors and the command prompt. As
you’re just learning ed, many of the examples in this book are run
with verbose errors and with the command prompt. It wastes ink, but
you’re worth it.

Leave ed with the q command.

*q

Set an alternate prompt when starting ed, using the -p flag.

ed -p# jabberwocky.poem

You might need to quote your prompt, especially if you put a space
between -p and your prompt. Prompts that have special meaning in
the shell, such as * and >, will cause problems otherwise. For your
own edification, try ed -p * jabberwocky.poem and see what happens.
Otherwise, quote your prompt.

$ ed -p ‘>’ jabberwocky.poem
963
>

Chapter 1: Ed Essentials

9

All commands get run in command mode. Adding text requires
input mode.

Switching Modes

While command mode is for issuing text editor commands, input
mode lets you add text to a file. Here I open the empty file todo. It’s an
empty file, so it uses zero bytes.

$ ed todo
0

Ed supports three different ways to get into insert mode: append,
insert before current line, and change current line. We’ll discuss
changing lines in Chapter 10.

Enter append mode with the a command. Append mode puts the
cursor at a new line right after the current line. As this is an empty file,
it goes straight to the end. Anything you type gets added to the file.
Hit ENTER to go to the next line. Here I add today’s to-do items to the
end of this file.
*a
buy groceries
restrain capitalism
clean the rat cage

If I can accomplish all that, it’ll be a good day.
Leave insert and append mode, returning to command mode, by

entering a period on a line all by itself.
.

Insert text before the current line with the i command. This
requires choosing a current line, which we’ll discuss in Chapter 10.
Similarly, you can choose an existing line and change it with the c
command.

If you make a mistake in your command, CTRL-C aborts it and
returns you to a command prompt.

Ed Mastery

10

I now have my to-do list in the buffer. Writing it to disk would be a
good idea.

Saving and Exiting

Write the buffer back to the file with the w command. (We’ll discuss
saving to alternate files in Chapter 100). Ed prints the number of bytes
written. After saving, exit ed with the q command. My complete ed
session to create my to-do list would look like this.

$ ed todo
0
P
*a
buy groceries
restrain capitalism
clean the rat cage
.
*w
53
*q

While you can’t normally combine commands, you can combine
the write and quit command.
*wq

If your brain slips and you don’t save the file before exiting, ed
complains.
*q
?

Let’s see what it’s complaining about.
*h
warning: file modified

I didn’t save the file. Enter the q command a second time to throw
away your changes and exit without saving. You can also use a Q to
immediately exit without saving.

Now let’s consider line addressing.

11

Chapter 10: Addresses
In ed terms, an address is a line number in a buffer. Your commands
affect an address. Many commands have effect on an address-by-
address basis, such as “delete address” or “insert after address 5.” Ed
also has a concept of the current address, which is the default location.
You can tell ed that you’re working on line 5, and then change, append,
or otherwise mangle that position in the file. Ed makes heavy use of
addresses. Selecting and setting addresses is a vital part of working
with ed.

We’ll demonstrate addresses using a file containing Carroll’s poem
Jabberwocky. While I’m certain most of my readers, being decent and
worthwhile people, are not only familiar with this poem but have it
memorized, Appendix A includes a copy for those of you suffering
from an appallingly deficient liberal arts education. It’s thirty-four
lines long, counting the blank lines between paragraphs, so it contains
thirty-four possible addresses. A few ed commands (but not all) can
accept an address of zero, meaning “before address one.”

Many ed commands expect you to put the addresses to be affected
before the command. A command like 4d or 3,5c means “on these
lines, run this command.” This swaps the most vital context out of
your vulnerable brain and into the computer as quickly as possible.
You know you need to delete lines, but your mind is most likely to
forget the specific lines so it’s best to set those immediately.

An address on its own is a single address. Two comma-separated
addresses represent start and stop addresses, and include those
addresses as well as everything between them.

Ed Mastery

12

When you set an address, ed prints the line. For clarity in this
section, I set the P and H commands when starting ed.

Setting Your Address

When you first open a file, your current address is the last line of the
file. Send the contents of the current address to your printer (or, if
you’re one of the fancy folks, to your monitor) with the p command.

*p
 And the mome raths outgrabe.

This is the last line of Jabberwocky. The special address $ always
refers to the last line of a file.

To set the address to a line number, enter that number. I want to
see line 6 of Jabberwocky.

*6
“Beware the Jabberwock, my son!

When you change the address, ed automatically prints the line at
that address.

Advance the address one line at a time with the + command.

*+
 The jaws that bite, the claws that catch!
*+
Beware the Jubjub bird, and shun
*+
 The frumious Bandersnatch!”

To forward multiple lines, give the + command and the number of
lines you want to forward. This is the last line of the stanza, and I want
to skip the blank line that follows,4 so I advance two.

*+2
He took his vorpal sword in hand;

4 Remembering that the file has blank lines is the sort of thing
you must do if you wish to be worthy of ed(1).

Chapter 10: Addresses

13

Walk backwards through the buffer using the – or ^ commands.
(GNU ed has disrespectuflly dropped the ^ command, leaving you
with only -.) Add a number to move back that many lines.

*-

The previous line is blank—but we knew that. It’s why we skipped
ahead. Set the address back one more.

*-
 The frumious Bandersnatch!”

The Bandersnatch is, indeed, frumious.

Finding Your Address

The equal command (=) prints an address. It defaults to the last
address of the buffer.

*=
34

This buffer is 34 lines long.
The period (.) represents the current address. To see your current

address, enter a period and the equals sign.

*.=
9

Our address is 9, so we’re on the ninth line of the file.
The address $ represents the last line of the file. While it’s most

commonly used to jump to the end, you can combine it with the
equals command to explicitly list the number of lines in the file.

*$=
34
*$

I remembered correctly; this file is 34 lines long. And we’ve now
moved to the end.

Ed Mastery

14

Address Ranges

Ed can perform operations on multiple lines simultaneously through
two special addresses, the comma (,) and the semicolon (;).

The comma (also available as %) represents the whole file. It
doesn’t do anything by itself—you can’t set the current address to “the
whole file,” but combined with another command you can perform
actions on the whole file at once. Here I combine the comma with the
p command to print the entire file.

*,p
‘Twas brillig, and the slithy toves
 Did gyre and gimble in the wabe:
All mimsy were the borogoves,
 And the mome raths outgrabe.

“Beware the Jabberwock, my son!
 The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
 The frumious Bandersnatch!”
…

Not only does this waste a lot of paper, everyone within hearing
distance of your line printer will know that you’re either too lazy to go
through the earlier parts of the roll to find a copy, or you hate trees.

The semicolon represents the current address to the end of the
file, just like .,$. Suppose you want to display the last nine lines of the
file—two stanzas of the poem. The file is 34 lines long, so you want
lines 26 through 34. Set the current address to 26 and send the rest of
the file to the printer.

*26
“And hast thou slain the Jabberwock?
*;p
“And hast thou slain the Jabberwock?
 Come to my arms, my beamish boy!
O frabjous day! Callooh! Callay!”
 He chortled in his joy.

Chapter 10: Addresses

15

‘Twas brillig, and the slithy toves
 Did gyre and gimble in the wabe:
All mimsy were the borogoves,
 And the mome raths outgrabe.

Yes, you see line 26 twice. You’re clearly a tree-hater to print all
this, though, so it furthers your goals.

If you change your address to a range of addresses, your current
address becomes the last address of the range.

Relative Addresses

You can also access lines via relative addresses. A relative address is a
certain number of lines before or after the current address, indicated
by a plus (+) or minus (-) sign. There’s lots of good reasons to do this.

*30

I set my address and ed shows me the contents—a blank line.
Where exactly in the poem am I?

*-2,+2p
O frabjous day! Callooh! Callay!”
 He chortled in his joy.

‘Twas brillig, and the slithy toves
 Did gyre and gimble in the wabe:

Ah, that’s where.
Yes, I could do the same thing with a command like 28,32p.

Relative addresses are just one of ed’s many user-friendly
conveniences.

A single minus or plus sign on its own means one. The command
-p means “print the previous line,” while -,+p gives one line of context
on either side of the current address.

Ed Mastery

16

Scrolling

The scrolling feature is how ed condescends to assist those folks who
insist on relying on a “monitor.” The z command tells ed to scroll from
the next address to as far as the terminal allows.

The standard terminal can display 24 lines at a time. Let’s see how
scrolling works. Start at the top of Jabberwocky.

*1
‘Twas brillig, and the slithy toves

Ed prints the line at this address. Now scroll by running z.

*z
 Did gyre and gimble in the wabe:
All mimsy were the borogoves,
 And the mome raths outgrabe.
…

Ed starts with line two, because you’ve already seen line 1 and
surely you can remember what you just read, right? The output
continues until it fills the terminal, twenty-four lines later.

He left it dead, and with its head
 He went galumphing back.
*

Want to see more of the buffer? Hit z again.
To start scrolling at a particular line, put the address before z.

Maybe you want the scroll to include line 1.

*1z
‘Twas brillig, and the slithy toves
 Did gyre and gimble in the wabe:
…

To scroll a reduced number of lines, enter the number of lines you
want to show after z. Here I scroll the third verse of Jabberwocky. Each
verse is four lines long followed by a blank line. We want addresses 11
through 14, also known as 11 and the three addresses after 11.

Chapter 10: Addresses

17

*11z3
He took his vorpal sword in hand;
 Long time the manxome foe he sought--
So rested he by the Tumtum tree
 And stood awhile in thought.

Verse 3, suitable for framing!
The z command changes the current address to the last line shown.

Displaying Addresses

When you’re working on a long file, it might make sense to print a
convenient master copy of the file with the address of each line. The
n command shows each line prefixed with its address. You can use n
with selected lines by putting the desired start and stop address before
the command, separated by a comma.

*11,14n
11 He took his vorpal sword in hand;
12 Long time the manxome foe he sought--
13 So rested he by the Tumtum tree
14 And stood awhile in thought.

Ed’s current address becomes the last address shown, or 14 here.
Or you could print the entire file, conveniently numbered.

*,n
1 ‘Twas brillig, and the slithy toves
2 Did gyre and gimble in the wabe:
3 All mimsy were the borogoves,
4 And the mome raths outgrabe.
…

Only do this once you’re done rearranging your files, or you’ll
waste paper.

Viewing Trailing Space

One annoyance with text files is that blank spaces can mess up a file.
You’ll notice extra blank spaces in the middle of your text, but those
extra spaces at the end of a line are tricky. You don’t want to have to

Ed Mastery

18

watch your printer to see if the head carries way over to represent the
blank spaces, after all. Use the l suffix after n or p to put a $ symbol at
the end of each line. Here I view the actual spaces in the file containing
my to-do list.

*,nl
1 have bath $
2 with soap$

There’s an extraneous space at the end of line 1.

Bookmarks

Scrolling through a long file can be a pain, especially if you’re adding
and removing lines. Ed allows you to create bookmarks to easily
return to a location in the file. Each bookmark is named after a single
lower case letter, and you’ll use that letter to return to the bookmark.

Suppose you want to place a bookmark at the beginning of each
verse of Jabberwocky. You can’t number bookmarks, but you can call
each of the seven verses a, b, c, and so on, up to g. Use the k command
to assign a bookmark.

*1
‘Twas brillig, and the slithy toves
*ka
*6
“Beware the Jabberwock, my son!
*kb
…

Every five lines you’ll create a new bookmark.
To return to a bookmark, use the single quote and the bookmark

letter.

*’b
“Beware the Jabberwock, my son!

Now that you can dance through your files, let’s mangle some
buffers.

19

Chapter 11: Text Editing
Ed contains everything you need to change existing text files. As a
simple example we’ll muck with my to-do list. You can insert lines,
join lines together, shuffle text around, and generally proceed with
your day without worrying about all kinds of menus and knobs.

Changing Lines

A key function of a text editor is changing existing text. In ed this
means selecting (by address) the line you want to edit, and changing it.
Here’s my to-do list.

*,p
buy groceries
restrain capitalism
clean the rat cage

Line two is not correct. I need to change it, and I need to add a
new item between lines two and three. Set the address to line 2.

*2
restrain capitalism

Ed prints the address you set. Yes, that’s the line I want. Go into
insert mode with the change (c) command. Unlike plain insert, c
overwrites the existing line.

*c

Type the new line two, hit ENTER, and add another line. Leave
insert mode with a period on a line by itself.

obliterate capitalism
rainbow ponies all around
.

Ed Mastery

20

If I wasn’t completely confident in my ed skills, I could double-
check the buffer.

*,p
buy groceries
obliterate capitalism
rainbow ponies all around
clean the rat cage

Yes, that’s right. I use the wq command to save my to-do list.

Inserting Amidst the File

The append (a) command adds a line after the current address. The
insert before (i) command inserts a new line before the current
address. Which should you use? Whatever does what you want to
accomplish. I need to insert two new lines at the very beginning of the
file, so I set the address to 1 and use the i command to put my new
lines before that address. While I could give the 1 command and then
i, it’s simpler to give the address with the i command.

*1i
invest in guillotines
flee to private island
.

My to-do list now has six items.

Moving Text

I work down my to-do lists from top to bottom. This means ordering
is important. Once my morning tea delivers consciousness to my
brain, I’ll realize that I can’t very well purchase groceries after fleeing
to the private island; I must take food with me. I’m pretty sure that I
added “flee to private island” before “buy groceries,” however.

*1,3n
1 invest in guillotines
2 flee to private island
3 buy groceries

Chapter 11: Text Editing

21

Yep, I messed up. I should have added my new items after line 1,
rather than inserting them before. Fortunately, ed offers the m (move)
command.

The move command uses addresses both before and after the
command. The addresses to be moved go before the command, on the
left side. The lines get inserted after the address on the right side, after
the m. You can use zero as the right side address, to put those lines at
the top of the file.

*3m1

What was address 3 (buy groceries) should now appear after
address 1 (invest in guillotines). Did I screw anything else up? I’ll show
the list with addresses, because I like numbers.

*,n
1 invest in guillotines
2 buy groceries
3 flee to private island
4 obliterate capitalism
5 rainbow ponies all around
6 clean the rat cage

No, hang on. I won’t travel with dirty rats, but I must get groceries
before cleaning the cage. Move line 6 to after line 2.

*6m2
*,n
1 invest in guillotines
2 buy groceries
3 clean the rat cage
4 flee to private island
5 obliterate capitalism
6 rainbow ponies all around

This still has problems. I know me. Investing, also known as
“futzing around on this new-fangled Web contraption,” is much more
amusing than tedious chores. I really need to move items 2 and 3 to
the top of the list. As that’s before address 1, I use a destination address
of 0.

Ed Mastery

22

*2,3m0
*,n
1 buy groceries
2 clean the rat cage
3 invest in guillotines
4 flee to private island
5 obliterate capitalism
6 rainbow ponies all around

Yes, much better.
When you move lines to after a later line, ed uses the current

line numbers as of the time you run the command. Moving line one
to after line twelve shifts all the lines up one, yes. What was line one
becomes line twelve; it doesn’t recursively start renumbering lines.
Future move commands will use the new addresses.

When I use multiple move commands, I start from the end of the
buffer to reduce the amount of math I do.

Deleting Lines

This is an ambitious list. Can I really get all of this done today?
Realistically, I know that once I start dinking around on the

computer I probably won’t get out of my comfy chair for the rest of the
day. It’s best that I get rid of any items that would let me relax in front
of a printer. Use the d command to delete addresses. Here I delete line
3.

*3d

I could specify multiple lines by separating them with a comma,
just as in moving lines.

The buffer now has a new line three, of course. When deleting
multiple lines at different parts of the file, it’s best to start at the end
and work backwards. When you delete an address, the address of all
later lines shifts up one. Working backwards reduces the amount of
brainpower you waste on renumbering.

Chapter 11: Text Editing

23

Undo

I’m as guilty of laziness as the next person. I need to develop the self-
discipline to get up from the computer when I have stuff to do. That
deleted item needs to go back on the list. Use the u command to undo
your last action.

*u

Ed has one level of undo. It can only affect the very last command
you ran, including undo. To redo, undo the undo. Hitting u three
times undoes the undone undo. I can delete and re-insert this line
forever, but undo will never go back as far as reversing my line
rearrangements. That’s more than one command back.

Regular expression operations (see Chapter 101) that affect
multiple lines are a single command. You undo and redo such changes
as a whole.

Inserting Text from Files

I perform certain tasks at the beginning of every day. For my
convenience, I’ve created a separate file containing those items.
The r command lets you read from another file. Here I read the
file usualtodo and put it after address 0. That file gets added at the
beginning of the buffer.

*0r usualtodo
21

21 bytes get read. What does my list look like now?

Ed Mastery

24

*,n
1 have bath
2 with soap
3 buy groceries
4 clean the rat cage
5 invest in guillotines
6 flee to private island
7 obliterate capitalism
8 rainbow ponies all around

Much better.

Joining Lines

Hang on, my list is messed up. The first two items should be one.
Has some newbie playing with a bloated editor like ex(1) inserted a
carriage return into my file? I’ll execute the flunky responsible later,
but for now, let’s join those lines with the j command. The addresses
you want to join get deleted from the buffer and replaced by a single
line containing all their contents.

The j command uses addressing syntax similar to n. You might
find it useful to double-check the line numbers you want to join before
nailing them together. It’s much easier to join lines than break them
apart.

*1,2n
1 have bath
2 with soap

Yes, those are the correct lines. Merge them into one line and
double-check the results.

*1,2j
*1,2n
1 have bath with soap
2 buy groceries

Much better. Ed’s current address changes to that of the merged
line—in this case, 1.

Chapter 11: Text Editing

25

Note that the previous line one had a space at the end, as shown in
Chapter 10. Without that space, the words would have run together.
You’d have to change that line to fix the missing space.

Splitting lines requires using a substitution, discussed in Chapter
110.

Copying Lines

This is going to be a long day. I’m pretty sure I’ll need a bath at the end
of it. Worse, the pet rats will be indignant after being hauled off to a
private island. Their cage will need cleaning. Rather than laboriously
typing out those items at the end of the to-do list, though, I’ll copy
them using the t (transfer) command. Put the address (or range of
addresses) you want to copy before the command, and the destination
after. The t command leaves your address at the last line copied.

I just re-addressed the file by joining the first two lines, so I
double-check the early addresses.

*1,3n
1 have bath with soap
2 buy groceries
3 clean the rat cage

Right. I need 1 and 3 copied to the bottom of the list. I want to
go to bed properly clean, so I start by copying “clean the rat cage”
(address 3) to the very end of the file.

*3t$

Now I can copy address 1 to the end of the file, putting my bath
after cleaning.

*1t$

How did this come out?

Ed Mastery

26

*,n
1 have bath with soap
2 buy groceries
3 clean the rat cage
4 invest in guillotines
5 flee to private island
6 obliterate capitalism
7 rainbow ponies all around
8 clean the rat cage
9 have bath with soap

My to-do list is done. When I’m finished taking on the world, at
least I’ll be clean.

While I’ve copied addresses to the end of the buffer, you can put
them anywhere. One interesting possibility is copying the line to
right after the current address, using the period (.). This doubles the
line, and leaves your address set at the second copy. You can perform
transformations on that duplicated line while not touching the
original, as we’ll see in Chapter 110.

Appending Lines to Another File

Use the W command to append addresses in your buffer to another file.
Put the lines you want to include before the command, and the name
of the file to be added to at the end.

Nobody ever finishes everything on their to-do list. Here I copy
what I didn’t finish onto the end of tomorrow’s list.

*5,9W tomorrow-todo
110

Here’s hoping tomorrow is more productive.
Simple editing and rearranging suffices for a to-do list. But

sometimes you’ll want your text editor to interact with the operating
system. We’ll discuss that next.

27

Chapter 100: File Management
 and Shell Escapes
Opening an existing file is great, but what if you want to create a new
file? Or maybe you’re editing one file and want to switch to another?
Perhaps you want to pull the output of a command into a file? Ed lets
you do all this and more.

We’ll start with file manipulations, and then proceed to
commands.

The Empty Buffer

We’ve only started ed by editing an existing file. You can run ed
without a file, though.

$ ed
H
P
*

Ed gives us an empty buffer. Let’s fill this void.

*i
?
invalid address

What is it complaining about here?
Remember that the insert (i) command inserts a line before

the current address. This is an empty buffer, so what is the current
address? While you could make sensible guesses, ed will tell you if you
ask.

Ed Mastery

28

*.=
0

Addresses are all positive. There’s nothing in this file to insert a
new entry in front of.

We can append, though. Let’s create a couple lines of text.

*a
once upon a midnight dreary
while i pondered weak and weary
.

There’s some text; now let’s save it to a file.

*w
?
no current filename

What fresh inferno is this?

The Default Filename

Ed doesn’t know what file you’re working on unless you tell it. It
doesn’t blindly assume that you even want your buffer backed to a
file at all; perhaps this buffer is security-sensitive and should remain
entirely in memory. When you edit an existing file, ed assumes that
you’ll want to save any changes to that same file, but lets you write to a
different file by changing the default filename.

The default filename is the name of the file ed writes the buffer
to. Opening a file assigns the default filename to the name of the file,
exactly as you’d expect. When you run ed without a filename, though,
the default filename is blank. Use the f command to set the filename.
Here I take my buffer of badly typed poetry, assign it a filename, and
save it.

*f raven.poem
raven.poem
*wq
60

Chapter 100: File Management and Shell Escapes

29

When I want to mistype more of this poem, I can open it by
filename and save myself the trouble.

The w command can also set the default filename, if you give it one.

*w empty
0

The default filename lets you save your buffer with alternate
filenames. Lesser text editors implement this as “Save As”
functionality. Suppose I want to redo the way Jabberwocky is
formatted. It’s likely that I’ll damage the text somehow, or wind up
with something that looks worse than the original, so I want to work
on a copy of the file. I change the default filename and save.

*f jabberwocky-hackedup.poem
jabberwocky-hackedup.poem
*w
963

I can now muck with my copy and not damage the original file.
Ed expects you know which files already exist on your system. If

you use w to write to an existing file, it overwrites what’s in that file. To
add to the end of a file rather than overwrite its contents, use W.

Switching Files

Why should you leave ed to edit another file? Switch the file you’re
working on with the e (edit) command.

Suppose I’ve been mucking with the way Jabberwocky is formatted
in an effort to make it more visually appealing, and need to add an
item to my to-do list. Use the e command and the desired filename to
switch files.

*e todo
?
warning: file modified

Ed Mastery

30

Ed is warning me that I’ve changed my original file and haven’t
saved my changes. I must either save my changes with w, or use e a
second time in a row to say “yes, throw away my buffer and open the
new file.” Here I throw away my buffer.

*e todo
146
*a
fix Jabberwocky formatting
.
*w
173

A senior sysadmin intending to discard the modified buffer will
use E to skip the confirmation step.

*E todo
146

My to-do list is now updated.

Saving Part of the Buffer
Maybe you want to save a chunk of your current file to a different
file. You can do this by giving the write (w) command addresses and a
filename.

I have my to-do list open. My file containing the template of my
daily to-do items, that I normally put at the beginning of each day, is
messed up. I want to send the first item on my to-do list to that file,
overwriting the corrupted version with the corrected version. I give
the addresses, the w command, and the name of the file.

*1w usualtodo
20

This writes address 1, the first line, to the file usualtodo. It’s twenty
bytes.

Or, suppose I’m editing Jabberwocky. I want to write verse two to
its own file. Addresses six through nine contain verse two. I give that
address range, the write command, and the filename.

Chapter 100: File Management and Shell Escapes

31

*6,9w verse2.poem
139

I get the 139 bytes of verse two in the file verse2.poem.
Writing part of the buffer to a file does not change your current

address.

Shell Escapes

You’ll frequently need to grab information from the underlying
operating system: an IP address, a file name, something. Leaving the
editor to look up a detail, only to restart the editor and recover your
current address, is not only annoying—it’s inefficient. That’s where
shell escapes come in.

A shell escape runs a single command outside of the ed shell,
displays the output, then returns you to editing. This displays the
command output. Ed uses the exclamation point (!) to trigger a shell
escape.

Suppose I’m writing the host’s sysadmin documentation, and I
need to know the current IP address. I don’t want to see all the virtual
interfaces, only em0. Get this information with ifconfig(8).5

*! ifconfig em0
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 lladdr 08:00:27:03:eb:10
 index 1 priority 0 llprio 3
 groups: egress
 media: Ethernet autoselect (1000baseT full-duplex)
 status: active
 inet 203.0.113.209 netmask 0xffffff00 broadcast 203.0.113.255

This host’s IP address is 203.0.113.209. I can now reference that in
my document.

Sometimes you want to repeat a shell escape. Ed remembers the
last shell escape you ran, and can repeat it with the !! command.

5 Real Unix ships with ifconfig. And ed.

Ed Mastery

32

* !!
ifconfig em0
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
...

It first repeats the command, in case you forgot.
Sometimes you’ll want to read the output of a command into a file.

The r command can read the output of a shell escape into your file,
much as it lets you read another file into your buffer.

*r !ifconfig em0
267

It’s read in 267 bytes. Check the contents of your file and you’ll see
the command output
*,n
1 em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
2 lladdr 08:00:27:03:eb:10
3 index 1 priority 0 llprio 3
…

Ed normally appends output from shell escapes to the end of
the buffer. If you want to put that output elsewhere, give the address
you want to insert after before the prompt. Suppose I have a file that
contains two lines.

This is ifconfig
That was ifconfig

I want to insert my ifconfig output between them, or after address 1.

*1r !ifconfig em0
267

If you lack confidence, check the buffer.
*,p
This is ifconfig
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 …
That was ifconfig

Yes, it’s in the correct place.

Chapter 100: File Management and Shell Escapes

33

Send to a Program

Reading from a shell escape is nice, but you can also send to a
program’s standard input. This lets you feed your buffer or parts
thereof into other programs. Perhaps I need to count how many words
are in the current file, so I can see if I met my daily word production
target. Much as ed(1) is the standard text editor, wc(1) is the standard
text counting tool. Write the buffer to a shell escape.

*w !wc
 34 166 963
963

This file has 34 lines, 166 words, and 963 characters. The last line
is from ed, declaring how many bytes it wrote. It should match the
number of characters reported by wc(1), of course.

166 words today? I better get writing!

Starting with an Escape

Perhaps the next file you need to create and edit needs to start with the
output of a shell escape. You could save your work, exit ed, restart ed,
and run your shell escape. That’s perfectly legit, but it lacks elegance.

The e command lets you create a new buffer pre-populated with
the output of a shell escape. This does not change the default filename,
however. You’ll want to follow up with setting a new file to save to,
either by using f to set the filename or w and a filename to save the
new buffer.

*e !ifconfig
1049
*f ifconfig-full.txt
ifconfig-full.txt
*w
1049

Ed Mastery

34

The first command executes the shell escape ifconfig and
reads in the output. The second, f, sets the default filename to
ifconfig-full.txt. Finally, w writes the file to its new filename.

If you don’t want to use the e command, you can use a shell escape
when starting ed. Complex commands will need quoting.

$ ed !’ifconfig em0’

You can now fold, spindle, and mutilate files as you wish. Now let’s
unlock the power of ed with regular expressions.

35

Chapter 101: Regular Expressions and Searches
A regular expression, or regex, is a string that defines a pattern of
text. It’s most commonly a string of text meant to match another
string of text. Ed can scan its buffer for text that matches the regular
expression, either pointing it out for your consideration or performing
automatic transformations on everything that matches the pattern.
Regular expressions are used most commonly for searches and text
replacement. Ed’s regular expressions helped inspire later regex
standards, such as POSIX. As the originator, though, ed does not
trouble itself to support all the bloat of POSIX. These days, ed regular
expressions are called “basic regular expressions.” You will find impure
ed versions that have been distended by other regex versions but
again, those are for the weak of mind and unworthy of our attention.
Despite their reputation, looking at regular expressions does not cause
incurable madness—that’s “extended” regexes you’re thinking of.

Before you can use any of ed’s amazing search and transformation
features, you’ll need to understand how to create regular expressions.

Regular Expression Format

Regular expressions commonly (but not always) appear between
slashes. Ed’s documentation uses re as the sample regular expression,
which would be shown as /re/. Between those slashes you’ll see
characters, wildcards, character classes, escaped characters, and
modifiers.

Ed Mastery

36

Any single character matches itself. If you wanted to match the
letters “t,” “h,” and “e,” in that order, you’d use a regex like /the/.

Regexes use the period (.) as a wildcard. It matches any character.
A character class appears in square brackets ([]). A class describes

a bunch of characters that can appear in the expression. We’ll cover
those in detail in “Character Classes” later this chapter.

An escaped character lets you include a character that has a special
purpose within the regex. The most obvious example is if you need
to include a slash in your regex. The slash is used to delimit a regex,
so you can’t do ///. You need to use a backslash (\) as an escape
character, to tell ed that the character should be treated literally rather
than as part of the expression. An escaped backslash would look like
\/, and a regex to match a slash would become /\//. Searching for a
period requires \., while a square bracket needs \[or \]. Escaping can
also transform a regular character into a special character, such as the
braces used for counts and the parentheses needed by backreferences.
When do you use which? It all makes perfect sense if you read
the source code, but right now just nod and smile and follow the
examples.

Modifiers change how the regular expression gets interpreted.
Suffixes are the most common regular expression modifiers, and
appear after the final slash. Many of these modifiers are exactly like
commands—for example, p tells the regex to print the match, while n
prints the match and adds the line number.

Let’s see how regular expressions work with a few highly artificial
examples.

Chapter 101: Regular Expressions and Searches

37

Searching in Ed

All too often you know you used a word in a document, but you’re not
certain where it was. There’s no need to print out the whole file; ed lets
you search for words by regular expression. Take this list of words—
many similar, some not, printed with addresses so we can more easily
discuss them.

*,n
1 the
2 their
3 then
4 Them
5 there
6 they’re
7 thereafter
8 2
9 3weasels
10 4 theremin
11 /the/
12 pet rats
13 [pedicular]
14 hamster5

Entering your regex as a command, slashes and all, tells ed to
search for the next line containing text that matches the regex. I
warned you this was artificial, so let’s search for the regex /the/.

*/the/
the
*.=
1
*

The first line of the buffer matches. The search command set our
address to the matching line. To search forward for the same regex,
enter a double slash.

*//
their

Ed Mastery

38

Okay, that’s line 2. I could keep asking for the address, or I
could add a command after the search command. Remember the n
command that adds line numbers? It works as a search modifier.

*//n
3 then
*//n
5 there

Hang on—what happened to line 4? Looking at the file, the word
“Them” includes the. Shouldn’t that match? No, it shouldn’t. “Them”
begins with a capital letter. The regex matches only a literal, lower
case, the. You’ll need to use a character class to make the search case-
insensitive.

Walking through a buffer one line at a time gets tedious, though.
Use the g command in front of the search term to search for a regex
globally, on the entire buffer. Put your regex right after the g. To print
all the matches, add the trailing p command as a modifier.

Here I globally search for the string “re,” or the regex /re/, and
print the results.

*g/re/p
there
they’re
thereafter
4 theremin

The p command is the default action of a search, so you could skip
it. Searches print their results automatically unless you say otherwise.
But then this example wouldn’t illustrate where the newcomer grep(1)
command came from, would it? If you wanted to print line numbers
while searching for “re,” though, use the n command instead of p.

*g/re/n
5 there
6 they’re
7 thereafter
10 4 theremin

Chapter 101: Regular Expressions and Searches

39

Yes, grep has a command line flag to print line numbers—but why
would you bother looking up that flag, when it’s conveniently built
right into ed?6

When you do a global search, your address is set to the last match.
Search a subset of the buffer by putting addresses before the g

command.

*1,10g/re/n

To search backwards from the current address, use question marks
instead of slashes around the regex.

*10
4 theremin
*?re?n
7 thereafter

The previous match is address 7. To repeat the current backward
search, enter two question marks.

*??n
6 they’re

The // and ?? commands both refer to the most recent regex,
allowing you to move forward and backwards on the current search.

Running Commands on Searches

Commands to print the matching lines aren’t the only things you can
do with searches. You can give the search any command other than a
search command (g, G, v, or V).

An easy example is deleting matches. The d command deletes the
current address. Here I strip away all lines that match the string “re.”

*g/re/d

Your buffer just shrank. If you’re following along at home, undo
this before the next example.

6 What Unix really needs is a gren(1) command. Because
grep(1) gets lonely.

Ed Mastery

40

Say you want to move lines that match the regular expression
to the end of the buffer. Use the m command, with the $ destination
address that matches the end of the file.

*g/re/m$

What does this give us?
*,n
1 the
2 their
3 then
4 Them
5 2
6 3weasels
7 /the/
8 pet rats
9 [pedicular]
10 hamster5
11 there
12 they’re
13 thereafter
14 4 theremin

Ed moved through the buffer. Every time it found a match, it
moved that line to the end of the file. You just automatically re-ordered
your buffer! Doing so with a simple regex like this looks trivial, but
when you build more complicated regexes you’ll find it useful.

Suppose you wanted to move everything that matches to the
beginning of the file. The command differs by only the destination
address, but the results look far different.

Chapter 101: Regular Expressions and Searches

41

*g/re/m0
*,n
1 4 theremin
2 thereafter
3 they’re
4 there
5 the
6 their
7 then
8 Them
9 2
10 3weasels
11 /the/
14 hamster5

The words that match our regular expression are at the top of the
file, but their ordering has reversed. What was line 11 is now line 1,
line 10 is now 2, and so on. In doing the global search, ed processes
each line in order. Lines matching the regex get moved up to address
zero. Line 5 matched, and got moved to zero. Line 6 then matched,
and got moved to zero. Moving lines to the top of the stack—er,
buffer—one at a time reverses their order. The same thing happens if
you move lines to any address other than $, such as an address in the
middle of the file.

Avoiding this reversal requires interactive editing with a regex.

Interactive Searching

Sometimes you must perform specific actions on every matching line.
Rather than forcing you to run a search and then a separate command
on each line, ed can pause after each match and give you a chance to
run a command. Use the G command to tell ed to pause after each
match.

*G/re/n
5 there

Ed Mastery

42

I can hit ENTER to continue, or type a command. I’m going to use
the m command to move this line to address 0, or the beginning of the
file.

m0

Ed proceeds to show me the next match. I move each to a
successive address at the beginning of the file.

6 they’re
m1
7 thereafter
m2
10 4 theremin
m3

At the end of the search, ed displays the current address and the
contents of that address.

4 4 theremin
*

What have I done here? I’ve moved every match to the beginning
of the buffer, but retained the original ordering.

*,n
1 there
2 they’re
3 thereafter
4 4 theremin
5 the
6 their
7 then
8 Them
9 2
10 3weasels
11 /the/
12 pet rats
13 [pedicular]
14 hamster5

If you screw up this kind of operation, ed considers searches a
single operation. You can undo even a complicated interactive search
with u.

Chapter 101: Regular Expressions and Searches

43

Inverted Matches

If you want the search to hit on everything that doesn’t match
your regex, use the v command. Here I display numbered lines of
everything that doesn’t match “the.”

*v/the/n
4 Them
8 2
9 3weasels
12 pet rats
13 [pedicular]
14 hamster5

Again, “Them” doesn’t match “the”—searches are case-sensitive.
To interactively edit each non-matching line use the V command.

This works exactly like interactive editing of matches with G.

Character Classes

Being able to match a string is fine, but any lowly WYSIWYG text
editor can do that. What gives regular expressions power is their
ability to describe types of text to match on. You want to match
alphanumeric strings? Regex can do that. You want to hit any line that
contains the numbers 3 through 5? No problem. All of these and more
are built on character classes.

A character class is a list of matching characters in square brackets.
The class [Tt] matches either a lower-case or upper-case letter T,
while [Hh] matches either type of H. One appearance of a character
class matches a single character in the regex. Character classes let us
perform case-insensitive searches.

*g/[Tt][Hh][Ee]/n
1 the
2 their
3 then
4 Them
…

Ed Mastery

44

Unlike searching on plain old /the/, this search picks up line 4
with its leading capital T.

You can also list ranges of characters, separated by hyphens. The
class [a-z] matches every lower-case letter, while [A-Z] matches upper
case letters and [0-9] matches all digits. You can have multiple ranges
in a single class, such as [a-zA-Z0-9]. If you need a class to include
the hyphen put it first. The class [-/[]] matches a hyphen, a slash, and
either square bracket, while [/-[]] matches whatever your system says
the characters from / to [are, as well as].

Ranges can contain any characters you like. If I need to match lines
containing the letters a through d, as well as u through z, lower case,
my class would be [a-du-z].
*g/[a-du-z]/n
6 they’re
7 thereafter
9 3weasels
12 pet rats
13 [pedicular]
14 gelato5

Use such classes to narrow in on exactly what you want, and an
anchor to say where you want it.

Anchors
An anchor attaches a regex to a position in the line. They let you
perform searches like “has a digit at the beginning of the line” or “ends
with a Z.” A caret (^) anchors the regex to the front of the line, while
the dollar sign ($) anchors it to the end. Here I search for all lines that
start with the letter “t.”
*g/^t/n
1 the
2 their
3 then
5 there
6 they’re
7 thereafter

Chapter 101: Regular Expressions and Searches

45

Similarly, you could search for every line that ends in a number.

*g/[0-9]$/n
8 2

Anchors help you narrow down your searches.

Inverted Classes

Inverted classes contain all characters except those listed in the class.
The first character in an inverted class must be a caret (^). A class like
[^w] means “All characters except a lower case w.”

Searching based on inverse character classes quickly gets really
tricky. If you want to use inverse classes, make your classes very short
and simple. To search for everything that doesn’t include a character
class, you’re much better off using the v or V command. This search
excludes everything that includes an upper case character.

*v/[A-Z]/n

Inverted classes are most useful inside a more complex regex.
Suppose I want to match everything containing the letter “e,” so long
as the character following it isn’t “t.”

*g/e[^t]/n
2 their
3 Them
4 then
…

If you’ve been paying attention you’ll notice that our first line, the,
is missing. This contains the letter e, and it’s not followed by a letter t.
Why doesn’t it show up? The regex says we’re looking for the letter “e”
followed by any character other than “t.” There’s no character following
the “e” in the, so it doesn’t match.

Note the difference in caret placement between the inverted class
and the anchor. The inverted class uses a caret inside square brackets,
while the anchor goes outside any square brackets. This lets you

Ed Mastery

46

perform searches like listing all the lines that start with a character
other than “t.”

*g/^[^t]/n
4 Them
8 2
9 3weasels
10 4 theremin
11 /the/
12 pet rats
13 [pedicular]
14 gelato5

You’re probably better off using a command like v/^t/n, however.
Regular expressions are tricky. Inverted classes are doubly tricky.
Avoid them if you can.

Multiple Matches and Wildcards

Sometimes you’ll want to match more than one of a character, or
perhaps even zero or more of a character. Ed provides operators for
this.

Use the curly braces to match a character a certain number of
times. Put the count directly after the character you want to match.
A regex like e{2} would tell ed to match two “e” characters in a row.
(You could also use a regex like ee, but that wouldn’t let me set up
the more complicated regexes we’re about to see.) Normally, ed treats
curly braces in a regex as characters to match. Escaping the braces
tells ed to treat them special. This makes your expression a little more
complicated.

*g/e\{2\}/n
15 thee
16 theee
17 theeeeee
18 theeeeeen

Chapter 101: Regular Expressions and Searches

47

We get four matches.7 Hang on a minute—there’s way more than
two es in a row in lines 16, 17, and 18. What happened? This just
demonstrates that ed is more detail-oriented than you are. Line 16 has
two pairs of es in a row, with the middle e shared between them. Lines
17 and 18 have three e-pairs in a row, plus more when you count the
shared es.

Matching a specific set of characters demands careful thought.
What, exactly, do you want to match? I want to match two letters,
exactly two letters, with something other than an “e” after them. Try
using a character class that excludes e.

*g/e\{2\}[^e]/n
18 theeeeeen

That’s definitely two es in a row, followed by a character that isn’t
an e.

Or suppose I want two es in a row after a character other than e,
and to attach those es to the end of the line.

*g/[^e]e\{2\}$/n
15 thee

Matching identical characters in a row demands you think
carefully.

Basic regular expressions let you match a range of characters. If
you want to match, say, two to five es in a row, this looks like what
you’d want. Express this by giving the lower limit, a comma, and the
upper limit, such as e{2,5}. You’ll need to escape the braces in the
actual ed command.

7 These words didn’t show up in our list before? Weird. It’s
almost like the author needed multiple identical letters in a row for
this section, but didn’t bother to go back and update any of the earlier
examples.

Ed Mastery

48

*g/e\{2,5\}/n
15 thee
16 theee
17 theeeeee
18 theeeeeen

This hits the same problem as looking for two in a row. You’ll need
to add other characteristics to this regex to get the desired result.

*g/e\{2,5\}$/n
15 thee
16 theee
17 theeeeee

This might look good at first glance, but if you count closely you’ll
see that line 17 has six es in a row. We need to set a boundary before it,
using the not-e class.

*g/[^e]e\{2,5\}$/n
15 thee
16 theee

If you want to match anything that has a given number of
characters or more, give the comma without an upper limit, as in {2,}.

*g/e\{2,\}/p
thee
theee
theeeeee
theeeeeen

In certain cases you’ll want zero or more of a character. Indicate
zero or more with an asterisk (*). To get really crazy, combine this with
the wildcard . that represents any character.

g/./n
1 the
2 their
…

Yes, this matches every line in our file. Pretty useless, no?

Chapter 101: Regular Expressions and Searches

49

The wildcard and asterisk are not useful on their own, but
combined with other characters, classes, and anchors they become
extremely powerful. Suppose you want to find all lines that start with a
letter but end with a number. We’ve used regexes like ^[a-zA-Z] to find
letters at the front of a line. A regex like [0-9]$ will find numbers at
the end, no problem. But combining them gets tricky… until we allow
other characters in the middle.

g/^[a-zA-Z].[0-9]$/n
14 gelato5

This allows you to declare you don’t care what’s in the middle or
how long the string is. If it starts with a letter and ends with a number,
you get it. The period represents zero or more of something, and the
asterisk matches any character, so we’re allowing zero or more of
anything else. This lets us match really short strings like “a1” without
excluding longer strings.

The asterisk can cause some counterintuitive output for folks
accustomed to shell programming. You might expect a regex like
g/ther/n to show words beginning with “ther,” but you’d be wrong.

g/ther/n
1 the
2 their
3 then
…

The asterisk matches zero or more “r” characters at the end of the
expression. The string “the” has zero “r” characters, so it matches. If
you want one or more “r” characters, say so with a regex like rr*.

Ed Mastery

50

Commands and Searches

One powerful feature of searches and regular expressions is that you
can run commands after a search. Suppose you want to duplicate every
line that matches a regular expression. As you’ll be changing the file,
start with a plain search to be sure your regex matches the stuff you
think it’ll match.

*g/there/n
5 there
7 thereafter
10 4 theremin

That looks right. Now use the t command to copy the line, but use
a destination address of “.”—the current line. This will insert the copy
right after the current line.8 Add the n command to print the affected
lines.

*g/there/t. n
6 there
9 thereafter
13 4 theremin

Note the line numbers. We’ve duplicated the matching lines on
these new lines.

This feature is most useful combined with substitutions, which
we’ll discuss next.

8 Ed is not a primitive AI from Star Trek. You can’t make its
head explode via recursion or paradox—it duplicates each line only
once and moves on.

51

Chapter 110: Substitution
While regular expressions let you search and manipulate matching
lines, ed lets you change text based on those same regular expressions.
Regex-based substitution is an incredibly powerful search and replace
function that lesser text editors can only dream of. While clumsy
regexes can shred your buffer, with practice you can quickly and easily
transform your text.

I’ve been swearing at—er, working with—regular expressions for
decades. Even today, I do a search with a regular expression before
performing a substitution based on that regex. Regular expressions
are subtle and quick to anger. Always test them first. Even once I think
they work, I keep a copy of the untransformed data.

Use the s command for a substitution, followed by the regular
expression and the new text. Separate each piece with a slash.

s/regex/new/

We’ll start with a simple substitution—but to achieve that, we’ll
start with a simple search. Using the same list of words as Chapter
101, suppose we want to change all instances of “there” to “then.” First,
search for your regular expression to see if you get what you think
you’re going to get.

Ed Mastery

52

*g/there/n
5 there
7 thereafter
10 4 theremin

Three matches. The search set our address to the last match, so let’s
go back up to the top of the file and try a substitution.

*1
the
*s/there/then/
?
no match

An error? But our search saw matching strings in the buffer!
Remember, ed works on a line-by-line basis. Line 1 doesn’t match our
regex, so it errors. You must use a search (either manual or automatic)
to target substitutions.

Substitutions allow you to programmatically correct errors.
Consider one of the entries on our word list.

*18
theeeeeen

“Theeeeeen” is not a word. The e key obviously stuck when
someone typed “then.” We can use a substitution to fix it. Here, I
replace any string of two or more es with a single e.

*s/e\{2,\}/e/

Check the line now.

*18
then

If I knew ahead of time I wanted to print the result, I could have
added the p command at the end of the substitution. We’ll cover the
few specific commands that work at the end of a substitution.

*s/e\{2,\}/e/p

Chapter 110: Substitution

53

If escaping all of those braces gives you trouble, you could choose
the simpler option of repeating the substitution. The s command
repeats the previous substitution.

*s/ee/e/p
theeeeen
*s
theeeen
*s
theeen
*s
theen
*s
then
*s
?
no match

You might notice that that the substitution only affects one match.
Consider a line like this.

*19
wXXhXXaXXtXX XXisXX this?XX

I don’t know how all those XX chunks got in there, but they need
to go. You might try a substituting one of these strings with nothing.

*s/XX//p
whXXaXXtXX XXisXX this?XX

The substitution engine does the least amount of work you require
of it.9 It matches the first XX, between the w and the h, and yanks
it out. You could tell it which of the matches to pull out by giving a
number as an argument. Here, I substitute nothing for the seventh XX.

*s/XX//7p
wXXhXXaXXtXX XXisXX this?

9 Substitutions are suspiciously human in that regard.

Ed Mastery

54

It’s useful to make minor tweaks to an existing line. The problem
with such substitutions is that you have to count. It also makes
repeating the substitution less useful. To repeat the last substitution,
hit s again.

*s/XX//p
whXXaXXtXX XXisXX this?XX
*s
whaXXtXX XXisXX this?XX
…
*s
what is this?

I could add a number after the s to repeat the substitution only on
a specific match on the line.

Eliminating all the matches is much simpler with the g (global)
modifier. It tells ed to perform the substitution on every match it finds
on the current line. I’ll also add the p modifier to print the results.

*s/XX//gp
what is this?

Problem solved.

Combining Searches and Substitution

Having to find the lines that contain the text you want to substitute
would suck the joy out of ed. Rather than harsh your mellow, ed can
combine searches and substitution. Give your substitution after the
search, to say “if this matches, perform this substitution.”

Our example tries to find the word “there” and replace it with
“then.” The search is pretty straightforward: g/there/. Much as in the
shell, a backslash means “continued on the next line.” I then give the
desired substitution.

Chapter 110: Substitution

55

*g/there/ \
s/there/then/
test there
thereafter
4 theremin

Ed prints the lines that match the search. But look at those lines
now.

*5p
test then
*7p
thenafter
*10p
4 thenmin

Substitution success! Ed considers this combined search-and-
substitute (or, as the kids would say, search and replace) a single
command, so you could reverse it with u. Which I do, because this is
a daft example. But you might use this in a script to update user login
scripts, updating links to migrated servers, or any other tedious task.
We’ll see some examples in Chapter 111.

The backslash that splits this operation into two lines isn’t needed.
If you put it all on one line, ed doesn’t show the lines that match the
search.

*g/there/ s/there/then/
*

You can have multiple substitutions in one command, but each
substitution must appear on separate lines, separated by a backslash.

*g/there/ s/there/then/\
s/t/T/n
5 Test then
7 Thenafter
10 4 Thenmin

This swaps out “then” for “there” and capitalizes the first T of each
line.

Ed Mastery

56

While you can use apparently unrelated regexes inside your
substitution, a failure of one substitution aborts all later substitutions.
Arrange your substitutions carefully.

Now that you’ve seen the complicated form, let’s simplify slightly.
When you want to perform a substitution on the regex you’re
searching for, you can use the % address to perform the substitution on
all available lines.

*%s/there/Then/

Note this isn’t exactly the same as the more complicated
substitution above, though; line 5 capitalizes “test” rather than “then.”
The full version is much more flexible, so we’ll focus on that.

Subexpressions and Backreferences

A subexpression is a part of a regular expression. Use subexpressions to
split a line into chunks, such as “everything before what we care about,
what we care about, and everything after that.” Subexpressions are
marked in parenthesis, such as ([a-zA-Z0-9]). Much like curly braces,
you must backslash-escape parentheses to tell ed that you’re using
them for a subexpression. Otherwise, ed looks for literal parenthesis
characters. While I’m introducing subexpressions, though, we’ll skip
the backslashes for clarity.

For ed to remember the whole line, the subexpression must match
the whole line that contains the string you want. The period and
wildcards come in useful here. While /the/ matches a line containing
the string “the,” remembering the whole line requires using /.*the.*/
—zero or more of something, what we really want, and then zero
or more of something. Enclose the regex in parenthesis to have ed
remember it as a subexpression: /(.*the.*)/.

A backreference lets you refer to the literal text matched by a
subexpression. You can use backreferences within searches, but they

Chapter 110: Substitution

57

overwhelmingly appear in substitutions. Ed recalls subexpressions by
the order you define them in. Your first subexpression is backreference
one, the second backreference two, and so on. Indicate a backreference
with a backslash and its number, such as \1, \2, and so on.

Our sample regex, /(.*the.*)/, tells ed to remember one
subexpression. There’s only a single backreference, \1.

How would you use a subexpression and a backreference? You
might want to search for every line that includes opening and closing
quote marks. Human beings are notoriously inconsistent, so those
strings might use either single or double quotes. I define a character
class with both sorts of quotes, ['"]. Put that class inside parentheses
to declare it a subexpression: (['"]). We could have any number
of characters after that, up until the next appearance of whatever
character matched the subexpression: .*. Whatever character we
found in the subexpression is our first backreference, or \1. Put it
all together into the regex (['"]).*\1. I want to use this in a search
command, so I’ll need to backslash-escape the parenthesis to tell ed
this is a subexpression: \(['"]\).*\1. Use the g command to print the
lines matching this regex.

g/\(['"]\).\1/
"bleeeeep"
unconscious 'people'

Backreferences work with substitutions. Here I want to prefix every
line that includes “the” with the string “HIT-.” For your edification, I
add the p command to print the results. I use a g command to target
lines that match the regex /the/, so the substitution only happens
on lines that contain that regex. The actual substitution uses a
subexpression to capture the entire line, then a backreference to place
that captured string in the regex.

Ed Mastery

58

*g/the/\
s/\(.*\)/HIT-\1/p
the
HIT-the
their
HIT-their
…

The first line performs a search on our target regex, selecting lines
that include “the.” The command is broken into two lines, so ed prints
the matching lines. The second line does the substitution, adding the
string HIT- and then adding the \1 backreference to recall the first and
only subexpression. I added the trailing p to print the results after the
substitution, showing before and after. Each matching string has the
desired prefix.

Suppose you want a case-insensitive match on “the,” and
you not only want to remember what you matched, you want to
subdivide that memory into before, matching, and after chunks.
Each piece needs its own parenthesis, giving you something like
/(.*)([tT][hH][eE])(.*)/.

This regex has three subexpressions, so you’ll backreference them
as \1, \2, and \3.

How would you use this? Maybe you want to put “HERE->” and
“<-HERE” around the match.10 Your substitution will need the first
subexpression, then add a HERE->, the second subexpression, a <-HERE,
and the last subexpression.

The first line, the search, aims our substitution only at lines
matching a case-insensitive “the.” The second line uses a regex
with subexpressions to break that line into pieces, then performs
a substitution with backreferences to glue the line together. Using
this requires escaping all these parenthesis with backslashes,
demonstrating why I skipped the backslashes while creating the regex.

10 This is traditionally called “regex debugging.”

Chapter 110: Substitution

59

*g/[tT][hH][eE]/\
s/\(.*\)\([tT][hH][eE]\)\(.*\)/\1HERE->\2<-HERE\3/p
the
HERE->the<-HERE
their
HERE->the<-HEREir
then
HERE->the<-HEREn
Them
HERE->The<-HEREm
…

You can now see where your regex matched on each line, as well as
the rest of the line.

This particular substitution could be simplified with the % address,
giving us:

% s/\(.*\)\([tT][hH][eE]\)\(.*\)/\1HERE->\2<-HERE\3/p.

But that wouldn’t let us use multiple substitutions in a single
search.

Multiple Substitutions

You used a regex search to target your substitutions, but that doesn’t
mean you must use that regex in your substitution. Ed lets you stack
multiple substitutions after a search, permitting complicated data
transformations in a single command.

Go back to Chapter 101 for a moment, where we tried to match
strings containing two to five es in a row. That turns out to be difficult,
because regexes can match multiple entries in one line. A string of
six es is only two groups of three es, after all. Realistically, though,
we’d perform that search because we want to transform that data in
some way. Stacking substitutions after a search can let you perform
myriad transformations without the weakness of resorting to young
whippersnapper tools like sed(1).

Ed Mastery

60

I have a text file containing occasional corrupt data. Words should
contain either two or fewer es in a row, or greater than five. If a word
contains strings of three, four, or five es in a row, those strings should
be replaced with two es. If it has one, two, or six or more es in a row, I
want to leave it alone.

This takes careful thinking about our regular expressions.
Identifying strings with a limited range of characters requires
identifying what’s on each side of the characters of interest. There’s
basically three options: the es can be at the beginning or end of the
word, or they can be in the middle. We’ll need a regex and substitution
for all three cases. Again, as we discuss the regexes I’ll skip the
backslash escapes for clarity. They’ll go into the ed command line.

For the first case, where the string of es are at the end of the line,
use the not-e class ([^e]) to identify the beginning of the e-string.
Then add the regex for three to five es: e{3,5}. Anchor the regex
to the end of the line with $. That gives us a substitution regex of
[^e]e{3,5}$. We want to replace this with whatever the not-e class
matches, plus two es. Remembering what the not-e class matched
requires a subexpression, so add the parenthesis around [^e] to
create ([^e])e{3,5}$. We replace this mess with the backreference
and two es, or \1ee. The final substitution statement looks like
s/([^e])e{3,5}$/\1ee/.

If the string of es are at the beginning of the line, we basically
reverse the end-of-line regex. Use the caret (^) to anchor the regex to
the front of the line. Add the e{3,5} regex for three to five es right after
the caret, and use the not-e class in a subexpression: ([^e]). That gives
us a regex of ^e{3,5}([^e]). We want to replace this with two es, plus
whatever the not-e subexpression matched, giving us ee\1. The final
substitution statement looks like s/^e{3,5}([^e])/ee\1/.

Chapter 110: Substitution

61

Having a string of es in the middle of the line steals elements from
both of the previous regexes. We need subexpressions for not-e before
and after the string of es, with the three-to-five es in the middle. That
gives us ([^e])e{3,5}([^e]). With two subexpressions we need two
backreferences in the substitution, or \1ee\2. The final substitution
statement looks like s/([^e])e{3,5}([^e])/\1ee\2/.

Aim these substitutions with a search command. The substitutions
have no effect on strings of es longer than five characters, so we can
run them on any pattern of three or more es: e{3,}. Our combined
search-and-substitution command will look something like this—
again, with backslash escapes omitted for clarity.

g/e{3,}/ \
s/([^e])e{3,5}$/\1ee/p\
s/^e{3,5}([^e])/ee\1/p\
s/([^e])e{3,5}([^e])/\1ee\2/p

I added the p (print) command to each of the substitutions, so that
we can see which substitution triggers what change in each line. It’s
classic printf-style debugging. As we used a backslash to separate the
initial search and the first regex, ed will print the matching term. Each
match produces four lines of output: the original line, the line after an
e-in-front substitution, the line after the e-in-back substitution, and
the line after the e-in-the-middle substitution.

Adding the backslash-escapes in and running the command
produces output much like so.

* g/e\{3,\}/ \
s/\([^e]\)e\{3,5\}$/\1ee/p\
s/^e\{3,5\}\([^e]\)/ee\1/p\
s/\([^e]\)e\{3,5\}\([^e]\)/\1ee\2/p
theee
thee
thee
thee

Ed Mastery

62

Our first match has three es at the end. The first substitution
catches and shortens it.

theeeeee
theeeeee
theeeeee
theeeeee

The search catches a word with six consecutive es. None of the
substitution regexes matched it, so it escapes unscathed.

eeeeek!!!
eeeeek!!!
eek!!!
eek!!!

Here’s a line beginning with five es. It gets whacked by substitution
number two.

bleeeeep
bleeeeep
bleeeeep
bleep

Unless you have a really long string of obscenities, two es is
enough to bleep something out. The last substitution regex catches and
trims it.

All of this works beautifully, until someone points out that your
regexes didn’t include the special case of a line containing only three to
five es. You’ll add this substitution statement and rerun the command,
exactly as you would with any other tool. We all have these moments.
To perform complex multi-regex substitutions like this you’re best off
doing it in scripts, as discussed in Chapter 111.

Underlining via Substitution

The examples we’ve demonstrated have all been pretty simple. Let’s use
them to build something more substantial. We’ll use substitution and

Chapter 110: Substitution

63

plain text to underline every line that contains our regex.11 Yes, plain
text doesn’t support underlining, but we’re going to do it anyway, just
the way Real Sysadmins did back in the day.

We’ll develop this iteratively, starting with the simple regex “the.”
Once we have a working proof of concept, we’ll expand it.

Our file contains a bunch of lines like this (shown with addresses).

1 the
2 but then
3 their
4 Them
5 4 theremin
6 thebadgerthe
7 thee

Start by duplicating lines that match our regex, copying them in-
place.

*g/the/t.

This gives us a buffer containing a bunch of duplicate lines.

1 the
2 the
3 but then
4 but then
5 their
6 their
…

Remember that the t (transfer, or copy) command sets your
address to that of the copied line. Each time this search hits a match,
ed sets our address to the copied line. If you perform a substitution
immediately after doing the copy, the substitution affects only the
current line—the copy. To underline lines that match our regex,
transform every character in a matching line to an equals sign.

11 Because even Primordial Sysadmins had management that
wanted pretty reports.

Ed Mastery

64

*g/the/t. \
s/./=/g
*,n
1 the
2 ===
3 but then
4 =====
5 their
6 ====
7 Them
8 there
9 =====

Lines that match “the” get a proper ASCII underline as Thompson
and Ritchie intended, while non-matching lines do not.

Partial Underlining

Underlining is useful, but maybe you don’t want to underline the
whole line, though. Perhaps you want to only underline the part of the
line that matches the regex. That’s not much harder to do. We’ll start
with the underlining command and modify it.

We need to break up the copied line into stuff that will become
blank space and stuff that will become underlining. While there’s
many ways to handle this problem, my approach splits the line with a
newline amidst the substitution. I removed the escape backslashes for
clarity, because the remaining backslashes are important.

s/(.*)(the).*/x\1\
\2/

The regex part of the substitution includes two subexpressions.
One is everything before our desired regex (.*). The second is the
regex itself, (the). The regex has a third piece, .*, for everything else.
The third piece is not a subexpression, so ed won’t bother to remember
it. (Strictly speaking the third part isn’t necessary, but I find it easier
to explicitly say “there might be stuff after this” when reading my own
code days or years later.)

Chapter 110: Substitution

65

Now consider the substitution part. If the search term appears
first, we’d have a blank first backreference. Later parts of this command
assume we have something here, so we put a letter x at the beginning
of the line no matter what. We have a backreference for the first part
and jump to a newline. The newline isn’t a “command continues on
next line” statement; instead, it gets inserted into our substitution. Ed
can tell the difference because the newline appears in the middle of a
substitution. We’re splitting the line into two lines.

On the next line, the second backreference brings in the text we
searched for. Combined with the earlier search, our buffer becomes
something like this.

1 the
2 x
3 the
4 but then
5 xbut
6 then
…

Everything that matches our regex gets busted up into groups of
three lines. The first line in each group is the original line. The second
is a copy of everything before the regex match, with an “x” prepended.
The third is the string that matches the regex. Everything after the
regex match is discarded.

In our first group of three, line 2 contains only an “x” because
there’s nothing before the regex match. Line 3 contains what matched
our regex.

In the second group of three (lines 4-6), line 5 shows what
appeared before the regex match, but with a prepended “x.” Line 6
shows the regex match.

After each substitution, our address is set to the last line of the
three. That’s the snipped-off chunk of text that matches our regex.
Transform each of those characters into an equals sign with the really

Ed Mastery

66

simple substitution s/./=/g. We need the trailing g command so that
every match gets transformed into an equals sign, not just the first one.
This transforms our text like so.

1 the
2 x
3 ===
4 but then
5 xbut
6 ===
…

There’s our equal-sign underlines, but they need appropriate
spacing to put them under our terms. That’s why we saved the “stuff
before the regex” lumps, the second line of each three-line group.
Use relative addressing—the leading minus sign—to perform a
substitution on the previous line, replacing every character with a
space, as in: -s/./ /g. Working on a line changes our address to that
line. This creates lines like so.

1 the
2
3 ===
4 but then
5
6 ===
…

The second line of each triplet looks empty, but contains blank
spaces. Every line has at least one space in it, from the “x” used as a
placeholder. That’s an extra character that will mess up our formatting,
so use s/^ //\ to remove it. There won’t be any visible difference, but
our next command will now work.

The j (join) command defaults to connecting the following line to
the end of the current line. The blank characters provide the spaces to
have the equals-sign underlines line up.

All together now! Add in the necessary backslash escapes before
each of the parentheses and curly braces, and we can underline “the”

Chapter 110: Substitution

67

on each line.

* g/the/t.\
s/\(.*\)\(the\).*/x\1\
\2/\
s/./=/g\
-s/./ /g\
s/^ //\
j
*,p
the
===
but then
 ===
their
===
Them
4 theremin
 ===
thebadgerthe
 ===
thee
===

See? Microsoft Word has nothing on ed. NOTHING.

Shortcuts and Alternates

Ed is smart enough that it doesn’t need to you to spell absolutely
everything out. Consider the format of a search.

g/regex/commands

The final slash is there to separate the regex from any commands.
If you’re not running any extra commands, that last slash is
unnecessary. You can drop it.

*g/gela
gelato

In modern (mid-1980s and later) versions of ed, you don’t even
need the g command. A slash on its own triggers a search.

*/\[.*icu
[pedicular]

Ed Mastery

68

Similarly, the final slash on a substitution separates the substitution
from any trailing commands. If you don’t have any trailing commands,
you can ditch that final slash.

*s/vim/ed
ed

If you want to replace the regex with nothing, as in s/regex//, you
can shorten even further. Ed knows you want to do a substitution,
because you used the s command. You’ve given it the regex and no
substitution, so it just does it for you. This makes pulling surplus
words out of a document easy.

*s/emacs

Searches and substitutions have a truly amazing number of
backslashes. If you write a regex that looks for slashes, it starts to
resemble the jaw of a Tyrannosaurus. Ed eases this problem by
supporting alternate delimiters. When you use the s or g command,
whatever character appears next takes the place of the slash. Here
I want to search for slashes, so I use the letter “m” as an alternate
delimiter.

*gm/
/the/

Alternate delimiters also work in substitutions. Here I use “@” as a
delimiter.

*s@nano@heresy

Next I delete the first “h” from the current line, using “m” as a
delimiter.

*smh

Making commands short is the Unix way. Alternate delimiters
improve your ability to shorten commands.

You now have a good grasp on how to use ed interactively. Before
you go, though, let’s look at reusing ed commands through scripts.

69

Chapter 111: Scripting
Scripting is an utterly essential component of systems administration.
Using ed in your scripts will not only simplify certain tasks, it
will demonstrate your moral superiority over the lesser so-called
sysadmins surrounding you.

Consider our command to underline a regular expression on each
line, from the last chapter. You really don’t want to type all that every
time you need to perform this transformation, do you? A reusable,
editable script is much better.

The key to scripting is to remember that ed is a command-driven
line editor. Unlike lesser editors, it accepts instructions from standard
input. It has no need to differentiate between human and script input.
You can’t include comments within your ed script, but you have a
whole variety of ways to run your scripted ed.

The Ed Command File

The easiest way to script with ed is to create a file containing all the ed
commands to run. and then just run it like so.

$ ed textfile < ed-commands.ed

The commands file contains only the ed commands you want to
run.

As when you’re learning any scripting method, start simple. Let’s
create a script to duplicate every line that matches a regex. Open your
editor and follow along.

Ed Mastery

70

$ ed dup.ed
dup.ed: No such file or directory
P
*H
cannot open input file
*a
g/the/t.
,p
Q
.
*wq
14
$

We open an ed session and turn on prompts and detailed error
messages. While ed doesn’t care that the file doesn’t exist, enabling
verbose errors commands it to remind us about the existing error.
We then append to the buffer. The first command in the script is our
friend g/the/t., straight from the last chapter.

Once that search and copy finishes, the ,p command prints the file
from beginning to end.

The final command in our script file is Q, to immediately quit
without saving.

The dot takes us back to our editing session’s command line, letting
us wq to save and quit.

$ ed textfile < dup.ed
179
the
the
pony
their
their
…

The first line of output is the number of bytes in the text file, just
as if you were editing the text file interactively. We then see each line
of the buffer, allowing us to verify that the command file does what we
thought it did.

Chapter 111: Scripting

71

If you’re happy with the results, edit the command file so that it
will save the processed file.

$ ed dup.ed
14
P
*H
*,n
1 g/the/t.
2 ,p
3 Q

Consider the necessary changes. On line 3 you no longer want to
quit unconditionally; rather, it’s time to save and quit. You also don’t
need to view the results of the transformation, so line two can get
deleted. Start editing at the bottom, so that your line numbers remain
consistent with the earlier printout as long as possible.

*3s/Q/wq
wq

That replaces the Q with wq. Ed displays the modified line. I could
have also used the c (change) command, but a little regex practice
never hurt anyone. Now kill line two, save, and quit.

*2d
*wq
12

Let’s see what the script shows now.

$ ed textfile < dup.ed
179
266
$

Ed read 176 bytes and wrote 266. Your text file has been changed—
and best of all, by editing with ed, there’s no possibility that a
slipped arrow key would mess up the command that performed the
transformation. All you changed was the save routine.

Ed Mastery

72

If you want to hide the bytes read and written, use ed’s -s flag.
You want something more complicated? A command file that

underlines the last match of a regex on a line, as we did in Chapter
110, has one minor difference between the commands in the last
chapter and what you need for a command script. See if you can spot
it.

g/the/t.\
s/\(.*\)\(the\).*/x\1\
\2/\
s/./=/g\
-s/./ /g\
s/^ //\
j
wq

What’s the difference? A script should automatically save its work,
so I added wq.

Adopting ed for routine use prevents many errors only possible in
so-called “visual” editors.

Ed in Shell Scripts

While command files are fine for one-off jobs, sometimes you want to
integrate ed into a more complicated workflow. While you could write
a shell script that calls your command file, there’s no reason not to
integrate those commands into the script.

Suppose you have a whole bunch of web sites running Wordpress.
(I know that you wouldn’t serve your content in such an unseemly way,
but most of your customers probably can’t handle wholesome, elegant
technologies like Usenet.) You need to deploy an application firewall
like Wordfence across the whole lot of them. Wordfence requires
changes to each site’s .htaccess file. You could make a whole bunch
of error-prone manual edits, or use ed to systematically and reliably
make those edits for you.

Chapter 111: Scripting

73

First, have the script find all of the files you need to change.

#!/bin/sh

for x in /var/www/*/.htaccess
do

Now use an echo statement to provide ed commands. Just to be
sure, I set an address before inserting my new content before line 1.

 echo “1
i
Wordfence WAF
<Files “.user.ini”>
<IfModule mod_authz_core.c>
 Require all denied
</IfModule>
<IfModule !mod_authz_core.c>
 Order deny,allow
 Deny from all
</IfModule>
</Files>

END Wordfence WAF
.
w
q” | ed $x
 done

At the very end, I call ed on the target file and send the contents of
my echo statement into the command.

That’s it. We’re done!
You could use a “here” document instead, if you fear pedants

whose sole reason for living is to shriek about unnecessary uses of
cat(1) and echo(1). At least use an EOE (End of Ed) marker, though.

Ed Mastery

74

ed $x <<EOE
1
i
Wordfence WAF
<Files “.user.ini”>
<IfModule mod_authz_core.c>
Require all denied
</IfModule>
<IfModule !mod_authz_core.c>
Order deny,allow
Deny from all
</IfModule>
</Files>
END Wordfence WAF
.
w
q
EOE

If you’ve come this far, you now know more about ed than almost
anyone who passes themselves off as a so-called sysadmin. Practice
your ed. Develop skills.

And the next time you’re at a job interview where you need
to demonstrate your skills by sharing your screen, establish your
dominance early. Use ed.

75

Afterword
Okay, come on Lucas, you’re not really serious here… are you?

I am. And I’m not.
This is book 13 of my IT Mastery series. My lucky number needed

to be a special book. The opportunity to release that book on 1 April
meant that it had to be extra special. Writing a book on ed in 2018
certainly qualifies as special.

But ed is a vital part of our heritage. Ed concepts and procedures
have infiltrated every part of modern UNIX. It’s forty-odd years old,
and still useful. As the last couple of chapters demonstrate, you can use
ed to solve real problems and perform real work.

I’ve worked in more than one organization where adding software
to a host meant going through a laborious change control review and
security audit. No Perl or Python on your system? Too bad for you,
that simple bit of automation isn’t happening today. Or you can fire up
ed, get that pattern-matching done, and get on with your day.

Older tools like ed, awk, and sed? They’re just as powerful today as
ever. Take the time to master them.

The next time someone declares themselves a rock star, respond
with, “So you wrote an entire operating system on a computer without
a monitor? Because that’s what it takes to be a real rock star.”

And remember: if it doesn’t include ed in every default install, it’s
not Unix.

Never miss a new Lucas release!

Sign up for Michael W Lucas’ mailing list.
https://mwl.io

79

Sponsors
If you hadn’t noticed, this book is a little… different. I didn’t

announce the title before its release. The only publicity I did was
on the Internet, under the hashtag #mwlSecretBook. Despite the
secrecy I offered sponsorships at my web store at https://www.
tiltedwindmillpress.com, with the following description:

This sponsorship is a complete and unmitigated scam. You won’t
know what the book is until everybody else knows. It’s a technical
book, on a technical topic. Readers will learn things, and understand
parts of Unix that they probably never have…

When you find out what it is, you will either be disappointed or
say WTF.

When you see the printed book, you’ll be disappointed all over
again.

Despite my best efforts, this description did not deter the following
people. If you have a bridge to sell, you should contact these folks.

Print Sponsors
Adam Thompson
Carlin Bingham
Rogier Krieger
Phi Network Systems
Lisa Hewus Fresh
William Allaire
Niall Navin
Nicolas Bouliane
Stefan Johnson
Gary Nevills

80

81

Patrons
Where the sponsors backed this particular book, a handful of
fine folks sponsor absolutely everything I write, via my Patreon
(https://www.patreon.com/mwlucas).

Of those, Stefan Johnson sends me fifty dollars a month to get his
name in the print edition of every book I write. You can, too.

83

Appendix A: Jabberwocky
By Lewis Carroll

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:

All mimsy were the borogoves,
And the mome raths outgrabe.

“Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun
The frumious Bandersnatch!”

He took his vorpal sword in hand;
Long time the manxome foe he sought—

So rested he by the Tumtum tree
And stood awhile in thought.

And, as in uffish thought he stood,
The Jabberwock, with eyes of flame,

Came whiffling through the tulgey wood,
And burbled as it came!

One, two! One, two! And through and through
The vorpal blade went snicker-snack!

He left it dead, and with its head
He went galumphing back.

“And hast thou slain the Jabberwock?
Come to my arms, my beamish boy!

O frabjous day! Callooh! Callay!”
He chortled in his joy.

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:

All mimsy were the borogoves,
And the mome raths outgrabe

! ..31-34
!! ..31-32
.
 command 9,13-14,26
 regex ..48-49
* ..48-49
? command ... 39
?? ... 39
? (error) ..6-8
$
 address ...12-14
 anchor..44-45
, ... 14
; ... 14
% .. 14,56
/ ..35-36
// ..37-39
[... 36
] ... 36
{ ..46-49
} ..46-49
\ ... 36
+
 address .. 15
 command ... 12
-
 address .. 15
 command ... 13
^
 anchor..44-45
 inversion ...45-46
 command ... 13
= command .. 13
‘ command .. 18

a command .. 9,20
addresses ..11-18
 displaying ... 17
 relative .. 15
anchor ..44-45
appallingly deficient 11
append ... 9
append to a file ... 26

backreference ..56-59
bookmarks .. 18
buffer ..5-6

c command ..19-20

cat ... 73
changing lines ...19-20
character ... 36
character class 36,43-44
 inverted ...45-48
command file ..69-72
command mode ..6-9
commands ...6-9
copying lines..25-26

d command .. 22
d suffix ... 39
default filename ..28-29
deleting addresses .. 22
delimiters, alternate 68

e command .. 29-30,33
E command .. 30
echo ... 73
emacs ... 68
End Of Ed ..73-74
escaped character... 36
ex .. 2,24

f command ..28-29

g command ... 38
G command ...41-42

h command .. 6,8,10
H command .. 7,12

i command ..9,20,27
ifconfig ...31-34
input mode ..9-10
insert before current line 9,20
insert from file ..23-24
invalid address (error) 7,27
invalid command suffix (error) 8

j command ...24-25
joining lines ...24-25

k command ... 18

l suffix .. 18

m command ..20-22
m suffix ... 40

Microsoft Word .. 67
modes ...6-10
 switching ...9-10
moving text20-22,40-41
 in interactive searches 42

n command .. 17
n suffix ... 36
nano ... 68
no current filename (error) 28

-p ... 8
p command 12,14-15,38
p suffix ... 36
P command ... 7,12
patrons .. 81
perl ... 75
printf.. 61
prompt .. 8
python ... 75

q command.. 8,10

r command ..23-24
 and shell escapes 32
read command ..23-24
regular expressions 7,35-50
 basic .. 35
 extended ... 35
 format ..35-36

-s flag ... 72
s command ..51-68
saving the buffer .. 10
 part of ..30-30
scripting ...69-74
scrolling ...16-17
searching ..37-39
 interactive ...41-42
 inverted .. 43
 running commands on searches39-40
 shortcuts ..67-68
sed ... 59
shell escapes...31-34
splitting lines .. 25
sponsors ...79-80
subexpression ..56-59
substitution ..51-68
 and searches54-56

 multiple ...59-62
swearing .. 51

t command .. 25-26,50
trailing space ...17-18
transfer ...25-26

u command .. 23
undo .. 23

v command .. 43,45
V command ... 43,45
vi ... 2
vim .. 1,68

w command 10,28-31,33
W command... 26
warning: file modified (error)29-30
wildcards ..46-49
Wordpress ... 72
write .. 10,28-31
 to a program .. 33
wq command.. 10

z command ..16-17

	By the Same Author
	Acknowledgements
	Chapter 0: Introduction
	Chapter 1: Ed Essentials
	Chapter 10: Addresses
	Chapter 11: Text Editing
	Chapter 100: File Management and Shell Escapes
	Chapter 101: Regular Expressions and Searches
	Chapter 110: Substitution
	Chapter 111: Scripting
	Afterword
	About the Author
	Sponsors
	Patrons
	Appendix A: Jabberwocky

