

Contents

Contents 2

1 Introduction 8
Thank You . 8
2022 Edition Update 10

Emacs in the Future 11
2020 Edition Update 12
Intended Audience 15
What You’ll Learn 16

2 The Way of Emacs 19
Guiding Philosophy 21

LISP? . 24
Extensibility 28

Important Conventions 30
The Bu昀昀er 31
The Window and the Frame 32
The Point and Mark 34
Killing, Yanking and CUA 36
.emacs.d, init.el, and .emacs 37
Major Modes and Minor Modes 38

2

3 First Steps 40
Installing and Starting Emacs 40

Starting Emacs 43
The Emacs Interface 48
Keys . 49

Caps Lock as Control 53
M-x: Execute Extended Command 54
M-S-x: Execute Extended Command for Bu昀昀er 56
Universal Arguments 57
Discovering and Remembering Keys 61

Con昀椀guring Emacs 63
The Customize Interface 64
Evaluating Elisp Code 70
The Package Manager 71
Custom Color Themes 72

Getting Help 72
The Info Manual 74
Apropos 77
The Describe System 80

4 The Theory of Movement 84
The Basics . 86

C-x C-f: Find 昀椀le 88
C-x C-s: Save Bu昀昀er 92
C-x C-c: Exit Emacs 93
C-x b: Switch Bu昀昀er 94
C-x k: Kill Bu昀昀er 97
ESC ESC ESC: Keyboard Escape 98
C-/: Undo 98

Window Management 103
Working with Other Windows 105

3

Frame Management 106
Tab Bars and Tab Lines 108

Tab Bar Mode 109
Tab Line Mode 112

Elemental Movement 113
Navigation Keys 113
Moving by Character 115
Moving by Line 116
Moving by Word 120
Moving by S-Expressions 126
Other Movement Commands 132
Scrolling 136

Bookmarks and Registers 140
Selections and Regions 143

Selection Compatibility Modes 147
Setting the Mark 150

Searching and Indexing 152
Isearch: Incremental Search 152
Occur: Print and Edit lines matching an ex-

pression 162
Imenu: Jump to de昀椀nitions 166
Helm: Incremental Completion and Selection 167
IDO: Interactively DO Things 173
Grep: Searching the 昀椀le system 176

Other Movement Commands 181
Conclusion . 183

5 The Theory of Editing 185
Killing and Yanking Text 186

Killing versus Deleting 188
Yanking Text 192

4

Transposing Text 193
C-t: Transpose Characters 194
M-t: Transpose Words 195
C-M-t: Transpose S-expressions 198
Other Transpose Commands 200

Filling and Commenting 200
Filling . 200
Commenting 202

Search and Replace 204
Case Folding 206
Regular Expressions 207

Changing Case 213
Counting Things 216
Text Manipulation 217

Editable Occur 218
Deleting Duplicates 218
Flushing and Keeping Lines 219
Copying and Killing Matching Lines 219
Joining and Splitting Lines 220
Whitespace Commands 223

Keyboard Macros 225
Basic Commands 226
Advanced Commands 228

Text Expansion 236
Abbrev . 238
DAbbrev and Hippie Expand 239

Indenting Text and Code 242
TAB: Indenting the Current Line 243
Indenting Regions 245

Sorting and Aligning 246
Sorting . 246

5

Aligning 250
Other Editing Commands 256

Zapping Characters 256
Spell Checking 257
Quoted Insert 259

6 The Practicals of Emacs 260
Exploring Emacs 261

Reading the Manual 261
Using Apropos 262
C-h: Exploring Pre昀椀x keys 265
C-h k: Describe what a key does 266
C-h m: Finding mode commands 267
M-S-x: Execute Extended Command for Bu昀昀er 268

Project Management 269
Xref: Cross-References in Emacs 272
Working with Log Files 274

Browsing Other Files 277
TRAMP: Remote File Editing 279

The Default Directory and Remote Editing 282
Multi-Hops and User Switching 284

EWW: Emacs Web Wowser 287
Dired: Files and Directories 289

Navigation 292
Marking and Unmarking 292
Operations 294
Working Across Directories 299

Shell Commands 300
Compiling in Emacs 302

Shells in Emacs 303
M-x shell: Shell Mode 304

6

M-x ansi-term: Terminal Emulator 306
M-x eshell: Emacs’s Shell 307

7 Conclusion 309
Other Resources 311

Third-Party Packages and Tools 311
Communities 313

7

Chapter 1

Introduction

“I’m using Linux. A library that emacs uses to
communicate with Intel hardware.”
– Erwin, #emacs, Freenode.

Thank You
Thank you for purchasing Mastering Emacs. This book
has been a long time coming. When I started my blog,
Mastering Emacs, in 2010, it was at the recommendation of
a good friend, Lee, who suggested that I share my thoughts
on Emacs and work 昀氀ow in Emacs. At the time I had
accrued in an org mode 昀椀le titled blogideas.org a large but
random assortment of ideas and concepts that I’d learned
about and wished someone had taught me. The end result
of that 昀椀le is the blog and now this book.

Special Thanks

8

Introduction

I would like to thank the following people for
their encouragement, advice, suggestions and
critiques:
Akira Kitada, Alvaro Ramirez, Arialdo Martini,
Bob Koss, Catherine Mongrain, Chandan
Rajendra, Christopher Lee, Daniel Hannaske,
Edwin Ong, Evan Misshula, Friedrich Paetzke,
Gabriela Hajduk, Gabriele Lana, Greg Sieranski,
Holger Pirk, John Mastro, John Kitchin, Jonas
Enlund, Konstantin Nazarenko, Lee Cullip,
Luis Gerhorst, Lukas Pukenis, Manuel Uberti,
Marcin Borkowski, Mark Kocera, Matt Wilbur,
Matthew Daly, Michael Reid, Nanci Bon昀椀m,
Oliver Martell, Patrick Mosby, Patrick Martin,
Sebastian Garcia Anderman, Stephen Nelson-
Smith, Steve Mayer, Tariq Master, Travis
Je昀昀erson, Travis Hartwell.

Like a lot of people, I was thrust into the world of Emacs
without knowing anything about it; in my case it was in
my 昀椀rst year of University where the local computer soci-
ety was made up primarily of Vim users. It was explained
to me, in no uncertain terms, that “you use Vim — that’s
it.” Not wanting to be told what to do, I picked the polar
opposite of Vim and went with Emacs.
Emacs proved to be a stable and reliable editor in all those
years, but it was a tough one to get to know. Despite the
extensive user documentation, it never helped me to learn
and understand Emacs.

9

Introduction

2022 Edition Update
Emacs 28 is the newest version available and a signi昀椀cant up-
grade over Emacs 27, as it introduces the long-awaited native
compilation feature. With the size – and ambition – of third-
party packages growing every year, so must Emacs’s perfor-
mance.
Native compilation greatly improves Emacs’s performance
across the board by compiling elisp into native code
suitable for your platform and system architecture. It was
a herculean e昀昀ort by mostly one person, Andrea Corallo,
that took several years of hard work before it made it into
Emacs 28.
Aside from that major feature, the vast majority of changes
in Emacs 28 are incremental, and I’ve updated the book ac-
cordingly, when I feel the new commands or customizations
are worth knowing about.
However, there are a couple of larger features that I want to
highlight here:

Project Management Improvements Some of them made
it into Emacs 27, but it’s been greatly enhanced in
Emacs 28. A dedicated project management keymap
makes it more accessible and easy to use, and it
enhances a lot of features already present in Emacs.

Friendlier Help and Description Commands Emacs
is self-documenting, but it did have a few blind
spots that I think this release helps address. The
Help system is updated slightly with additional key
bindings and better descriptions.

10

Introduction

The describe system is the primary way of looking up
symbols in Emacs, and Emacs 28 adds a couple of new
commands that helps with that.

Better Discoverability Finding useful commands related
to a minor or major mode is not always that easy. A
mode may introduce many commands, of which only
a handful are likely of interest to the average user.
Emacs now lets you ask it to execute a command
pertinent to the modes active in your current bu昀昀er.
It greatly improves discoverability.

As for the book itself, I’ve also gone through and removed
most version markers – some dating back to Emacs 24 – as
they’re not going to make a material di昀昀erence to readers
today. As part of that process, I’ve reworded and clari昀椀ed
things that I felt weren’t as obvious or clear as I wanted them
to be.

Emacs in the Future
What’s in store for Emacs in the coming years, then? One tan-
talizing possibility is recognizing that regular expressions –
the preferred tool of most editors to syntax highlight and ex-
tract semantic information – peaked decades ago, and if we
want more intelligent tooling, we need to smarten up how
we parse source code. That’s not a new or novel idea, but
one that is hard to achieve at scale — a fact that held back
intelligent code completion until Language Servers democra-
tized it with a standardized protocol anyone could tap into
and build on.

11

Introduction

Emacs does have a few major modes that use language
parsers for syntax and semantic enrichment, like js2-mode
and nxml-mode. CEDET, a sprawling polyglot IDE with its own
language parsers and semantic tooling, was merged into
Emacs’s core about a decade ago, but it never caught on.
I believe tree sitter 1 , a general-purpose incremental language
parsing library that has seen signi昀椀cant adoption in other
editors already, is the right tool for the job. It will not re-
place regular expressions completely, and nor should it: reg-
ular expressions have their place. But, tree sitter works with
dozens of languages already and, rather propitiously, uses
an s-expression-based query language. That makes it a per-
fect 昀椀t for Emacs and elisp. It’s also fast, and it can handle
broken source code, so it’ll still work properly when you’re
writing code. If you’re keen on experimenting, you can use
tree sitter in Emacs 2 right now for a much-improved syntax
highlighting experience.

2020 Edition Update
It’s been ten years since I started my blog where I shared
detailed articles on areas of Emacs I felt warranted people’s
interest. And it’s been 昀椀ve years since I published the 昀椀rst
edition of this book.
In those 昀椀ve years, entire text editors have come out of
nowhere and exploded in popularity, only to wane in the
face of even newer upstart challengers. Meanwhile, Emacs
users are still using Emacs, learning from the advances

1 https://tree-sitter.github.io/tree-sitter/
2 https://emacs-tree-sitter.github.io/

12

https://tree-sitter.github.io/tree-sitter/
https://emacs-tree-sitter.github.io/

Introduction

(and retreats…) of other editors. But there were plenty of
advances in the last 昀椀ve years for Emacs users to bene昀椀t
from.
Microsoft VSCode deserves a special mention for standard-
izing something that should have been agreed on and
implemented decades ago in the software community: a
protocol for exposing – or re-implementing, where that is
not possible – the internals of compilers, interpreters and
other programmable engines in a format that enables a tool,
like Emacs, to support high-level features familiar to anyone
who has used a closed-source IDE: automatic refactoring;
syntax and error highlighting; code completion; documen-
tation lookup, and more. Microsoft, perhaps surprising
to some, has won the argument with the Language Server
Protocol, an open JSON-rPC standard. Before the advent of
said protocol most IDEs and editors had insular, homegrown
implementations that varied in breadth, depth and quality.
It’s a major win for Emacs and its users especially: they will
bene昀椀t from the collective works of people who build these
Language Servers.

Language Servers in Emacs
There are two implementations of note: LSP
mode3 and EGlot4 . LSP mode o昀昀ers a complete
IDE experience out of the box, with EGlot pre-
ferring a more ascetic, Emacs-centric approach.
You should try both and pick the one you like
best.

3 https://github.com/emacs-lsp/lsp-mode
4 https://github.com/joaotavora/eglot

13

https://github.com/emacs-lsp/lsp-mode
https://github.com/joaotavora/eglot

Introduction

Both products are under active development,
and as such they are rapidly changing. They
support a large variety of both tools and
languages.

Better IDE-like features does raise Emacs’s pro昀椀le, but one
inescapable fact about learning Emacs is, once it’s second na-
ture, you tend to forget what a rough time you had learn-
ing it. That is one thing non-users seize on as it is skin-deep
and easy to critique: that the terminology is baroque; the UI
brutalist; and the key bindings byzantine. True. But this is
Emacs: you can change all of that. But I believe there is a ker-
nel of truth to these complaints: a prettier UI is a quick win;
changing some of Emacs’s more obscure defaults is another,
despite the risk of upsetting a few vocal, ornery graybeards.
But 昀椀rst impressions count: people make snap judgments
based on 昀椀tness and form; if the editor doesn’t code com-
plete but another free editor does, then that might just mean
they’ll never try Emacs. The curb appeal of all-in-one pack-
ages like Spacemacs and Doom Emacs – two kitchen sink kits
for Emacs – are a testament to the importance of 昀椀rst impres-
sions and the value of sensible defaults. Many jump straight
into Emacs using either of those kits, and just as many then
graduate to their own Emacs con昀椀guration when the shine
wears o昀昀: but at that point they’re Emacs users for life.
This book details how to learn Emacs, and learn it you will:
Emacs’s terminology predates modern computing, but it is
easy to learn, as there are but a handful of terms that distin-
guishes it from the UI terminology used elsewhere. The key

14

Introduction

bindings and commands are harder to learn, but then that
gets us to the crux of what Emacs is.
Emacs is a complex piece software, and it will take you time
and hard work to learn. But, if you do, you will have an
editor for life. It has an active, friendly community that will
seize on any advances made in other editors and bring them
into the fold. And that excludes – as you’ll see in the rest
of the book – the untold bene昀椀ts that other editors cannot
even begin to match.
The Emacs maintainers know this, and are tirelessly work-
ing on Emacs’s core behind-the-scenes, with the aim of in-
crementally improving Emacs for everybody, while keeping
backwards compatibility. They are excellent stewards, care-
fully balancing the need to respect the GNU project’s philos-
ophy5 and Emacs’s heritage and commitment to stability,
with advances in technology and feedback from their users.
Your patient mastery of Emacs is well-rewarded. I assure
you.

Intended Audience
It’s a bit weird talking about the intended audience when
you’ve already bought the book on the subject. But it bears
mentioning anyway so no matter your Emacs skill level you
will get something out of this book.
The 昀椀rst and (most obvious) audience are people new to
Emacs. If you’ve never used Emacs before in your life, you
will hopefully 昀椀nd this book illuminating. However, if

5 https://www.gnu.org/philosophy/philosophy.html

15

https://www.gnu.org/philosophy/philosophy.html

Introduction

you’re new to Emacs and non-technical, then you’re going
to have a harder time. Emacs, despite being suitable for
much more than just programming, is squarely aimed at
computer-savvy people. Although it’s perfectly possible
to use Emacs anyway, this book will assume that you’re
technically inclined, but not necessarily a programmer.
If you’ve tried Emacs before but given up, then I hope this
book is what convinces you to stick with it. But it’s 昀椀ne if
you don’t; some languages or environments don’t (contrary
to what a lot of Emacs users would claim) work well with
Emacs. If you’re primarily a Microsoft Windows developer
working with Visual Studio, using Emacs is going to be a
case of two steps forward, one step back: you gain unprece-
dented text editing and tool integration but lose some of the
bene昀椀ts a uni昀椀ed IDE would give you.
If you’re a Vim refugee, then welcome to the dark side! If
your primary objective is to use Emacs’s Vim emulation lay-
ers, then some of this book is redundant; it concerns itself
with the default Emacs bindings and it teaches “the Emacs
way” of doing things. But not to worry: a lot of the tips and
advice herein are still applicable, and who knows — maybe
you’ll switch away from Evil mode in time.
And 昀椀nally, if you’re an existing Emacs user but struggling
to take it to the next level, or maybe you just need a refresher
course “from the ground up,” then this book is also for you.

What You’ll Learn
Covering all of Emacs in just one book would be a Sisyphean
task. Instead, I aim to teach you what you need to be produc-

16

Introduction

tive in Emacs, which is just a small subset of Emacs’s capabil-
ity. Hopefully, by the end of this book, and with practice,
you will know enough about Emacs to seek out and answer
questions you have about the editor.
To be more speci昀椀c, I will teach you, in broad terms, six
things:

What Emacs is about A thorough explanation of impor-
tant terminology and conventions that Emacs uses
which in many cases di昀昀ers greatly from other editors.
You will also learn what the philosophy of Emacs is,
and why a text editor even has a philosophy. I will
also talk about Vim brie昀氀y and the Editor Wars and
what the deal is with all those di昀昀erent keys.

Getting started with Emacs How to install Emacs, how to
run it, and how to ensure you’re using a reasonably
new version of Emacs. I explain how to modify Emacs
and what you need to do to make your changes per-
manent. I will introduce the Customize interface and
how to load a custom color theme. And 昀椀nally, I’ll talk
about the user interface of Emacs and some handy tips
in case you get stuck.

Discovering Emacs Emacs is self-documenting; but what
does it mean and how can you leverage that aspect
to discover more about Emacs or answer questions
you have about particular features? I will show you
what I do when I have to learn how to use a new
mode or feature in Emacs, and how you can use the
self-documenting nature of Emacs to 昀椀nd things for
which you’re looking.

17

https://en.wikipedia.org/wiki/Editor_war

Introduction

Movement How to move around in Emacs. At 昀椀rst glance a
simple thing to do, but in Emacs there are many ways
of going from where you are to where you need to
go in the fewest possible keystrokes. Moving around
is probably half the battle for a developer and know-
ing how to do it quickly will make you more e昀케cient.
Some of the things you’ll learn: moving by syntactic
units, and what exactly syntactic units are; using win-
dows and bu昀昀ers; searching and indexing text; select-
ing text and using the mark.

Editing As in the chapter on movement, I will show you
how to edit text using a variety of tools o昀昀ered to you
by Emacs. This includes things like editing text by bal-
anced expressions, words, lines, paragraphs; creating
keyboard macros to automate repetitive tasks; search-
ing and replacing; registers; multi-昀椀le editing; abbre-
viations; remote 昀椀le editing; and more.

Productivity Emacs can do more than just edit text and this
chapter is only a taste of what attracts so many people
to Emacs: its tight integration with hundreds of exter-
nal tools. I will whet your appetite and show you some
of the more interesting things you can do when you
choreograph Emacs’s movement and editing.

18

Chapter 2

The Way of Emacs

“The purpose of a windowing system is to put
some amusing 昀氀u昀昀 around your one almighty
emacs window.”
– Mark, gnu.emacs.help.

If you imagine the span of the modern computing era begin-
ning in the 1960s, then Emacs has been there longer than just
about everything else. It was 昀椀rst written by Richard Stall-
man as a set of macros on top of another editor, called TECO,
back in 1976.1 TECO is now mostly remembered for being
extremely arcane. Since then, there have been many compet-
ing implementations of Emacs but today you’re only likely
to encounter XEmacs and GNU Emacs.
This book will only concern itself with GNU Emacs. Once
upon a time XEmacs was the more advanced and feature

1 https://www.gnu.org/software/emacs/manual/html_mono/efaq.
html#Origin-of-the-term-Emacs

19

https://www.gnu.org/software/emacs/manual/html_mono/efaq.html#Origin-of-the-term-Emacs
https://www.gnu.org/software/emacs/manual/html_mono/efaq.html#Origin-of-the-term-Emacs

The Way of Emacs

rich editor, but this is no longer the case: from Emacs 22 on-
wards GNU Emacs is the best Emacs out there. The history
of XEmacs and GNU Emacs is an interesting one. It was one
of the 昀椀rst major forks2 in a free software project. Today,
XEmacs is no longer maintained.

Note
To almost everyone, the word Emacs refers
speci昀椀cally to GNU Emacs. I will only spell
out the full name when I am distinguishing
between di昀昀erent implementations. When I
mention Emacs, I always talk about GNU Emacs.

Because of Emacs’s age there are a number of… oddities.
Weird choices of terminology and historical anachronisms
persist because in most cases Emacs was ahead of the
editor-IDE curve for many decades and thus had to invent
its own terminology for things. There are talks of replacing
Emacs’s own vernacular with words familiar to everyone,
but that is still a long way o昀昀, if it ever happens.
Despite the lack of marketing; a small core of Emacs devel-
opers; and the anachronisms and terminology that predates
the modern Personal Computing-era; there are many peo-
ple out there who just love using Emacs. Emacs’s strength is its
ability to adapt: and with that, I mean not only the software,
but the large body of volunteer maintainers and contribu-
tors who set the direction of Emacs. They work tirelessly –
within the constraints of a product that is older than most of
its users – to stay abreast of changes in the wider world. The

2 https://www.jwz.org/doc/lemacs.html

20

https://www.jwz.org/doc/lemacs.html

The Way of Emacs

myth of an ossi昀椀ed Emacs community and platform are just
that – a myth.
This chapter will talk about the Way of Emacs: the terminol-
ogy and what Emacs means to a lot of people, and why un-
derstanding where Emacs comes from will make it easier to
adopt it.

Guiding Philosophy
Emacs is a tinkerer’s editor. Plain and simple. People
who hack on Emacs do it because almost every facet of
it is extensible. It is the original extensible, customizable,
self-documenting editor. If you come from other text
editors, the idea of being able to change anything may seem
like an unnecessary distraction from your work – and
indeed, a lot of Emacs hacking does happen at the expense
of one’s real job – but once you realize that you can shape
your editor to do what you want it to do, it opens up a
world of possibilities.
That means you can truly rebind all of Emacs’s keys to your
liking; you are not hidebound by your IDE’s undocumented
and buggy API nor the limitations that would follow if you
did change things — such as your custom navigation keys
not working in, say, the search & replace window or in the
internal help 昀椀les. Truly, in Emacs, you can change every-
thing — and people do. Vim users are migrating to Emacs
because, well, Emacs is often a better Vim than Vim.
Emacs pulls you in. Once you start using Emacs for the edit-
ing, you realize that using Emacs for IrC, email, database ac-

21

The Way of Emacs

cess, organizing your thoughts, command-line shells, com-
piling your code or sur昀椀ng the Internet is just as easy as edit-
ing text – and you get to keep your key bindings, theme and
all the power of Emacs and elisp to con昀椀gure or alter the be-
havior of everything.
And when everything is seamlessly tied together you avoid
the usual context switches of going from application to ap-
plication: most Emacs users use little more than the editor,
a browser and maybe a dedicated terminal application.

Emacs’s history
Emacs’s source code repository (now in Git)
stretches back over 30 years and has more than
130,000 commits and nearly 600 committers.

If you want to modify Emacs, or any of the myriad pack-
ages available to you, Emacs Lisp (also known informally as
elisp) is what you will have to write. There have been a few
attempts to graft other languages onto elisp and Emacs but
with no lasting e昀昀ect. As it turns out, LISP is actually a per-
fect abstraction for a very advanced tool like Emacs. And
most modern languages wouldn’t necessarily stand the test
of time: TCL was brie昀氀y considered in the 90s as it was popu-
lar at the time — but that has the distinction of being even
more obscure than LISP, nowadays.
The only downside is that 昀椀ddling with your Emacs con昀椀g-
uration is something you will have to learn to live with (and
in LISP no less, but as I explain in the next part that’s actually
a good thing.) That’s why I reinforced the point that it’s a
tinkerer’s editor. If you hate the idea of tweaking anything

22

The Way of Emacs

and want everything to work perfectly out of the box, you
have two options left:

Use a starter kit There are many free starter kits that come
equipped with additional packages and what the
author thinks are sensible default settings. They can
be a good way to start out but with the caveat that
you don’t know where Emacs ends and the starter
kits’ added functionality begins.
I recommend you look at one of the following starter
kits:

• Steve Purcell’s .emacs.d
https://github.com/purcell/emacs.d

• Bozhidar Batzov’s Prelude
https://github.com/bbatsov/prelude

If you want an opinionated kit with a strong slant to-
wards Vim:

• Spacemacs, a very popular kit that combines Vim’s
modal editing with Emacs’s extensibility
https://spacemacs.org/

• Doom Emacs, like Spacemacs, is a full-昀氀edged kit
https://github.com/hlissner/doom-emacs

Use the defaults Certainly an option, but Emacs ships with
neutral but old-fashioned defaults. You are expected
to con昀椀gure Emacs to your liking or let someone else
do the work for you. For an editor that is so radically

23

https://github.com/purcell/emacs.d
https://github.com/bbatsov/prelude
https://spacemacs.org/
https://github.com/hlissner/doom-emacs

The Way of Emacs

di昀昀erent from mainstream editors, the maintainers are
conservative about changing the defaults for fear of up-
setting the old guard (who, of all people, should know
how to con昀椀gure Emacs.)
Personally, I never used a starter kit – they did not
exist in the same way they do now when I started
nearly 20 years ago – but instead borrowed heavily
from other people’s .emacs 昀椀les, as we called it back
then.
This approach is well-suited to people who want to
understand their editor end-to-end. I recommend you
look at starter kits – see the aforementioned kits for
good ideas – and borrow liberally from them.

LISP?
Emacs is powered by its own LISP implementation called
Emacs Lisp or just elisp. Many are put o昀昀 or intimidated by
this esoteric language; that’s a shame, because it’s a practical
and fun way to learn LISP in an editor built up around the
idea of LISP as a singular machine. Every part of Emacs
can be inspected, evaluated or modi昀椀ed because the editor
is approximately 95 percent elisp and 5 percent C code.
It’s also a practical way to learn a radical paradigm: that
code and data are interchangeable and malleable; that the
language, owing to its simple syntax, is trivially extensible
with macros.
Unfortunately, there’s no getting around learning elisp at
some point. In this book, I will talk about the Customize in-
terface: a dynamically generated interface of customizable

24

The Way of Emacs

options in Emacs. However, something as simple as rebind-
ing a key means you’ll have to interact with elisp. But it’s
not all bad. Most of the problems you’re likely to encounter
have already been solved by someone else a long time ago;
it’s a simple matter of searching the Internet for a solution
to your problems.
Despite the relative unpopularity of elisp versus more “mod-
ern” languages like Python, Ruby and JavaScript, I doubt
Emacs would have had the same power of extensibility if
a more traditional imperative/object-oriented language had
been used. What makes LISP such a fantastic language is that
source code and data structures are intrinsically one and the
same: the LISP source code you read as a human is almost
identical to how the code is manipulated as a data structure
by LISP — the distinction between the questions “What is
data?” and “What is code?” are nil.
The data-as-code, the macro system and the ability to “ad-
vise” arbitrary functions – meaning you can modify the be-
havior of existing code without copying and modifying the
original – give you an unprecedented ability to alter Emacs
to suit your needs. What would in most software projects
be considered code smells or poor architecture is actually a
major bene昀椀t in Emacs: you can hook, replace or alter exist-
ing routines in Emacs to suit your needs without rewriting
large swathes of someone else’s source code.
This book will not teach elisp in any great detail: Emacs has
a built-in elisp introduction3 and I highly recommend it if
you are curious — and honestly you should be. LISP is fun
and this is a great way to learn and use a powerful language

3 https://www.gnu.org/software/emacs/manual/eintr.html

25

https://www.gnu.org/software/emacs/manual/eintr.html

The Way of Emacs

in a practical environment. Don’t let the parentheses scare
you; they are actually its greatest strength.

Emacs as an Operating System

Emacs is like a magpie’s nest of shiny things. If you’re new to
Emacs you’re thinking I am stretching the simile a bit, but
consider that Emacs comes with a built-in screensaver with
M-x zone; a text adventure game, M-x dunnet; a M-x tetris
clone; a full-blown client-server model; a lunar phases calcu-
lator; a psychotherapist in M-x doctor; several email clients;
an artist mode for drawing ASCII art; an Emacs-based X Win-
dow manager called EXWM; and, of course, an EPUB reader,
nov, that can display this very book.
When you run Emacs you are in fact launching a tiny C

26

The Way of Emacs

core responsible for the low-level interactions with your op-
erating system’s ABI. That includes mundane things like 昀椀le-
system and network access; drawing things to the screen or
printing control codes to the terminal.
The cornerstone of Emacs though is the elisp interpreter —
without it, there is no Emacs. The interpreter is creaky and
old; it’s struggling to meet the growing demands of its users.
Modern Emacs users expect a lot from their humble inter-
preter: speed and asynchrony are the two main issues. The
interpreter runs in a single thread and intensive tasks will
lock the UI thread. There are workarounds, though. The is-
sues, manifold though they are, do not deter people from
writing ever-more sophisticated packages. With the release
of Emacs 28 – and if your instance of Emacs is compiled with
support for it – all elisp code you use is seamlessly compiled
to native code, resulting in signi昀椀cant speedups.
When you write elisp you are not just writing snippets of
code run in a sandbox, isolated from everything — you are
altering a living system; an operating system running on an
operating system. Every variable you alter and every func-
tion you call is carried out by the very same interpreter you
use when you edit text.
Emacs is a hacker’s dream because it is one giant, mutable
state. Its simplicity is both a blessing and a curse. You can
re-de昀椀ne live functions; change variables left and right; and
you can query the system for its state at any time — state that
changes with every key stroke as Emacs responds to events
from your keyboard to your network stack. Emacs is self-
documenting because it is the document. There are no other
editors that can do that. No editor comes close.

27

The Way of Emacs

And yet Emacs never crashes — not really, anyway.
Emacs has an uptime counter to prove that it doesn’t
(M-x emacs-uptime) — multi-month uptimes are not
uncommon.
So when you ask Emacs a question – as I will show you how
to do later – you are asking your Emacs what its state is. Be-
cause of this, Emacs has an excellent elisp debugger and un-
limited access to every facet of Emacs’s own interpreter and
state — so it has excellent code completion too. Any time
you encounter a LISP expression you can tell Emacs to evalu-
ate it, and it will: from adding numbers to setting variables
to downloading packages.

Extensibility
Extensibility is important, but emphasizing that importance
is di昀케cult if you don’t know the scope of possibilities in
Emacs. I’ve included just a few examples of what Emacs can
do – or more importantly still, what Emacs can enable people
to do – here.

A speech interface for the blind For 25 years, Emac-
speak4 has o昀昀ered blind or visually impaired Emacs
users a way of interacting with Emacs, and the world,
through a speech interface that understands the
content of what appears on your screen. Emacspeak
will change the voice characteristics of the speech
engine to re昀氀ect di昀昀erent syntactic elements in source
code, or to emphasize layout, fonts or graphical icons.

4 https://emacspeak.sourceforge.net/

28

https://emacspeak.sourceforge.net/

The Way of Emacs

For blind Emacs users, Emacspeak is a lifeline that has
enabled them to continue working by using Emacs’s
many tools, such as e-mail or web browsing.
The fact that this functionality has been around for 25
years is in itself impressive, but Emacs’s ability to sup-
port this sort of transformational software is beyond
inspiring.

Remote 昀椀le editing Emacs’s TrAMP5 seamlessly lets you
edit remote 昀椀les using a variety of network protocols,
including SSH, FTP, Docker, rclone, rsync, and more,
as though the 昀椀les were local.

Shell access Emacs has a built-in ANSI-capable Terminal em-
ulator; an Emacs wrapper around shells, such as bash;
and a full-blown shell called Eshell written entirely in
elisp.

ORG mode A to-do, agenda, project planner, literate
programming, note-taking (and more!) application.
It is widely considered the best text-based organizer ever

— a feat only surpassed by the fact that people switch
to Emacs just to use it.

Symbolic Calculator Reverse-Polish Notation calculator
capable of symbolic algebra, arbitrary precision com-
putation, custom functions, matrix and unit-based
mathematics, and much more.

Music Player The Emacs Multimedia System (EMMS) is an
interactive media browser and music player.

5 Transparent Remote (昀椀le) Access, Multiple Protocol

29

The Way of Emacs

And much more O昀케cial or uno昀케cial support for almost
every programming environment; built-in man page
and info reader; a very sophisticated directory and 昀椀le
manager; seamless support for almost every major ver-
sion control system; and thousands of other features,
large or small.

Important Conventions
There are some important Emacs conventions that I need to
talk about before we continue. It’s quite important that you
memorize them or at least refer back to this page if you’re
in doubt. They will crop up again and again in the book
and elsewhere and knowing them is paramount if you want
to make use of Emacs’s extensive, internal documentation.
This is not an exhaustive list of conventions used in Emacs
or even in this book. I will introduce speci昀椀c terms and con-
cepts throughout the book, though some terms transcend
speci昀椀c topics and are therefore important to know before-
hand.

30

The Way of Emacs

The Bu昀昀er
Most text editors and IDEs are 昀椀le based: they display text from
a 昀椀le, and they save the text to a 昀椀le. That’s it.
In Emacs, all 昀椀les are bu昀昀ers, but not all bu昀昀ers are 昀椀les. If
you want a throw-away area to temporarily store snippets
from a log 昀椀le, or manipulate text, or whatever your reason

— you just create and name a new bu昀昀er. Emacs won’t hassle
you for a 昀椀lename. The bu昀昀er will exist in Emacs and only
Emacs. You have to explicitly save it to a 昀椀le on disk to make
it persist.
Emacs uses these bu昀昀ers for more than just editing text. It
can also act like an I/O device and talk to another process,

31

The Way of Emacs

such as a shell like bash or even Python.
Almost all of Emacs’s own commands act on bu昀昀ers. So
when you tell Emacs to, for example, search & replace it
will actually search and replace on a bu昀昀er – maybe the
active bu昀昀er you’re writing in, or perhaps a temporary
duplicate – and not an opaque, internal data structure like
you might think. In Emacs, the bu昀昀er is the data structure. This
is an extremely powerful concept because the very same
commands you use to move around and edit in Emacs are
almost always the same ones you use behind-the-scenes in
elisp. So once you memorize Emacs’s own user commands,
you can use them in a simple function call to mimic what
you’d do by hand.

The Window and the Frame
When you look at a bu昀昀er on the screen it is displayed in
a window. But in Emacs, a window is just a tiled portion of
the frame, which is what most window managers call a win-
dow. In Emacs, it is the other way around; and yes, it’s very
confusing.
If you look at the screenshot above, you will see two win-
dows and one frame. Each frame can have one or more win-
dows, and each window can have exactly one bu昀昀er.
So, a bu昀昀er must be viewed in a window in order to be dis-
played to the user, and for the window to be visible to the
user it must be in a frame.

Note

32

The Way of Emacs

Think of it as a physical window having a frame,
each frame made up of window panes.

In Emacs, you are free to create as many frames as you like,
and in each frame you’re free to split and tile that frame into
multiple windows. If you use a large screen monitor (and
who doesn’t, these days), it is very bene昀椀cial to use Emacs’s
tiling system to show multiple bu昀昀ers on the screen.

Modeline, Echo Area, and Minibu昀昀er

The 昀椀gure above is an example of a Terminal Emacs session.
Emacs uses the modeline to communicate facts about Emacs
and the bu昀昀er you’re in. The modeline looks like this:

-UUU:**--F3 *scratch* All L4 (Lisp Interaction) --

There’s a lot of information conveyed in a fairly small area.
What you should care about to begin with are the name and
modes. In this case, the bu昀昀er is named *scratch* and the

33

The Way of Emacs

major mode is Lisp Interaction. Most editors have a similar
concept known as a status bar.
All sorts of optional information can be displayed in the mod-
eline: laptop battery power, the current function or class
you’re in, what source control revision or branch you’re us-
ing, and much more.
The minibu昀昀er is directly below the modeline and it is
where errors and general information are shown:

-UUU:**--F3 *scratch* All L4 (Lisp Interaction) --
M-x insert-hello-world

In this case, I have triggered Emacs’s extended command func-
tionality – indicated by the M-x symbol, a concept that I will
talk about in the chapter on keys – and I’ve typed the com-
mand insert-hello-world into the M-x prompt.
The echo area and the minibu昀昀er share the same spot on the
screen. The minibu昀昀er is nearly identical to a normal bu昀昀er:
you can use most of your editing commands, and the one-
line minibu昀昀er will expand to multiple lines if necessary. It
is how you communicate with Emacs: if you want to search
for a string you write the string you want to search for in
the minibu昀昀er. It supports a variety of complex completion
mechanisms to help you 昀椀nd what you need and is a tool
you will use often.

The Point and Mark
The point is just another word for the caret or cursor. The
Emacs documentation is rather inconsistent in its use of point

34

The Way of Emacs

or cursor; you will see both. Nevertheless, the point itself is
your current position in a bu昀昀er. In this book I will use █
to represent the point. Each bu昀昀er tracks the position of the
point separately, so if you switch between bu昀昀ers the loca-
tion of each point is remembered separately.

Note
In Emacs, we talk a lot about a “current bu昀昀er”,
which can mean two things – only one of which
is interesting to us, at the present – and that is
whichever bu昀昀er has the point (the other case is ba-
sically the same, but involves programmatically
changing the bu昀昀er in elisp.) A bu昀昀er that has
the point is the current bu昀昀er because it is the one
you write and move around in. Only one bu昀昀er
can ever be the current bu昀昀er at a time, and it is
this bu昀昀er that has the point.

The point, in Emacs, has more utility than just acting as
a visual marker for where characters you type end up on
the screen. It is also one part of a duo called the point and
mark. The point and mark represents the boundary for a
region, which is a contiguous block of text, usually, in the
current bu昀昀er. In other editors, it is called the selection or
the highlight. Most editors don’t have speci昀椀c names for the
beginning and end of a region but in Emacs we do, and in
Selections and Regions I will talk more about the reason.

Tip

35

The Way of Emacs

Historically, Emacs did not show you the visible
region on the screen but instead you had to men-
tally visualize it. Emacs has supported visual re-
gions for a very long time now, called the tran-
sient mark mode (or just TMM.) It is enabled by de-
fault. Surprisingly, there’s some value in not us-
ing TMM at all, but I will talk about that much
later.

But like the point, the mark is more than what it seems. It
serves as a boundary for the region, yes, but it is also a beacon
you can use to return to from other parts in the bu昀昀er. The
mark is typically invisible.

Killing, Yanking and CUA
The 昀椀rst – and perhaps most abhorrent, to beginners –
deviation from de-facto user interface standards is Emacs’s
clipboard system. Cut, copy and paste are known, almost
universally, to most as Ctrl+x or Shift+Delete; Ctrl+c or
Ctrl+Insert; and Ctrl+v or Shift+Insert, respectively.
In Emacs, the keys and the terminology di昀昀er greatly:
killing is cutting; yanking is pasting; and copying is
awkwardly known as saving to the kill ring (or just copy,
informally.)
The reasons, as before, are historical. Most of the keys and
terminology stem from IBM’s Common User Access6 (CUA)
and Apple. But the CUA was introduced in 1987, many years

6 https://en.wikipedia.org/wiki/IBM_Common_User_Access

36

https://en.wikipedia.org/wiki/IBM_Common_User_Access

The Way of Emacs

after Emacs had settled on its own terminology and stan-
dards.
In Selection Compatibility Modes, I will explain how you
can switch to modern clipboard keys, with certain caveats,
and why you shouldn’t do that. Instead, I’ll show you why
Emacs’s system is better for text editing.

.emacs.d, init.el, and .emacs
A favorite pastime of Emacs users is sharing with other
Emacs hackers little snippets of code or customizations that
make their lives easier.
Historically, these settings were kept in a 昀椀le called .emacs,
but most keep their customizations in ~/.emacs.d/init.el
on Linux and %HOME%\init.el on Windows. Since Emacs
now writes several more 昀椀les to your 昀椀le system, they are
kept in a directory called .emacs.d to avoid cluttering your
home directory.

XDG Support in Emacs 27
Emacs 27 or later now supports the XDG
convention of storing user con昀椀guration in
~/.config/emacs/init.el on Linux platforms
that support it.

So, when people talk about their init 昀椀le, or their “.emacs
昀椀le,” or if they tell you to put something in said 昀椀le, that’s
what they’re referring to. If you are new to Emacs, you
should use ~/.emacs.d/init.el. When you add something
to the 昀椀le you will need to tell Emacs to run it. There

37

The Way of Emacs

are many ways of doing this, and I will explain how in
Evaluating Elisp Code, but my preferred recommendation
for beginners is to close Emacs and restart it.

Note
Starter kits in Emacs are very common now.
They’re community additions to Emacs that
bundle many changes and even entire third-
party packages and if you use one, you should
read their documentation for best practices on
where to store your own changes.

Emacs will not save changes for you. If you want Emacs to
keep changes, you must do it through the Customize inter-
face. That means it is your responsibility to save changes you
want to keep to init.el. Likewise, if you made a mistake
and broke something in Emacs or if you made changes you
do not care for, simply quit and restart Emacs.

Major Modes and Minor Modes
Major modes in Emacs control how bu昀昀ers behave. So, if
you want to edit Python code and you visit a 昀椀le in Emacs
called helloworld.py, then Emacs will know, through a cen-
tralized register that maps 昀椀le extensions to major modes,
that this is a Python 昀椀le and it should use the Python major
mode. Each bu昀昀er will always have a major mode. The major
mode may be basic and o昀昀er no font locking (syntax highlight-
ing) and no speci昀椀c functionality, or it may be the complete
opposite and introduce font locking, an advanced indenta-
tion engine, and specialized commands.

38

The Way of Emacs

Note
Font Locking is the correct term for syntax high-
lighting in Emacs, and in turn is made up of faces
of properties (color, font, text size, and so on)
that the font locking engines use to pretty-print
the text.
The Emacs terms face and font lock predate the
more common terms you see used elsewhere.

You are free to change a bu昀昀er’s major mode at any time by
typing the command for another one. In addition to Emacs’s
register of 昀椀le extensions and associated major modes, there
is another system for 昀椀les with ambiguous (or no) 昀椀le exten-
sions at all: Emacs will scan the 昀椀rst portion of the 昀椀le and
try to infer the major mode from that. Rarely, Emacs will
get it wrong and you will need to change it.
It’s important to remember that each bu昀昀er can have just
one major mode. Minor modes, by contrast, are typically
optional add-ons that you enable for some (or all) of your
bu昀昀ers. One example is 昀氀yspell mode, a minor mode that spell
checks text as you write.
The major mode is always displayed in the modeline. Some
minor modes are also displayed in the modeline, but usually
only the ones that alter the bu昀昀er or how you interact with
it in some way.

39

Chapter 3

First Steps

I use Emacs, which might be thought of as a ther-
monuclear word processor.
– Neal Stephenson, In the Beginning… was the
Command Line.

Installing and Starting Emacs
Before I get into the nitty-gritty of installing Emacs, you
should check and see if it’s installed already. However, you
have to be extra vigilant if it is: it might be an ancient version.

Checking Emacs’s version
You can check Emacs’s version by typing emacs
--version.

As of 2022 the newest major version is GNU Emacs 28. I rec-
ommend you adopt the latest version as soon as time permits.

40

First Steps

You should try to stay current: major releases in Emacs are in-
frequent enough that keeping abreast shouldn’t trouble you
much. If you do upgrade, it’s rarely for the bug 昀椀xes (because
Emacs is actually extremely stable) but for the features and
the fact that most package authors assume you’re using the
latest version. (Having said that, if you’re on a very obscure
platform it may not be possible for you to upgrade at all.)
If you’re using XEmacs or another non-GNU Emacs, you re-
ally should switch. Fifteen years ago, XEmacs was leading
the pack but GNU Emacs caught up and exceeded the capabil-
ities of XEmacs a long time ago.
A hallmark of Emacs is its long held belief that breaking com-
patibility should take multiple major releases from depreca-
tion to removal. Uncommonly, complaints stream into the
Emacs mailing lists that a piece of code they wrote in the late
1980s suddenly broke because the Emacs maintainers 昀椀nally
removed a long-obsoleted variable or function.
Emacs supports most major platforms you are likely to use
yourself: BSD and Linux, Mac OSX, MS-DOS, and Microsoft
Windows. I will not go into too great a detail on how to com-
pile or build Emacs on operating systems other than Linux.
Emacs was made to be a cross platform editor but there are
always some trade-o昀昀s if you don’t run them on Linux. Mac
OSX, in particular, seems to attract a great deal of con昀氀icting
advice on how to best run Emacs; the best advice I can o昀昀er
is to try out a few di昀昀erent approaches and 昀椀nd one that 昀椀ts
you.

Microsoft Windows Emacs releases o昀케cial builds for

41

First Steps

Microsoft Windows on their o昀케cial site.1 Extracting
and running the executable is all it takes.
Most external tool support will not work on
Windows. Functionality like built-in grep support
requires the GNU coreutils to be present. You can, how-
ever, run Emacs from Cygwin2 and get a Linux-like
environment on Windows that way. Alternatively,
the cross-compiled GnuWin323 project has almost ev-
ery Linux command line program that runs natively
on Windows.
Another new opportunity that has sprung up is to use
the Windows Subsystem for Linux, a compatibility layer
that runs Linux natively on top of the subsystem in
Windows 10.

Mac OSX One approach (though there are several) is
to use an uno昀케cial build of Emacs.4 There is also
Aquamacs but it di昀昀ers from GNU Emacs quite a bit.
The topic itself is rather complex. Some prefer using
a package manager like homebrew and others do
not. Generally, people who use homebrew often use
the homebrew version of Emacs also. EmacsWiki’s
article5 on installing Emacs on Mac OSX is a good
place to start if you want to compile Emacs yourself.

Linux Emacs is almost always present in your distribution’s
package manager. Some distros are slow to update

1 https://ftp.gnu.org/gnu/emacs/windows/
2 https://www.cygwin.com/
3 https://gnuwin32.sourceforge.net/
4 https://emacsformacosx.com/
5 https://www.emacswiki.org/emacs/EmacsForMacOS

42

https://ftp.gnu.org/gnu/emacs/windows/
https://www.cygwin.com/
https://gnuwin32.sourceforge.net/
https://emacsformacosx.com/
https://www.emacswiki.org/emacs/EmacsForMacOS

First Steps

to new minor releases (which are rarely minor at all,
adding a lot of new functionality and bug 昀椀xes) so it
may be worth your while to build from source.
On Ubuntu, it’s as easy as apt-get install emacsNN
where NN is the major version of Emacs: 26, 27, and
so on.
If you want to build your own version of Emacs from
source, I recommend you use apt-get build-dep
emacsNN to build and install Emacs’s dependencies.
From that point on it’s easy to follow the usual
con昀椀gure, make, make install procedure outlined in the
build instructions.

Starting Emacs
Starting Emacs is as simple as running emacs from the com-
mand line. If you run the command from a window man-
ager, then Emacs will launch as GUI Emacs — as opposed to
Terminal Emacs where Emacs is running inside a terminal.
You can force Emacs to run in a terminal, even in a window
manager, by giving it the argument -nw, like so: emacs -nw.
There’s a host of command line switches you can pass to
Emacs, but you only need four to get started:

Switch Purpose
--help Display the help
-nw Forces Emacs to run in terminal mode
-q Do not load an init 昀椀le (such as init.el)

43

First Steps

Switch Purpose
-Q Does not load the site-wide startup 昀椀le6 , your

init 昀椀le, nor X resources

If Emacs is giving you error messages when you start it, you
can use -q to prevent your init 昀椀le from loading. If that 昀椀xes
the errors — then you have a broken init 昀椀le and should take
steps to remedy that: revert to an older version, comment
out code until it works, or ask for help.
The Emacs binary follows the usual command line conven-
tions: emacs [switches] [file1, file2, ...].
The Emacs way is to keep it running and do all your edit-
ing in a dedicated Emacs instance. Emacs will typically start
slower than other editors (as it has a lot more packages and
features) as it’s designed for long-running sessions and not
quick edits.

Emacs Client-Server

So, how do you deal with situations where you’re whiling
away at the command line but have to edit a 昀椀le? Maybe
you’re writing an email from the command line or writing
a commit message — you’d want to use Emacs, and ideally
the same instance of Emacs you already have running. The
answer, ignoring the fact that Emacs has 昀椀rst-class support
for both email and source control systems, is Emacs’s client-
server mode.

6 The site-wide 昀椀le is a global settings 昀椀le like your own init 昀椀le

44

First Steps

Note
The client-server functionality is fantastic, but I
wouldn’t spend too much time playing around
with it until you’re comfortable with Emacs ba-
sics.

The myriad advantages of Emacs’s server mode are:

A persistent session means Emacs will re-use the same ses-
sion instead of spawning a new, distinct copy of Emacs
every time.

It works well with $EDITOR by opening the 昀椀les in your
shared Emacs session and automatically signalling the
calling program when the session 昀椀nishes.

Fast 昀椀le opening from the command line using the
emacsclient binary. The Emacs client will connect to
the local Emacs server instance and instruct it to open
the 昀椀le.

There are several ways of activating Emacs’s client-server
mode:
M-x server-start launches a server inside an already-
running Emacs instance. The instance turns into a server
when you type this; there’s no visual feedback, per se, that
it’s running. When you exit this Emacs instance, it will shut
down the server also — so if you want a server daemon you
need the option below.

45

First Steps

Emacs 28
If you’re using a window manager, and if it’s
reasonably modern, you can also run Emacs
(Client) or ask it to open 昀椀les with that entry,
to re-use your existing Emacs instance.

emacs --daemon will run Emacs as a daemon. It will call
server-start, as above, but will return control to your
terminal immediately and run in the background, waiting
for client requests.
Emacs also ships with native support for systemd, if your
operating system supports it. Emacs 26 and up can con昀椀gure
a systemd unit 昀椀le automatically by running the command
systemctl --user enable emacs. Emacs’s daemon is then
managed by systemd.
If you go the server route, you cannot use the default emacs bi-
nary any more. That binary will spawn standalone instances
only. You must use the similarly-named emacsclient instead.
Set your $EDITOR environment variable to emacsclient and
things should just work from then on.
The emacsclient binary has its own set of switches you
should know about:

Switch Purpose
--help Displays the help.
-c Creates a graphical frame (if X is available)

or a terminal frame if X is unavailable.
-nw Creates a terminal frame.
-n The client will return immediately instead of

46

First Steps

Switch Purpose
waiting for you to save your changes.
Practical if you just want to open a bunch of 昀椀les.

When you launch an emacsclient instance, the client will
wait for the 昀椀le(s) to 昀椀nish editing. Pressing C-x #will switch
to the next bu昀昀er you’re editing through a client — when
you’ve done this for the 昀椀le(s) you opened, Emacs will signal
to the client to exit and return control to the terminal. If
you’re using a tool like git that lets you use your $EDITOR
to edit commit messages when using other editors, git will
wait until it receives the go-ahead from your editor that it
has saved the commit messages to a temporary 昀椀le before
resuming with the commit operation.
You can add the -n switch if you want the client to just open
the 昀椀les and not wait. I use it when I’m doing exploratory
work or if I want the 昀椀les “permanently” open in Emacs.

47

First Steps

The Emacs Interface

When you 昀椀rst launch Emacs, you’re greeted with the splash
screen. It’s probably one of the 昀椀rst things most Emacs hack-
ers disable, along with the scroll bars, the menu and tool bar.
Until you’re comfortable with Emacs I would recommend
you leave the UI elements enabled since they will provide
you with a quick way to access common functionality that
you may not remember how to do o昀昀-hand, although they
take up valuable real estate on your screen.

48

First Steps

If you’re using Emacs in the Terminal, you can still access
the menu bar by pressing F10.
If you don’t see a user interface similar to the 昀椀gure above,
it’s most likely due to customizations made to your init 昀椀le.
The quickest way to test this is to close Emacs and restart
it with emacs -q. If that 昀椀xes things, then it’s de昀椀nitely cus-
tomizations made to your Emacs. Most starter kits assume
you’re reasonably familiar with Emacs and they often disable
things like the menu bar and tool bar.
You are actually free to play around with Emacs now: the
arrows keys will work 昀椀ne and, combined with the menu bar,
you can open and save 昀椀les. Emacs will auto-detect most 昀椀le
types and apply the correct major mode to it — if it doesn’t,
you may have to install third-party packages, which I will
talk about later.

Keys
The most important subject in Emacs. Emacs is famous for
two things: its obscure keyboard incantations and that it’s
the kitchen sink editor that can do everything. The comic
strip xkcd7 humorously referenced that part of Emacs lore.
A much older joke is that Emacs stands for “Escape Meta Alt
Control Shift.”
Nevertheless, key modi昀椀ers are a big part of day-to-day
Emacs use so being able to “decode” a string of keys is
important.

7 https://xkcd.com/378/

49

https://xkcd.com/378/

First Steps

In Emacs, there are several modi昀椀er keys you can use, each
with its own character:

Modi昀椀er Full Name
C- Control
M- Meta (“Alt” on most keyboards)
S- Shift

Two more exist for historical reasons (Super and Hyper)
but don’t have dedicated keys on today’s keyboards, but
for consistency with Space Cadet keyboards8 still exist
internally; another key (Alt) does exist on modern keyboards
but is bound (and known by) as Meta in Emacs:

Modi昀椀er Full Name
s- Super (not shift!)
H- Hyper
A- Alt (redundant and not used)

Super and Hyper can still be used, and if you’re the owner
of a Microsoft Windows-compatible PC keyboard – or use
a programmable keyboard – with the Start and Application
Context buttons, you can rebind them to serve as Super and
Hyper, which is an elegant way of improving the key space
available to you. Emacs supports the modi昀椀ers natively but
you need to tell your operating system or window manager
to bind them.

8 https://en.wikipedia.org/wiki/Space-cadet_keyboard

50

https://en.wikipedia.org/wiki/Space-cadet_keyboard

First Steps

Important
Owing to the limitations of terminals, there are
some key bindings you simply cannot type if
you’re running Emacs in a terminal. My advice
is to run Emacs in a GUI, if at all possible.

Knowing the modi昀椀ers is only one half of the equation
though.
In Emacs, we formally de昀椀ne a key sequence (or just key) to
mean a sequence of keyboard (or mouse) actions and a com-
plete key to mean one or more keyboard sequences that invoke
a command; if the sequence of keys is not a complete key, then
you have a pre昀椀x key. And if the key sequence is not recog-
nized by Emacs at all it is invalid, and an error is displayed
in the echo area.
That’s a rather dry de昀椀nition, so let’s look at a few examples.

C-d calls a command named delete-char. To invoke it, hold
down control and press d. As the key is a complete key,
it will call the command delete-char and immediately
delete the character next to point.

C-M-d is similar to the example above, but this time you
must hold down both control and meta before you
press d.

Let’s try a few pre昀椀x keys. Pre昀椀x keys are basically subdivi-
sions — a way of grouping keys and increasing the number
of possible key combinations. For instance, the pre昀椀x key
C-x has several dozen keys bound to it. C-x is a pre昀椀x key
you will use all the time.

51

First Steps

C-x C-f in Emacs runs a command called find-file. The
way to interpret it is to 昀椀rst hold down control and
then press and release x. In your echo area, Emacs will
display – after a small idle period of about a second
– C-x- (with a dash at the end) which is Emacs’s way
of telling you that it expects additional keys. Finally,
type C-fwhich should be easy for you to do now: hold
down control and press f.
To type C-x C-f, you don’t have to release the control
key between each key — keeping control pressed
helps you maintain something I call tempo, which I
will talk about later.

C-x 8 P has two pre昀椀x keys: 昀椀rst C-x and then 8, which is a
subcategory to C-x. So 8 on its own wouldn’t do any-
thing (it would just print the number 8) nor would C-x
or even C-x 8 — both are still pre昀椀x keys. The key is
complete only when you 昀椀nish with P.
We call sets of keys that belong to a particular pre昀椀x
key key maps, which is how Emacs internally tracks
the mapping between a key and a command. In this
case, the key map C-x 8 has a variety of utility charac-
ters used in writing or mathematics but not bound on
most keyboards. For instance, C-x 8 P will insert the
paragraph symbol ¶.

C-M-% is a tricky one for beginners. Using what you’ve
learned above, hold down control and alt (and as
you’ll remember from the table above, Meta is Alt)
but also shift. The % character is typically shared with

52

First Steps

a number on the keyboard number range and the
implication here is you must type shift also.
If you don’t press shift, you’re actually typing C-M-5
(on a US keyboard, anyway.)
It bears mentioning that this particular key is bound to
a popular command (M-x query-replace-regexp) and
is an example of a key that you cannot type in Terminal
Emacs because of the terminal’s technical limitations
(and not Emacs.)

TAB, F1–F12 and so on are occasionally written like this,
but also in angle brackets: <tab>, <f1>. It’s important
you don’t confuse TAB with the characters T A B. I will
only use the former notation to avoid ambiguities.

Hint
If you’re stuck, or in the unlikely event Emacs
has seized up, or if you have typed in a partial
command that you want to cancel — press C-g.
That’s the universal “bail me out” command in
Emacs.

Caps Lock as Control
One of the most important modi昀椀cations you should make
to your environment is rebinding your caps lock key to con-
trol. You’re going to use the control key a lot and to avoid the
Emacs pinky I suggest you unbind your right control entirely
and instead use caps lock.
Yes, it’ll be an annoying transition but a worthwhile one
(that will, incidentally, serve you well outside of Emacs.)

53

First Steps

This change is necessary because on older keyboards9 the
control key occupied the space now used by the caps lock
key so reaching the left control key could be done without
straining your left pinky.
On Windows, I recommend you use SharpKeys.10 On
Ubuntu and Mac OSX, it’s built-in; go to the Keyboard
settings and change it. If you’re using another Linux
distribution you may have to 昀椀ddle with xmodmap.

Custom & Programmable Keyboards
If you own an ergonomic mechanical keyboard
– they tend to have customizable 昀椀rmware –
you may want to go a step further and avoid the
use of your pinkies for all modi昀椀er keys. If your
keyboard has thumb keys or the ability to layer
keys, as many high-end ergonomic mechanical
keyboards often do, you should change your
keyboard layout so the control key, at the very
least, is within easy reach of your index or
thumb 昀椀ngers.

M-x: Execute Extended Command
Only a small portion of available commands in Emacs are
bound to actual keys. Most are not: they are rarely used, and
do not warrant a key binding; or maybe you have explicitly
overridden the key it was bound to, leaving it unbound; or
perhaps you forgot its key binding.

9 https://en.wikipedia.org/wiki/Space-cadet_keyboard
10 https://github.com/randyrants/sharpkeys

54

https://en.wikipedia.org/wiki/Space-cadet_keyboard
https://github.com/randyrants/sharpkeys

First Steps

In essence, it’s common that you want to run seldom-used
commands. To do this press M-x (pronounced mex, M x, or
meta x.) In your minibu昀昀er, a prompt will appear and you
are free to input the name of a command you wish to run.
When Emacs users say something like “run M-x lunar-phases
to see the lunar phases of the moon” what they’re saying is:
hold down meta and press x and the M-x prompt will appear
in your minibu昀昀er (that’s the line at the very bottom of
Emacs.)
At this point you can type in the name of the command. Try
it, enter lunar-phases and press RET. The lunar-phases com-
mand will open a new window on your screen displaying
the lunar phases from today onward. You can type C-x 1 to
hide the bu昀昀er.
You will frequently see both M-x lunar-phases RET and
M-x lunar-phases to indicate to you, the user, that you
must follow up the text you entered with RET. This is also
true of commands that prompt you for input. I will leave
out the RET unless I feel it’s ambiguous or unclear that you
must (or must not) use RET to proceed.

Hint
If you enter M-x by mistake, remember you can
type C-g to exit out again.

Emacs has built-in auto completion support so pressing TAB
will open a new window and list all the potential candidates.
As you type and press TAB, Emacs will automatically narrow
the list of candidates. If your partially-typed match only has

55

First Steps

one candidate left when you press TAB, Emacs will complete
the whole name for you. You can also just press RET — it
completes like TAB but with the added bene昀椀t of running
the command if it’s the only candidate left.
You may think M-x is a special Emacs command but it’s actu-
ally not. It, too, is written in elisp and bound to a key just
like everything else.

Commands and functions
When I talk about commands, I’m talking about
a type of function that is accessible to the user.
For a function to be accessible to a user (notwith-
standing the ability to evaluate any expression
in elisp) it must be interactive, which is an
Emacs term for a function that has additional
properties associated with it, rendering it usable
through the execute extended command (M-x)
interface and key bindings.
So if you’re a package author, you have to
choose if a particular function is accessible to
the end-user through the M-x interface. Marking
it as interactive will make it accessible to end
users.
In other words, if it’s not interactive, you cannot
run it from M-x nor can you bind it to a key.

M-S-x: Execute Extended Command for Bu昀昀er
When you invoke M-x you’re shown every conceivable com-
mand you can execute in Emacs. That’s 昀椀ne if you know

56

First Steps

exactly what you’re looking for; less so if you don’t. This
is a problem that feeds into the concept of discoverability in
Emacs: or what it takes for you to 昀椀nd the thing you’re look-
ing for, even if you don’t really know what you are searching
for, exactly.
Emacs 28 adds M-S-x, a command that restricts executable
commands to a curated selection relevant to the current bu昀昀er.
As it draws from a list of commands with dedicated key bind-
ings, or those manually chosen by the mode authors, you
may 昀椀nd – as it’s a recent addition – that it’s rather sparse.
Nevertheless, I would recommend you make a mental note
of it, and use it as another tool in the toolbox to explore
Emacs.

Dealing with Shift
You may nave noticed the S- in M-S-x. Another
way of writing it is M-X, with the X capitalized,
as you’re turning x to X when you hold down
shift. I 昀椀nd the former easier to read, but both
are valid notations.

Universal Arguments
Some commands have alternate states, and to access them
you need to give them a universal argument (also called a pre-
昀椀x argument.) The universal argument is also known by its
key binding C-u. When you pre昀椀x another key binding (this
includes M-x by the way), you’re telling Emacs to modify the
functionality of that command. What happens next will de-
pend on the command you’re invoking: some have zero, one

57

First Steps

or even more universal argument states. If a command has
N states, you simply type C-u up to N times.
The universal argument is shorthand for the number 4. If
you type C-u a, Emacs will print aaaa on your screen. If you
type C-u C-u a, Emacs will display 16 characters (because 4
times 4 equals 16). Keep in mind that universal arguments on
their own are totally inactive. When you type them, Emacs
will, much like a pre昀椀x key, wait until you give it a follow-
up command — and only then will Emacs apply the univer-
sal arguments.
Understanding that Emacs’s command states are merely
numbers is a handy thing to know because you can also pass
arbitrary numbers to commands. A lot of Emacs hackers
would write C-u 10 a to print 10 characters, but there’s a
much easier way.

By the way
When you press a key – say the a button on your
keyboard – how does Emacs write it on your
screen? The truth is there’s a special command
called self-insert-command that, when invoked,
will insert the last typed key. Having this com-
mand adds symmetry to keys and commands: it
makes your regular keyboard characters behave
in exactly the same way as all other commands
in Emacs.
And that also means keyboard characters, and
hence self-insert-command, are subject to the ex-
act same rules as all other commands. They can

58

First Steps

be unbound, rebound, and otherwise modi昀椀ed
by you.

Bound to key binding C-0 to C-9 are the digit arguments. But
they’re bound to more than just that row of keys to maintain
what I personally call the tempo of typing — but more on
tempo below.
Here are the various ways you can pass digit arguments to a
command.

Key Binding Notes
C-u Digit argument 4
C-u C-u Digit argument 16
C-u C-u … Digit argument 4^n
M-0 to M-9 Digit argument 0 to 9
C-0 to C-9 Digit argument 0 to 9
C-M-0 to C-M-9 Digit argument 0 to 9
C-- Negative argument
M-- Negative argument
C-M-- Negative argument

Note
The negative argument commands are bound to
the minus key (-) even though it’s hard to make
out from the table above.
They’re written as C-- instead of C- - because
the latter is an invalid Emacs key: you cannot
press a modi昀椀er key, C-, release it, and then press

-. That would just print - on your screen. It’s

59

First Steps

the minus itself that is bound to several modi昀椀ers.
White space matters.

So I mentioned the importance of tempo. Once you’re com-
fortable with Emacs, you’ll be 昀氀ying across the screen, and
not having to take your 昀椀ngers o昀昀 the modi昀椀ers to apply a
negative or digit argument will help you do that. Ensuring
the digits and negative arguments are bound to the modi昀椀ers
C-, M-, and C-M-, three very common modi昀椀er combinations,
all but guarantees you won’t have to move your 昀椀ngers from
the modi昀椀ers before you follow them up with your intended
command.
Here are a few examples of what I mean.

M-- M-d kills the previous word before point. Without
M--, M-d would kill the word immediately following
point. The command has synergy with the negative
argument because you can keep your 昀椀nger on the
meta key and press - d.
This combination maintains your tempo.

C-- M-d does exactly the same but it will take you about
thrice as long to type. You have to press C--, release
the control key, and then press M- followed by d.
This combination breaks your tempo.

A lot of people never bother working the digit and negative
arguments into their work昀氀ow, but I 昀椀nd them immensely
bene昀椀cial. Things like changing the casing on a word I just
typed are easily done by reversing the direction of a command
by giving it a negative argument.

60

First Steps

Maintain your tempo and avoid moving your 昀椀ngers
away from the home row.11 Negative arguments add
directionality to commands; digits add repetition or
change how a command works.

Discovering and Remembering Keys
If you can’t remember the exact command for something,
then Emacs can help. Let’s say you can’t remember how to
print the paragraph character ¶, but you do remember it’s
somewhere in the C-x 8 key map, then all you have to do is
append C-h to any pre昀椀x key to get a list of all bindings that
belong to that key map.
Typing C-x 8 C-h will display a computer-generated list of
keys and their commands. This interface is hyperlinked and
part of Emacs’s self-documenting help system.

Key Binding
C-x 8 " Pre昀椀x Command
C-x 8 < «
C-x 8 > »
C-x 8 ? ¿
C-x 8 C ©
C-x 8 L £
C-x 8 P ¶
C-x 8 R ®
C-x 8 S §
C-x 8 Y ¥

11 If you touch type, a skill worth learning above all else.

61

First Steps

Above is a subset of the commands you see when you request
the help page for C-x 8. If you see just a character in the Bind-
ing column, that means it’ll print the character when you
type that key.
However, Emacs will also tell you if there are more pre昀椀x
keys with further sub-levels; in this case, C-x 8 " has addi-
tional keys bound to it.
All these keys, hidden away in the dusty depths of Emacs, all
haphazardly bound to all conceivable permutations of key-
board characters, may seem like a strange thing particularly
if you come from modal editors like Vim.
The legacy of a particular keyboard used in the early ’80s is
evident in the names Super, Hyper, and Meta.
Back then, most Emacs keys were bound to a larger range of
physical keyboard modi昀椀ers but when the keyboard maker
(and the business that made the machines the keyboards were
plugged into) went bust, Emacs had to change with the times.
Instead of undoing the cornerstone of Emacs, the developers
shu昀툀ed the keys around and made them work on normal,
boring PC keyboards.
So you’re probably thinking it’s a daunting task indeed to
memorize all those keys — but you don’t have to. I memo-
rize what I use frequently (as we are wont to do with our
human brains) and leave the rest for Emacs to remember for
me.

Use Emacs’s help system if you forget a particular key
combination. You can always append C-h to a pre昀椀x
key.

62

First Steps

Con昀椀guring Emacs
Tinkering with Emacs is every Emacs hacker’s favorite pas-
time. Go to Emacs meetups or talk to experienced Emacs
hackers and the conversation will inevitably drift towards
small changes and hacks they’ve made to make their lives
easier.
It’s fun (and rewarding) knowing that, if there’s an aspect
of your editor’s behavior that you don’t like that you can
simply change it — indeed, a whole book could be written
on the subject of changing Emacs.
Throughout this book I will make suggestions of things to
change. Where possible I will use the Customize interface in-
stead of the typical approach of suggesting elisp snippets.
If you want to change Emacs, you have two choices:

Use the Customize interface as it’s built-in and designed
to be user friendly. I say that, but a lot of people 昀椀nd it
cumbersome and hard to use. I think that’s a bit unfair:
it’s utilitarian and has to support a lot of arbitrary ways
of con昀椀guring fairly complicated features.
Not everything is supported by Customize. Since you
need to write elisp to change variables, and because of
the data-as-code paradigm LISP uses, you will 昀椀nd that
Customize can write elisp that it’s been shown how to
write, and then only for speci昀椀c options. That makes
it a virtual impossibility to generalize an interface
across all of Emacs’s many, many settings. But most
of Emacs’s built-in packages support the Customize
interface and a lot of third-party packages do too.

63

First Steps

I would strongly recommend you use the Customize in-
terface, where possible, until you’re comfortable writ-
ing elisp.

Write elisp to alter what you want to customize. This is the
most powerful option but also the most complicated.
You’ll have to learn elisp (it’s not too hard, and writing
it is usually a lot of fun) to do this, but I think, in the
long run, it’s worth doing.
I still use the Customize interface myself when I
change font faces. There are hundreds of font faces
in Emacs; everything from font lock faces (syntax
highlighting) to the color of the modeline, the fonts
to use for the info manual, and more.

The Customize Interface
The Customize interface is divided into groups and sub groups.
Each group typically represents one package, mode, or piece
of functionality. The top-level group is called Emacs and con-
tains, as you would expect, all other groups.
To access the customize interface, type M-x customize. A
bu昀昀er called *Customize Group: Emacs* should appear
with a list of groups. This is one part of Emacs where
using a mouse can be bene昀椀cial; the interface has buttons,
hyperlinks and edit boxes much like a browser would. Click
around — explore the interface, and marvel at just how
much stu昀昀 there is to con昀椀gure! And that’s just the things
exposed to the Customize interface.

Searching in Customize

64

First Steps

You can search for customizable options using
the search bar at the top.

The Customize interface is rather byzantine but once you
understand how it works, it’s quite easy to use. The 昀椀gure
above shows one face: font-lock-string-face. That’s the
actual elisp variable name for the face; the pretty-printed
name is Font Lock String Face and what you’ll see in the
昀椀gure above. To the immediate left is an arrow — it’s tiny
but it’ll hide/show each face. On a Terminal, it’s replaced
with the arguably more legible texts Hide or Show.
As a quick aside, the Customize interface is made up of
two things: faces and options. Options are a catch-all term for
things you can Customize that aren’t faces.

65

First Steps

The font-lock-string-face governs the face for strings —
and what a string is depends on the mode in which it is used.
For most programming major modes, it’ll be for actual lit-
eral strings in the source code, but mode authors are free to
use the font faces for whatever they please. Having said that,
most adhere to the naming standard for each face.

My personal foreground face color is OrangeRed. But there’s
nothing stopping me from adding additional attributes as

66

First Steps

the 昀椀gure above shows.

Supported colors
If you’re using Emacs in a GUI, you are lim-
ited only by the color depth of the display
and you are free to pick any color from the
RGB color space. I use named colors, and to
see a list of supported names you can type
M-x list-colors-display. If you’re on a Termi-
nal, you will be shown the colors supported by
your Terminal.
24-bit colors are also supported in the Terminal
in addition to the usual 16 or 256. If you’re not
seeing the colors you expect to see, you should
read the Info manual FAQ on how to con昀椀gure
your Terminal:
Type M-x info-apropos then enter Colors on a
TTY. After a little while you should be presented
with a hyperlink to the FAQ that explains how to
con昀椀gure your Terminal settings.
In Emacs 28, you can set the environment
COLORTERM=truecolor and Emacs will 昀椀gure
out what it needs to do, regardless of your
system’s terminal capabilities. If you struggle to
get 24-bit colors, try setting that environment
variable.

Making the changes in the Customize UI isn’t enough. You
have to apply the changes and optionally save them also. If
you don’t save them, the changes will not persist between

67

First Steps

Emacs sessions. Pressing the aptly named Apply and Apply
and Save do just that. The Revert… button is similar but has
a few more options. You only need Revert This Session’s Cus-
tomizations if you’re unhappy with the changes you have ap-
plied. Keep in mind it will only revert the options you have in
the current bu昀昀er — not all the customizations made globally.
Always remember that you can revert your changes until
you save. After that, you have to manually go through and
undo or use the Revert… button’s Erase Customizations op-
tion.
All Customizations are stored in your init 昀椀le by default (or
possibly a separate custom 昀椀le) and like the rest of Emacs the
changes are stored as elisp code, making it possible for you
to go back and manually change the elisp.
Instead of navigating through the tree of groups, you can
use one of several shortcut commands:

M-x customize displays the Customize interface and all the
groups.

M-x customize-option asks for a customizable option and
opens the Customize UI with that option present.

M-x customize-browse opens a tree group browser. Much
like the regular Customize interface but without the
group descriptions.

M-x customize-customized customizes options and faces
that you have changed but not saved. Worth keeping
in mind if you cannot recall if you have unsaved
options.

68

First Steps

M-x customize-changed displays all options changed since a
particular Emacs version. Good way to discover new
features and options.

M-x customize-face prompts for the name of a face to
Customize. I recommend you put your point on
the face you want to change. It’ll 昀椀ll in the name
automatically.

M-x customize-group prompts for a group name (e.g.,
python) to Customize.

M-x customize-mode customizes the major mode of your
current bu昀昀er. You should do this for every major
mode you use. It’s a quick way to change things and
gain an overview of what your major mode can do.

M-x customize-saved Displays all your saved options and
faces. Extremely handy if you want to track down
and disable errant changes.

M-x customize-themes Shows a list of installed themes you
can switch to.

I encourage you to use the Customize interface to con昀椀gure
Emacs. It only has a subset of things you can (or want) to
change, but it’s enough to get you started on the road to
personalizing Emacs.
As you continue to use and personalize Emacs you may even-
tually reach a point where your init 昀椀le is unmanageable.
When that happens it’s common to split up your changes

69

First Steps

into groups of related changes. However, this is a low prior-
ity task until you’re comfortable (and your init 昀椀le splitting
at the seams) with Emacs.

Evaluating Elisp Code
Frequently, you will 昀椀nd or write snippets of elisp code on
the Internet and you’ll want to evaluate it — closing and
restarting Emacs every time is a chore.
There are a number of di昀昀erent ways of doing this and I have
only shown a few of the di昀昀erent methods available to you.
You can read Evaluating Elisp in Emacs12 for a thorough study
of the subject.

Restarting Emacs is the simplest way, which I recommend
if you have broken something in Emacs or if you want
to be sure things work in a fresh environment.

M-x eval-buffer will evaluate the entire bu昀昀er you’re in.
This is what I use to evaluate something.

M-x eval-region evaluates just the region that you have
marked.

Naturally, this is just scratching the surface. You shouldn’t
need to know much more than this to deal with the odd bits
of code you see and want to try out.

12 https://www.masteringemacs.org/article/evaluating-elisp-emacs

70

https://www.masteringemacs.org/article/evaluating-elisp-emacs

First Steps

The Package Manager
Emacs comes with a package manager that seamlessly dis-
plays and installs packages from centralized repositories.
There are several package repositories available, and your
Emacs is con昀椀gured to read from o昀케cial the GNU reposito-
ries. However, you should also add MELPA, a volunteer-run
package repository. The package manager will merge all the
di昀昀erent listings into one.
As the repositories are privately owned by volunteers, they
may go down – temporarily or permanently – so I would
check the Emacs Wiki13 for a current list of repositories.
Type M-x package-list-packages and Emacs should
retrieve the package listings from your con昀椀gured reposito-
ries. When it’s done, a new bu昀昀er will appear listing all the
packages. Like a lot of ancillary bu昀昀ers in Emacs, this one
is also hyperlinked. Have a browse — you can one-click
install the packages you care about from the detail page of a
package.

Hint
If you know the name of the package, you
can use the shortcut M-x package-install and
enter the name in the minibu昀昀er. And like
most minibu昀昀er prompts, this one also has TAB
completion.
The package archive(s) change constantly and –
especially if you leave Emacs running for long

13 https://www.emacswiki.org/emacs/ELPA

71

https://www.emacswiki.org/emacs/ELPA

First Steps

periods of time – your local copy becomes stale;
to remedy this, you can refresh the catalog by
typing M-x package-refresh-contents.

Custom Color Themes
If you dislike the default color scheme in Emacs —
then good news, you can use a custom theme. Type
M-x customize-themes to see a list of your installed custom
themes. There are more available for free from Emacs’s
package manager or sites like Github.
To install a theme with the package manager, open the
package manager (M-x package-list-packages) and go look
for themes; most will have the su昀케x -theme, and they act
and install like normal packages. Once you’ve installed the
themes you need, use the M-x customize-themes interface
to try them out. You can override speci昀椀c colors you don’t
like by using the regular Customize interface described in
The Customize Interface. Changes made in the Customize
interface take precedence over the themes.
I should mention that you can have multiple themes active
at the same time, so make sure you are aware of this.

Getting Help
As I mentioned earlier when I talked about keys, Emacs is a
sophisticated self-documenting editor. Every facet of Emacs
is searchable or describable. Learning how to do this is abso-
lutely essential to mastering Emacs. The utility of knowing how
to 昀椀nd the answers to questions is something I cannot over-

72

First Steps

state enough. I use Emacs’s self-documenting functionality
all the time; to jog my memory, or to seek answers to ques-
tions I don’t know.

Terminology
You’ll see the word symbol used a lot when I
discuss Emacs’s documentation systems. It’s
not that the word is unique to that part of
Emacs, but that it expresses anything you could
reasonably look up: be it a variable, function,
face or something else entirely.

I still haven’t talked about the actual core of Emacs yet
(movement, editing, and so forth) because, although that’s
obviously critical to mastering Emacs, they are speci昀椀c
skills that you could, with patience, acquire by using
Emacs’s self-documenting help systems.
Knowing how to get help is critical because:

Emacs knows best Your Emacs con昀椀guration will di昀昀er
– sometimes just a little bit, other times a lot –
from other people’s Emacs con昀椀gurations. Asking a
question on the Internet will only give you general
answers. If you rebind keys, only your Emacs knows
what the keys are.

You will discover more of Emacs I have stumbled upon
more cool features than I can count simply by explor-
ing — maybe a time saving command hidden away in
a major mode, or a variable that changes the behavior
of a command I use frequently.

73

First Steps

A lot of third-party packages may not have an
adequate user manual, forcing you to read the source
or investigate the commands and variables exposed
by the package.

It will help you solve problems I help people with Emacs
questions all the time, but I don’t know everything —
what I do know is where to look and how to read the
documentation.

It gives you con昀椀dence Not knowing how to do some-
thing in Emacs is normal but also confusing. But
being able to say that “oh, I don’t know how to do
this but I do know where I can look for help” — your
con昀椀dence in Emacs will go up in step with your
knowledge.

Emacs’s help system is roughly divided into three parts and
knowing which one you need and when will save you time.

The Info Manual
Emacs’s own manuals (and indeed, all manuals in the GNU
ecosystem) are written in TeXinfo. If you have ever used the
command line tool info, you will have interacted with the
TeXinfo hypertext viewer. Emacs, obviously, has its own
info viewer. Emacs’s info manual contains more than just
topics relating to Emacs. By default, the info browser will
index all the other info manuals installed on your system —
things like the GNU coreutils manuals will also be present.

74

First Steps

A lot of people dislike info and I’m not sure why. It works in
much the same way as a web browser, though the key bind-
ings do di昀昀er.
To access Emacs’s info reader type M-x info or press C-h i.
info, the documentation browser, will appear and you are
free to use your mouse to click on the hyperlinks, or use
this table of keyboard shortcuts to navigate:

Key Purpose
[and] Previous / next node
l and r Go back / forward in history
n and p Previous / next sibling node
u Goes up one level to a parent node
SPC Scroll one screen at a time
TAB Cycles through cross-references and links
RET Opens the active link
m Prompts for a menu item name and opens it
q Closes the info browser

Because info manuals have hierarchies, in much the same
way this and most other books do, you’ll want to use [and
] to navigate if you’re reading an info manual end-to-end.
That’s equivalent to reading a book starting from a chapter,
moving through all the sub-chapters, sub-sub-chapters, and
so forth, in the order they were laid out.

Everyday reading
For everyday reading, you want SPC for brow-
sing and reading as it “does what you want.” It

75

First Steps

thumbs through a page until it reaches the end.
Then, it either picks the next sub node or the
next chapter. For browsing, use [and] to cycle
back and forth through nodes.

If, instead, you want to jump to the next or previous sibling
node you should use n and p. To go back or forward in his-
tory (much like a browser) use l and r.
The key u goes up one level to the parent; TAB cycles through
the hyperlinks, and RET opens them.
Most info manuals are also published in HTML versions on-
line, so why use Emacs’s own reader? For one, you can use
Emacs’s universal bookmark system (and more on that later.)
You can bookmark almost everything in Emacs: info pages,
昀椀les, directories, and more. The other advantage is that it’s in
Emacs, so keeping the info manual in a split window next to
you is particularly desirable if you’re reading Emacs’s excel-
lent An Introduction to Programming in Emacs Lisp and writing
code alongside it.
If you want to read up on a speci昀椀c Emacs functionality, you
have to open the Emacs manual 昀椀rst. To do this, type C-h i
followed by m. When prompted for a menu item, type Emacs
for the Emacs manual or Emacs Lisp Intro for the introduc-
tion to elisp. As always, there is TAB completion. You can
also browse the master list of manuals and 昀椀nd the one you
want to read.

Emacs 28
You can open a manual with the key binding C-h
R. To open Emacs Lisp Intro type C-h R eintr.

76

First Steps

You can look up the documentation for a command
by typing C-h F and at the prompt enter the name of a
command. Emacs will jump to the correct place in the info
manual where the command is described.

Apropos
Emacs has an extensive apropos system that works in much
the same way as apropos does on the command line. The
apropos system is especially applicable if you’re not entirely
sure what you’re looking for. There is a variety of niche
commands that only search particular aspects of Emacs’s self-
documenting internals.
Apropos is another tool to have in your toolbox. It shines
because you can narrow what you’re looking for to a par-
ticular area. If you’re looking for a variable, you can use the
apropos system that searches variables; if you are looking for
commands, you can search by command. And all of apropos
supports regular expressions.
The most common one, bound to C-h a, is M-x apropos
-command. apropos-command shows all commands (and just the
commands, not functions) that match a given pattern.
For instance, you might be on the hunt for commands that
work on words (but more on what a “word” actually means
in What Constitutes a Word?) so entering C-h a followed by

-word$, is a good place to start. That will list all commands
that end with -word.
Here’s a subset of the output you would see if you ran that
command:

77

First Steps

Command Key Purpose
ispell-word M-$ Check spelling of word under

or before the cursor.
kill-word M-d Kill characters forward until

encountering the end of a word.
left-word C-<left> Move point N words to the left

(to the right if N is negative.)
mark-word M-@ Set mark ArG words away

from point.

As you can see, you get the name of the command, the keys
bound to it (if any) and the purpose. Emacs has certain nam-
ing conventions and once you’re familiar with Emacs, you
will see certain patterns emerge. For instance, it’s common
to post昀椀x a command with the syntactic unit or context it op-
erates on: -word for words, -window for windows, and so on.

Hint
Apropos can sort results by relevancy. Type
M-x customize-option RET apropos-sort-by-scores
RET to customize it.

There’s a wide range of apropos commands you can use
to query Emacs. apropos-command is my choice as the most
important command to memorize. As it’ll let you search
by pattern, you need only remember part of a command’s
name, but not all of it, to 昀椀nd what you are looking for. It’s
also a fantastic way to accidentally discover new features
in Emacs. Giving apropos-command the .+ pattern (to match

78

First Steps

everything) yields thousands of commands that Emacs
knows about.
Emacs has a range of specialist apropos commands that you
might 昀椀nd more suitable.

M-x apropos The thermonuclear option. This command
will display all symbols that match a given pattern.
If you’re trying to track down both variables,
commands and functions relating to a pattern.

M-x apropos-command or C-h a As I explained above, this
command will list only the commands.

M-x apropos-documentation or C-h d Searches just the doc-
umentation. In Emacs parlance, that means the doc
string (documentation string) with which you can sup-
ply symbols. Has its uses, if all other options fail.

M-x apropos-library Lists all variables and functions
de昀椀ned in a library. Use it if you’re investigating a
new mode or package as it lists all the functions and
variables de昀椀ned in that library.

M-x apropos-user-option Shows user options available
through the Customize interface. This is one way to
get the symbol names of Customize options, but
if you’re looking for ways to search the Customize
interface, you are better o昀昀 using the Search box in
the Customize interface as it lets you customize the
matches as well. I never use it.

M-x apropos-value Searches all symbols with a particular
value. If you’re looking for a variable that holds a

79

First Steps

particular value, this command may be of use to you.
A potential use is if I know the value of a variable but
not the name or where it’s de昀椀ned.

If you’re unsure of what you are looking for – maybe you
only have part of a name, or you just remember a bit of the
documentation – then apropos is a tool that can help you.
I 昀椀nd apropos indispensable; it’s a great way to list all the
commands that match certain patterns and an even greater
way to discover new commands.

The Describe System
What captures the beauty of Emacs’s self-documenting na-
ture is the describe system of commands. If you know what
you’re looking for, then describe will explain what it is. Ev-
ery facet of Emacs – be it code written in elisp or the core
layer written is C – is accessible and indexed through the de-
scribe system. From keys, to commands, character sets, cod-
ing systems, fonts, faces, modes, syntax tables and more —
it’s all there, neatly categorized.
The describe system is not static. Every time you query a
particular part of Emacs, it will fetch the required details
through an internal introspection layer which itself queries
Emacs’s own internal data structures. Both the introspec-
tion layer and internal data structures are queryable by
you through elisp. There are no “secrets” in Emacs —
sure, the documented API layer is the recommended way
of accessing Emacs’s own internal state, but unlike other
editors and IDEs you are not beholden to the package author
or Emacs maintainers. I think this embodiment of openness,

80

First Steps

beautifully captured by the describe system, is one of the
best features of Emacs.
You can 昀椀nd the most important describe keys bound to the
C-h pre昀椀x key14 ; there’s more, a lot more actually, but I
think most of them are of limited utility to all but elisp writ-
ers.
I use the describe system constantly. In writing this book, I
have used both the info manual and apropos extensively, but
the describe system is what I use to double check that ev-
erything I have written is correct. If you ever 昀椀nd yourself
wondering what a symbol in Emacs does (be it a function, a
command, a variable or a mode) then describe will tell you.
The only slight downside to the doc string is that it assumes a
technical audience: the info manual generally does not. It’s
not all bad, you don’t have to be an elisp expert to make sense
of the description but it will take a bit of time to familiarize
yourself with the terminology used in the doc strings.
Remember, the describe system describes a living system —
your personalized Emacs.
You need to memorize four describe keys as they are the
most important ones for day-to-day Emacs use.

M-x describe-mode or C-h m Displays the documentation
for the major mode (and any minor modes also
enabled) along with any keybindings introduced by
said modes. The describe command looks at your
current bu昀昀er.

14 As I mentioned in the Keys chapter, you can follow up a pre昀椀x key
with C-h to list all the known bindings.

81

First Steps

This command should be your 昀椀rst port of call when
you’re using a new major mode. You will discover a lot
of Emacs’s functionality this way and it is absolutely
imperative that you use this command.
What it doesn’t do is list mode-speci昀椀c commands that
are not bound to any key: they are simply not shown.

M-x describe-command or C-h x Introduced in Emacs 28,
this command only describes commands, and not
functions like its sibling below.
If you’re looking for an interactive command, I would
use this.

M-x describe-function or C-h f Describes a function.
Another command on the critical path to mastering
Emacs. Knowing what something does in Emacs (and
how to look it up) is essential, but so is being able to
jump to the part of the code where it’s declared.
Describing a function will give you the elisp function
signature, the keys (if any) bound to it, a hyperlink to
where it’s declared, and a doc string.
If the function is a command, it will say it is interac-
tive. I recommend you use describe-command if you’re
using Emacs 28 and you are looking for commands.

M-x describe-variable or C-h v Describes a variable. Like
describe-function, this command is also important,
but perhaps less so as changing variables is not always
easy to do for a beginner. Nevertheless, being able to
read up on what a variable does is.

82

First Steps

M-x describe-key or C-h k Describes what a key bind-
ing does. Of all the commands, this is one of
the most worthwhile ones to memorize, and like
M-x describe-function it’s a command you will use
frequently. If you’re unsure what a key binding does,
simply enter the describe-key interface and re-type
the key — and Emacs will tell you what it does.
It’s worth remembering that some keys come from
major and minor modes and are not global. Therefore,
you may get a di昀昀erent answer depending on the
bu昀昀er in which you type the command.

Emacs 28 adds a couple of handy shortcuts to all describe
bu昀昀ers. They’re worth knowing about, though all but i are
accessible through hyperlinks in the bu昀昀er itself.

Key Binding Purpose
i Open the Info manual
s Jump to the source de昀椀nition
c Open the Customize interface

Emacs does have a lot more describe commands but they’re
nowhere near as practical for day-to-day use. Knowing what
you know now about the naming of describe commands and
how to 昀椀nd commands by patterns, it should be a trivial15

exercise to list all of them.

15 Hint: apropos-command is a good place to start.

83

Chapter 4

The Theory of Movement

Escape Meta Alt Control Shift

– info.gnu.emacs

Getting around, and getting around e昀케ciently, is as impor-
tant as knowing how to edit text quickly and e昀케ciently.
But movement in Emacs is more than characters in a
bu昀昀er; there’s a host of supplementary skills that make up
navigation, like understanding Emacs’s rather complicated
windowing system.
I wouldn’t expect you to remember and apply everything
you learn here right away. I’ve laid things out so you can
start at the beginning and work your way through, picking
up bits and pieces as you read. The most important part, as
I’ve stressed many times, is to give it time and practice —
take a moment in your day-to-day life to ask yourself if
there’s a better way of solving a problem with which you
are faced.

84

The Theory of Movement

Movement in Emacs is local, regional or global. Local move-
ment is what you do when you edit and move around text
near to the point. A syntactic unit – a semi-formal term for
commands that operate on a group of characters – is a char-
acter, word, line, sentence, paragraph, balanced expression,
and so forth. Regional and local movement are similar but
regional movement involves whole functions or class de昀椀-
nitions, if you are writing code; or chapters and such con-
structs, if you are writing prose. Global movement is any-
thing that takes you from one bu昀昀er to another, or from
one window to the next.
The 昀椀rst thing a beginner sees is Emacs’s penchant for creat-
ing windows: when you view a help 昀椀le, when you compile
a 昀椀le, or when you open a shell. If you have never used a
tiling window manager (for that is exactly what Emacs is),
the idea of splitting and deleting windows may seem strange

— in other editors you may use split panes but you almost
never change it to suit the task at hand.
In Emacs, windows are transient; they come and go as you
need them. You can save your window con昀椀guration (and
there are several ways of doing this) but they were never
meant to be immutable, like so many editors — set once and
then never changed again. You have to get used to this. Now,
there are many variables you can use to 昀椀ne-tune Emacs’s
windowing behavior, but you can’t really tweak your way
out of using Emacs’s windows. Some packages try to replace
windows with frames, with some success, but they are essen-
tially hacks and I would recommend you avoid using them
at least until you’re comfortable with Emacs’s system.
Bu昀昀ers are rarely killed (that is, closed) when they are no

85

The Theory of Movement

longer needed; most Emacs hackers will simply switch away
to something else, only to return to it when needed. That
may seem wasteful, but each bu昀昀er (aside from assorted
metadata and the bu昀昀er’s particular coding system) is only
slightly bigger than the byte size of the characters in it. A
typical Emacs session lasts weeks between restarts and most
Emacs hackers have many hundreds of bu昀昀ers running
without issue.
No matter the task you’re doing in Emacs, you will need to
contend with the notion of bu昀昀ers and windows and how to
handle them. Thankfully, that can be as easy or as complex,
depending on your expectations or how you want things set
up.

The Basics
By the way
Have you re-mapped Caps Lock yet? Read Caps
Lock as Control to understand why this is so im-
portant.

Learning the basic key bindings to 昀椀nd and save 昀椀les, change
bu昀昀ers, and the bare essentials of day-to-day use is the 昀椀rst
step on the path to mastering Emacs. However, you’re free
to use the menu bar to do this until you have committed
the keys to memory. One important thing to note about the
menu bar is that it won’t be clickable in a terminal. Instead,
you must press F10 to activate and navigate the menu bar
with the keyboard.

86

The Theory of Movement

Note
Like I explained in Getting Help, If you don’t
see a menu bar (it should appear in both GUI and
Terminal Emacs) and you have made changes to
Emacs’s con昀椀guration – for instance, a starter kit
or a colleague’s init 昀椀le – you can show it by typ-
ing M-x menu-bar-mode but you still need to track
down the part of your con昀椀guration where it’s
hidden.

Once you’re a legendary Emacs hacker, you will naturally
want to hide it as it takes up valuable screen real estate. Un-
til then, please leave it enabled. I encourage you to leave it
enabled until you are con昀椀dent enough in your Emacs skills
that you no longer need it.
Most major modes have their own menu bar entry as well,
improving the discoverability of the major mode. I used the
menu bar for a long time when I was starting out, and it
really helped me as I could focus on remembering important
commands like navigation and editing.
If you prefer a keyboard-only approach, there are a handful
of key bindings you must know to carry out basic tasks in
Emacs.

Key Binding Purpose
C-x C-f Find (open) a 昀椀le
C-x C-s Save the bu昀昀er
C-x b Switch bu昀昀er
C-x k Kill (close) a bu昀昀er
C-x C-b Display all open bu昀昀ers

87

The Theory of Movement

Key Binding Purpose
C-x C-c Exits Emacs
ESC ESC ESC Exits out of prompts,

regions, pre昀椀x arguments and
returns to just one window

C-/ Undo changes
F10 Activates the menu bar 1

Emacs will guess the right major mode when you open 昀椀les
based on its extension (and if that fails, by the content of
the 昀椀le) and more or less work out of the box. Aside from
the key bindings above, you can start editing and moving
around with just the arrow keys like other editors.
Let’s talk about each command in turn as their simple actions
belie their complexity.

C-x C-f: Find 昀椀le
Opening a 昀椀le in Emacs is called 昀椀nding a 昀椀le or even visit-
ing a 昀椀le. Having said that, it’s perfectly 昀椀ne to say open also.
The reason is that Emacs really doesn’t distinguish between
opening an existing 昀椀le and creating a new 昀椀le. I use the terms
interchangeably.
So, if you type C-x C-f and enter /tmp/hello-world.txt,
Emacs will visit it, whether it’s there or not; if it isn’t, an
empty bu昀昀er is shown instead.

1 Required in Terminal Emacs

88

The Theory of Movement

Major mode load order

When you visit a 昀椀le, Emacs will pick a major mode. Most
editors make a lot of assumptions about 昀椀le extensions that
you cannot easily change. Emacs supports an array of detec-
tion mechanisms that can all be changed to suit your needs.
They are listed here in the order they are applied.

File-local variables are variables that Emacs can enable per-
昀椀le if they present in the 昀椀le. They can appear as head-
ers:

-*- mode: mode-name-here; my-variable: value -*-

or footers:

Local Variables:
mode: mode-name-here
my-variable: value
End:

Emacs will also look at commented lines using that ma-
jor mode’s comment syntax.
It is worth knowing that 昀椀le variables read into Emacs
are local to that 昀椀le’s bu昀昀er (meaning other bu昀昀ers are
una昀昀ected by it.) That means if you have particular
settings that apply only to that 昀椀le, you can add them
to the header or footer and Emacs will load them au-
tomatically. In practical terms, that means everything
from indentation settings to more complex variables
are controllable from 昀椀le variables.

89

The Theory of Movement

Because Emacs is in e昀昀ect running code straight from a
昀椀le, all Emacs variables are divided into safe and unsafe
昀椀le variables: variables that are declared as safe – typ-
ically by Emacs maintainers – are evaluated automat-
ically. For unsafe variables, you must 昀椀rst tell Emacs
what to do: you can ignore the variable; or evaluate
it once, temporarily, for that 昀椀le only; or declare it as
safe.

Program loader directives or shebangs are also sup-
ported. If your 昀椀le begins with #! – for instance
#!/usr/bin/env python or #!/bin/bash – then Emacs
will 昀椀gure out the major mode and run it, if it is avail-
able in Emacs. The variable interpreter-mode-alist
lists the program loaders Emacs can detect.

Magic mode detection uses the magic-mode-alist variable
to see if the beginning of the 昀椀le matches a pattern
stored in the magic mode variable. This detection
mode applies if you have no way of annotating the
昀椀le or predicting the 昀椀lename or extension ahead of
time.

Automatic mode detection is how most major modes are
applied. Emacs has a very large registry of patterns that
match a 昀椀le extension, 昀椀le name or all or parts of a 昀椀le’s
path, stored in the variable auto-mode-alist.
For instance, if you open /etc/passwd, Emacs will de-
tect this and open the 昀椀le with etc-passwd-generic-mode
major mode. If the 昀椀lename ends with .zip, Emacs
will instead open the 昀椀le in archive-mode.

90

The Theory of Movement

Although the di昀昀erent heuristics may look complicated, the
good news is the work is done for you. Emacs’s major mode
detection is rather sophisticated and it will almost always
pick the right thing for you.

Coding Systems and Line Endings

Emacs applies two other important heuristics you should
know about: coding systems and line endings.

Coding systems Emacs has excellent Unicode support
(type C-h h to see it demonstrated), including transpar-
ently reading and writing between di昀昀erent coding
systems, bidirectional right-to-left script support,
keyboard input method switching, and more.
To see the coding system in use for the current bu昀昀er,
you can type C-h C <RET>. Emacs will display a lot of
information, including all the coding systems associ-
ated with the bu昀昀er — but for 昀椀les, they are almost
always set to the same coding system.
The modeline will also give you a rough idea:

U:**- helloworld.c 92% of 5k ...

The 昀椀rst character, U, means the bu昀昀er helloworld.c
has a multi-byte coding system. If it said 1, it would
typically be part 1 of any number of ISO character en-
codings. The exact mnemonic will depend on which
of the hundreds of supported coding systems you are
using — hence why C-h C <RET> is a sure-昀椀re way to
see what it is.

91

The Theory of Movement

Line endings When you open a 昀椀le, Emacs will determine
the line endings used. If the 昀椀le uses DOS line endings,
then they are preserved when you open the 昀椀le and
when you save it. Likewise for UNIX and pre-OSX Mac-
intosh encodings.
The modeline will tell you what line ending you are
using:

U:**- helloworld.c 92% of 5k ...

The 昀椀rst character U, as explained above, indicates the
coding system. The : means it’s UNIX-style line endings.
For DOS it would say (DOS), and (Mac) for Macintoshes.

C-x C-s: Save Bu昀昀er
In The Bu昀昀er, I explained that in Emacs a bu昀昀er need not
be a 昀椀le on your 昀椀le system, but it could be a transient bu昀昀er
used for things like network I/O or even just a scratch 昀椀le for
processing text. So, what that means in practice is that you
can save any bu昀昀er in Emacs — even internal ones like a help
or a network I/O bu昀昀er.
When you ask Emacs to save a bu昀昀er, it will save it to the 昀椀le
associated with the bu昀昀er – if, and only if, the bu昀昀er has a
昀椀lename associated – or ask you for a name if there isn’t one.
The latter instance will typically happen if you’re saving a
bu昀昀er that does not yet have a 昀椀le assigned to it; maybe it’s a
temporary bu昀昀er or even the output from a help command.

92

The Theory of Movement

Writing a bu昀昀er to a 昀椀le If you want to save a bu昀昀er to a
di昀昀erent 昀椀le – akin to SaveAs… in other editors – you
can use the command C-x C-w to write to a new 昀椀le.

Saving all 昀椀les You can type C-x s and are asked, in turn,
to save each unsaved 昀椀le.

C-x C-c: Exit Emacs
You can exit Emacs – or just terminate your connection to
it, if you are using Emacs in client-server mode – but Emacs
will only exit after asking you if you want to save unsaved
昀椀les.
You have several options when Emacs asks you to save a 昀椀le:

Key Binding Purpose
Y or yes Saves the 昀椀le
N or DEL Skips current bu昀昀er
q or RET Aborts the save, continues with exit
C-g Aborts save and the exit
! Save all remaining bu昀昀ers
d Di昀昀 the 昀椀le on the 昀椀le system

with the one in the bu昀昀er

Most of the commands above are self-explanatory. Emacs
will traverse the entire list of unsaved 昀椀les but not all unsaved
bu昀昀ers. As you may recall from earlier, it is possible to have
bu昀昀ers that are not attached to any one 昀椀le.
And if you try to exit without saving, Emacs will always ask
you one last time if you want to proceed.

93

The Theory of Movement

C-x b: Switch Bu昀昀er
If you edit more than one 昀椀le at a time – or switch between
documentation bu昀昀ers or mode-speci昀椀c bu昀昀ers, such as
Python’s shell – knowing how to switch bu昀昀ers quickly
and e昀케ciently is very important.
Like Alt+TAB in most window managers, Emacs will remem-
ber the last bu昀昀er you visited so that, when you type C-x b,
the name of the former bu昀昀er is the default action — meaning
pressing RET will take you to it.
Switching bu昀昀ers is second nature to Emacs hackers. Once
you’re comfortable with it, you won’t even think about;
you’ll switch through bu昀昀ers quickly and instantaneously
without so much as a second thought.

Bu昀昀er naming conventions
Some bu昀昀ers in Emacs interact with external
programs – perhaps a shell like bash – or they
hold transient information generated by Emacs
itself. To distinguish them from user-created
bu昀昀ers, they have * characters in their names,
like so: *buffername*.

The fact that 昀椀les and bu昀昀ers are two distinct (but related)
concepts makes sense when you consider the nature of scratch
bu昀昀ers — bu昀昀ers that you create and use but don’t intend
to permanently save. For instance, if you want to run a key-
board macro or do extensive text editing on a region of code,
an Emacs hacker would copy it to a made-up scratch bu昀昀er
(created simply by switching to a bu昀昀er name that does not

94

The Theory of Movement

exist), do the requisite editing, and switch back to the origi-
nal bu昀昀er.

Writing bu昀昀ers to 昀椀les If you later decide you want to
save the bu昀昀er to the 昀椀le system, you can press C-x
C-s to save it.

Listing bu昀昀ers Another worthwhile command is C-x C-b.
It displays a list of all bu昀昀ers running in Emacs. How-
ever, I would recommend you use its bigger brother,
M-x ibuffer. It is not bound by default, so I recom-
mend you make it so by adding this to your init 昀椀le:

(global-set-key [remap list-buffers] 'ibuffer)

Bu昀昀er Switching Alternatives

The built-in interface for bu昀昀er switching is rather poor; it
o昀昀ers basic TAB-completion and some fuzzy matching, but
little else. In fact, completion tooling is so important to your
user experience that I recommend you set aside time to inves-
tigate completion frameworks that 昀椀t your work昀氀ow and
personality. If you are using a starter kit you may already
have one precon昀椀gured and enabled in your Emacs.
Nevertheless, for most people starting out, I recommend
IDO if you are using Emacsen earlier than version 27, and
FIDO (a drop-in replacement) for versions 27 or later.
Regardless of the version, I use both and couldn’t live with-
out them — indeed, most Emacs users will most certainly
have used IDO or something like it at some point.

95

The Theory of Movement

For IDO Mode Type M-x ido-mode and then try C-x bor C-x
C-f again.
You can enable it permanently by customizing the op-
tion ido-mode:

M-x customize-option ido-mode

You can also improve IDO’s fuzzy matching by
enabling 昀氀ex matching:

M-x customize-option ido-enable-flex
-matching RET

And you can customize many more features by run-
ning M-x customize-group ido. For further reading on
this subject, I recommend you read Introduction to IDO
mode.2

For FIDO Mode (Emacs 27 or later) Type M-x fido-mode.
There are some completion options related to this
mode, but they are under the umbrella group
icomplete, the parent completion mechanism FIDO
is built in. To view them, type M-x customize-group
icomplete.

Additional Completion Frameworks
There are dozens of completion frameworks
available in the package manager today. Most

2 https://www.masteringemacs.org/article/
introduction-to-ido-mode

96

https://www.masteringemacs.org/article/introduction-to-ido-mode
https://www.masteringemacs.org/article/introduction-to-ido-mode

The Theory of Movement

trade o昀昀 one another, swapping one conve-
nience or bene昀椀t for another: be it speed;
simplicity; features and integration with major
modes or external sources; search and comple-
tion methodology; or how results are presented
to the user.
Some of the more common ones in addition to
FIDO and IDO include: Helm, ivy, Selectrum, Ici-
cles, Icomplete.
What, and how, you complete or search for
information is a self-perpetuating debate in the
Emacs community, and a great way to explore
the di昀昀erent ways of combining and accessing
information and work昀氀ows. I recommend
you try most of these frameworks and see
what they’re capable of: they are true force
multipliers; especially the ones that merge
results from third-party sources (command line
tools, language servers, etc.)

C-x k: Kill Bu昀昀er
Killing a bu昀昀er in Emacs means closing it. You don’t have to
kill bu昀昀ers you don’t use. It’s perfectly normal to let them sit
in the background until you need them again. Normally, se-
rious Emacs users have hundreds or even thousands of open
bu昀昀ers at a time.

97

The Theory of Movement

ESC ESC ESC: Keyboard Escape
The click your heels three times key. If you’re stuck somewhere
or want to “go back to normal” — then pressing ESC ESC
ESC will (probably) solve your problems.
All windows are deleted (meaning they’re hidden from
view), prompts are exited out of, special bu昀昀ers are hidden,
pre昀椀x arguments are cancelled, and recursive editing levels
are unwound.

C-/: Undo
Undoing is a common activity and it is bound to several keys:
C-/, C-_, C-x u, Edit -> Undo, or even a physical undo button
if your keyboard has it.
Which command you prefer is up to you: I think C-/ is the
easiest to type, but if your character set is not US or UK,
then you may prefer another. Most beginner’s guides will
recommend you use C-x u or even C-_ but I 昀椀nd them harder
to type than C-/.

Repeating Keys in Emacs 28
Emacs 28 adds the concept of repeating
keys. If you enable repeat-mode with
M-x customize-option RET repeat-mode RET
you can chain repeated undo statements with
C-x u ... u. Not all keys in Emacs work this
way, but you can see a list of the ones that do
with M-x describe-repeat-maps.

98

The Theory of Movement

Unlike other editors, the undo system in Emacs can be a
source of confusion. Instead of storing changes you make in
a list that you can undo and redo from, in Emacs it’s stored
in what’s known as the undo ring.
Most editors feature a linear undo list: you can undo and
redo, but if you undo and then change the text, you will
lose the undone steps; they will be unrecoverable and lost
forever.
In Emacs, this is not the case. Every action you take is
recorded in the undo ring, and this includes the act of
undoing something. Emacs will group certain commands
together into one cohesive undo cell — like typing charac-
ters or repeating the same command many times in a row.
Some events will always “seal” the undo record and start
a new one. Pressing RET, backspace, or moving the point
around are three such examples.
Repeated undo commands will undo more and more things
but if you break the cycle – for instance by moving around
or editing text – Emacs will not resume from where you left
o昀昀. Instead, the items you just undid were added to the undo
ring as redo records. That means when you undo again, you
will actually undo (redo) the actions you just did until you
get to the state you were at when you last stopped — then
Emacs will undo the rest of the changes in your bu昀昀er.
This means it’s next to impossible to lose undo history as the
act of undoing is itself an undo-able action. That means you can
undo a few things – like rewriting a paragraph in a bu昀昀er
– only to realize later on that, actually, you liked the old
text better. In other editors your undone changes would be
gone forever as they have linear undo lists. In Emacs you

99

The Theory of Movement

undo your newly-written paragraphs until Emacs returns
your bu昀昀er to the state it was in before you did your last
undo.
It can be a little bit confusing. But with a little bit of practice
you’ll soon pick it up. As it’s impossible to really lose any
data with the undo ring, it’s easier to just experiment. Do re-
member that Emacs will keep undoing things from the ring
as long as you keep undoing commands one after another.
Only by breaking this “undo cycle” will you be able to redo
the undone changes. And the easiest way to break the cycle
is by simply moving your point, or writing something.
Here’s a simple example. It’s not how Emacs’s undo ring ac-
tually retains undo information – it’s rather more complex
than that – but I think that level of detail is unnecessary.

1. You sit down and write out the following, with █ rep-
resenting the position of the point:

Hello
Emacs█

2. Now you undo once with C-/:

Hello
█

The 昀椀rst thing to note is the newline is preserved; gen-
erally, newlines will cause a ‘break’ and create a new
undo cell in the undo ring. Why it does that is sim-
ple pragmatism: often, if you want to undo something,

100

The Theory of Movement

you do not want to undo many lines of prose or code,
but only the most recent text. Contrast that with edit-
ing in other programs where you’d often undo large
swathes of text, whether you want to or not.

3. Call undo again and you undo just the newline:

Hello█

4. Press enter again and type World:

Hello
World█

At this point we’ve written something; undone parts
of it; and now written new text.

5. Typing C-/ twice reverts from World back to Emacs.

6. Navigating to the 昀椀rst line and altering Hello to GNU:

GNU█
Emacs

7. Now repeatedly type C-/ and you’ll undo your
previous writings and reveal the ones that were
subsequently overwritten during a previous undo cycle.
Repeat it enough times and you’ll eventually end up
with a blank bu昀昀er.
Emacs, in other words, does not lose information when
you undo.

101

The Theory of Movement

If at any point you stop the undo process part-way
through – perhaps you’ve undone enough to bring
your bu昀昀er text to its desired state – you can break
the chain by issuing any command that is not another
undo command. Like movement.
Breaking the chain leaves the undo ring in the position
it was in when you broke the chain. Subsequent undo
commands now undo from that point, but in the other
direction: by redoing the previous undo steps.

Still confused? That’s normal. It’s a di昀케cult concept to
“get” (and much harder to explain) but most Emacs
beginners will pick it up over time. The main point
to take away is that it’s almost impossible to break the
undo ring and lose information — so go ahead and
experiment. Chances are, to begin with, you only
care about undoing the most recent changes anyway.

Simulating the classic undo-redo behavior
In Emacs 28 there is a new command,
M-x undo-redo, bound to C-? and C-M-_.
You can invoke it after you’ve used the regular
undo command one or more times in a row. It’s
a redo command for undo. However, when you
invoke it, it won’t push the “redo” step to the
undo ring.
Combine it with the obscure M-x undo-only com-
mand – which will not redo a previous undo – and
you have a facsimile of the undo-redo dynamic
you may know from other editors.

102

The Theory of Movement

I recommend you instead spend the time to
familiarize yourself with the default undo
command as you’ll have to deal with the
concept of rings in many other parts of Emacs.
Although these two specialized commands may
昀椀nd a place in your work昀氀ow, they do little to
simplify an already hard-to-grok concept.

By the way
You can download alternative undo implementa-
tions for Emacs. A popular one is Undo Tree.3

Window Management
Managing windows is another core skill you have to mas-
ter. Honestly, despite the chapter introduction saying it was
rather complex, the truth of the matter is it isn’t: there are
only a few key bindings you need to learn. What makes it
complex – or to some people, downright infuriating – is the
reliance on windows in the 昀椀rst place, and how to get used
to the windowing concept.
Let’s take a look at the key bindings you need to know about.

Key Binding Purpose
C-x 0 Deletes the active window
C-x 1 Deletes other windows
C-x 2 Split window below
C-x 3 Split window right

3 https://www.emacswiki.org/emacs/UndoTree

103

https://www.emacswiki.org/emacs/UndoTree

The Theory of Movement

Key Binding Purpose
C-x o Switch active window

These 昀椀ve keys are all you need to use, split and delete win-
dows. There are more commands, as you’ll see below, but
to start with, you can get by with these 昀椀ve commands.

Undoing window changes
Sometimes you want to return to a past window
con昀椀guration. The mode, M-x winner-mode, re-
members your window settings and lets you
undo and redo with C-c <left> and C-c <right>,
respectively.
To enable Winner mode permanently:

M-x customize-option RET winner-mode RET

Emacs will tile windows and generally ensure each new win-
dow is given roughly half the screen estate of the splitting
window. If you have just one window and you split to the
right, you now have two windows, each with a 50% share.

Deleting windows If you use C-x 0, then Emacs will delete
the active window – which is always the one where
the point is active – and if you type C-x 1, Emacs will
delete all other windows.

Splitting windows A window is split either horizontally
or vertically (or “below” and “right”) with C-x 2 and

104

The Theory of Movement

C-x 3, respectively. If you have a large monitor, you
may want to split vertically so you can have more than
one bu昀昀er visible at a time; you may even prefer addi-
tional subdivisions. I always split into two or even four
windows, arranged in a 2x2 grid.

Finally, to move between windows use the command C-x o.
I rebind it to M-o as it’s such a common thing to do. You
should do the same by adding this to your init 昀椀le:

(global-set-key (kbd "M-o") 'other-window)

Directional window selection
Some people prefer the windmove package that
ships with Emacs, as it lets you move in cardi-
nal directions instead of cycling through all win-
dows.
You can enable it by adding this to your init 昀椀le:

(windmove-default-keybindings)

You can now switch windows with your shift
key by pressing S-<left>, S-<right>, S-<up>,
S-<down>.

Working with Other Windows
Once you’re comfortable splitting and deleting windows,
you can build on that by acting on other windows. That
is, if you want to switch another window’s bu昀昀er, you

105

The Theory of Movement

have to C-x o to the window, then use C-x b to change the
bu昀昀er. It’s a bit tedious and it breaks your tempo. The other
window in this case is the one immediately after the current
one when you run C-x o.

Key Binding Purpose
C-x 4 C-f Finds a 昀椀le in the other window
C-x 4 d Opens M-x dired in the other window
C-x 4 C-o Displays a bu昀昀er in the other window
C-x 4 b Switches the bu昀昀er in the other window

and makes it the active window
C-x 4 0 Kills the bu昀昀er and window
C-x 4 p Run project command in the other window

These commands are the most applicable ones for operating
on other windows. There are a few more – you can use C-x 4
C-h to list them – but you won’t use them as often.
If you look closely at the key bindings in the table above,
you will see a symmetry between C-x 4 and C-x — indeed,
they are almost identical in binding and purpose. This is no
coincidence, and the symmetry will help you remember the
commands.

Frame Management
You can create frames – what are called windows in other pro-
grams and window managers – and you may prefer to do
this if you use a tiling window manager or to take advan-

106

The Theory of Movement

tage of multi-monitor setups. Note that frames also work
in terminal Emacs.
The pre昀椀x key used for frames is C-x 5. Like the pre昀椀x key
for windows (C-x 4) the commands are mostly the same.

Key Binding Purpose
C-x 5 2 Create a new frame
C-x 5 b Switch bu昀昀er in other frame
C-x 5 0 Delete active frame
C-x 5 1 Delete other frames
C-x 5 C-f Finds a 昀椀le in the other frame
C-x 5 p Run project command in the other frame
C-x 5 d Opens M-x dired in the other frame
C-x 5 C-o Displays a bu昀昀er in the other frame

Switching bu昀昀ers with multiple frames is seamless, if a
bu昀昀er is visible (it is displayed in a frame in a window)
Emacs will switch to the right frame where the bu昀昀er is
already visible.
Whether you choose to use frames or not is up to you. The
mechanics of dealing with multiple frames is slightly awk-
ward in Emacs as all frames share the same Emacs session —
which is sometimes a blessing or a curse. I 昀椀nd that frames
only come into their own with multi-monitor setups, but
not so much elsewhere. The usefulness of frames, I 昀椀nd, is
limited by the already excellent tiling window management
system present in Emacs. My only recommendation is to try
it out and see if frames 昀椀t your work昀氀ow.

107

The Theory of Movement

Tab Bars and Tab Lines
One common complaint about Emacs was its lack of a native

“tab bar” – like the ones in web browsers and most other ed-
itors – but in Emacs 27 they added not one but two distinct
implementations that solve two common problems. It’s a
long time coming, but the implementation and user expe-
rience is sound and, in true Emacs fashion, utterly customiz-
able to third-party package authors and users alike.
If you’re not using Emacs 27, you can 昀椀nd third-party imple-
mentations in the package manager: they are facsimiles of
the real thing, relying on a quirk in the Emacs rendering en-
gine to provide a semblance of the real feature. But, if you
are the sort of person who prefers the mental model of see-
ing a row of tabs, then you will likely 昀椀nd either implemen-
tation useful.

Custom Themes
If you’re using a custom theme that predates
Emacs 27, you may 昀椀nd the color scheme does
not extend to the new faces that govern the
tab bar and tab line modes. You can customize
them by typing M-x customize-apropos-faces
tab-.

There are two new tab modes, and they each solve di昀昀erent
problems.

108

The Theory of Movement

Tab Bar Mode
Tab Bars group tabs by window con昀椀gurations. In Emacs, a win-
dow con昀椀guration is a collection of windows – size, location,
the bu昀昀er, and so on – that represents a layout of your Emacs
frame. Like most of things in Emacs, window con昀椀gurations
are con昀椀gurable and can be saved to disk, to a register (but
more on them much later) or indeed now to a tab bar.
In an IDE this would be referred to as workspaces or projects,
perhaps. If you often 昀椀nd yourself switching between entire
work昀氀ows – maybe an OrG mode agenda and planner along
with your email for one thing, and another for your coding
– then you’d have two distinct window con昀椀gurations. The
Tab Bar mode makes it easy to organize your thoughts into
persistent window con昀椀gurations.
One common complaint about Emacs – from new or expe-
rienced users alike – is the complexity in managing the win-
dows as the system of splitting and where bu昀昀ers appear is
opaque and hard to understand.
Tab Bar Mode takes aim at that complexity with an intu-
itive interface very similar to the Frame, Bu昀昀er and Window
Management commands I demonstrated earlier.
To enable tab bar mode you can customize M-x customize-option
RET tab-bar-mode; type M-x tab-bar-mode; or simply invoke
one of the key bindings below.
The pre昀椀x key for tab bar mode is C-x t.

Key Binding Purpose
C-x t 2 Create a new tab

109

The Theory of Movement

Key Binding Purpose
C-x t 0 Close the current tab
C-x t RET Select tab by name
C-x t o, C-<tab> Next Tab
C-S-<tab> Previous Tab
C-x t r Rename Tab
C-x t m Move tab one position to the right
C-x t p ... Run project command in other tab
C-x t t Execute command in other tab
C-x t 1 Close all other tabs
C-x t C-f, C-x t f Find 昀椀le in other tab
C-x t b Switch to bu昀昀er in other tab
C-x t d Open Dired in other tab

Like the frame, window, and bu昀昀er management key bind-
ings, the tab bar bindings follow the same pattern: actions
that a昀昀ect other tabs is akin to creating a new tab.
New tabs are named according to the bu昀昀er that triggered
their creation, and the active bu昀昀er thereafter. You can re-
name and move them around the tab bar as you see 昀椀t. If you
prefer, you can use C-x t RET to select tabs by their name;
likewise, you can switch to the next or previous tabs with
C-<tab>, C-S-<tab>, or the mouse.
If you dislike seeing the tab bar itself, you can hide it with
M-x customize-option tab-bar-show, and still bene昀椀t from
all the capabilities of the tab bar.
There are a handful of commands not bound to any key.

110

The Theory of Movement

Command Purpose
M-x tab-list Shows an interactive tab list
M-x tab-undo Undoes a closed tab for each invocation
M-x tab-recent Switch to the last visited tab

I think tab bar mode shines if you prefer manicured win-
dow con昀椀gurations and a simple set of tooling to manage
them. By including common utility functions like 昀椀nding
a 昀椀le; switching a bu昀昀er; opening dired, etc. they let you
jump from an existing tab bar con昀椀guration to a new one
quickly. Combine it with the ability to quickly close, re-
name or jump back and you can consider tabs like you would,
say, frames: a logical collection of windows and their state,
but without the hassle of managing multiple frames.
However, it’s not uncommon still for a window con昀椀gura-
tion to get out of order: earlier in Window Management
I talked about winner-mode, a way of undoing and redoing
recent window con昀椀gurations. It’s not nearly as worth-
while with tab bars as it does not understand tab-speci昀椀c
window con昀椀gurations. Instead, I recommend you enable
M-x tab-bar-history-mode with M-x customize-option
tab-bar-history-mode.
Tab bar history mode manages a tab-speci昀椀c history of win-
dow con昀椀gurations. Unfortunately the commands to step
through the history is not bound to anything. The snippet
below borrows the key bindings M-x winner-mode uses by de-
fault. If you want to use both, you should choose your own
key bindings4 .

4 Mastering Keybindings in Emacs is a detailed article on this subject.

111

https://www.masteringemacs.org/article/mastering-key-bindings-emacs

The Theory of Movement

Add this to your init 昀椀le:

(global-set-key (kbd "M-[") 'tab-bar-history-back)
(global-set-key (kbd "M-]") 'tab-bar-history-forward)

Now when a tab’s window con昀椀guration (or a bu昀昀er in one
of the windows) changes you can walk forward or backward
through that history.
For most work昀氀ows, window and tab bar management is
all you need to tame Emacs’s window management for your
day-to-day needs.

Tab Line Mode
Unlike tab bar mode, the tab line mode is feature more
akin to the tabs you’ll 昀椀nd in a web browser. Like the tab
bar mode, its primary purpose is to group related things
together: by default the tab line will, when enabled, list
bu昀昀ers previously opened in that window.
To enable it, type M-x customize-option global-tab-line-mode;
or M-x global-tab-line-mode.
There are only two key bindings worth learning.

Key Binding Purpose
C-x <left> Select previous bu昀昀er
C-x <right> Select next bu昀昀er

Using the key bindings you can cycle through the list of

112

The Theory of Movement

bu昀昀ers relevant to the window you call it from. By default
that is a list of recent bu昀昀ers, but you can customize that
with M-x customize-option tab-line-tabs-function and,
say, limit it to bu昀昀ers of the same major mode.

Elemental Movement

Navigation Keys
The most elemental movement commands available to
you – and indeed, to every editor – are the humble arrow
keys. They work as you would expect, and if you’re new
to Emacs, I recommend you use them until you learn the
more advanced movement commands.
As with other editors, you can combine the arrow keys –
written as <left>, <right>, <up>, and <down> – with the con-
trol key to move by word. Simultaneously, the other naviga-
tion keys, like page up and page down, also work in Emacs.

Key Binding Purpose
<left>, … Arrow keys move by character in all

four directions
C-<left>, … As above, but by word
<insert> Insert key. Activates overwrite-mode
<delete> Delete key. Deletes the character after

point
<prior>, Page up and Page down move up and down
<next> nearly one full page
<home>, <end> Moves to the beginning or end of line

113

The Theory of Movement

Once you’re comfortable with the basics of Emacs – han-
dling bu昀昀ers, splitting and deleting windows, saving and
opening 昀椀les – you should move away from using the navi-
gation keys. Though they serve their purpose well, they are
too far away from the home row, and moving your right hand
away from the home row just to move the point around on the
screen is time consuming.

By the way
The page up/down buttons will scroll up or
down a screenful of text, retaining 2 lines of
text for context. You can change the amount of
overlap when you page through text by altering
the variable next-screen-context-lines directly
in your init 昀椀le or by using Emacs’s customize
interface, like so: M-x customize-option, then
enter next-screen-context-lines.

If you regularly use shells like bash or other GNU readline-
enabled terminal applications, then good news for you: by
default they use Emacs-style keys. Try it, M-f moves forward
by word. In fact, dozens of Emacs’s most commonly-used
commands5 exist in GNU readline, meaning the mental con-
text switch is minimal and every terminal program that uses read-
line supports them.

5 The man page on readline has a complete list. But why not read the
man page in Emacs? M-x man readline

114

The Theory of Movement

Moving by Character
The arrow key equivalents in Emacs will seem positively
strange when you 昀椀rst encounter them. A lot of people won-
der why Emacs would bind an action as common as moving
forward a character to C-f. The fact is if you know Emacs,
you’ll almost never move around by character.
Moving by character – and also by line, as that is technically
the smallest unit you can move up or down – is the small-
est atomic movement you can make in a bu昀昀er. Character
movement is for 昀椀nesse; made for precision movement, if
you like. Moving around a bu昀昀er by character is ine昀케cient
and tedious; limited by the speed of your keyboard’s repeat
speed or how fast you can type it. That’s slow, and that slow-
ness adds up as we often spend as much time moving around as
we do editing text. You should only use character movement
when it’s the most e昀케cient command available. Moving by
word is great, but that won’t help you if you want to move
2 characters into a word.
The four basic movement commands are:

Key Binding Purpose
C-f Move forward by character
C-b Move backward by character
C-p Move to previous line
C-n Move to next line

As you can see, mnemonically, the assignments make sense
– p for previous, b for backwards – and all are bound under
the C- modi昀椀er.

115

The Theory of Movement

You can apply universal arguments to the character keys
and they will work as you expect. Type C-8 C-f and you
will move the point forward eight characters. You can even
combine the negative argument to reverse the direction
of the command — that may not make much sense with
movement keys, but some commands come with a forward
and backward command. Most act in just in one direction
– forward, that is – and the negative argument is the only
way to change this direction.
Learning Emacs’s own movement commands (as opposed
to using the navigation keys to the right on your keyboard)
makes sense when you look at how Emacs’s other move-
ment commands work. I see experienced Emacs users
execute choreographed sequences of commands to do
interesting and complex actions only to stop dead in their
tracks to move their right hand away from the home row
and move the point around by character. At some point
you will realize how jarring (and how much it a昀昀ects your
speed) it is and switch to Emacs’s own commands.

Moving by Line
The <home> and <end> keys move your point to the beginning
and end of a line, respectively, and the Emacs equivalents
are C-a and C-e. Both C-a and C-e behave exactly the same
as <home> and <end> (indeed, both sets of keys are bound to
the same command) but I cover the de昀椀nition of a line in the
next chapter.

116

The Theory of Movement

Key Binding Purpose
C-a Moves point to the beginning of the line
C-e Moves point to the end of the line
M-m Moves point to the 昀椀rst non-whitespace

character on this line

The last command, M-m, is of general utility to all program-
mers. When you type M-m, the point will move to the be-
ginning of the line and move forward until it encounters a
non-whitespace character:

function foo() {
return 42;█

}

After you type M-m:

function foo() {
█return 42;

}

If you’re on a line without indentation, the command will
simply go to the beginning of the line. That means M-m is
worth internalizing instead of C-a for most use cases.

Screen, Logical and Visual Lines

Emacs will, by default, wrap long lines to the right edge of
the window, but that raises an important question: where
does a line begin and end when it wraps?

117

The Theory of Movement

The answer, unfortunately, requires a bit of explaining, and
the terminology? Well, it’s jumbled:

Visual lines A visual line is de昀椀ned as What You See. If you
open a 昀椀le and a long line spans three wrapped lines in
your bu昀昀er, then you have three visual lines, each of
which is treated as a separate and distinct line by Emacs,
even if the underlying 昀椀le has just one.

Logical lines A logical line is the opposite of a visual line.
Logical lines are governed by the content of the bu昀昀er
and nothing else; word wrapped or not, one long line
in a 昀椀le is treated as one long line in Emacs.

Screen lines In some parts of Emacs’s documentation, you
may see the term screen lines used in conjunction with
logical lines. A screen line is identical to a visual line and
the terms are used interchangeably.

Historically, when Emacs wrapped a long line the C-p and
C-n commands for moving up or down a line didn’t change.
A long line (called a logical line) wrapped into three lines
(called visual lines) would still count as a single (logical)
line for moving up or down by line; the end result is that
you couldn’t use the line commands to move by visual lines.
Whether it was The Right Way was a polarizing thing,
indeed. You either loved it… or you altered Emacs.
And most people altered Emacs. The end result is today,
in the latest versions of Emacs, the previous/next line
commands move by visual lines. You can switch to the old be-
havior by typing M-x customize-option line-move-visual.

118

The Theory of Movement

Adding to the complexity is the addition of Visual LineMode,
a minor mode that builds on the concept of visual lines with
additional functionality.
Visual Line Mode wraps by word boundary resulting in
“cleaner” line wrapping like what you’d see in a traditional
word processor. The minor mode will also disable the
fringe indicators.
Additionally, Visual Line Mode replaces a number of move-
ment and editing commands with visual equivalents. C-p
and C-n will behave as they do in default Emacs installations
with the line-move-visual option enabled. Furthermore,
commands like moving to the beginning and end of a line
(with C-a and C-e) now work on visual lines instead of logical
lines. The kill command (bound to C-k, but we haven’t
covered that command yet!) will also work on visual lines.
If you want this behavior – and I encourage you to try it out
and see if it 昀椀ts your work昀氀ow – you can enable it globally
with M-x customize-option global-visual-line-mode or in
a bu昀昀er at a time by typing M-x visual-line-mode.

What if you don’t want word wrapping? You can toggle
word wrapping – called truncation in Emacs – with
M-x toggle-truncate-lines.

Displaying Line and Column Numbers

The display of line numbers is a work昀氀ow that
some people cannot live without. It’s not enabled
by default, but you can enable it permanently with

119

The Theory of Movement

M-x customize-option global-display-line-numbers-mode
or M-x customize-option display-line-numbers-mode.
The feature is extensible, as you’d expect, and comes
with a number of default line number counting meth-
ods that you can con昀椀gure with M-x customize-group
display-line-numbers. Both relative and absolute numbers
are possible, and you can con昀椀gure a number of display
options that aid in counting and executing commands on
lines.
If you only want to see the current line number you’re on,
you can enable M-x line-number-mode instead. It displays
the current line your point is on in the mode line. Likewise,
there is also M-x column-number-mode to show the column
o昀昀set of the current line point is on.

Moving by Word
Like character movement, moving by words is almost identi-
cal; the mnemonics are the same for backward and forward
character, replacing only the C- modi昀椀er with M-.

Key Binding Purpose
M-f Move forward by word
M-b Move backward by word

If you’ve used other editors, the equivalent arrow keys are
C-<left> and C-<right>, and as I mentioned earlier they are
also available to you in Emacs. In Emacs, word movement is
rather complex behind the scenes, and the exact behavior of

120

The Theory of Movement

word movement is dictated by the major mode you’re using.

What Constitutes a Word?

What is a word? Simply thinking of it as a series of charac-
ters separated by whitespace is what most people think – and
therefore expect – but in Emacs the truth is a lot more com-
plicated.
Mode writers in Emacs make assumptions about the
nature of the text in the bu昀昀er. What you would write in
M-x text-mode is di昀昀erent – and treated di昀昀erently – from
what you’d write in M-x python-mode. So, mode authors
need a way of saying that in text-mode the period ‘.’ is a
sentence separator and an attribute separator in Python.
Indeed, every character – printable characters, including
Unicode code points – are given a meaning by the mode
author, directly or indirectly, in a registry that maps the
characters to a particular syntactic meaning. This registry is
called a syntax table, a concept that I will refer back to several
times to help you understand how it a昀昀ects movement and
editing, but is otherwise only of interest to elisp hackers
and mode writers.
The syntax table keeps track of things like What characters
are used for comments? or What characters make up a word? and,
although obscured from view, a昀昀ects every part of Emacs.
The syntax table alone decides the makeup of a word (or
symbol, punctuation, comment, etc.) as a syntactic unit. So
when you move the point around on the screen, it moves
according to the syntax table and the general rules governing
forward-word and backward-word.

121

The Theory of Movement

The syntax table
Every editor has an equivalent of Emacs’s syntax
table, but what sets Emacs apart from other edi-
tors is that you can inspect and change the syntax
table, which in turn will a昀昀ect how your point
moves across the screen when you invoke certain
commands.
You can view your current bu昀昀er’s syntax table
by typing C-h s. In it you will see a human read-
able version of the characters and their assigned
syntax class.

Movement Asymmetry

One more thing you should know about word movement
is that it’s not symmetric: typing M-f followed by M-b – in
theory it should take you back to your old position – is not
guaranteed. Emacs will cleverly skip symbols and punctuation
it encounters in the direction (forward or backward) you’re
moving.
Consider what happens when you type M-f to move forward
one word:

Before: Hello, █World.

After: Hello, World█.

Because the characters succeeding the point, █, are all alpha-
betical characters, the word command behaves as you would
expect. Now look at what happens if we move the point to
the end of the line and type M-b to move backward one word:

122

The Theory of Movement

Before: Hello, World.█

After: Hello, █World.

The word command is smart enough to realize that, al-
though a period is not a word character, it should simply
ignore it as there is a word immediately before the punctuation.
Typing M-f after we type M-b will not return us to the place
we started:

Before: Hello, █World.

After: Hello, World█.

This reinforces my point that word commands are not sym-
metric. That will take a bit of getting used to. Emacs will
generally ignore non-word characters immediately following
the point in the direction you are travelling. For instance,
we skipped over the period, ., because it was a non-word char-
acter and it was the 昀椀rst character the point would encounter
going backwards. The reason for this behavior is simple: if
Emacs didn’t do this, then every non-word character the word
commands would encounter, in both text and code, would
count as a word of its own and end the movement command.
Here is a more extreme example — but one you may well
encounter in source code:

print(add_two(num_table[10]))█

The point above is at the end of the line and if you type M-b
and move backward one word, you end up right before 10:

123

The Theory of Movement

print(add_two(num_table[█10]))

This is because, as before, Emacs ignores symbols and punctu-
ation if, and only if, it encounters them before it has encoun-
tered a word character. Moving forward again does not take
us back to the end of the line as we are already at a word:

print(add_two(num_table[10█]))

So, you might be wondering why this is a good thing. For
starters, you can follow up the original M-b with M-d to kill
the number 10 and because of the asymmetry you don’t
kill the])) symbols (but much more on the kill commands
later.) Another reason is that it just does not make sense to
think of a word as separated by just white spaces — it raises
too many questions. What if there are many whitespaces
in a row, and what about punctuation and symbols? When
you have to navigate a mix of symbols and text, like most
source code is, Emacs’s behavior is perfectly sensible; keep
tapping M-b and you move back consecutive words of text but
you conveniently skip any symbols you encounter in the
direction of travel. The one thing people 昀椀nd confusing is
the asymmetry; the rules seem insensible — but now that
you know how Emacs moves, its behavior should make a
lot more sense.

Sub- and Superword Movement

If you edit a lot of code with CamelCase, you may want your
movement and edit commands to treat each sub-word – de-
lineated by a capitalized letter – as its own word. Simultane-

124

The Theory of Movement

ously, you may want the opposite: that text written_like_-
this which Emacs’s word movement commands usually –
but again this is all down to the syntax table and vagaries of
the major mode – treat as three distinct words (written, like,
and this) instead of just one.

Command Purpose
M-x subword-mode Minor mode that treats CamelCase

as distinct words
M-x superword-mode Minor mode that treats snake_case

as one word

Global minor modes
There are global modes available for both and
you can enable them by typing:

M-x customize-option global-subword-mode
M-x customize-option global-superword-mode

When you enable M-x subword-mode, you enable special
movement, transpose and kill commands that operate on
each individual, capitalized word in CamelCase. If you write
a lot of code in languages that use CamelCase, you’ll like
subword mode.

Glasses mode
There is a whimsical minor mode, M-x glasses-mode,
that visually (it does not alter your bu昀昀er text)
separates CamelCase words into Camel_Case.

125

The Theory of Movement

The superword command, M-x superword-mode, is similar
but does the opposite: it rewires symbols (which usually, but
not always, include the underscore) so they’re considered
part of a word. Note that this command is not perfect.
Major mode authors decide what syntax class a character
like _ or . should fall under, and if they don’t set a character
like _ to be a symbol, the command will not work.

Moving by S-Expressions
Perhaps the most useful – but underused – feature in Emacs
is the ability to move by s-expression (or just sexp.) The cryp-
tic name deserves an explanation: it’s a LISP term that, today,
covers a wide range of commands that operate on balanced
expressions.
Balanced expressions typically include:

Strings Programming languages being the primary exam-
ple of strings, which are balanced expressions because
they begin and end with " or '.

Brackets In most major modes brackets are considered bal-
anced as they have de昀椀ned open and close characters:
[and], (and), { and }, < and >.

Balanced expressions can span multiple lines – multi-line
strings for instance – and Emacs knows this.
Whether a particular set of characters de昀椀nes a balanced ex-
pression will depend on your major mode, and the major
mode in turn will de昀椀ne these characteristics in the syntax
table I talked about earlier.

126

The Theory of Movement

Like the word and character commands, these follow the
same mnemonic as before but with a di昀昀erent modi昀椀er. This
time it’s C-M-.

Key Binding Purpose
C-M-f Move forward by s-expression
C-M-b Move backward by s-expression

I consider these commands to be some of the most impor-
tant to learn if you’re a programmer. Look where the point
moves when you press C-M-f:

d = █{
'Hello': 'World',
'Foo': 'Bar',

}

After

d = {
'Hello': 'World',
'Foo': 'Bar',

}█

Emacs knows that { and } in python-mode is a balanced expres-
sion – because of the syntax table – and thus treats { and }
as a balanced expression, and immediately moves to the end
brace when you type C-M-f.
Once you start thinking about code in terms of balanced ex-
pressions, you’ll see them everywhere. It’s not just in LISP

127

The Theory of Movement

that you’ll 昀椀nd them useful; almost all major modes are full
of balanced expressions — and as an added bonus, the s-expr
movement commands act like the word commands when
you invoke them on “unbalanced” expressions such as reg-
ular text.
It’s absolutely vital that you learn how to use these com-
mands.

Down and Up List

Key Binding Purpose
C-M-d Move down into a list
C-M-u Move up out of a list

Like the s-expression movement commands, the list com-
mands were meant for LISP but have found a life outside that
language. When you press C-M-d, the point will jump into the
nearest balanced expression of parentheses ahead of where
the point currently is:

Before:

█result = foo(bar())

After:

result = foo(█bar())

The point moves inside the nearest balanced expression. To
do this, the point will jump an arbitrary distance, and re-

128

The Theory of Movement

peated calls will go deeper into nested structures and con-
versely C-M-u will go back up. Like the word commands, the
list commands are not symmetric; going up will take you up
one level but leave your point at the opening character:

Before:

result = foo(bar(█))

After:

result = foo(bar█())

Moving out of strings
In newer versions of Emacs, you can use C-M-u
inside a string to jump to the opening quote.

On their own, the commands do little more than jump in
and out of “list” expressions, but realize that combining this
behavior with another command, kill-sexp6 , will kill the
balanced expression in front of the point — so typing C-M-u
and C-M-k for kill-sexp will move up and kill the balanced
expression you were just in:

; Before:
(+ (* █5 2) (- 10 10))

; After going up one level with C-M-u:

6 I will talk about killing text later on in the editing chapter.

129

The Theory of Movement

(+ █(* 5 2) (- 10 10))

; After killing the s-expression with C-M-k:
(+ █ (- 10 10))

I use this functionality all the time; it’s one of Emacs’s hid-
den gems that will make you very productive, even if you
don’t program in LISP. For instance, languages like Python
use parentheses all over the place: for dictionaries, for tuples,
and for lists. Combine the list commands with C-M-k and you
can refactor large swathes of code easily and maintain your
tempo because most commands that work on balanced ex-
pressions are bound to the C-M- modi昀椀er.
Because C-M-d jumps into the next “list” expression follow-
ing point – regardless of where it is in the bu昀昀er – it’s a
powerful tool for moving around as well. Like everything
in Emacs, realizing the potential of a command and commit-
ting it to working memory so you use it is hard, but the
reward is well worth it.

Forward and Backward List

Two more functional navigational aids are C-M-n and C-M-p.
They move to the next or the previous list expression in the
same nested level.

Key Binding Purpose
C-M-n Move forward to the next list
C-M-p Move backward to the previous list

130

The Theory of Movement

For instance, here’s what happens when you type C-M-n re-
peatedly:

(+ █(* 5 2) (- 10 10))

(+ (* 5 2)█ (- 10 10))

(+ (* 5 2) (- 10 10)█)

As you can see, it moves from one expression to the next,
and this includes the beginning and end of the balanced
expression. Typing C-M-n again yields an error: we have
reached the end of balanced expressions at this nested level. If
we type C-M-u to move up the list:

█(+ (* 5 2) (- 10 10))

Now, we move out of the nested expression and into its par-
ent. A subsequent call to C-M-n takes us to the end of the
balanced expression:

(+ (* 5 2) (- 10 10))█

For LISP, the commands are invaluable. Nested parentheses
indicate hierarchy so LISP hackers require an e昀케cient set of
tools to move up, down and around balanced expressions.
For all other programming languages, the utility depends
entirely on how frequently you encounter balanced expres-
sions. In most languages – like C, Java, Python, or JavaScript
– they are very useful. And it’s an elegant way of moving be-
tween some balanced expressions like curly or square braces.

131

The Theory of Movement

Other Movement Commands
I consider moving by character, line, word and s-expression
to be the most important movement commands. They have
the greatest utility across a wide range of editing tasks –
speci昀椀cally programming and text editing – but there are
some movement commands that are best suited for speci昀椀c
tasks — and whether or not they are to you depends
entirely on what you do.

Moving by Paragraph

Key Binding Purpose
M-} Move forward to end of paragraph
M-{ Move backward to start of paragraph

The de昀椀nition of a paragraph depends on who you ask and
your personal style, and Emacs tries to cater to most of them.
The paragraph commands themselves rely on a set of vari-
ables that de昀椀ne the beginning and end of a paragraph:

Variable Name Purpose
paragraph-start De昀椀nes the beginning of a paragraph

using a large regular expression
paragraph-separate De昀椀nes the paragraph separator as a

regular expression
use-hard-newlines Set by the command

M-x use-hard-newlines and de昀椀nes
whether a hard newline de昀椀nes a
paragraph

132

The Theory of Movement

I recommend you describe the variables (using C-h v) to get a
better picture of how Emacs’s paragraph system works. The
paragraph-start variable in particular is a jumble of regular
expressions that tries to do everything for everyone. By de-
fault, when you use M-} and M-{, Emacs will treat newline-
delimited blocks of text as a paragraph.
You can alter the behavior of the paragraph commands so
leading spaces mark the beginning of a new paragraph by
running M-x paragraph-indent-minor-mode.
The paragraph commands 昀椀nd their way into in program-
ming modes also. A lot of programmers group lines of code
together and separate them from each other with blank
lines, making them an ideal candidate for the paragraph
commands.

Moving by Sentence

The sentence commands share symmetry with the line com-
mands, replacing the C- modi昀椀er with M-:

Key Binding Purpose
M-a Move to beginning of sentence
M-e Move to end of sentence

Like a paragraph, the de昀椀nition of a sentence is a house style
that varies, but Emacs assumes you begin your sentences
with two whitespaces after a period:

This is one sentence. This is another.

133

The Theory of Movement

You can alter this behavior by customizing (with
M-x customize-option) the following variables:

Variable Name Purpose
sentence-end-double-space Non-nil means a single space

does not end a sentence.
sentence-end-without-period Non-nil means a sentence will

end without a period.
sentence-end-without-space A string of characters that

end a sentence without
requiring spaces after.

The one you are most likely to customize is sentence
-end-double-space.

Moving by Defun

The word defun is another piece of LISP arcana that stands for
de昀椀ne function — and in Emacs you will see it in places where
commands act on functions.
Like the sentence and line commands, the defun commands
use C-M- as their modi昀椀er:

Key Binding Purpose
C-M-a Move to beginning of defun
C-M-e Move to end of defun

The defun commands move to the logical beginning or end
of the function point is in. I must point out that function is re-

134

The Theory of Movement

ally a rather loose term. It doesn’t have to be a function but in
programming modes it’s usually functions, classes, or both;
for other modes, it might do other things — in reStructured-
Text, for instance, it will jump to the beginning and end of
a section or chapter.
Moving to the beginning of defun is really useful if you want
to, say, quickly change the name or function arguments of
a function in a programming language.
Consider the location of point:

int addtwo(int x)
{

return x + 2█;
}

Pressing C-M-a will take us to the beginning of defun,
addtwo:

█int addtwo(int x)
{

return x + 2;
}

Subsequent calls to C-M-a will take you further and further
“up the chain” to a parent block, perhaps, or the top of the
昀椀le if you are at the root.

135

The Theory of Movement

Moving by Pages

A page in Emacs is only tangentially related to the real-life
concept of a page. In Emacs, a page is anything delimited by
the character de昀椀ned in the variable page-delimiter, which
by default is the control code ^L — better known as the ASCII
control code form feed. It is unlikely that you will ever use
these commands, so I would not worry about memorizing
them.
In some LISP circles, it is common to group things by pages
and as Emacs has close ties to the LISP community it comes
with a battery of commands to interact with pages.

Key Binding Purpose
C-x] Moves forward one page
C-x [Moves backward one page

Discovering the page commands
Here’s one way to 昀椀nd page commands: C-h a
(for M-x apropos-command), then search for page$
to 昀椀nd all commands ending with the word

“page.”
Knowing how to ask Emacs the right questions
– using apropos or the describe system – is the
cornerstone of Emacs mastery.

Scrolling
Like the arrow keys, the <prior> and <next> commands
(Pg. Up and Pg. Down respectively) have their own Emacs

136

The Theory of Movement

equivalents, but Emacs’s scrolling mechanism is di昀昀erent
enough that some people 昀椀nd it frustrating. That’s because
Emacs will scroll by nearly full screens, where a full screen is
the number of lines visible in that window. To help with con-
tinuity when you scroll, Emacs will retain two or three lines
(as governed by the variable next-screen-context-lines) so
you don’t lose track of where you are.

Key Binding Purpose
C-v Scroll down a near full screen
M-v Scroll up a near full screen
C-M-v Scroll down the other window
C-M-S-v Scroll up the other window

C-v and M-v work the same way as the navigational keys
<prior> and <next>.
The odd ones out are the two commands that scroll the other
window. It has its uses. I almost always work with multiple
windows and being able to scroll another window – contain-
ing a help bu昀昀er, or a log 昀椀le, or even another source code
昀椀le – is a common thing for me to do.
Most editors lack this functionality; instead you have to:

Use the mouse With your mouse, move over the window,
and 昀椀nally use the scroll wheel to scroll up and down,
or click and press <prior> and <next>.

Use the keyboard Switch to the other split window or tab,
use <prior> or <next> to scroll up and down.

137

The Theory of Movement

In Emacs, you can use the other window scroll commands.
I don’t use C-M-S-v often. I 昀椀nd it easier to type C-M-- C-M-v
to reverse the direction of the scroll with a negative argu-
ment than typing C-M-S-v. The latter command requires a
particularly dexterous 昀椀nger maneuver and if you scroll too
far, you have to swap 昀椀nger positions so you can type C-M-v.
It’s far easier to use C-M-- and C-M-v.

Maintaining tempo
Notice that the negative argument command,
C-M--, is conveniently bound to the same modi-
昀椀er keys as C-M-v. Like I explained in the chapter
on universal arguments, this is no coincidence.
By binding the argument commands to all
major modi昀椀er combinations, you don’t have
to contort your 昀椀ngers between commands to
pre昀椀x a command with an argument.

You can also scroll horizontally — or just left and right in
Emacs parlance:

Key Binding Purpose
C-x < Scroll left
C-<next> Scroll left
C-<prior> Scroll right
C-x > Scroll right
S-<wheel> Scroll left/right with

the mouse wheel (Emacs 28)

138

The Theory of Movement

If you edit a lot of text 昀椀les with very long lines – CSV
昀椀les, perhaps – you may want to 昀椀rst disable word wrap-
ping (or line truncation as it’s known in Emacs) with
M-x toggle-truncate-lines. I would not bother memoriz-
ing the horizontal scrolling commands unless you really
need them.
You can, of course, still use the mouse wheel to scroll,
though whether it works in the terminal or not will depend
on your system.
Now for two more commands for moving around, namely
the ability to go to the beginning and end of the bu昀昀er:

Key Binding Purpose
M-< Move to the beginning of the bu昀昀er
M-> Move to the end of the bu昀昀er

When you move to the beginning or end of the bu昀昀er,
Emacs will place the mark – an invisible location marker
– where you came from, so you can return to your old
position. For instance, if you type M-< to jump to the
beginning of the bu昀昀er, you can type C-u C-<SPC> to go
back. C-u, as you remember, is the universal argument; in this
case, it sets a 昀氀ag so that when you type C-<SPC> Emacs will
interpret that to mean jump to the last mark. The mark,
and its utility in Emacs, is a topic I will discuss a little bit
later.

139

The Theory of Movement

Bookmarks and Registers
Bookmarks in Emacs work identically to the ones in your
web browser but with the notable exception of supporting a
wider variety of sources. That makes Emacs’s bookmarking
system 昀氀exible enough for you to bookmark 昀椀les, M-x dired
directories, M-x man pages, Org mode, DocView (including
PDF 昀椀les), and info manual pages. Because of Emacs’s TrAMP
system, it is therefore also possible to bookmark remote 昀椀les
and directories for speedy access.
Bookmarks in Emacs are permanent, meaning they are au-
tomatically saved to a bookmark 昀椀le in ~/.emacs.d/ called
bookmarks.

Bookmark 昀椀le
The variable bookmark-default-file determines
where Emacs stores your bookmarks. The 昀椀le is
plain text (elisp s-expressions, actually) meaning
it is possible to edit it manually (if you absolutely
must) or merge the 昀椀les if you regularly add or
remove bookmarks from multiple machines.

Key Binding Purpose
C-x r m Set a bookmark
C-x r l List bookmarks
C-x r b Jump to bookmark

Bookmarks are a very e昀케cient way of jumping to

140

The Theory of Movement

frequently-used 昀椀les or directories. Bookmarks also work
if there are sections of Emacs’s manual that you want to
return to frequently. And because of the uni昀椀ed nature of
Emacs – namely bu昀昀ers – the three are seamlessly stored
and recalled from the same list of bookmarks.
Registers, however, are di昀昀erent; they are the 昀氀ip side of the
coin — where bookmarks are permanent, registers are tran-
sient. A register is a single-character store-and-recall mecha-
nism for several types of data, including:

Window con昀椀gurations and framesets You can store
and recall the layout of your window con昀椀guration,
though I would argue there are much better tools
(such as M-x winner-mode I talked about in Window
Management, and Tab Bar Mode) for the job.
Framesets are identical to window con昀椀gurations but
hold information about Emacs’s frames instead.

Points The location of point is another thing you can store
in a register. If you are used to line-based bookmarks
from other IDEs or editors, these are the closest equiv-
alents in Emacs. Unfortunately, the key bindings (as
you will see below) diminish their usefulness.

Numbers and text Plain text is also storable. If you want
to insert more than one piece of text, making the kill
ring a less ideal candidate. You can also store numbers,
though the only distinction between text and number
is the ability to use simple arithmetic (addition) on a
register containing a number.

141

The Theory of Movement

Key Binding Purpose
C-x r n Store number in register
C-x r s Store region in register
C-x r SPC Store point in register
C-x r + Increment number in register
C-x r j Jump to register
C-x r i Insert content of register
C-x r w Store window con昀椀guration in register
C-x r f Store frameset in register

A register is a single character only. When you want
to store or recall something, you are asked for a single
character to query. Emacs pops up a preview window after
register-preview-delay seconds with a quick overview of
known registers and its contents.
C-x r s is the one I use most frequently. It stores the region
in a register – very practical, and probably what you’ll do
most – and C-x r i which inserts the content of a register at
point. By default the point is placed after the inserted text.
If you give it a pre昀椀x argument (C-u C-x r i) it’ll instead
place the point before.
You can store the location of point with C-x r SPC, but to
jump to it you must use C-x r j; arguably C-x r i should
Do The Right Thing here and jump to the point if the reg-
ister stores a point. Instead, Emacs inserts the internal point
location which is not useful at all to anyone.
If you want to store and recall the window or frame layout
– bene昀椀cial to anyone who prefers a particular window ar-

142

The Theory of Movement

rangement – you can store a window or frame con昀椀guration
in a register also.
To store a number, place the point before it and type C-x r
n. To increment it by prefix-numeric-value (default 1), type
C-x r + and to increment it by an arbitrary amount, give it
a numeric argument (and a negative one to decrement.) You
can recall a number register with C-x r i.
Both registers and bookmarks have their place, but they
serve two di昀昀erent purposes. I would focus on memorizing
the bookmark commands as they are more likely something
you use daily.

Selections and Regions
Selecting text is a common action, but in Emacs’s info docu-
mentation and describe system it’s referred to as the region. As
I mentioned in The Point and Mark, a region boundary is
made up of the point and the mark.
Other editors make little or no distinction between the be-
ginning and end of the region but in Emacs that distinction
is rather important. The region is always de昀椀ned as the con-
tiguous block of text between the point and the mark.
For a visual demonstration, try this in Emacs: press C-<SPC>
In the echo area, a message will appear saying “Mark Set.”
Now, move your point around the bu昀昀er – with the arrow
keys or the other movement commands I introduced earlier
– and watch as the region changes because it is now activated.
Press C-<SPC> again – or the universal get-out-of-trouble
command C-g – to deactivate the region. Note that the

143

The Theory of Movement

region is always de昀椀ned as the mark to the point, whether
the point comes before the mark or not. This functionality
is thus similar to what you see in other editors when you
hold down shift and move around with the arrow keys.
Therefore, when you make visual selections, you are using
Emacs’s TransientMarkMode, also known as TMM. TMM came
about much later in Emacs’s history than you might think;
in fact, it was only recently switched on by default.
So what came before TMM? Well, for starters, you didn’t
have visual highlighting at all — so you had to remember
where you left the mark. And a lot of the commands didn’t
know about things like regions at all. Simple commands like
M-x replace-string that does a simple string replacement in
a bu昀昀er worked from the point to the end of the bu昀昀er, no
exceptions. So if you wanted to modify particular parts of
a bu昀昀er, you had to use Emacs’s cryptic narrowing commands
that shrink the visible content of a bu昀昀er to what you
wanted the command to act on. As you can imagine, that
didn’t help beginners learn Emacs.
So, today you don’t have to worry about region narrowing
(for anything except specialized editing), nor do you have
to memorize the location of the mark as TMM will show you
the region.
However, the union of TMM and Emacs’s region system is
not perfect. The mark in Emacs is not just for the region.
It’s an important tool for jumping around in a bu昀昀er as some
commands that whisk you away from your current location
will leave a mark (a breadcrumb trail, e昀昀ectively) on the mark
ring that you can return to later. One example would be M-<
and M-> – the commands for jumping to the beginning and

144

The Theory of Movement

end of the bu昀昀er – they both mark your old position before
they jump so you can later return to your old position by
typing C-u C-<SPC>.

The mark ring
Like the undo ring, the mark ring contains all
the marks you have placed in a bu昀昀er — both
directly, using mark commands like C-<SPC>;
and indirectly, from commands like M-< and M->.
There is also the global mark ring for commands
that work across bu昀昀er boundaries.
You can tell when the mark ring has changed be-
cause the text Mark set (or a variation thereof)
appears in your echo area.

And because of this, the command C-<SPC> will set the mark
and with TMM enabled it also activates the region highlight-
ing when you move the point around. That means if you just
want to set the mark just so you can return to it later (with
C-u C-<SPC>), you have to press C-<SPC> C-<SPC> — once to
set the mark, and once more to deactivate the region. An-
other gotcha is that some commands in Emacs that operate
on regions – text replace, changing text to uppercase in a re-
gion, and so on – work just 昀椀ne even if the region isn’t activated
as Emacs will not check if the region is active (just that you
are using TMM.)
Here are the keys needed to activate selection and jump to
the mark. If you are new to Emacs, feel free to use the shift
selection keys until you are comfortable with Emacs’s own
selection mechanism.

145

The Theory of Movement

Key Binding Purpose
C-<SPC> Sets the mark, and toggles the region
C-u C-<SPC> Jumps to the mark, and repeated calls

go further back the mark ring
S+<left>, … Shift selection similar to other editors
C-x C-x Exchanges the point and mark, and

reactivates your last region

The C-x C-x command (called exchange-point-and-mark) is
interesting. It reactivates the region from point – which is
your current location in the bu昀昀er – and wherever the mark
is; then, it swaps the point and mark positions. This com-
mand works well when you want to reactivate the last re-
gion or if you simply want to swap the position of mark and
point. Exchanging the point and mark has its place if you
want to edit text near the mark or point or if you simply
want to reactivate the region between your last mark and
point.
Let’s 昀椀nish with a list of simple rules to remember:

1. A region is a contiguous block bounded by the point and
mark.

2. You activate a region with C-<SPC>, which sets the
mark then activates the region (if you use TMM, and
you should!). Pressing C-<SPC> again deactivates the
region.

3. An active region follows the point as you move around
but breaks when you use a non-movement command.

4. The mark serves a dual purpose as a beacon you can
return to with C-u C-<SPC>, even one you set with

146

The Theory of Movement

C-<SPC>. Repeat calls to C-u C-<SPC> go further and
further back the mark ring.

5. Exchanging the point and mark with C-x C-x re-
activates the region and switches your point and mark
around.

6. Some Emacs commands don’t care if the region isn’t
actually active and work anyway (so be careful).

As always, I encourage you to learn Emacs’s own commands
in time but if you are overwhelmed, you can use the mouse
to click-drag selections or use the arrow key selection with
S+<arrow key>.

Selection Compatibility Modes
To ease the transition to Emacs, there are several helper
modes you can enable to mimic the behavior of other
editors. Emacs enables one or two of them by default now
as part of their drive to modernize Emacs. My personal
recommendation is to start o昀昀 with what you know and
slowly wean yourself o昀昀 the compatibility modes as you
improve your Emacs skills.

M-x delete-selection-mode When the region is active and
you type text into the bu昀昀er, Emacs will delete the
selected text 昀椀rst. This behavior mimics most other
editors.
To enable (or disable) it, use the customize interface:

M-x customize-option delete-selection-mode

147

The Theory of Movement

shift-select-mode (variable, enabled by default) Shifted
motion keys – both traditional navigation keys like
the arrow keys and Emacs’s own commands – activate
the region and extend it in the direction you are
moving.
The shift selection works di昀昀erently from setting the
mark with C-<SPC>. When you shift select a region,
any non-shifted movement command will deactivate
the region. Like delete-selection-mode, this function-
ality mimics the behavior in other editors.
For instance, S-<left>, S-<right>, etc. will region se-
lect one character at a time, and C-S-f will do the same
but with Emacs’s own movement commands.

To disable (or enable) it, use the customize
interface:

M-x customize-option shift-select-mode

M-x cua-mode Probably, the most radical departure from
Emacs’s selection and clipboard system is CUA mode.
Named after IBM’s Common User Access, cua-mode lets
you use C-z, C-x, C-c, and C-v to undo, cut, copy and
paste like you would in other programs.
Because CUA mode and Emacs’s own pre昀椀x key bind-
ings C-x and C-c con昀氀ict, CUA mode is disabled by de-
fault. If you enable it, the pre昀椀x keys C-x and C-c con-
tinue to work but with minor side e昀昀ects and addi-
tional constraints:

148

The Theory of Movement

1. To type the pre昀椀xes C-x or C-c with an active re-
gion, you must double tap the pre昀椀x key in rapid
succession (e.g., C-x C-x).

2. To type the pre昀椀x key C-x or C-c followed by an-
other key, you must type them in rapid succes-
sion or you will trigger a clipboard command.

3. Alternatively, to points 1 and 2, you can type the
pre昀椀x key with the S- modi昀椀er: C-S-x replacing
C-x and C-S-c replacing C-c.

CUA mode is one of those quality of life features that
will make or break Emacs adoption for some people.
If you’re one of them, by all means enable it! You can
always wean yourself o昀昀 the CUA keys over time or sim-
ply live with the side e昀昀ects I mentioned.
To enable (or disable) it, use the customize interface:

M-x customize-option cua-mode

My personal recommendation is to learn Emacs’s own re-
gion commands (and more on that shortly) as Emacs was
never designed around the idea of CUA mode.7 Having said
that, eliminating barriers to entry – and this is something
the Emacs maintainers are working on – is more important
in the shorter term for a new Emacs user.

7 There was one reason to use CUA mode and that was for its rectan-
gle mode functionality. That functionality is now built in and does not
require CUA mode any more.

149

The Theory of Movement

Setting the Mark
I have shown you how to activate the mark interactively
with the arrow keys (S+<arrow key>) and C-<SPC> but Emacs
has a host of mark commands that work on syntactic units
which, as you may recall from earlier, are things like words,
s-expressions and paragraphs.
Setting the mark with C-<SPC> is the primary method of acti-
vating the region, but it is cumbersome to use. You have to
set the mark, move to your desired location, and then run
your command. Worse, it breaks your tempo.
If you want to make precise selections, you are better o昀昀
using Emacs’s dedicated mark commands:

Key Binding Purpose
M-h Marks the next paragraph
C-x h Marks the whole bu昀昀er
C-M-h Marks the next defun
C-x C-p Marks the next page
M-@ Marks the next word
C-M-<SPC> and
C-M-@ Marks the next s-expression
C-<SPC>, C-g Deactivates the region

All mark commands append to the existing selection if you
already have a region active. So if you want to mark two
words in a row, all you have to do is press M-@ twice or com-
bine it with a numeric argument: M-2 M-@. Likewise, you
can reverse the direction by using the negative argument
modi昀椀er.

150

The Theory of Movement

Appending to the existing region has a simple implementa-
tion: Emacs simply moves the mark from one position to the
next. That makes it easy to do topical edits like deleting the
selection or executing a command against it, and you can
daisy-chain as many di昀昀erent mark commands as you like,
until you’ve marked everything you want to mark.
In the chapter What Constitutes a Word? I talked about
syntax tables and how a major mode’s syntax table a昀昀ects
movement commands. A lot of mark commands are similar,
notably the M-x mark-word command M-@. However, some
mark commands are overridden in some major modes so
they work correctly for that particular mode. For instance,
in reStructuredText, the M-x mark-defun command bound
to C-M-h will select a whole chapter; this is sensible, as
there are no defuns (a LISP term for a function) in a text 昀椀le.
Not all major modes support M-x mark-defun but most
modes supplied with Emacs do — ultimately it’s down to
the author of the major mode to tell Emacs how to mark
complex things like defuns.

Deactivating the region
Remember, you can deactivate the region with
C-<SPC> or C-g, Emacs’s universal quit command.

I recommend you ignore C-x C-p (the key binding that
marks the next page.) Focus on memorizing C-x h as that
marks the entire bu昀昀er; C-M-h, as that will mark the defun;
and C-M-<SPC>, as that will mark by s-expression and will,
in most cases, act the same if it encounters a word.

151

The Theory of Movement

C-M-<SPC> is one of my most-used commands. Combine it
with a negative argument (C-M-- C-M-<SPC>) to reverse the
direction and you can mark s-expressions in reverse easily
too.
Finally, a lot of manual marking is redundant if you follow
it up with a kill8 command, as Emacs has its own kill
commands that act on syntactic units directly. I will go into
much greater detail about the kill command later on in The
Theory of Editing.

Searching and Indexing
Elemental movement commands act mostly on syntactic
units. Their primary purpose is to serve as successively
more precise tools for getting you from A to B — from
navigating by entire paragraphs or defuns down to moving
by a single character.
Often, however, you want to search for text in a bu昀昀er. Nat-
urally, this is something Emacs does well. What is perhaps
unique to Emacs is the idea that text search should be as fast
and streamlined as everything else. As you’ll soon see, that
means Emacs’s search facilities work equally well for navigat-
ing.

Isearch: Incremental Search
Emacs’s incremental search – or just Isearch – is a supremely
powerful search function bound to C-s and one you will use

8 As you may recall, the word kill means cut in Emacs.

152

The Theory of Movement

a lot in your Emacs career. Beneath its simple exterior is a
sophisticated set of auxiliary commands:

Key Binding Purpose
C-s Begins an incremental search
C-r Begins a backward incremental search
C-M-s Begins a regexp incremental search
C-M-r Begins a regexp backward incremental

search
RET Pick the selected match
C-g Exit Isearch
M-<, M-> Jump to 昀椀rst or last match (Emacs 28)
C-v, M-v Jump to the next or previous match

not currently visible (Emacs 28)

Using Isearch is easy:

Pick a direction of search You can begin a forward or
backward Isearch with C-s or C-r, as per the table
above. The minibu昀昀er will show I-search: or
I-search backward:.
If you previously searched for something, you can re-
call the last search term by repeating the Isearch com-
mand. So, if you want to recall the last search term,
you can type C-s C-s to 昀椀rst open Isearch and then re-
call the last search string. Emacs will automatically do
an incremental search when you do.

Begin typing Every key you press will trigger the incre-
mental search engine to 昀椀nd the 昀椀rst match in the

153

The Theory of Movement

direction of your search that matches your search string.
When it encounters the 昀椀rst match, the incremental
search engine will highlight all other matches of that
search string in your bu昀昀er; if there are no matches
to your search string, Emacs will stop when it has
matched as much as it can and tell you it has failed.

Browse the matches If you have more than one match, or
if you simply want to walk through all the matches,
keep tapping the direction key (C-s or C-r) in which
you want to search. If you want to reverse the direction,
simply tap the other direction and Emacs will switch
directions.
If you reach the end of the matches – or if there are no
matches in your search direction – you can continue
the search from the beginning or end of the bu昀昀er (de-
pending on the directionality of your search) by tap-
ping the direction key again. The minibu昀昀er will tell
you if it wrapped the search around to the other side.
Isearch will also tell you what part of your search
string failed to match and what parts didn’t, by
highlighting the failed match in red.9

In Emacs 28 you can tell Emacs to jump to the 昀椀rst or
last match in the bu昀昀er, with M-< and M->; or the next
or previous match not currently visible with C-v and M-v.
The key bindings are not enabled by default, though.
You must customize isearch-allow-motion to enable
them.

9 Although this will depend entirely on your custom color theme.

154

The Theory of Movement

Jumping to the 昀椀rst or last match in a bu昀昀er is com-
mon enough that most people can 昀椀nd some utility in
them. But I feel the ability to jump between matches
not visible in your bu昀昀er deserves a special mention:
it’s a great way to quickly move through a bu昀昀er with
a large number of matches. Every invocation jumps to
the 昀椀rst non-visible Isearch match in the direction, so
you get one window’s worth of matches at a time.

Pick a match Once you are happy with a match, you can
terminate the search in two ways:

C-g exits Isearch Your isearch session is terminated,
and you’re returned to your original position.
If you have a search string with only a partial
match, it will 昀椀rst return you to the last known
match.

RET picks the selected match This also terminates
Isearch. But it leaves you at the match you are at,
and it drops a mark at your original location so
you can return to your former location with C-u
C-<SPC>.

Isearch is so good that I strongly encourage you to use it for
movement as it is one of the quickest ways of moving around
text in Emacs. It is also one of my most used commands. I
use it hundreds of times a day, if not more. It takes a bit
of practice to commit the Isearch behavior to muscle mem-
ory but it is so worth it! It has two accessible keys – C-s and
C-r – and it is visual and instantaneous. There are no distrac-
tions and no ceremony, no modal dialog that pops up and

155

The Theory of Movement

obscures your bu昀昀er, no 昀椀ddly radio buttons to change the
search direction, no mouse needed and no tabbing required
to operate it either.

Case folding
By default, Isearches are not case sensitive; low-
ercase searches will match uppercase and mixed
case. However, when you use one or more up-
percase letters in your search, Emacs will auto-
matically switch to a case-sensitive search. It’s
called case folding.
This is another one of those strange Emacs
features that nobody would think to implement
elsewhere. You might be looking for an upper-
case string, but your search string doesn’t have
to be. And if you really need case-sensitivity,
all you have to do is spell out the uppercase or
mixed case name and Emacs will only look for
literal matches. Of course, if you are looking for
only lowercase matches but no upper- or mixed
case matches, then you have no choice but to
disable case folding or use Isearch’s toggles to
temporarily enable case-sensitivity.
If you prefer, you can disable case folding
entirely:

M-x customize-option case-fold-search

Once you start using Isearch you’ll want to use its history
(formally called search ring) features more:

156

The Theory of Movement

Isearch Key Binding Purpose
M-n Move to next item in search history
M-p Move to previous item in search history
C-M-i “TAB”-complete search string against

previous search ring
C-s C-s Begins Isearch against last search

string
C-r C-r Begins backward Isearch against last

search string

The 昀椀rst two should be self-explanatory by now – as they
are universally available in all Emacs completions – but the
third one warrants a closer look.

“TAB”-completion in Emacs
In Emacs, C-M-i is another “TAB”-completion
mechanism not unlike the one you see when
you press TAB in the M-x prompt. In modes that
support it – and do not forget, when you run
Isearch you are essentially interacting with a
mode – the command is typically bound to
complete-symbol, a generic completion mecha-
nism that looks at the text at point and tries to
complete it against a known set of completions.
In Isearch’s case, pressing C-M-i will also trigger
the completion engine – but a di昀昀erent one
built for Isearch given its specialized nature –
but this time it’ll compare your Isearch search
string against your search history. Try it out.

157

The Theory of Movement

Searching for strings at point is such a common occurrence
that there are dedicated commands to help you do just that:

Isearch Key Binding Purpose
C-w Add word at point to search string
C-M-y Add character at point to search string
M-s C-e Add rest of line at point to search

string
C-y Yank (“paste”) from clipboard

to search string

It’s common that you will 昀椀nd yourself at a word you want
to search for and, to save the hassle of typing it in manually,
you can just type C-w. Repeated invocations will add subse-
quent words to the search string. I 昀椀nd C-M-y (which adds
one character at a time) to be of marginal use to most, but
if you edit a lot of text with foreign characters, you should
give it a try.
Isearch is an inclusive search and it will generally err on the
side of caution and match things that a more traditional,
stricter search, would not. You can control how Isearch
behaves using its toggles:

Isearch Key Binding Purpose
M-s c Toggles case-sensitivity
M-s r Toggles regular-expression mode
M-s w Toggles word mode
M-s _ Toggles symbol mode
M-s <SPC> Toggles lax whitespace matching

158

The Theory of Movement

Isearch Key Binding Purpose
M-s ' Toggles character folding

Each toggle command only a昀昀ects the current Isearch and
will not persist.
The case-sensitivity toggle (M-s c) simply turns on strict case-
sensitive matching — for when you have case folding on by
default and you only occasionally need strict case search.
Toggling regular-expression mode with M-s r is akin to acti-
vating regexp Isearch with C-M-s or C-M-r, and vice versa.
The word and symbol toggles (M-s w and M-s _) alter Isearch
so word and symbol delimiters like . and - freely match
other delimiters.
For instance, consider a bu昀昀er with this text:

this-is-a-hyphenated-string

Searching for hyphenated string with C-s alone will not
yield a match, but if you re-run the search with C-s and
then toggle word search mode with M-s w, it will. Word
search is especially practical in programming languages
where you want to match two successive words separated
by (possibly unknown) word-delimiting characters, like
this C example:

mystruct->foo = 42;

159

The Theory of Movement

Searching for mystruct foo will match the element access
above if you toggle word search with M-s w.
Isearch can fold characters with M-s '. It’s neat: when you
search for a Emacs will attempt to match characters like á or
å; it works for a wide range of characters. You can enable it
by default by Customizing search-default-mode.
Some of the toggles and commands I have covered are so
frequent that they have their own global keybindings:

Key Binding Purpose
M-s w Isearch forward for word
M-s _ Isearch forward for symbol
M-s . Isearch forward for symbol at point
M-s M-. Isearch forward for thing at point (Emacs 28)

You should recognize the 昀椀rst two as they are the same key
bindings available to you inside Isearch itself. M-s . is only
available as a global key binding. It begins a forward Isearch
for the symbol at point. The de昀椀nition of a symbol is mode-
dependent, but Emacs is usually smart enough to deduce
where the symbol begins and ends.
In a similar vein is M-s M-. which 昀椀nds the thing at point.
What that thing is, is contextual, and is controlled by the cus-
tomizable option isearch-forward-thing-at-point. By de-
fault it’ll check for a region selection; an url; a symbol; or
an s-expression, in that order. That makes it a convenient
one-size-昀椀ts-all tool to grab the thing you’re most likely in-
terested in.
If you want to Isearch with an active region, then it stands

160

The Theory of Movement

to reason you’d probably want to use that as an isearch query
also. The same holds for the other choices.

Thing at Point
In Emacs, the thing at point is an extensible
system for extracting “interesting” text around
point. It’s a system package authors can tap into
to extend, and it’s used in many parts of Emacs.

Learn Isearch It is a powerful search tool in its own right,
but it also lets you move around the bu昀昀er quickly by
searching for words near where you want to go. Tradi-
tional text editors and IDEs attach too much edi昀椀ce and
complexity to a traditional “昀椀nd text” UI. In Emacs,
Isearch nearly eliminates the visual clutter and context
switching and hence you keep your tempo.

161

The Theory of Movement

Occur: Print and Edit lines matching an
expression

Occur mode is a grep-like utility built into Emacs. Unlike
grep, it has far fewer functions and will by default only op-
erate on the current bu昀昀er. What makes M-x occur great is
its speed and that it comes with Emacs, so you don’t have to

162

The Theory of Movement

call out to an external process. Occur will also preserve the
syntax highlighting in its match results.
Whereas Isearch incrementally walks you through every
match in a bu昀昀er, occur will instead create a new bu昀昀er
called *Occur* with all the match results in it.
You can activate occur globally and from within Isearch it-
self:

Key Binding Purpose
M-s o Occur mode
M-s o Activate occur on current search string

inside Isearch

Unlike Isearch, you’re asked for a regular expression
for which to search. Occur mode searches for lines that
match the regular expression and shows you the results
in a separate bu昀昀er. Occasionally, you may want context
lines – lines before and after the matching line itself –
and you can enable them by customizing the variable
list-matching-lines-default-context-lines.
Occur mode uses hyperlinks that jump to the matching line
when you left-click it with the mouse or press RET on your
keyboard. The occur mode used in the *Occur* bu昀昀er has a
number of keys you can use:

Occur Key Binding Purpose
M-n, M-p Go to next and previous occurrence
<, > Go to beginning and end of bu昀昀er
g Revert the bu昀昀er, refreshing the

163

The Theory of Movement

Occur Key Binding Purpose
search results

q Quits occur mode
e Switches to occur edit mode
C-c C-c Exits occur edit mode and

applies changes

The keys are only available in the occur bu昀昀er itself.
In Emacs, the key g will revert the bu昀昀er. What happens
when you do that depends on the mode, but it’s a common
Emacs convention to refresh the contents from the original
source. In this case, it will re-run the search on the bu昀昀er
with the same regular expression. The g command is worth
remembering as it’s such a common convention in Emacs.
The e key will switch the occur bu昀昀er to an editable state. This
is an unbelievably powerful editing construct that lets you
edit the text in-line in the occur bu昀昀er and then commit the
changes to the original source lines by typing C-c C-c.
The main advantage of the occur mode is that you get a
second bu昀昀er with the results, usually in a second window
next to your original bu昀昀er, and an at-a-glance view of the
matches and the ability to jump between the matching lines.
However, that requires that you keep switching to the other
window to select new matches; that is not only tedious, but
it ruins your tempo. To maintain your tempo, I suggest you
learn these two commands:

164

The Theory of Movement

Key Binding Purpose
M-g M-n Jump to next “error”
M-g M-p Jump to previous “error”

The purpose column says “error,” but that’s because the com-
mand names are M-x next-error and M-x previous-error.
In reality, they are general-purpose commands. When you
run M-x occur (or other specialized commands in Emacs
like M-x compile or M-x grep), Emacs remembers that and
makes M-g M-n and M-g M-p go up and down that list of
matches. The great thing about these commands is you
only have to remember those two and they will work with
the last-known occur, compile or grep search you did.

Multi-Occur

You can use the occur mode on multiple bu昀昀ers with multi-
occur. The command M-x multi-occur-in-matching-buffers
takes a regular expression of bu昀昀ers to match – for instance
\.py$ to search all Python bu昀昀ers – but otherwise works the
same as M-x occur. There is also M-x multi-occur where you
explicitly select the bu昀昀ers you want to search — also of
utility, but slower to use as you have to manually select each
bu昀昀er on which to run occur.
With multi-occur you can use most of the commands I
explained earlier: that means you can edit (with e) across
the bu昀昀ers you matched. Now combine it with Emacs’s
keyboard macros or search & replace and you have an
exceptionally powerful tool at your disposal.

165

The Theory of Movement

Imenu: Jump to de昀椀nitions
Imenu is a generic indexing framework for jumping to
points of interest in a bu昀昀er. A major mode author will
write a snippet of elisp that generates a list of points of
interest – their name and where in the bu昀昀er they occur –
so when you invoke imenu with M-x imenu, you can jump
to any one of them.
Most, but not all, major modes support imenu. For program-
ming modes, the most obvious points of interest are things
like functions and class de昀椀nitions; other modes may make
use of them as well, such as mail programs or structured text
modes like Markdown or reStructuredText.
Imenu is another tool in your toolbox for medium and
long-distance movement. I 昀椀nd that I use it most when I am
not sure of where something is in a bu昀昀er; for jumping to
things I see on the screen, Isearch or elemental movement
commands might be better (and faster).
Oddly, imenu is not bound to any key at all. To use it, you
must type M-x imenu. That is unfortunate as I think it has
historically hampered its adoption since it is not bound to
any known or accessible key. As you will see as you explore
Emacs yourself, that is a common occurrence — so common
in fact that 20-year veterans still 昀椀nd new things in Emacs
that they had never heard about before.
I bind imenu to M-i. That key is already in use, however. The
existing command, M-x tab-to-tab-stop, will insert spaces
or tabs to get to the next tab stop, a concept that dates back
to – and hasn’t been used since – the era of the typewriter.
Personally, I have no use for such a thing and certainly not

166

The Theory of Movement

on such an accessible key.
To bind Imenu to M-i, add this to your init 昀椀le:

(global-set-key (kbd "M-i") 'imenu)

Like most of Emacs’s completion prompts, Imenu only sup-
ports TAB-style completion out of the box. I recommend you
read the next chapter and use Helm’s Imenu support instead.

Helm: Incremental Completion and Selection

Helm is an amazing package. It’s a generic framework for
昀椀lter-as-you-type completion; that is, you begin typing and

167

The Theory of Movement

Helm will automatically 昀椀lter and show you what matches
— not unlike Isearch’s real-time, incremental search.
What makes Helm so fantastic is that it comes with a lot of
completion commands out of the box. My personal recom-
mendation is that you follow the installation instructions be-
low and start using Helm right away. Helm is a radical depar-
ture from Emacs’s usual low-key completion mechanism –
particularly if you already have a work昀氀ow that works for
you – but Helm’s extensive selection of completion sources
and its 昀椀lter-as-you-type is clearly superior to Emacs’s own TAB-
based completion mechanism for many (but not all) tasks.

How to install
Helm is a third-party package and does not ship
with Emacs. There are many ways of installing
it, but this is the easiest:

1. Ensure you have followed the instructions
in The Package Manager.

2. Run M-x package-install, then enter helm
and press RET.

3. Restart your Emacs.

All Helm commands share the pre昀椀x key C-x c. I can’t say I
am a big fan of that pre昀椀x key as a lot of the keys that follow
it make it an exercise in 昀椀nger contortion. It is also remark-
ably close to C-x C-c — the command that exits Emacs.

168

The Theory of Movement

Pre昀椀x Key Binding Purpose
C-x c Pre昀椀x key for all Helm completion

commands.

Exploring Helm

The trick to discovering things in Emacs is to ask Emacs the
right questions. The right questions in this case are: What
commands does Helm make available to me? and Does Helm have
any key bindings?

Use apropos As I talked about in Apropos, apropos will list
all elisp symbols – variables, commands, elisp func-
tions, and so on – that match the pattern you give it.
In this case, asking M-x apropos-command (using C-h a)
to show you all commands that match ^helm- would be
a good place to start. Likewise, M-x apropos-variable
will do the same but for variables.
Elisp does not have namespaces so package authors pre-
昀椀x their commands with the name of the package. As
the package name is Helm, it makes sense to use apropos
to 昀椀nd commands beginning with helm- — or more
precisely as the regular expression ^helm-.
Coincidentally, Helm has its own apropos comple-
tion engine: M-x helm-apropos. It will complete
commands and variables & functions — make sure
you only look in the Commands header as Functions
are internal elisp functions not meant for general use.

169

The Theory of Movement

Describe the pre昀椀x key I mentioned earlier that Helm has
its own pre昀椀x key, C-x c. In The Describe System, you
can tell Emacs to list all key bindings in a pre昀椀x key by
昀椀nishing a pre昀椀x key with C-h: C-x c C-h.

The two methods yield slightly di昀昀erent answers – because
you are in fact asking two di昀昀erent questions – so you
should do both.
And 昀椀nally:

• M-x apropos-command (C-h a) is not limited to com-
mands bound to a pre昀椀x key and it will happily show
you commands that are unbound (or even completely
unrelated if your search pattern is too generic) —
but this is still a great way of discovering hidden
commands, bound or not.

• Describing a pre昀椀x key with C-h will only show you
the commands bound to that pre昀椀x key. Occasionally,
you will discover commands that, although bound to
that pre昀椀x key, have nothing to do with the other com-
mands.

Helm Bindings

Because of the sheer number of Helm commands, I will list
the ones I think are the most important. I encourage you
to follow the suggestions in Exploring Helm and explore
Emacs and Helm yourself.
Before I do that, I should talk about Helm actions. In Helm,
you can also carry out actions against the matches; the ac-

170

The Theory of Movement

tions available depend entirely on the completion you are
doing.
Helm has its own set of keys that you need to learn:

Helm Key Binding Purpose
RET Primary action
C-e Secondary action
C-j Tertiary action
TAB Switch to action selector
C-n, C-p Next and previous candidate
M-<, M-> Beginning and end of completion list

RET is the primary (and most common) action you’d want to
carry out on the selected candidate. Usually, it will jump to,
open or display the candidate. The secondary action, if there
is one, is bound to C-e which you may remember is an ele-
mental movement command that jumps to end of the line; the
command will still do that in Helm but only if your point
is not at the end of the line — if it is, it acts as the secondary
action.

Exiting Helm
To quickly exit Helm, press C-g, the universal
get-out-of-anything key.

The TAB key will switch to the action selector and list all
available actions for the selected candidate. Like the Helm
completion interface, the action interface is also 昀椀lter-as-you-
type.

171

The Theory of Movement

Here are some of the more interesting Helm completion en-
gines:

Key Binding Purpose
C-x c b Resumes last Helm command
C-x c / Invokes the command line utility find

on the active bu昀昀er’s current directory
C-x c a Completes M-x apropos results
C-x c m Completion engine for the man page

program
C-x c i Lists completions sourced from

M-x imenu or Semantic
C-x c r Interactive regular expression builder
C-x c h r Search Emacs topics in M-x info
C-x c M-x List completions sourced from M-x
C-x c M-s o Use Helm to match M-x occur patterns
C-x c C-c g Show matches from Google Suggest

Some of the Helm commands have positively byzantine key
bindings, like C-x c C-c g to show Google Suggest matches.
Even by Emacs standards, they’re obtuse.
Learning Helm will greatly improve your Emacs experience.
It comes with a powerful fuzzy search and a large range of
ready-made completion mechanisms. It also has its own bur-
geoning ecosystem of third-party packages.
The interesting thing about Emacs is the unexpected
productivity improvements you’ll get from things like the
Google Suggest completion mechanism. Why switch to a
web browser and search in the browser when you can do it
in Emacs and get as-you-type suggestions from Google?

172

The Theory of Movement

IDO: Interactively DO Things

As I talked about in Bu昀昀er Switching Alternatives, IDO mode
is a powerful minibu昀昀er completion engine. Helm and IDO
overlap in purpose and some prefer to use one to the exclu-
sion of the other; most use both but for di昀昀erent purposes:

IDO is a distraction-free, target-aware search Unlike
Helm, IDO does not use a separate bu昀昀er (and
window) to show completion matches. Instead, it
completes in-line in your minibu昀昀er itself. This is
preferable, for things like bu昀昀er switching and 昀椀le
昀椀nding, as you roughly know where you’re going and
for what you are looking. That is how I use IDO mode
and I think it’s a great way to start out; for almost
everyone out there, it is certainly a better choice than
the default TAB-based completion mechanism.

173

The Theory of Movement

However, IDO fails when you’re not entirely sure what
you are looking for; stepping through the matches
in the minibu昀昀er is tedious when all you want is an
overview of everything that matches your query.

Helm is for in-depth searching and completion Helm
will open a transient bu昀昀er and window to display
matches and that greatly increases visual clutter and
distraction — that is not in itself bad if you are unsure
what you are looking for. But if you know what you
are doing – for instance you are in bu昀昀er foobar.txt
and you want to open widgets.c – IDO is a better
choice as you can seamlessly switch bu昀昀ers and not
su昀昀er the visual overhead.
Indeed, if you are a touch-typist you will quickly
reach a point where you jump from bu昀昀er to bu昀昀er
without so much as glancing at the minibu昀昀er because
your primed intuition tells you that if you type C-x b
wc, IDO will 昀氀ex match to widgets.c.
Helm excels when you don’t know exactly what you’re
looking for or if you require additional, contextual
awareness of similar matches.

I recommend you enable IDO mode for 昀椀le and directory 昀椀nd-
ing, and bu昀昀er switching by adding the following lines to
your init 昀椀le:

(ido-mode 1)
(setq ido-everywhere t)
(setq ido-enable-flex-matching t)

174

The Theory of Movement

Now, when you 昀椀nd 昀椀les or directories (C-x C-f and C-x d)
or switch bu昀昀ers (with C-x b), you will use IDO’s far superior
completion mechanism. Of course, you are free to use Helm
as well if you prefer.
I recommend you learn just a couple of IDO’s extensive key
bindings.

File & Directory Switching

These keys are only available when you run a command that
requires you to pick a 昀椀le or directory. That includes C-x
C-f and C-x d, respectively, but it also includes things like
昀椀le saving with C-x C-s:

Key Binding Purpose
C-s and C-r Move to the next and previous match
TAB Traditional non-IDO TAB-completion
RET Open selected match
C-d Open M-x dired bu昀昀er in current

directory
// Go to root directory /
~/ Go to home directory ~
Backspace Delete a character or go up one

directory

Bu昀昀er Switching

Bu昀昀er switching is usually only encountered when you type
C-x b:

175

The Theory of Movement

Key Binding Purpose
C-s and C-r Move to the next and previous match
TAB Traditional non-IDO TAB-completion
RET Switch active bu昀昀er to selected match

Further reading
I recommend you read my article Introduction to
Ido Mode10 on my website for further, in-depth
information on how to use IDO mode.

Grep: Searching the 昀椀le system
Searching 昀椀les already open in Emacs is 昀椀ne, but more often
than not you want to search 昀椀les that aren’t open in Emacs,
and the command line utility grep is a great way to do just
that.

grep in Microsoft Windows
There is no like-for-like grep program in Win-
dows – and the built-in one findstr, though
powerful, is not supported out of the box
by Emacs – so I recommend you install the
cross-compiled Windows versions of the GNU
Coreutils.11 They work splendidly in Windows
and they give you a reasonable Linux command
line facsimile in Windows.

10 https://www.masteringemacs.org/article/
introduction-to-ido-mode

11 http://gnuwin32.sourceforge.net/packages/coreutils.htm

176

https://www.masteringemacs.org/article/introduction-to-ido-mode
https://www.masteringemacs.org/article/introduction-to-ido-mode
http://gnuwin32.sourceforge.net/packages/coreutils.htm

The Theory of Movement

How you interact with grep – or more generally with any ex-
ternal tool – depends on your editor. Many Vim users would
exit Vim or use a tool like tmux or screen and switch to a
terminal and run the command(s) and then return to Vim.
Emacs users prefer tools they can assimilate into Emacs. Us-
ing grep from inside Emacs is a major productivity-booster
as you’ll soon see.

ack, ag and ripgrep
Though powerful, you may prefer something
other than grep, like ripgrep. You can 昀椀nd
third-party packages in the package manager
that supports them.

Emacs supports a large array of grep and grep-derivative
commands. None are bound to a key by default so you will
have to call the commands directly with M-x and later bind
the ones you use frequently to keys:

Command Purpose
M-x grep Prompts for arguments to pass to grep
M-x grep-find Prompts for arguments to pass to grep

and find
M-x lgrep Prompts for query and glob pattern to

search for with grep
M-x rgrep Prompts for query and glob pattern

then recursively searches with grep
and find

M-x rzgrep Like M-x rgrep but searches
compressed gzip 昀椀les

177

The Theory of Movement

The grep commands fall into two categories:

Low-level commands like M-x grep and M-x grep-find.
They supply you with a suggested grep command
string and all you have to do is add the search pattern
and any additional options you require.
I don’t use them frequently. I usually want to search
for a pattern in a group of 昀椀les and these commands
are too low-level for that. Occasionally, I want to call
grep with speci昀椀c options and in that case I have no
choice but to use M-x grep or M-x grep-find.

High-level commands like M-x lgrep, M-x rgrep and M-x
rzgrep. They hide the command string completely
and instead ask you for the 昀椀les you want to search
and the search string you want to match.
Emacs will also cleverly suggest a 昀椀le type based on
your current bu昀昀er’s 昀椀le type. Emacs will also look at
the current symbol your point is on and ask if you
want to search for that. That is convenient because
you often 昀椀nd yourself on, or near, an identi昀椀er or
word you want to search for. In that case you can type
M-x rgrep and RET twice to accept the defaults.

Grep Guesswork

The high-level commands – particularly rgrep – do a lot of
clever behind-the-scenes guesswork when it calls out to find.
First of all, Emacs runs on any number of platforms and it
has to work consistently on all of them. Not all platforms
come with xargs, so Emacs will check for this and use find’s

178

The Theory of Movement

own -exec switch instead. Quoting and escaping characters
in strings vary on platforms and shells — and Emacs needs
to work with all of them.

For Windows Users
On Windows, there is already a program called
find. To override the default choice in Emacs,
you should add this to your init 昀椀le, making sure
to change C:\\gnuwin32\\bin\\ to the location
of GNU find and then restart Emacs:

(setenv "PATH" (concat "C:\\gnuwin32\\bin\\"
path-separator
(getenv "PATH")))

Another arrow in Emacs’s quiver is the ability to automati-
cally pass negative matches to find. For instance, you don’t
want to search source control directories like .git or trash
昀椀les that yield false positives.
A lot of people use tools like ack or rg for the ease of which
you can include or exclude 昀椀le patterns — but Emacs thank-
fully automates that tedium.
I encourage you to browse the grep category with Customize
and con昀椀gure it to your liking:

M-x customize-group grep

Using the Grep Interface

179

The Theory of Movement

Key Binding Purpose
M-g M-n Jump to next match
M-g M-p Jump to previous match

Like I mentioned when I talked about M-x occur, you can
re-use the jump commands. As before, they are global and
work across bu昀昀er boundaries. They are worth knowing as
you can quickly and easily jump between matches in a *grep*
bu昀昀er. Emacs will open the 昀椀les and jump to the right line if
they are not already open (and if they are, Emacs will simply
switch to the already-open 昀椀le.)

Grepping in Emacs
Like everything in Emacs, it comes down to
modes and the major mode for grep is named –
you guessed it – grep-mode. Because the bu昀昀er is
the universal data structure of Emacs, all it has
to do is pipe the output from grep to a bu昀昀er
named *grep*, followed by a call to grep-mode.
When activated, grep-mode will highlight the
matches and hyperlink them to the line number
and 昀椀lename so you can jump around.
If you look closely, the output in a *grep* bu昀昀er
looks identical to that of grep itself! You can test
this by opening a blank bu昀昀er (C-x b and then
pick a name not in use) and enter something like
this:

my_file.txt:10:This does not exist!

180

The Theory of Movement

and then type M-x grep-mode and watch as
Emacs will highlight the match as though it
were real output from grep. This is a common
pattern in Emacs: re-using the raw output from
a command is low-tech, but e昀昀ective!

Other Movement Commands
These movement commands are of limited day-to-day use
for most Emacs users. They have their place, and some are
worth incorporating into your work昀氀ow once you are com-
fortable using all the other commands in this chapter.

Key Binding Purpose
M-r Re-positions the point to the top left,

middle left, or bottom left
C-l Re-centers the point to the middle, top, or

bottom in the bu昀昀er
C-M-l Re-positions the comment or de昀椀nition

so it is in view in the bu昀昀er
C-x C-n Sets the goal column, the horizontal

position for the point
C-u C-x C-n Resets the goal column, the horizontal

position for the point
M-g M-g Go to line
M-g TAB Go to column
M-g c Go to character position

M-r and C-l are functionally similar. M-r will 昀椀rst move your
point to the beginning of the line and then alternate between

181

The Theory of Movement

the top, the middle and the bottom of the bu昀昀er. All it does
is toggle between those three locations. C-l is similar only it
will scroll your window so the line point is on is re-centered as
the top, middle, or bottom. C-M-l is similar only it will intel-
ligently try and re-position the window so the comment or
de昀椀nition point belongs to is visible in the bu昀昀er. In other
words, it will try and scroll things into view.
I use C-l all the time. I use it to recenter the line I’m on so
I can see more of the bu昀昀er above or below the line I am on.
I encourage you to try out M-r and C-l.
The goal column command C-x C-n is of limited interest to
most people. When you move up or down a line, Emacs will
try to maintain your horizontal position as you move from
one line to the next. If you have a goal column set, Emacs
will not do that and instead make your point’s horizontal po-
sition match the goal column. So if you set the goal column
to 10 – by putting point on the 10th character – Emacs will
try (if the line is long enough!) to ensure your point is always
placed at the tenth character. To disable goal column, type
C-u C-x C-n.
Jumping to a line is something you’d want to do regularly.
But because of things like Emacs’s interactive compilation
mode and built-in support for things like grep, you don’t
have to jump to explicit lines as often as you’d have to if
you used a simpler editor. The command, bound to M-g M-g,
works exactly as you would expect: it asks you for a line to
which to jump. You can also give it a pre昀椀x argument, for
instance M-5 M-5 M-g M-g, to jump to the 55th line — and
make sure you use the M- digit argument to maintain your
tempo.

182

The Theory of Movement

The command M-g TAB does the same only it jumps to a par-
ticular column position instead. M-g c jumps to the absolute
position in the bu昀昀er starting from the beginning of the
bu昀昀er. If you want to jump to the 42nd character in a bu昀昀er,
you’d type M-g c or M-4 M-2 M-g c.

Conclusion
As the previous sub-chapters have shown, there are a multi-
tude of ways you can move around in Emacs. Emacs is often
lambasted for being an operating system but a terrible text
editor, but that could not be farther from the truth; Emacs
is a highly sophisticated text editor and it easily rivals Vim
in capability — even if the two editors are functionally dif-
ferent in their approach. Emacs’s modi昀椀er keys are a form
of transient modality. Emacs is distinctly modal as your com-
mands change with the modi昀椀er keys and remain so until
you release the modi昀椀er keys. The one thing that will make
the biggest di昀昀erence is remapping Caps Lock to Control:
I could not live without this, even outside of Emacs. The
control keys are awkwardly placed if you’re a touch typist.
There is also a lot of symmetry to Emacs’s commands, par-
ticularly the elemental movement commands. Not all key
bindings make sense and there are silly oversights like not
binding M-x imenu to a key.
If you are new to Emacs, I suggest you keep using the arrow
keys. You can adopt Emacs’s movement commands one key
at a time. Eventually, you will slowly adopt certain Emacs-
isms and you’ll soon realize that moving your right hand o昀昀
the home row to use the arrow keys is slowing you down.

183

The Theory of Movement

My next suggestion is to experiment. Keep referring back
to the book until it’s muscle memory; keep experimenting
with di昀昀erent combinations and train your brain to recog-
nize patterns. It’s all about muscle memory and pattern
matching — knowing that if you do this command, you’ll
get that outcome. Nobody mastered Emacs overnight and
Emacs mastery is a red herring anyway; it means a hundred
things to a hundred people.
Over the course of the chapter, I showed you how to look
things up using Emacs’s internal documentation – particu-
larly apropos, C-h and the describe system – and that more than
anything will help you “master” Emacs. Forgetting the
name of a command or the key it is bound to is immaterial
if you know how to look up the answer in Emacs.
My 昀椀nal advice is about experimentation. Every time
you do something that you think you can do in a smarter
or more e昀케cient way — have another read through the
book or search the Internet for advice. Most of my own
techniques and work昀氀ow grew organically as I realized that
particular problems I kept facing had solutions other than
the naive, manual way.

184

Chapter 5

The Theory of Editing

“An in昀椀nite number of monkeys typing into
GNU Emacs would never make a good program.”
– Linus Torvalds, Linux Kernel Coding Style Docu-
mentation

Editing in Emacs is perhaps even easier than learning how
to move around e昀昀ectively in Emacs. Most day-to-day edit-
ing is writing or deleting text punctuated by specialist com-
mands. Nevertheless, in Emacs, even mundane things like
deleting text or using the kill ring (the clipboard) are highly
optimized.
I think it’s more important that you master movement
昀椀rst as that means you learn how to switch bu昀昀ers and use
Emacs’s windowing system e昀昀ectively. That is why I have
not talked about editing text at all, until now, two thirds
of the way through the book. Once you’re comfortable
opening and saving 昀椀les and getting around in Emacs

185

The Theory of Editing

without losing track of what you were doing — then
you’re ready to tackle more advanced editing concepts.
If you are reading this chapter and are still using the naviga-
tion keys – the arrow keys, page up and down, and so on –
then that is 昀椀ne too. You will 昀椀nd the experience a bit dis-
jointed as a lot of what makes Emacs’s movement keys so ef-
fective is the near-harmonious relationship they have with
their text-editing counterparts.
This chapter will cover how to edit text; that includes tradi-
tional staples like search and replace; how to use the kill ring,
or clipboard; how to use text macros; and how to use text
transformation tools.

Killing and Yanking Text
Where other text editors merely cut text, in Emacs you kill it.
The terminology, as I talked about in Killing, Yanking and
CUA, is bizarre and predates most graphical user interfaces
entirely.

Discovering the Kill Commands
Use Emacs’s apropos functionality to 昀椀nd
additional kill commands not listed here.

Emacs’s kill commands use the same syntactic unit concept as
the movement commands do. Some of them also share mod-
i昀椀er symmetry, making it easy to switch between kill com-
mands.

186

The Theory of Editing

Key Binding Purpose
C-d Delete character
<backspace> Delete previous character
M-d, C-<backspace> Kill word
C-k Kill rest of line
M-k Kill sentence
C-M-k Kill s-expression
C-S-<backspace> Kill current line

The ones that stand out in the table above are C-d, which
deletes the next character; and <backspace>, which does the
same but backwards. All other commands kill and don’t delete.
The distinction is important: deleted text is not retained in
your kill ring whereas killed text is.

Digit Arguments and Negative Arguments Like the
movement commands, you can use the digit ar-
guments to kill more than one unit at a time. To
maintain your tempo, ensure you use the same digit
modi昀椀er as the modi昀椀er of the kill command you
want to call. If you want to kill 3 s-expressions with
C-M-k, type C-M-3 C-M-k.
The negative argument reverses direction, just like
the movement commands. Make no mistake: that
is more practical than it seems. I frequently 昀椀nish
writing something only to realize I want to move it
elsewhere or, perhaps, delete it entirely.
Consider this example:

s = make_upper_case("hello, world!"█)

187

The Theory of Editing

After C-M-- C-M-k:

s = make_upper_case(█)

Emacs has a number of generalized kill and yank commands
also. They’re worth memorizing, as you will use them fre-
quently:

Key Binding Kill Ring Purpose Clipboard
C-w Kill active region cut
M-w Copy to kill ring copy
C-M-w Append kill
C-y Yank last kill paste
M-y Cycle through kill ring,

replacing yanked text.
Maybe show kill ring history
(Emacs 28)

Killing versus Deleting
The di昀昀erence between killing and deleting trips up a lot of
new Emacs users. In most editors, there is a clear delineation
between clipboard commands – that act solely and exclu-
sively on the selected text – and commands that delete text.
In Emacs, all commands will, with few exceptions like C-d
and <backspace>, kill text straight to your kill ring. If you
are new to Emacs, it will confuse you and maybe even infuri-
ate you. No other editor 昀椀ddles with your clipboard content
unless you explicitly tell it to — but Emacs does, and it’s a
great feature once you get used to it.

188

The Theory of Editing

Emacs’s kill commands are best summarized with 昀椀ve simple
rules:

Consecutive kills append All kill commands append to
the kill ring – that is to say they append to the text
in the kill ring – if, and only if, the last command
was also a kill command. If you break the cycle, by
moving or writing or running a command, the next
kill command will create a new entry in the kill ring.
For instance, if you type M-d M-d M-d – killing three
words in a row – your kill ring will hold the three
words you killed when you next yank the text. If you
type M-d M-d M-d, then move to the next line with C-n
and kill another three words. Your last three words are
what you yank from the kill ring, not all six! The move-
ment command broke the cycle.
It will take you a little while to get used to this. But it’s
a smarter way of working as you don’t have to select
text 昀椀rst.

The kill ring can hold many items Much like the undo
ring you cannot easily lose information in the kill ring.
If you kill something and then later on replace your
昀椀rst kill entry with another kill, you have not lost
your 昀椀rst kill. It’s easily recoverable and in fact the
kill ring is often used as a temporary and secondary

“store” of snippets if you are rewriting text.
The kill ring does have a maximum size – or rather
how many cells of text it holds before it silently drops
the oldest ones – and you can customize it by altering

189

The Theory of Editing

kill-ring-max. I have never really had the need to my-
self, though, as the default is generous.

The kill ring is global It’s shared between all the bu昀昀ers in
Emacs. Every item in the kill ring is available to you
everywhere.

Killing is also deleting When I started my Emacs journey,
I found it strange that there were no dedicated delete
commands. But that’s because the kill ring is as much a
dumping ground for unwanted text as it is a clipboard
for useful text. There are few outright commands that
delete text – Emacs will rarely put you in a position
where accidental data loss is likely – so that’s why all
bounds commands send text to the kill ring instead.
But that’s 昀椀ne too: the kill ring is 昀椀nite, but larger than
you would ever likely care about.
Forget the idea that your kill ring is precious — it’s
not.

Marking is unnecessary Whether it’s text or prose, you
will 昀椀nd that most of the work you do involve
operations on syntactic units. It’s far quicker to tap
M-d three times in a row to kill three words than to
mark them 昀椀rst with M-@ and then kill with C-w.
There are two exceptions, though:

• If you want to copy (M-w) the region, it’s quicker
to mark 昀椀rst and then copy.

• If you want to kill or copy odd-shaped regions
that don’t conform to multiples of syntactic
units.

190

The Theory of Editing

Appending to the kill ring
Occasionally, you want to append a new kill to
the existing one in the kill ring. This often hap-
pens if you want to kill di昀昀erent parts of a bu昀昀er
that are not one, contiguous region or series of
kill commands. To do this, 昀椀rst type C-M-w and
Emacs will tell you in the echo area that if the
next command is a kill command, it will append
to the kill ring.

Killing Lines

If you want to kill the whole line, you should use
C-S-<backspace> — but that command won’t work in a
terminal as it is not possible owing to technical limitations
of the terminal emulator.
The other approach, and the one I use myself, is to mod-
ify the behavior of C-w – the command that kills the active
region – so it kills the current line the point is on if the
region is not active. I recommend you install the package
whole-line-or-region if you want your Emacs to do this
also:

M-x package-install whole-line-or-region

Similarly, there is C-k, which kills to the end of the line. The
behavior is di昀昀erent from what most expect: C-k will not kill
the newline character at the end of the line. This is a feature
and not a bug. The newline character is rarely desired when
you want to yank the text somewhere else: if you didn’t, you

191

The Theory of Editing

now have a spare newline in your kill ring, and you’re miss-
ing one in your bu昀昀er. Contrarily, if the point is at the end
of the line, only the newline symbol is killed. Therefore, tap-
ping C-k twice will kill the text and the newline, making it
easy to include both in the same cell of text when you do
want the newline.
If you prefer, you can force C-k to kill the newline perma-
nently by customizing the option kill-whole-line. But I
would encourage you to try the default before you make the
change.

Yanking Text
In Emacs, you yank from the kill ring if you want to paste
text from it.

Terminology
Paste is not a widely-used term in Emacs. How-
ever, as it’s so common elsewhere – along with
a handful of other words – Emacs will treat it as
a synonym of yank when you use apropos.

The two yank commands you want to know about are:

Key Binding Purpose Clipboard
C-y Yank last kill paste
M-y Cycle through kill ring,

replacing yanked text.
Maybe show kill ring history
(Emacs 28)

192

The Theory of Editing

Yanking works as you would expect: it inserts the current
entry in the kill ring at point in your active bu昀昀er. Repeat
calls to yank will insert the same text.
As I mentioned before, the kill ring is a ring, like the undo
ring, and it remembers former kills so you can cycle through
them.
Cycling through the kill ring is easy:

1. Press C-y where you want the yanked text to appear.
2. Without executing another command – this includes

moving around and editing text – type M-y to step back
through Emacs’s kill ring.

As of Emacs 28 you can browse the kill ring with M-y and pick
the kill ring entry to yank. This feature is only available if
you haven’t just called yank with C-y — in other words, the
default operation of M-y is to show the kill ring history.

Transposing Text
Transposing text is the act of swapping two syntactic units of
text with one another. At 昀椀rst glance you may think they are
of limited utility; but actually they solve a real problem, and
if you spend the e昀昀ort and master them, you will not regret
it. Switching the order of words in prose, or the arguments
to a function, is a frequent occurrence.
When you transpose text, you do so using syntactic units in
much the same way you move or kill text:

193

The Theory of Editing

Key Binding Purpose
C-t Transpose characters
M-t Transpose words
C-M-t Transpose s-expressions
C-x C-t Transpose lines
M-x transpose-paragraphs Transpose paragraphs
M-x transpose-sentences Transpose sentences

When you call a transpose command, Emacs will 昀椀rst look
at where the point is and, depending on the exact transpose
command you issued, swap two syntactic units surrounding
the point.
How Emacs de昀椀nes a syntactic unit in this case is a bit compli-
cated as your major mode determines what a syntactic unit
is.
Negative arguments also work; so do digit arguments, but
not the way you would expect. When you give a digit argu-
ment to a transpose command it will get the Nth unit ahead
of the point (unless you also give it a negative argument, in
that case it is the other way around) and swap that unit with
the one immediately before the point.

C-t: Transpose Characters
Transposing a character takes the character to the left and
right of the point and swaps them:

A█BC

194

The Theory of Editing

After C-t:

BA█C

Note that the point moved forward one character so you can
repeat calls to C-t to “pull” the character to the right:

BCA█

One important exception to this rule is when you are at the
end of a line. C-t will swap the two characters to the left of the
point:

BCA█

After C-t:

BAC█

This asymmetry is a keen way of 昀椀xing typos as they oc-
cur. Fixing mistyped characters with C-t is a time saver as
it saves you the e昀昀ort of deleting both characters and retyp-
ing them.

M-t: Transpose Words
Transposing two words with M-t works as you would expect
when the words are plain text, like this:

Hello █World

195

The Theory of Editing

After M-t:

World Hello█

Like transposing a character with C-t, the point moves for-
ward as though you had typed M-f (M-x forward-word) and
that means you can “pull” a word to the right.
Where M-t really shines is when you use it with source code.
In What Constitutes a Word? the M-f and M-b movement
commands ignore symbols in the direction you are moving
in and M-t behaves the same way.
Consider this example Python code where we have a dictio-
nary (a key-value hash map):

names = {
'Jerry':█ 'Seinfeld',
'Cosmo': 'Kramer',

}

With the point between the key and value, a call to M-t is
pure magic:

names = {
'Seinfeld': 'Jerry',
'Cosmo': 'Kramer',

}

As you can see, the key and value swapped places but the
symbols remained in place. Repeat it again and Emacs will

196

The Theory of Editing

continue and swap Jerry with Cosmo; repeat it once more
and you swap Jerry and Kramer.

How Transposing Actually Works
The M-t command is intrinsically linked to the
M-x forward-word (M-f) command. Greatly sim-
pli昀椀ed, Emacs will call M-f two times: once with
a negative argument, to get the left-side word
to transpose; and once again without a negative
argument, to get the right-side word to trans-
pose. The reality is a little more complicated but
not by much. It’s also an easy theory to test: call
M-- M-f and M-f from your original position –
making sure to move the point back to the origi-
nal position between the calls – and you will 昀椀nd
the left and right edge of the words M-twill trans-
pose.

If Emacs’s word movement behavior made no sense before, I
hope it makes a bit more sense now. It’s not to everyone’s lik-
ing but it is consistent across movement, kill and transpose.
It also works on prose:

Hello,█ World!

After M-t:

World, Hello█!

197

The Theory of Editing

C-M-t: Transpose S-expressions
You can transpose s-expressions – balanced expressions
– with C-M-t and, like word transposition with M-t, the
mechanics are identical; the same forward & backward
principles apply when the transposition function 昀椀nds the
left and right edges.
Consider the following piece of LISP code:

(/ (+ 2 n)█ (* 4 n))

Calling C-M-t on it will swap the two forms’ positions:

(/ (* 4 n) (+ 2 n)█)

Like M-t from before, the concept is identical but the applica-
tion di昀昀ers. But C-M-t, much like M-x forward-sexp (C-M-f),
assumes the role of M-x transpose-word if there are no bal-
anced expressions:

Hello,█ World!

And after C-M-t it becomes:

World, Hello█!

But consider what happens if we mix a balanced expression
with a word:

Hello,█ (insert name here)!

198

The Theory of Editing

After C-M-t:

(insert name here), Hello█!

So, C-M-t still works as you would expect. The applicability
is apparent in code as well:

ages = {
'Seinfeld':█ 34,

}

As you would expect, Emacs transposes things correctly:

ages = {
34: 'Seinfeld'█,

}

The behavior is di昀昀erent compared with M-t. Consider the
same scenario as before but with M-t:

ages = {
'34': Seinfeld█,

}

The result is di昀昀erent indeed. Emacs did indeed swap the
words but left the symbols intact. This is consistent with how
Emacs treats words and word boundaries.

199

The Theory of Editing

Other Transpose Commands
You can also transpose other syntactic units – lines, para-
graphs and sentences – and aside from transposing lines the
rest are harder, I think, to justify learning right away. The
paragraph and sentence commands are unbound, making
them harder to use — the only way to use them is to invoke
them through M-x.
Transposing lines with C-x C-t does have a use, however. I
use it frequently to re-order newline-based lists, and I 昀椀nd
it has its place in programming also.

Filling and Commenting

Filling
If you write a lot of text, you occasionally have to manually
break paragraphs so the lines won’t exceed a certain length.
You can use Emacs’s 昀椀ll functionality to do this for you, ei-
ther manually or automatically as you write. The 昀椀ll com-
mand is for more than just text. For instance, you can 昀椀ll
comments or doc strings too so they 昀椀t in under 80 charac-
ters.

Key Binding Purpose
M-q Re昀椀ll the paragraph
C-x f Sets the 昀椀ll column width
C-x . Sets the 昀椀ll pre昀椀x
M-x auto-fill-mode Toggles auto-昀椀lling

200

The Theory of Editing

I use paragraph 昀椀lling, using M-q, often as I write comments
in code and it is common for major modes to set a 昀椀ll width
(C-x f) with the best practices used for that programming
language or 昀椀le type.
Consider this quote by Sherlock Holmes that overruns the
page:

'It is an old maxim of mine that when you have excluded […]

After placing the point in the paragraph and typing M-q:

'It is an old maxim of mine that when you
have excluded the impossible, whatever
remains, however improbable, must be the
truth.'

If you type M-q with the pre昀椀x C-u, Emacs will attempt to
justify the text also:

'It is an old maxim of mine that when you
have excluded the impossible, whatever
remains, however improbable, must be the
truth.'

Typing C-x f will prompt you for a 昀椀ll width. As an exam-
ple, for the quotes above I put the point on the column I
wanted the paragraph broken and pressed C-x f — approxi-
mately 42 characters. The 昀椀ll width is the number of charac-
ters per line, but Emacs will not hyphenate words, so don’t
make the 昀椀ll width too small or it won’t 昀椀ll properly.

201

The Theory of Editing

The 昀椀ll pre昀椀x is an interesting feature. When you type C-x .,
Emacs will take every character on the current line up to point
and make it the 昀椀ll pre昀椀x. A 昀椀ll pre昀椀x is, as the name implies,
inserted before the lines when you 昀椀ll a paragraph with M-q.
To remove the 昀椀ll pre昀椀x, place your point on an empty line
and type C-x ..
You can tell Emacs to automatically 昀椀ll text as you write by
enabling M-x auto-fill-mode. I wouldn’t use it in program-
ming modes (it doesn’t work well) and limit its use to text
modes.

Commenting
Inserting comments in code is something Emacs is more
than capable of doing. It does come with a few di昀昀erent key
bindings and commands, with each one serving a slightly
di昀昀erent use case.

Key Binding Purpose
M-; Comment or uncomment DWIM1

C-x C-; Comment or uncomment line
M-x comment-box Comments the region but as a box
M-j, C-M-j Inserts new line and continues

with comment on a new line

The two you are most likely to use for in situ commenting
are M-; and C-x C-;. If you type M-;, Emacs will insert a com-

1 DWIM stands for Do What I Mean — another way of saying Emacs
will try to guess what you want to do.

202

The Theory of Editing

ment at the end of the line the point is on, and if you’re on
an empty line, Emacs will indent the comment according to
the major mode’s indentation rules.
If you have a region active, M-; will toggle between com-
menting and uncommenting it. The command C-x C-; tog-
gles comments on the whole line the point is on. C-x C-; also
works with a negative and digit argument.
Typing M-j or C-M-j with your point in a comment makes
Emacs break the line and insert a new comment. In that sense,
it is identical to 昀椀ll pre昀椀x. This command works well if you
write a lot of doc strings as Emacs is generally smart enough
to recognize comment pre昀椀xes that some doc string formats
require.
It bears mentioning that the Emacs 昀椀ll commands I talked
about earlier understand and respect comment syntax so feel
free to use M-q in a comment.
If you are using the comment commands in a major mode
that does not have the requisite comment variables set up (see
table below), Emacs will ask you for a comment character to
use when you 昀椀rst run the command.

Variable Name Purpose
comment-style Style of comment to use
comment-styles Association list of available

comment styles
comment-start Character(s) to mark start

of comment
comment-end Character(s) to mark end of

comment

203

The Theory of Editing

Variable Name Purpose
comment-padding Padding used (usually a space)

between comment character(s)
and the text

All the variables above are customizable with M-x
-customize-option. It is unlikely that you will ever have to
change comment-start or comment-end as they are almost
always set by the major mode authors. comment-style is
a must if your team – or personal preference – dictates
one comment style over another. To see a list of com-
ment styles available, you must interrogate the variable
comment-styles by reading its description in Customize or
by using M-x describe-variable (also bound to C-h v).

Search and Replace
When you search for text, you can do so either with regu-
lar expressions (see the next section Regular Expressions) or
without. Replacing text in Emacs is no di昀昀erent, but with
the added bene昀椀t of letting you leverage the power of elisp
in the replace portion of search and replace.
In that sense, Emacs is di昀昀erent from other editors: you can
use elisp and regexp capturing groups together — powerful,
if you know elisp. Emacs’s regular expression implementa-
tion is also di昀昀erent from PCrE2 as I will explain later. It
follows the GNU standard for regular expressions with many

2 PCrE stands for Perl-Compatible Regular Expressions — a style of
regexp invented by the Perl programming language.

204

The Theory of Editing

additions (and quite a few omissions) to make it suitable for
both package developers and Emacs users.
Emacs’s search and replace commands are:

Key Binding Purpose
C-M-% Query regexp search and replace
M-% Query search and replace
M-x replace-string Search and replace
M-x replace-regexp Regexp search and replace

You can also access Emacs’s search and replace from inside
Isearch:

Isearch Key Binding Purpose
C-M-% Query regexp search and replace
M-% Query search and replace

The query commands are interactive and will prompt you
for instruction at every match. Like Isearch, the interface
is rather spartan but utilitarian. It is also divided into two
parts: the prompts for search and replace, which work the
same way other prompts do and the interactive part where
you select each match.
When presented with a match, you can choose one of the
following options:

205

The Theory of Editing

Query Key Binding Purpose
SPC, y Replaces one match, then continues
. Replaces one match, then exits
, Replace, but stay at current match
RET, q Exits without replacing match
! Replaces all matches in bu昀昀er
^ Moves point back to previous match
u, U Undo last / all replacement(s)

Case Folding
In Isearch: Incremental Search, I talked about case folding, a
clever feature in Emacs that intelligently matches string case
insensitively unless you search for a mixed case or uppercase
string, at which point it activates case-sensitive search. It’s a
great feature, and Emacs’s replace mechanism also uses it.
Consider a bu昀昀er with the following pseudo-code:

HELLO_WORLD = "Hello, World!"

function hello() {
print(HELLO_WORLD)

}

If we do a query replace with C-M-% for hello -> goodbye,
the result of the bu昀昀er above is:

GOODBYE_WORLD = "Goodbye, World!"

206

The Theory of Editing

function goodbye() {
print(GOODBYE_WORLD)

}

As you can see, Emacs preserved the case of each replacement
match because we searched for hello and not Hello or HELLO.
If you searched for Hello or HELLO, Emacs would only replace
those literal matches because they contain uppercase charac-
ters.

Regular Expressions
Earlier, I alluded to the di昀昀erences between PCrE and
Emacs. The long and the short of it is: Emacs’s regexp
engine is nowhere near as user-friendly as it could be. It’s
old, weathered and too entrenched – and heavily modi昀椀ed
to suit Emacs’s peculiar needs – to be easily replaced. For
instance, in PCrE-style engines the characters (and) are
meta-characters, meaning the engine will not treat them as
literal characters but as a capturing group. In Emacs, it is
the other way around. They are literal characters until you
escape them with a backslash (\) at which point they assume
the role as meta-characters.
In practical terms, that causes confusion in regexp building
for people unaccustomed to Emacs’s quirky regexp engine.
It’s even worse if you write elisp as you have to escape the
escape character as Emacs’s C-style string reader would oth-
erwise trigger on backslashes.
I will not cover regular expressions in great detail since
that is a whole book onto itself. Instead, I will tell you how
Emacs’s regexp engine di昀昀ers from modern ones.

207

The Theory of Editing

Backslashed Constructs

The following constructs require backslashes or Emacs will
treat them like literal characters:

Constructs Description
\| Alternative
\(, \) Capturing group
\{, \} Repetition

Missing Features

Emacs does not support any kind of negative or positive look-
ahead or look-behind except speci昀椀c, hard coded constructs.
More obscure regexp features like branch reset groups and
so forth are also missing. For most text editing, this is usually
not a huge problem.
One annoyance is the missing shorthand, \d, for the digit
class. You must use [0-9] in lieu of \d or the explicit class
[:digit:].

Emacs-only features

One area where Emacs’s regexp engine does shine is its sup-
port for match constructs and Unicode support:

Constructs Description
\<, \> Matches beginning and end of word
_<, _> Matches beginning and end of symbol
\scode Matches any character whose syntax

table code is code

208

The Theory of Editing

Constructs Description
\Scode Matches any character whose syntax

table code is not code

Matching symbols and words with \<, \> and _<, _> is com-
mon in programming for ad hoc re-factoring. The de昀椀ni-
tion of a word and symbol is again down to Emacs’s syntax
table and thus major mode-dependent.
Both \s and \S have their place as you can match characters
against a speci昀椀c syntax class. The naming of each class is
really just a guideline as there is nothing stopping you from
declaring that the number 9 belongs in the whitespace class if
you are a major mode author.
Here is an abridged list of interesting syntax classes:

Whitespace characters (-) Includes, as you would expect,
your humble space but also newlines and usually
Unicode-equivalents like non-breaking space.

Word constituents (w) This is typically all lower- and
upper-case characters, digits, and equivalent Unicode
characters from non-Latin character sets.

Symbol constituents (_) Includes all word constituents
and additional symbols, like ! or _, used most often
in programming languages. This class more than any
other is likely to change depending on your major
mode.

209

The Theory of Editing

Punctuation characters (.) Includes the usual characters
like . and ;. Text modes and programming modes are
likely to di昀昀er greatly.

Open/close parenthesis ((and)) Any set of characters
that form a grouped pair. Most text and programming
modes include (), [] and {}.

String characters (") Includes any symbols that mark a con-
tiguous block as a string. Double and single quotes, '
and ", are usually among them. Unicode characters
such as left and right versions, guillemots and so on
may also exist in this class.

Open/close comment characters (< and >) Any character,
or pair of characters, that de昀椀ne the boundary of a
comment. Some languages only support line-level
comments, in which case only < is used.

For instance, to match all whitespace characters you should
search for \s-. If you want to match all string quote char-
acters – for example in Python where you can have both
'strings' and "strings" – use \s" to match all quote sym-
bols. That makes it possible to transform (or merely 昀椀nd, as
these commands also work in regexp Isearch or Occur) text
bolstered by Emacs’s understanding of the syntax of your
major mode.

Determining a character’s syntax class
Emacs’s Unicode support is fantastic and as part
of its extensive Unicode support you have the
option of inspecting any character of your liking

210

The Theory of Editing

using C-u M-x what-cursor-position. To use it,
place your point on a character you want to in-
spect and either run the command or type C-u
C-x =. You will see an array of information in-
cluding syntax class, font lock, Unicode name
and much more.

There are several types of capturing groups available in
Emacs:

Constructs Description
\1 to \9 Inserts text from group \N
\#1 to \#9 Inserts text from group \N but

cast as an integer
(For use in elisp only)

\? Prompts for text input from user
\# Inserts a number incremented from 0
\& Inserts whole match string

The \#N capturing groups are of little use outside of an elisp
form. \? lets you replace matches with strings that you enter
manually. The \# group inserts a number starting from 0
that increments by 1 after every match. Finally, \& simply
inserts the entire match string.

Invoking Elisp

You can call out to elisp functions from within the replace
portion of the search and replace interface. Whether you
昀椀nd a use for it depends entirely on how well you know elisp

211

The Theory of Editing

(or how willing you are to experiment) and how often you
昀椀nd yourself doing complex search and replace.
To call an elisp form, you use this format:

\,(form ...)

Where form is the name of a function you want to call.
There are some rules you must follow if you want to call out
to elisp:

Capturing groups are string types by default; passing a
string to an elisp function that expects another type,
like an integer, will result in an error.

You don’t need capturing groups if your function does
not require them. It is perfectly possible to replace a
match with the sole output from a function.

You can only call one form so if you want to call more
than one, you must wrap it in something like progn or
prog1 or use functions such as concat to concatenate
the results from multiple functions into one.

Do not quote the capturing groups as they are passed as
literal strings (if you use \N) or numbers (if you use
\#N) to Emacs’s interpreter.

Here are a few example replacement strings you can try out:

212

The Theory of Editing

Replace String Description
\,(upcase \N) Uppercases capturing group \N
\,(format "%.2f" \#N) Casts \#N to a number and

formats it as a decimal with two
decimal points

Although it’s a powerful feature, it is situational. Most of
Emacs’s internal functions – just about anything that does
something interesting – operate on bu昀昀ers and not strings as
I mentioned in The Bu昀昀er. That greatly lowers the utility
of this feature as you not only have to 昀椀nd a function that
does what you want, but you have to 昀椀nd one that works on
strings.
When I have needed this feature, I have inevitably resorted
to writing my own specialized functions that transform the
text the way I want. But that assumes a certain level of 昀氀u-
ency in elisp. My advice would be to use Emacs’s keyboard
macros – a topic I will cover shortly – as they are far more
suited for complex editing tasks.

Changing Case
Case changing – capitalizing text or turning it into lower or
uppercase – is a common occurrence in both code and text.

Region Commands Description
C-x C-u Uppercases the region
C-x C-l Lowercases the region
M-x upcase-initials-region Capitalizes the region

213

The Theory of Editing

There is not much to say about the 昀椀rst two. When your
region is active, you can uppercase or lowercase the region.
Capitalizing the region actually means capitalizing every word
in the region — not just the 昀椀rst word in a sentence, line or
paragraph.
The case commands that act on words are far more interest-
ing:

Key Binding Description
M-c Capitalizes the next word
M-u Uppercases the next word
M-l Lowercases the next word

First of all, they are mnemonic and bound to what you could
call prime key real estate (easy to reach and type keys.)
They work exactly the same way other word commands
in Emacs work, and they respect the same syntax table
rules as the forward-word, mark-word, kill-word, and
transpose-words commands do.
Both digit arguments and negative arguments work as you
would expect. Like the other word-based commands, I rec-
ommend you commit these to memory. Forget memoriz-
ing the region commands. Unless you do a lot of region-
based casing, you are far more likely to change case word-
by-word.
Maintaining your tempo when you use them is important as
you will typically use them as you write. M-- M-u will upper-
case the last word you wrote, for instance, and M-b M-- M-u
will move back one word and uppercase the word before

214

The Theory of Editing

that. And of course you should not release meta between
keystrokes. So, with your thumb on the left meta key, your
other 昀椀ngers are free to type b - u.
Consider this sentence. I want to insert a full stop and capi-
talize the next word:

█Hey how are you?

After typing M-f to move forward a word; . to insert a full
stop, and M-c to capitalize the next word:

Hey. How█ are you?

Likewise, here I 昀椀nished typing an identi昀椀er — but it should
be uppercase because it points to a string constant:

print(greeting_string)█

In most major modes, _ is either punctuation or a symbol,
so it breaks the word; ergo, it would take two presses to
go backward with M-b to put the point at the beginning of
greeting_string.
Or you can do M-- M-2 M-u which combines digit and nega-
tive arguments:

print(GREETING_STRING)█

215

The Theory of Editing

With a bit of practice, you will be able to do it so quickly,
and intuitively, that you won’t even have to think about it.
The other bene昀椀t is that it does not move your point; you
are free to continue writing. It may not seem like a huge
time saver, but these things add up.
The case commands also work with non-Latin characters
since Emacs maps most Unicode characters to their correct
Unicode categories. In practical terms, that means Emacs
knows when it encounters a lowercase or uppercase charac-
ter:

Greek: ³´ψ¶·φµ -> ��Ψ��Φ�
Danish: abcdæøå -> ABCDÆØÅ

Unicode categories
Try M-x describe-categories to see a full list of
all Unicode categories.

Counting Things
There’s no need to call out to wc when you want to count
things as Emacs is perfectly capable of doing that too.

Command Description
M-x count-lines-region Counts number of lines in

the region
M-x count-matches Counts number of patterns

that match in a region
M-x count-words Counts words, lines and chars

216

The Theory of Editing

Command Description
in the bu昀昀er

M-x count-words-region, M-= Counts words, lines and chars
in the region

Although there is more than one way of counting things, the
two worth memorizing are:

M-x count-words as it, unlike its unfortunate name implies,
also counts lines and characters. You may occasionally
want to count things in a region, in which case you can
use M-=.

M-x count-matches counts matches against a regexp pattern
you specify, either from point to the end of bu昀昀er if
no region is active, or just in the active region.

Text Manipulation
Text manipulation is one aspect Emacs is especially good at,
and it has a variety of tools to help you. Massaging text 昀椀les
for further processing or extracting pertinent information
from log 昀椀les are both common things to do in Emacs. Al-
though Emacs will never fully replace dedicated tools like
awk and sed or languages like Python, it is a 昀椀ne choice for
small and medium-sized tasks.

217

The Theory of Editing

Editable Occur
I introduced M-x occur earlier as a way of collating all lines
that match a certain pattern. One feature in occur mode that
I did not talk about is the ability to edit the matches and, after
you 昀椀nish, commit the changes to their original lines.
To do this, you must 昀椀rst enter the editable occur mode by
typing e. You can then commit the changes you make by
typing C-c C-c. The possibilities are limitless. The feature is
especially great for keyboard macros and search & replace.

Deleting Duplicates
You can delete duplicate lines in Emacs and the best thing
about it is, unlike the command line utility uniq, the lines
don’t have to be adjacent for Emacs to detect duplicates. That
means you can delete duplicates without sorting the text.

Universal Argument Description
Without Deletes 昀椀rst duplicate line
C-u Deletes last duplicate line
C-u C-u Deletes only adjacent duplicates
C-u C-u C-u Does not delete adjacent blank

lines

By default, M-x delete-duplicate-lines deletes the 昀椀rst du-
plicate line it encounters, starting from the top. With a sin-
gle universal argument, it starts from the bottom and there-
fore deletes the last.

218

The Theory of Editing

Flushing and Keeping Lines
Sometimes you want to 昀椀lter lines in a region by a pattern;
whether that is to 昀氀ush lines that match a pattern, or keep the
ones that do.
Both commands act on the active region, so it is common –
if you want to do this on a whole bu昀昀er – to call C-x h to
select the entire bu昀昀er 昀椀rst.

Command Description
M-x flush-lines Flushes (deletes) all lines in a region

that match a pattern
M-x keep-lines Keeps all lines in a region that

match a pattern and removes all
non-matches

Both commands accept a regexp pattern. If the pattern
matches against a line it is either kept or 昀氀ushed — not the
pattern itself (for that, use search & replace.)
I use the commands frequently when I process text. You can
keep lines that match a pattern and use it as a poor man’s
grep, with 昀氀ush serving the opposite role. Filtering log 昀椀les
or scrubbing data are two examples where the commands
work well.

Copying and Killing Matching Lines
Like the commands to 昀氀ush and keep lines, you can tell
Emacs that it should instead copy or kill them. They’re new

219

The Theory of Editing

to Emacs 28, however, so you won’t have them in earlier
versions.

Command Description
M-x copy-matching-lines Copies all lines in a region

that match a pattern (Emacs 28+)
M-x kill-matching-lines Kills all lines in a region that

match a pattern (Emacs 28+)

Joining and Splitting Lines
Unlike the kill commands that act on lines (C-M-<backspace>
and C-k), these commands won’t alter your kill ring. They
are also more specialized, as they insert or remove lines with-
out moving your point.

Key Binding Description
C-o Inserts a blank line after point
C-x C-o Deletes all blank lines after point
C-M-o Splits a line after point, keeping

the indentation
M-^ Joins the line the point is on with

the one above

Use C-o when you want to insert a newline immediately af-
ter point. Unlike RET, your point will not follow onto the
next line. It will remain in its original position. I use it to
split a paragraph into two, when I don’t want to move the
point also with RET.

220

The Theory of Editing

Deleting blank lines is a common action. C-x C-o does just
that, but it obeys three rules:

Ignores your current line It will not remove the line the
point is on, even if it is empty. That means if you call
the command on a block of empty lines, it will always
leave exactly one empty line.
Remember this rule as it’s a great way to keep a con-
sistent number of spacing between, say, paragraphs in
text or class and function de昀椀nitions in code.

Works ahead of the point So, when you call it on a
non-empty line, it will remove blank lines ahead of
the point. Unlike the previous rule, C-x C-o removes
all blank lines.

Lines with only whitespace and tabs are also removed
Best used in languages where you often leave tabs or
whitespace characters alone on empty lines.

C-M-o is a niche command that you won’t use day-to-day. Un-
like C-o that inserts a newline after the point (called opening a
line), C-M-o does the same but it maintains the column o昀昀set
for the text.
Consider the di昀昀erence between C-o and C-M-o:

All the world's a stage, █and all the …

After C-o:

221

The Theory of Editing

All the world's a stage, █
and all the …

Now consider the original example, but using C-M-o instead:

All the world's a stage, █
and all the …

Note that the point remains in its original position.
Finally, the M-^ command does the opposite of C-o and C-M-o:
it adjoins the current line the point is on with the one right
above. Convenient if you want to collapse sentences into
one large paragraph, or join multi-line function arguments
into one line.
M-^ is clever enough to trim whitespace when you join two
lines together. That is to say, Emacs will trim whitespace so
that at least zero or one remain, depending on whether the
line you are merging with has text on it or not. For blank
lines all whitespace is trimmed, and for lines with text all
but one space is trimmed.

Fill pre昀椀x
Typing C-M-o with a 昀椀ll pre昀椀x active will split
the current line and insert the 昀椀ll pre昀椀x on the
new line. Contrarily, M-^ removes 昀椀ll pre昀椀xes
from lines that you join.

222

The Theory of Editing

Whitespace Commands
Managing whitespace is an issue that recurs often when you
yank text from elsewhere or if you work with languages or
text where whitespace is signi昀椀cant.

Command Description
M-x delete-trailing- Deletes all trailing whitespace.
whitespace
M-SPC Deletes all but 1 space or tab

to the left and right of the point
M-x cycle-spacing As above but cycles through

all but one, all, and undo
M-\ Deletes whitespace around point

M-SPC trims all whitespace, to the left or right of the
point, to a single whitespace character. M-\ does the
same, but removes all whitespace characters, leaving none.
M-x cycle-spacing cycles between leaving one, leaving
none, and restoring the original spacing.

Cycle Spacing as the default
You may prefer to cycle between spacing op-
tions when you press M-SPC instead of defaulting
to just one space. Put this in your init 昀椀le to
achieve that:

(global-set-key [remap just-one-space]
'cycle-spacing)

223

The Theory of Editing

You can tell Emacs to visibly show you whitespace char-
acters and other typographic snafus, like trailing spaces or
overly long lines, using Emacs’s whitespace mode.

Whitespace Minor Mode

Command Description
M-x whitespace-mode Minor mode that highlights all

whitespace characters
M-x whitespace- Minor mode that displays newline
newline-mode characters with a $
M-x whitespace- Displays a toggle menu of all
toggle-options whitespace-mode options

Emacs’s whitespace minor mode overlays otherwise invisi-
ble whitespace characters with glyphs and colors so you can
tell them apart. It’s great if you want to 昀椀nd trailing whites-
pace, errant tab characters or “empty” lines with whitespace
in them.
Whitespace mode tracks the following: trailing spaces, tabs,
spaces, lines that are longer than whitespace-line-column
(typically 80 characters), newline characters, unicode
spacing, empty lines, indentation (both tabs and spaces),
spaces after tabs and spaces before tabs. Basically, it tracks
every conceivable combination that may cause syntax or
typography errors.
I suggest you customize whitespace mode – particularly the
colors, as they are a bit full-on – by customizing the group
whitespace with M-x customize-group.

224

The Theory of Editing

You can also use M-x whitespace-toggle-options and toggle
the styles you want whitespace-mode to highlight.

Whitespace Reporting and Cleanup

M-x Command Description
whitespace-report Shows whitespace issues
whitespace-report-region As above but for the region
whitespace-cleanup Attempts automatic cleanup
whitespace-cleanup-region As above but for the region

You can generate a report with M-x whitespace-report
(and similarly for regions) and see a succinct list of “issues”
present in your bu昀昀er or region. Furthermore, you can ask
Emacs to attempt a cleanup of the bu昀昀er or region with the
equivalent cleanup commands.

Keyboard Macros
You can record keystrokes and commands in Emacs and
save them for later playback as a keyboard macro. A keyboard
macro in Emacs is very di昀昀erent from a LISP macro and you
should not confuse the two.
Macro recording is not a new invention. Most IDEs and text
editors have it, but few have one as advanced as the one in
Emacs. Emacs’s keyboard macros are especially powerful as
almost everything is recorded. There are few blind spots – none
of which you are likely to encounter – and that is what sets
it apart from IDEs and their mostly anemic macro recording.

225

The Theory of Editing

Emacs’s macro recorder is itself written in LISP. That alone
speaks to the power of extensibility that Emacs o昀昀ers, but it
also reinforces the extent you can inspect and record changes
made at a microscopic and macroscopic level in Emacs.

Basic Commands

Key Binding Description
F3 Starts macro recording,

or inserts counter value
F4 Stops macro recording

or plays last macro
C-x (and C-x) Starts and stops macro recording
C-x e Plays last macro

You can begin recording with F3 and stop it with F4. The
other two keys are not as accessible and are there for back-
wards compatibility with wizened veteran users of Emacs.
The macro recorder stops when you invoke the universal
quit command, C-g.

Signaling Errors
Occasionally, you may trigger an error in Emacs
and that will also stop recording or playback.
One common “error” is M-g M-n or M-g M-p (go
to next or previous error) when you reach the
beginning or end of the list of errors.
Emacs will then signal an error internally which
may beep or blink your screen, depending on

226

The Theory of Editing

the 昀椀delity of your system. This will catch you
out if you are not careful; it still happens to me!
It is ultimately a good thing, though: you
can record a macro that invokes the next or
previous error functionality, and then play back
the macro repeatedly: it will signal stop when it
reaches the end (or start) of the list of errors 3 .

When macro recording is in progress you will see, in your
modeline, the word Def. When you 昀椀nish recording, you
can play it back immediately by typing C-x e or F4.
Recorded macros have their own macro ring, much like
the kill ring, undo ring, and history rings. That means
you won’t have to worry about accidentally overriding a
recorded macro if you start a new one. They are never truly
lost (unless you exit Emacs!) but you can explicitly save
them to disk.
You can also pass the universal argument and digit
arguments to the macro commands:

Key Binding Description
C-u F3 Starts recording but appends

to the last macro
C-u F4 Plays the second macro in the ring
numeric F3 Starts recording but sets counter

to numeric
numeric F4 Plays last macro numeric times

3 Next and previous error is a bad name for a feature that works with
any auto-generated list, like Occur, Grep, M-x compile, etc.

227

The Theory of Editing

So, C-u and the digit arguments do di昀昀erent things. Numeric,
in this case, means numbers such as C-u 10 or M-10.
Appending to the last macro (C-u F3) has its place, but pass-
ing a numeric argument to F4 is worth knowing about, as
replaying the macro a set number of times is something you
are more likely to do. By passing digit 0 (C-0 F4 or C-u 0 F4,
for instance) Emacs will run the macro over and over again
until Emacs signals an error, such as reaching the end of a
bu昀昀er, or when the recorded macro sends an error signal.

Advanced Commands
There is an entire pre昀椀x key group, C-x C-k, dedicated to
Emacs’s macro functionality. There are many commands,
and most of them are rather niche.

Learn more
As always, you can append C-h to a pre昀椀x key
and Emacs will list all the keys bound to that pre-
昀椀x. Another way is to list all the commands with
apropos (C-h a).
The naming scheme is somewhat inconsistent. A
lot of the macro commands begin with kmacro.
Some, however, predate that part of Emacs, and
merely contain the word kbd-macro.

Interactive Macro Playback

Let’s start out with the counters. When you start recording,
Emacs will automatically initialize an internal counter to

228

The Theory of Editing

zero, and every time you press F3 during the recording,
Emacs will insert the counter and then increment the
internal counter by 1. There are, of course, many creative
uses for the counter: creating numbered lists is the most
obvious.

Key Binding Description
C-x C-k C-a Adds to counter
C-x C-k TAB, F3 Inserts counter
C-x C-k C-c Sets counter
C-x C-k C-f Sets format counter
C-x C-k q, C-x q Queries for user input while

recording

The counter commands above do more than this. C-x C-k
C-a adds a number to the counter, and, conversely, giving it
a negative number subtracts from the counter. Both F3 and
C-x C-k TAB insert the counter value and increments it by 1
but if you give it the universal argument C-u, it will insert
the last number and not increment the counter; good if you
need to use the same number multiple times in a row.

Counter Resets & Registers
Counters are only reset when you explicitly set
them or when you record a new macro. The
counter persists between macro playbacks
Similarly, you are free to use Emacs’s registers
to track – and add or subtract from – values if
you prefer. They operate independently of the

229

The Theory of Editing

macro machinery and are not reset when the
macro is.

The command C-x C-k C-c explicitly sets the counter as op-
posed to merely adding to it like with C-x C-k C-a. Finally,
C-x C-k C-f is perhaps the most advanced of the counter
commands. It takes a format string and formats the counter
according to this string (type C-h f format for more infor-
mation on format strings). So, for instance, you can decimal-
ize the number or print it with leading or trailing zeros —
or anything similar, like inserting a plain number and text.
Make sure you do not wrap the text you pass to C-x C-k C-c
in quotes as they are automatically escaped.
The standout command is C-x C-k q (or simply C-x q.)
When you call it, Emacs will tag that step in the macro
recording and ask the user for advice – in e昀昀ect stopping the
macro temporarily to prompt the user – before continuing.

Query Key Binding Description
y Continues as normal
n, DEL Skips the rest of the macro
RET Stops the macro entirely
C-l Recenters the screen
C-r Enters recursive edit
C-M-c Exits recursive edit

y and n continue or stop the current iteration of the macro. So
if you are executing more than one macro in a row, N would
skip the rest and restart at the beginning of the macro. Y

230

The Theory of Editing

merely continues on as normal. RET stops the macro entirely
and halts further macro playback.
You can recenter the screen – which is not the same as the
usual C-l command – and Emacs will center the point in the
middle of the bu昀昀er.

Recursive Editing Recursive editing is an advanced topic.
When you enter recursive editing (C-r), Emacs will suspend
any on-going command – such as Isearch, search & replace
or a macro – and hand control back to you, the user. You
are then free to continue editing and otherwise use Emacs as
you would normally, but at any time you can type C-M-c and
Emacs will snap back to the earlier recursive step that you
entered and resume from then on. You can nest recursive
edits as many times as you reasonably like, and if you are
in recursive editing, you can see it in your modeline because
square brackets ([]) appear. You can force Emacs to abandon
all recursive editing levels by typing ESC ESC ESC. Note that,
unlike most other things, C-g will not exit out of recursive
editing.
So, how do you use this in practice? One example is realizing
during Isearch or macro playback that you need to edit text,
send an e-mail or otherwise temporarily suspend what you are do-
ing. C-r lets you do that. When you are 昀椀nished, type C-M-c
to resume where you left o昀昀 before. An extremely powerful
feature, it is worth knowing once you have mastered every-
thing else in this book.

231

The Theory of Editing

Saving and Recalling

Macros in Emacs are stored in a macro ring, a concept that you
should recognize from other parts of Emacs (like the kill ring
and undo ring.) Creating a new macro automatically stores
old macros in the macro ring without you having to do any-
thing. The commands below let you save and recall from the
macro ring, edit and bind macros to keys, and more.

Key Binding Description
C-x C-k C-n Cycles macro ring to next
C-x C-k C-p Cycles macro ring to previous
C-x C-k n Names the last macro
C-x C-k b Binds the last macro to a key
C-x C-k e Edits last macro
C-x C-k l Edits the last 300 keystrokes
M-x insert-kbd-macro Inserts macro as elisp

Both C-x C-k C-n and C-x C-k C-p cycle the macro ring.
Emacs will helpfully display a portion of the macro when
you do so you know which one is active.
You can name the macro with C-x C-k n. You must do this
昀椀rst if you want to save the macro to a 昀椀le, as you can then
open your init 昀椀le and call M-x insert-kbd-macro and Emacs
will insert a code-generated version of the macro. Named
and inserted macros turn into commands that you can invoke
with M-x. You can also, temporarily, for the current session
only, bind it to a key with C-x C-k b.

Naming Things

232

The Theory of Editing

I recommend you pick a consistent naming
scheme. You can’t use whitespace in LISP but
you can use nearly any other character. How-
ever, I always start with my initials mp- so I
can combine it with C-h a and friends. Now I
can 昀椀nd all my homegrown commands with
Emacs’s own self-documenting facilities.

You can edit an existing macro if you made a mistake. The
C-x C-k e command prints a list of macro commands that
you edit as though it were text. You can commit those
changes with C-c C-c.

Lossage
Emacs remembers the last 300 characters and
commands, called lossage, you typed. You can see
this list of characters by typing C-h l. You can
even save every keystroke you make in Emacs
– including sensitive things like passwords, so
beware – by typing M-x open-dribble-file.
Lossage also shows the command the keystroke
belongs to. Things like active modes in the
bu昀昀er may change the command a key belongs
to. So keep that in mind if you look up keys
outside of the bu昀昀er and modes it was executed
in. Do use the lossage feature when you want to
make a keyboard macro retroactively, as you
can use the command M-x kmacro-edit-lossage
to create a macro derived from your input.

233

The Theory of Editing

Practical Uses for Keyboard Macros

The 昀椀rst thing that springs to mind when you say keyboard
macro is simple text automation, but Emacs’s macro system
is capable of so much more than that.
One overlooked aspect is the ability to combine a lot of com-
plex tasks and then name & save the macros for reuse later.
On its own that may not be such a surprising or noteworthy
feature, until you realize you can orchestrate a lot of the te-
dium that you’d otherwise need deep Emacs or elisp knowl-
edge (that you may not possess yet!) to accomplish without
a macro.

Con昀椀guring your window setup just the way you like it
If you want to open certain 昀椀les and display them
in a certain orientation, you could do this with a
keyboard macro. Clear the windows 昀椀rst with C-x 1
and then use a macro to open the 昀椀les you want; split
the windows to your liking and switch them to the
bu昀昀ers you care about; and then end the macro.
You can now, at will, recall this setup whenever you
want.

Write macros for frequent text editing operations
Maybe you have a selection of text patterns you
want to bulk change, or maybe you want it to be
semi-dynamic, depending on the workload of the
day. You could, for instance, use M-x rgrep to 昀椀nd
a selection of 昀椀les that need changing, and use a
keyboard macro to step through each entry in the
grep bu昀昀er and apply a search & replace pattern.

234

The Theory of Editing

Simply start recording and type M-g M-n to pick the
next match from whatever source Emacs is drawing
its results from; carry out your text editing; and
then end recording. Every macro invocation with
C-x e will now process one entry at a time, and it’s
generic enough that you could swap out grep for
occur, M-x compile, and any other source that makes
use of M-g M-n / M-g M-p.

Defer complex decisions to a human You can insert
query steps with C-x C-k q, so if you know you have
ambiguous or complex choices before the macro can
proceed, you can liberally intersperse them at key
points in your macro and decide if you should quit
out of the macro; skip the change; or enter a recursive
edit layer to manually edit the bu昀昀er before you
continue with the macro. You could even move point
around, or change the bu昀昀er text before resuming.

Call macros from macros You can call macros from
macros: so why not create small, reusable pieces of
macro logic and then make a macro that calls out to
these macros. Once named – and even if they’re not,
using the macro ring – you can recall them at will.

Filling out prompts with sensible defaults If you 昀椀nd
yourself repeating the same commands over and over,
you can wrap them in a quick keyboard macro.
You can even insert query markers in prompts and
use it to override whatever you entered as the default
during the recording by entering recursive editing
with C-r; change what you typed in the prompt; and

235

The Theory of Editing

then return to the macro when you are 昀椀nished with
C-M-c. Emacs will seamlessly let you amend a live
macro; even if it’s in a prompt.
Prompts are shown in the minibu昀昀er, which indeed is
also a bu昀昀er. This again highlights the symmetry and
reuse of concepts throughout Emacs.

Macros are well worth learning and, as you can see, can serve
as a 昀氀exible work-around when you don’t know how to
solve a problem with elisp or customizations alone. Just re-
member that if you can do it as a human by interacting with
Emacs, you can record a macro and have Emacs repeat it.

Text Expansion
There are several built-in tools – and just as many third-party
ones – in Emacs that expand text. All of them serve a slightly
di昀昀erent purpose, but the goal is to minimize typing and
maximize automation.
Here are some of the ones available to you in Emacs:

Abbrev Expands abbreviations – such as func into function
– on a per-mode or global level. A very simplistic
expansion mechanism, its main advantage is that
it silently whiles away as you type, 昀椀xing typos
or expanding abbreviations. There is, like a lot of
Emacs’s other features, little graphical ceremony: no
whirligig graphics or other visual clutter to distract
you when it expands a keyboard shortcut — in fact,

236

The Theory of Editing

it’s unlikely you’ll notice at all unless you are looking
for it.
You would typically use this for unambiguous correc-
tions such as correcting typos.

DAbbrev, or dynamic abbreviations Similar to Abbrev
but it expands the previous word by dynamically
looking for things the word at point might expand
into. For instance, typing func in a bu昀昀er where
you have a lot of function de昀椀nitions and DAbbrev
will expand it to function automatically when you
manually trigger the expansion mechanism.

Hippie expand A super-charged DAbbrev-replacement
that expands more than just words, but whole lines,
lisp symbols, Abbrev abbreviations, 昀椀le names and 昀椀le
paths. This feature is exceptionally powerful and it’s
a drop-in replacement for Emacs’s default DAbbrev
that also ships with Emacs.

Skeletons A complex templating tool that combines sim-
ple elisp primitives – prompts, region wrapping, inden-
tation and point positioning – with Abbrev-like expan-
sion.
Although it has been a core part of Emacs for more
than 20 years, few use it. It’s a shame, really, as it’s very
powerful, but it requires patience or elisp knowledge
to use so almost no one does.

Tempo Yet another templating tool that ships with Emacs.
It is similar to Skeletons.

237

The Theory of Editing

YASnippet A third-party package templating tool inspired
by the text editor TextMate’s template tool — and
TextMate itself borrowing heavily from other tools
before it. It uses a simple template language to create
snippets that you can trigger – with tab or space – and
expand into editable templates. It’s similar to Skeletons
but arguably much easier to use.

Autoinsert Inserts templates – much like skeletons – when
you create a new 昀椀le that matches a certain 昀椀le type.
It’s great when you want to auto generate boilerplate
content in a 昀椀le, such as HTML tags like html, head, and
so on.

Of all the choices above, I would focus my attention on
YAsnippet for templating, as it comes with a large array of
snippets for many major modes and Hippie Expand since it’s
a great productivity booster.
Neither Tempo nor Skeletons are not worth learning today
unless you have a speci昀椀c reason to. Abbrev is only suitable
for word replacements as it lacks the facilities of the more
advanced text expansion tools I talked about above. When
you have integrated YASnippet and Hippie Expand into your
work昀氀ow, you can add Abbrev and Autoinsert if you feel you
need them.

Abbrev
Abbrev is the perfect tool for auto-correct-style features in
word processors. I use it to replace common misspellings and

238

The Theory of Editing

to replace words like resume with résumé. However, it is un-
questionably the wrong tool for the job if you want to use it
for more advanced things, such as complex text expansions
you would use in software development.
Part of what makes abbrev e昀昀ective is that it is simple: it ex-
pands words without visual distractions — in fact, I rarely
notice that it corrects words.

Key Binding Description
C-x a l Adds mode-speci昀椀c abbrev
C-x a g Adds global abbrev
C-x a i l Adds mode-speci昀椀c inverse abbrev
C-x a i g Adds global inverse abbrev

When you add an abbrev with C-x a g or C-x a l, Emacs
will look at the word before point and use that as the replace-
ment word — that is, and I get confused myself, the word
you want it expanded to and not the trigger word. So, to replace
resume with résumé, you would type résumé and place your
point after the word and type, say, C-x a g and enter resume.
When you press SPC after typing resume, Emacs will replace
it with résumé.
The inverse commands do the opposite. You type the word
resume, enter C-x a i g, answer résumé and Emacs will ex-
pand resume into résumé.

DAbbrev and Hippie Expand
Hippie Expand is great. It has an almost preternatural ability
to expand the text at point into what you mean.

239

The Theory of Editing

Before I talk about Hippie Expand, let’s talk about how you
use DAbbrev, its lesser cousin and the default dynamic ab-
breviation tool in Emacs:

Key Binding Description
M-/ Expands word at the point
C-M-/ Expand, then show completions

The key, M-/, is easy to type and repeated presses will cycle
through the list of choices. Repeat the command enough
times and it will revert back to the original word. And if
there are many choices to choose from, the C-M-/ command
will attempt to complete as much as it can and display a list
of completions if there is still more than one choice.
DAbbrev is not smart. It looks at other words in your bu昀昀er
and it attempts to complete the word at the point to one of
those. That does not make it useless – it has its place – it’s
just that Hippie Expand is so much better.
To use Hippie Expand e昀昀ectively, you should replace DAb-
brev as the two – though it’s possible to use both – really
don’t complement one another at all. Add this to your init
昀椀le to switch to Hippie Expand:

(global-set-key [remap dabbrev-expand] 'hippie-expand)

Hippie Expand expands more than just words. The variable
hippie-expand-try-functions-list is an ordered list of ex-
pansion functions Hippie Expand will call with the text at
the point when you call M-/.

240

The Theory of Editing

What I like most about Hippie Expand is the 昀椀le name com-
pletion. It works exactly like your shell’s TAB-completion:
you type M-/ and Hippie Expand will try to complete the
昀椀lename or directory at the point. If you ever 昀椀nd yourself
inserting absolute paths or relative 昀椀le names in code, con昀椀g-
uration 昀椀les or documentation — Hippie Expand will make
your life much easier.
Another great feature is its ability to complete whole lines.
It will fall back to word completion if it runs out of ideas,
and if you regularly write elisp, then Hippie Expand will
guess if the text at the point is a potential elisp symbol and
automatically complete it for you also.
As with DAbbrev, repeated calls to M-/ cycles through all the
potential matches, but C-M-/ only shows completions found
by DAbbrev — there is no equivalent completion list for
Hippie Expand.
Actively using M-/ takes a bit of practice. You’ll have to de-
velop an a昀케nity for the sort of expansion rules that apply
when you call it. Learning Hippie Expand is so worth it since
it is a great time saver.

Customizing Hippie Expand

You can alter how Hippie Expand expands text. To do this,
customize the variable hippie-expand-try-functions-list,
but you have to know the name of the try function if you
want to add a new one.
To 昀椀nd a list of try functions, you should:

241

The Theory of Editing

• Read the commentary in the source (M-x find-library,
then enter hippie-exp and read the documentation).
But how do you 昀椀nd the library name? A good place
to start is to describe the command – hippie-expand –
and Emacs will tell you the name of the library where
it found the symbol.

• Use Apropos. Look at the names of the try
functions and search for likely functions using
M-x apropos-function.

As always, both methods yield di昀昀erent answers so try both.

Indenting Text and Code
When new programming languages appear, a major mode
for Emacs that does basic syntax highlighting and indenta-
tion appears almost immediately. Part of what makes that
possible is the ability to not only inherit (or re-use) indenta-
tion engines from other major modes but also the generic
indentation engines present in Emacs.
By default Emacs will attempt to indent according to the
rules governed by the major mode you are using. In older
Emacs versions, you had to tell it to do this, as it would rarely
do it by default — a frustrating experience for new users. It’s
no longer a problem today. Emacs will apply indentation au-
tomatically using a facility known as electric indentation. You
can customize electric-indent-mode if you want to turn it
o昀昀.

242

The Theory of Editing

Exactly how the indentation engine works is determined by
the major mode — and the whims and personal tastes of
its creators. You may 昀椀nd how it indents is not to your lik-
ing; especially if you’re writing in a C-like language. You
will have to consult Emacs’s manual (if the major mode ships
with Emacs) or possibly the documentation or commentary
in the source 昀椀les. Emacs does not have a one-size-昀椀ts-all ap-
proach to customizing the indentation: you’ll have to refer
to the documentation for instructions on how to do this.

TAB: Indenting the Current Line
When you press TAB, Emacs usually calls indent-for-tab
-command, a generic proxy command that either indents your
code or attempts to TAB-complete the word at the point.

Key and Command Description
TAB Indents line using major mode’s

indentation command
M-i Inserts spaces or tabs to next

tab stop
M-x edit-tab-stops Edits tab stops

Some major modes override the TAB key and instead
call their own specialized indent command — one ex-
ample is the C major mode. However, pressing TAB (or
M-x indent-for-tab-command) will, if its heuristic deter-
mines that it should indent, call the indentation function
stored in the variable indent-line-function. The advantage
here is the generic nature of indent-for-tab-command —

243

The Theory of Editing

it’s just there to pass on the work to either a completion
command or an indentation command.
The variable tab-always-indent governs Emacs’s behavior
when you press TAB. Usually, it just indents but it also has
a completion mechanism, though seldomly used.

Disabling tab characters
If you dislike the use of tab characters, and
if you prefer space, customize the variable
indent-tabs-mode.

Finally, when Emacs indents it calls the aforementioned
function in indent-line-function. The default function is
indent-relative, a command that inserts an actual tab char-
acter. Modes such as text-mode and fundamental-mode (the
default mode for a new, empty bu昀昀er) use indent-relative.
Most programming modes do not.

Changing the amount of indentation
The variable tab-width controls how many char-
acters of spacing each tab uses. It also controls
the amount of whitespace to use if you disabled
indent-tabs-mode.

There is also the concept of tab stops in Emacs and you
can edit the tab stops by typing M-x edit-tab-stops and
inserting : characters where you want Emacs to set the tab
point. Subsequent calls to M-i (which calls the command
M-x tab-to-tab-stop) then insert tab stops, by way of
whitespace and tab characters.

244

The Theory of Editing

Indenting Regions
Regions are even more di昀케cult to indent. How do
you safely indent a region of Python code when block
indentation determines program 昀氀ow? The answer is —
you don’t. There are two types of region indentation
commands: “intelligent” ones that ask your major mode’s
indentation engine for advice – something that works well
with languages like HTML or C – and plain, 昀椀xed-width
indentation for the rest.

Key and Command Description
TAB Indents a line or region as

per the major mode
C-M-\ Indents using major mode’s region

indent command
C-x TAB Rigidly indents

In an ideal world, pressing TABwith an active region is all you
need to re-indent it. Unfortunately, Emacs might not sup-
port that, or in some programming languages it is not physi-
cally possible to determine the correct indentation. Pressing
TAB follows most of the same rules as line indentation: Emacs
attempts to indent according to the indent-line-function
and it falls back on simply inserting TAB characters (or whites-
pace, if you disabled indent-tabs-mode).
Typing C-M-\ explicitly indents the region; for some modes
it works identically to TAB and in others it doesn’t. If you give
the command a numeric argument, it will indent the region
to that column (i.e., the number of characters) and Emacs
will also use your 昀椀ll pre昀椀x (if you have one) and 昀椀ll the text

245

The Theory of Editing

accordingly. C-M-\ is worth your time, as it respects your 昀椀ll
pre昀椀x. However, if you want to indent a 昀椀xed number of
columns, you should use C-x TAB.
C-x TAB explicitly indents the region a certain number of
columns. It also takes negative and numeric arguments.
However, if you don’t pass an argument, Emacs will
enter an arrow-key-driven indentation mode that lets
you interactively indent the region with S-<left> and
S-<right>.

Sorting and Aligning
Both sorting and aligning text are common enough actions
that Emacs has its own set of commands that do both.

Sorting
Sorting in Emacs works a lot like the command line utility
sort. All commands sort lines, except the lone paragraph com-
mand.

Command Description
M-x sort-lines Sorts alphabetically
M-x sort-fields Sorts 昀椀eld(s) lexicographically
M-x sort-numeric-fields Sorts 昀椀eld(s) numerically
M-x sort-columns Sorts column(s) alphabetically
M-x sort-paragraphs Sorts paragraphs alphabetically,
M-x sort-regexp-fields Sorts by regexp-de昀椀ned 昀椀elds

lexicographically

246

The Theory of Editing

M-x sort-lines sorts in ascending order, but if you call it
with a universal argument it will reverse the sort order.
When you sort by line, Emacs will call out to sort (as it is
much quicker) unless you are on Windows, in which case
Emacs does it internally.

Lexicographic and numeric
Lexicographic sorting is how most sorting
algorithms typically work. They look at the
character code for each character and sort by
those. That works 昀椀ne for most things, except
numbers. Lexicographically, the number 4
comes after the number 23 because the ordinal
of 4 is greater than the ordinal 2 in 23.
To sort your numbers correctly, you must use
M-x sort-numeric-fields.

You can sort lexicographically or numerically using
M-x sort-fields and M-x sort-numeric-fields. You must
pick a column though. To do this, pass a numeric argument
(starting from 1) to sort by that column. Columns are
whitespace-separated; one or more whitespaces together
signify a column delimiter.
So to sort the third column, type M-3 M-x sort-fields. You
can only sort by one column, and as I mentioned earlier,
each column must be whitespace delimited. To alter the col-
umn delimiter, you must use M-x sort-regexp-fields.
Sorting by columns with M-x sort-columns is the only way
to sort by more than one column, and then only successive

247

The Theory of Editing

columns. To use it, place the point and mark in the begin-
ning and end columns you want to sort and all lines from
point to mark are then sorted.
If you 昀椀nd yourself in need of sorting things not delimited
by whitespace, you have to use M-x sort-regexp-fields.
This command is rather complicated as it requires a good
working knowledge of elisp; it is also easy to only partially
sort a region and that will mess up your text.
Consider this CSV 昀椀le of products:

Price,Product
$3.50,Cappuccino
$4.00,Caramel Latte
$2.00,Americano
$2.30,Macchiato

...

You cannot sort this data with the other sort commands as
they won’t work at all; the data is not whitespace-delimited.
To sort this, we need M-x sort-regexp-fields.
Emacs’s internal sort routine needs a key – that is, what it
uses to sort, such as a 昀椀eld – and a record, which is typically
the whole line.
Here is how to sort the example above:

M-x sort-regexp-fields

Record: ^\([^,]+\),\([^,]+\)$
Key: \1

248

The Theory of Editing

This 昀椀rst de昀椀nes the record as two capturing groups, one for
each column, separated by a comma. The next step is to pick
the key – in this case, the 昀椀rst column containing the price
– to sort by.
The result looks like this:

Price,Product
$2.00,Americano
$2.30,Macchiato
$3.50,Cappuccino
$4.00,Caramel Latte

Sorting by regular expression is not something you will
need to do often, but when you do, it is a powerful tool.
One important caveat is that it is possible to partially sort a
line; if your search term looks like this:

M-x sort-regexp-fields

Record: ^\([^,]+\)
Key: \1

And if you sort the original text, the output looks like this:

$2.00,Cappuccino
$2.30,Caramel Latte
$3.50,Americano
$4.00,Macchiato

249

The Theory of Editing

Note that we have sorted the 昀椀rst column, yes, but the second
column remains unchanged! That is to say, we have sorted the
prices but not the associated products. Be careful.

Aligning
Text alignment in Emacs encompasses both justi昀椀cation and
columnated text. In fact, the alignment engine in Emacs is so
sophisticated that it is able to automatically align and justify
code based on regexp patterns.

Command Description
M-x align Aligns region based on align rules
M-x align-current Aligns section based on align rules
M-x align-regexp Aligns region based on regexp

The alignment commands work on regions, which by now
you are familiar with; or sections, a made-up concept unique
to some alignment commands like M-x align-current. A sec-
tion is a group of consecutive lines for which the 昀椀rst matching
alignment rule applies. So, if there is a rule that aligns string
constants – like = in HELLO_WORLD_CONST = "Hello World"; –
then its section would be all consecutive lines that match
that rule.
There are many built-in alignment rules in Emacs, and when
you call M-x align on a region of text, Emacs scans the align-
ment rule list and 昀椀nds the 昀椀rst one that matches all the cri-
teria in the rule list: major mode, alignment regexp to try
and align, and so on. Unfortunately, the alignment rules
are hard to read and understand, and in practical terms that

250

The Theory of Editing

means the feature is not as helpful as it could be. Each align-
ment rule in Emacs – stored in align-rules-list – requires
a deep knowledge of regexp and a desire to peel apart the lay-
ers and 昀椀gure out how the rule works. The Emacs maintain-
ers missed an opportunity here by not requiring doc strings
for every alignment rule that explain how they work.
The bene昀椀t of M-x align-current is that you don’t have to
mark a region 昀椀rst. It 昀椀gures out from the line the point is
on what rule applies and applies it to neighboring lines too
(if they also match that rule).
Here are some of the built-in rules in Emacs, organized by
major mode:

Python You can columnate assignments like so — notice
the alignment of =:

UNIVERSE_ANSWER_CONST = 42
UNIVERSE_QUESTION = "What is The Answer ..."

Lisp You can columnate alists in much the same way as the
Python example above:

((universe-answer . 42)
(universe-question . "What is The Answer..."))

In both cases, I had my point on either line and typed
M-x align-current and Emacs 昀椀gured out which rule to
apply.
Despite the utility of automatic alignment, it is unlikely
your scenario perfectly matches any of Emacs’s alignment

251

The Theory of Editing

rules. For all other instances, you have to use Emacs’s
昀氀exible M-x align-regexp and tell Emacs how you want
your text aligned.
There are two modes of operation when you use
M-x align-regexp: novice mode, which is what you see
when you run the command; and complex mode, when you
call it with C-u. The only situation wherein you are likely
to truly use the complex mode is when you want to do
multi-column alignment on the same line. Annoyingly,
that feature is not available in novice mode.
Consider the following text:

Cappuccino $2.00
Caramel Latte $2.30
Americano $3.50
Macchiato $4.00

To columnate the text and align the prices on the $ with
M-x align-regexp:

Align regexp: \$

And the output:

Cappuccino $2.00
Caramel Latte $2.30
Americano $3.50
Macchiato $4.00

252

The Theory of Editing

It gets harder if you want to align multiple columns. Con-
sider this CSV text:

Price,Product,Qty Sold
$2.00,Cappuccino,289
$2.30,Caramel Latte,109
$3.50,Americano,530
$4.00,Macchiato,20

To columnate all three columns, you must use the complex
mode. So, type C-u M-x align-regexp. The 昀椀rst thing you
will notice is the pre昀椀lled suggestion:

Complex align using regexp: \(\s-*\)

The regexp matches – in a capturing group – zero or more
whitespace characters. The reason it does this is because a
昀椀le you want to align may have plenty of whitespace already
(perhaps you aligned it a short while ago and because you
changed the text it is now misaligned) so Emacs has to
match and capture existing whitespace around the character
you want to align, and then re-align it correctly. When you
use novice mode, Emacs automatically inserts that regexp
before the character you want to align by; that means any
whitespace before your alignment character is removed —
so even in novice mode, the whitespace capturing group is
there.
So, to columnate on ‘,’ you must add ‘,’ to the beginning
or end of the existing regexp. Where you put it alters the
alignment outcome:

253

The Theory of Editing

Put it before and Emacs will insert spacing to columnate
after the ‘,’.
You may want to do this with a symbol like ‘,’. If you
don’t, it will look like this:

Fooooo ,Bar
Bizz ,Buzz

Put it after and Emacs will insert spacing to columnate be-
fore the ‘,’.
You may want to do this with a symbol like $. If you
don’t, it will look like this:

Foobar Widget $ 15.00
Fizz Buzz $ 10.00

So, for this, you want to answer the prompt like so:

Complex align using regexp: ,\(\s-*\)

Next, pick the default answer:

Parenthesis group to modify (justify if negative): 1

There is only one capturing group, though for complex
alignment operations you may well have more than one
group.
Finally, the spacing. Emacs will use align-default-spacing
which defaults to the tab stops Emacs uses internally. It is
usually safe to leave this to its default, but you can enter a
number of absolute spacing and Emacs will try to follow it:

254

The Theory of Editing

Amount of spacing (or column if negative): 1

Next – and this is the one you are likely to actually care
about – is whether Emacs should repeat the command
throughout the line. Answer yes if you want Emacs to
columnate all the ‘,’ symbols:

Repeat throughout the line: yes

The output now looks like this:

Price, Product, Qty Sold
$2.00, Cappuccino, 289
$2.30, Caramel Latte, 109
$3.50, Americano, 530
$4.00, Macchiato, 20

Emacs’s align commands are powerful and practical if you of-
ten deal with unformatted text or code. The only downside
is that you have to wade through the complex mode to repeat
the alignment process more than once on a single line.

Note
Earlier on, I said that you may want to automate
complex commands you frequently use with
macros — this would surely be one of those
instances!

255

The Theory of Editing

Other Editing Commands

Zapping Characters
Kill commands work well on structured text; they act
on syntactic units. But sometimes you want to kill to an
arbitrary character. The zap command, M-z, does just that.
When you invoke it, you are asked for a single character,
ahead of the point. Zap then kills up to (and including) the
character you typed:

http://www.example.com/█articles/?id=10

After zapping to /:

http://www.example.com/█?id=10

And like the kill commands from earlier, it also appends to
the kill ring. Therefore, you can combine it with both kill
commands and negative & numeric arguments to control the
amount of sequential zaps to do, and the direction to do it
in.

Zap up to char
In Emacs 28, this command is now built in, but
it is not bound to anything by default.
One possible key binding is M-S-z:

(global-set-key (kbd "M-S-z") 'zap-up-to-char)

256

The Theory of Editing

But you can remap C-z if you prefer zapping up
to the character:

(global-set-key [remap zap-to-char]
'zap-up-to-char)

Spell Checking
There are several ways of spell checking in Emacs, and
they all serve di昀昀erent use cases. Spell checking in Emacs is,
surprisingly, not performed by Emacs itself. For Linux, the
choices are aspell and ispell and Emacs will choose aspell
over ispell as it is faster and more modern.

Keys and Commands Description
M-$ Spell checks word at the point
M-x flyspell-mode Minor mode that highlights

spelling errors
M-x flyspell-prog-mode As above, but only highlights

strings and doc strings in code
M-x ispell-buffer Runs spell check on bu昀昀er
M-x ispell-region Runs spell check on region

Regardless of which spell checker you use, both are referred
to as ispell in Emacs.

Spell checking on Windows
You need to install4 the aspellor ispellon Win-
dows yourself for this functionality to work.

4 ASpell can be found here http://aspell.net/win32/.

257

http://aspell.net/win32/

The Theory of Editing

I use M-$ frequently for o昀츀and corrections. When you use
it, Emacs will tell you if it thinks it is correct or not. If Emacs
thinks it is wrong, it will list suggestions to choose from and
Emacs will replace the original word.
Flyspell mode works identically to the inline spell checker
in word processors — misspelled words are highlighted with
squiggly lines. However, that mode is designed for text and
not code; for code, use M-x flyspell-prog-mode as it limits
spell checking to just your comments, strings and doc strings.
Again, a very nifty feature.
If you enable either Flyspell minor mode, it also enables a
secondary command bound to C-M-i (and C-.) that auto cor-
rects the word at point. It picks the 昀椀rst likely match and cor-
rects the word at the point; subsequent calls cycle through
the words — much quicker than M-$ as it insists on asking
you which correction you want.

Customize I recommend you customize this feature if you
use it a lot — particularly if you have speci昀椀c dictio-
nary requirements other than the default one used by
customizing the group ispell.

Dictionary Lookup

Emacs 28 adds support for dictionary lookups if you either
host your own server, or consent to sending the word re-
quest to dict.org. The remote server is surprisingly feature
rich and supports a range of languages.

258

The Theory of Editing

Commands Description
M-x dictionary-lookup-definition Looks for the word

at point
M-x dictionary-search Searches for a given

word
M-x dictionary-select-dictionary Selects the dictionary

to search

Quoted Insert
If you ever 昀椀nd yourself in need of inserting a literal TAB, RET
or ASCII control code character, then you need quoted insert,
bound to C-q.

Line feed vs carriage return
If you want to insert a literal newline symbol,
type C-q C-j as that is the newline – LINE FEED
– symbol and not your return key (which is a
CARRIAGE RETURN.)

Quoted insert is clever enough to highlight ASCII control
codes using the face escape-glyph5 so you can spot them
visually. Quoted insert does a literal insert of any character
you feed it — for example, C-q ESC inserts the ASCII control
code ^[, also known as ESCAPE.

5 Which, as you may recall, you can customize with
M-x customize-face.

259

Chapter 6

The Practicals of Emacs

“[…] Emacs outshines all other editing soft-
ware in approximately the same way that the
noonday sun does the stars. It is not just bigger
and brighter; it simply makes everything else
vanish.”
– Neal Stephenson, In the Beginning… was the
Command Line.

In earlier chapters, I have almost exclusively talked about
the theoretical aspects of Emacs. Galvanizing your brain
and 昀椀nding practical or novel applications is something else
though; for most, theory is not enough. In this 昀椀nal chapter,
I will show you what I call work昀氀ow — walkthroughs that
cover a speci昀椀c area or problem in some depth.
Unlike the last two chapters, I won’t cover the commands
and features I introduce in this chapter in any great detail. I
leave that to you to discover on your own time. If you are

260

The Practicals of Emacs

still unsure how to do discover new features, then read on —
the 昀椀rst part of this chapter is Exploring Emacs.

Exploring Emacs
To truly master Emacs, you have to learn how to 昀椀nd things.
It is alpha and omega in Emacs. Manuals, books and blog
posts make assumptions about your editing environment —
about Emacs. Once you change variables, rebind keys or al-
ter Emacs to suit your own needs, you create a unique combi-
nation of changes that few other people, if any, have. There-
fore, to diagnose issues, or 昀椀x and change things you dislike,
you have to know how to 昀椀nd those things in the 昀椀rst place.
Let’s explore VC, Emacs’s Version Control interface. The VC
system is a powerful and underutilized facility in Emacs that
exposes a generic interface – for things like version history,
blaming, committing, pushing and pulling – that then talks
to your chosen version control system. VC is great if you reg-
ularly work with more than one versioning system.
If you weren’t aware of VC before and your 昀椀rst introduction
to it is reading about it now, how would you learn about it?

Reading the Manual
Unsurprisingly, Emacs’s manual is well-written and exten-
sive. Let’s begin by opening Emacs’s manual about Version
Control.

1. Open the M-x info manual by typing C-h i.

261

The Practicals of Emacs

2. Navigate to the Emacs hyperlink and open it.

3. Search with C-s for version or version control.
Lo and behold, if you tap C-s enough times eventually
you’ll come across the Version Control manual that
way.

So, reading the manual works well — but not every feature
has a manual. And perhaps the chapters are buried in a sub-
sub-sub-chapter out of easy reach. And third-party packages
almost never ship with info manuals.

Apropos for info manuals You can use the command
M-x info-apropos with a search pattern and Emacs
will crawl all known info manual pages looking
for matching patterns. If you are unsure of where
something is, this command is a powerful tool.

Using Apropos
In Apropos, I listed all the many ways of querying Emacs’s
documentation system using apropos. One of those apropos
commands will search the doc string – the documentation
string accompanying most variables and functions in Emacs
– and list the matching function or variable. Searching
Emacs’s documentation strings is the most scattered ap-
proach to 昀椀nding things: you are literally searching plain
text documentation. To do this, use C-h d, which is the
apropos command that searches documentation.

Namespacing in Emacs Lisp

262

The Practicals of Emacs

Emacs Lisp, unlike other lisps, lacks namespac-
ing. There is no separation of concerns using
modules or namespaces in Emacs. In practice,
it’s not a huge deal (there are bigger 昀椀sh to fry)
but it does mean that, informally, packages in
Emacs pre昀椀x their symbols (functions, variables,
etc.) so they don’t clash.
Examples include python- for the Python major
mode; apropos- for apropos-related commands,
and so on.

Nevertheless, if you search for version control with C-h d,
the 昀椀rst result is this:

vc-mode

Function: Version Control minor mode. This
minor mode is automatically activated whenever
you visit a file under control of one of the
revision control systems in
`vc-handled-backends'.

VC commands are globally reachable under the
prefix `C-x v':

We now have a lead. The VC mode is vc-mode. However, we
want the pre昀椀x it uses and it is vc-.
Knowing that VC’s pre昀椀x is vc-, we can use M-x apropos

-command, bound to C-h a, to 昀椀nd all the VC commands:

263

The Practicals of Emacs

M-x apropos-command

Then at the prompt, enter:

Search for a command (word list or regexp): ^vc-

Emacs returns the results of the Apropos search:

vc-annotate C-x v g
Display the edit history of the current
FILE using colors.

vc-check-headers M-x ... RET
Check if the current file has any headers in it.

vc-clear-context M-x ... RET
Clear all cached file properties.

[...]

You’ll see a list of commands along with a brief description
and the key binding, if any.
A quick browse through reveals a handful of interesting com-
mands.

Keys and Commands Description
C-x v Pre昀椀x key for vc-
M-x vc-dir, C-x v d Shows VC status
M-x vc-diff, C-x v = Di昀昀 bu昀昀er and last revision
M-x vc-annotate, C-x v g Show blame
M-x vc-next-action, C-x v v Does next logical action
M-x vc-print-log, C-x v l Prints commit log

264

The Practicals of Emacs

With these, it’s easy to see a trend. A lot of the commands
are bound to the pre昀椀x key C-x v. The next step would be
to see what commands are bound to the pre昀椀x key itself by
appending C-h.

C-h: Exploring Pre昀椀x keys
In Discovering and Remembering Keys, I showed you that
appending C-h when you enter a partial (pre昀椀x) key lists all
the keys bound to that pre昀椀x key. C-x v is no exception: typ-
ing C-x v C-h lists all the keys bound to this pre昀椀x key.
Typing C-x v C-h yields this:

Global Bindings Starting With C-x v:
key binding

C-x v + vc-update
C-x v = vc-diff
C-x v D vc-root-diff
C-x v G vc-ignore
C-x v I vc-log-incoming
C-x v L vc-print-root-log
C-x v O vc-log-outgoing
C-x v a vc-update-change-log
C-x v b vc-switch-backend
[...]

The great thing about this command is that it is so easy to
type. If you forget that C-x v = di昀昀s the current 昀椀le with
the last 昀椀le revision? No problem – C-x v C-h shows that
bound to C-x v = is M-x vc-diff. The other obvious bene昀椀t

265

The Practicals of Emacs

is it exposes you to commands you wouldn’t otherwise con-
template using, or even knew existed. Perhaps you have a
new need to, say, create a tag (C-x v s) and if you’re unsure
of what it’s called or what it is bound to – or indeed if such a
feature even exists in Emacs – then C-h may shed some light
on it.

C-h k: Describe what a key does
On the other end of the spectrum is having a key and not
knowing what it does. The command C-h k takes a key bind-
ing and shows you what is bound to that command in the
active bu昀昀er. For instance, C-h k followed by C-x v v shows
you not only the name of the command but the doc string for
that command. Usually, the text is descriptive and explains
what the command does:

C-x v v runs the command vc-next-action (found
in global-map), which is an interactive
autoloaded compiled Lisp function in `vc.el'.

It is bound to C-x v v, <menu-bar> <tools> <vc>
<vc-next-action>.

(vc-next-action VERBOSE)

Do the next logical version control operation on
the current fileset. This requires that all
files in the current VC fileset be in the same
state. If not, signal an error.

266

The Practicals of Emacs

...

Shown above is the key binding and the command it runs.
It also shows you where the command was found – in this
case in the global map, because it is a global key – and the
library 昀椀le containing the command. Next, all the keys (it
may have multiple bindings) it occupies are listed, followed
by the function arguments if you were to call the command
directly from lisp. And then, 昀椀nally, is the documentation
string describing the command.
All this information is dynamically generated when you call
C-h k.
The slight downside of C-h k is that its intended audi-
ence are elisp hackers and not end users; the doc string
describes how the command works from a technical
perspective and that usually means explaining how each
argument, and other technical minutia of little relevance
to end users, works. But that’s usually not a problem for
a technically-minded person, even if you are not a lisp
developer.

Describing commands If you have the name of a com-
mand, such as vc-dir, you can use C-h f and Emacs
will describe what the command does.

C-h m: Finding mode commands
If you run the command C-x v d, a new bu昀昀er appears show-
ing you the version status of your current bu昀昀er’s repository;
things like untracked and modi昀椀ed 昀椀les are shown here. But

267

The Practicals of Emacs

how do you interact with it? How do you discover how to
use VC’s status bu昀昀er?
The answer is C-h m, a help command that describes the doc-
umentation strings present in the active major mode and mi-
nor modes. In other words, use this command to 昀椀gure out
what each major and minor mode does (and what keys, if
any, they expose).
So, calling C-h m inside a VC status bu昀昀er yields a plethora of
keys and documentation:

key binding

C-c Prefix Command
TAB vc-dir-next-directory
C-k vc-dir-kill-line
RET vc-dir-find-file

...

From then on it’s a simple matter of clicking (with RET or the
mouse) on each hyperlink you are interested in.

M-S-x: Execute Extended Command for Bu昀昀er
Another option is to use M-S-x, introduced in Emacs 28. It
won’t yield great results everywhere, though: it relies on
both keys bound to the active modes in the current bu昀昀er,
and that mode authors augment their code with hints to
M-S-x to show important commands.

268

The Practicals of Emacs

For VC, it works best in dedicated modes like C-x v d, and
can serve as a supplement to C-h m.

Project Management
Historically, Emacs always looked at 昀椀les in isolation and
never as a collection of related 昀椀les. Despite the presence of
filesets – a part of Emacs since 2002, and yet so obscure
even the maintainers forgot about it – Emacs mostly left that
role to directory-local variables1 and external tools like Make-
昀椀le and friends. That made it hard for the Emacs maintainers
and the community to build a consistent narrative to work-
ing with multiple 昀椀les, such as searching & replacing, compil-
ing, and so on. That changed in Emacs 23 with EDE, a subset
of CEDET, itself a very complex suite of tools to give Emacs
IDE-like functionality.

What is CEDET?
CEDET is a collection of tools that o昀昀er language
parsing with semantic analysis and code comple-
tion; project management; code generation; di-
agramming; and more. It works well with C &
C++ and had a large following in that commu-
nity, but never really caught on elsewhere. An
abridged version was included in Emacs 23.

1 Emacs would read and evaluate a (con昀椀gurable) subset of elisp if it
found a .dir-locals.el 昀椀le. It’s a powerful concept, but a poor substi-
tute for project management.

269

The Practicals of Emacs

Like CEDET, EDE never really caught on, and in the meantime
a large number of third-party libraries (like Projectile) 昀氀our-
ished as multi-language projects became more common.
They also changed the notion of what project management
should be by basing it around the existence of a source
control repository instead of a static project 昀椀le that you
selectively add or remove 昀椀les from.
Since then, Emacs introduced project.el, and it’s been ac-
tively worked on since then. The “new” project manager
is feature-rich, and it’s taken inspiration from the collective
work of third-party tools to build something that, I think, is
a great out-of-the-box experience for most users.
Some of the feature highlights include:

Inferring 昀椀les from VC-indexed 昀椀les Emacs will automat-
ically guess the 昀椀les relevant to the project with the
assumption that if the 昀椀le is indexed by the version
control system you are using, then it is probably rele-
vant to the project user.

Root directory inferred from the VC home directory
Important, as 昀椀le searches, linting tools, compile
commands, and so on are often executed relative to a
root directory.

Built-in support for enumerating project 昀椀les For
searching and replacing across multiple 昀椀les in the
project, or subsets of the project 昀椀les.

Selection of commands that work with projects Such as
opening a M-x shell or M-x dired bu昀昀er; 昀椀nding a 昀椀le;

270

The Practicals of Emacs

killing project-related bu昀昀ers; or switching to another
project by name.

Though the details I listed here may seem low-level, they
are important: this is a sorely-missed feature in Emacs, and
laying a good foundation – which they have done – is impor-
tant as uptake in the wider community is essential now that
it is here.
If you don’t have strong preferences already on what to use,
you should use this. To do so, all you need is a Git or Mercu-
rial repository.
There’s a pre昀椀x keymap reserved just for projects bound to
C-x p (introduced in Emacs 28):

Project Keys Description
C-x p p Switch to other known projects
C-x p b Switch to bu昀昀er
C-x p f Find 昀椀le2 in project
C-x p k Kill project bu昀昀ers
C-x p g Search by regexp
C-x p r Query regexp search and replace
C-x p c Compile project
C-x p v Open VC Dialog
C-x p s Open a Shell
C-x p d Open a Dired bu昀昀er

Unlike their more general counterparts, key bindings like
C-x p f and C-x p b work the same way but are of course

2 IDO will not complete here by default if you use it. But FIDO will.

271

The Practicals of Emacs

restricted to 昀椀les known to your project. The same goes for
all the commands: they will act within the con昀椀nes of the
project as de昀椀ned by its backend — which, by default, is the
VC root directory and any 昀椀les known to it.

Xref: Cross-References in Emacs
Xref is a uni昀椀ed platform to match symbols (like the one un-
der point) to their de昀椀nitions, and then present them to the
user so they can edit or jump to them. It does this with con-
昀椀gurable backends that may change depending on the major
mode of the bu昀昀er you execute it in. It’s designed to work
with third-party packages, though it’s not widely adopted
yet, and tools that generate their own lists of symbol de昀椀ni-
tions.
The four most common commands you should know about
are:

Keys Description
M-. Find de昀椀nitions at point
M-, Pop marker3 and return
M-? Find references matching a pattern
C-M-. Find symbols matching a pattern

If you invoke xref ’s 昀椀nd a de昀椀nition with M-., you’re more
likely asked to 昀椀nd a TAGS table 昀椀le 昀椀rst if your major mode
does not have xref con昀椀gured already. TAGS 昀椀les are an old-

3 When commands like M-. whisk you away from where you were,
they leave behind markers that you can return to later.

272

The Practicals of Emacs

school way of generating identi昀椀ers and their locations and
then storing them in large, static lookup tables on your 昀椀le
system to improve performance. TAGS 昀椀les work well if
you work on astronomically large projects. But for most of
us, tools that search your 昀椀le system on the 昀氀y (or query a
Language Server) is usually all you need.
To get you started, I recommend you try the third-party
package dumb-jump which, despite its name, leverages
the speed of 昀椀le searchers like grep, ack, ag or ripgrep
to 昀椀nd matches relevant to your major mode. For most
things it’s more than good enough. ripgrep in particular is
unfathomably fast on modern hardware and pairs well with
Emacs4 .
Once con昀椀gured, you can jump to an identi昀椀er with M-. and
to return you can pop markers o昀昀 the stack with M-,. If there
are multiple de昀椀nitions, or if Emacs is not sure which one
is the best one, you’ll be shown a bu昀昀er of de昀椀nitions that
match. You can also match against a regexp with C-M-..

Popping the Stack
A common set of terms in Emacs is to pop
something o昀昀 the stack, referring to the Computer
Science concept of removing the most recently
added item to a list. You’ll see it here and there
in Emacs’s user-facing commands, like this one.

The M-? key binding may fall back to searching your project
directory with common 昀椀le searching tools like grep if there

4 Have a look in the package manager; type M-s o ripgrep in the
package list to 昀椀nd packages mentioning it.

273

The Practicals of Emacs

is no other backend available. Usually, that is an OK starting
point.
The results are shown in an xref de昀椀nitions bu昀昀er.

Xref Bu昀昀er Keys Description
RET Jump to de昀椀nition
TAB Jump to de昀椀nition, and hide xref
C-o Show de昀椀nition
. and , Navigate up or down
r Query search and replace regexp

Try using . and , to quickly browse through lists of
matches to 昀椀nd the de昀椀nition you need. Emacs will jump
to the matches as you move through the list. Once you’re
happy with the selection you can press TAB to jump to the
de昀椀nition at point and close the xref bu昀昀er.
Type r and you’re prompted for a regexp to search and re-
place with. It works the same as C-M-% that I talked about in
Search and Replace.

Xref and Dired
Xref is also available in Dired: you can type A to
search and Q to search & replace in marked 昀椀les.

Working with Log Files
Poring over log 昀椀les is a common activity and there are tools
in Emacs that makes it a snap to stay on top of them.

274

The Practicals of Emacs

Keys Description
C-x C-f Finds a 昀椀le
C-x C-r Finds a 昀椀le in read only mode
C-x C-q Toggles read only mode

Opening the log 昀椀le is the 昀椀rst step. You may want to open
it read only; if the 昀椀le is not writable, Emacs will open it
in M-x read-only-mode automatically. You can toggle it on
and o昀昀 with C-x C-q. The reason you may want to disable
read only mode is so you can apply destructive changes to
the bu昀昀er, such as 昀氀ushing or keeping lines:

Keys Description
M-x flush-lines Flushes lines matching a pattern
M-x keep-lines Keeps only lines matching a pattern
M-s o List lines matching a pattern

M-s o creates an Occur mode bu昀昀er matching a pattern. What
a lot of people never consider is that you can re-run M-s o
on an Occur mode bu昀昀er to 昀椀lter it further.
It’s easy to su昀昀er pattern blindness and miss things if you
scroll through row after row of nearly-identical log entries.
Emacs’s highlighters work well here, as they highlight
patterns in your bu昀昀er in di昀昀erent colors so you can tell
them apart:

275

The Practicals of Emacs

Keys Description
M-s h p Highlights a phrase
M-s h r Highlights a regular expression
M-s h . Highlights symbol at the point
M-s h u Removes highlighting under the point

Highlighters work well, and they work everywhere in Emacs.
Even if you don’t commit the keys to memory, just know
that they are all named highlight- and are thus easy to exe-
cute, when you need them, with M-x.
Log 昀椀les are rarely static 昀椀les: they are constantly changing
or appended to. You can enable a minor mode so Emacs re-
freshes a 昀椀le if it changes on your 昀椀le system. On newer ver-
sions of Emacs, it’ll use 昀椀le change events (on most modern
platforms) and polling on older systems that don’t support
noti昀椀cations.

Keys Description
M-x auto-revert-mode Reverts bu昀昀er when

昀椀le changes
M-x auto-revert-tail-mode Appends changes when

昀椀le changes

Both modes are similar. M-x auto-revert-mode is es-
sential if the 昀椀le content changes frequently. Emacs
detects changes and simply reloads the entire 昀椀le.
M-x auto-revert-tail-mode, on the other hand, works
the same way as tail -f: when the 昀椀le changes, the changes
are appended to the end of the bu昀昀er and Emacs will scroll

276

The Practicals of Emacs

accordingly.

Browsing Other Files
There is, of course, nothing stopping you from applying
these concepts to other 昀椀le types. For instance, Emacs ships
with auto compression mode – a passive mode enabled by de-
fault – that automatically de-compresses and re-compresses
昀椀les when you open and save them. Combine it with
M-x dired and you can browse compressed archives as
though they were directories.

Dired: Thumbnail Image Browser

You can type M-x image-dired and enter Emacs’s image
thumbnail browser. You’ll see a window with thumbnails
and a dired window with the 昀椀les.
The thumbnail bu昀昀er comes with a large array of key bind-
ings. Here are some of them:

Thumbnail Keys Description
C-f, C-b Move to the next or previous thumbnail
C-p, C-n Move up or down a row of thumbnails
d, m, u Delete, mark, or unmark (like Dired)
t t, t u Tag or untag image
RET Open image
l, r Rotate thumbnail left or right

The full-sized image bu昀昀er o昀昀ers three key bindings:

277

The Practicals of Emacs

Image Keys Description
q Quit
s Resize image to window
f Show in full size

Note, though, that opening the 昀椀le from dired puts you in
Image Mode, a general-purpose image viewer (and far more
powerful), and not Dired Image Display Mode.

DocView: Viewing Rich Documents

If your system is relatively modern, and if you have the right
programs installed5 , you can take advantage of Emacs’s abil-
ity to render images and have it convert PDF and Open / MS
O昀케ce documents on-the-昀氀y when you open them.

DocView Support
For a full list of what Emacs will attempt to
convert, you can type C-h v auto-mode-alist
and search for doc-view. You may remember
that variable from early on in the book where
we talked about Major mode load order.

To use DocView, open a PDF or other supported binary 昀椀le
and Emacs will attempt to render it for you. When open,
some of the key bindings available to you are:

5 Which ones you need is platform speci昀椀c, but M-x customize-group
doc-viewwill show you what you need. For most Linux distros, it should
work out of the box.

278

The Practicals of Emacs

Keys Description
n, p Page up / page down
<prior>, <next> Page up / page down
SPC Scroll down
S-SPC Scroll up
M-<, M-> Jump to 昀椀rst / last page
+, -, 0 Enlarge, shrink or reset
W, H, P, F Fit to width, height, page or window

This is but a small subset of available key bindings. Of note is
SPC and S-SPC as they slowly advance through the document,
and are intended for documents that you are reading. Use +
and - for zooming in or out. You can also let Emacs take
care of the guesswork with W or H to resize the document to
昀椀t the width or height of the window. F, on the other hand,
will resize your window to 昀椀t the document.
If the images look pixelated, you can increase the DPI by cus-
tomizing doc-view-resolution.

Slide Show Viewer
The command M-x doc-view-presentation
turns a Doc View bu昀昀er into a full screen slide
show. You can navigate between “slides” with
n and p, and q to quit.

TRAMP: Remote File Editing
Remote 昀椀le editing is usually awkward: you have to interact
with a remote environment, usually using a terminal emula-

279

The Practicals of Emacs

tor, and almost always without the 昀椀delity of a graphical
interface and your usual settings. Even though it’s trivial to
move your .emacs.d around with you, it is still awkward. For
all the improvements in technology, remote 昀椀le editing usu-
ally involves trade-o昀昀s.
Emacs’s TrAMP6 system is a transparent proxy that aims to
solve most of the remote 昀椀le interaction woes you are likely
to encounter. TrAMP is, without a doubt, the coolest feature in
Emacs.
TrAMP works by monitoring C-x C-f (and other commands)
and it detects when you try to access remote 昀椀les using a spe-
cial syntax not unlike what command line tools such as scp
use. What makes TrAMP great is its total transparency. If you
didn’t know Emacs had remote editing capabilities, you’d
never know. It is quick and seamless to reach out and edit
remote 昀椀les.
All TrAMP connections follow this syntax:

/protocol:[user@]hostname[#port]:

TrAMP supports many protocols – both old and new – but
nowadays the one you are most likely to use is ssh or maybe
scp. For a full list of TrAMP protocols and how they work,
consult the variable tramp-methods or the info manual page
(tramp) Internal methods.

Microsoft Windows
6 Transparent Remote (昀椀le) Access, Multiple Protocol

280

The Practicals of Emacs

On Windows, your protocol choices di昀昀er. If
you don’t use Cygwin or a cross-compiled
version of OpenSSH, you will need to install
PuTTY’s plink.exe tool and use plink as the
protocol.

Although the server landscape is a lot more homogeneous
today than it was 25 years ago, TrAMP does a lot of behind-
the-scenes work to ensure the remote shell delivers a consis-
tent (and dependable) experience. The variable I mentioned
above, tramp-methods, controls how TrAMP handles each pro-
tocol type. If you work with obscure systems, you may have
to customize this variable.
Another nifty feature of TrAMP is that it parses your
~/.ssh/config 昀椀le and autocompletes known hosts when
you have entered ssh as your protocol. You can, of course,
specify both a hostname, username, and port manually,
with the latter two being optional.

SSH con昀椀g
If you use ssh, I strongly suggest you use the
con昀椀guration 昀椀le as you can store all the connec-
tion and credential details in an easy to remem-
ber name.
For more information, type M-x man ssh_config
to read the relevant manual page in Emacs.

Finally, to actually invoke TrAMP you must call it from the
root – typing // in FIDO or IDO mode will jump to the root –
and follow the format as above.

281

The Practicals of Emacs

Helm
If you also use Helm, you can install a third-
party package called helm-tramp that auto
generates all reasonable TrAMP con昀椀gurations
you may want to use. You can also 昀椀nd TrAMP
extensions that add support for tools like
Docker.

Note that Emacs will not initiate a remote connection until
you enter the second :, like so:

/ssh:homer@powerplant:/var/log/reactor.log

The command above connects to the server powerplant us-
ing ssh as the protocol and homer as the user. It then opens
the 昀椀le /var/log/reactor.log.

The Default Directory and Remote Editing
Every bu昀昀er has a default-directory variable. The vari-
able, in elisp terms, is bu昀昀er local. Each bu昀昀er has its own
default-directory variable as it is local to just that bu昀昀er
and not global (like variables are by default in Emacs).
When you type C-x C-f in a bu昀昀er, Emacs looks to
default-directory and picks that directory as the default
one for opening new 昀椀les. That is sensible as you may want
to open other 昀椀les that share a directory with the current
bu昀昀er. Typing C-x C-f while editing a 昀椀le in /etc means
you may want to open another 昀椀le in /etc, so Emacs picks
that as your default directory.

282

The Practicals of Emacs

This feature works identically with TrAMP and remote 昀椀les.
Invoking C-x C-f in a remotely-edited 昀椀le and Emacs auto-
matically queries the remote system and not your local one,
letting you easily open other remote 昀椀les.
When you have opened a 昀椀le, TrAMP does its magic behind-
the-scenes and you’ll end up with a 昀椀le in Emacs that looks
and seems much like a local one. The only visible way of
telling that a 昀椀le is remote is the modeline: a @ appears be-
fore the 昀椀le name and default-directory re昀氀ects the TrAMP-
annotated 昀椀le path; try it, inspect the variable with C-h v.
So, you can edit 昀椀les remotely, but because of the tight
integration between TrAMP and Emacs you can do so much
more. Invoking commands like M-x rgrep works seamlessly
with Emacs and TrAMP. The command is run on the remote
machine and the results are fed back to Emacs as though
you’d called the command locally.
There is no end to the things you can call remotely. Here are
some of the commands that I use remotely:

C-x d: Dired All commands are tunnelled through the re-
mote session so you can manage your 昀椀les and directo-
ries with dired as though they were local.
You can even copy 昀椀les between remote and local
dired sessions and TrAMP will transparently copy the
昀椀les across.

M-x compile: Compile You can enter a compile command,
such as make or python manage.py runserver, or
indeed anything you like. Emacs runs the command
remotely and the output is shown in the *compilation*

283

The Practicals of Emacs

bu昀昀er. You can even run interactive servers remotely
with live feedback.

M-x rgrep: Grep Commands Both find and grep are called
remotely and, as with the other commands, the results
are displayed in Emacs. Hyperlinked 昀椀les in the grep
output correctly open the remote 昀椀le.

M-x shell: Emacs’s Shell Wrapper Starts a remote login
shell and hands you control of it. It works just like
M-x shell on a local machine but the shell in this case
is, obviously, on the remote machine. TAB-completion
– which in M-x shell is done by Emacs and not the
actual shell – also works.

M-x eshell: EShell, Emacs’s elisp shell Eshell is a shell
written in Emacs lisp. It also transparently works
with remote TrAMP connections. In fact, you can cd
into remote directories straight from a local shell.

Multi-Hops and User Switching
Another cool ability of TrAMP is account elevation with su
or sudo. This is works even for local 昀椀les if you want to edit
a 昀椀le as another user or root.
The ability to do this also neatly ties in with the concept
of multi-hops: connecting to a remote host through interme-
diate hosts. An example is if you have to access an internal
server but 昀椀rst have to connect through a public server for
added security; another is if you have to log in as one user
but then have to call out to sudo to edit a 昀椀le as root on a
remote server.

284

The Practicals of Emacs

Let’s start out with the simpler case of requesting sudo access
to /etc/fstab:

/sudo:root@localhost:/etc/fstab

As you can see, the syntax is identical to a normal remote
TrAMP connection — only we’re using sudo and we are con-
necting locally. You can usually omit root@ as TrAMP is clever
enough to guess it’s root. Keep in mind that this 昀椀le is tech-
nically remote (in the TrAMP sense) so the usual rules about
default-directory apply. Opening 昀椀les with C-x C-f in a re-
mote bu昀昀er will open other 昀椀les as sudo.
Multi-hopping in TrAMP is usually done by customizing
tramp-default-proxies-alist but I 昀椀nd it a bit 昀椀ddly; the
ad hoc syntax is much easier:

/ssh:homer@powerplant|sudo:powerplant:/root/salary.txt

The example above connects to powerplant as homer.
Then, another ‘connection’ invokes sudo and opens
/root/salary.txt as a sudo’d user. It is very important that
you repeat the hostname in the sudo string or it will not
work. As before, remote 昀椀les obey the same rules as earlier.
Commands like M-x shell will give you a root shell on
powerplant if invoked from the salary 昀椀le.

Bookmarks
You can bookmark (see Bookmarks and Regis-
ters) remote 昀椀les with C-x r m and TrAMP will

285

The Practicals of Emacs

automatically reconnect if you re-open a book-
mark later with C-x r b or C-x r l. Bookmarks
work with a large range of Emacs’s many features.
Here they’re also a great time saver, especially
for complex multi-hops.

Finally, I recommend you add this snippet to your init 昀椀le. It
is a custom command that, when invoked as M-x sudo, uses
TrAMP to edit the current 昀椀le as root:

(defun sudo ()
"Use TRAMP to `sudo' the current buffer."
(interactive)
(when buffer-file-name

(find-alternate-file
(concat "/sudo:root@localhost:"

buffer-file-name))))

From the above, it’s easy to tweak the string and build multi-
hopped commands — if you are new to elisp and you need
multi-hops, consider it a fun 昀椀rst place to start learning.

Conclusion TrAMP, in conjunction with Emacs’s built-in
shell support, and its windows and bu昀昀ers, make it a
昀椀ne replacement for tmux & GNU screen-based work
昀氀ows. By keeping the remote 昀椀le editing inside Emacs,
you unify your environment and you greatly lessen
the mental context switching of having disparate
Emacs sessions. TrAMP is a really powerful feature
in Emacs and one that is worth using over other

286

The Practicals of Emacs

alternatives — it’ll never completely replace the
incumbent methods of remote editing but it’s a good
place to start.

EWW: Emacs Web Wowser
Long ago Emacs succumbed to Zawinski’s Law of Software
Envelopment that states, “Every program attempts to expand
until it can read mail. Those programs which cannot so ex-
pand are replaced by ones which can”, by having not one,
but many, mail clients built in.
Clearly, for the twenty-昀椀rst century, we need to raise the
bar. So it should come as no great surprise that Emacs has a
built-in web browser, EWW — the Emacs Web Wowser.
EWW is a nifty, little browser engine. Its renderer is limited
to basic HTML and image support so it is not terribly di昀昀er-
ent from existing text-based browsers. However, despite its
limited renderer, it is excellent for perusing technical docu-
mentation, quick web searches, and browsing web sites you
don’t want your boss to see.
To use EWW, simply type M-x eww and you are prompted
for an UrL or a search term. By default, the search engine
is DuckDuckGo, but you can Customize eww-search-prefix
and change it to something else. Starting with Emacs 27,
typing C-u M-x eww will create a new EWW bu昀昀er even if
one already exists.

External and internal browsing

287

The Practicals of Emacs

You can instruct Emacs to open things
in a web browser with the command
M-x browse-url. Emacs will use the vari-
able browse-url-default-browser, a function
that will attempt to guess the right browser to
use depending on your operating system and
installed browser.

You can customize the default
browser by typing M-x customize-option
browse-url-default-browser.

Navigation in EWW is mostly through the keyboard (as you
would expect from Emacs) but hyperlinks are clickable with
a mouse.

Keys Description
TAB, S-TAB Cycle to next/prev hyperlink
q Quit EWW
& Open page in with M-x browse-url
B Show bookmarks
b Add bookmark
H Show browser history
l, r Browse backward / forward in history
p, n, u, t Semantic web navigation aids
R Enable Reader mode
RET Browse link
C-u RET Open link in external browser
M-s M-w Searches for point in EWW
M-RET Open link in new bu昀昀er
s Switch to another EWW bu昀昀er

288

The Practicals of Emacs

Keys Description
w Copy link at point

Emacs 28
In Emacs 28, EWW now shares a bookmark sys-
tem with the rest of Emacs.

The most common commands to use is TAB and S-TAB to
open hyperlinks; and l and r as they are the ones you will
use to go backward and forward through the browser history.
The commands p, n, u and t only work if the web page se-
mantically says which hyperlinks are the next and previous
ones.
You can switch to a reader mode with R. It’s great. It strips out
– or attempts to, but EWW gets it right most of the time – all
the distractions and leaves just the main body of text. Great
for reading.
The command M-s M-w is also handy. It will take the active
region and send it to the default search engine (usually Duck-
DuckGo) and display the results in EWW.

Dired: Files and Directories
Both browsing and interacting with 昀椀les and directories on
your 昀椀le system is a task for which Emacs is eminently well-
suited. Aside from editing local 昀椀les the usual way, and re-
mote 昀椀les using TrAMP, you can manipulate directories and
昀椀les using Emacs’s directory editor, dired.

289

The Practicals of Emacs

To access dired, you can do so in multiple ways:

From IDO or FIDO mode You can type C-d when 昀椀nding
昀椀les with C-x C-f to open a dired bu昀昀er in that 昀椀le’s
current directory.

As a command The command M-x dired opens a prompt
that asks you for the dired location to open. It defaults
to default-directory, the directory the current bu昀昀er
is in. As with TrAMP, if the 昀椀le is remote Emacs will ask
you if you want a remote dired session.

As a key bind The key binding C-x d works identically to
the command above. The command, C-x 4 d, does the
same but in the other window.

When you open a dired bu昀昀er in Emacs, you’re greeted with
a view that looks similar to this:

/usr/share/dict:
total used in directory 2328 available 187646744
drwxr-xr-x 2 root root 4096 Feb 16 09:57 .
drwxr-xr-x 326 root root 12288 Mar 27 11:43 ..

-rw-r--r-- 1 root root 938848 Oct 23 2011 american-english
-rw-r--r-- 1 root root 938969 Oct 23 2011 british-english
-rw-r--r-- 1 root root 199 Jan 14 2014 select-wordlist

If you use the Linux command line, its output should look
familiar. That is because Emacs, in keeping with the spirit
of other commands like M-x grep, simply augment the out-
put from existing command line utilities. In this case, it is

290

The Practicals of Emacs

usually ls -al, but you can change the switches used by cus-
tomizing dired-listing-switches.

Microsoft Windows
If you use Microsoft Windows, then don’t
worry. Emacs includes a ls emulation layer
written in elisp. Instead of calling out to ls,
Emacs will instead query the operating system
directly. The end result is a seamless interface
that works across platforms.

As I talked about earlier, the concept of The Bu昀昀er
and Emacs’s “augmentation” system is a powerful and
pragmatic way of talking to external programs. When
Emacs calls out to ls, the output is inserted into the bu昀昀er,
the dired-mode activated, and the text augmented with
highlighting and hyperlinks and other hidden properties
to help Emacs navigate the text mechanically. The major
mode itself supplies the key bindings so that pressing RET
on a 昀椀le opens it. Indeed, as with any bu昀昀er, you can copy
the output of dired as it is basically plain text.
Most Emacs beginners – and even intermediate users – never
really get to grips with dired. Most never get beyond navi-
gating directories with it, which is a shame because behind
its simple exterior is a very complex and e昀케cient system for
昀椀le and directory operations. Indeed, there are hundreds of
dired commands and dozens of interactions with other com-
mands that work seamlessly with dired’s interface.

291

The Practicals of Emacs

Navigation
Navigating dired is fairly straightforward and since it’s a
bu昀昀er, all your usual navigational aids work: Isearch, arrow
keys, the mouse, and so on.

Keys Description
RET Visits the 昀椀le or directory
^ Goes up one directory
q Quits dired
n, p, C-n, C-p Moves the point up/down a listing

However, ^ is the key you need if you want to go up one
directory to the parent of your current directory. The com-
mands C-n and n & C-p and p go down or up a line but also
reorient your point so it is positioned right before the 昀椀le-
name.
When you press RET, Emacs will visit the 昀椀le or directory; if
it is a directory, a new dired bu昀昀er is opened. So pressing q
after visiting a sub-directory should take you back to your
last dired bu昀昀er.

Marking and Unmarking
Marking and unmarking things is something you’ll do fre-
quently if you want to carry out operations on multiple 昀椀les
or directories.

292

The Practicals of Emacs

Keys Description
m Marks active
u Unmarks active
U Unmarks everything
d Flags for deletion

An important distinction must be made between marking
and 昀氀agging for deletion: d 昀氀ags for deletion (and a D is placed
next to the 昀氀agged item) and m marks. Marks are never af-
fected by the delete command, and vice versa, except for one
command that deletes marked 昀椀les. Marked 昀椀les are high-
lighted with *.
Marking and 昀氀agging both advance the point to the next
item (as though you’d typed C-n) but you can reverse direc-
tion with a negative argument.

Discover more
There are so many commands in dired that list-
ing all of them is not possible. I recommend you
apply the usual exploratory approaches (Apro-
pos, describing the mode, listing keys bound to
pre昀椀xes) to discover the rest.
Alternatively, you can try out my package,
Discover, that adds descriptive popup menus
to Emacs. You can also browse my website
for detailed articles that cover various dired
features in great detail.

There are also mark commands that mark speci昀椀c things:

293

The Practicals of Emacs

Keys Description
* m Marks region
* u Unmarks region
* % Marks 昀椀les by regexp
* . Marks 昀椀les by extension
t, * t Toggles marking
* c Changes mark

The pre昀椀x key * is full of mark commands. Shown above
are the four most practical ones for day-to-day use. The re-
gion keys mark or unmark every dired item touched by an
active region. The regexp and extension mark commands
are similarly useful, and you can use * t to toggle (invert)
the marks.
* c is special. It changes the mark symbol from old to new. So,
you can change * (the default mark symbol) to D and turn
the marked 昀椀les into 昀椀les 昀氀agged for deletion. However, as
deleting is practically the only thing you’d want to do with
昀氀agged 昀椀les, there is a special command that deletes 昀氀agged
昀椀les and another that deletes marked ones too.

Operations
You can carry out actions – or operations – on either the ac-
tive item (if there are no marked 昀椀les in dired) or the marked
ones, if there are.
When you operate on marked 昀椀les, Emacs will usually ask
you to con昀椀rm the action, and lists the a昀昀ected 昀椀les. Like
the mark commands, there are many operations you can do.
Let’s take a look at the basic ones 昀椀rst:

294

The Practicals of Emacs

Keys (Marked 昀椀les) Description
C Copy 昀椀les
R Rename or move 昀椀les
O Change owner
G Change group
M Change permissions
D Deletes marked (shown as *)
x Deletes 昀氀agged (shown as D)
F Visit 昀椀les (requires dired-x)
c Compress marked to a 昀椀le

Most of the keys above are self-explanatory. Just remember
the di昀昀erence between x and D if you want to delete 昀椀les.

Copying or renaming between dired bu昀昀ers
You can copy or rename (move) 昀椀les between
two windows with dired bu昀昀ers if you cus-
tomize the option dired-dwim-target. Be
careful you don’t accidentally move 昀椀les to an
errant dired bu昀昀er you forgot you had open —
I’ve made that mistake myself quite a few times!

There are also keys that don’t act on marked 昀椀les speci昀椀cally:

Keys Description
g Refreshes dired bu昀昀er
+ Creates a sub-directory
s Toggles sorting by name/date
<, > Jump to prev/next directory

295

The Practicals of Emacs

Keys Description
j Jumps to 昀椀le

Dired-X
Some commands require dired-x. It’s a package
that for no good reason is not enabled by de-
fault that, unfortunately, you have to manually
enable. Add this to your init 昀椀le for it to take
e昀昀ect:

(require 'dired-x)

With dired-x installed you can use F, which visits all marked
昀椀les. Importantly, it will attempt to open 昀椀les and give each
昀椀le its own window — which you may not want. To avoid
this, and open them in the background, type C-u F.

Keys (Marked 昀椀les) Description
M-s a C-s Begin isearch
Q Xref Query replace regexp
A Xref Search by regexp
! Synchronous shell command
& Asynchronous shell command

Occasionally, you have to either search through or replace
text in 昀椀les and you can multi-昀椀le Isearch with the rather
awkward key binding M-s a C-s. The command, Q, calls
C-M-% – query replace regexp – on every marked 昀椀le. But

296

The Practicals of Emacs

don’t forget to save the changes (C-x s to query to save
every unsaved bu昀昀er.)
Call !with no marks and dired will attempt to guess the next
operation on that 昀椀le if dired-x is enabled: If it’s a .zip 昀椀le, it
will ask if you want to unzip it. If it’s a .patch 昀椀le, Emacs
will call patch on it. There are many patterns speci昀椀ed in the
variable dired-guess-shell-alist-default. It’s a great time
saver.
With active marks, then ! and & will instead call out to an
external command of your choice. You must also tell Emacs
how to pass the marked items to the command:

One command per marked item In this mode Emacs will
call the command you chose once for each marked
item.

One command for all marked items Here Emacs will
space-separate each marked item and pass them to a
single command.

Because some commands may take a long time to run, you
must decide if you want Emacs to call the command syn-
chronously, and thus block Emacs until it’s done, with !; or,
you can tell Emacs to spawn the command asynchronously,
with &.
Here’s a practical example. Consider these two 昀椀les:
american-english and british-english, and depending on
how you phrase the shell command, the behavior changes.
You can optionally specify either * or ? to indicate whether

297

The Practicals of Emacs

you want one command per mark, or one command for all
marks.
* works like a shell’s 昀椀le glob pattern and Emacs inserts all
marked 昀椀les as one long argument to a single command:

echo *

Prints:

american-english british-english

Because Emacs ran the command once with both marked
items.
Whereas ? will instead run the command for each marked
item:

echo ?

The output, then, is:

american-english
british-english

The output, if there is any, is printed in the echo area if
it is only a few lines. Otherwise, it is redirected to a dedi-
cated bu昀昀er called either *Shell Command Output*, or *Async
Shell Command*.

298

The Practicals of Emacs

Working Across Directories
Instead of opening directories in new dired bu昀昀ers, you can
tell it to insert their content into an existing dired bu昀昀er.
When you type i with point on a directory, dired inserts
it in the same dired bu昀昀er as a sub-directory. That means you
can use the same mark and 昀氀ag commands across dired direc-
tories provided they are in the same dired bu昀昀er. You can
collapse a sub-directory – meaning commands won’t apply
to it while it is collapsed – with $.
By inserting multiple directories into a shared dired bu昀昀er,
you can not only glance at multiple directories at the same
time but you can also work on them as though they were one
large directory. This is another powerful but underutilized
feature in Emacs.
There is another approach, however, as typing i is tedious
and won’t work well if you recursively want to apply a dired
or shell command.
To get around that problem, you can use Emacs’s find wrap-
per commands. I consider these commands, combined with
the power of dired, to almost completely replace all direct
use of find and xargs. With dired’s shell command support
and extensive 昀椀le operations, I can do in Emacs what most
people struggle to do well with find.
All commands take the output of find and build a dired
bu昀昀er relative to a starting directory. Emacs is clever enough
to notice the relative paths in what was the 昀椀lename portion
of the bu昀昀er. All commands in dired work as usual.

299

The Practicals of Emacs

Commands Description
find-dired Calls find with a pattern
find-name-dired Calls find with -name
find-grep-dired Calls find and grep
find-lisp-find-dired Uses Emacs and regexp to 昀椀nd 昀椀les

The 昀椀rst three commands call out to find, the command
line utility. find-dired, like with the grep commands, is the
most basic one: you have to give it a find pattern and a start-
ing directory. find-name-dired 昀椀nds by shell glob patterns
against the 昀椀lename only, starting in a particular directory
of your choosing. find-grep-dired matches all 昀椀les but only
displays the ones that match a pattern passed to grep.

Microsoft Windows
Microsoft Windows has a choice of installing
cross-compiled binaries like GNUWin32 or
Cygwin or using find-lisp-find-dired.

The command find-lisp-find-dired is Emacs’s elisp imple-
mentation of find-dired. It works on any platform and re-
quire no external tools. In return, it is not as powerful. Also,
it uses Emacs’s regular expression engine, and not shell glob-
bing.

Shell Commands
As the chapter on dired demonstrated, there are powerful
commands in Emacs that interact with the shell. For all other

300

The Practicals of Emacs

bu昀昀ers, there are the far more general, but equally powerful,
shell commands that work on generic bu昀昀ers.

Keys Description
M-! Calls shell command and prints output
C-u M-! As above, but inserts into bu昀昀er
M-& Like M-! but asynchronous
C-u M-& Like C-u M-! but asynchronous
M-| Pipes region to shell command
C-u M-| Likes M-| but replaces region

You can invoke any shell command with M-! and Emacs will
print its output in the echo area, if the text is only a few lines
long; or a dedicated bu昀昀er called *Shell Command Output*
if you used M-!, and *Async Shell Command* if you used M-&.
Calling either command with a universal argument will in-
stead insert the output into your current bu昀昀er at the point.
The M-| command is far more practical. It takes the region
as input and sends it to the standard input of a shell com-
mand of your choosing and returns the output in much the
same way as M-!: either in the echo area or a dedicated bu昀昀er.
Calling the command with a universal argument, the active
region is replaced instead; that makes C-u M-| splendid for o昀昀-
hand calls to commands like uniq or other command line
tools that modify their input.
Although M-& is asynchronous – that is, it won’t block
Emacs until it terminates – it is a rather poor choice for
long-running tasks. It’s far better to use M-x compile.

301

The Practicals of Emacs

Compiling in Emacs
Calling out to shell commands is meant for quick, one-o昀昀
commands and usually not something you regularly do,
over and over. For that purpose, you should consider
Emacs’s M-x compile command that, despite its name,
excels at more than just compilation.

Commands Description
M-x compile Runs a command, and tracks errors
M-x recompile Re-runs last command
M-g M-n, M-g M-p Jumps to next/previous error (global)
g Re-runs last command
C-x p c Compile in the current project

When you invoke M-x compile, you are asked for a command
and Emacs kindly assumes you’re using make. However, you
are free to replace it with any command of which you want
to track the output: unit tests, compiling, running a script

— you name it.
The main advantage of M-x compile is its helper command
M-x recompile, as it re-runs your last command. Compile
also tracks errors thanks to its pattern matching engine.
Like M-x grep and M-x occur, the M-g M-n and M-g M-p
commands will jump through a call stack or compiler error
log provided their formatting matches one Emacs knows.
Everything from Python to most compilers are known to
Emacs, so it will probably work for yours too.

302

The Practicals of Emacs

Shells in Emacs
Instead of using an external terminal emulator – or running
Emacs in a terminal just so you can use it with tmux or screen
– why not use Emacs as the “multiplexer” and use Emacs to
run your shell instead? Combined with TrAMP and Emacs’s
tiling window management and bu昀昀er support, you can re-
place almost all common use cases of dedicated terminal em-
ulators.
There are three ways of interacting with shells – like bash –
in Emacs. One is a simple wrapper around an external, exist-
ing shell (like bash) called M-x shell; another is a complete
shell implementation written in elisp called M-x eshell; and
the third is a terminal emulator called M-x ansi-term.
All three are very powerful and each attempts to solve the
problem in their own special way. Whichever one you use
(and you may well end up using more than one) comes with
a number of trade-o昀昀s.
All three, however, use elisp to either communicate with an
external program, or to implement a shell in Emacs, or to in-
terpret the terminal control codes needed to render complex,
interactive programs like top. All three also use Emacs’s pow-
erful bu昀昀er paradigm – that by now you are quite familiar
with – to provide a uni昀椀ed interface for all three implemen-
tations.
The bu昀昀er paradigm is especially powerful here as the abil-
ity to communicate with external programs or directly with
the operating system is part of what makes Emacs such a pow-
erful editor. You gain all the editing and movement com-
mands, and the power of elisp, in a bu昀昀er that is simultane-

303

The Practicals of Emacs

ously used for more traditional things like text editing but
now also for far more advanced and specialized things like
interacting with bash. And because both extremes share a
common ground – the bu昀昀er – you don’t have to re-learn an
entirely new system; no more fretting with hand-selecting
text in a terminal emulator with a mouse just to copy it into
your text editor or web browser. In Emacs, it is all text and
all the movement and editing commands you are familiar
with work exactly the same here.

M-x shell: Shell Mode
Shell mode in Emacs calls out to an external program – such
as bash on Linux or cmd.exe on Windows – and either redi-
rects stdin, stdout and stderr on Windows, or through a
pseudo-terminal (on Linux) so you can interact with the un-
derlying shell through Emacs.
Because Emacs redirects I/O, you gain all the bene昀椀ts and
downsides that go with that, however. For instance, you can-
not use your shell’s native TAB-completion mechanism. In-
stead, you have to use Emacs’s own (which is more power-
ful in some respects). The 昀氀ip side to the coin is that a shell
mode bu昀昀er is entirely text: you can edit and delete output
from commands and you can kill and yank text to and from
the bu昀昀er with ease. That makes shell mode 昀氀exible but po-
larizing. Programs like top and man don’t work at all, or if
they do, they don’t work well.7

I personally use shell mode for almost all my command line
7 Thankfully, you can use M-x proced and M-x man as replacements

for both.

304

The Practicals of Emacs

needs. I use very few interactive terminal programs and
when I need to I can use Emacs’s M-x ansi-term for proper
terminal emulation.
The upsides: free-form text editing and movement be-
cause shell mode is just a simple bu昀昀er outweighing the
downsides.

GNU readline and defaults
Most Linux distributions use GNU readline – a li-
brary – to provide basic command prompt func-
tionality, like: command history, search and re-
place, and advanced movement and editing. by
default, they’re accessible using Emacs key bind-
ings.

Here are some of the most common commands. Unfortu-
nately, they are all over the place in terms of bindings.

Keys Description
M-p, M-n Cycles through command history
C-<up>, C-<down> Cycles through command history
M-r ISearches history backward
C-c C-p, C-c C-n Jumps to previous / next prompt
C-c C-s Saves command output to 昀椀le
C-c C-o Kills command output to kill ring
C-c C-l Lists command history
C-d Deletes forward char or sends ^D
C-c C-z Sends stop sub job
TAB Completes at the point

305

The Practicals of Emacs

Both M-p, M-n, C-<up> and C-<down> cycle through the com-
mand history in much the same way that using the up and
down arrow keys would in normal terminal emulators. In
Emacs, they literally move the point around in the bu昀昀er
though this always confuses people not used to shell mode.
M-r is triggers the history reverse Isearch. It’s a very power-
ful command that is worth learning. C-d deletes a character
ahead of the point, as it would anywhere else. However, if
there is no input (meaning you haven’t typed anything at a
prompt), Emacs will send the control code EOF to terminate
the running program. Similarly, C-c C-z does the same as
C-z in bash does for job control.
One nifty feature of shell mode is the ability to save the out-
put of the last command to a 昀椀le with C-c C-s, and to send
it straight to your kill ring with C-c C-o.
TAB deserves its own special mention. Shells like bash feature
their own complex completion mechanisms, and not just for
昀椀les and paths. Emacs does too. You can complete things like
hostnames for commands like ssh or groups and owners for
chown.

M-x ansi-term: Terminal Emulator
Emacs has its own ANSI-capable terminal emulator. Invoking
M-x ansi-term and selecting a shell, you can run interactive
programs like top or even vim and emacs.
Its main downside is its slowness and some obscure terminal
emulation features are not supported.

306

The Practicals of Emacs

Keys Description
C-c C-j Switches to line mode
C-c C-k Switches to character mode

By default, ansi-term acts like a regular terminal emulator
and not like shell mode or a typical Emacs bu昀昀er. However,
you can switch between two di昀昀erent modes: line mode,
which is like a typical Emacs bu昀昀er; and character mode,
which is like a normal terminal emulator.
The default mode is character mode and that means most keys –
including keyboard characters, and not just Emacs key bind-
ings – are sent directly to the underlying shell program, by-
passing Emacs entirely. There is an escape character, C-c, that
Emacs intercepts so commands like C-c C-j and C-c C-k are
not sent to the sub-program. So if you want to send C-c to
the sub-program, you must type C-c C-c.
If you want the most faithful terminal experience in Emacs,
ANSI term is your best bet. I 昀椀nd the hassle of switching be-
tween line and character mode rather cumbersome so I pre-
fer to use shell mode instead.

M-x eshell: Emacs’s Shell
It shouldn’t come as much of a surprise that someone has
written an entire shell in elisp. When you run M-x eshell, you
are using a shell that is written in elisp, that communicates,
through Emacs, with the underlying host operating system
and provides an excellent facsimile to a typical Linux-style
bash shell, complete with elisp-emulated GNU coreutils com-
mands like ls, cp, cd, and many more.

307

The Practicals of Emacs

In practice, that means you get a consistent shell across all
platforms on which Emacs runs. Combined with native
TrAMP support and the ability to redirect the output of
commands straight into an Emacs bu昀昀er, you have a tool
that is versatile, powerful and very much in the spirit of
Emacs.
Eshell is more akin to shell mode than ANSI term. It does not
support interactive programs like top, preferring instead to
open a dedicated M-x ansi-term instance to run those pro-
grams when you call them from Eshell — a clever and prag-
matic solution to the problem.
Another important di昀昀erence is that although Eshell is
inspired by shells like bash, it is, in fact, its own shell
implementation with all the quirks, features and limitations
that go with it. It must be said that Eshell is an elisp shell
昀椀rst and foremost, as every command you type into Eshell
is 昀椀rst 昀椀ltered through Eshell’s own emulation layer, then
through Emacs’s own interactive commands, and then
昀椀nally through programs in your $PATH or in the current
directory. For instance, you can type dired . to open a
M-x dired session in the current directory, or find-file
todo.org to open todo.org in your currently-running
Emacs.

308

Chapter 7

Conclusion

“Emacs is the ground. We run around and act
silly on top of it, and when we die, may our rem-
nants grace its ongoing incrementation.”
– Thien-Thi Nguyen, comp.emacs.

How do you master a text editor as diverse as Emacs?
The answer, surprisingly, is simple: by knowing how to ask
it the right questions. As I talked about in Emacs as an Op-
erating System, the very fabric of Emacs is modi昀椀able and
extensible through elisp. So, the only way to truly under-
stand what happens in Emacs is to ask it — simple, but true.
And asking Emacs is what all Emacs masters do. Whether
it is to check what a key is bound to or what exactly a com-
mand does, it is part and parcel of what de昀椀nes Emacs mastery.
Yes, knowledge of elisp is a big help but it is not an absolute
requirement.

309

Conclusion

Throughout this book, I have written about features and
functions and my own personal views on what is worth fo-
cusing on and what isn’t. That is the truly practical, overar-
ching aspect to this book. The deeper lesson – and what was
ultimately the linchpin moment for me when I 昀椀rst started
learning Emacs – is understanding how to ask Emacs questions.
Not remembering a key or a command is perfectly natural,
especially when you’re still learning, but knowing that
Emacs can tell you what it does, even if you have heavily
modi昀椀ed or altered your key bindings, is what will ulti-
mately help you truly master Emacs. Forgetting what C-x
r l does is immaterial when you can use C-h k to 昀椀nd out;
and partially remembering what something does is also not
important when you can append C-h to any pre昀椀x key to
describe all the keys bound to it.
The long-term goal of any Emacs user is to reach a point
where they can seek answers to questions they have by ask-
ing Emacs. Eventually, you’ll commit to muscle memory
the commands and keys you use most frequently, and the
rest, well, you can always look them up.
Use Emacs long enough – and those of you who have
reached this point already will probably agree with me –
and one day it just clicks. And when it does, it’s not because
you have managed to memorize a thousand key bindings.
It’s because Emacs is no longer an opaque box but a very
open and transparent one that you can peer into, modify
and observe the results of those changes.
The reading order of this book is presented in the same way
that I would teach someone Emacs if they sat next to me. Un-
derstanding the terminology is important as it lays a founda-

310

Conclusion

tion; next is the most basic of keys and commands so you
can use Emacs; and then comes the movement and editing
commands, followed by some practical examples to help re-
inforce what you have learned and to give you some ideas
on where to go from there.
Finally, I want to touch on what you should do once you feel
you have nothing more to learn from this book. The natural
next step is learn elisp; it’s a fun language, even if the LISP di-
alect lacks a lot of the bells and whistles of more modern
LISPs. Learn LISP and you’ll appreciate why curmudgeonly
old-timers decry “modern” programming languages as infe-
rior versions of LISP — and they’re half-right, too. Once you
see LISP’s data-as-code concept in action – and you will as it
is used everywhere in Emacs – you’ll wonder why you never
learned it earlier.

Further Reading My own blog, Mastering Emacs, is full
of in depth articles that you should consider reading
next. A lot of the third-party packages like IDO mode
or Emacs’s Eshell are described in far greater detail on
the website.
https://www.masteringemacs.org/

Other Resources

Third-Party Packages and Tools
I use many third-party packages myself. Here’s just a short
list of some of the ones I 昀椀nd most interesting.

311

https://www.masteringemacs.org/

Conclusion

• nov, an excellent EPUB reader for Emacs that you
should use to read this very book.
https://depp.brause.cc/nov.el/

• Magit, an excellent Git UI with a unique chord-based
key system.
https://www.magit.vc

• Multiple Cursors, places multiple points on your
screen and lets you edit all of them at the same time.
https://github.com/magnars/multiple-cursors.el

• LSP mode and EGlot, Language Server interfaces for
Emacs.
https://github.com/emacs-lsp/lsp-mode
https://github.com/joaotavora/eglot

• Helm, a powerful completion framework with many
built-in completers
https://emacs-helm.github.io/helm/

• Flycheck, a generic framework for linting and syntax
error checker your code. Comes pre-con昀椀gured
dozens of tools.
https://www.flycheck.org/en/latest/

• OrG Mode, an exceptional organizer, diary and
agenda manager, literate programming tool, and
more. It’s built in, but you should de昀椀nitely visit the
website and read their manual.
https://orgmode.org/

312

https://depp.brause.cc/nov.el/
https://www.magit.vc
https://github.com/magnars/multiple-cursors.el
https://github.com/emacs-lsp/lsp-mode
https://github.com/joaotavora/eglot
https://emacs-helm.github.io/helm/
https://www.flycheck.org/en/latest/
https://orgmode.org/

Conclusion

• YASnippet, a text snippet expansion tool.
http://joaotavora.github.io/yasnippet/

• Hydra, a package that lets you build 昀氀exible popup UIs
for key bindings.
https://github.com/abo-abo/hydra

• dumb-jump, jumps to de昀椀nitions from symbols under
point. Infers the project and types of 昀椀les and de昀椀ni-
tions to search for automatically. Good enough for
95% of use cases. Combine it with ripgrep.
https://github.com/jacktasia/dumb-jump

For tools, I recommended ripgrep several times as it’s so fast.
It also supports many di昀昀erent 昀椀le formats by default, includ-
ing OrG mode.

Communities
There are many community sites and blogs on the Internet.
Here is a non-exhaustive list of some of the ones I recom-
mend.

Reddit There is a lively community of Emacs users on the
subreddit /r/emacs. Since I wrote the book in 2015,
the community has grown tremendously.
You can also 昀椀nd specialized subreddits for particular
areas of Emacs. /r/orgmode is also worth visiting.

StackExchange Emacs now has its own site on StackEx-
change:

313

http://joaotavora.github.io/yasnippet/
https://github.com/abo-abo/hydra
https://github.com/jacktasia/dumb-jump

Conclusion

https://emacs.stackexchange.com/
It is another great place to ask questions.

Blogs There are many excellent Emacs blogs nowadays. I
like the following:

• Sacha Chua
https://sachachua.com/blog/

• Irreal’s Emacs blog
https://irreal.org/blog/

• Artur Malabarba
https://endlessparentheses.com/

• Bozhidar Batzov
https://batsov.com/

• John Kitchin
https://kitchingroup.cheme.cmu.edu/blog/

However, almost all of the blogs above – and many
more – are found on the excellent Planet Emacs aggre-
gator:

https://planet.emacslife.com/

Emacs And then there’s Emacs. It is, and always will be, the
authoritative source of information for your Emacs.

314

https://emacs.stackexchange.com/
https://sachachua.com/blog/
https://irreal.org/blog/
https://endlessparentheses.com/
https://batsov.com/
https://kitchingroup.cheme.cmu.edu/blog/
https://planet.emacslife.com/

