

Mastering GitCopyright © 2024 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in aretrieval system, or transmitted in any form or by any means, without the priorwritten permission of the publisher, except in the case of brief quotationsembedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure theaccuracy of the information presented. However, the information contained inthis book is sold without warranty, either express or implied. Neither theauthor, nor Packt Publishing or its dealers and distributors, will be held liablefor any damages caused or alleged to have been caused directly or indirectly bythis book.Packt Publishing has endeavored to provide trademark information about all ofthe companies and products mentioned in this book by the appropriate use ofcapitals. However, Packt Publishing cannot guarantee the accuracy of thisinformation.
Group Product Manager: Preet Ahuja
Publishing Product Manager: Vidhi Vashisth
Book Project Manager: Ashwini Gowda
Senior Editor: Roshan Ravi Kumar
Technical Editor: Irfa Ansari
Copy Editor: Safis Editing
Proofreader: Roshan Ravi Kumar
Indexer: Rekha Nair
Production Designer: Alishon Mendonca

Senior Developer Relations Marketing Executive: Rohan Dobhal
First published: April 2016Second edition: August 2024
Production reference: 1290724Published by Packt Publishing Ltd.
Grosvenor House11 St Paul’s Square
BirminghamB3 1RB, UK
ISBN 978-1-83508-607-0www.packtpub.com
Contributors

About the author
Jakub Narębski followed Git development from the very beginning of itscreation. He created, announced, and analyzed the annual Git User’s Surveysfrom 2007 till 2012 – all except the first one (you can find his analysis of thosesurveys on the Git wiki). He shares his expertise in the technology on theStackOverflow question-and-answer site. He is one of the editors of Git RevNews (), which is a monthly digest of all things Git.He is an assistant professor in the Faculty of Mathematics and ComputerScience at the Nicolaus Copernicus University in Toruń, Poland. He uses Git ashis version control system of choice both for personal and professional workand teaches it to computer science students as a part of their coursework.
Jakub Narębski was one of the proofreaders of the Version Control by Examplebook by Eric Sink, and was the reason why it has a chapter on Git.
About the reviewer

http://www.packtpub.com/

Samuel Ng has worked as a data engineer for 3 years. He first started as asystems engineer working on military projects in Singapore before moving intothe data sphere. His career has seen him gain experience in multiple industriesincluding semiconductors, military, blockchain and now manufacturing, acrossSingapore, the Philippines, and South Korea. In his free time, he likes to readup on advancements in AI and his current interest is in GenAI.

I want to thank the author of this book, Jakub, for his eûort in creating
excellent content for Git readers. Also to the team at Packt, for the
opportunity to be part of this amazing project. I hope that you, the reader,
will ünd this content useful in your Git journey, and excel in any tech
project that you undertake.

Table of Contents

Preface

Part 1 - Exploring Project History and Managing
Your Own Work

1

Git Basics in Practice

Technical requirements

A brief introduction to version control and Git

Git by example

Setup and initialization

Collaborative development

Branching and merging

Summary

Questions

Answers

Further reading

2

Developing with Git

Creating a new commit

How a new commit extends a project’s history

The index 4 a staging area for commits

Examining the changes to be committed

Selective commit

Amending a commit

Working with branches and tags

Creating a new branch

Creating orphan branches

Selecting and switching to a branch

Listing branches and tags

Rewinding or resetting a branch

Deleting a branch

Changing the branch name

Summary

Questions

Answers

Further reading

3

Managing Your Worktrees

Ignoring files

Marking files as intentionally untracked (ignored)

Which types of files should be ignored?

Listing ignored files

Trick 3 ignoring changes in tracked files

File attributes

Identifying binary files and end-of-line conversions

Diff and merge configuration

Transforming files (content filtering)

Keyword expansion and substitution

Other built-in attributes

Defining attribute macros

Fixing mistakes with the reset command

Rewinding the branch head, softly

Resetting the branch head and the index

Discarding changes and rewinding the branch

Safer reset 3 keeping your changes

Stashing away your changes

Using git stash

Stash and the staging area

Stash internals

Managing worktrees and the staging area

Examining files and directories

Searching file contents

Un-tracking, un-staging, and un-modifying files

Resetting a file to the old version

Cleaning the working area

Multiple working directories

Summary

Questions

Answers

Further reading

4

Exploring Project History

DAGs

Whole-tree commits

Branches and tags

Branch points

Merge commits

Single revision selection

HEAD 3 the implicit revision

Branch and tag references

The --branches, --tags, and similar options

SHA-1 and the shortened SHA-1 identifier

Ancestry references

Reverse ancestry references 3 git-describe output

Reflogging shortnames

Upstreaming remote-tracking branches

Selecting revisions via a commit message

Selecting the revision range

Single revision as a revision range

Double-dot notation

Creating the range by including and excluding
revisions

The revision range for a single revision

Triple-dot notation

Summary

Questions

Answers

Further reading

5

Searching Through the Repository

Searching the history

Limiting the number of revisions

Matching revision metadata

Searching changes in revisions

Selecting types of changes

History of a file

Path limiting

History simplification

Blame 4 the line-wise history of a file

Finding bugs with git bisect

Starting the git bisect process

Finding the buggy commit

Automating testing during the git bisect process

Selecting and formatting the git log output

Predefined and user-defined output formats

Including, formatting, and summing up changes

Summarizing contributions

Mapping authors

Viewing a revision and a file at revision

Summary

Questions

Answers

Further reading

Part 2 - Working with Other Developers

6

Collaborative Development with Git

Collaborative workflows

Bare repositories

Interacting with other repositories

The centralized workflow

The peer-to-peer or forking workflow

The maintainer or integration manager workflow

The hierarchical or dictator-and-lieutenants workflow

Managing remote repositories

The “origin” remote

Listing and examining remotes

Adding a new remote

Updating information about remotes

Support for triangular workflows

Chain of trust

Content-addressed storage

Lightweight, annotated, and signed tags

Signed commits

Merging signed tags (merge tags)

Summary

Questions

Answers

Further reading

7

Publishing Your Changes

Transport protocols and remote helpers

Local transport

Smart transports

Legacy (dumb) transports

Offline transport with bundles

Remote transport helpers

Credentials/password management

Publishing your changes upstream

Pushing to a public repository

Generating a pull request

Exchanging patches

Summary

Questions

Answers

Further reading

8

Advanced Branching Techniques

The purpose of branching

Isolation versus integration

The path to production release

Long-running and short-lived branches

Visibility of branches

Alternatives to branching

Visibility without integration

Branching patterns

Integration patterns

Release engineering

Other branching patterns involving long-lived branches

Other types of short-lived branches

Branching workflows and release engineering

The release and trunk branches workflow

The graduation branches workflow

The topic branches workflow

git-flow 3 a successful Git branching model

Ship/Show/Ask 3 a modern branching strategy

Fixing a security issue

Interacting with branches in remote repositories

Upstream and downstream

Remote-tracking branches and refspec

Fetching and pulling versus pushing

Fetching and pushing branches and tags

Push modes and their use

Summary

Questions

Answers

Further reading

9

Merging Changes Together

Methods of combining changes

Merging branches

Copying and applying a changeset

Rebasing a branch

Squash merge

Resolving merge conflicts

The three-way merge

Examining failed merges

Avoiding merge conflicts

Dealing with merge conflicts

Summary

Questions

Answers

Further reading

10

Keeping History Clean

An introduction to Git internals

Git objects

Plumbing and porcelain Git commands

Rewriting history

Amending the last commit

The interactive rebase

External tools 3 patching management interfaces

Rewriting project history with Git filter-repo

External tools for large-scale history rewriting

The perils of rewriting published history

Amending history without rewriting

Reverting a commit

Storing additional information with notes

Using git replace

Summary

Questions

Answers

Further reading

Part 3 - Managing, Configuring, and Extending Git

11

Managing Subprojects

Building a living framework

Managing dependencies outside of Git

Manually importing the code into your project

A Git subtree solution for embedding the subproject
code

Creating a remote for a subproject

Adding a subproject as a subtree

Cloning and updating superprojects with subtrees

Getting updates from subprojects with a subtree
merge

Showing changes between a subtree and its upstream

Sending changes to the upstream of a subtree

The Git submodules solution 3 a repository inside a
repository

Gitlinks, .git files, and the git submodule command

Adding a subproject as a submodule

Cloning superprojects with submodules

Updating submodules after superproject changes

Examining changes in a submodule

Getting updates from the upstream of the submodule

Sending submodule changes upstream

Transforming a subfolder into a subtree or submodule

Subtrees versus submodules

Use cases for subtrees

Use cases for monorepo

Use cases for submodules

Third-party subproject management solutions

Summary

Questions

Answers

Further reading

12

Managing Large Repositories

Scalar 3 Git at scale for everyone

Handling repositories with a very long history

Using shallow clones to get truncated history

Cloning only a single branch

Making operations faster in repositories with a long
history

Handling repositories with large binary files

Splitting the binary asset folder into a separate
submodule

Storing large binary files outside the repository

Handling repositories with a large number of files

Limiting the number of working directory files with
sparse checkout

Reducing the local repository size with sparse clone

Faster checking for file changes with filesystem
monitor

Summary

Questions

Answers

Further reading

13

Customizing and Extending Git

Git on the command line

Git-aware command prompt

Command-line completion for Git

Autocorrection for Git commands

Making the command line prettier

Alternative command line

Graphical interfaces

Types of graphical tools

Graphical diff and merge tools

Graphical interface examples

Configuring Git

Command-line options and environment variables

Git configuration files

Per-file configuration with gitattributes

Automating Git with hooks

Installing a Git hook

A template for repositories

Client-side hooks

Server-side hooks

Extending Git

Command aliases for Git

Adding new Git commands

Credential helpers and remote helpers

Summary

Questions

Answers

Further reading

14

Git Administration

Repository maintenance

Automatic housekeeping with git-gc

Periodic maintenance with git-maintenance

Data recovery and troubleshooting

Recovering a lost commit

Troubleshooting Git

Git on the server

Server-side hooks

Using hooks to implement Git-enforced policy

Signed pushes

Serving Git repositories

Tools to manage Git repositories

Tips and tricks to host repositories

Augmenting development workflows

Defining development workflows in the repository

GitOps 3 using Git for operational procedures

Summary

Questions

Answers

Further reading

15

Git Best Practices

Starting a project

Dividing work into repositories

Selecting the collaboration workflow

Choosing which files to keep under version control

Working on a project

Working on a topic branch

Deciding what to base your work on

Splitting changes into logically separate steps

Writing a good commit message

Preparing changes for submission

Integrating changes

Submitting and describing changes

The art of the change review

Responding to reviews and comments

Other recommendations

Don’t panic, recovery is almost always possible

Don’t change the published history

Numbering and tagging releases

Automate where possible

Summary

Further reading

Index

Other Books You May Enjoy

PrefaceGit is the most popular open source and distributed version-control system.Version-control systems help software teams manage changes to projectsources over time. Using version control is a must in any collaborativedevelopment, and it’s useful even if you work alone.
Mastering Git will help novice Git professionals attain expert-level proficiencywith Git, as well as understand Git concepts and the mental model behind basicand advanced Git tasks. Developers working with Git will be able to use itspowerful capabilities to make their work easier. Mastering Git will help invarious tasks during development, saving time and effort.This book is meticulously designed to help you gain deeper insights into Git’sarchitecture and its underlying concepts, behavior, and best practices.
You’ll begin with a quick example of using Git for the collaborativedevelopment of a sample project, in order to establish a basic knowledge ofGit’s operational tasks and concepts. As you progress through the book,subsequent chapters provide detailed descriptions of the various areas of Gituse – from managing your own work, through source code archaeology, toworking with other developers. You’ll learn how to examine and explore yourproject’s history, create and manage your contributions, set up repositories andbranches for collaboration in centralized and distributed workflows, integratework sent from other developers, customize and extend Git, and recover fromrepository errors.Version control topics are accompanied by detailed descriptions of the relevantparts of Git’s architecture and behavior. By exploring advanced Git practicesand getting to know the details of Git’s workings, you will attain a deeperunderstanding of its behavior, allowing you to customize and extend existingrecipes and write your own.

Who this book is forIf you are a Git user with a reasonable knowledge of it and you are familiar withits basic concepts, such as branching, merging, staging, and workflows, this isthe book for you. If you have used Git for a long time, this book will help youunderstand how Git works, make full use of its power, and learn aboutadvanced tools, techniques, and workflows.
If you are a system administrator, project lead, or operations manager, thisbook will help you to configure Git for better collaborative development,selecting a workflow and branching patterns that would fit best the needs ofthe team and a project.A basic knowledge of installing Git and its software configuration managementconcepts is essential. The first chapter of the book, Git Basics in Practice,should work as a refresher and get you up to date. This book assumes that youhave some skills in working from the command line, although this is not strictlynecessary.

What this book covers
Chapter 1, Git Basics in Practice, serves as a reminder of the version-controlbasics with Git. The focus is on providing the practical aspects of thetechnology, using an example of the development of a simple project. Thischapter will show and explain basic version-control operations for thedevelopment of an example project, as well as how two developers can use Gitto collaborate.
Chapter 2, Developing with Git, shows how to selectively commit files andinteractively select what to commit. You will learn how to create new revisionsand new lines of development. This chapter introduces the concept of thestaging area for commits (the index) and explains how to view and readdifferences between the working directory, the index, and the current revision.It will also teach you how to create, list, and switch branches, how to go back inhistory, and how to revert changes or amend the last commit.
Chapter 3, Managing Your Worktrees, teaches you how to manage your files indetail to prepare content for a new commit. It will explain the concept of theindex and file status, teaching you how to examine the status of your workingarea, how to move file contents between a worktree, index, and repository, andhow to change your file status. It will also show how to manage files thatrequire special handling, introducing the concepts of ignored files and fileattributes.
Chapter 4, Exploring Project History, introduces the concept of a graph ofrevisions and explains how this concept relates to the ideas of branches, tags,and the current branch in Git. You will learn how to select and view a revisionor a range of revisions, as well as how to refer to them. These skills will helpyou focus on specific parts of project history, selecting the interesting part of itfor further search.
Chapter 5, Searching Through the Repository, explores how to extract theinformation you want from selected commits. You will learn how to limit yoursearch according to the revision metadata, such as the contents of the commitmessage, or look at the changes themselves. These skills will help you focus on

specific parts of project history, extract information from it, examine whatchanged and when, and even find bugs by using history bisection.
Chapter 6, Collaborative Development with Git, presents a bird’s-eye view ofthe various ways to collaborate, showing different centralized and distributedworkflows, their advantages and disadvantages, and how to set them up. Thischapter will focus on repository-level interactions in collaborative development.You will also learn the concept of the chain of trust and how to use signed tags,signed merges, signed commits, and signed pushes.
Chapter 7, Publishing Your Changes, examines how Git exchanges informationand data between your local repository and remote repositories, describes whatthe choices are with respect to transport protocols, and shows how Git can helpmanage credentials that might be needed to access those remote repositories.This chapter also teaches you how you can send your changes upstream so thatthey can appear in the repository with the official history of a project.
Chapter 8, Advanced Branching Techniques, dives deeper into the details ofcollaboration in distributed development. It explores the relationships betweenlocal branches and branches in remote repositories and describes techniques tosynchronize branches and tags. You will learn the different patterns when usingbranches, including a trunk-based workflow and a topic branch (also called afeature branch) workflow, their advantages and disadvantages, and when touse them.
Chapter 9, Merging Changes Together, teaches you how to merge togetherchanges from different parallel lines of development (that is, branches) usingmerge and rebase (and squash merge). This chapter will also explain thedifferent types of merge conflicts, how to examine them, and how to resolvethem. You will learn how to copy changes with cherry-pick and how to apply asingle patch and a patch series.
Chapter 10, Keeping History Clean, explains why you might want to keep aclean history, when it can and should be done, and how it can be done. You willfind step-by-step instructions on how to reorder, squash, and split commits.This chapter also demonstrates how you can recover from a history rewrite andexplains what to do if you cannot rewrite history, how to revert the effect ofcommit, how to add a note to it, and how to change the view of a project’shistory with a replacement mechanism.

Chapter 11, Managing Subprojects, explains and shows different ways toconnect different projects in a single repository of a framework superproject,from a strong inclusion by embedding the code of one project in another(monorepos and subtrees) to a light connection between projects by nestingrepositories (submodules and similar solutions).
Chapter 12, Managing Large Repositories, presents various solutions to theproblem of large Git repositories, whether they are large because of a longhistory, contain a large number of files, or contain a project that includes somelarge files.
Chapter 13, Customizing and Extending Git, covers configuring and extendingGit to fit your needs. You will find here details on how to set up the commandline for easier use and a short introduction to graphical interfaces. This chapterexplains how to automate Git with hooks (focusing on client-side hooks) – forexample, how to make Git check whether a commit being created passesspecific coding guidelines.
Chapter 14, Git Administration, focuses on the administrative side of Git. Itbriefly touches on the topic of serving Git repositories. Here, you will learn howto use server-side hooks for logging, access control, enforcing a developmentpolicy, and other purposes.
Chapter 15, Git Best Practices, presents a collection of version-control, genericand Git-specific recommendations and best practices. These cover issues suchas managing the working directory, creating commits and a series of commits(pull requests), submitting changes for inclusion, and a peer review of changes.
To get the most out of this bookTo follow the examples used in this book and run the provided commands, youwill need the Git software (https://git-scm.com/), preferably version 2.41.0 orlater. Git is available for free on every platform (such as Linux, Windows, andmacOS). All examples use the textual Git interface, using the bash shell (whichis provided with Git for Microsoft Windows, where it is not present by default).
Software covered in the book Operating system requirements

Git Windows, macOS, or Linux

https://git-scm.com/

To follow the development of a sample program, which is tracked in Chapter 1,
Git Basics in Practice, as a demonstration of using version control, you wouldalso need a web browser and a text editor (although a programmers’ editor orIDE is preferred).
Download the example code filesYou can download the example code files for this book from GitHub athttps://github.com/PacktPublishing/Mastering-Git---Second-Edition. If there’san update to the code, it will be updated in the GitHub repository.
We also have other code bundles from our rich catalog of books and videosavailable at https://github.com/PacktPublishing/. Check them out!
Conventions usedThere are a number of text conventions used throughout this book.
Code in text: Indicates code words in text, database table names, folder names,filenames, file extensions, pathnames, dummy URLs, user input, and Twitterhandles. Here is an example: “Then, Bob writes JavaScript source code(random.js) that is responsible for web application behavior.”
A block of code is set as follows:

function getRandomInt(max) {
 return Math.floor(Math.random() * max) + 1;
}
function generateRandom() {
 let max = document.getElementById('max').value;
 alert(getRandomInt(max));
}When we wish to draw your attention to a particular part of a code block, therelevant lines or items are set in bold:
<body>
<button disabled>Generate number</button>
<label for="max">up to</label>
<input type="number" id="max" name="rand_max" value="10" />
<div id="result"></div>
</body>
</html>Any command-line input or output is written as follows:

$ mkdir css

https://github.com/PacktPublishing/Mastering-Git---Second-Edition
https://github.com/PacktPublishing/

$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here isan example: “Select System info from the Administration panel.”
TIPS OR IMPORTANT NOTES
Appear like this.

Get in touchFeedback from our readers is always welcome.
General feedback: If you have questions about any aspect of this book, emailus at customercare@packtpub.com and mention the book title in the subject ofyour message.
Errata: Although we have taken every care to ensure the accuracy of ourcontent, mistakes do happen. If you have found a mistake in this book, wewould be grateful if you would report this to us. Please visitwww.packtpub.com/support/errata and fill in the form.
Piracy: If you come across any illegal copies of our works in any form on theinternet, we would be grateful if you would provide us with the location addressor website name. Please contact us at copyright@packt.com with a link to thematerial.
If you are interested in becoming an author: If there is a topic that youhave expertise in and you are interested in either writing or contributing to abook, please visit authors.packtpub.com.
Share Your ThoughtsOnce you’ve read Mastering Git, we’d love to hear your thoughts! Please clickhere to go straight to the Amazon review page for this book and share yourfeedback.
Your review is important to us and the tech community and will help us makesure we’re delivering excellent quality content.
Download a free PDF copy of this book

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
https://packt.link/r/1-835-08607-1

Thanks for purchasing this book!
Do you like to read on the go but are unable to carry your print bookseverywhere?Is your eBook purchase not compatible with the device of your choice?
Don’t worry, now with every Packt book you get a DRM-free PDF version ofthat book at no cost.Read anywhere, any place, on any device. Search, copy, and paste code fromyour favorite technical books directly into your application.
The perks don’t stop there, you can get exclusive access to discounts,newsletters, and great free content in your inbox dailyFollow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83508-607-0

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83508-607-0

Part 1 - Exploring Project History and Managing
Your Own WorkIn this part, you will start by understanding the basics of using Git in a simpleexample. You will then learn how to use it to answer questions about theproject and its history. You will also learn how to examine the state of yourworktree, manage changes, and create a good commit.This part has the following chapters:

Chapter 1, Git Basics in Practice

Chapter 2, Developing with Git

Chapter 3, Managing Your Worktrees

Chapter 4, Exploring Project History

Chapter 5, Searching Through the Repository

1

Git Basics in PracticeThis book is intended for intermediate and advanced Git users to help them ontheir road to mastering Git. Therefore, the chapters following this one willassume you know the basics of Git, and have advanced past the beginner stage.This chapter will serve as a reminder of version control basics with Git. Thefocus will be on providing practical aspects of the technology, showing andexplaining basic version control operations on the example of the developmentof an example project, and the collaboration between two developers.
In this chapter, we will cover the following:

A brief introduction to version control and Git
Setting up a Git environment and Git repository (init and clone)
Adding files, checking status, creating commits, and examining the history
Interacting with other Git repositories (pull and push)
Creating and listing branches, switching to a branch, and merging changes
Resolving a simple merge conflict
Creating and publishing a tag

Technical requirementsTo follow the examples shown in this chapter, you will need Git: https://git-scm.com/. You will also need an interactive shell (for example, Git Bash if youare using MS Windows), a text editor or an IDE for web development (forediting JavaScript and HTML), and a web browser.
You can access the code of an example project used in this chapter at thefollowing URLs: https://github.com/PacktPublishing/Mastering-Git---Second-Edition/tree/main/chapter01 and https://github.com/jnareb/Mastering-Git---Second-Edition---chapter01-sample_project.
A brief introduction to version control and Git

https://git-scm.com/
https://github.com/PacktPublishing/Mastering-Git---Second-Edition/tree/main/chapter01
https://github.com/jnareb/Mastering-Git---Second-Edition---chapter01-sample_project

A version control system (sometimes called revision control) is a tool thatlets you track the history and attribution of your project files over time (storedin a repository) and helps the developers in the team to work together.Modern version control systems give each developer their own sandbox,preventing their work in progress from conflicting, and all the while providing amechanism to merge changes and synchronize work. They also allow us toswitch between different lines of development, called branches; thismechanism allows the developer to change, for example, from working onintroducing a new feature step by step to fixing the bug in an older, releasedversion of the project.
Distributed version control systems (such as Git) give each developer theirown copy of the project’s history, which is called a clone of a repository. This iswhat makes Git fast, because nearly all operations are performed locally. It isalso what makes Git flexible because you can set up repositories in many ways.Repositories meant for development also provide a separate working area (ora worktree) with project files for each developer. Git’s branching modelenables cheap local branching, allowing the use of branches for contextswitching by creating sandboxes for different tasks. It also makes it possible touse a very flexible topic branch workflow for collaboration.
The fact that the whole history is accessible allows for a long-term undo,rewinding to the last working version, and so on. Tracking ownership ofchanges automatically makes it possible to find out who was responsible forany given area of code, and when each change was done. You can comparedifferent revisions, go back to the revision a user is sending a bug reportagainst, and even automatically find out which revision introduced a regressionbug (with git bisect). Tracking changes to the tips of branches with reflogallows for easy undo and recovery.
A unique feature of Git is that it enables explicit access to the staging area forcreating commits (new revisions—that is, new versions of a project). Thisbrings additional flexibility to managing your working area and deciding on theshape of a future commit.All this flexibility and power come at a cost. It is not easy to master using Git,even though it is quite easy to learn its basic use. This book will help you attainthis expertise, but let us start with a reminder about the basics of Git.

Git by exampleLet’s follow a step-by-step, section-by-section, simple example of twodevelopers using Git to work together on a simple project. You can find allthree repositories (for two developers, and the bare server repository) with theexample code files for this chapter, where you can examine the code, history,and reflog, at https://github.com/PacktPublishing/Mastering-Git---Second-Edition, in a sample_project.zip archive.
FOLLOWING THE EXAMPLE
To follow this example of the team development process on a single computer, you can simply create three
folders called, for example, alice/, bob/, and server/, and switch to the appropriate folder when following
work done by Alice, Bob, and Carol, respectively.

There are a few simple changes you need to make for this simulation to work. When creating a repository
as Carol, you don’t need to create and switch to the /srv/git directory, so you can simply skip these
commands. In Alice or Bob’s role, you need to create separate identities in the repository’s local
conüguration, either with the git config command without the --user option or by editing the
.git/config üle in the appropriate repository. In place of the https://git.company.com/random
repository URL, which does not exist, simply use the path to the server repository: ../server/random.git.

Additionally, if you plan on moving the directory with alice/, bob/, and server/ subdirectories, you will
need to edit the <origin= repository URL that is stored in repository conüg üles by changing it from the
absolute path to a relative path—namely, ../../server/random.git.

Setup and initialization

A company has begun work on a new product. This product calculates arandom number—an integer value of a specified range.The company has assigned two developers to work on this new project, Aliceand Bob. Both developers are telecommuting to the company’s corporateheadquarters. After a bit of discussion, they have decided to implement theirproduct as a simple web application in JavaScript and HTML and to use Git2.41.0 (git-scm.com) for version control.
NOTE
This project and the code are intended for demonstration purposes only and will be much simpliüed. The
details of code are not important here—what is important is how the code changes, and how Git is used to
help with the development.

Repository setup

https://github.com/PacktPublishing/Mastering-Git---Second-Edition
http://git-scm.com/

With a small team, they have decided on the setup shown in the followingdiagram.
IMPORTANT NOTE
This is only one possible setup, with the central canonical repository, and without a dedicated
maintainer responsible for this repository (all developers are equal in this setup). It is not the only
possibility; other ways of conüguring repositories will be shown in Chapter 6, Collaborative Development
with Git.

Figure 1.1 – Repository setup for the sample project (using a centralized worküow)

Creating a Git repositoryAlice gets the project started by asking Carol, an administrator, to create a newrepository specifically for collaborating on a project, to share work with thewhole team:
carol@server:~$ mkdir -p /srv/git
carol@server:~$ cd /srv/git
carol@server:/srv/git$ git init --bare random.git
Initialized empty Git repository in /srv/git/random.git/

IMPORTANT NOTE

Command-line examples follow the Unix convention of having user@host:directory at the beginning of
the command prompt, to make it easier to guess from ürst glance who performs a command, on what
computer, and in which directory (here, the tilde, ~, denotes the user’s home directory). This is the usual
command prompt setup on Linux; a similar-looking prompt is used by Git Bash.You can configure your command prompt to show Git-specific information, suchas the name of the repository, the subdirectory within the repository, thecurrent branch, and even the worktree status (see Chapter 13, Customizing
and Extending Git).I consider the details of server configuration to be too much for this chapter.Just imagine that it happened, and nothing went wrong, or look at Chapter 14,
Git Administration.
You can also use a tool to manage Git repositories (for example, gitolite);creating a public repository on a server would then, of course, look different.Often, though, it involves creating a Git repository with git init (without --bare)in your own home directory and then pushing it with an explicit URI to theserver, which would then automatically create the public repository.Or perhaps the repository was created through the web interface of tools suchas GitHub, Bitbucket, or GitLab (either hosted in the cloud, or installed on-premises).
Cloning the repository and creating the first commitBob gets the information that the project repository is ready, and he can startcoding.Since this is Bob’s first time using Git, he first sets up his ~/.gitconfig file withinformation that will be used to identify his commits (for example, with git
config --global --edit):

[user]
 name = Bob Hacker
 email = bob@company.comNow, he needs to get his own repository instance (which currently is empty):

bob@hostB:~$ git clone https://git.company.com/random
Cloning into 'random'...
warning: You appear to have cloned an empty repository.
done.
bob@hostB:~$ cd random
bob@hostB:~/random$

TIP
All examples in this chapter use the command-line interface. Those commands might be given using a Git
GUI or IDE integration, as explained in the Graphical interfaces section in Chapter 13, Customizing and
Extending Git. The book Git: Version Control for Everyone, published by Packt Publishing, shows GUI
equivalents for the command line.Bob notices that Git said that it is an empty repository with no source code yet,and starts coding. He opens his text editor (or IDE of choice) and creates thestarting point for their product.
First, he creates an HTML file (index.html) with the simplest possible interfacefor the web application being created, just a button and an input field:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Random Number Generator</title>
 <script src="random.js" defer></script>
</head>
<body>
<button disabled>Generate number</button>
<label for="max">up to</label>
<input type="number" id="max" name="rand_max" value="10" />
</body>
</html>Then, Bob writes JavaScript source code (random.js) that is responsible for webapplication behavior—in this case, generating and displaying a random integernumber within a given range from 1 to a configurable maximum, inclusive:
function getRandomInt(max) {
 return Math.floor(Math.random() * max) + 1;
}
function generateRandom() {
 let max = document.getElementById('max').value;
 alert(getRandomInt(max));
}
let button = document.querySelector('button');
button.addEventListener('click', generateRandom);
button.disabled = false;Typically, for most initial implementations, this version is missing a lot offeatures but it is a good place to begin. Before committing his code, Bob wantsto make sure that it looks all right and that it works correctly. He opens the

index.html file in a web browser or uses a live preview feature of his IDE, asshown in Figure 1.2.

Figure 1.2 – Preview of the ûrst version of the example applicationAlright! It’s time to add both files to the repository:
bob@hostB:~/random$ git add index.html random.jsBob uses the status operation to make sure that the pending changeset (thefuture commit) looks proper.

We use a short form of git status here to reduce the amount of space taken byexamples; you can find an example of a full status output further in the chapter:
bob@hostB:~/random$ git status --short
A index.html
A random.jsNow it’s time to commit to the current version:
bob@hostB:~/random$ git commit -a -m "Initial implementation"
[master (root-commit) 961e72b] Initial implementation
 2 files changed, 25 insertions(+)
 create mode 100644 index.html
 create mode 100644 random.js

IMPORTANT NOTE
Normally, you would create a commit message not by using the -m <message> command-line option but
by letting Git open an editor. We use this form here to make the examples more compact. In actual
practice, it is recommended to provide a more detailed description of changes.

The -a/--all option in the git commit -a command means to take all changes to the tracked üles. This is
not the only possible way of creating revisions; you can separate manipulating the staging area from
creating a commit—this is, however, a separate issue, left for Chapter 3, Managing Your Worktrees.Now it’s time to make those changes visible to Alice.

Collaborative development

One of the main goals of a version control system is to help developers worktogether on a common project. With a distributed version control system, suchas Git, this involves an explicit step of publishing changes to be visible toothers.
Publishing changesAfter finishing working on the initial version of the project, Bob decides that itis ready to be published (to be made available for other developers). He pushesthe changes as follows:
bob@hostB:~/random$ git push
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 4 threads
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 670 bytes | 22.00 KiB/s, done.
Total 4 (delta 0), reused 0 (delta 0)
To https://git.company.com/random.git
 * [new branch] master -> master

TIP
Note that, depending on the speed of the network, Git could show progress information during remote
operations such as clone, push, and fetch. Such information is omitted from examples in this book, except
where that information is actually discussed while examining the history and viewing changes.

Also, if you use an older Git version, it could require setting a push.default conüguration variable.Since it is Alice’s first time using Git on her desktop machine, she first tells Githow her commits should be identified:
alice@hostA:~$ git config --global user.name "Alice Developer"
alice@hostA:~$ git config --global user.email alice@company.comNow, Alice needs to set up her own repository instance:
alice@hostA:~$ git clone https://git.company.com/random
Cloning into 'random'...
done.Alice examines the working directory:
alice@hostA:~$ cd random
alice@hostA:~/random$ ls –alF
total 6
drwxr-xr-x 1 alice staff 0 May 2 16:44 ./
drwxr-xr-x 4 alice staff 0 May 2 16:39 ../
drwxr-xr-x 1 alice staff 0 May 2 16:39 .git/

-rw-r--r-- 1 alice staff 331 May 2 16:39 index.html
-rw-r--r-- 1 alice staff 327 May 2 16:39 random.js

TIP
The .git directory contains Alice’s whole copy (clone) of the repository in Git internal format and some
repository-speciüc administrative information. See the gitrepository-layout(5) man page for details of
the üle layout, which can be done, for example, with the git help repository-layout command.She wants to check the log to see the details (to examine the project history):
alice@hostA:~/random$ git log
commit 961e72b31b0d2dacc0584cbe8953c3aed1042e9b (HEAD -> master)
Author: Bob Hacker bob@company.com
Date: Sun May 2 22:34:40 2021 +0200
 Initial implementation

NAMING REVISIONS
At the lowest level, a Git version identiüer is a SHA-1 hash, for example, 2b953b4e80. Git supports various
forms of referring to revisions, including unambiguously shortened SHA-1 (with a minimum of four
characters)—see Chapter 4, Exploring Project History, for more ways.When Alice decides to take a look at the application, she decides that using
alert() to show the result is not a good user interface. To generate a newrandom number, the user needs to first close the window. It would be better ifit was possible to generate a new result immediately.
She decides that a better solution would be to put the result on the page, belowthe form. She adds a single line to index.html to make a place for it:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Random Number Generator</title>
 <script src="random.js" defer></script>
</head>
<body>
<button disabled>Generate number</button>
<label for="max">up to</label>
<input type="number" id="max" name="rand_max" value="10" />
<div id="result"></div>
</body>
</html>She then replaces the use of alert() in the JavaScript code by showing the resultdirectly on the application page, using just the added <div id="result"></div>placeholder:
function getRandomInt(max) {
 return Math.floor(Math.random() * max) + 1;
}
function generateRandom() {
 let max = document.getElementById('max').value;

 let res = document.getElementById('result');
 res.textContent = 'Result: ' + getRandomInt(max);
}
let button = document.querySelector('button');
button.addEventListener('click', generateRandom);
button.disabled = false;She then opens her web browser to check that it works correctly. She clicks the

Generate number button a few times to check that it really generates randomnumbers:

Figure 1.3 – Application after Alice’s changes, with the result on the page itselfEverything looks alright, so she uses the status operation to see the pendingchanges:
alice@hostA:~/random$ git status -s
 M index.html
 M random.jsNo surprise here. Git knows that index.html and random.js have been modified.She wants to double-check by reviewing the actual changes with the diffcommand:
alice@hostA:~/random$ $ git diff
diff --git a/index.html b/index.html
index 1e79bb1..3021b9d 100644
--- a/index.html
+++ b/index.html
@@ -9,5 +9,6 @@
 <button disabled>Generate number</button>
 <label for="max">up to</label>
 <input type="number" id="max" name="rand_max" value="10" />
+<div id="result"></div>
 </body>
 </html>
diff --git a/random.js b/random.js
index 3533d15..b036fa1 100644
--- a/random.js
+++ b/random.js
@@ -4,7 +4,8 @@ function getRandomInt(max) {
 function generateRandom() {
 let max = document.getElementById('max').value;
- alert(getRandomInt(max));
+ let res = document.getElementById('result');
+ res.textContent = 'Result: ' + getRandomInt(max);

 }
 let button = document.querySelector('button');Now, it’s time to commit the changes and push them to the public repository:
alice@hostA:~/random$ git commit -a -m "Show result on the page instead of using alert()"
[master a030d99] Show result on the page instead of using alert()
 2 files changed, 14 insertions(+), 12 deletions(-)
alice@hostA:~/random$ git push
To https://git.company.com/random.git
 961e72b..a030d99 master -> master

Renaming and moving filesWhile this is happening, Bob moves on to his next task, which is to restructurethe tree a bit. He doesn’t want the top level of the repository to get toocluttered, so he decides to follow one of the established conventions for thedirectory structure, and to move all the JavaScript source code files into the
scripts/ subdirectory:
bob@hostB:~/random$ mkdir scripts
bob@hostB:~/random$ git mv *.js scripts/He then checks that everything works correctly, and it turns out that he needsto update the path to the JavaScript code in the index.html file, so he does that:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Random Number Generator</title>
 <script src="scripts/random.js" defer></script>
</head>
<body>
<button disabled>Generate number</button>
<label for="max">up to</label>
<input type="number" id="max" name="rand_max" value="10" />
</body>
</html>He checks that everything works fine now, examines the status, and commitschanges:

bob@hostB:~/random$ git status --short
 M index.html
R random.js -> scripts/random.js
bob@hostB:~/random$ git commit -a -m "Directory structure"
[master 1b58e54] Directory structure
 2 files changed, 1 insertion(+), 1 deletion(-)
 rename random.js => scripts/random.js (100%)While he’s at it, to minimize the impact of reorganization on the diff output, heconfigures Git to always use rename and copy detection:

bob@hostB:~/random$ git config --global diff.renames copiesBob then decides the time has come to add a README.md file for the project:
bob@hostB:~/random$ git status -s
?? README.md
bob@hostB:~/random$ git add README.md
bob@hostB:~/random$ git status -s
A README.md
bob@hostB:~/random$ git commit -a -m "Added README.md"
[master 6789f76] Added README.md
 1 file changed, 3 insertions(+)
 create mode 100644 README.mdBob decides to rename random.js to gen_random.js:
bob@hostA:~/random$ git mv scripts/random.js scripts/gen_random.jsThis, of course, also requires changes to index.html:
bob@hostB:~/random$ git status -s
 M index.html
R scripts/random.js -> scripts/gen_random.jsHe then commits those changes.
bob@hostB:~/random$ git commit -a -m "Rename random.js to gen_random.js"

Updating your repository (with merge)Reorganization done, now Bob tries to publish those changes:
bob@hostA random$ git push
To https://git.company.com/random
 ! [rejected] master -> master (fetch first)
error: failed to push some refs to 'https://git.company.com/random'
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.But Alice was working at the same time, and she had her change ready tocommit and push first. Git is not allowing Bob to publish his changes becauseAlice has already pushed something to the master branch, and Git is preservingher changes.

IMPORTANT NOTE
Hints and pieces of advice in Git command output will be skipped from here on for the sake of brevity.Bob uses pull to bring in changes (as described in hint in the command output):
bob@hostB:~/random$ git pull

From https://git.company.com/random
 + 3b16f17...db23d0e master -> origin/master
Auto-merging scripts/gen_random.c
Merge made by the 'recursive' strategy.
 index.html | 1 +
 scripts/gen_random.js | 3 ++-
 2 files changed, 3 insertions(+), 1 deletion(-)The git pull command fetched the changes, automatically merged them withBob’s changes, and created a merge commit—opening editor to confirmcommitting the merge.

IMPORTANT NOTE
From version 2.31 onward, Git asks the user to set the pull.rebase conüguration variable; we assume that
Alice and Bob set it to false. See Chapter 9, Merging Changes Together, the Methods of combining
changes section, for a more detailed description of the diûerence between using merge commits and using
rebasing to combine changes.Everything now seems to be good. The merge commit is done. Apparently, Gitwas able to merge Alice’s changes directly into Bob’s moved and renamed copyof a file without any problems. Marvelous!
bob@hostB:~/random$ git show
commit df9132d4482dfd66d6d9843db205d4e775c76509 (HEAD -> master)
Merge: eabf309 a030d99
Author: Bob Hacker bob@company.com
Date: Mon May 3 02:31:23 2021 +0200
 Merge branch 'master' of https://git.company.com/randomBob checks that it works correctly (because automatically merging does notnecessarily mean that the merge output is correct). It works fine and he isready to push the merge:
bob@hostB random$ git push
To https://git.company.com/random
 a030d99..df9132d master -> master

Creating a tag – a symbolic name for the revisionAlice and Bob decide that the project is ready for wider distribution. Bobcreates a tag so they can more easily access and refer to the released version.He uses an annotated tag for this; an often-used alternative is to use a signed
tag, where the annotation contains a PGP signature (which can later beverified):
bob@hostB:~/random$ git tag -a -m "random v0.1" v0.1
bob@hostB:~/random$ git tag --list
v0.1
bob@hostB:~/random$ git log -1 --oneline --decorate

df9132d (HEAD -> master, tag: v0.1, origin/master) Merge branch 'master' of
https://git.company.com/randomOf course, the v0.1 tag wouldn’t help if it was only in Bob’s local repository. He,therefore, pushes the just-created tag:
bob@hostB random$ git push origin tag v0.1
To https://git.company.com/random
 * [new tag] v0.1 -> v0.1Alice updates her repository to get the v0.1 tag, and to start with up-to-datework:
alice@hostA:~/random$ git pull
From https://git.company.com/random
 a030d99..df9132d master -> origin/master
 * [new tag] v0.1 -> v0.1
Updating a030d99..df9132d
Fast-forward
 README.md | 3 +++
 index.html | 2 +-
 random.js => scripts/gen_random.js | 0
 3 files changed, 4 insertions(+), 1 deletion(-)
 create mode 100644 README.md
 rename random.js => scripts/gen_random.js (100%)

Resolving a merge conflictAlice decides that it would be a good idea to add a piece of information aboutwhere the result of the random number generator would appear:
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Random Number Generator</title>
 <script src="scripts/gen_random.js" defer></script>
</head>
<body>
<button disabled>Generate number</button>
<input type="number" id="max" name="rand_max" value="10" />
<div id="result">Result:</div>
</body>
</html>Grand! Let’s see that it works correctly.

Figure 1.4 – After adding information about where the result would appearGood. Time to commit the change:
alice@hostA:~/random$ git status -s
 M index.html
alice@hostA:~/random$ git commit -a -m "index.html: Show where result goes"
[master e04655f] index.html: Show where result goes
 1 file changed, 1 insertion(+), 1 deletion(-)No problems here.Meanwhile, Bob notices that if one has JavaScript disabled in the web browseror uses a text browser without support for JavaScript, the web application as itis now does not work , without explaining why. It would be a good idea to notifythe user about this issue:
bob@hostB:~/random$ git pull
Already up-to-date.He decides to add a <noscript> tag to explain that JavaScript is required for theapplication to work:
bob@hostB:~/random$ $ git status -s
 M index.html
bob@hostB:~/random$ git diff
diff --git a/index.html b/index.html
index 108885f..80348b7 100644
--- a/index.html
+++ b/index.html
@@ -10,5 +10,6 @@
 <label for="max">up to</label>
 <input type="number" id="max" name="rand_max" value="10" />
 <div id="result"></div>
+<noscript>To use this web app, please enable JavaScript.</noscript>
 </body>
 </html>Bob uses the w3m text-based web browser to check that <noscript> works asintended:

Figure 1.5 – Testing the application in w3m, a text-based web browser without JavaScript supportHe then checks in a graphical web browser (or a live preview) that nothingchanged for JavaScript-capable clients. He has his change ready to commit andpush first:
bob@hostB:~/random$ git commit -a -m "Add <noscript> tag"
[master a808ecf] Add <noscript> tag
 1 file changed, 1 insertion(+)
bob@hostB:~/random$ git push
To https://git.company.com/random
 df9132d..a808ecf master -> masterSo, when Alice is ready to push her changes, Git rejects them:
alice@hostA:~/random$ git push
To https://git.company.com/random
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'https://git.company.com/random'Ah. Bob must have pushed a new changeset already. Alice once again needs topull and merge to combine Bob’s changes with her own:
alice@hostA:~/random$ git pull
Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the result.The merge didn’t go quite as smoothly this time. Git wasn’t able toautomatically merge Alice’s and Bob’s changes. Apparently, there was aconflict. Alice decides to open the index.html file in her editor to examine thesituation (she could have used a graphical merge tool via git mergetool instead):
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Random Number Generator</title>
 <script src="scripts/gen_random.js" defer></script>
</head>
<body>
<button disabled>Generate number</button>
<label for="max">up to</label>
<input type="number" id="max" name="rand_max" value="10" />
<<<<<<< HEAD
<div id="result">Result:</div>
=======
<div id="result"></div>
<noscript>To use this web app, please enable JavaScript.</noscript>
>>>>>>> a808ecfb89919fd05cf50fbf879b493c83499002
</body>
</html>Git has included both Bob’s code (between the <<<<<<<< HEAD and ======== conflictmarkers) and Alice’s code (between ======== and >>>>>>>>). What we want as a

final result is to include both blocks of code. Git couldn’t merge it automaticallybecause those blocks were not separated. Alice work adding Result: can besimply included right before <noscript> added by Bob. After resolving theconflict, the changes look like this:
alice@hostA:~/random$ $ git diff
diff --cc index.html
index ea1a830,80348b7..0000000
--- a/index.html
+++ b/index.html
@@@ -9,7 -9,6 +9,6 @@@
 <button disabled>Generate number</button>
 <label for="max">up to</label>
 <input type="number" id="max" name="rand_max" value="10" />
 -<div id="result"></div>
 +<noscript>To use this web app, please enable JavaScript.</noscript>
+ <div id="result">Result:</div>
 </body>
 </html>That should take care of the problem. Alice refreshes the web application in aweb browser to check that it works correctly. She marks the conflict asresolved and commits changes:
alice@hostA:~/random$ git status -s
UU index.html
alice@hostA:~/random$ git commit -a -m 'Merge: mark output + noscript'
[master 919f0f7] Merge: mark output + noscriptAnd then she retries the push:
alice@hostA:~/random$ git push
To https://git.company.com/random
 a808ecf..919f0f7 master -> masterAnd… done.

Adding files in bulk and removing filesBob decides to add a COPYRIGHT file with a copyright notice for the project. Therewas also a NEWS file planned (but not created), so he uses a bulk add to add allthe files:
bob@hostB:~/random$ git add -v
Nothing specified, nothing added.
Maybe you wanted to say 'git add .'?
bob@hostB:~/random$ git add -v .
add 'COPYRIGHT'
add 'COPYRIGHT~'Oops! Because Bob didn’t configure his ignore patterns, the backup file,
COPYRIGHT~, was caught too (such a system-specific pattern should go to the

repository’s .git/info/exclude or personal ignore file, ~/.config/git/ignore, asdescribed in Chapter 3, Managing Your Worktrees, in the Ignoring filessection). Let’s remove this file:
bob@hostB:~/random$ git status -s
A COPYRIGHT
A COPYRIGHT~
bob@hostB:~/random$ git rm COPYRIGHT~
error: the following file has changes staged in the index:
 COPYRIGHT~
(use --cached to keep the file, or -f to force removal)
bob@hostB:~/random$ git rm -f COPYRIGHT~
rm 'COPYRIGHT~'Let’s check the status and commit the changes:
bob@hostB:~/random$ git status -s
A COPYRIGHT
bob@hostB:~/random$ git commit -a -m 'Added COPYRIGHT'
[master ca3cdd6] Added COPYRIGHT
 1 files changed, 2 insertions(+), 0 deletions(-)
 create mode 100644 COPYRIGHT

Undoing changes to a fileA bit bored, Bob decides that their web application looks bland, and adds theBootstrap CSS library (https://getbootstrap.com) to the index.html header:
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css"
integrity="sha384-9ndCyUaIbzAi2FUVXJi0CjmCapSmO7SnpJef0486qhLnuZ2cdeRhO02iuK6FUUVM"
crossorigin="anonymous">He checks how much source code it changed:

bob@hostB:~/random$ git diff --stat
index.html | 4 ++++
 1 file changed, 4 insertions(+)That looks all right; however, the application doesn’t look that much betterwithout further changes, and now it requires access to the internet. Bobdecides that it is not the time to move to the Bootstrap CSS framework, andundoes the changes to index.html:
bob@hostB:~/random$ git status -s
 M index.html
bob@hostB:~/random$ git restore index.html
bob@hostB:~/random$ git status -sIf you can’t remember how to revert a particular type of change or to updatewhat is to be committed (using git commit without -a), the output of git status

https://getbootstrap.com/

(without -s) contains information about what commands to use. This is shown inthe following example:
bob@hostB:~/random$ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
 (use "git push" to publish your local commits)
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: index.html
no changes added to commit (use "git add" and/or "git commit -a")

Branching and merging
Developers often need to isolate a specific set of changes that is expected tonot be ready for some time, to create another line of development: a branch.Usually, when the mentioned set of changes is ready, you would then want tojoin those branches, which can be done with a merge operation.
Creating a new branchAlice decides that it would be a good idea to provide a way for the user toconfigure the lower bound of the range the random number is chosen from(currently set to 1)—that is, make both the minimum and maximum of thegenerated number configurable.She needs to add a new input to the index.html file. Alice notices that labels forinputs need to be adjusted, too:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Random Number Generator</title>
 <script src="scripts/gen_random.js" defer></script>
</head>
<body>
<button disabled>Generate number</button>
<label for="min">between</label>
<input type="number" id="min" name="rand_min" value="1" />
<label for="max">and</label>
<input type="number" id="max" name="rand_max" value="10" />
<div id="result">Result:</div>
<noscript>To use this web app, please enable JavaScript.</noscript>
</body>
</html>Then, Alice needs to adjust the JavaScript code to read another input and togenerate a random integer between two given values, inclusive:

function getRandomIntInclusive(min, max) {
 min = Math.ceil(min);
 max = Math.floor(max);
 return Math.floor(Math.random() * (max - min + 1) + min);
}
function generateRandom() {
 let min = document.getElementById('min').value;
 let max = document.getElementById('max').value;
 let res = document.getElementById('result');
 res.textContent = 'Result: ' + getRandomIntInclusive(min, max);
}
let button = document.querySelector('button');
button.addEventListener('click', generateRandom);
button.disabled = false;Alice then checks that everything works correctly:

Figure 1.6 – Upper and lower bounds are made conûgurableHowever, during testing, she notices that the application does not ensure thatthe minimum is smaller than or equal to the maximum value, and does notbehave correctly if the input’s order is switched.She decides to try to fix this issue. However, to make each commit small andself-contained, ensuring that the application works sanely in such cases (when,for example, the user provides 10 and 5 as the minimum and maximum,respectively) will be done as a separate change.
To isolate this line of development from other changes and prevent integratingthe feature that is not fully ready, she decides to create her own branch named'min-max' (see also Chapter 8, Advanced Branching Techniques), and switch to it:
alice@hostA:~/random$ git checkout -b min-max
Switched to a new branch 'min-max'
alice@hostA:~/random$ git branch
 master
* min-max

TIP
Instead of using the git checkout –b min-max or git switch --create min-max shortcut to create a
new branch and switch to it in one command invocation, Alice could have ürst created a branch with git
branch min-max, then switched to it with git switch min-max.She commits her changes and pushes them, knowing that the push will succeedbecause she is working on her private branch:

alice@hostA:~/random$ git commit -a -m 'Make lower bound configurable'
[min-max 2361cfc] Make lower bound configurable
 2 files changed, 9 insertions(+), 4 deletions(-)
alice@hostA:~/random$ git push
fatal: The current branch min-max has no upstream branch.
To push the current branch and set the remote as upstream, use
 git push --set-upstream origin min-maxAlright! Git just wants Alice to set up a remote origin as the upstream for thenewly created branch (it is using a simple push strategy); this will also push thisbranch explicitly:
alice@hostA:~/random$ git push --set-upstream origin min-max
To https://git.company.com/random
* [new branch] min-max -> min-max
Branch 'min-max' set up to track remote branch 'min-max' from 'origin'.

TIP
If she wants to make her branch visible but private (so nobody but her can push to it), she needs to
conügure the server with hooks or use Git repository management software such as gitolite to manage
it for her.

Merging a branch (no conflicts)Meanwhile, over in the default branch, Bob decides to push his changes byadding the COPYRIGHT file:
bob@hostB random$ git push
To https://git.company.com/random
 ! [rejected] master -> master (fetch first)
[…]OK. Alice was busy working at making the minimum value of the rangeconfigurable to choose random integers from (and resolving a merge conflict),and she pushed her changes first:
bob@hostB:~/random$ git pull
From https://git.company.com/random
 a808ecf..919f0f7 master -> origin/master
 * [new branch] min-max -> origin/min-maxGit then opens the editor with the commit message for the merge. Bob exits theeditor to confirm the default description:
Merge made by the 'recursive' strategy.
 index.html | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)Well, Git has merged Alice’s changes cleanly, but there is a new branchpresent. Let’s take a look at what is in it, showing only those changes exclusive

to the min-max branch (the double-dot syntax is described in Chapter 4, Exploring
Project History):
bob@hostB:~/random$ git log HEAD..origin/min-max
commit 2361cfc062809d96b9a04d8032b9c433cae5c350 (origin/min-max)
Author: Alice Developer <alice@company.com>
Date: Mon May 3 14:35:33 2021 +0200
 Make lower bound configurableInteresting! Bob decides he wants that. So, he asks Git to merge stuff fromAlice’s branch (which is available in the respective remote tracking branch)into the default branch:
bob@hostB:~/random$ git merge origin/min-max
Merge made by the 'recursive' strategy.
 index.html | 4 +++-
 scripts/gen_random.js | 9 ++++++---
 2 files changed, 9 insertions(+), 4 deletions(-)

Undoing an unpublished mergeBob realizes that it should be up to Alice to decide when the feature is ready forinclusion (and hears that it is not ready yet). He decides to undo a merge.Because it is not published, it is as simple as rewinding to the previous state ofthe current branch:
bob@hostB:~/random$ git reset --hard @{1}
HEAD is now at 02ad67e Merge branch 'master' of https://git.company.com/random

IMPORTANT NOTE
This example demonstrates the use of the reflog for undoing operations; another solution would be to go
to a previous (pre-merge) commit following the ürst parent, with HEAD^ instead of @{1}.Bob then pushes his changes.
SummaryThis chapter walked us through the process of working on a simple exampleproject by a small development team.
We have recalled how to start working with Git, either by creating a newrepository or by cloning an existing one. We have seen how to prepare acommit by adding, editing, moving, and renaming files, how to revert changesto the file, how to examine the current status and view changes to becommitted, and how to tag a new release.

We have recalled how to use Git to work at the same time on the same project,how to make our work public, and how to get changes from other developers.Though using a version control system helps with simultaneous work,sometimes Git needs user input to resolve conflicts in work done by differentdevelopers. We have seen how to resolve a merge conflict.
We have recalled how to create a tag marking a release, and how to create abranch starting an independent line of development. Git requires tags and newbranches to be pushed explicitly, but it fetches them automatically. We haveseen how to merge a branch.The next chapter will cover creating new revisions and new lines ofdevelopment in much more detail, and it will introduce and explain the conceptof the staging area for commits.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. Describe how to create a repository from existing files and how to get your own copy of an existingrepository.
2. Describe how to create a new version of the project locally, and how to publish those changes.
3. Explain how to get changes from other developers, and how to combine those changes.
4. What do merge conflict markers look like, and how can you resolve a merge conflict?
5. What can you do to make Git not show temporary backup files as unknown files in the status output?What about the products and byproducts of the build system?
6. Where can you find information about how to undo adding a file, or how to undo changes to a file?
7. How can you abandon the commit? What are the dangers of doing so?
8. Explain how Git manages moving, copying, and renaming files.

AnswersHere are the answers to the questions given above:
1. Use git init, git add ., and git commit to create a repository from existing files. Use git cloneto get your own copy of the existing repository.
2. Use git commit or git commit -a to create a new revision, and use git push to publish changes.
3. Use git fetch to get updates from other developers, or git pull to get updates and merge themtogether. Use git merge (or, as mentioned in later chapters, git rebase) to combine changes.

4. Merge conflicts are presented using the <<<<<<<, =======, and >>>>>>> markers; you can also findthe ||||||| marker used, depending on the configuration. To resolve the conflicts, you need to editfiles marked as conflicting into shape, use git add on them when finished, and then finalize themerge with git commit or git merge --continue (or rebase with git rebase --continue).
5. To make Git ignore specific types of files, you need to add appropriate glob patterns to one of the

ignore files. It is a good practice to ignore byproducts of the build system and other generated filesusing the .gitignore file and add patterns for temporary files specific to one’s individual choice to aper-repository (.git/info/ignore) or per-user ignore file.
6. All information about how to undo adding, removing, or staging a file can be found in the git statusoutput.
7. You can abandon a commit with git reset --hard HEAD^, but it may lead to losing your changes(you can recover committed changes with the help of reflog if it did not expire; uncommitted changesare lost forever).
8. Git handles code movement, such as renaming, moving, and copying files, by using rename detectionduring merging and diff generation.

Further readingIf you need a reminder about Git basics, the following references might helpyou.
Everyday Git With 20 Commands or So, part of the Git documentation as giteveryday(7): https://git-scm.com/docs/giteveryday
A tutorial introduction to Git, part of the Git documentation as gittutorial(7): https://git-scm.com/docs/gittutorial
The Git User’s Manual, part of the Git documentation: https://git-scm.com/docs/user-manual
Eric Sink, Version Control by Example, Pyrenean Gold Press (2011):https://ericsink.com/vcbe/index.html
Scott Chacon and Ben Straub, Pro Git, 2nd Edition, Apress (2014): https://git-scm.com/book/en/v2

https://git-scm.com/docs/giteveryday
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/user-manual
https://ericsink.com/vcbe/index.html
https://git-scm.com/book/en/v2

2

Developing with GitThis chapter will describe how to create new revisions and new lines ofdevelopment (new branches) with Git.Here, we will focus on committing one’s own work on the solo development.The description of working as one of the contributors is left for Chapter 6,
Collaborative Development with Git, while Chapter 9, Merging Changes
Together, will show how to join created lines of development and how Git canhelp in maintainer duties.
This chapter will introduce the very important Git concept of the staging area(also called the index), while more advanced techniques for manipulating it willbe described in Chapter 3, Managing Your Worktrees. It will also explain, indetail, the idea of a detached HEAD — that is, an anonymous, unnamedbranch. Here, you can also find how Git describes differences between twoversions of the project, or changes to the project, including a detaileddescription of the so-called extended uniüed diû format.The following is the list of the topics we will cover in this chapter:

The index — a staging area for commits
Examining the status of the working area, and changes in it
How to read the extended unified diff that is used to describe changes
Selective and interactive commit, and amending a commit
Creating, listing, renaming, and switching to branches, and listing tags
What can prevent switching branches, and what you can do then
Rewinding a branch with git reset
Detached HEAD — that is, the unnamed branch (for example, a result of checking out a tag)

Creating a new commitBefore starting to develop with Git, you should introduce yourself with a nameand an email, as shown in Chapter 1, Git Basics in Practice. This informationwill be used to identify your work, either as an author or as a committer. The

setup can be global for all your repositories (with git config --global, or byediting the ~/.gitconfig file directly), or local to a repository (with git config, orby editing the .git/config file inside the given repository). The per-repositoryconfiguration overrides the per-user one (you will learn more about this in
Chapter 13, Customizing and Extending Git).
MULTIPLE IDENTITIES
You might want to use your company email for work repositories, but your own, non-work email for public
repositories you work on. This can be done by setting one identity globally (for the user) and using the local
repository conüg for setting an alternate identity for exceptions. Another possible solution would be to use
conditional includes with the includeIf section, using it to include appropriate conüguration üles with
per-directory identities.The relevant fragment of the appropriate config file could look like thefollowing example:

[user]
 name = Joe R. Hacker
 email = joe@company.com

How a new commit extends a project’s history

Contributing to the development of a project usually consists of creating newrevisions of said project. To mark the current state of the project as a newversion, you use the git commit command. Git will then ask for a description ofchanges (commit message), and then extend the project history with thenewly created revision. Here’s what is happening behind the curtain — it’suseful to understand this to better use advanced Git techniques.In Git, the history of the project is stored as a graph of revisions (versions),where each revision points to the previous version it was based on. The git
commit command simply creates a new node in this graph (a commit node),extending it.
To know where each branch is, Git uses branch HEAD as a reference to thegraph of revisions. The HEAD denotes which branch is the current branch —that is, on which branch to create new commits at a given point in time.
You can find out more about the concept of the Directed Acyclic Graph(DAG) of revisions in Chapter 4, Exploring Project History. Creating a new

commit adds a new node to the graph of revisions, and adjusts the position ofbranch tips (heads), as shown on the following figure.

Figure 2.1 3 The graph of revisions for an example project, before and after creating a new commit on the
<master= branchLet’s assume that we are on the master branch and that we want to create a newversion (the details of this operation will be described in more detail later). The

git commit command will create a new commit object — a new revision node.This commit will have the checked-out revision (c7cd3 in the example in Figure
2.1) as the previous node (as a parent).That revision is found by following references starting from HEAD; here, it is achain starting at HEAD, then following to master, and finally arriving at c7cd3.
Then, Git will create a new commit node, a3b79, and then move the master pointerto that new node. In Figure 2.1, the new commit is marked with a thick redoutline. Note that the HEAD pointer doesn’t change; all the time, it points to
master. The performed commit operation is logged in the reýog for the master

branch and for HEAD (current branch); one can examine this log with the git
reflog master or git reflog HEAD command.
The index 4 a staging area for commits

Each of the files inside the working area of the Git repository can at a givenpoint in time be either known or unknown to Git — that is, version-controlled ornot. Any file known to Git is also known as a tracked üle. The files unknown toGit can be either untracked or ignored (you can find more information aboutignoring files in Chapter 3, Managing Your Worktrees). You can make anunknown file become tracked with the git add command.Files tracked by Git are usually in either of the two states: committed (orunchanged) or modified. The committed state means that the file contents inthe working directory are the same as in the last release (HEAD), which is safelystored in the repository. The file is modiüed if it has changed compared to thelast committed version, which means it is different than in HEAD.
However, in Git, there are other states possible. Let’s consider what happenswhen we use the git add command to add a file that was previously unknown toGit (an untracked file), but before creating a new commit that adds this file. Aversion control system needs to store somewhere the information that the givenfile is to be included in the next commit. Git uses something called the indexfor this; it is the staging area that stores information that will go into the nextcommit. The git add <file> command stages the current contents (currentversion) of the file, adding it to the index.
IMPORTANT NOTE
If you want to only mark a üle for the addition, you can use git add -N <file> or git add --intent-to-
add <file>; these commands simply stage the empty contents for a üle (<file> here is a placeholder for
the üle’s name).The staging area stores the state of the project. It is the third such section,after a working directory (which contains your own copy of the project files andis used as a private isolated workspace to make changes) and a local repository(which stores your own copy of the project history and is used to synchronizechanges with other developers). Figure 2.2 shows how you can interact withthese three sections, specifically in the context of creating a new commit:

Figure 2.2 3 The working directory, the staging area, and the local git repository, creating a new commitThe arrows on this diagram show how the Git commands copy contents. Forexample, git add takes the content of the file from the working directory andputs it into the staging area. Creating a new commit requires, explicitly orimplicitly, the following steps:
1. You make changes to files in your working directory, usually modifying them using your favoriteeditor.
2. You stage the files, adding snapshots of them (their current contents) to your staging area, usuallywith the git add command.
3. You create a new revision with the git commit command, which takes the files as they are in thestaging area and stores that snapshot permanently in your local repository.

In the beginning, and usually just after the commit (unless it was a selectivecommit), the tracked files are identical in the working directory, in the stagingarea, and in the last commit (in the committed version, that is HEAD).
EXAMINING THE STAGED FILE CONTENTS AND THE COMMITTED
FILE CONTENTS
To examine the working directory state of a üle, you can simply open it in an editor, or (on Linux or in Git
Bash) simply use cat <filename>; examining other stages is more involved. To see the state in the staging
area, you can use the git show :<filename> command. To see the committed version, use the git show
<revision>:<filename> command (where <revision> may be HEAD). Here, a ülename starting with ./ or
../ denotes that the path is relative to the current directory; otherwise, it is taken to be relative to the top-
level directory of the repository you are in.Often, however, one would use a special shortcut, the git commits -a command(spelled as git commit --all in the long form), which would take all the changed

tracked üles, add them to the staging area, and create a new commit (see
Figure 2.2). This command gives the same result as running git add --update,followed by a git commit command. Note that the new files still need to beexplicitly added using git add to be tracked and included in new commits.
Examining the changes to be committed

Before committing to the changes and creating a new revision (a new commit),you would want to see what you have done.Git adds the information about the changes to be committed to the commitmessage template, which is then passed to the editor, and you will see thiswhen writing the commit message. This is, of course, unless you specify thecommit message on the command line — for example, with git commit -m "Short
description". The commit message template in Git is configurable (refer to
Chapter 13, Customizing and Extending Git, for more information).
IMPORTANT NOTE
You can always abort creating a commit by exiting the editor without any changes, or with an empty
commit message (comment lines — that is, lines beginning with # — do not count). If you want to create a
commit with an empty commit message, you need to use the --allow-empty-message option.In most cases, you would want to examine pending changes for correctnessbefore creating a commit.
The status of the working directoryThe main tool you use to examine which files are in which state — that is, whichfiles have changed, whether there are any new files, and so on — is the git
status command.The default output is explanatory and quite verbose. If there are no changes,for example, directly after cloning, you could see something like this:
$ git status
On branch master
nothing to commit, working tree cleanIf the current branch (which, in this example, is the master branch) is a localbranch intended to create changes that are to be published and to appear inthe public repository, and is configured to track its upstream branch,
origin/master, you would also see the information about the tracked branch:

Your branch is up to date with 'origin/master'.In further examples in this chapter, we will ignore it and not include theinformation about branches and tracking branches.Let’s say you have added two new files to your project: a COPYING file with thecopyright and license, and a NEWS file, which is currently empty. In order tobegin tracking a new COPYING file, you used git add COPYING. Accidentally, youremoved the README file from the working directory with rm README. You alsomodified the Makefile and renamed rand.c to random.c with git mv without modifyingthe file.
The default long format is designed to be human-readable, verbose, anddescriptive:
$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: COPYING
 renamed: src/rand.c -> src/random.c
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: Makefile
 deleted: README
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 NEWSOlder versions of Git will suggest using different commands than git restore.

As you can see, Git not only describes which files have changed but alsoexplains how to change their status — either include it in the commit or removeit from the set of pending changes (more information about commands shownin the git status output can be found in Chapter 3, Managing Your Worktrees).There are up to three sections present in the output:
Changes to be committed: This section is about the staged changes that would be committed with
git commit (without the -a/--all option). It lists files whose snapshot in the staging area is differentfrom the version from the last commit (HEAD).
Changes not staged for commit: This section lists the files whose working directory contents aredifferent from their snapshots in the staging area. Those changes would not be committed with git
commit, but would be committed with git commit -a as changes in the tracked files.
Untracked üles: This lists the files, unknown to Git, that are not ignored (refer to Chapter 3,
Managing Your Worktrees for how to use gitignores to make files be ignored). These files would beadded with the bulk add command, git add ., if run in the top directory of the project. You can skipthis section with the --untracked-files=no (-uno for short) option.

If the section does not contain any files, it will be not shown. Note also that thefile may appear in more than one section. For example, a new file that gotadded with git add and then modified would appear in both Changes to be
committed and Changes not staged for commit.
One does not need to make use of the flexibility that the explicit staging areagives; one can simply use git add just to add new files and git commit –a to createthe commit from changes to all tracked files. In this case, you would create acommit from both the Changes to be committed and Changes not staged
for commit sections.There is also a terse --short output format for git status. Its --porcelain version issuitable for scripting because it is promised to remain stable, while --short isintended for user output, uses color if possible, and could change in the future.For the same set of changes, this output format would look something like thefollowing:
$ git status --short
A COPYING
 M Makefile
 D README
R src/rand.c -> src/random.c
?? NEWSIn this format, the status of each path is shown using a two-letter status code.The first letter shows the status of the index (the difference between thestaging area and the last commit), and the second letter shows the status of theworktree (the difference between the working area and the staging area):
Symbol Meaning

(a space) Not updated/unchanged
M Modified (updated)
A Added
D Deleted
R Renamed

Symbol Meaning

C Copied
Table 2.1 3 Letter status codes used in the short format of the git-status commandNot all combinations are possible. Status letters A, R, and C are possible only inthe first column, for the status of the index.

A special case, ??, is used for the unknown (untracked) files, and !! for ignoredfiles (when using git status --short --ignored).
NOTE ABOUT STATUS CODES
All the possible outputs are described here; the case where we have just done a merge that resulted in
merge conýicts is not shown in Table 2.1 but is left to be described in Chapter 9, Merging Changes
Together.

Examining differences from the last revisionIf you want to know not only which files were changed (which you get with git
status), but also what exactly you have changed, you can use the git diffcommand:

Figure 2.3 3 Examining the differences between the working directory, the staging area, and the local Git
repositoryIn the last section, we learned that in Git, there are three stages: the workingdirectory, the staging area, and the repository (usually the last commit).

Therefore, we have not one set of differences, but three, as shown in Figure
2.3. You can ask Git the following questions:

What have you changed but not yet staged — that is, what are the differences between the stagingarea and the working directory?
What have you staged that you are about to commit — that is, what are the differences between thelast commit (HEAD) and the staging area?
What changes have you made to the files in the working directory since the last commit (HEAD)?

To see what you’ve changed but not yet staged, type git diff with no otherarguments. This command compares what is in your working directory to whatis in your staging area. These are the changes that could be added but wouldn’tbe present if we created a commit with git commit (without -a); those changesare listed in the Changes not staged for commit section in the git statusoutput.To see what you’ve staged that will go into your next commit, use git diff --
staged (or git diff --cached). This command compares what is in your staging areato the content of your last commit. These are the changes that would be addedwith git commit (without -a) — Changes to be committed in the git statusoutput. You can compare your staging area to any commit with git diff --staged
<commit>; HEAD (the last commit) is just the default.
You can use git diff HEAD to compare what is in your working directory to thelast commit (or arbitrary commit with git diff <commit>). These are the changesthat would be added with the git commit -a shortcut.If you are using git commit –a and not making use of the staging area, usually, itis enough to use git diff to examine the changes that will land in the nextcommit. The only issue is the new files that are added with bare git add; theywon’t show in the git diff output unless you use git add --intent-to-add (or itsequivalent git add -N) to add new files.
Unified Git diff formatGit, by default, and in most cases, will show the changes in the uniüed diû
output format. Understanding this output is very important, not only whenexamining changes to be committed, but also when reviewing and examiningchanges. This may happen, for example, during the code review, or whenfinding bugs after git bisect has found the suspected commit.

DIFFERENT WAYS OF EXAMINING DIFFERENCES
You can request only statistics of changes with the --stat or --dirstat option, just names of the changed
üles with --name-only, ülenames with the type of changes with --name-status, a tree-level view of
changes with --raw, or a condensed summary of extended header information with --summary (see later
for an explanation of what <extended header= means and what information it contains). You can also
request word diff rather than line diû with --word-diff, though this changes only the description of
changes; headers and hunk headers remain similar.

Diû generation can also be conügured for speciüc üles or types of üles with appropriate gitattributes. You
can specify an external diû helper — that is, the command that describes the changes — or you can specify
a text conversion ülter for binary üles (you will learn more about this in Chapter 3, Managing Your
Worktrees).

If you prefer to examine the changes in a graphical tool (which usually provides side-by-side diû), you can
do it by using git difftool instead of git diff. You can specify the tool with the --tool=<tool> option
or with the diff.tool conüguration variable. If the tool you use is not supported by Git or is not in PATH,
this may require some conüguration. Using external tools with Git like this will be explained in more detail
in Chapter 13, Customizing and Extending Git.Let’s look at an example of an advanced diff from Git project history, using thediff from the 1088261f commit from the git.git repository. You can view thesechanges in a web browser — for example, on GitHub; this is the third patch inthis commit,https://github.com/git/git/commit/1088261f6fc90324014b5306cca4171987da85:

diff --git a/builtin-http-fetch.c b/http-fetch.c
similarity index 95%
rename from builtin-http-fetch.c
rename to http-fetch.c
index f3e63d7206..e8f44babd9 100644
--- a/builtin-http-fetch.c
+++ b/http-fetch.c
@@ -1,8 +1,9 @@
 #include "cache.h"
 #include "walker.h"
-int cmd_http_fetch(int argc, const char **argv, const char *prefix)
+int main(int argc, const char **argv)
 {
+ const char *prefix;
 struct walker *walker;
 int commits_on_stdin = 0;
 int commits;
@@ -18,6 +19,8 @@ int cmd_http_fetch(int argc, const char **argv,
 int get_verbosely = 0;
 int get_recover = 0;
+ prefix = setup_git_directory();
+
 git_config(git_default_config, NULL);
 while (arg < argc && argv[arg][0] == '-') {

https://github.com/git/git/commit/1088261f6fc90324014b5306cca4171987da85

Let’s analyze this patch line by line. The first line, diff --git a/builtin-http-fetch.c
b/http-fetch.c, is a git diû header in the form diff --git a/file1 b/file2. The a/and b/ filenames are the same unless rename or copy operation is involved(such as in our case), even if the file is added or deleted. The --git option meansthat the diff is in the git diff output format.
The next lines are one or more extended header lines. The first three lines inthis example tell us that the file was renamed from builtin-http-fetch.c to http-
fetch.c and that these two files are 95% identical (information that was used todetect this rename):

similarity index 95%
rename from builtin-http-fetch.c
rename to http-fetch.c

IMPORTANT NOTE
Extended header lines describe information that cannot be represented in an ordinary uniüed diû, except
for information that the üle was renamed. Besides a similarity or dissimilarity score, like in this example,
those lines can also describe the changes in üle type (such as from a non-executable to an executable üle).The last line in the extended diff header, in this example, is as follows:

index f3e63d7206..e8f44babd9 100644The preceding code tells us about the mode (permissions) of a given file. Here,
100644 means that it is an ordinary file and not a symbolic link, and that it hasn’tset the executable permission bit (these three are the only file permissionstracked by Git). This line also tells us about the shortened hash of the pre-
image (the version of the file before the given change, f3e63d7206 here) and
post-image (the version of the file after the change, e8f44babd9 here). This lineis used by git am --3way to try to do a three-way merge if the patch cannot beapplied itself. For the new files, the pre-image hash is 0000000000; it’s the samefor the deleted files with the post-image hash.
Next is the uniüed diû header, which consists of two lines:

--- a/builtin-http-fetch.c
+++ b/http-fetch.cCompared to the diff -U result, it doesn’t have a from-file modification time or ato-file modification time. Those should be present after the space just after thesource (pre-image) and the destination or the target (post-image) filenames. If

the file was created, the source would be /dev/null; if the file was deleted, thetarget would be /dev/null.
TIP
If you set the diff.mnemonicPrefix conüguration variable to true in place of the a/ preüx for the pre-
image and b/ for the post-image in this two-line header, you would instead have the c/ preüx for commit,
i/ for index, w/ for worktree, and o/ for object, respectively, to show what you’re comparing This makes it
easy to distinguish sides in git diff, git diff --cached, git diff HEAD output, and so on.Next comes one or more change hunks, or hunks of differences; each hunkshows one area where the files differ. Unified format hunks start with the linedescribing where the changes were in the file, called the hunk header, asfollows:

@@ -1,8 +1,9 @@This line matches the following format pattern: @@ from-file-range to-file-range @@.The from-file range is in the form -<start line>,<number of lines>, and the to-üle
range is +<start line>,<number of lines>. Both start line and number of lines refer tothe position and length of the hunk in the pre-image and post-image,respectively. If number of lines is not shown, it means that it is 0.In this example, we can see that the changes begin at the first line of the file,both in the pre-image (file before the changes) and post-image (file after thechanges). We also see that the fragment of code corresponding to this hunk ofdiff has eight lines in the pre-image and nine lines in the post-image. Thisdifference in the number of lines means that one line is added. By default, Gitwill also show three unchanged lines surrounding changes (three so-called
context lines).
Git will also show the “function name” where each change occurs (orequivalent, if any, for other types of files; this can be configured with
.gitattributes via diff driver —see Chapter 3, Managing Your Worktrees, in the
Conüguring diû output section in File attributes); it is like the -p option in GNUdiff:

@@ -18,6 +19,8 @@ int cmd_http_fetch(int argc, const charGit includes many builds in patterns for extracting the “function” heading forthe hunk for various programming languages.

Next is the description of where and how files differ. The lines common to bothfiles are prefixed with a space “(" ")” indicator character. The lines that differbetween the two files have one of the following indicator characters in the leftprint column:
+: A line was added here to the second file
-: A line was removed here from the first file

NOTE
In the plain word-diff format, instead of comparing üle contents line by line, added words are surrounded
by {+ and +} and removed words by [- and -], as in the following example:

int [-cmd_http_fetch-]{+main+}(int argc, const char **argv[-, const char *prefix-])If the last hunk includes, among its lines, the very last line of either version ofthe file, and that last line is incomplete line (which means that the file doesnot end with the end-of-line character at the end of the hunk), you will find thefollowing:
\ No newline at end of fileThis situation is not present in the example used.

So, for the example used here, the first hunk means that cmd_http_fetch wasreplaced by main and the const char *prefix; line was added:
#include "cache.h"
 #include "walker.h"
-int cmd_http_fetch(int argc, const char **argv, const char *prefix)
+int main(int argc, const char **argv)
 {
+ const char *prefix;
 struct walker *walker;
 int commits_on_stdin = 0;
 int commits;See how for the replaced line, the old version of the line appears as removed (-)and the new version as added (+).In other words, before the change, the appropriate fragment of the file, whichwas then named builtin-http-fetch.c, looked similar to the following codefragment:
#include "cache.h"
#include "walker.h"
int cmd_http_fetch(int argc, const char **argv, const char *prefix)
{
 struct walker *walker;

 int commits_on_stdin = 0;
 int commits;After the change, this fragment of the file, which is now named http-fetch.c,looks similar to the following instead:
#include "cache.h"
#include "walker.h"
int main(int argc, const char **argv)
{
 const char *prefix;
 struct walker *walker;
 int commits_on_stdin = 0;
 int commits;

Selective commit
Sometimes, after examining the pending changes as explained, you realize thatyou have two (or more) unrelated changes in your working directory thatshould belong to two different logical changes; such a problem is sometimescalled the tangled working copy problem. You need to put those unrelatedchanges into separate commits as separate changesets. This is the type ofsituation that can occur even when trying to follow best practices (see Chapter
15, Git Best Practices).
One solution is to create the commit as-is and fix it later (split it in two). Youcan read about how to do this in Chapter 10, Keeping History Clean.Sometimes, however, some of the changes are needed now and must beshipped immediately (for example, a bugfix to a live website), while the rest ofthe changes are not ready yet (they are a work in progress). You need to teasethose changes apart into two separate commits.
Selecting files to commitThe simplest situation is when these unrelated changes touch different files.For example, if the bug was in the view/entry.tmpl file and the bugfix changesonly this file (and there were no other changes to this file, unrelated to fixingthe bug), you can create a bugfix commit with the following command:
$ git commit view/entry.tmplThis command will ignore changes staged in the index (what was in the stagingarea), and instead record the current contents of a given file or files (what is in

the working directory).
Interactively selecting changesSometimes, however, the changes cannot be separated in this simple way; thechanges to the file are tangled together. You can try to tease them apart bygiving the - - interactive option to the git commit command:
$ git commit --interactive
 staged unstaged path
 1: unchanged +3/-2 Makefile
 2: unchanged +64/-1 src/rand.c
*** Commands ***
 1: status 2: update 3: revert 4: add untracked
 5: patch 6: diff 7: quit 8: help
What now>Here, Git shows us the status and the summary of changes to the working area(unstaged) and the staging area (staged), which is also the output of the statussubcommand. The changes are described by the number of added and deletedlines — for example, +3/-2 here (this is similar to what the git diff --numstatcommand would show).

TIP
It might be easier to use a graphical tool such as git gui with this capability. In GUIs, such as the one
mentioned, one can use the mouse to select which lines of changes to include or exclude.You can use the help subcommand, accessed by pressing h, to check what thoselisted operations mean:
What now> h
status - show paths with changes
update - add working tree state to the staged set of changes
revert - revert staged set of changes back to the HEAD version
patch - pick hunks and update selectively
diff - view diff between HEAD and index
add untracked - add contents of untracked files to the staged set of changesTo tease apart changes, you need to choose the patch subcommand (forexample, with 5 or p). Git will then ask for the files with the Update>> prompt;you then need to select the files to selectively update with their numericidentifiers, as shown in the status, and type return. You can type * to select allthe files possible. After making the selection, end it by answering with anempty line:
What now> p
 staged unstaged path
 1: unchanged +3/-2 Makefile

 2: unchanged +64/-1 src/rand.c
Patch update>> 1
 staged unstaged path
* 1: unchanged +3/-2 Makefile
 2: unchanged +64/-1 src/rand.c
Patch update>>You can skip directly to patching files by using git commit --patch instead of git
commit - - interactive.Git will then display all the changes to the specified files on a hunk-by-hunkbasis, and let you choose, among others, one of the following options for eachhunk:
y - stage this hunk
n - do not stage this hunk
q - quit; do not stage this hunk or any of the remaining ones
a - stage this hunk and all later hunks in the file
…
s - split the current hunk into smaller hunks
e - manually edit the current hunk
? - print helpThe hunk output and the prompt look similar to the following:
@@ -16,7 +15,6 @@ int main(int argc, char *argv[])
 int max = atoi(argv[1]);
+ srand(time(NULL));
 int result = random_int(max);
 printf("%d\n", result);
Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]? yIn many cases, it is enough to simply select which of those hunks of changesyou want to have in the commit. In extreme cases, you can split a chunk intosmaller pieces, or even manually edit the difference.

Many graphical tools, including git gui, also allow for the interactive selectionof changes going to the next commit. You can find out more in Chapter 13,
Customizing and Extending Git, in the Graphical interfaces section.
Creating a commit step by stepUsing git commit --interactive to select changes to a commit doesn’t,unfortunately, allow you to test the changes to be committed. You can alwayscheck that everything works after creating a commit (that is, compile the codeand/or run tests), and then amend it if there are any errors (see the nextsection, Amending a commit). There is, however, an alternative solution.
Instead of using the interactive commit feature, you can prepare to commit byputting the pending changes into the staging area with git add --interactive or an

equivalent solution (such as a graphical commit tool for Git — for example, git
gui). The interactive commit is just a shortcut for interactive add followed bycommit. Then, you should examine these changes with git diff --cached,modifying them as appropriate with git add <file>, git checkout <file>, and git
reset <file>.
In theory, you should also test whether these changes are correct, checkingthat at least they do not break the build. To do this, first use git stash save --
keep-index to save the current state and bring the working directory to the stateprepared in the staging area (the index). After this command, you can run tests(or at least check whether the program compiles and doesn’t crash). If testspass, you can then run git commit to create a new revision. If tests fail, youshould restore the working directory while keeping the staging area state withthe git stash pop --index command; it might be required to precede it with git
reset --hard. The latter might be needed because Git is overly conservative whenpreserving your work and does not know that you have just stashed. First, thereare uncommitted changes in the index that prevent Git from applying the stash,and second, the changes to the working directory are the same as thosestashed, so, of course, they would conflict.
You can find more information about stashes, including how they work, in
Chapter 3, Managing Your Worktrees, in the Stashing away your changessection.
Amending a commitOne of the better things about Git is that you can undo almost anything; youonly need to know how to. This is because no matter how carefully you craftyour commits, sooner or later, you’ll forget to add a change or mistype thecommit message. That’s when the --amend flag of the git commit command comesin handy; it allows you to change the very last commit really easily. Note thatwith git commit -- amend, you can also amend the merge commits (for example, tofix a merging error). Figure 2.4 shows how this amend operation changes thegraph of revisions which represents the history of the project.
TIP
If you want to change a commit deeper in the history (assuming that it was not published, or, at least, there
isn’t anyone who based their work on the old version of the said commit), you need to use interactive

rebase, or some specialized tool such as StGit (a patch stack management interface on top of Git).
Refer to Chapter 10, Keeping History Clean, for more information.

Figure 2.4 3 The graph of revisions before and after amending the last commitIf you just want to correct the commit message, assuming you don’t have anystaged changes, you simply run git commit --amend and fix it (note that we use git
commit without the -a / --all flag):
$ git commit --amendIf you want to add some more changes to that last commit, you can simplystage them as normal with git add and then amend the last commit, as shown inthe preceding example, or make the changes and then use git commit -a --amend:

IMPORTANT NOTE
There is a very important caveat: you should never amend a commit that has already been published! This
is because amending eûectively produces a completely new commit object that replaces the old one, as
can be seen in Figure 2.4. In this ügure, you can see that the most recent commit before the operation,
denoted by C5, is replaced in the project history by the commit C5’, with amended changes.

If you’re the only person who had this commit, doing this is safe. However, after publishing the original
commit to a remote repository, other people might already have based their new work on that version of
the commit. In this case, replacing the original with an amended version will cause problems downstream.
You will ünd out more about this issue in Chapter 10, Keeping History Clean.

That is why, if you try to push (publish) a branch with the published commit amended, Git prevents
overwriting the published history and asks you to force push if you really want to replace the old version
(unless you conügure it to force push by default). More about that in Chapter 6, Collaborative Development
with Git.The old version of the commit before amending would be available in thebranch reflog and in the HEAD reflog; for example, just after amending, theamended version would be available as @{1}. This means that you can undo theamend operation with, for example, git reset --keep HEAD@{1}, as described in the
Rewinding or resetting a branch section. Git would keep the old version for amonth (30 days) by default if not configured otherwise, unless the reflog ismanually purged.You can always check the log of operations in the reflog by using the git reflogcommand. Just after amending a commit, that command output would look likethe following:
$ git reflog --no-decorate
94d3e03 HEAD@{0}: commit (amend): After amending
d69a0a9 HEAD@{1}: commit: Before amendingHere, HEAD@{1} means the position of the current branch 1 operation back.Besides the HEAD reflog, there is also a reflog for each branch, as describedlater. Note that you can read more about using reflog to refer to commits in

Chapter 4, Exploring Project History.
Working with branches and tagsIn version control, branches are separate lines of development, a way ofseparating different ideas and different parts of changes. You can use branchesin different ways, which are described in Chapter 8, Advanced Branching
Techniques.
Tags are a way to give a meaningful name to mark a specific version of aproject. They are used to make it possible to return to a given point in history— for example, with the v1.0 tag, you will be able to go to exactly version 1.0 ofthe code. Additionally, with annotated tags, you can give a longer descriptionof the tagged revision, and signed tags also help ensure that it was you whocreated it.
In Git, each branch is realized as a named “pointer” (reference) to somecommit in the graph of revisions, the so-called branch head. The same is true

for lightweight tags; for annotated and signed tags, the “pointer” refers to thetag object (with annotation or signature), which points to a commit.
REPRESENTATION OF BRANCHES IN GIT
Git currently uses two diûerent on-disk representations of branches: the <loose= format (which takes
precedence) and the <packed= format.

Take, for example, the master branch (which is currently the default name of the branch in Git; you start on
this branch in a newly created repository, unless conügured otherwise). In the <loose= format (which takes
precedence), the branch is represented as the one-line .git/refs/heads/master üle with a textual
hexadecimal representation of SHA-1 at the tip of the branch. In the <packed= format, a branch is
represented as a line in the .git/packed-refs üle, connecting the SHA-1 identiüer of the top commit with
the fully qualiüed branch name.The (named) line of development is then a set of all the revisions that arereachable from the branch head. It is not necessarily a straight line of revisions— it can fork and join.
Creating a new branch

When creating a new branch, you can just create it and switch to it later, or youcan create it and switch to it with a single command. This is explained in Figure
2.5.You can create a new branch with the git branch command. For example, tocreate a new testing branch starting from the current branch (see the top-rightpart of Figure 2.5), run the following:
$ git branch testingWhat happens here? Well, this command creates a new pointer (a newreference) for you to move around. You can give an optional parameter to thiscommand if you want to create the new branch pointing to some other commit,like in the following example:
$ git branch testing HEAD^^^

Figure 2.5 3 Creating a new branch named <testing= and switching to this branch, or creating a new
branch and switching to it at once, with one command

NOTE
The HEAD^^^ notation will be explained in Chapter 4, Exploring Project History.However, the git branch <new branch> command would not change which branch isthe current branch; it does not switch to the just-created branch. It would notchange the position of the HEAD (the symbolic reference pointing to the currentbranch) and would not change the contents of the working directory.
If you want to create a new branch and switch to it (to start working on a newbranch immediately), you can use the following shortcut:
$ git switch -c testingHere, the short -c option stands for --create. You can also use the followingalternative command, which is the only option for older Git:
$ git checkout -b testing

If you want to forcibly create a branch with a name that already exists,effectively deleting the existing branch, you will need to use the -C and -Boptions instead of the -c and -b options, respectively.
If we create a new branch at the current state of the repository, the switch -cand checkout -b commands differ only in that they also move the HEAD pointer; seethe transition from the left-hand side to the bottom right in Figure 2.5.
Creating orphan branches

Rarely, you might want to create a new unconnected orphan branch in yourrepository that doesn’t share any history with other branches. Perhaps youwant to store the generated documentation for each release to make it easy forusers to get readable documentation (for example, as man pages or HTMLhelp) without requiring the installation of conversion tools or renderers (forexample, AsciiDoc or a Markdown parser). Or, you might want to store webpages for a project in the same repository as the project itself; that is whatGitHub project pages can use. Perhaps you want to open source your code, butyou need to clean up the code first (for example, because of copyrights andlicensing).
One solution is to create a separate repository for the contents of an orphanbranch and fetch from it into some remote-tracking branch. You can thencreate a local branch based on it. This has the advantage of havingunconnected contents separately, but on the other hand, it is one morerepository to manage.You can also do this with either the git switch or git checkout command by usingthe --orphan option:
$ git switch --orphan gh-pages
Switched to a new branch 'gh-pages'This reproduces the state similar to just after git init: the HEAD symref points tothe gh-pages branch, which does not exist yet; it will be created on the firstcommit.If you want to start with a clean state, such as with GitHub Pages, you will alsoneed to remove the contents of the start point of the branch (which defaults to

HEAD — that is, to the current branch and the current state of the workingdirectory) — for example, with the following:
$ git rm -rf .In the case of open sourcing code with proprietary parts to be excluded, wherethe orphan branch is used to make sure not to bring the proprietary codeaccidentally to the open source version on merging, you would want tocarefully edit the working directory instead.
Selecting and switching to a branch

To switch to an existing local branch, you need to run the git switch command.For example, after creating the testing branch, you can switch to it with thefollowing command:
$ git switch testingThis is shown in Figure 2.6 as the vertical transition from the top-right to thebottom-right state; this figure also shows that you can use git checkout to switchbranches.

Obstacles to switching to a branchWhen switching to a branch, Git also checks out its contents in the workingdirectory. What happens then if you have uncommitted changes (that are notconsidered by Git to be on any branch)?
TIP
It is a good practice to switch branches in a clean state, stashing away changes or creating a commit if
necessary. Checking out a branch with uncommitted changes is useful only in a few rare cases, some of
which are described in the following section.If the difference between the current branch and the branch you want to switchto does not touch the changed files, the uncommitted changes are moved to thenew branch. This is very useful if you started working on something and onlylater realized that it would be better to do this work in a separate featurebranch.
If uncommitted changes conflict with changes on the given branch, Git willrefuse to switch to the said branch to prevent you from losing your work:

$ git checkout other-branch
error: Your local changes to the following files would be overwritten by checkout:
 file-with-local-changes
Please commit your changes or stash them before you switch branches.
AbortingIn such a situation, you have a few possible different solutions:

You can stash away your changes with the git stash command and restore them when you comeback to the branch you were on. This is usually the preferred solution.Alternatively, you can simply create a temporary commit of the work inprogress with those changes, and then either amend the commit or rewindthe branch when you get back to it.
You can try to move your changes to the new branch by merging, either with git switch --merge(which would do the three-way merge between the current branch, the contents of your workingdirectory with unsaved changes, and the new branch), or by stashing away your changes beforecheckout and then unstashing them after a switch.
You can also throw away your changes with git switch --discard-changes or git checkout --
force.

Anonymous branchesWhat happens if you try to check out (switch to) something that is not a localbranch — for example, an arbitrary revision (such as HEAD^), a tag (such as v0.9),or a remote-tracking branch (for example, origin/master)? Git assumes that youneed to be able to create commits on top of the current state of the workingdirectory.
Older Git refused to switch to a non-branch. Nowadays, Git will create an
anonymous branch by detaching the HEAD pointer and making it referdirectly to a commit (that’s why it is also called a detached HEAD state) ratherthan being a symbolic reference to a branch; see Figure 2.6 for an example.

Figure 2.6 3 The result of checking out a non-branch is a detached HEAD state (which is like being on the
anonymous branch)Because this feature is used only rarely, to avoid landing in such a stateexplicitly, the git switch command requires the use of the --detach option; forbackward compatibility, git checkout does not require using this option to detachthe HEAD pointer. This option is also useful to explicitly create an anonymousbranch at the current position. The detached HEAD state is shown in thebranch listing as (no branch) in older versions of Git, or (detached from

HEAD) or (HEAD detached at...) in newer versions.
If you did detach HEAD by mistake, you can always go back to the previous
branch with the following command (where - means the name of the previousbranch):
$ git switch -
Previous HEAD position was a3bl9 <Some commit message>
Switched to branch 'master'

IMPORTANT NOTE

The git switch - command uses the HEAD reýog to switch to a previous branch. This may not work
correctly after renaming the branch.As Git informs you, when creating a detached branch without using the --detachoption, you can always give a name to the anonymous branch with git switch -c
<new-branch-name>.Because tags are meant to be immutable, trying to check one out (or switch toit) also creates a detached HEAD — tags are not branches.
The switch command DWIM-meryThere is a special case of checking out something that is not a branch. If youcheck out a remote-tracking branch (for example, origin/next) by its short name(in this case, next) as if it were a local branch, Git would assume that you meantto create new contents on top of the remote-tracking branch state and will dowhat it thinks you need. This do what I mean (DWIM) feature will create anew local branch, tracking the remote-tracking branch. This behavior can beturned off with the --no-guess option, or the accompanying checkout.guessconfiguration variable.This means that:
$ git switch nextis equivalent to:
$ git switch -c next --track origin/nextGit will do it only if there are no ambiguities; the local branch must not exist(otherwise the command would simply switch to the local branch given) andthere can be only one remote-tracking branch that matches. The lattercondition can be checked by running git show-ref next (using the short name)and verifying that it returns only one line, with remote-tracking branchinformation:
$ git show-ref --abbrev next
4936735 refs/remotes/origin/next

Listing branches and tags

If you use the git branch command without any other arguments, it will list allthe branches, marking the current branch with an asterisk — that is, *.

PROGRAMMATICALLY DETERMINING THE CURRENT BRANCH
The git branch command is intended for the end user; its output may change in the future version of Git.
To ünd out programmatically, in a shell script, the name of the current branch, uses git symbolic-ref
HEAD (or git branch --show-current). To ünd the SHA-1 function of the current commit, use git rev-
parse HEAD. To list all the branches, use git show-ref or git for-each-ref; this also works for tags and
remote-tracking branches.

The git symbolic-ref, git rev-parse, git show-ref, and git for-each-ref commands are all
plumbing — that is, commands intended for use in scripts.You can request more information with -v (--verbose) or -vv. You can also limitbranches shown to only those matching the given shell wildcard with git branch
--list <pattern> (quoting the pattern to prevent its expansion by the shell, ifnecessary).Querying information about remotes, which includes the list of remotebranches, by using git remote show is described in Chapter 8, Advanced
Branching Techniques.
To list all tags, you can use the git tag command without any arguments, or git
tag --list; with git tag --list <pattern>, you can select which tags to show (suchas for branches), as in the following example:
$ git tag --list "v0.9*"
v0.99
v0.99.1
v0.99.2

Rewinding or resetting a branch

What do you do if you want to abandon the last commit and rewind (reset) thecurrent branch to its previous position? For this, you need to use the reset
command. It would change where the current branch points to. Note that,unlike the checkout command, the reset command does not change the workingdirectory by default; you need to use git reset --keep (to try to keep theuncommitted changes) or git reset --hard (to drop them). The result of suchreset operation is shown in Figure 2.7.

Figure 2.7 3 Rewinding a branch one commit back, to HEAD^, with the reset commandThe reset command and its effects on the working area will be explained inmore detail in Chapter 3, Managing Your Worktrees.
NOTE
The git reset <commit> command always changes where the current branch points to (moves the ref),
while git switch always modiües where the HEAD points to, either changing the current branch or
detaching it.

Deleting a branch
Because in Git, a branch is just a pointer and an external reference to the nodein the DAG of revisions, deleting a branch is just deleting a pointer. This meansthat deleting the branch does not immediately delete the history, but it mightmake it not accessible except via reflog. It is not kept forever, though; the
garbage collection process would remove unreferenced parts of the commit-graph file after the reflog entries expire.
IMPORTANT NOTE

Actually, deleting a branch also removes, irretrievably (at least, in the current Git version), the reflog for
the branch being deleted — that is, the log of its history of local operations.

Figure 2.8 3 Deleting the 'based-doc' branch that just got merged into 'master', while being on the
'master' branch that includes itYou can delete a branch with git branch --delete <branch-name>, or with branch -d,provided that the branch is not checked out anywhere.There is, however, one issue to consider — what happens if you delete abranch, and there is no other reference to the part of the project history itpointed to? Those revisions will become unreachable, and Git would deletethem after the HEAD reflog expires (which, with default configuration, is after30 days).

That is why Git would allow you to delete only the completely merged-inbranch, whose commits are all reachable from HEAD, as in the example in Figure
2.8 (or if the branch deleted is reachable from its upstream branch, if it exists).To delete a branch that was not merged in, which risks parts of the DAGbecoming unreachable, as seen in Figure 2.9, you need a stronger command —namely, git branch -D or git branch --delete --force. Git will suggest this operationwhen refusing to delete an unmerged branch.

Figure 2.9 3 Deleting the unmerged branch, which results in parts of the history being unreachableYou can check whether the branch was merged into any other branch bychecking whether git branch --contains <branch> shows anything. You cannotdelete the current branch.If you ever switched to the branch that got deleted, this event and the switchaway from the branch will be kept in the reflog for HEAD. This information canthen be used to undelete that branch, or rather, to recreate it:
$ git reflog --no-decorate HEAD
…
3a59408 HEAD@{3}: checkout: moving from base-doc to master

Changing the branch name
Sometimes, the name chosen for a branch needs to be changed. This canhappen, for example, if the scope of the branch changes during thedevelopment and the old name no longer fits it. Names of branches will appearand be kept forever, by default, in commit messages for merge commits; that’swhy you want them to be meaningful.
You can rename a branch with git branch -m (use -M if the target name exists andyou want to overwrite it); it will rename a branch and move the correspondingreflog. This will also change the name of the branch in all of its configuration(its description, its upstream, and so on).The renaming event is stored in the reflog, where you can find the previousname and use it to undo the operation (to rename the branch back to the old

name):
$ git reflog --no-decorate new-name
3a59408 new-name@{0}: branch: renamed refs/heads/old-name to refs/heads/new-name

SummaryIn this chapter, we have learned how to develop with Git and extend the projecthistory by creating new commits and new lines of development (branches). Weknow what it means to create a commit, amend a commit, create a branch,switch a branch, rewind a branch, and delete a branch from the point of view ofthe graph of revisions.
This chapter showed a very important Git feature — the staging area forcreating commits, also known as the index. This is what makes it possible tountangle the changes to the working directory by selectively and interactivelychoosing what to commit.We learned how to examine the changes to the working area before creating acommit. This chapter described, in detail, the extended unified diff format thatGit uses to describe the changes.
We also learned about the concept of detached HEAD (or anonymous branch)and orphan branches.
In Chapter 3, Managing Your Worktrees, we will learn how to use Git toprepare new commits and how to configure it to make our work easier. We willalso learn how to examine, search, and study the contents of the workingdirectory, the staging area, and the project history. We will also see how to useGit to deal with interruptions and recover from mistakes.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. How does creating a new commit change the history stored in the repository — that is, how does itchange the graph of revisions and where branch heads point to?
2. What is the difference between git commit and git commit --all (or git commit -a)?
3. How do you check what changes you have made in the local repository? How do you undo them?
4. What is the simplest way to fix an error in the commit message of the last commit on the currentbranch?

5. What do you do when you realize that the changes you started to write (but didn’t commit) should bemade on a separate new branch?
6. What is the simplest way to switch to the previous branch, and when can it fail?

AnswersHere are the answers to the questions given above:
1. Creating a new commit makes a new node in the graph of revisions that has a previous commit as aparent, advances the branch head ref for the current branch to the freshly created node, and keeps

HEAD unchanged.
2. The git commit operation creates the new commit out of the staging area contents, while the git

commit --all creates it out of the changes to all tracked files.
3. You can use git status to examine what files have changed and git diff or git diff HEAD toexamine the changes. You can find the explanation of how to undo changes you have made in the full

git status output.
4. To change the commit message (that is, the description of the changes) of the last commit, you canuse git commit --amend.
5. Because uncommitted changes do not belong to a branch, you can simply create a new branch andswitch to it with git switch -c <branch-name> or git checkout -b <branch-name>.
6. To switch to the previous branch, you can use git switch - (with - in place of the branch name). Gitfinds what the previous branch was by searching reflogs. This operation can fail if the branch wasdeleted or rename

Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:
Scott Chacon, Ben Straub. Pro Git, 2 Edition (2014), Apress, Chapter 2.2, Git Basics - Recording
Changes to the Repository: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
Jakub Narębski. How to read the output from git diû? (the answer to the question on StackOverflow):https://stackoverflow.com/questions/2529441/how-to-read-the-output-from-git-diff/2530012#2530012
Dragos Barosan. New in Git: switch and restore (2021): https://www.banterly.net/2021/07/31/new-in-git-switch-and-restore/
Junio C Hamano. Fun with a new feature in recent Git (2016), about the --sort option of the git
branch command: https://git-blame.blogspot.com/2016/05/fun-with-new-feature-in-recent-git.html
Tobias Günther. A look under the hood: how branches work in Git (2021):https://stackoverflow.blog/2021/04/05/a-look-under-the-hood-how-branches-work-in-git/

nd

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://stackoverflow.com/questions/2529441/how-to-read-the-output-from-git-diff/2530012#2530012
https://www.banterly.net/2021/07/31/new-in-git-switch-and-restore/
https://git-blame.blogspot.com/2016/05/fun-with-new-feature-in-recent-git.html
https://stackoverflow.blog/2021/04/05/a-look-under-the-hood-how-branches-work-in-git/

Ryan Tomayko. The Thing About Git (2008), about the tangled working copy problem, and how toresolve it in Git: https://tomayko.com/blog/2008/the-thing-about-git
Nick Quaranto. Reýog, your safety net (2009), on Gitready:http://gitready.com/intermediate/2009/02/09/reflog-your-safety-net.html

https://tomayko.com/blog/2008/the-thing-about-git
http://gitready.com/intermediate/2009/02/09/reflog-your-safety-net.html

3

Managing Your WorktreesThe previous chapter, Developing with Git, described how you can use Git forproject development, including how to create new revisions. In this chapter, wewill focus on learning how to manage a working directory (worktree) so thatyou can prepare content for a new commit. This chapter will teach you how tomanage your files in detail. It will also show you how to care for files thatrequire special handling while introducing the concepts of ignored files and fileattributes. Then, you will learn how to fix mistakes in handling files, both in theworking directory and in the staging area, as well as how to fix or split thelatest commit. Finally, you will learn how to safely handle interruptions in theworkflow with stashes and multiple working directories.The previous chapter also taught you how to examine changes. In this chapter,you will learn how to undo and redo those changes selectively, as well as howto view different versions of a file.
This chapter will cover the following topics:

Ignoring files – marking files as intentionally not being under version control
File attributes – path-specific configuration
Using various modes of the git reset command
Stashing away your changes to handle interruptions
Managing the working directory’s contents and the staging area
Multiple working directories (worktrees)

Ignoring filesThe files inside your working area (also known as the worktree) can be
tracked or untracked by Git. Tracked üles, as the name suggests, are thosefiles whose changes Git will follow. For Git, if a file is present in the staging
area (also known as the index), it will be tracked, and – unless specifiedotherwise – it will be a part of the next revision. You add files to be tracked, tohave them as a part of the project history.

THE PURPOSE OF THE STAGING AREA
The index, or the staging area, is used not only for Git to know which üles to track, but also as a kind of
scratchpad to create new commits, as described in Chapter 2, Developing with Git, and to help resolve
merge conýicts, as shown in Chapter 9, Merging Changes Together.Often, you will have some individual files or a class of files that you never wantto be a part of the project history, and never want to track. These can be youreditor backup files, or automatically generated files that are produced by theproject’s build system (executables, object files, minified sources, source maps,and so on).
You don’t want Git to automatically add such files, for example, when doing
bulk add with git add :/ (adding the entire working tree) or with git add .(adding the current directory), or when updating the index to the worktree’sstate with git add --all.Quite the opposite: you want Git to actively prevent you from accidentallyadding them. You also want such files to be absent from the git status output asthere can be many of them. They could otherwise drown out legitimate new
unknown files there. You want such files to be intentionally untracked – that is,
ignored.
UN-TRACKING AND RE-TRACKING FILES
If you want to start ignoring a üle that was formerly tracked, such as when you’re moving from a hand-
generated HTML üle to using a lightweight markup language such as Markdown instead, you usually need
to un-track the üle without removing it from the working directory while adding it to the list of ignored
üles. You can do this with git rm --cached <file> (as shown in the output of git status). This
command removes the named üle from the staging area.

To add (start tracking) an intentionally untracked (that is, ignored) üle, you need to use git add --force
<file>, as Git will tell you.

Marking files as intentionally untracked (ignored)

If you want to mark a file or a set of files as intentionally ignored, you need toadd a shell glob pattern that matches files that you want to have ignored byGit to one of the following gitignore files, one pattern per line:
The per-user file, which can be specified by the core.excludesFile configuration variable. If thisconfiguration variable is not set, then the default value of $XDG_CONFIG_HOME/git/ignore is used.This, in turn, defaults to $HOME/.config/git/ignore if the $XDG_CONFIG_HOME environment variable isnot set or empty (where $HOME is the current user’s home directory).

The per-local repository $GIT_DIR/info/exclude file in the administrative area of the local clone ofthe repository (in most cases, $GIT_DIR points to the .git/ directory in the top-level directory of theproject).
The .gitignore files in the working directories of a project. These are usually tracked, and in thiscase, they are shared among all developers.

Some commands, such as git clean, also allow us to specify ignore patterns froma command line with the --exclude=<pattern> option.When deciding whether to ignore a path, Git checks all those sources in theorder specified in the preceding list, with the last matching pattern decidingthe outcome. The .gitignore files are checked in order, starting from the topdirectory of the project down to the directory of files to be examined.
To make .gitignore files more readable, you can use blank lines to separategroups of files (a blank line matches no files). You can also describe patterns orgroups of patterns with comments; a line starting with the hash character, #,serves as one (to ignore a pattern beginning with #, escape the first hashcharacter with a backslash, \ – for example, \#*#). Trailing spaces (at the end ofthe line) are ignored unless escaped with a backslash, \.Each line in the .gitignore file specifies a Unix glob pattern, a shell wildcard.The * wildcard matches zero or more characters (any string), while the ?wildcard matches any single character. You can also use character classes withbrackets, [...]. Take, for example, the following list of patterns:

*.[oa]
*~Here, the first line tells Git to ignore all files with the .a or .o extension – *.afiles are archive files (for example, a static library), and *.o files are object filesthat may be the products of compiling your code. The second line tells Git toignore all files ending with a tilde, ~; this is used by many Unix text editors tomark temporary backup files.If the pattern does not contain a slash, /, which is a path component separator,Git treats it as a shell glob and checks the filename or directory name for amatch, starting at the appropriate depth (this means the .gitignore file locationif the pattern is in such a file, or the top level of the repository otherwise). Theexception is patterns ending with a slash, /, which is used to have the pattern

only matched against directories but otherwise treated as if the trailing slashwas removed.
A leading slash matches the beginning of the pathname. This means thefollowing:

Patterns not containing a slash match everywhere in the repository; we can say that the pattern isrecursive.For example, the *.o pattern matches object files anywhere, both at the
.gitignore file level and in subdirectories such as file.o, obj/file.o, and others.
Patterns ending with a slash only match directories but are otherwise recursive (unless they containother slashes).For example, the auto/ pattern will match both the top-level auto directoryand the src/auto directory but will not match the auto file (or a symbolic linkeither).
To anchor a pattern and make it non-recursive, add a leading slash.For example, the /TODO pattern will match and make Git ignore the current-level TODO file, but not files in subdirectories, such as src/TODO.
Patterns containing a slash inside are anchored and non-recursive, and wildcard characters (*, ?, or acharacter class such as [ao]) do not match the directory separator that is the slash, /. If you want thepattern to match any number of directories, use two consecutive asterisks, **, in place of the pathcomponent (which means **/foo, foo/**, and foo/**/bar).For example, doc/*.html matches the doc/index.html file but not
doc/api/index.html; to match HTML files anywhere inside the doc directory, youcan use the doc/**/*.html pattern (or put the *.html pattern in the doc/.gitignorefile).

You can also negate a pattern by prefixing it with an exclamation mark, !; anymatching file excluded by the earlier rule is then included (non-ignored) again.For example, to ignore all generated HTML files, but include the one HTML filegenerated by hand, you can put the following in the .gitignore file:
ignore html files, generated from AsciiDoc sources
*.html
except for the files below which are generated by hand
!welcome.html

NOTE
For performance reasons, Git doesn’t go into excluded directories, and (up until Git 2.7) this means that
you cannot re-include a üle if a parent directory is excluded.

This means that to ignore everything except for the subdirectory, you need towrite the following:
exclude everything except directory t0001/bin
/*
!/t0001
/t0001/*
!/t0001/binTo match a pattern beginning with !, escape it with a backslash, similar to whatyou need to do for the # character – for example, use the \!important!.md patternto match the file named !important!.md.

Which types of files should be ignored?

Now that we know how to mark files as intentionally untracked (ignored), thereis the question of which files (or classes of files) should be marked as such.Another issue is where we should add a pattern for ignoring specific types offiles – that is, in which of the three types of .gitignore files.
The first rule is that you should never track automatically generated üles(usually generated by the build system of a project). If you add such files to therepository and if you track them, there is a high chance that they will get out ofsync with their source. Besides, they are not necessary, as you can always re-generate them. The only possible exception is generated files where the sourcerarely changes and generating them requires extra tools that developers mightnot have (if the source changes more often, you can use an orphan branch tostore these generated files and refresh this branch only at release time; see
Chapter 2, Developing With Git, the Creating orphan branches section for moreinformation).
Those automatically generated files are the files that all developers will want toignore. Therefore, they should go into a tracked .gitignore file. This list ofpatterns will be version-controlled and distributed to other developers via aclone; this way, all developers will get it. You can find a collection of useful
.gitignore templates for different programming languages athttps://github.com/github/gitignore, or you can use the web app athttps://gitignore.io.
Second, there are temporary üles and byproducts specific to one user’stoolchain; those should usually not be shared with other developers. If the

https://github.com/github/gitignore
https://gitignore.io/

pattern is specific to both the repository and the user – for example, auxiliaryfiles that live inside the repository but are specific to the workflow of a user(for example, to the IDE used for the project) – it should go into the per-clone
$GIT_DIR/info/exclude file.
Patterns that the user wants to ignore in all situations and are not specific tothe repository (or to the project) should generally go into a per-user .gitignorefile specified by the core.excludesFile config variable, set in the per-user (global)
~/.gitconfig config file (or ~/.config/git/config). This is usually ~/.config/git/ignoreby default.
IMPORTANT NOTE ABOUT THE PER-USER .GITIGNORE FILE
The per-user ignore üle cannot be ~/.gitignore as this would be the in-repository .gitignore üle for the
versioned user’s home directory if the user wants to keep the ~/ directory ($HOME) under version control.This is the place where you can put patterns that match the backup ortemporary files generated by your editor or IDE of choice.
IGNORED FILES ARE CONSIDERED EXPENDABLE
Warning: Do not add precious üles – that is, those you do not want to track in a given repository but whose
contents are important – to the list of ignored üles! The types of üles that are ignored (excluded) by Git are
either easy to regenerate (build products and other generated üles) or not important to the user
(temporary or backup üles).

Therefore, Git considers ignored üles expendable and will remove them without warning when required to
do a requested command – for example, if the ignored üle conýicts with the contents of the revision being
checked out.

Listing ignored files

You can list untracked ignored files by appending the --ignored option to the git
status command:
$ git status --ignored
On branch master
Ignored files:
 (use "git add -f <file>..." to include in what will be committed)
 rand.c~
no changes added to commit (use "git add" and/or "git commit -a")
$ git status --short --branch --ignored
master
!! rand.c~Instead of using git status --ignored, you can use the dry-run option of cleaningignored files, git clean -Xnd, or the low-level (plumbing) git ls-files command:

$ git ls-files --others --ignored --exclude-standard
rand.c~The latter command can also be used to list tracked üles that match ignore

patterns. If there are any such files, it might mean that some files need to beun-tracked (perhaps because what was once a source file is now generated), orthat ignore patterns are too broad. Since Git uses the existence of a file in thestaging area (cache) to know which files to track, this can be done with thefollowing command:
$ git ls-files --cached --ignored --exclude-standardAn empty result, like what’s shown here, means that everything is fine.

PLUMBING VERSUS PORCELAIN COMMANDS
Git commands can be divided into two sets: high-level porcelain commands intended for interactive usage
by the end user and low-level plumbing commands intended mainly for shell scripting. The major
diûerence is that high-level commands have outputs that can change and are constantly improving. For
example, the output of the git branch command in the detached HEAD case changed from (no branch) to
(detached from HEAD). Their output and behavior are also subject to the conüguration. Note that some
porcelain commands have the option to switch to unchanging output via --porcelain.

Another important diûerence is that plumbing commands try to guess what you meant, they have default
parameters, use the default conüguration, and so on. This isn’t the case with plumbing commands. You
need to pass the --exclude-standard option to the git ls-files command to make it respect the
default set of ignore üles.

You can ünd more on this topic in Chapter 13, Customizing and Extending Git.

Trick – ignoring changes in tracked files

You might have files in your repository that are changed but rarely committed.These can be various local configuration files that are edited to match the localsetup but should never be committed upstream. This can be a file containingthe proposed name for a new release, to be committed later when tagging thenext released version.
You would want to keep such files in a dirty state most of the time, but youwould like Git not to tell you about their changes all the time in case you missother changes because you’re used to ignoring such messages.
DIRTY WORKING DIRECTORY
The working directory is considered clean if it is the same as the committed and staged version and dirty
if any modiücations or changes have been made.

Git can be configured – or rather tricked in this case – to skip checking theworktree (to assume that it is always up to date), and to use the staged versionof the file instead. This can be done by setting the aptly named skip-worktree flagfor a file. For this, you would need to use the low-level git update-index command,which is the plumbing equivalent of the user-facing git add porcelain. You cancheck file status and flags with git ls-files, which will use the letter S for fileswith this flag set:
$ git update-index --skip-worktree GIT-VERSION-NAME
$ git ls-files -v
S GIT-VERSION-NAME
H …Note that this elision of the worktree also includes the git stash command; tostash away your changes and make the working directory clean, you need todisable this flag (at least temporarily). To make Git look at the workingdirectory version and start tracking changes to the file, use the followingcommand:
$ git update-index --no-skip-worktree GIT-VERSION-NAMEThis problem is caused by the fact that this use of the skip-worktree flag is notintended use; this flag was created to manage so-called sparse checkout – moreon that in Chapter 12, Managing Large Repositories.

IMPORTANT NOTE
There is a similar assume-unchanged ýag that can be used to make Git completely ignore any changes to
the üle, or rather assume that it is unchanged. Files marked with this ýag never show as changed in the
output of the git status or git diff command. The changes to such üles will not be staged, nor
committed.

This is sometimes useful when you’re working with a big project on a ülesystem that’s very slow at
checking for changes. However, do not use assume-unchanged to ignore changes to tracked üles. You are
promising that the üle didn’t change, lying to Git. This means, for example, that with git stash save
believing what you stated, you would lose your precious local changes.

File attributesThere are some settings and options in Git that can be specified on a per-pathbasis, similar to how ignoring files (marking files as intentionally untracked)works. These path-specific settings are called attributes.
To specify attributes for files matching a given pattern, you need to add a linewith a pattern, separated by a space and followed by a whitespace-separated

list of attributes, to one of the .gitattributes üles (similar to how .gitignorefiles work):
The per-user file, for attributes that should affect all repositories for a single user, specified by the
core.attributesFile configuration variable. By default, this is ~/.config/git/attributes
The per-repository .git/info/attributes file in the administrative area of the local clone of therepository, for attributes that should only affect a single specific clone of the repository (for one user’sworkflow).
The .gitattributes files in the working directories of a project, for those attributes that should beshared among developers.

The rules for how patterns are used to match files are the same as for the
.gitignore files, as described previously, except that there is no support fornegative patterns, and that patterns matching the directory do not recursivelymatch paths inside that directory.Each attribute can be in one of the following states for a given path: set(special value true), unset (special value false), set to a given value, orunspecified:

pattern* set -unset set-to=value !unspecified

NOTE
There can be no whitespace around the equals sign, =, when setting an attribute to a string value!When more than one pattern matches the path, a later line overrides an earlierline on a per-attribute basis. .gitattributes files are used in order, from the per-user, through per-repository, to the .gitattributes file in a given directory, likefor .gitignore files.
Identifying binary files and end-of-line
conversions

Different operating systems and different applications can differ in how theyrepresent newlines in text files. Unix and Unix-like systems (including Mac OSX) use a single control character LF (\n), while Windows uses CRLF – that is,CR followed by LF (\n\r); macOS up to version 9 used CR alone (\r).That might be a problem for developing portable applications if differentdevelopers use different operating systems. We don’t want to have spuriouschanges because of different end-of-line conventions. Therefore, Git makes it

possible to automatically normalize end-of-line characters to be LF in therepository on commit (check-in), and optionally to convert them to CR + LF in theworking directory on checkout.
You can control whether a file should be considered for end-of-line conversionwith the text attribute. Setting it enables end-of-line conversion, and unsettingit disables it. Setting it to the auto value makes Git guess if the given file is atext file; if it is, end-of-line conversion is enabled. For files where the textattribute is unspecified, Git uses core.autocrlf to decide whether to treat them as
text=auto case.
HOW GIT DETECTS IF A FILE CONTAINS BINARY DATA
To decide whether a üle contains binary data, Git examines the beginning of the üle for an occurrence of a
zero byte (the null/NUL character or \0). When deciding whether to convert a üle (as in end-of-line
conversion), the criterion is stricter: for a üle to be considered text, it must have no nulls, and no more than
around 1% of it should be non-printable characters.

However, this means that Git usually considers üles saved in the UTF-16 encoding to be binary.To decide what line ending type Git should use in the working directory for textfiles, you need to set up the core.eol configuration variable. This can be set to
crlf, lf, or native (the last is the default). You can also force a specific lineending for a given file with the eol=lf or eol=crlf attribute:
Old crlf attribute New text and eol attributes

crlf text

-crlf -text

crlf=input eol=lf

Table 3.1 – Backward compatibility of the text and eof attributes with the crlf attributeEnd-of-line conversion bears a slight chance of corrupting data. If you want Gitto warn or prevent conversion for files with a mixture of LF and CRLF lineendings, use the core.safecrlf configuration variable.Sometimes, Git might not detect that a file is binary correctly, or there may besome type of file that is nominally text, but which is opaque to a human reader.Examples include PostScript documents (*.ps) and Xcode build settings(*.pbxproj). Such files should not be normalized and using textual diff for them

doesn’t make sense. You can mark such files explicitly as binary with the binaryattribute macro (which is equivalent to -text -diff):
*.ps binary
*.pbxproj binary

WHAT TO DO IF FILES START WITHOUT END-OF-LINE
NORMALIZATION
When the normalization of line endings is turned on in the repository (by editing the .gitattributes üle),
you should also force the normalization of üles. Otherwise, the change in newline representation will be
misattributed to the next change to the üle. This can be done, for example, with the git add --
renormalize command. This should also be done when changing which üles have the text attribute.

Diff and merge configuration
In Git, you can use the attributes functionality to configure how to showdifferences between different versions of a file, and how to do a three-waymerge of its contents. This can be used to enhance that operation, making diffmore attractive and merge less likely to conflict. It can even be used to make itpossible to effectively diff binary files, or to describe differences in a specificway.
In both cases, we would usually need to set up the diff and/or merge driver. Theattributes file only tells us which driver to use; the rest of the information iscontained in the configuration file, and this configuration is not automaticallyshared among developers, unlike the .gitattributes file (though you can create ashared configuration fragment, add it to the repository, and have developersinclude it in their local per-repository config via the relative include.path). Thereason for this behavior is easy to understand – the tool’s configuration may bedifferent on different computers, and some tools may be not available for thedeveloper’s operating system of choice. But this means that some informationneeds to be distributed out-of-band.
There are, however, a few built-in diû drivers and merge drivers that anyonecan use without further configuration.
Generating diffs and binary filesDiffs that are generated for particular files are affected by the diff attribute. Ifthis attribute is unset, Git will treat files as binary concerning generating diffs

and show just binary üles diûer (or show a binary diff). Setting it will forceGit to treat a file as text, even if it contains byte sequences that normally markthe file as binary, such as the null (\0) character.
You can use the diff attribute to make Git more effectively describe thedifferences between two versions of a binary file via a diû driver. In this case,you have two options: the easier one is to tell Git how to convert a binary fileinto a text format, or how to extract text information (for example metadata)from the binary data. This text representation is then compared using theordinary textual diff command. Even though conversion to text usually losessome information, the resulting differences is useful for human viewing (eventhough it is not information about all the changes).This can be done with the textconv config key for a diff driver, where you specifya program that takes the name of the file as an argument and returns a textrepresentation on its output.
For example, you might want to see the difference in the contents of MicrosoftWord documents and see the difference in metadata for JPEG images. First, youneed to put something like this in your .gitattributes file:

*.doc diff=word2text
*.jpg diff=exifFor example, you can use the catdoc program to extract text from binaryMicrosoft Word documents and exiftool to extract EXIF metadata from JPEGimages.

Because conversion can be slow, Git provides a mechanism to cache the outputin the form of the Boolean cachetextconv attribute; the cached data is storedusing notes (this mechanism will be explained in Chapter 10, Keeping History
Clean). The part of the configuration file that’s responsible for this setup lookslike this:

[diff "word2text"]
 textconv = catdoc
cached data will be stored in refs/notes/textconv/exif
[diff "exif"]
 textconv = exiftool
 cachetextconv = trueYou can see what the output of the textconv filter looks like with git show, or with

git cat-file -p with the --textconv option.

The more complicated but also more powerful option is to use an external diû
driver (an attribute version of the global driver that can be specified with the
GIT_EXTERNAL_DIFF environment variable or the diff.external configuration variable)with the command option of the diff driver. However, when choosing to use thisoption, you lose some options that Git diff gives for free: colorization, word diff,and combined diff for merges.
Such a program will be called with seven parameters: path, old-file, old-hex, old-
mode, new-file, new-hex, and new-mode. Here, old-file and new-file are files that the diffdriver can use to read the contents of two versions of the differing file, old-hexand new-hex are SHA-1 identifiers of file contents, and old-mode and new-mode areoctal representations of file modes. The command is expected to generate a
diff-like output. For example, you might want to use the XML-aware diff tool tocompare XML files:
$ echo "*.xml diff=xmldiff" >>.gitattributes
$ git config diff.xmldiff.command xmldiff-wrapper.shThis example assumes that you have written the xmldiff-wrapper.sh shell script toreorder options so that they fit the expectations of the XML diff tool.

Configuring diff outputThe diff format that Git uses to show changes for users was described in detailin Chapter 2, Developing with Git. Each group of changes (called a hunk) intextual diff output is preceded by the hunk header line, as shown here:
@@ -18,6 +19,8 @@ int cmd_http_fetch(int argc, const char **argv,The text after the second @@ is meant to describe the section of the file wherethe chunk is; for C source files, it is the start of the function. The decision onhow to detect the beginning of such a section depends on the type of file. Gitallows you to configure this by setting the xfuncname configuration option of the
diff driver to the regular expression, which matches the description of thesection of the file. For example, for LaTeX documents, you might want to usethe following configuration for the tex diff driver (you don’t need to as tex is oneof the pre-defined, built-in diff drivers):

[diff "tex"]
 xfuncname = "^(\\\\(sub)*section\\{.*)$"
 wordRegex = "\\\\[a-zA-Z]+|[{}]|\\\\.|[^\\{}[:space:]]+"

The wordRegex configuration defines what word is to define it for the git diff --word-
diff command (described in Chapter 2, Developing with Git, near the end of the
Uniüed diû output section). Here, it’s being used for LaTeX documents.
NOTE
You would need to double the backslashes: \\ matches the literal backslash, \, in a regexp, so you need to
use \\\\ here (which is typical for storing regexps in strings).

Performing a three-way mergeYou can also use the merge attribute to tell Git to use specific merge strategiesfor specific files or classes of files in your project. By default, Git will use thethee-way merge driver (similar to rcsmerge) for text files, and it will take our(being merged) version and mark the result as a conflicted merge for binaryfiles. You can force a three-way merge by setting the merge attribute (or by using
merge=text); you can force binary-like merging by unsetting this attribute (with -
merge, which is equivalent to merge=binary).
You can also write your merge driver or configure Git to use a third-partyexternal merge driver. For example, if you keep a GNU-style ChangeLog file inyour repository (with a curated list of changes with their description), you canuse the git-merge-changelog command from the GNU Portability Library(Gnulib). You need to add the following to the appropriate Git config file:

[merge "merge-changelog"]
 name = GNU-style ChangeLog merge driver
 driver = git-merge-changelog %O %A %BHere, the token, %O, in merge.merge-changelog.driver will be expanded to the name ofthe temporary file holding the contents of the merge ancestor’s (old) version.The %A and %B tokens expand to the names of temporary files holding contentsbeing merged – that is, the current (ours, merged into) version and the otherbranches’ (theirs, merged) version, respectively. The merge driver is expected toleave the merged version in the %A file, exiting with a non-zero status if there isa merge conflict. You can also use %L to denote the conflict marker size and %P tofind a pathname where the merged results will be stored.

NOTE
You can use a diûerent driver for an internal merge between common ancestors (when there is more than
one). You can do this by setting the merge.*.recursive conüguration variable for a given driver. For
example, here, you can use the predeüned binary driver.

Of course, you will also need to tell Git to use this driver for ChangeLog files,adding the following line to .gitattributes:
ChangeLog merge=merge-changelog

Transforming files (content filtering)
Sometimes, the format of the content you want to put in a version controlsystem may depend on where it is stored, be it on disk or in the repository, withdifferent shapes in different places that are more convenient for Git, theplatform (operating system), the filesystem, and the user to use. End-of-lineconversion can be considered a special case for such an operation.
To do this, you need to set the filter attribute for appropriate paths andconfigure the clean and smudge commands of the specified filter driver (eithercommand can be left unspecified for a pass-through filter). When checking outthe file matching the given pattern, the smudge command is fed file contents fromthe repository in its standard input, and its standard output is used to updatethe file in the working directory. See Figure 3.1 for details:

Figure 3.1 – The <smudge= ülter is run on checkout (when writing üles to the working directory)Similarly, the clean command of a filter is used to convert the contents of theworktree file into a shape suitable to be stored in the repository; see Figure

3.2:

Figure 3.2 – The <clean= ülter is run when üles are staged (added to the index, also known as the staging
area)When specifying a command, you can use the %f token, which will be replacedby the name of the file the filter is working on.One simple example of how you can use this feature is to use the rezip script for

OpenDocument Format (ODF) files. ODF documents are ZIP archives ofmainly XML files. Git uses compression itself and also does deltaification (butcannot do it on already compressed files); the idea is to store uncompressedfiles in the repository but to check out compressed files:
[filter "opendocument"]
 clean = "rezip -p ODF_UNCOMPRESS"
 smudge = "rezip -p ODF_COMPRESS"Of course, you also need to tell Git to use this filter for all kinds of ODF files:
*.odt filter=opendocument
*.ods filter=opendocument
*.odp filter=opendocumentAnother example of an advisory filter is to use the indent program to force acode formatting convention, as shown in the following example, or gofmt for theGo programming language. A similar example would be to replace tabs withspaces on check-in:

[filter "indent"]
 clean = indentYet another example is nbdev, where you can install a filter that uses the

nbdev_clean command to strip metadata and cell output from Jupyter Notebookfiles. This is done to reduce the number of merge conflicts and to avoid storinggenerated data in the repository.
Obligatory file transformationsAnother use of content filtering is to store the content that cannot be directlyused in the repository and turn it into a usable form upon checkout.One such example might be to use .gitattributes files to configure Git so that itstores large binary files outside the Git repository (such files are often onlyused by a subset of developers); inside the repository, there is only an identifierthat allows us to get file contents from external storage. That’s how git-mediaworks:
$ git config filter.media.clean "git-media filter-clean"
$ git config filter.media.smudge "git-media filter-smudge"
$ echo "*.mov filter=media -crlf" >> .gitattributes

TIP
You can ünd the git-media tool at https://github.com/alebedev/git-media. Other similar tools will be
mentioned in Chapter 12, Managing Large Repositories, as one of the possible solutions to the problem of
handling large üles.Another example of obligatory transformations would be encrypting sensitivecontent or replacing a local sensitive program configuration that is required foran application to work (for example, a database password) with a placeholder.Because running such a filter is, like in the preceding example, required to getuseful content, you can mark it as such:

[[filter "clean-password"]
 clean = sed -e 's/^pass = .*$/pass = @PASSWORD@/'
 smudge = sed -e 's/^pass = @PASSWORD@/pass = passw0rd/'
 required

IMPORTANT NOTE
This is only a simpliüed example; in real use, you would have to consider the security of the conüg üle itself
if you do this or store the real password in an external smudge script. In such a case, you should also set
up pre-commit, pre-push, and update hooks to ensure that the password won’t make it to the public
repository (see Chapter 13, Customizing and Extending Git, for details).

https://github.com/alebedev/git-media

If many files need to be processed, and the time it takes to invoke and run the
clean and smudge scripts becomes a problem, you can configure Git to use aprogram that will process all files with a single filter invocation for the entirelifetime of a Git command. You can define such a filter with a process key inplace of clean and smudge.
Keyword expansion and substitution

Sometimes, though rare, there is a need to have a piece of dynamic informationabout the versioned file in the contents of the file itself. To keep suchinformation up to date, you can request the version control system to perform
keyword expansion: replace the keyword anchor in the form of a string oftext (in the file contents) formatted as $Keyword$, with the keyword inside dollarcharacters (keyword anchor). This is usually replaced by a version-controlsystem with $Keyword: value$, which is a keyword followed by its expansion.The main problem with doing this in Git is that you cannot modify the filecontents stored in the repository with information about the commit afteryou’ve committed because of the way Git works (more information about thiscan be found in Chapter 10, Keeping History Clean). This means that keywordanchors must be stored in the repository as-is, and only expanded in theworktree on checkout. However, this is also an advantage; you would get nospurious differences due to keyword expansion when examining the history.
The only built-in keyword that Git supports is Id: its value is the SHA-1identifier of the file contents (the SHA-1 checksum of the blob objectrepresenting the file contents, which is not the same as the SHA-1 of the file;see Chapter 10, Keeping History Clean, to learn how objects are constructed).You need to request this keyword expansion by setting the ident attribute for afile.However, you can write your keyword expansion support with an appropriate
filter while defining the smudge command, which would expand the keyword, andthe clean command, which would replace the expanded keyword with itskeyword anchor.
With this mechanism you can, for example, implement support for the $Date$keyword, expanding it on checkout to the date when the file was last modified:

[filter "dater"]
 clean = sed -e 's/\\\$Date[^\\\$]*\\\$/\\\$Date\\\$/'
 smudge = expand_date %fThe expand_date script, which is passed the name of the file as an argument,could run the git log --pretty=format:"%ad" "$1" command to get the substitutionvalue, for example.However, you need to remember another limitation: for better performance, Gitdoes not touch files that did not change, be it on commit, on switching thebranch (on checkout), or on rewinding the branch (on reset). This means thatthis trick cannot support keyword expansion for the date of the last revision ofa project (as opposed to the last revision that changed the file).

If you need to have such information in distributed sources (for example, thedescription of the current commit, or how long it was since the tagged release),you can either make it a part of the build system, or use keyword substitutionfor the git archive command. The latter is quite a generic feature: if the export-
subst attribute is set for a file, Git will expand the $Format:<PLACEHOLDERS>$generalized keyword when adding the file to an archive.
LIMITATION OF THE KEYWORD EXPANSION WITH EXPORT-SUBST
The expansion of the $Format$ meta-keyword depends on the availability of the revision identiüer; it
cannot be done if you, for example, pass the SHA-1 identiüer of a tree object to the git archive
command.The placeholders are the same as for the --pretty=format: custom formats for git
log, which are described in Chapter 4, Exploring Project History. For example,the $Format:%H$ string will be replaced (not expanded) by the commit hash. It isan irreversible keyword substitution; there is no trace of the keyword in theresult of the archive (export) operation.
Other built-in attributes

You can also tell Git not to add certain files or directories when generating anarchive. For example, in the user-facing archive, you may not want to includethe directory with distribution tests, which are useful for the developer but notfor end users (those tests may require additional tools or checking the qualityof the program and processing it rather than checking the correctness of the

application behavior). This can be done by setting the export-ignore attribute –for example, by adding the following line to the .gitattributes file:
Do not include extra tests in the archive
xt/ export-ignoreAnother thing that can be configured with file attributes is defining what diffand apply should consider a whitespace error for specific types of files; this isa fine-grained version of the core.whitespace configuration variable. Note that thelist of common whitespace problems to take notice of should use commas as anelement separator, without any surrounding whitespace, when put in the

.gitattributes file. See the following example (taken from the Git project):
* whitespace=!indent,trail,space
*.[ch] whitespace=indent,trail,space
*.sh whitespace=indent,trail,spaceWith file attributes, you can also specify the character encoding that is usedby a particular file by providing it as a value of the encoding attribute. Git canuse it to select how to display the file in GUI tools (for example, gitk and git

gui). This is a fine-grained version of the gui.encoding configuration variable andis only used when explicitly asked for due to performance considerations. Forexample, GNU gettext Portable Object (.po) files holding translations shoulduse the UTF-8 encoding:
/po/*.po encoding=UTF-8To have Git convert between UTF-8 encoding in the staging area and therepository, as well as specify the encoding of a file in the working directory oncheckout, you can use the working-tree-encoding attribute. For example,

PowerShell script üles (*.ps1) are sometimes encoded in UTF-16; filesencoded using this encoding are interpreted by Git as binary. For diff and othercommands to work correctly, you might want to use the following command:
*.ps1 text working-tree-encoding=UTF-16LE eol=CRLF

NOTE
Reencoding might slow down certain Git operations.

Defining attribute macros

In the Identifying binary üles and end-of-line conversions section, we learnedhow to mark binary files with the binary attribute. The binary attribute is the
attribute macro, expanding to -diff -merge -text (unsetting three fileattributes). It would be nice to define such macros for arbitrary combinations ofattributes. There can be more than one pattern matching a given type of file,but one .gitattributes line can contain only one file pattern. If we want to havethe same attributes for different types of files, attribute macros allow avoidingduplication.
Git allows us to define such macros, but only in top-level .gitattributes files,namely core.attributesFile, .git/info/attributes, or .gitattributes in the main (top-level) directory of a project. The built-in binary macro could have been definedas follows:

[attr]binary -diff -merge -textYou can also define your own attributes. In this case, you can use the git check-
attr command to programmatically check which attributes are set for a givenfile, or what the value is of an attribute for a set of files.
Fixing mistakes with the reset commandAt any stage during development, you might want to undo an operation, fixmistakes, or abandon your current work. There is no git undo command in coreGit, and neither is there support for the universal --undo option in Gitcommands, though many commands have an --abort option to abandon current
work in progress (WIP). One of the reasons why there is no such command oroption yet is the ambiguity on what needs to be undone (especially for multi-step operations).Many mistakes can be fixed with the help of the git reset command. It can beused for various purposes and in various ways; understanding how thiscommand works will help you in using it in any situation, which is not limited tothe provided example usage.
Note that this section only covers the full-tree mode of git reset; the descriptionof what git reset -- <file> does, which is an alternative to using the moremodern git restore <file> command, has been left for the Managing worktree
and staging area section at the end of this chapter.

Rewinding the branch head, softly

The git reset command in its full-tree mode affects the current branch head,and can also affect the index (the staging area) and the working directory. Thisreset does not change which branch is current, as opposed to git checkout or git
switch.To reset only the current branch head and not touch the index or the workingtree, you can use git reset --soft [<revision>] (if a revision is not given, it defaultsto HEAD):

Figure 3.3 – Before and after a soft resetEffectively, we are just changing the pointer of the current branch (master in theexample shown in Figure 3.3) to point to a given revision (HEAD^ – the previouscommit in the example). Neither the staging area nor the working directory isaffected. This leaves all your changed files (and all files that differ between theold and new revision pointed by branch) in the Changes to be committedstate, as git status would put it.
Removing or amending a commitThe way the command works means that a soft reset can be used to undo theact of creating a commit. This can be used to amend a commit, though it is fareasier to simply use the --amend option of git commit.
Let’s take a look at the following command:
$ git commit --amend [<options>]This is equivalent to the following:

$ git reset --soft HEAD^
$ git commit --reedit-message=ORIG_HEAD [<options>]The git commit --amend command also works for merge commits as opposed tousing a soft reset. When amending a commit, if you want to just fix the commitmessage, there will be no additional options. If you want to include a fix fromthe working directory without changing the commit message, you can add --all
--no-edit. If you want to fix the authorship information after correcting the Gitconfiguration, use --reset-author --no-edit.
You learned how amending a commit changes the graph of revisions in Chapter
2, Developing With Git, in the Amending a commit section.
Squashing commits with resetYou are not limited to rewinding the branch head to just the previous commit.Using a soft reset, you can squash a few earlier commits (for example, commitand bugfix, or introducing new functionality and using it), making one commitout of two (or more); alternatively, you can instead use the squash instruction of
interactive rebase, as described in Chapter 10, Keeping History Clean. Withthe latter, you can squash any series of commits, also in the middle of thehistory, not just the most recent ones. You can also use git merge --squash for this.
Resetting the branch head and the index

The default mode of reset command – the so-called mixed reset (because it isbetween the soft and hard forms) – changes the current branch head so that itpoints to a given revision, and also resets the index, putting the contents of thatrevision into the staging area. This mode is shown in Figure 3.4:

Figure 3.4 – Before and after a mixed resetThis leaves all your changed files (and all files that differ between the old andnew revision pointed by branch) in the Changes not staged for commit state,as git status would put it. The git reset --mixed command will also report whathas not been updated using the short status format:
$ git reset HEAD^
Unstaged changes after reset:
M README.mdThis version of the reset command can be used, for example, to undo alladditions of new files. This can be done by running git reset, if you didn’t stageany changes (or that you can put up with losing them). If you want to un-add aparticular file, use git rm --cached <file>.

Splitting a commit in two with resetYou can use a mixed reset to split a commit in two. First, run git reset HEAD^ toreset the branch head and the index to the previous revision. Then,interactively add changes that you want to have in the first commit, and thencreate this first commit from the index (git add -i and git commit). A secondcommit can then be created from the working directory state (git commit -a).If it is easier to interactively remove changes, that’s also an option. Use git
reset --soft HEAD^, interactively un-stage changes with an interactive per-filereset, create the first commit from the constructed state in the index, andcreate the second commit from the working directory.
Here, again, like for squashing commits, you can use the interactive rebase tosplit commits further in the history. The rebase operation will switch to the

appropriate commit, at which point the actual splitting can be done, asdescribed here.
Saving and restoring state with the WIP commitSuppose you are interrupted by an urgent bugfix request while you are in themiddle of work on the development branch. You don’t want to lose yourchanges, but the worktree is a bit of a mess, and you are unable to finish thecommit in time. One possible solution is to save the current state of theworking area by creating a temporary commit:
$ git commit -a -m 'snapshot WIP (Work In Progress)'Then, you can handle the interruption, switching to the maintenance branchand creating a commit to fix the issue. At this point, you need to go back to theprevious branch (by using checkout), remove the WIP commit from the history(using a soft reset), and go back to the un-staged starting state (with a mixedreset), as follows:
$ git switch -
$ git reset --soft HEAD^
$ git resetUsually, though it is much easier to just use git stash instead to handleinterruptions, see the Stashing away your changes section in this chapter. Onthe other hand, such temporary commits can be shared with other developers,as opposed to stash (because stash stack is based on purely local data – thereflog).
Discarding changes and rewinding the branch
Sometimes, your files will get in such a mess that you want to discard allchanges and return the working directory and the staging area (the index) tothe last committed state to the last good version. In other cases, you mightwant to rewind the state of the repository to an earlier version. In suchinstances, a hard reset is what you need; it will change the current branchhead while resetting the index and the working tree. Any changes to anytracked files will be discarded:

Figure 3.5 – Before and after a hard resetThis command can be used to undo a commit as if it had never happened, byremoving it. Running git reset --hard HEAD^ will effectively discard the lastcommit (though it will be available for a limited time via reflog) unless thiscommit can be reached from some other branch.
Another common usage is to discard changes to the working directory with git
reset --hard, which resets to the last committed state.
IMPORTANT NOTE
It is very important to remember that a hard reset would irrecoverably remove all changes from the staging
area and working directory. You cannot undo this part of the operation! Changes are lost forever!

Moving commits to a feature branchSay that you were working on something on the master branch, and you havealready created a sequence of commits. You have realized that the feature youare working on is more involved, and you want to continue polishing it on aseparate topic branch, as described in Chapter 8, Advanced Branching
Techniques. You want to move all those commits that are in master (let’s say, thelast three revisions) to the aforementioned feature branch.You need to create the feature branch, save uncommitted changes (if any),rewind the master branch while removing those topical commits from it, andswitch to the feature branch to continue working (or you can use rebaseinstead):
$ git branch feature/topic
$ git stash
No local changes to save
$ git reset --hard HEAD~3

HEAD is now at f82887f before
$ git switch feature/topic
Switched to branch 'feature/topic'Of course, if there were local changes to save (there were none in thepreceding example), this preceding series of commands would have to befollowed by git stash pop.

Undoing a merge or a pullHard resets can also be used to abort a failed merge. You can use git reset --
hard HEAD (here, HEAD is the default value for revision and can be omitted), forexample, if you decide that you don’t want to resolve the merge conflict at thistime (though with modern Git you can use git merge --abort instead).You can also remove a successful fast-forward pull or undo a rebase (and manyother operations while moving the branch head) with git reset --hard ORIG_HEAD.(Here, you can use HEAD@{1} instead of ORIG_HEAD.)
Safer reset – keeping your changes

A hard reset will discard your local changes, similar to how git switch --discard-
changes or git checkout --force would. Sometimes, you might want to rewind thecurrent branch while keeping the local changes: that’s what git reset --keep isfor.

Figure 3.6 – Before and after a successful git reset --keep HEAD^ commandThis mode resets the staging area (index entries) but retains the unstaged(local) changes that are currently in the working directory; see Figure 3.6. If itis not possible, the reset operation is aborted:

$ git reset --keep HEAD^
error: Entry 'README' not uptodate. Cannot merge.
fatal: Could not reset index file to revision 'HEAD^'.This means that local changes in the worktree are preserved and moved to thenew commit, in a similar way to how git checkout <branch> works withuncommitted changes. The successful case is a bit like stashing changes away,hard resetting, and then unstashing (but with a single atomic command).

HOW DOES SAFE RESET WORK?
The way git reset --keep <revision> works is by updating the version (in the working directory) of only
those üles that are diûerent between the revision we rewind to and HEAD. The reset is aborted if there is
any üle that is diûerent between HEAD and <revision> (and thus would need to be updated) and has local
uncommitted changes.

Rebasing current changes to an earlier revisionSuppose that you are working on something but you realize that what you havein your working directory should be in another branch, unrelated to a previouscommit. For example, you might have started to work on a bug while on the
master branch, and only then realized that it also affects the maintenancebranch, maint.This means that the fix should be put earlier in a branch, starting from thecommon ancestor of those branches (or a place where the bug was introduced).This would make it possible to merge the same fix both into master and maint, asdescribed in Chapter 15, Git Best Practices:
$ edit
$ git checkout -b bugfix-127
$ git reset --keep startAn alternate solution would be to simply use git stash to move changes:
$ edit
$ git stash
$ git switch -c bugfix-127 start
$ git stash pop

Stashing away your changesOften, when you’ve been working on a project, and things are in a messy statenot suitable for a permanent commit, you want to temporarily save the current

state and go to work on something else. The answer to this problem is the git
stash command.
Stashing takes the dirty state of your working area – that is, your modified
tracked files in your worktree and the state of the staging area – saves thisstate, and resets both the working directory and the index to the lastcommitted version (to match the HEAD commit), effectively running git reset --
hard HEAD. You can then reapply the stashed changes at any time.
You can also stash untracked files with the --include-untracked option.
Stashes are saved on a stack: by default, you apply the last stashed changes(stash@{0}), though you can list stashed changes (with git stash list) andexplicitly select any of the stashes.
Using git stash

If you don’t expect the interruption to last long, you can simply stash awayyour changes, handle the interruption, and then unstash them:
$ git stash
$ # ... handle interruption ...
$ git stash popBy default, git stash pop will apply the last stashed changes and delete the stashif applied successfully. To see what stashes you have stored, you can use git
stash list:
$ git stash list
stash@{0}: WIP on master: 049d078 atoi() is deprecated
stash@{1}: WIP on master: c264051 Add error checkingYou can use any of the older stashes by specifying the stash name as anargument, or simply its number. For example, you can run git stash apply
stash@{1} or git stash apply 1 to apply it, and you can drop it (remove it from thelist of stashes) with git stash drop stash@{1} or git stash drop 1; the git stash popcommand is just a shortcut for apply + drop.
The default description that Git gives to stashed changes (namely WIP on
<branch>) is useful for remembering where you were when stashing thechanges (it specifies the branch and commit) but doesn’t help you rememberwhat you were working on, and what has been stashed away. However, you canexamine the changes that were recorded in the stash as a diff with git stash show

-p. But if you expect that the interruption might be more involved, you shouldsave the current state to a stash while describing what you were working on:
$ git stash push -m 'Add <count>'
Saved working directory and index state On master: Add <count>
HEAD is now at 049d078 atoi() is deprecatedGit would then use the provided message to describe stashed changes whenlisting stashes:
$ git stash list
stash@{0}: On master: Add <count>
stash@{1}: WIP on master: c264051 Add error checkingSometimes, the branch you were working on when you ran git stash save haschanged enough that git stash pop fails because there are too many newrevisions past the commit you were on when stashing the changes. If you wantto create a regular commit out of the stashed changes, or just test stashedchanges, you can use git stash branch <branch name>. This will create a new branchat the revision you were at when saving the changes, switch to this branch,reapply your work there, and drop stashed changes.
Stash and the staging area

By default, stashing resets both the working directory and the staging area tothe HEAD version. You can make git stash keep the state of the index and reset theworking area to the staged state with the --keep-index option:

Figure 3.7 – The diûerence between git stash with and without --keep-index

This is very useful if you used the staging area to untangle changes in theworking directory, as described in the Selective commit section in Chapter 2,
Developing with Git, or if you want to split the commit in two, as described inthe Splitting a commit with reset section in this chapter. In both cases, youwould want to test each change before committing.
The workflow would look like this:
$ git add --interactive
$ git stash --keep-index
$ make test
$ git commit -m 'First part'
$ git stash popYou can also use git stash --patch to select how the working area should lookafter stashing away the changes.When restoring stashed changes, Git will ordinarily try to apply only savedworktree changes, adding them to the current state of the working directory(which must match the staging area). If there are conflicts while applying thestate, they are stored in the index as usual – Git won’t drop the stash if thereare conflicts.

You can also try to restore the saved state of the staging area with the --indexoption; this will fail if there are conflicts when you’re applying working treechanges (because there is no place to store conflicts since the staging area isbusy).
Stash internals
Perhaps you applied stashed changes, did some work, and then for some reasonwant to un-apply those changes that originally came from the stash. Maybe youmistakenly dropped the stash or cleared all stashes (which you can do with git
stash clear) and would like to recover them. Or perhaps you want to see how thefile looked when you stashed away changes. To do any of this, you will need toknow what Git does when creating a stash entry.
To stash away your changes, Git creates two automatic commits: one for theindex (staging area) and one for the working directory. With git stash --include-
untracked, Git creates an additional third automatic commit for untracked files.

The commit containing the work in progress (WIP) in the working directory(the state of files tracked from there) has the commit with the contents of thestaging area (the index) as its second parent. This WIP containing commit isstored in a special ref: refs/stash. Both the WIP (stash) and index commits havethe revision you were on when saving changes as their first parent.
We can see this by running git log --graph or gitk --all:
$ git stash save --quiet 'Add <count>'
$ git show-ref --abbrev
765b095 refs/heads/master
81ef667 refs/stash
$ gitk --allThis can be seen in the following figure:

Figure 3.8 – The structure of the stash without and with untracked üle information. Graphs were
generated with gitk --all on a newly created repository with a single commit and a stashWe had to use git show-ref here (we could have used git for-each-ref instead)because git branch -a only shows branches, not arbitrary refs.When saving untracked changes, with git stash --include-untracked, the situationis similar. Figure 3.8 shows that the untracked file commit is the third parent ofthe WIP commit and that it doesn’t have any parents. It only consists ofuntracked files, which you can check with git ls-tree -r stash@{<n>}^3.

Well, that’s how stashing works, but how does Git maintain the stack ofstashes? You may have noticed that the git stash list output and the stash@{<n>}notation therein looks like reflog; Git finds older stashes in the reflog for the
refs/stash reference:
$ git reflog stash --no-decorate
81ef667 stash@{0}: On master: Add <count>
bb76632 stash@{1}: WIP on master: Added .gitignoreThis is why you cannot share the stack of stashes: reflogs are local to therepository and are not and cannot be synchronized when pushing or fetching.

Un-applying a stash

Let’s take the first example from the beginning of this section: un-applyingchanges from the earlier git stash apply. One possible solution to achieve therequired effect is to retrieve the patch associated with working directorychanges from a stash, and apply it in reverse:
$ git stash show -p stash@{0} | git apply -R -Note the -p option that was applied to the git stash show command – it forcespatch output instead of a summary of changes. We could use git show -m stash@{0}(the -m option is necessary because a WIP commit representing the stash is amerge commit), or even simply git diff stash@{0}^-1, in place of git stash show -p.

Recovering stashes that were dropped erroneouslyLet’s try the second example: recovering stashes that were accidentallydropped or cleared. If they are still in your repository and were not removedduring the repository maintenance phase, you can search all commit objectsthat are unreachable from other refs and look like stashes (that is, they aremerged commits and have a commit message using a strict pattern).A simplified solution might look like this:
$ git fsck --unreachable |
grep "unreachable commit " | cut -d" " -f3 |
git log --stdin --merges --no-walk --grep="WIP on "The first line of this pipeline finds all unreachable (lost) objects, the second onefilters out everything but commits and extracts their SHA-1 identifiers, and thethird line filters out even more, showing only merge commits with a commitmessage containing the "WIP on " string.

This solution would not, however, find stashes with a custom message (thosecreated with git stash save "message"); you would need to add another --grep.
Managing worktrees and the staging areaIn Chapter 2, Developing with Git, we learned that, besides the working
directory (worktree) where you work on changes and the local repositorywhere you store committed changes as revisions, there is also a third sectionbetween them: the staging area, sometimes called the index.

In the same chapter, we learned how to examine the status of the workingdirectory, as well as how to view the differences. We saw how to create a newcommit out of the working directory or out of the staging area.
Now, it is time to learn how to examine and modify the state of individual files.
Examining files and directories
It is easy to examine the contents of the working directory: you can just use thestandard tools for viewing files (for example, an editor or pager) and examiningdirectories (for example, a file manager or the dir command). But how do weview the staged contents of a file or the last committed version?
One possible solution is to use the git show command with the appropriateselector. Chapter 4, Exploring Project History, will introduce and explain the
<revision>:<pathname> syntax to examine the contents of a file at a given revision.A similar syntax can be used to retrieve the staged contents, namely :<pathname>(or :<stage>:<pathname> if there is a merge conflict involving the given file; :
<pathname> in itself is equivalent to :0:<pathname>).Let’s assume that we are in the src/ subdirectory and want to see the contentsof the rand.c file there as it’s in the working directory, in the staging area (usingthe absolute and relative path), and in the last commit (also using the absoluteand the relative path):
src $ less -FRX rand.c
src $ git show :src/rand.c
src $ git show :./rand.c
src $ git show HEAD:src/rand.c
src $ git show HEAD:./rand.cTo see the list of files that are staged in the index, there is the git ls-filescommand. By default, it operates on the staging area contents, but it can alsobe used to examine the working directory. The latter feature can, as we haveseen in this chapter, be used to list ignored files. This command lists all files inthe specified directory. Alternatively, in the current directory, you can use :/ todenote the top-level directory of a project. The recursive behavior is caused bythe fact that the index is a flat list of files, similar to MANIFEST files.

Without using the --full-name option, it would show filenames relative to thecurrent directory (or the one specified as a parameter). In all examples, it is

assumed that we are in the src/ subdirectory, as seen in the command prompt:
src $ git ls-files
rand.c
src $ git ls-files --full-name :/
COPYRIGHT
Makefile
README
src/rand.cWhat about committed changes? How can we examine which files were in agiven revision? This is where git ls-tree comes to the rescue (note that it is aplumbing command and does not default to the HEAD revision):
src $ git ls-tree --name-only HEAD
rand.c
src $ git ls-tree --abbrev --full-tree -r -t HEAD
100644 blob 862aafd COPYRIGHT
100644 blob 25c3d1b Makefile
100644 blob bdf2c76 README
040000 tree 7e44d2e src
100644 blob b2c087f src/rand.cNote that git ls-tree is not recursive by default; you need to use the -r option.
Searching file contents
Let’s assume that you were reviewing code in the project and noticed anerroneous doubled semicolon, ;;, in the C source code. Or perhaps you wereediting the file and noticed a bug nearby. You fixed it, but you’re wondering,“How many of those mistakes are there?” You would like to create a commit tofix such errors.
Or perhaps you want to search the version that was scheduled for the nextcommit – that is the contents of the staging area. Perhaps you want to examinehow it looks in the next branch.With Git, you can use the git grep command:
$ git grep -e ';;'By default, this command will search tracked files in the working directory,from the current directory downwards, recursively. Note that when running theexample command, we will get many false positives from shell scripts, forexample. So, let’s limit the search space to only C source files:
$ git grep -e ';;' -- '*.c'

The quotes around *.c are necessary for Git to do the glob pattern expansion(path limiting) instead of git grep getting the list of files expanded by the shell.We still have many false matches from the forever loop C idiom:
for (;;) {With git grep, you can construct complex conditions, excluding false positives.Say that we want to search the whole project, not only the current directory,and avoid false positives:

$ git grep -e ';;' --and --not 'for *(.*;;' -- '**/*.c'To search the staging area, use git grep --cached or the equivalent – and perhapseasier to remember – git grep --staged. To search the next branch, use git grep
next --; this construction can be used to search any version.
Un-tracking, un-staging, and un-modifying files

If you want to undo some file-level operation (if, for example, you have changedyour mind about tracking files or staging changes), then look no further than
git status hints (add --ignored to get advice about ignored files):
$ git status --ignored
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
Untracked files:
 (use "git add <file>..." to include in what will be committed)
Ignored files:
 (use "git add -f <file>..." to include in what will be committed)You need to remember that only the contents of the working directory and thestaging area can be changed. Committed changes are immutable (though youcan rewind the history or replace it).If you want to undo adding a previously untracked file to the index – or removea formerly tracked file from the staging area so that it will be deleted (notpresent) in the next commit while keeping it in the working directory – use git
rm --cached <file>.
THE DIFFERENCE BETWEEN THE --CACHED (--STAGED) AND --
INDEX OPTIONS

Many Git commands, including git diff, git grep, and git rm, support the --cached option (or its alias,
--staged). Others, such as git stash, have the --index option (the index is an alternate name for the
staging area). These are not synonyms (as we will later see with git apply command, which supports
both).

The --cached option is used to ask the command that usually works on üles in the working directory to
only work on the staged contents instead. For example, git grep --cached will search the staging area
instead of the working directory, and git rm --cached will only remove a üle from the index, leaving it in
the worktree.

The --index option is used to ask the command that usually works on üles in the working directory to also
aûect the index, additionally. For example, git stash apply --index not only restores stashed working
directory changes but also restores the index.If you asked Git to record the state of some file in the staging area but changedyour mind, you can reset the staged contents of the file to the committedversion with git restore --staged <file> (--source=HEAD is the default) or git reset
HEAD -- <file>.If you edited a file incorrectly to the point that the working directory version isa mess and you want to restore it to the version from the index, use git restore
<file> (--worktree is the default if --staged is not given) or git checkout -- <file>. Ifyou staged some of this mess and would like to reset both the worktree and thestaging area to the last committed version, use git restore --worktree --staged
<file> or git checkout HEAD -- <file> instead.
IMPORTANT NOTE
These commands do not undo operations; they restore the previous state based on a backup that is the
worktree, the index, or the committed version. For example, if you staged some changes, modiüed a üle,
and then added modiücations to the staging area, you can reset the index to the committed version, but
not to the state after the ürst and before the second git add.

Resetting a file to the old version

You can use any revision when restoring a file, with a per-file reset and per-filecheckout. For example, to replace the current worktree version of the src/rand.cfile with the one from the previous commit, you can use git restore -s HEAD^
src/rand.c or git checkout HEAD^ -- src/rand.c (or redirect the output of git show
HEAD^:src/rand.c to a file). To put the version from the next branch into the stagingarea, run git restore -s next src/rand.c or git reset next -- src/rand.c.Note that git add <file>, git restore <file>, git reset <file>, and git checkout <file>all enter interactive mode for a given file when invoked with the --patch option.

This can be used to hand-craft a staged or worktree version of a file byselecting which changes should be applied (or un-applied).
TIP
When using Git from the command line, you might need to put a double dash, --, after other options and
before the ülename if, for example, you have a üle with the same name as a branch.

Cleaning the working area

Untracked files and directories may pile up in your working directory. They canbe leftovers from merges or be temporary files, proof of concept work, orperhaps mistakenly put there. Whatever the case, often, there is no pattern tothem, and you don’t need and don’t want to make Git ignore them (see the
Ignoring üles section of this chapter); you just want to remove them. You canuse the git clean command for that.Because untracked files do not have a backup in the repository, and you cannotundo their removal (unless the operating system or the filesystem supportsundo or trashcan), it’s advisable to first check which files can be removed with
--dry-run/-n. By default, actual removal requires the --force/-f option:
$ git clean --dry-run
Would remove patch-1.diffGit will clean all untracked files recursively, starting from the current directory.You can select which paths are affected by listing them as an argument; youcan also exclude additional types of files with the --exclude=<pattern> option. Youcan also interactively select which untracked files to delete with the --
interactive option:
$ git clean --interactive
Would remove the following items:
 src/rand.c~
 screenlog.0
*** Commands ***
 1: clean 2: filter by pattern 3: select by numbers
 4: ask each 5: quit 6: help
What now>The clean command also allows us to only remove ignored files, for example, toremove build products but keep manually tracked files, with the -X option.However, usually, it is better to leave removing build byproducts to the build

system, so that the project files can be cleaned without having to clone therepository.
You can also use git clean -x in conjunction with git reset --hard to create apristine working directory to test a clean build by removing both ignored andnot-ignored untracked files and resetting tracked files to the committedversion.
Multiple working directories
For a long time, Git allowed you to specify where to find the administrativearea of the repository (the .git directory). This can be done by appending the --
git-dir=<path> option to the git command (that is, the git --git-dir=<path> <command>construct), or by setting the GIT_DIR environment variable. This feature makes itpossible to work from the detached working directory.
With modern Git, you have a better solution to creating a new linked work treethan manual configuration: git worktree add <path> <branch>. This feature allows usto have more than one branch checked out. For convenience, if you omit the
<branch> argument, then the new branch will be created based on the name ofthe created worktree.This mechanism can be used instead of git stash if you need to switch to adifferent branch, but your current working directory, and possibly also thestaging area, is in a state of high disarray. Instead of disturbing it, you cancreate a temporary linked working tree to make a fix and remove it whenyou’re done. For example, you might need to do this to urgently fix a securitybug in a separate branch.
Each detached worktree should be associated with and have checked outdifferent branches or be on the anonymous branch (detached HEAD) to avoidproblems. You can override this safety with the --force option.You can remove any detached worktree with git worktree remove or by removingits directory and allowing it to be pruned. If a working tree is on a portabledevice or network disk, which may not always be available, we can lock theworktree so that it can’t be pruned (and unlock if it is no longer needed).
To examine details about each working directory, such as the currentlychecked-out branch, and see if it is locked, you can use the git worktree list

command.
SummaryIn this chapter, we learned how to better manage the contents of the workingdirectory and the staging area in preparation for creating a new commit.
We now know how to undo the last commit, how to drop changes to theworking area, how to retroactively change the branch we are working on, andother uses of the git reset command. We also understand the three (and a half)forms of reset.We also learned how to examine and search the contents of the workingdirectory, the staging area, and committed changes. We now know how to useGit to copy the file version from the worktree, the index, or the HEAD commit intothe worktree or the index. We can use Git to clean (remove) untracked files.
This chapter explained how to configure how files are handled in the workingdirectory and how to make Git ignore files (by making them intentionallyuntracked) and why. It described how to handle the differences between line-ending formats between operating systems. It also explained how to enable(and write) keyword expansion, how to configure how binary files are handled,and how to enhance diff and merge specific classes of files.Finally, we learned to stash away changes to handle interruptions and to makeit possible to test interactively prepared commits, before creating a commit.This chapter explained how Git manages stashes, enabling us to go beyondbuilt-in operations.
This chapter, together with Chapter 2, Developing with Git, taught you how tocontribute to a project.The following chapters will teach you how to collaborate with other people, howto send what you contributed, and how to merge changes from otherdevelopers. We will start with two chapters explaining how to explore ad searchproject history with Chapter 4, Exploring Project History and Chapter 5,
Searching Through the Repository.
Questions

Answer the following questions to test your knowledge of this chapter:
1. How can you avoid having a large number of build artifacts appear in the git status output?
2. Let’s assume that you use a custom domain-speciüc language (DSL) or a programming languagewithout built-in support in Git, such as Julia. How can you configure Git so that it provides bettersupport for this language?
3. How can you squash the two most recent commits while making one commit out of them?
4. How can you split the most recent commit into two commits?
5. What should you do if an urgent change is needed (for example, because of a security bug) but theworking area is in a messy state and you don’t want to lose your work?
6. How can you search through an old revision of the project – for example, a version tagged v0.1 –without checking out that revision?

AnswersHere are the answers to the questions given above:
1. Add patterns matching the pathnames of those build artifacts to a .gitignore file.
2. Define a custom diff driver and provide the regular expression pattern matching the main “sections”of code with xfuncname. Also, add an appropriate regular expression defining words in thatprogramming language with wordRegex, and perhaps also define whitespace problems with the

whitespace attribute.
3. Use git reset --soft HEAD~2 to rewind the branch and create a joined commit with git commit, oruse interactive rebase.
4. Perform a soft reset, git reset --soft HEAD^, construct the first commit with interactive add,test the code with git stash --keep-index, pop the stash if the tests pass, and create the firstcommit with git commit and the second with git commit -a; there are other solutions.
5. Use git stash to stash away current changes, create a WIP commit, or create a new detachedworking area for the urgent work with git worktree add.
6. To search file contents from a revision tagged as v0.1, you can use git grep -e <pattern> v0.1.

Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:
Scott Chacon and Ben Straub, Pro Git, 2.2 Git Basics – Recording Changes to the Repository, the
Ignoring üles section: https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring
Scott Chacon and Ben Straub, Pro Git, 7.3 Git Tools – Stashing and Cleaning: https://git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring
https://git-scm.com/book/en/v2/Git-Tools-Stashing-and-Cleaning

Scott Chacon and Ben Straub, Pro Git, 8.2 Customizing Git – Git Attributes: https://git-scm.com/book/en/v2/Customizing-Git-Git-Attributes
gitattributes manpage - Deüning attributes per path: https://www.git-scm.com/docs/gitattributes
gitignore manpage - Speciües intentionally untracked üles to ignore: https://www.git-scm.com/docs/gitignore
Pragati Verma, A Guide to Git Stash (2021): https://dev.to/pragativerma18/a-guide-to-git-stash-2h5d
Andrew Knight, Ignoring Files with Git (2018): https://automationpanda.com/2018/09/19/ignoring-files-with-git/
Dragos Barosan, New in Git: switch and restore (2021): https://www.banterly.net/2021/07/31/new-in-git-switch-and-restore/

https://git-scm.com/book/en/v2/Customizing-Git-Git-Attributes
https://www.git-scm.com/docs/gitattributes
https://www.git-scm.com/docs/gitignore
https://dev.to/pragativerma18/a-guide-to-git-stash-2h5d
https://automationpanda.com/2018/09/19/ignoring-files-with-git/
https://www.banterly.net/2021/07/31/new-in-git-switch-and-restore/

4

Exploring Project HistoryOne of the important parts of mastering a version control system (VCS) isexploring project history and making use of the fact that with the VCS, we havean archive of every version that has ever existed. For example, you might wantto examine what other developers did or remind yourself what you are about topublish.In this chapter, you will learn how to select and view a revision or a range ofrevisions, as well as how to refer to them. The following chapter will continuethis topic and explain how to find revisions using different criteria, as well ashow to search through selected revisions; it will also describe how to searchthrough project content.
This chapter will also introduce the concept of Directed Acyclic Graph (DAG)of revisions and explain how this concept relates to the idea of the projecthistory, as well as the ideas of branches, tags, and the current branch in Git.Here is the list of topics we will cover in this chapter:

DAG of revisions as a way of representing history
Different ways of revision selection
Selecting starting branches and tags
Using data from reflog to select revisions
Double-dot (A..B) and triple-dot notation (A…B) for revision range selection
Advanced revision range selection

The purpose of this chapter is to teach you how to select relevant parts ofproject history. The next chapter will explain how to investigate this further bysearching through what you’ve selected.
DAGsWhat makes VCSs different from backup applications is the ability to represent
more than linear history. This is necessary both to support the simultaneousparallel development by different developers (each developer in their own clone

of the repository) and to allow independent parallel lines of development –branches. For example, with a VCS, you might want to keep the ongoingdevelopment and the work on bug fixes for the stable version isolated. You cando this by using individual branches for those separate lines of development.So, the VCS needs to be able to model such a non-linear way of developmentand needs to have some structure to represent it.
The structure that Git uses (on the abstract level) to represent the possibly non-linear history of a project is called a Directed Acyclic Graph (DAG).
The following diagram (Figure 4.1) shows an example of a DAG, drawn in twodifferent ways. The same graph is represented on both sides of the figure:using the free-form layout on the left and the left-to-right layout on the right.

Figure 4.1 – Generic example of a DAG, with the same graph drawn with different layoutsA directed graph is a data structure from computer science and mathematicsthat’s composed of nodes (vertices) connected with directed edges (arrows). Adirected graph is acyclic if it doesn’t contain any cycles, which means thatthere is no way to start at some node and follow a sequence of directed edgesto end up at the starting node again.Understanding this topic, in my opinion, helps with mastering the art ofexploring, searching, and shaping the project history. You might want to read itmore times to internalize this knowledge. It is not, however, required to be ableto use Git successfully, so this section can be skipped on the first pass.
In a specific realization of a graph, each node represents some object (or apiece of data), and each edge from one node to another represents some kind

of relationship between the objects it connects (or between data represented bynodes).
The DAG of revisions in distributed version control systems (DVCSs) usesthe following representation:

Nodes: In DVCSs, each node represents one revision (one version) of a project (of the entire tree).Those objects are called commits.
Directed edges: In DVCSs, each edge represents the this revision is based on that revisionrelationship between two revisions. The arrow goes from a later child revision to an earlier parentrevision it was based on – that is, the revision it was created from. This is the reverse of the way mostpeople like to think of the arrow of time – that is, the arrow pointing from an earlier commit to a laterone.

Because directed edges represent the is based on causal relationship betweenrevisions, the arrows in the DAG of revisions cannot form a cycle. Usually, theDAG of revisions is laid out left-to-right (root nodes on the left, leaves on theright) or bottom-to-top (most recent revisions on the top). The figures in thisbook and ASCII-art examples in the Git documentation use the left-to-rightconvention, while the Git command line uses bottom-to-top, which is the mostrecent first convention.
There are two special types of nodes in any DAG (see Figure 4.1):

Root nodes (or roots): These are nodes (revisions) that have no parents (have no outgoing edges).There is at least one root node in the DAG of revisions, which represents the initial (starting) versionof a project.
Leaf nodes (or leaves): These are nodes that have no children (no incoming edges); there is at leastone such node. They represent the most recent versions of the project, not having any work based onthem. Usually, each leaf in the DAG of revisions has a branch head pointing to it.

IMPORTANT NOTE
There can be more than one root node in Git’s DAG of revisions. Additional root nodes can be created when
you’re joining two formerly originally independent projects together; each joined project brings its own root
node. As this is a very rare occasion, with modern Git, you need to pass the --allow-unrelated-
histories option to the git merge or git pull command to do so, to help avoid mistakes.

Another source of root nodes is orphan branches – that is, disconnected branches with no history in
common. They are, for example, used by GitHub to manage a project’s web pages together in one
repository with the code (in the gh-pages branch), and by the Git project itself to store pre-generated
documentation (the man and html branches) and related projects (the todo branch). To create such a
branch, you need to use the --orphan option in git checkout or git switch.The fact that the DAG can have more than one leaf node means that there is noinherent notion of the latest version, as it was in the linear history paradigm.

Whole-tree commits

In DVCSs, each node of the DAG of revisions (DVCS’s model of history)represents a version of the project as a whole single entity: a snapshot of thewhole directory tree contents of a project.This means that by default, each developer will get the history of all the files intheir clone of the repository. Where needed, they can choose to get only a partof the history (shallow clone and/or cloning only selected branches), they cancheckout only selected files (sparse checkout), or they can use the partial clonefeature (with, for example, different versions of files contents loaded ondemand). Those special cases, and more, will be described in Chapter 12,
Managing Large Repositories.
Branches and tags

A branch operation is what you use when you want your development processto fork into two different directions, to create another line of development. Forexample, you might want to create a separate branch, called maintenance, to helpin managing bug fixes to the released stable version of a project, while isolatingthis activity from the rest of the development.
A tag operation is a way to associate a meaningful symbolic name with thespecific revision in the repository. For example, let’s assume that you’repreparing to release version 1.3 of your project. To do this, you’re preparing a
release candidate version to send to beta testers. Let’s also assume that this isyour third such attempt. You might want to create a v1.3-rc3 tag, among others,to be able to go back to this specific version, check the validity of bug reportsfrom your testers, and find the sources of reported bugs.
Both branches and tags, sometimes called references (refs) when usedtogether, have the same meaning and almost the same representation withinthe DAG of revisions. They are external references (pointers) to the graph ofrevisions, as shown in Figure 4.2:

Figure 4.2 – Example DAG of revisions in a VCS with two branches, a single tag, one fork point, and a
single merge commitA tag is a symbolic name for a given revision – for example, v1.3-rc3 in Figure

4.2. It always points to the same object; it doesn’t change. The idea behindhaving tags is to be able to refer to the given revision with a symbolic name andto have this symbolic name mean the same for every developer. Checking outor viewing the given tag should provide the same results for everyone.
A branch is a symbolic name for the line of development. The most recentcommit (leaf revision) on such a line of development is referred to as the top or
tip of the branch, branch head, or just a branch. Creating a new commit (on acurrent branch) will generate a new node in the DAG and advance theappropriate branch reference. (Figure 4.2 shows two branch heads: maint and
master.)
The branch in the DAG is, as a line of development, the subgraph of the DAGcomposed of those revisions that can be reached from the tip of the branch(from the branch head) – in other words, of those revisions that you can walk toby following the parent edges starting from the branch head.Git needs to know which branch tip to advance when creating a new commit. Itneeds to know which branch is the current one and is checked out into theworking directory. Git uses the HEAD pointer for this, as shown in Figure 4.2.Usually, this points to one of the branches, which, in turn, points to some nodein the DAG of revisions. However, this isn’t always the case – see Chapter 2,
Developing with Git, for an explanation of the detached HEAD situation,where HEAD points directly to a node in the DAG.
Full names of references (branches and tags)

Originally, Git stored branches and tags in files inside the .git administrativearea, in the .git/refs/heads/ and .git/refs/tags/ directories, respectively. ModernGit can store information about tags and branches inside the .git/packed-refs fileto avoid handling a very large number of small files. Nevertheless, activereferences use the original loose format – one file per reference.
The HEAD pointer (denoting the current branch) is stored in .git/HEAD. It is usuallya symbolic reference – for example, ref: refs/heads/master.The master branch is stored in .git/refs/heads/master and has refs/heads/master as itsfull name (in other words, branches reside in the refs/heads/ namespace). Thetip of the branch is referred to as the head of a branch, hence the name of thisnamespace. In loose format, the file contents are an SHA-1 identifier of themost current revision on the branch (the branch tip), in plain text ashexadecimal digits. It is sometimes required to use the full name if there isambiguity among refs.
The remote-tracking branch, origin/master, which remembers the last seenposition of the master branch in the remote repository, origin, is stored in
.git/refs/remotes/origin/master and has refs/remotes/origin/master as its full name.The concept of remotes will be explained in Chapter 6, Collaborative
Development with Git, while remote-tracking branches will be covered in
Chapter 8, Advanced Branching Techniques.The v1.3-rc3 tag has refs/tags/v1.3-rc3 as its full name (tags reside in the refs/tags/namespace). To be more precise, in the case of annotated and signed tags,this file stores a reference to the tag object, which, in turn, points to the nodein the DAG, and not directly to a commit. This is the only type of ref that canpoint to any type of object; branches and remote-tracking branches alwayspoint to a commit.
These full names (fully qualified names) can be seen when using commandsintended for scripts (so-called plumbing commands), such as git show-ref:
$ git show-ref
98cbfdf5c1be9a4f6c0f7e3b97608b39274463df refs/heads/master
d81ce7b6aeedb51aa2d5e18d110333aea080fdd4 refs/stash

Branch points

When you create a new branch starting at a given version, the lines ofdevelopment usually diverge. The act of creating a divergent branch is denotedin the DAG by a commit that has more than one child – that is, a node pointedto by more than one arrow.
IMPORTANT NOTE
Git does not track information about creating (forking) a branch and does not mark branch points in any
way that they’re preserved across clones and pushes. There is information about this event in the reflog
(branch: Created from HEAD), but this is local to the repository where branching occurred and is
temporary. However, if you know that the B branch started from the A branch, you can ünd the branching
point with git merge-base A B. In modern Git, you can use the --fork-point option to make this
command use the information from the reýog, when available.In Figure 4.2, the 34ac2 commit is a branching point, or a fork point, for the
master and maint branches.
Merge commits
Typically, when you’ve used branches to enable independent paralleldevelopment, you will want to join them later. For example, you would wantbug fixes that have been applied to the stable (maintenance) branch so thatthey’re included in the main line of development as well (if they’re applicableand weren’t fixed accidentally during the main line development).
You would also want to merge changes created in parallel by differentdevelopers working simultaneously on the same project, each using their ownclone of the repository, and creating their own lines of commits.
Such a merge operation will create a new revision, joining two lines ofdevelopment. The result of this operation will be based on more than onecommit. The node in the DAG representing said revision will have more thanone parent and more than one outgoing edge. Such an object is called a merge
commit.
You can see a merge commit, 3fb00, in Figure 4.2.
Single revision selectionDuring development, often, you’ll want to select a single revision in the historyof the project so that you can examine it or compare it with the current version.

The ability to select a revision is also the basis for selecting a revision range –for example, selecting a subsection of history to examine.
Many Git commands take revision parameters as arguments, which aretypically denoted by <rev> in the Git reference documentation. Git allows you tospecify a commit or a range of commits in several ways. This will be describedin this and the next section.
HEAD – the implicit revision
Most, but not all, Git commands that require the revision parameter default tousing HEAD. For example, git log and git log HEAD will show the same information.You can also use @ alone as a shortcut for HEAD.
Here, HEAD denotes the current branch, or in other words, the commit that waschecked out into the working directory and forms a base of current work (acurrent revision).There are a few other references that are similar to HEAD:

FETCH_HEAD: This records the information about the remote branches that were fetched from a remoterepository with your last git fetch or git pull invocation. It is very useful for one-off fetching, witha repository to fetch from given by a URL (git fetch <URL>), unlike when we’re fetching from anamed repository such as origin, where we can use a remote tracking branch instead, such as
origin/master. Moreover, with named repositories, we can use the reflog for the remote-trackingbranch – for example, origin/master@{1} – to get the position before the fetch. Note that FETCH_HEADis overwritten by each fetch from any repository.
ORIG_HEAD: This records the previous position of the current branch. This reference is created bycommands that move the current branch in a drastic way (creating a new commit doesn’t set
ORIG_HEAD) to record the position of HEAD before the operation. This is very useful if you want to undoor abort such an operation. However, nowadays, the same can be done using reflogs, which storeadditional information that can be examined in their use; see the Reüogging shortnames section formore details.

You can also stumble upon the short-lived temporary references that are usedduring specific operations:
During a merge, before creating a merge commit, MERGE_HEAD records the commit(s) that you’remerging into your branch. It vanishes after creating a merge commit
During a cherry-pick, before creating a commit that copies picked changes into another branch,
CHERRY_PICK_HEAD records the commit that you’ve selected for cherry-picking

Branch and tag references

The most straightforward and commonly used way to specify a revision is to usesymbolic names: branches, naming the line of development, pointing to the tipof said line; and tags, naming the specific revision. This way of specifyingrevisions can be used to view the history of a line of development, examine themost current revision (current work) on a given branch, or compare a branchor a tag with the current work.
You can use any of the refs (external references to the DAG of revisions) toselect a commit. You can use a branch name, a tag name, and a remote-tracking branch name in any Git command that requires a revision as aparameter.
Usually, it is enough to give the short name of a branch or tag, such as git log
master, to view the history of a master branch, or git log v1.3-rc3 to see howversion v1.3-rc1 came about. It can, however, happen that there are differenttypes of refs with the same name, such as both the branch and tag being named
dev (though it is recommended to avoid such situations. Alternatively, you couldhave created (usually by accident) the local origin/master branch when there wasa remote-tracking branch with a short named origin/master, tracking where the
master branch was in the remote repository named origin.
In such a situation, when the ref name is ambiguous, it is disambiguated bytaking the first match in the following rules (this is a shortened and simplifiedversion – for the full list, see the gitrevisions(7) manpage):

1. The top-level symbolic name – for example, HEAD.
2. Otherwise, the name of the tag (the refs/tags/ namespace).
3. Otherwise, the name of the local branch (the refs/heads/ namespace).
4. Otherwise, the name of the remote-tracking branch (the refs/remotes/ namespace).
5. Otherwise, the name of the remote if a default branch exists for it; the revision is said to be thedefault branch (for example, refs/remotes/origin/HEAD for origin as a parameter).

The --branches, --tags, and similar options

If you want to see the whole graph of revisions, you need a way to specify allthe refs – that is, branches, remote-tracking branches, and tags. That’s whatthe --all option to the git log command is for. With this option, Git pretends as

if all the refs in the refs/ namespace, along with HEAD, were listed as startingpoints for revision traversal (for viewing the history of a project).
If you want to limit yourself to branches, remote-tracking branches, or tags,you can use the --branches, --remotes, or --tags option, respectively. All of thoseoptions take an optional <pattern> parameter, which limits respective refs toones matching the given shell glob. If the pattern lacks glob wildcards (that is,
, ?, or [), then / at the end of the pattern is implied. For example, to pretendas if all topic branches (with hierarchical names that begin with author initials)and all remote-tracking branches for the origin remote were listed on thecommand line, you can use the following command:
$ git log --branches=??/* --remotes=originThe --all option with the <pattern> parameter is named --glob=<pattern>.

GLOB PATTERNS
In computer science, glob patterns are used to match strings using a speciüc set of wildcard characters.
This is the syntax that’s used by UNIX shells and is described on the glob(7) manpage. It is simpler but
less expressive than regular expressions.

The most common glob wildcards are *, ?, and […]. The * wildcard character matches any number of
characters including none, ? matches a single character, and [abc] matches one character from the one
listed inside brackets. You can simplify the list of characters using the character range – for example, [a-
z].Pattern matching can be enhanced with the help of the --exclude=<pattern> option,which affects --all, --branches, --tags, --remotes, and --glob, excluding refs that thenext such option would otherwise consider. This option can be given multipletimes, accumulating exclusion patterns. For example, to include all topicbranches but exclude your own topic branches (which have names starting with
jn/), you can use the following command:
$ git log --exclude=jn/* --branches=??/*

SHA-1 and the shortened SHA-1 identifier

In Git, each revision is given a unique identifier (object name), which is a SHA-
1 hash function, based on the contents of the revision (though the exact hashfunction will change from SHA-1 to SHA-256 in the future). You can select acommit by using its SHA-1 identifier as a 40-character long hexadecimal

number (120 bits). Git shows full SHA-1 identifiers in many places. Forexample, you can find them in the full git log output:
$ git log
commit 50f84e34a1b0bb893327043cb0c491e02ced9ff5
Author: Junio C Hamano <gitster@pobox.com>
Date: Mon Jun 9 11:39:43 2014 -0700
 Update draft release notes to 2.1
 Signed-off-by: Junio C Hamano <gitster@pobox.com>
commit 07768e03b5a5efc9d768d6afc6246d2ec345cace
Merge: 251cb96 eb07774
Author: Junio C Hamano <gitster@pobox.com>
Date: Mon Jun 9 11:30:12 2014 -0700
 Merge branch 'jc/shortlog-ref-exclude'It isn’t necessary to give the full 40 characters of the SHA-1 identifier. Git issmart enough to figure out what you meant if you provide it with the first fewcharacters of the SHA-1 revision identifier, so long as the partial SHA-1 is atleast 4 characters long. To be able to use a shortened SHA-1 to select revision,it must be long enough to be unambiguous – that is, there must be one and onlyone commit object where the SHA-1 identifier begins with given characters.

For example, both dae86e1950b1277e545cee180551750029cfe735 and dae86e name thesame commit object, assuming, of course, that that there is no other object inyour repository whose object name starts with dae86e. If there is any ambiguity,Git will tell us about all the choices, like so:
error: short object ID dae86e is ambiguous
hint: The candidates are:
hint: dae86e19 commit 2021-03-17 – README: Add CI badges
hint: dae86e1f tree
hint: dae86ebf blob
fatal: ambiguous argument 'dae86e': unknown revision or path not in the working tree.
Use '--' to separate paths from revisions, like this:
'git <command> [<revision>...] -- [<file>...]'In many places, Git shows unambiguously shortened SHA-1 identifiers in itscommand output. For example, in the preceding example of the git log output,we can see the shortened SHA-1 identifiers in the Merge: line.

You can also request that Git use the shortened SHA-1 in place of the full SHA-1 revision identifiers with the --abbrev-commit option. By default, Git will use atleast 7 characters for the shortened SHA-1; you can change this with theoptional parameter – for example, --abbrev-commit=12.Note that Git will use as many characters as is required for the shortened SHA-1 to be unique at the time the command was issued. The parameter to --abbrev-
commit (and the similar --abbrev option) is the minimal length of the abbreviation.

A SHORT NOTE ABOUT SHORTENED SHA-1
Generally, 8 to 10 characters is more than enough for the shortened SHA-1 (for the SHA-1 preüx)to be
unique within a project. One of the largest Git projects, the Linux kernel, is beginning to need 12 characters
out of the possible 40 to stay unique. While a hash collision, which means having two revisions (two
objects) that have the same full SHA-1 identiüer, is extremely unlikely (with 1/2^80 ≈ 1/1.2×10^24
probability), the formerly unique shortened SHA-1 identiüer may stop being unique due to repository
growth.The SHA-1 and the shortened SHA-1 are often copied from the commandoutput and pasted as revision parameters in another command. They can alsobe used to communicate between developers in case of doubt or ambiguity asSHA-1 identifiers are the same in any clone of the repository. Figure 4.2 uses afive-character shortened SHA-1 to identify revisions in the DAG.
Ancestry references

The other main way to specify a revision is via its ancestry. You can specify acommit by starting from some child of it (for example, you can start from thecurrent commit – that is, HEAD, a branch head, or a tag), and then follow throughparent relationships to the commit in question. There is a special suffix syntaxto specify such ancestry paths.If you place ^ at the end of a revision name, Git resolves it to mean a (first)parent of that revision. For example, HEAD^ means the parent of HEAD – that is, theprevious commit.
This is a shortcut syntax. For merge commits, which have more than oneparent, you might want to follow any of the parents. To select a parent, put itsnumber after the ^ character: using the ^<n> suffix means the n-th parent of arevision. We can see that ^ is a short version of ^1.As a special case, ^0 means the commit itself; it is only important when acommand behaves differently when you’re using the branch name as aparameter and when you’re using other revision specifiers. It can be also usedto get the commit that an annotated (or a signed) tag points to; compare git
show v0.9 and git show v0.9^0. Note that you can do the latter operation with
<tag>^{commit}; in most cases, it is what <tag>^{} would do (follow this until youfind an object that isn’t a tag).

This suffix syntax is composable. You can use HEAD^^ to mean the grandparent of
HEAD and the parent of HEAD^. There is another shortcut syntax for specifying achain of first parents. Instead of writing n times the ^ suffix – that is, ^^…^ or
^1^1…^1 – you can simply use ~<n>. As a special case, ~ is equivalent to ~1, so HEAD~and HEAD^ are equivalent. In a similar vein, HEAD~2 means the first parent of thefirst parent or the grandparent and is equivalent to HEAD^^.
You can also combine everything. For example, you can get the second parentof a great-grandparent of HEAD (assuming it was a merge commit) by using
HEAD~3^2, and so on. You can use git name-rev or git describe --contains to find outhow a revision is related to local refs, like so:
$ git log | git name-rev --stdin
commit 82006acd359717624fb33a7ae554cba6be717911 (master)
Merge: 20cfc7c 3a59408
Author: Bob Hacker <bob@company.com>
Date: Sun May 30 00:58:23 2021 +0200
 Merge branch 'master' of https://git.company.com/random
commit 20cfc7c25ff82e36d6e72b6a31f5839331f270e7 (master~1)
Author: Bob Hacker <bob@company.com>
Date: Sun May 30 00:44:59 2021 +0200
 Added COPYRIGHT
[…]As you can see, with git name-rev --stdin used as a filter for git log, after eachSHA-1 identifier, you get its ancestry reference in parentheses – for example,

(master~1).
Reverse ancestry references – git-describe output
The ancestry reference describes how a historic version relates to the currentbranches and tags. It depends on the position of the starting revision. Forexample, HEAD^ would usually mean a completely different commit next month.
Sometimes, we want to describe how the current version relates to the priornamed version. For example, we might want to have a human-readable name ofthe current version to store in the generated binary application. We want thisname to refer to the same revision for everybody. This is the task of git describe.Here, git describe finds the most recent tag that can be reached from a givenrevision (by default, from HEAD) and uses it to describe that version. If the foundtag points to the given commit, then (by default) only the tag is shown.Otherwise, git describe suffixes the tag name with the number of additional

commits on top of the tagged object and uses the abbreviated SHA-1 identifierof the given revision. For example, v1.0.4-14-g2414721 means that the givencommit was based on the named (tagged) version v1.0.4, which was 14 commitsago, and that it has 2414721 as a shortened SHA-1. Without the SHA-1abbreviation, the notation would be ambiguous; in the presence of non-linearhistory, there can be many revisions that are 14 commits away from the giventag.
Git understands this output format as a revision specifier.
Reflogging shortnames
To help you recover from some types of mistakes, and to be able to undochanges (to go back to the state before the change), Git keeps a reflog – a
temporary log of where your HEAD and branch references have been for the lastfew months, and how they got there, as described in Chapter 2, Developing
with Git. The default is to keep reflog entries up to 90 days; 30 days forrevisions that can only be reached through reflog (for example, amendedcommits). This can be configured on a ref-by-ref basis; see Chapter 13,
Customizing and Extending Git.
You can examine and manipulate your reflog with the git reflog command andits subcommands. You can also display history with git log -g (or git log --walk-
reflog):
$ git reflog
ba5807e HEAD@{0}: pull: Merge made by the 'recursive' strategy.
3b16f17 HEAD@{1}: reset: moving to HEAD@{2}
2b953b4 HEAD@{2}: reset: moving to HEAD^
69e0d3d HEAD@{3}: reset: moving to HEAD^^
3b16f17 HEAD@{4}: commit: random.c was too long to typeEvery time HEAD and your branch head are updated for any reason, Git storesthat information for you in this local temporary log of ref history. The data fromthe reflog can be used to specify references (and therefore to specify revisions):

To specify the n prior value of HEAD in your local repository, you can use HEAD@{n} notation that youcan see in the git reflog output. It’s the same with the n prior value of the given branch – forexample, master@{n}. The special syntax, @{n}, means the n prior value of the current branch,which can be different from HEAD@{n}.
You can also use this syntax to see where a branch was some specific amount of time ago. Forinstance, to denote where your master branch was yesterday in your local repository, you can use

th th th

master@{yesterday}.
You can use the @{-n} syntax to refer to the n branch that was checked out (used) before thecurrent one. In some places, you can simply use – (dash) in place of @{-1}. For example, git
checkout – or git switch – will switch to the previous branch.

Upstreaming remote-tracking branches
The local repository that you use to work doesn’t usually live in isolation. Itinteracts with other repositories, usually at least with the origin repository itwas cloned from (unless it was started from scratch with git init).
NOTE
The name of the default remote can be set using clone.defaultRemoteName.For these remote repositories with which you interact often, Git will trackwhere their branches were at the time of the last contact.
To follow the movement of branches in the remote repository, Git uses remote-
tracking branches. You cannot create new commits on remote-trackingbranches as they would be overwritten on the next contact with the remote. Ifyou want to create your own work based on work on some branch in the remoterepository, you need to create a local branch based on the respective remote-tracking branch. Git can do that automatically: when there is no local branchwith the same name as the remote-tracking branch, some-branch, then the git
checkout <some-branch> command will create a local branch based on this remote-tracking branch for you.
For example, when working on a line of development that is to be ultimatelypublished to the next branch in the origin repository, which is tracked by the
origin/next remote-tracking branch, you would create a local next branch. We saythat origin/next is upstream of the next branch, and we can refer to it as
next@{upstream}.The @{upstream} suffix (short form <refname>@{u}), which can only be applied to alocal branch name, selects the branch that the ref is set to build on top of. Amissing ref defaults to the current branch – that is, @{u} is the upstream for thecurrent branch.
There is also [<branch>]@{push}, which is useful for triangular workflows, wherethe repository you push your changes to is different from the repository you get

th

updates from.
Selecting revisions via a commit message

You can specify the revision by matching its commit message with a regularexpression. The :/<pattern> notation (for example, :/^Bugfix) specifies theyoungest matching commit that can be reached from any ref, while
<rev>^{/<pattern>} (for example, next^{/fix bug}) specifies the youngest matchingcommit that can be reached from <rev>:
$ git log 'origin/pu^{/^Merge branch .rs/ref-transactions}'This revision specifier gives similar results to the --grep=<pattern> option to git
log, but it’s composable. This means that it can be combined with othercomponents, such as ancestry references. On the other hand, it only returns thefirst (youngest) matching revision, while the --grep option returns all matchingrevisions.
Selecting the revision rangeNow that you can specify individual revisions in multiple ways, let’s learn howto specify ranges of revisions, a subset of the DAG we want to examine.
Revision ranges are particularly useful for viewing selected parts of thehistory of a project.For example, you can use range specifications to answer questions such as,“What work is on this branch that I haven’t yet merged into my main branch?”,“What works on my main branch I haven’t yet published?”, or simply “What wasdone on this branch since its creation?”
Single revision as a revision range

History traversing commands such as git log operate on a set of commits,walking down a chain of revisions from child to parent. These kinds ofcommands, given a single revision as an argument (as described in the Single
revision selection section of this chapter), will show the set of commits that canbe reached from that revision, following the commit ancestry chain, all the way

down to root commits. Thanks to Git using pager by default, Git will stop afterone full page – that is, one full screen of commits.
For example, git log master would show all commits that can be found from thetip of a master branch (all revisions that are or were based on the current workon the said branch), which means that it would show the whole master branch –that is, the whole line of development.
Double-dot notation
The most common range specification is the double-dot syntax, A..B. For alinear history, it means all revisions between A and B, or to be more exact all thecommits that are in B but not in A, as shown in Figure 4.3. For example, the
HEAD~4..HEAD range means four commits: HEAD, HEAD^, HEAD^^, and HEAD^^^. In otherwords, it means HEAD~0, HEAD~1, HEAD~2, and HEAD~3, assuming that there is no mergecommit between the current branch and its fourth ancestor:

Figure 4.3 – Double-dot notation A..B for linear history. The selected revision range is marked with a thin
halo (with an outline)

TIP
If you want to include a starting commit (in the general case, boundary commits), which Git considers
uninteresting by default, you can use the --boundary option with git log.The situation is more complicated for a history that is not a straight line. Onesuch case is when A is not the ancestor of B (there is no path in the DAG ofrevisions leading from B to A), but both have a common ancestor, as shown in
Figure 4.4:

Figure 4.4 – Double-dot notation A..B for non-linear history, where revision A is not an ancestor of
revision B, showing the case with a divergent history (with a fork point)

Another situation with non-linear history is when the path from B to A is not asimple line – that is, when there are merge commits between A and B, as shownin Figure 4.5. In the view of nonlinear history, the double-dot notation, A..B, or
between A and B, is defined as those commits that can be reached from A whilebeing not reachable from B:

Figure 4.5 – Double-dot notation A..B for a non-linear history, with merge commit between A and B. To
exclude commits marked with *, use the --strict-ancestor optionFor Git, A..B means a range of all commits that can be reached from onerevision (B) but can’t be reached from another revision (A) while following theancestry chain. In the case of divergent A and B, as shown in Figure 4.4, this issimply all commits in B from the branch point of A.

For example, say your master and experiment branches diverge. You want to seewhat’s in your experiment branch that hasn’t been merged into your master branchyet. You can ask Git to show you a log of just those commits with
master..experiment.If, on the other hand, you want to see the opposite – all the commits in masterthat aren’t in experiment – you can reverse the branch names. The
experiment..master notation shows you everything in master that can’t be reachedfrom experiment.
Another example is that origin/master..HEAD shows what you’re about to push to aremote repository (commits in your current branch that are not yet present inthe master branch in origin), while HEAD..origin/master can show what you havefetched but not yet merged in.
TIP
You can also leave oû one side of the syntax to have Git assume HEAD: origin/master.. is
origin/master..HEAD and ..origin/master is HEAD..origin/master; Git substitutes HEAD if one side is
missing.

Git uses double-dot notation in many places, such as in the output of git fetchand git push for ordinary fast-forward cases. Here, you can just copy and paste afragment of output as parameters to git log. In this case, the beginning of therange is the ancestor of the end of the range – that is, the range is linear:
$ git push
To https://git.company.com/random
 8c4ceca..493e222 master -> master

Creating the range by including and excluding
revisions

The double-dot A..B syntax is very useful and quite intuitive, but it is ashorthand notation. Usually, it’s enough, but sometimes, you might want morethan it provides. Perhaps you want to specify more than two branches toindicate your revision, such as seeing what commits are present in any ofseveral branches that aren’t in the branch you’re currently on. Perhaps youwant to see only those changes on the master branch that aren’t in any of theother long-lived branches.Git allows you to exclude the commits that can be reached from a givenrevision by preûxing said revision with ^. For example, to view all revisions thatare on maint or master, but are not in next, you can use git log maint master ^next.This means that the A..B notation is just a shorthand for B ^A.
Instead of having to use the ^ character as a prefix for each of the revisions wewant to exclude, Git allows us to use the --not option, which negates all thefollowing revisions. For example, B ^A ^C might be written as B --not A C. This isuseful, for example, when we’re generating excluded revisionsprogrammatically.Thus, these three commands are equivalent:
$ git log A..B
$ git log B ^A
$ git log B --not A

The revision range for a single revision
There is another useful shortcut, A^!, that is a range composed of a singlecommit. For non-merge commits, it is simply A^..A.

For merge commits, A^! excludes all the parents. With the help of yet anotherspecial notation, namely A^@, denoting all the parents of A (that is, A^1, A^2,… A^n),we can say that A^! is a shortcut for A --not A^@.
Triple-dot notation

The last major syntax for specifying revision ranges is the triple-dot syntax,
A...B. It selects all the commits that can be reached by either of two references,but not by both of them; see Figure 4.6. In mathematics, this notation is calledthe symmetric difference of A and B:

Figure 4.6 – A triple-dot notation, A...B, for a non-linear history, where the selected range is shown with a
thin outline, and O is the boundary commit – the merge base of A and BIt is a shortcut notation for A B --not $(git merge-base --all A B), where $(…)denotes shell command substitution (using POSIX shell syntax). Here, itmeans that the shell will run the git merge-base command to find out all the bestcommon ancestors (all merge bases), and then paste its output on thecommand line so that it can be negated.

A common switch to the git log command to use with the triple dot notation is --
left-right. This option makes Git show which side of the range each commit is inby prefixing commits from the left-hand side (A in A...B) with <, and those fromthe right (B in A...B) with >, as shown in Figure 4.6 and the following example.This helps make the data more useful:
$ git log --oneline --left-right 37ec5ed...8cd8cf8
>8cd8cf8 Merge branch 'fc/remote-helper-refmap' into next
>efcd02e Merge branch 'rs/more-starts-with' into next
>831aa30 Merge branch 'jm/api-strbuf-doc' into next
>1aeca19 Merge branch 'jc/count-parsing' into next
<1a7e8e8 Revert "replace: add --graft option"
<7a30690 t9001: avoid non-portable '\n' with sed
>5cc3268 fetch doc: remove "short-cut" section

IMPORTANT NOTE
If the --left-right option is combined with --boundary, these normally uninteresting boundary commits
are preüxed with -.

In the case of using the triple-dot A...B revision range, these boundary commits are git merge-base --
all A B.Git uses triple-dot notation in git fetch and git push output when there is a
forced update, in cases where the old version (left-hand side) and the updatedversion (right-hand side) diverged, and the new version was forced to overwritethe old version:
$ git fetch
From git://git.kernel.org/pub/scm/git/git
 + 37ec5ed...8cd8cf8 next -> origin/next (forced update)
 + 9478935...16067c9 pu -> origin/pu (forced update)
 d0b0081..1f58507 todo -> origin/todo

USING THE REVISION RANGE NOTATION IN DIFF
To make it easier to copy and paste between the log and diff commands, Git allows us to use the revision
range double-dot notation, A..B, and triple-dot, A...B, as a set of revisions (endpoints) in the git diff
command.

For Git, using git diff A..B is the same as git diff A B, which means the diûerence between revision
A and revision B. If the revision on either side of the double dot is omitted, it will have the same eûect as
using HEAD instead. For example, git diff A.. is equivalent to git diff A HEAD.

The git diff A...B notation is intended to show incoming changes on branch B. Incoming changes mean
revisions up to B, starting at a common ancestor – that is, a merge base of both A and B. Thus, writing git
diff A...B is equivalent to git diff $(git merge-base A B) B; note that git merge-base is without -
-all here. The result of this convention makes it so that a copy and paste of the git fetch output
(whether with double-dot or triple-dot) as an argument to git diff will always show fetched changes.
Note, however, that it doesn’t include changes that were made on A since divergence at all!

With modern Git, you can use the less cryptic git diff --merge-base A B instead of using triple-dot
notation – that is, git diff A...B.

Additionally, this feature makes it possible to use git diff A^! to view how revision A diûers from its
parent (it’s the shortcut for git diff A^ A).

SummaryThis chapter covered the various ways you can explore project history: to findrelevant revisions, select revisions to display, and for further analysis.We started by describing the conceptual model of project history: the DAG ofrevisions. Understanding this concept is very important because many selectiontools refer directly or indirectly to the DAG.

Then, you learned how to select a single revision and range of revisions, as wellas how the concept of revision range works for a non-linear history. We can usethis knowledge to see what changes were made on a branch since itsdivergence from the base branch, and vice versa; we can also examine whathappened to both branches since their divergence.
Selecting revisions is an important first step in searching through projecthistory. This will be described in the next chapter.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. How would you list all revisions that are present upstream for the current branch but are not presentin the current branch (are not integrated)?
2. How would you list all revisions that you would send using git push, allowing for a triangularworkflow (remote to push to is different from remote to pull from)?
3. How can you find all divergent changes in two branches, A and B, starting from a fork point, and showwhich changeset is present on which branch?
4. How can you list all commits that were made on any remote-tracking branch whose name starts with

fix-, from any remote repository?
5. What is the simplest way of switching to the previous branch, and how does it work?

AnswersHere are the answers to this chapter’s questions:
1. Combine the double-dot notation with the notation for the upstream branch: git log ..@{upstream}.
2. Use git log @{push}..HEAD, combining double-dot notation with the “where to push to” notation.Note that for simple workflows, @{push} is the same as @{upstream}.
3. Use the triple-dot notation and the appropriate git log option: git log --left-right A...B.
4. Use the --remotes[=<pattern>] option with the appropriate glob pattern: git log --

remotes=*/fix-*.
5. Use git checkout – or git switch -. In those commands, - means @{-1}, which uses the reflog tofind the previous value of the current branch.

Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:

gitrevisions(7) – specifying revisions and ranges for Git: https://git-scm.com/docs/gitrevisions
Scott Chacon, Ben Straub: Pro Git, 2 Edition (2014), Apress Chapter 2.3: Git Basics - Viewing the
Commit History: https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
glob(7) – globbing pathnames (shell wildcard patterns): https://man7.org/linux/man-pages/man7/glob.7.html
Jan Goyvaerts: Regular Expressions Tutorial: Learn How to Use and Get The Most out of Regular
Expressions: https://www.regular-expressions.info/tutorial.html

nd

https://git-scm.com/docs/gitrevisions
https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
https://man7.org/linux/man-pages/man7/glob.7.html
https://www.regular-expressions.info/tutorial.html

5

Searching Through the RepositoryAfter selecting the parts of the project history that you want to search, the nexttask is to extract the information you want from selected commits. You can limityour search according to the revision metadata, such as the author of thecommit, the date that the change was created, or the contents of the commitmessage. You can look at the changes themselves, or you may be interested inhow a given file or subsystem evolved. With access to the project history, youcan find who wrote a given section of the code or which commit introduced aregression (first buggy commit).Another important skill is to format Git output so that it is easy to find theinformation you want. This task is made possible by various predefined pretty
git log output formats and the ability to define and compose one’s own outputformat.
Here is the list of topics we will cover in this chapter:

Limiting the history and history simplification
Searching the history with the pickaxe tool and diff search
Finding bugs with git bisect
Line-wise history of file contents with git blame and rename detection
Selecting and formatting output (the pretty formats)
Summarizing contribution with git shortlog
Specifying a canonical author name and email with .mailmap
Viewing specific revisions, files at revision, and diff output options

The purpose of this chapter is to show how to extract information from theproject history.
Searching the historyA huge number and variety of useful options for the git log command arerevising limiting options — that is, options that let you show only a subset ofcommits. This complements selecting commits to view by passing the

appropriate revision range and allows us to search the history for specificversions, utilizing information other than the shape of the graph of revisions.
Limiting the number of revisions

The most basic way of limiting git log output is to show only the specifiednumber of the most recent commits. This is done using the -<n> option (where nis any integer); this can also be written as -n <n>, or in long form as --max-count=
<n>. For example, git log -2 would show the two last (most recent) commits inthe current line of development, starting from the implicit HEAD revision.You can skip the first few commits shown with --skip=<n>.
Matching revision metadata

History limiting options can be divided into those that check the informationstored in the commit object itself (the revision metadata) and those that filtercommits based on the changeset (based on changes from the parent commit orcommits).
Time-limiting optionsIf you are interested in commits created within some specific date range, youcan use a number of options such as --since and --until, or --before and --after.For example, the following command returns the list of commits made in thelast two weeks:
$ git log --since=2.weeksThese options work with various date formats. You can specify a specific datesuch as 2008-04-21, or a relative date such as 2 years 3 months 3 days ago; youcan also use a dot in place of a space.

When using a specific date, you must remember that if the date does notinclude a time zone, it will be interpreted in the local time zone. It is importantbecause, in such a situation, Git will not yield identical results when run bycolleagues who may be situated in other time zones around the world. Forexample, --since="2014-04-29 12:00:00" would catch six hours’ worth more commitswhen issued in Birmingham, England, UK (where it means 2014-04-

29Z11:00:00 universal time) than when issued in Birmingham, Alabama, USA(where it means 2014-04-29Z17:00:00). To get the same results, you need toinclude the time zone in the time limit — for example, - -after="2013-04-
29T17:07:22+0200".
Note that commits in Git are described not by a single date, but by two possiblydifferent dates: the author date and the committer date. Time-limiting optionsdescribed here examine the committer date, which means the date and timewhen the revision object was created. This might be different from the author
date, which means the date and time when a changeset was created (when thechange was made).The date of authorship can be different from the date of committership in a fewcases:

One case is when the commit was created in one repository, converted to email, and then applied byanother person in another repository.
Another way to have those two dates differ is to have the commit recreated while rebasing; by default,this keeps the author date and gets a new committer date (see Chapter 9, Merging Changes Together,the Rebasing a branch section, and Chapter 10, Keeping History Clean, the An interactive rebasesection).

Matching commit contentsIf you want to filter your commit history to only show those done by a specificauthor or committer, you can use the --author or --committer options, respectively.For example, let’s say you’re looking for all the commits in the Git source codeauthored by Linus. You could use something like git log --author=Linus. Thesearch is, by default, case-sensitive, and uses regular expressions. Git willsearch both the name and the email address of the commit author; to match thefirst name only, use --author=^Linus. Using ^ here means that the authorshipinformation should start with Linus.The --grep option lets you search commit messages (which should containdescriptions of the changes). Let’s say that you want to find all the security bugfixes that mention Common Vulnerabilities and Exposures (CVE) identifiersin the commit message. You could generate a list of such commits with git log -
-grep=CVE.
If you specify both --author and --grep options, or more than one --author or --grepoption, Git will show commits that match either query. In other words, Git

would logically OR all the commit matching options. If you want to findcommits that match all the queries, with matching options logically AND-ed,you need to use the --all-match option.
There is also a set of options to modify the meaning of matching patterns,similar to the ones used by the grep program. To make the search case-insensitive, use the -i / --regexp-ignore-case option. If you want to match simply asubstring, you can use -F / --fixed-strings (you might want to do this to avoidhaving to escape regular expression metacharacters such as . and ?). To writemore powerful search terms, you can use --extended-regexp or --perl-regexp (youcan use the latter only if Git was compiled and linked with the Perl
Compatible Regular Expressions (PCRE) library). To find non-matchingcommits, use --invert-grep.
When walking reflogs with git log -g (see the Reýog shortnames section), youcan use the --grep-reflog=<regexp> option to show only positions with the matchingreflog entry. For example, to show all operations on HEAD that were not a simplecommit operation, you can use the following:
$ git log -g --invert-grep --grep-reflog="^commit:"

Commit parentsGit, by default, will follow all the parents of each merge commit when walkingdown the ancestry chain. To make it follow only the first parent, you can usethe aptly named --first-parent option. This would show you the main line ofhistory (sometimes called the trunk), assuming that you follow the specificpractices with respect to merging changes; you will learn more about this in
Chapter 8, Advanced Branching Techniques, and Chapter 9, Merging Changes
Together.
Consider the following command (this example uses the very nice --graph optionthat makes an ASCII-art diagram of the history):
$ git log -5 --graph --oneline
* 50f84e3 Update draft release notes to 2.1
* 07768e0 Merge branch 'jc/shortlog-ref-exclude'
|\
| * eb07774 shortlog: allow --exclude=<glob> to be passed
* | 251cb96 Merge branch 'mn/sideband-no-ansi'
|\ \
| * | 38de156 sideband.c: do not use ANSI control sequence

Compare it with this:
$ git log -5 --graph --oneline --first-parent
* 50f84e3 Update draft release notes to 2.1
* 07768e0 Merge branch 'jc/shortlog-ref-exclude'
* 251cb96 Merge branch 'mn/sideband-no-ansi'
* d37e8c5 Merge branch 'rs/mailinfo-header-cmp'
* 53b4d83 Merge branch 'pb/trim-trailing-spaces'You can filter the list to show only the merge commits or only the non-mergecommits with the --merges and --no-merges options, respectively. These optionscan be considered simply shortcuts for more generic options: --min-parents=
<number> (--merges is --min-parents=2) and --max-parents=<number> (--no-merges is --max-
parents=1).Let’s say that you want to find the starting point(s) of your project. You can dothis with the help of --max-parents=0, which would give all the root commits:
$ git log --max-parents=0 --oneline
0ca71b3 basic options parsing and whatnot.
16d6b8a Initial import of a python script...
cb07fc2 git-gui: Initial revision.
161332a first working version
1db95b0 Add initial version of gitk to the CVS repository
2744b23 Start of early patch applicator tools for git.
e83c516 Initial revision of "git", the information manager from hell

Searching changes in revisions

Sometimes, searching through commit messages and other revision metadata isnot enough. Perhaps descriptions of the changes were not detailed enough. Or,what if you are looking for a revision when a function was introduced, or wherevariable started to be used?Git allows you to look through the changes that each revision brought (thedifference between a commit and its parent). The faster option is called a
pickaxe search.
With the -S<string> option, Git will look for differences that introduce or removean instance of a given string. Note that this is different from the string simplyappearing in the diff output. You can do a match using a regular expressionwith the --pickaxe-regex option. Git checks each revision to see whether there arefiles whose current side and parent side have a different number of thespecified string, and show the revisions that match.

As a side effect, git log with the -S option would also show the changes thateach revision made (as if the --patch option were used), but only thosedifferences that match the query. To show differences for all the files and alsodifferences where the change in number occurred, you need to use the --
pickaxe-all option:
$ git log -S'sub href'
commit 06a9d86b49b826562e2b12b5c7e831e20b8f7dce
Author: Martin Waitz <tali@admingilde.org>
Date: Wed Aug 16 00:23:50 2006 +0200
 gitweb: provide function to format the URL for an action link.
 Provide a new function which can be used to generate an URL for the CGI.
 This makes it possible to consolidate the URL generation in order to make
 it easier to change the encoding of actions into URLs.
 Signed-off-by: Martin Waitz <tali@admingilde.org>
 Signed-off-by: Junio C Hamano <junkio@cox.net>With -G<regex>, Git would literally look for differences whose added or removedline matches the given regular expression. Note that the unified diff format(that Git uses) considers the changed line to be a removal of the old versionand adding of a new one; refer to Chapter 2, Developing with Git (the

Examining the changes to be committed section) for an explanation of how Gitdescribes changes.To illustrate the difference between -S<regex> --pickaxe-regex and -G<regex>,consider a commit with the following diff:
 if (lstat(path, &st))
- return error("cannot stat '%s': %s", path,
+ ret = error("cannot stat '%s': %s", path,
 strerror(errno));While git log -G"error\(" will show this commit (because the query matches bothchanged lines), git log -S"error\(" --pickaxe-regex will not (because the number ofoccurrences of that string did not change).

TIP
If you are interested in a single üle, it is easier to use git blame (perhaps in a graphical blame browser,
like with git gui blame) to check when the given change was introduced. However, git blame can9t be
used to ünd a commit that deleted a line — you need a pickaxe search for that.

Selecting types of changes
Sometimes, you might want to see only those changes that added or renamedfiles. With Git, you can do this with git log --diff-filter=AR. You can select any

combination of types of changes; see the git-log(1) manpage for details. Forexample, to find all renames while listing all changed files, you can use --diff-
filter=R*, such as in the following example:
$ git log --diff-filter=R* --oneline –stat
8b4dbde Rename random.js to gen_random.js
 index.html | 2 +-
 scripts/{random.js => gen_random.js} | 0
 2 files changed, 1 insertion(+), 1 deletion(-)
042a8af Directory structure
 index.html | 2 +-
 random.js => scripts/random.js | 0
 2 files changed, 1 insertion(+), 1 deletion(-)The mnemonics for types of changes are the same as those used by git status --
short or git log --name-status:
$ git log -1 --diff-filter=R --oneline --name-status
8b4dbde Rename random.js to gen_random.js
R100 scripts/random.js scripts/gen_random.jsNext, we will examine how to search the history based on which files werechanged, and later, also how to format the git log output.
History of a fileAs described in the Whole-tree commits section at the beginning of theprevious chapter, Git revisions are about the state of the whole project as onesingle entity.
In many cases, especially with larger projects, we are interested only in thehistory of a single file, or the history limited to the changes in the givendirectory (in the given subsystem).
Path limiting
To examine the history of a single file, you can simply use git log <pathname>. Gitwill then only show all those revisions that affected the given pathname (a fileor a directory), which means those revisions where there was a change to thegiven file or a change to a file inside the given subdirectory.
DISAMBIGUATION BETWEEN BRANCH NAMES AND PATH NAMES
Git usually guesses what you mean by writing git log foo; did you mean to ask for the history of the foo
branch (the line of development), or for the history of the foo üle? However, sometimes, Git can get
confused. To prevent confusion between pathnames and branch names, you can use -- (two dashes) to

separate ülename arguments from other options. Everything after -- would be taken to be a pathname,
and everything before that would be taken to be the branch name or other option.

For example, writing git log -- foo explicitly asks for the history of the foo path.

One of the common situations where it is needed, besides when having the same name for a branch and a
üle, is when examining the history of a deleted üle that is no longer present in a project.You can specify more than one path; you can even look for changes that affect agiven type of file with the help of wildcards (pattern match). For example, tofind only changes to Perl scripts (files with the *.pl extension), you can use git
log -- '*.pl'. Note that you need to protect the *.pl wildcard from beingexpanded by the shell before Git sees it — for example, via single quotes asshown here.
PATHSPEC MAGIC
Most commands that accept <path> or <pathspec> as a parameter, such as git log, also support
pathspec magic. A pathspec that starts with a colon 8:9 has a special meaning: it is expected that this
colon is then followed by either one or more magic signature letters, or a comma-separated list of zero or
more magic words. An optional colon 8:9 can be used to separate the magics from the pattern to match
them. Here are a few examples: :(top):data/ or :/data/ would make the pattern match the
data/directory at the top directory of the repository, regardless of where we are inside the repository (the
current directory). The git log :(exclude):*.html or git log :^*.html command will list all revisions
where there was at least one change to the üle that is not an HTML üle. You can ünd more magics in the
gitglossary(7) manpage, in the pathspec entry.However, because Git uses pathname parameters as limiters in showing thehistory of a project, querying for the history of a single file doesn’tautomatically follow renames. You need to use git log --follow <file> to continuelisting the history of a file beyond renames. Unfortunately, it doesn’t work in allcases. Sometimes, you need to use either the git blame command (see the Blame
– the line-wise history of a üle section), or examine the boundary commits withrename detection turned on (git show -M -C --raw --abbrev <rev>) and followrenames and file moving manually.
In modern Git, you can also trace the evolution of the line range within the fileusing git log -L, which is currently limited to the walk starting from a singlerevision (zero or one positive revision argument) and a single file. The range isgiven either denoting the start and end of the range with -L <start>,<end>:<file>(where either <start> or <end> can be a line number or a /regexp/), or a function totrack with -L :<funcname regexp>:<file>. This technique cannot, however, be usedtogether with the ordinary pathspec-based path limiting. For example, to see

the history of the index.html file, limited to the changes in the <head> element, youcan use the following command:
$ git log -L '/^<head>/','/^<\/head>/':index.html

History simplification

By default, when requested for the history of a path, Git would simplify the
history, showing only those commits that are required (that are enough) toexplain how the files that match the specified paths came to be. Git wouldexclude those revisions that do not change the given file. Additionally, for non-excluded merge commits, Git would exclude those parents that do not changethe file (thus excluding lines of development).
You can control this kind of history simplification with the git log options suchas --full-history or --simplify-merges. Check the Git documentation for moredetails, such as the History simpliücation section in the git-log(1) manpage.
Blame 4 the line-wise history of a file

The blame command is a version control feature designed to help youdetermine who made changes to a file. This command shows, for each line inthe file, when the line was created, who authored the given line, and so on. Itdoes this by finding the latest commit in which the current shape of each linewas introduced. A revision introducing a given shape is the one where thegiven line has its current form, but where the line is different in its revisionparents. The default output of git blame annotates each line with appropriateline-authorship information.
Git can start annotating from the given revision (useful when browsing thehistory of a file or examining how an older version of a file came to be), or evenlimit the search to a given revision range. You can also limit the range of linesannotated to make blame faster — for example, to check only the history of an
esc_html function, you can use the following:
$ git blame -L '/^sub esc_html {/,/}/' gitweb/gitweb.perlWhat makes the blame operation so useful is that it follows the history of a fileacross whole-file renames. It can optionally follow lines that were moved from

one file to another (with the -M option), and even follow lines that were copiedand pasted from another file (with the -C option); this includes internal codemovement.
When following code movement, it is useful to ignore changes in whitespace tofind when a given fragment of code was truly introduced and avoid findingwhen it was just re-indented (for example, due to refactoring repeated codeinto a function — code movement). This can be done by passing the diff-formatting option, –w / --ignore-all-space.
RENAME DETECTION
A good version control system should be able to deal with renaming üles and other ways of changing the
directory structure of a project. There are two ways to deal with this problem. The ürst is rename
tracking, which means that the information about the fact that a üle was renamed is saved at the commit
time; the version control systems mark renames. This usually requires using the rename and move
commands to rename üles. For example, you cannot use a üle manager that is not version-control aware to
move üles. However, you can detect the rename when creating the revision." It can involve some kind of
file identity surviving across renames.

The second method, and the one used by Git, is rename detection. In this case, the mv command is only a
shortcut for deleting a üle with the old name and adding a üle with the same contents and a new name.
Rename detection means that the fact that the üle was renamed is detected at the time it is needed: when
doing a merge, when viewing the line-wise history of a üle (if requested), or when showing a diû (if
requested or conügured). This has the advantage that the rename detection algorithm can be improved
and is not frozen at the time of commit. It is a more generic solution, allowing it to handle not only the
whole-üle renames but also the code movement and copying within a single üle and across diûerent üles,
as can be seen in the description of git blame.

The disadvantage of rename detection, which in Git is based on the heuristic of the similarity of the üle
contents and the pathname, is that it takes resources to run and that in rare cases, it can fail: not detecting
renames, or detecting a rename where there isn9t one.

Note that, in modern Git, basic rename detection is turned on for diûs by default.Many graphical interfaces for Git include a graphical version of the blameoperation. The git gui blame is an example of such a graphical interface for theblame operation (it is a part of git gui, a Tcl/Tk-based graphical interface). Suchgraphical interfaces can show the full description of changes andsimultaneously show the history with and without considering renames. Fromsuch a GUI, it is usually possible to go to a specified commit, browsing thehistory of the lines of a file interactively. In addition, the GUI blame tool makesit very easy to follow files across renames:

Figure 5.1 3 'git gui blame' in action, showing the detection of copying or moving fragments of code

Finding bugs with git bisectGit provides a couple of tools to help you debug issues in your projects. Thesetools can be extremely useful, especially in the case of a software regression —that is, a software bug that makes a feature stop functioning as intended after acertain revision. If you don’t know where the bug can be, and there have beendozens or hundreds of commits since the last state where you know the codeworked, you’ll likely turn to git bisect for help.
The bisect command searches semi-automatically, step by step, throughproject history, trying to find the revision that introduced the bug. In each step,it bisects the history into roughly equal parts and asks whether there is a bugin the dividing commit. It then uses the answer to eliminate one of the two

sections and reduces the size of the revision range where there can be acommit that introduced the bug:

Figure 5.2 3 An example of git bisect in action, finding the buggy commit after 4 steps

Starting the git bisect process
Suppose version 1.14 of your project worked, but the release candidate for thenew version, 1.15-rc0, crashes. You go back to the 1.15-rc0 version, and it turnsout you can reproduce the issue (this is very important!), but you can’t figureout what is going wrong.
You can bisect the code history to find out. You need to start the bisectionprocess with git bisect start, and then tell Git which version is broken with git
bisect bad. Then, you must tell the bisect process the last known good state (orset of states) with git bisect good:
$ git bisect start
$ git bisect bad v1.15-rc0
$ git bisect good v1.14
Bisecting: 159 revisions left to test after this (roughly 7 steps)
[7ea60c15cc98ab586aea77c256934acd438c7f95] Merge branch 'mergetool'

Finding the buggy commit

Git figured out that about 300 commits came between the commit you markedas the last good commit (v1.14) and the bad version (v1.15-rc0), and checked outthe middle one (7ea60c15) for you. If you run git branch or git status at this point,you’ll see that git has temporarily moved you to (no branch):
$ git branch
* (no branch, bisect started on master)
 master
$ git status
HEAD detached at 7ea60c15cc

You are currently bisecting, started from branch 'master'.
 (use "git bisect reset" to get back to the original branch)At this point, you need to run your test to check whether the issue is present inthe commit currently checked out by the bisect operation. If the programcrashes, mark the current commit as bad with git bisect bad. If the issue is notpresent, mark it as correct with git bisect good. After about seven steps, Gitwould show the suspect commit:
$ git bisect good
b047b02ea83310a70fd603dc8cd7a6cd13d15c04 is first bad commit
commit b047b02ea83310a70fd603dc8cd7a6cd13d15c04
Author: PJ Hyett <pjhyett@example.com>
Date: Tue Jan 27 14:48:32 2009 -0800
 secure this thing
:040000 040000 40ee3e7… f24d3c6… M configThe last line in the preceding example output is in the so-called raw diff output,showing which files changed in a commit. You can then examine the suspectedcommit with git show. From there, you can find the author of the said commit,and ask them for clarification or ask them to fix it (by sending them a bugreport). If the good practice of creating small, incremental changes wasfollowed during the development of the project, the amount of code to examineafter finding the bad commit should be small.If, at any point, you land on a commit that broke something unrelated and is nota good one to test, you can skip such a commit with git bisect skip. You can evenskip a range of commits by giving the revision range to the skip subcommand.

When you’re finished, you should run git bisect reset to return you to the branchyou started from:
$ git bisect reset
Previous HEAD position was b047b02... secure this thing
Switched to branch 'master'To finish bisection while staying on the bad commit you found, you can use git
bisect reset HEAD.
Automating testing during the git bisect process
You can even fully automate finding bad revisions with git bisect run. For this,you need to have a script that will test for the presence of a bug and exit with avalue of 0 if the project works all right, or a non-0 value if there is a bug. Thespecial exit code, 125, should be used when the currently checked-out code

cannot be tested. In this case, you also start the bisect operation by providingthe known bad and good commits. You can do this by simply listing them withthe bisect start command if you want, listing the known bad commit first andthe known good commit(s) second. You can even cut down the number of trials,if you know what part of the tree is involved in the problem you are trackingdown, by specifying path parameters (the double-dash before the path is notstrictly necessary, but is helpful). Then, you start automated bisection:
$ git bisect start v1.5-rc0 v1.4 -- arch/i386
$ git bisect run ./test-error.shDoing so automatically runs test-error.sh on each checked-out commit until Gitfinds the first broken commit.If the bug is that the project stopped compiling (a broken build), you can use
make as a test script (with git bisect run make).
Selecting and formatting the git log outputNow that you know how to select revisions to examine and limit which revisionsare shown (selecting those that are interesting), it is time to see how to selectwhich part of the information is associated with the queried revisions to show,and how to format this output. There is a huge number and variety of optionsfor the git log command available for this.
Predefined and user-defined output formats

A very useful git log option is --pretty. This option changes the format of the logoutput. There are a few prebuilt formats available for you to use. The onelineformat prints each commit on a single line, which is useful if you’re looking at alot of commits; there exists the --oneline shorthand for --pretty=oneline --abbrev-
commit used together. In addition, the short, medium (the default), full, and fullerformats show the output in roughly the same format, but with less or moreinformation, respectively. The raw format shows commits in internal Gitrepresentation, and email or mboxrd in a git format-patch-like format, as an email.The reference format is intended to refer to another commit in a commitmessage, per the following example:
$ git show --no-patch --pretty=reference master^
20cfc7c (Added COPYRIGHT, 2021-05-30)

It is possible to change the format of dates shown in those verbose, prettyformats with an appropriate --date option: make Git show relative dates such as,for example, 2 hours ago, with --date=relative, dates in your local time zonewith --date=local, and so on.
You can also specify your own log output format with --pretty=format:<string>(and its tformat variant, with terminator rather than separator semantics —output for each commit has the newline appended). This is especially usefulwhen you’re generating output for machine parsing for use in scripts becausewhen you specify the format explicitly, you know it won’t change with updatesto Git. The format string works a little bit like in printf:
$ git log --pretty="%h - %an, %ar : %s"
50f84e3 - Junio C Hamano, 7 days ago : Update draft release notes
0953113 - Junio C Hamano, 10 days ago : Second batch for 2.1
afa53fe - Nick Alcock, 2 weeks ago : t5538: move http push tests outThere is a very large number of placeholders. Selected ones of those are listedin the following table:
Placeholder Description of output

%H Commit hash (full SHA-1 identifier of revision)
%h Abbreviated commit hash
%an Author name
%ae Author email
%ar Author date, relative
%cn Committer name
%ce Committer email
%cr Committer date, relative
%s Subject (first line of a commit message, describing revision)

Placeholder Description of output

%% A raw %
Table 5.1 3 Placeholders and their description

AUTHOR VERSUS COMMITTER
The author is the person who originally wrote the patch (authored the changes), whereas the committer
is the person who last applied the patch (created a commit object with those changes, representing the
revision in the DAG). So, if you send in a patch to a project and one of the core members applies the patch,
both of you get credit — you as the author and the core member as the committer. Also, after rebase, for
rebased revisions the original author of the commit is kept, while the person performing the rebase is made
the committer.The --oneline format option is especially useful together with another git logoption called --graph, though the latter can be used with any format. The latteroption adds a nice little ASCII graph showing your branch and merge history.To see where tags and branches are, you can use an option named --decorate(which in modern Git is now the default):
$ git log --graph --decorate --oneline origin/maint
* bce14aa (origin/maint) Sync with 1.9.4
|\
| * 34d5217 (tag: v1.9.4) Git 1.9.4
| * 12188a8 Merge branch 'rh/prompt' into maint
| |\
| * \ 64d8c31 Merge branch 'mw/symlinks' into maint
| |\ \
* | | | d717282 t5537: re-drop http tests
* | | | e156455 (tag: v2.0.0) Git 2.0You might want to use a graphical tool to visualize your commit history. Onesuch tool is a Tcl/Tk program called gitk that is distributed with Git. You canfind more information about various types of graphical tools in Chapter 13,

Customizing and Extending Git.
Including, formatting, and summing up changes
You can examine a single revision with the git show command, which, in additionto the commit metadata, shows changes in the unified diff format, described in
Chapter 2, Developing with Git, in the Uniüed Git diû format subsection.Sometimes, however, you might want to display changes alongside the selectedpart of the history in the git log output. You can do this with the help of the -p

option. This is very helpful for code review, or to quickly browse whathappened during a series of commits that a collaborator has added.
Ordinarily, Git would not show the changes for a merge commit. To showchanges from all parents, you need to use the –c option (or –cc for compressedoutput), while to show changes from each parent individually, use –m.Sometimes, it’s easier to review changes on the word level rather than on theline level. The git log accepts various options to change the format of the diffoutput. One of those options is --word-diff (with various variants, including
color). This way of viewing differences is useful for examining changes indocuments (for example, documentation):
commit 06ab60c06606613f238f3154cb27cb22d9723967
Author: Jason St. John <jstjohn@purdue.edu>
Date: Wed May 21 14:52:26 2014 -0400
 Documentation: use "command-line" when used as a compound adjective, and fix
 Signed-off-by: Jason St. John <jstjohn@purdue.edu>
 Signed-off-by: Junio C Hamano <gitster@pobox.com>
diff --git a/Documentation/config.txt b/Documentation/config.txt
index 1932e9b..553b300 100644
--- a/Documentation/config.txt
+++ b/Documentation/config.txt
@@ -381,7 +381,7
 Set the path to the root of the working tree.
 This can be overridden by the GIT_WORK_TREE environment
 variable and the '--work-tree' [-command line-]{+command-line+} option.
 The value can be an absolute path or relative to the path to
 the .git directory, which is either specified by --git-dir
 or GIT_DIR, or automatically discovered.Another useful set of options is about ignoring changes in whitespace, including
–w / --ignore-all-space to ignore all whitespace changes, and -b / --ignore-space-
change to ignore changes in the amount of whitespace.
With color support, you can ask Git to show moved code with --color-moved,possibly ignoring whitespace changes (with --color-moved-ws).Sometimes, you are interested only in the summary of changes and not thedetails. There is a series of diff summarizing options that you can use. If youwant to know only which files changed, use --names-only (or --raw --abbrev). If youalso want to know how much those files changed, you can use the --stat option(or perhaps its machine-parse-friendly version, --numstat) to see someabbreviated stats. If you are interested only in a short summary of changes, use
--shortstat or --summary.

Summarizing contributions

Ever wondered how many commits you’ve contributed to a project? Or,perhaps, who the most active developer was during the last month (withrespect to the number of commits)? Well, wonder no more, because this is what
git shortlog is good for:
$ git shortlog -s -n
 13885 Junio C Hamano
 1399 Shawn O. Pearce
 1384 Jeff King
 1108 Linus Torvalds
 743 Jonathan NiederThe -s option squashes all of the commit messages into the number of commits;without it, git shortlog would list a summary of all the commits, grouped by thedeveloper. The -n option sorts the list of developers by the number of commits;otherwise, it is sorted alphabetically. You can add an –e option to also show anemail address; note, however, that with this option, Git will separatecontributions made by the same author under different emails. The git shortlogoutput can be configured to some extent with a pretty-like --format option.

The git shortlog command accepts a revision range and other revision-limitingoptions such as --since=1.month.ago — anything that git log accepts and makessense for shortlog. For example, to see who contributed what to the last releasecandidate, you can use the following command:
$ git shortlog -e v2.0.0-rc2..v2.0.0-rc3
Jonathan Nieder <jrnieder@gmail.com> (1):
 shell doc: remove stray "+" in example
Junio C Hamano <gitster@pobox.com> (14):
 Merge branch 'cl/p4-use-diff-tree'
 Update draft release notes for 2.0
 Merge branch 'km/avoid-cp-a' into maint
…

TIP
One needs to remember that the number of revisions authored is only one way of measuring contribution.
For example, somebody who creates buggy commits only to üx them later would have a larger number of
commits than a developer who doesn9t make mistakes (or cleans the history before publishing changes).

There are other measures of programmer productivity — for example, the number of changed lines in
authored commits, or the number of surviving lines. Those can be calculated with the help of Git, but there
is no built-in command to calculate them.

Mapping authors

One problem with running git shortlog –s -n -e or git blame in Git repositories oflong-running projects is that an author may change their name or email, orboth, during the course of the project, due to many reasons: changing work(and work email), misconfiguration, spelling mistakes, and others. For example,you might have Bob Hacker <bob@example.com> in one place, but Bob
<bob@example.com> in the other. When that happens, you can’t get properattribution. Git allows you to coalesce author/email pairs with the help of the
.mailmap file in the top directory of your project. This file allows you to specify
canonical names for contributors, which in its simplest form looks like this:

Bob Hacker <bob@example.com>(Actually, it allows you to specify a canonical name, canonical email, or bothname and email, matching by email or by name and email.)
By default, those corrections are applied to all commands: git blame, git shortlog,and git log. With custom log output, you can use placeholders that output theoriginal name or corrected name, and the original email or corrected email.
Viewing a revision and a file at revision
Sometimes, you might want to examine a single revision (for example, a commitsuspected to be buggy, found with git bisect) in more detail, together withchanges and their descriptions. Or, perhaps, you want to examine the tagmessage of an annotated tag together with the commit it points to. Git providesa generic git show command for this; it can be used for any type of object.
For example, to examine the grandparent of the current version, you can usethe following command:
$ git show HEAD^^
commit ca3cdd6bb3fcd0c162a690d5383bdb8e8144b0d2
Author: Bob Hacker <bob@virtech.com>
Date: Sun Jun 1 02:36:32 2014 +0200
 Added COPYRIGHT
diff --git a/COPYRIGHT b/COPYRIGHT
new file mode 100644
index 0000000..862aafd
--- /dev/null
+++ b/COPYRIGHT
@@ -0,0 +1,2 @@
+Copyright (c) 2014 VirTech Inc.
+All Rights Reserved

The git show command can also be used to display directories (trees) and filecontents (blobs). To view a file (or a directory), you need to specify where it isfrom (from which revision) and the path to the file, using : to connect them. Forexample, to view the contents of the src/rand.c file as it was in the versiontagged v0.1, use the following:
$ git show v0.1:src/rand.cThis might be more convenient than checking out the required version of thefile into the working directory with git checkout v0.1 -- src/rand.c. Before thecolon may be anything that names a commit (v0.1 here), and after that, it maybe any path to a file tracked by Git (src/rand.c here). The pathname here is thefull path from the top of the project directory, but you can use ./ after the colonfor relative paths — for example, v0.1:./rand.c if you are in the src/ subdirectory.

You can use the same trick to compare arbitrary files at arbitrary revisions; onthe other hand, the git show :src/rand.c command (as if with an empty revision)will show the state of the file at the time git add was run — the state of thechosen file in the index (in the staging area).If you want to find out what files are present at a given revision (to select oneto examine), you can use git ls-tree <revision>. To find out what files are presentin the worktree and in the index, use git ls-files with the appropriate option toselect what you want to see.
SummaryThis chapter showed us the various ways of exploring project history: selectingand filtering revisions to display, searching through various parts of commit-related data, and formatting the output.
You have learned how to find all the revisions that were made by a givendeveloper, how to search through the commit message and the changes madeby the commit, and how to narrow the search to a specific range of time.We can even try to find bugs in the code by exploring the history: finding whena function was deleted from the code with a pickaxe search, examining a file forhow its code came to be and who wrote it with git blame, and utilizing semi-automatic or automatic search through the project history to find which versionintroduced a regression with git bisect.

When examining a revision, we can select the format in which the informationis shown, even to the point of user-defined formats. There are various ways ofsummarizing the information, from the statistics of the changed files, to thestatistics of the number of commits per author.
In the next chapter, we will examine how Git can help developers worktogether as a team on a single project.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. How would you list all commits made since yesterday on any remote-tracking branch?
2. How would you find out who the original author of a given function or class was, to ask forclarification or a code review?
3. How would you use Git to help find the source of regression — that is, a bug that is present in the newrevision of the project, but was not there in older versions?
4. You have noticed that your colleague made a few commits with a misconfigured email, using

bob@laptop.company.com instead of bob@company.com. How would you fix the attribution, assumingthat it is not possible to rewrite those commits?
AnswersHere are the answers to the questions given above:

1. Combine time-limiting options with the --remotes option:
2. git log --since=yesterday --remotes.
3. Use the git blame command or an interactive GUI to do this, such as git gui blame (or anintegration with your editor or integrated development environment (IDE); you can also searchthrough the history of the relevant fragment of a file with git log -L.
4. Use git bisect to find the commit that introduced the bug, perhaps even by automating the searchwith git bisect run.
5. Add the correct name and email to the .mailmap file.

Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:
Scott Chacon, Ben Straub, Pro Git, 2 Edition (2014), Apress, Chapter 7.5 Git Tools – Searching:https://git-scm.com/book/en/v2/Git-Tools-Searchingnd

https://git-scm.com/book/en/v2/Git-Tools-Searching

Christian Couder, Fighting regressions with git bisect (slides from the Linux-Kongress 2009conference): http://www.linux-kongress.org/2009/slides/fighting_regressions_with_git_bisect_christian_couder.pdf
Junio C Hamano, Fun with ürst parent history (2013): https://git-blame.blogspot.com/2013/09/fun-with-first-parent-history.html
Junio C Hamano, Measuring Project Activities (2) (2013): https://git-blame.blogspot.com/2013/03/measuring-project-activities-2.html
Jan Goyvaerts, Regular Expressions Tutorial - Learn How to Use and Get The Most out of Regular
Expressions: https://www.regular-expressions.info/tutorial.html

http://www.linux-kongress.org/2009/slides/fighting_regressions_with_git_bisect_christian_couder.pdf
https://git-blame.blogspot.com/2013/09/fun-with-first-parent-history.html
https://git-blame.blogspot.com/2013/03/measuring-project-activities-2.html
https://www.regular-expressions.info/tutorial.html

Part 2 - Working with Other DevelopersIn this part, you will learn how to choose the correct workflow for you (whichincludes a repository setup and branching model) and how to use Git tocollaborate with other developers. You will also discover how to rewrite historyand what to do if it is not possible.
This part has the following chapters:

Chapter 6, Collaborative Development with Git

Chapter 7, Publishing Your Changes

Chapter 8, Advanced Branching Techniques

Chapter 9, Merging Changes Together

Chapter 10, Keeping History Clean

6

Collaborative Development with Git
Chapter 2, Developing with Git, and Chapter 3, Managing Your Worktrees,taught you how to make new contributions to a project, but limited thisinformation to affecting only your own clone of the project’s repository on yourcomputer. Chapter 2 described how to commit new revisions, while Chapter 3showed you how Git can help you prepare it.
This chapter and Chapter 7, Publishing Your Changes, present a bird’s-eye viewof the various ways to collaborate with others, showing centralized anddistributed workflows. These two chapters will focus on the repository-levelinteractions in collaborative development, while the patterns of branches usedwill be covered in Chapter 8, Advanced Branching Techniques.
This chapter describes different collaborative workflows, explaining theadvantages and disadvantages of each one. You will also learn about the chainof trust concept and how to use signed tags, signed merges, and signed
commits.The following topics will be covered in this chapter:

Centralized and distributed workflows, and bare repositories
Managing remotes and one-off single-shot collaboration
How versions are addressed—the chain of trust
Tagging; lightweight tags versus signed tags
Signed tags, signed merges, and signed commits

Collaborative workflowsThere are various levels of engagement while using a version control system.One might, for example, only be interested in using Git to examine how theproject came to be. Chapter 4, Exploring Project History, and Chapter 5,
Searching Through the Repository, covered this use of Git. Of course,examining a project’s history is an important part of development, too.

One might use version control for one’s private development, using it for asingle developer project, on a single machine. Chapter 2, Developing with Git,and Chapter 3, Managing Your Worktrees, show how to do this with Git. Ofcourse, people usually don’t work in isolation, but in a team: one’s owndevelopment is usually part of a collaboration.
But one of the main goals of version control systems is to help multipledevelopers work together on a project, collaboratively. Version control makes itpossible for them to work simultaneously on a given piece of software in aneffective way, ensuring that their changes do not conflict with each other, andthus helping with merging those changes.One might work on a project together with a few other developers, or withmany. One might be a contributor, or a project maintainer. Maybe the project isso large that it needs subsystem maintainers. One might work in tight softwareteams, or one might want to make it easy for external contributors to provideproposed changes (for example, to fix bugs, or fix an error in thedocumentation). Various workflows might be best suited for those differentsituations:

Centralized workflow
Peer-to-peer workflow
Maintainer workflow
Hierarchical workflow

Bare repositories

There are two types of repositories:
One with a working directory, and a staging area (non-bare)
A bare repository, without the working directory

The former type is meant for private solo development, and creating newhistory, while the latter is intended for collaboration and synchronizingdevelopment results.
By convention, bare repositories use the .git extension—for example,
project.git—while non-bare repositories don’t have it—for example, project(with the administrative area and the local repository in project/.git).

You can usually omit this extension when cloning the repository, pushing to it,or fetching from it; using either https://github.com/git/git.git as the repositoryURL or https://github.com/git/git will work the same.
To create the bare repository, you need to add the --bare option to the git init or
git clone commands, as in the following example:
$ git init --bare project.git
Initialized empty Git repository in /home/user/project.git/

Interacting with other repositories
After creating a set of revisions and extending the project’s history, you usuallyneed to share it with other developers. You need to synchronize with otherrepository instances: publish your changes, and get changes from others.
From the perspective of the local repository instance – your own clone of therepository – you need to push your changes to the repository meant forpublishing changes and fetch changes from other repositories. Often the onlyrepository you need to interact with is simply the repository you cloned from.
Chapter 7, Publishing Your Changes, will describe this process (and itsalternatives) in more detail.After fetching changes, you sometimes need to incorporate them into your workby merging two lines of development (or rebasing)—which you can do in oneoperation with pull. Merging and rebasing operations will be described in moredetail in Chapter 9, Merging Changes Together.
Git assumes that you don’t want your local repository to be visible to the public,because these repositories are intended for private work (which helps to keepwork not yet ready for the public from being visible).This means that there is an additional step required to make your finished workavailable: you need to publish your changes, for example with the git pushcommand.
The diagram in Figure 6.1, which is an extension of the one in Figure 2.2 in
Chapter 2, Developing with Git, demonstrates the steps one can take whencreating and publishing commits. The arrows in this diagram show the Git

https://github.com/git/git

commands used to copy contents from one place to another, including to andfrom the remote repository.

Figure 6.1 – Creating commits, publishing commits, and fetching changes published by other developers
into your local repositoryNow, let us understand the centralized workflow.

The centralized workflow
With distributed version control systems, you can use different collaborationmodels, some more distributed, some less distributed. In a centralized
workflow, there is one central hub: a shared repository, usually bare, thateveryone uses to synchronize their work.

Figure 6.2 – Centralized workflow – the shared repository is bareIn this workflow, each developer has their own non-bare clone of the centralshared repository, which they use to develop new revisions of software. Whenchanges are ready, they push those changes to the central repository, and fetch(or pull) changes from other developers from it. One might have to mergechanges before being able to push. In this workflow integration of changes isdistributed. This workflow is shown in Figure 6.2.
Let us now look into the advantages and disadvantages of a centralized
workýow.
Advantages of a centralized workflowSome of the key advantages of centralized workflows include the following:

This workflow has a simple setup; it is a familiar paradigm for people coming from centralized versioncontrol systems and used to working with centralized management. It provides centralized accesscontrol and easy backups.
It makes it easy to set up continuous integration (CI).
The process of merging changes is shared among developers, with no person solely responsible forintegrating changes.

It might be a good setup for a private project with a small team, or where all developers are trustedand capable.
Disadvantages of a centralized workflowSome of the disadvantages of centralized workflows are as follows:

The shared repository is a single point of failure: if there are problems with the central repository,then there is no way to synchronize changes.
Each developer pushing changes (making them available for other developers) might require updatingone’s own repository first, and merging changes from others. Shared integration means that eachdeveloper needs to know how to do it.
You also need to trust developers with access to the shared repository in this setup, or to provideaccess controls.

The peer-to-peer or forking workflow

The opposite of a centralized workflow is a peer-to-peer or forking workflow.Instead of using a single central shared public repository, each developer has apublic repository (which is bare), in addition to a private working repository(with a working directory), like in the Figure 6.3.

Figure 6.3 – Peer-to-peer workflow – here, lines pointing up represent push operation, while lines pointing
down represent fetch/pull operationWhen the changes are ready, developers push to their own public repositories.To incorporate changes from other developers, one needs to fetch them fromthe public repositories of each of the other developers.The advantages and disadvantages of this rarely used peer-to-peer workflow,also called forking workflow, are as follows:

Advantages of the peer-to-peer workflow
One advantage of the forking workflow is that contributions can be integrated without the need for acentral repository; it is a fully distributed workflow
Another advantage is that you are not forced to integrate if you want to publish your changes; you canmerge at your leisure
It is a good workflow for organic teams without requiring much setup

Disadvantages of the peer-to-peer workflow
The disadvantages are a lack of the canonical version, no centralized management, and the fact thatin the basic form of this workflow you need to interact with many repositories. Though the git
remote update or git fetch --multiple commands can help here by doing multiple fetches with asingle command.
Setting up this workflow requires developers’ public repositories to be reachable from otherdevelopers’ workstations, which might not be as easy as using one’s own machine as a server for one’spublic repositories
Also, as can be seen in Figure 6.3, collaboration gets more complicated with the growing number ofdevelopers; this workflow does not scale well

The maintainer or integration manager workflow
One of the problems with peer-to-peer workflows is that there is no canonicalversion of a project, something that non-developers can use. Another is thateach developer has to do their own integration (which was also the case for thecentralized workflow). If we promote one of the public repositories in Figure
6.3 to be the canonical (official) repository and make one of the developersresponsible for integration, we arrive at the integration manager workflow(or maintainer workflow). The following diagram shows this workflow, withbare repositories at the top and non-bare at the bottom.

Figure 6.4 – Integration-manager (maintainer) workflow – lines pointing up are push operations, while
lines pointing down are fetch operationsIn this workflow, when changes are ready, the developer pushes those changesto their own public repository and tells the maintainer (for example, via a pull

request) that they are ready. The maintainer pulls changes from thedeveloper’s repository into their own working repository and integrates thechanges. Then the maintainer pushes the merged changes to the <blessed=
repository, for all to see, making them available to be fetched.
The advantages and disadvantages are as follows:
Advantages of the integration manager workflow

The advantages are having an official version of a project, and that developers can continue to workwithout doing or waiting for integration, as maintainers can pull their changes at any time.
It is a good workflow for a large organic team, as in open source projects.
The fact that the blessed repository is decided by social consensus makes it easy to switch to othermaintainers, either temporarily (for example, when one maintainer takes some time off) orpermanently (such as when forking a project), without the need to hand out access rights.
This setup makes it easy for a smaller group of developers to collaborate by simply denoting one ofthe repositories in the group as the one to fetch from. The dotted line in Figure 6.4 shows thispossibility of fetching from a non-official repository.

Disadvantages of the integration manager workflow

The primary disadvantage is that the ability of the maintainer to integrate changes can be abottleneck (as opposed to the centralized workflow, with distributed integration).This can happen especially for large teams and large projects. Thus, for verylarge organic teams, such as in Linux kernel development, it is better to usethe hierarchical workflow, described in the next section.
There needs to be dedicated person that does the merging and is responsible for the state of the“blessed” repository.
Another disadvantage is that it is more difficult to set up continuous integration than in thecentralized repository workflow.

The hierarchical or dictator-and-lieutenants
workflow

The hierarchical workflow is a variant of the blessed repository workflow,generally used in huge projects with hundreds of collaborators. In thisworkflow, the project maintainer (sometimes called the benevolent dictator)is accompanied by additional integration managers, usually in charge of certainparts of the repository (subsystems). They are called lieutenants. Thebenevolent dictator’s public repository serves as the blessed referencerepository from which all the collaborators need to pull. Lieutenants pull fromdevelopers and the maintainer pulls from the lieutenants, as shown in Figure
6.5. (Note that in the following diagram, repositories shown with dashedpatterns are actually pairs of private and public repositories of a developer or alieutenant).

Figure 6.5 – Dictator and lieutenants workflow (hierarchical workflow)In a dictator and lieutenants workflow, there is a hierarchy (a network) ofrepositories. Before starting work, either development or merging, one wouldusually pull updates from the canonical (blessed) repository for a project.
Developers prepare changes in their own private repository, then send changes to an appropriatesubsystem maintainer (lieutenant).Changes can be sent as patches in email, or by pushing them to the
developer’s public repository and sending a pull request to an appropriateintegration manager (appropriate subsystem maintainer).
Lieutenants are responsible for merging changes in their respective areas of responsibility.
The master maintainer (dictator) pulls from the lieutenants (and occasionally directly fromdevelopers). The dictator is also responsible for pushing merged changes to the reference (canonical)

repository, and usually also for release management (for example, creating tags for releases).
An overview of the advantages and disadvantages of this workflow follows.
Advantages of the hierarchical workflow

The advantage of this workflow is that it allows the project leader (the dictator) to delegate much ofthe integration work.
This can be useful in very big projects (concerning the number of developers and/or changes), or inhighly hierarchical environments. Such a workflow is used, for example, to develop the Linux kernel.

Disadvantages of the hierarchical workflow
Its complicated setup is a disadvantage of this workflow. It is usually overkill for an ordinary project.
Almost all other disadvantages of the integration manager workflow are present in this workflow,which is its more complex variant.

Which workflow to choose, and how to set up repositories, depend on how theproject is developed. You need to decide which drawbacks are acceptable andwhich advantages matter most.
Managing remote repositoriesWhen collaborating on any project managed with Git, you will interact oftenwith a constant set of other repositories. For example, using the integration-manager workflow will involve (at least) the canonical blessed repository of aproject. In many cases, you will interact with more than one remote repository.
Git allows us to save the information about a remote repository (or just remotefor short) in the config file by giving it a nickname (a shorthand name). Thisconfiguration can be managed with the git remote command.
LEGACY MECHANISMS FOR STORING REMOTE REPOSITORY
INFORMATION
There are also two legacy mechanisms to store the information about remote repositories.

This first is a named file in .git/remotes4the name of this file will be the nickname of the remote. This file
can contain information about the URL or URLs, and fetch and push refspecs.

The second is a named file in .git/branches4the name of this file will also be the nickname of the
remote. The contents of this file are just a URL for the repository, optionally followed by # and the branch
name.

Neither of those mechanisms is likely to be found in modern repositories. See the Remotes section in the
git-fetch(1) manpage for more details.

The <origin= remote

When cloning a repository, Git will create one remote for you—the origin
remote, which stores information about where you cloned from—that is theorigin of your copy of the repository (hence the name). You can use this remoteto fetch updates.This is the default remote; for example, git fetch without the remote name willuse the origin remote. You can change this using the remote.default configurationvariable on a per-repository basis, or you can set up a default remote differentlyfor a given branch with branch.<branchname>.remote.
Listing and examining remotes

To see which remote repositories you have configured, you can run the git
remote command. It lists the short names of each remote you’ve got. In a clonedrepository you will have at least one remote named origin:
$ git remote
originTo see the URL together with remotes, you can use the -v or --verbose options:
$ git remote --verbose
origin https://github.com/git/git.git (fetch)
origin https://github.com/git/git.git (push)From the output of this command, you can easily guess that the fetch and pushURLs can be different (in a so-called triangular workflow).

If you want to inspect remotes to see more information about a particularremote, you can use the git remote show <remote> subcommand:
$ git remote show origin
remote origin
 Fetch URL: https://github.com/git/git.git
 Push URL: https://github.com/git/git.git
 HEAD branch: master
 Remote branches:
 maint tracked
 master tracked
 next tracked
 pu tracked
 todo tracked
 Local branch configured for 'git pull':
 master merges with remote master
 Local ref configured for 'git push':
 master pushes to master (up to date)

Git will consult the remote configuration, the branch configuration, and theremote repository itself (for an up-to-date status). If you want to skip contactingthe remote repository and use cached information instead, add the -n option to
git remote show. If there is no internet connection,and you did not use '-n' option,Git will tell you that it was unable to contact the repository.
As the information about remotes is stored in the repository configuration file,you can simply examine .git/config:

[remote "origin"]
 fetch = +refs/heads/*:refs/remotes/origin/*
 url = git://git.kernel.org/pub/scm/git/git.gitThe difference between local and remote branches (and remote-tracking

branches: local representations of remote branches) will be described in
Chapter 8, Advanced Branching Techniques, together with an explanation of
refspecs. The refspec is a thing that is used to describe mapping betweenbranches in remote repository and local remote-tracking branches, which lookslike this: +refs/heads/*:refs/remotes/origin/* . You can see it in the second line inthe preceding example.
Adding a new remote
To add a new remote Git repository and to store its information under a shortname, run git remote add <shortname> <URL>:
$ git remote add alice \
 https://git.company.com/alice/random.gitAdding remote doesn’t fetch from it automatically—you need to use the -foption for that (or run git fetch <shortname> afterwards).This command has a few options that affect how Git creates a new remote. Youcan select which branches in the remote repository you are interested in withthe -t <branch> option. You can change which branch is the default one in theremote repository (and which you can refer to by the remote name) using the -m
<branch> option; otherwise, it would be the current branch in the remoterepository. You can fetch all tags or no tags with --tags or --no-tags, respectively;otherwise, only tags on fetched branches would be imported. Or you canconfigure the remote repository for mirroring rather than for collaboration with
--mirror=push or --mirror=fetch.

For example, running the following command:
$ git remote add -t master -t next -t maint github \
 https://github.com/jnareb/git.gitwill result in the following configuration of the remote:
[remote "github"]
 url = https://github.com/jnareb/git.git
 fetch = +refs/heads/master:refs/remotes/github/master
 fetch = +refs/heads/next:refs/remotes/github/next
 fetch = +refs/heads/maint:refs/remotes/github/maint

Updating information about remotes

The information about the remote repository is stored in three places:
In the remote configuration: remote.<remote name>,
In remote-tracking branches and in the remote-HEAD (refs/remotes/<remote name>/HEAD)
And optionally, in the per-branch configuration: branch.<branch name>

The remote-HEAD is a symbolic reference (symref) that defines the default
remote-tracking branch. The remote-HEAD is a symbolic reference (symref)that defines the default remote-tracking branch. This means it determineswhich remote-tracking branch <remote name> refers to when used as a branchname, such as in the command 'git log <remote name>'.
You could manipulate this information directly—either by editing theappropriate files or using manipulation commands such as git config and git
symbolic-ref—but Git provides various git remote subcommands for this.
Renaming remotesRenaming the remote—that is, changing its nickname—is quite a complicatedoperation. Running git remote rename <old> <new> will not only change the sectionname in remote.<old>, but also the remote-tracking branches and accompanying
refspec, their reflogs (if there are any—see the core.logAllRefUpdates configurationvariable), and the respective branch configurations.
Changing the remote URLsYou can add or replace the URL for a remote with git remote set-url, but it is alsoquite easy to simply directly edit the configuration.

You can also use the insteadOf (and pushInsteadOf) configuration variables. Thiscan be useful if you want to temporarily use another server, for example, if thecanonical repository is temporarily down. Say that you want to fetch Git fromthe repository on GitHub, because https://www.kernel.org that you cloned Gitfrom is down. You can do this by adding the following text to the config file:
[url "https://github.com/git/git.git"]
 insteadOf = git://git.kernel.org/pub/scm/git/git.gitAnother use case for this feature is handling repository migration. You can use

insteadOf rewriting in the per-user configuration file, that is, in ~/.gitconfig (or
~/.config/git/config), without having to change the URL in each and everyrepository’s .git/config file. In the case of more than one match, the longestmatch is used.
TIP 3 MULTIPLE URLS FOR A REMOTE
You can set multiple URLs for a remote. Git will try all these URLs sequentially when fetching and use the
first one that works. When pushing, Git will publish to all URLs (all servers) simultaneously.

Changing the list of branches tracked by remoteA similar situation to changing the URL occurs when changing the list ofbranches tracked by a remote (that is, the contents of fetch lines). You can use
git remote set-branches (with a sufficiently modern Git client) or edit the configfile directly.
NOTE 3 STALE REMOTE-TRACKING BRANCHES
Freeing a branch in a remote repository from being tracked does not remove the remote-tracking branch4
the latter is simply no longer updated on fetch. This is explained in more detail in the Deleting remote-
tracking branches and remotes section later in this chapter, which describes how to prune remote-tracking
branches that correspond to branches deleted in remote the repository.

Setting the default branch of the remoteHaving a default branch on the remote is not required, but it lets us specifythe remote name (for example, origin) instead of a specific remote-trackingbranch (for example, origin/master). This information is stored in the symbolic ref
<remote name>/HEAD (for example, origin/HEAD).
You can set this with git remote set-head command. The --auto option does thatbased on what the current branch in the remote repository is:

https://www.kernel.org/

$ git remote set-head origin master
$ git branch -r
 origin/HEAD -> origin/master
 origin/masterYou can delete the default branch on the remote with the --delete option.

Deleting remote-tracking branches and remotesWhen a public branch is deleted in the remote repository, Git neverthelesskeeps the corresponding remote-tracking branch. It does that because youmight want to do, or might have already done, your own work on top of it. Youcan, however, delete the remote-tracking branch with git branch -r -d, or youcan ask Git to prune all stale remote-tracking branches under the remote with
git remote prune. You can configure Git to do this automatically on every fetch, asif git fetch were run with the --prune option, by setting the fetch.prune and/or
remote.<name>.prune configuration variables (the latter on a per-remote basis).You can check which remote-tracking branches are stale with the --dry-runoption to git remote prune, or with the git remote show command.
Deleting remote is as simple as running git remote delete (or its alias, git remote
rm). It also removes remote-tracking branches for the deleted remote.
Support for triangular workflows
In many collaborative workflows, such as the maintainer (or integrationmanager) workflow, you fetch from one URL (from the blessed repository), butpush to another URL (to your own public repository).
As shown in Figure 6.4, the developer interacts with three repositories: theyfetch from the blessed repository (top left) into their own private repository(darker, at the bottom), then push their work into their own public repository(lighter, at the top).
In such a triangular workflow (three repositories), the remote you fetch orpull from is usually the default origin remote (or remote.default). One option forconfiguring which repository you push to is to add this repository as a separateremote, and perhaps also set it up as the default with remote.pushDefault:

[remote "origin"]
 url = https://git.company.com/project

 fetch = +refs/heads/*:refs/remotes/origin/*
[remote "myown"]
 url = git@work.company.com:user/project
fetch = +refs/heads/*:refs/remotes/myown/*
[remote]
 pushDefault = myownYou could also set it as pushRemote in the per-branch configuration:
[branch "master"]
 remote = origin
 pushRemote = myown
 merge = refs/heads/masterAnother option is to use a single remote (perhaps even origin) but set it up witha separate pushurl. This solution, however, has the slight disadvantage that youdon’t have separate remote-tracking branches for the push repository (and thusthere is no support @{push} notation in addition to having @{upstream} as a shortcutfor specifying the appropriate remote-tracking branches):
[remote "origin"]
 url = https://git.company.com/project
 pushurl = git@work.company.com:user/project
 fetch = +refs/heads/*:refs/remotes/origin/*Having separate remote-tracking branches for the push repository allows youto track which branches were pushed to the push remote, and which have localunpublished changes.

Chain of trustAn important part of collaborative efforts during the development of a project isensuring the quality of its code. This includes protection against the accidentalcorruption of the repository, and also from malicious intent—a task that theversion control system can help with. Git needs to ensure trust in the repositorycontents: both your own and other developers’ (especially trust in the canonicalrepository of the project).
Content-addressed storage

In Chapter 4, Exploring Project History, in the SHA-1 and the shortened SHA-1
identiüer section, we learned that Git currently uses SHA-1 hashes as a nativeidentifier of commit objects (which represent revisions of the project and formthe project’s history). This mechanism makes it possible to generate commitidentifiers in a distributed way, taking a cryptographic hash of the commit

object. This hash is then used to link to the previous commit (to the parentcommit or commits).
Moreover, all other data stored in the repository (including the file contents inthe revision represented by the blob objects, and the file hierarchy representedby the tree objects) also use the same mechanism. All types of object areaddressed by their contents, or to be more accurate, the hash function of theobject. You can say that the base of a Git repository is the content-addressed
object database.
Thus, Git provides a built-in trust chain through secure SHA-1 hashes, via akind of a hash tree, also known as a Merkle tree. In one dimension, the SHA-1hash of a commit depends on its contents, which includes the SHA-1 hash of theparent commit or commits, which depends on the contents of the parentcommit, and so forth down to the initial root commit. In the other dimension,the content of a commit object includes the SHA-1 hash of the treerepresenting the top directory of a project, which in turn depends on itscontents, and these contents include the SHA-1 hash of the subdirectory treesand blobs of file contents, and so forth down to the individual files.

Figure 6.6 – Hash tree of a short history of a project, with a tag, two commits, and their contents. The
SHA-1 hashes, shown in shortened form, depending on their contentsAll of this allows SHA-1 hashes to be used to verify whether objects obtainedfrom a (potentially untrusted) source have been corrupted or modified sincethey were created.

Lightweight, annotated, and signed tags

The trust chain allows us to verify the contents but does not verify the identityof the person who created the content (the author and committer name arefully configurable and under user control). This is the task for GPG/PGPsignatures: signed tags, signed commits, and signed merges.
Since Git version 2.34, you can also use SSH keys for signing by setting the
gpg.format configuration variable to the value ssh, for example with git config
gpg.format ssh (you may also need to use your public key as the configurationvalue for the user.signingKey configuration variable).
Lightweight tagsGit uses two types of tags: lightweight tags and annotated tags (there are alsosigned tags, which are a special case of annotated tags).
A lightweight tag is very much like a branch that doesn’t change – it’s just apointer (reference) to a specific commit in the graph of revisions, though in the
refs/tags/ namespace rather than in refs/heads/.
Annotated tags
Annotated tags, however, involve tag objects. Here the tag reference (in
refs/tags/ namespace) points to a tag object, which in turn points to a commit.Tag objects contain a creation date, the tagger identity (name and e-mail), anda tagging message. You create an annotated tag with git tag -a (or --annotate). Ifyou don’t specify a message for an annotated tag on the command line (forexample, with -m "<message>"), Git will launch your editor so you can enter it.You can view the tag data along with the tagged commit with the git showcommand as follows (commit skipped):
$ git show v0.2
tag v0.2
Tagger: Joe R Hacker <joe@company.com>
Date: Sun Jun 1 03:10:07 2014 -0700
random v0.2
commit 5d2584867fe4e94ab7d211a206bc0bc3804d37a9

Signed tagsSigned tags are annotated tags with a clear text PGP signature (or, withmodern Git, an SSH signature) of the tag data attached. You can create themwith git tag -s (which uses your committer identity to select the signing key, or

user.signingKey if set), or with git tag -u <key-id>; both versions assume that youhave a private GPG key (created, for example, with gpg --gen-key).
LIGHTWEIGHT TAGS VERSUS ANNOTATED AND SIGNED TAGS
Annotated or signed tags are meant for marking a release, while lightweight tags are meant for private or
temporary revision labels. For this reason, some Git commands (such as git describe) will ignore
lightweight tags by default.Of course in collaborative workflows, it is important that the signed tag is made
public, and that there is a way to verify it; both of those operations will bedescribed in the following sections.
Publishing tagsGit does not push tags by default: you need to do it explicitly. One solution is toindividually push a tag with git push <remote> tag <tag-name> (here, tag <tag> isequivalent to the longer refspec (describing how refs on the remote translateto refs in the local repository), namely refs/tags/<tag>:refs/tags/<tag>); however, ifyou don’t have the naming conflict between a branch and a tag (i.e., you don’thave branch and tag with the same name), then you can skip the word tag herein this operation.Another solution is to push tags en masse: either all the tags—both lightweightand annotated—with the use of the --tags option, or just all annotated tags thatpoint to pushed commits with --follow-tags. This explicitness allows you to re-tag(using git tag -f) with impunity if it turns out that you tagged the wrongcommit, or there is a need for a last-minute fix—but only if the tag was notmade public. Git does not (and should not) change tags behind the user’s back;thus, if you pushed the wrong tag, you need to ask others to delete this old tagto change it.
When fetching changes, Git automatically follows tags, downloadingannotated tags that point to fetched commits. This means that downstreamdevelopers will automatically get signed tags, and will be able to verifyreleases.
Tag verificationTo verify a signed tag, you use git tag --verify <tag-name> (or -v for short). Youneed the signer’s public GPG key in your keyring for this (imported using gpg -

-import or gpg --keyserver <key-server> --recv-key <key-id>), and of course thetagger’s key needs to be vetted in your chain of trust. For SSH keys there is no
web of trust; you need to specify the trusted public keys with the
gpg.ssh.allowedSignersFile configuration variable.
$ git tag --verify v0.2
object 1085f3360e148e4b290ea1477143e25cae995fdd
type commit
tag signed
tagger Joe Random 1411122206 +0200
project v0.2
gpg: Signature made Fri Jul 19 12:23:33 2014 CEST using RSA key ID A0218851
gpg: Good signature from "Joe Random <jrandom@example.com>"

Signed commits

Signed tags are a good solution for users and developers to verify that thetagged release was created by the maintainer. But how do we make sure that acommit purporting to be by somebody named Jane Doe, with the jane@company.come-mail, is actually a commit from her? How can we make it so anybody cancheck this?One possible solution is to sign individual commits. You can do this with git
commit --gpg-sign[=<keyid>] (or -S for short). The key identifier is optional—withoutthis, Git would use your identity as the author. Note that -S (capital S) isdifferent from -s (small s); the latter adds a Signed-oû-by line at the end of thecommit message for the Digital Certiücate of Ownership:
$ git commit -a --gpg-sign
You need a passphrase to unlock the secret key for
user: "Jane Doe <jane@company.com>"
2048-bit RSA key, ID A0218851, created 2014-03-19
[master 1085f33] README: eol at eof
 1 file changed, 1 insertion(+), 1 deletion(-)To make commits available for verification, just push them. Anyone can thenverify them with the --show-signature option to git log (or git show), or with one ofthe %Gx placeholders in git log --format=<format>:
$ git log -1 --show-signature
commit 1085f3360e148e4b290ea1477143e25cae995fdd
gpg: Signature made Wed Mar 19 11:53:49 2014 CEST using RSA key ID A0218851
gpg: Good signature from "Jane Doe <jane@company.com>
Author: Jane Doe <jane@company.com>
Date: Wed Mar 19 11:53:48 2014 +0200
 README: eol at eof

You can also use the git verify-commit command for this.
Merging signed tags (merge tags)

The signed commit mechanism, described in the previous section, may beuseful in some workflows, but it is inconvenient in an environment where youpush commits out early, and only after a while do you decide whether they areworth including in the upstream. In such cases, you would want to sign onlythose parts that are ready to be published.
This situation can happen if you follow the recommendations in Chapter 10,
Keeping History Clean; you know only after the fact (long after the commit wascreated) that the given iteration of the commit series passes code review.Commits need to be signed at commit creation time, but you can create asigned tag after the fact, after the series of commits gets accepted.
You can deal with this issue by rewriting the whole commit series after itsshape is finalized (after passing the review), signing each rewritten commit, orjust by amending and signing only the top commit. Both of those solutionswould require a forced push to replace the old history where commits were notsigned. You can always sign every commit, or you can create an empty commit(with --allow-empty), sign it, and push it on top of the series. But there is a bettersolution: requesting the pull of a signed tag.In this workflow, you work on your changes and, when they are ready, youcreate and push a signed tag (tagging the last commit in the series). You don’thave to push your working branch—pushing the tag is enough. If the workflowinvolves sending a pull request to the integrator, you create it using a signedtag instead of the end commit:
$ git tag -s 1253-for-maintainer
$ git request-pull origin/master public-repo \
 1253-for-maintainer >msg.txtThe signed tag message is shown between the dashed lines in the pull request,which means that you may want to explain your work in the tag message whencreating the signed tag. The maintainer, after receiving such a pull request, cancopy the repository line from it, fetching and integrating the named tag. Whenrecording the merge result of pulling the named tag, Git will open an editor and

ask for a commit message. The integrator will see a template starting with thefollowing:
Merge tag '1252-for-maintainer'
Work on task tsk-1252
gpg: Signature made Wed Mar 19 12:23:33 2014 CEST using RSA key ID A0218851
gpg: Good signature from "Jane Doe <jane@company.com>"This commit template includes the commented-out output of the verification ofthe signed tag object being merged (so it won’t be in the final merge commitmessage). The tag message helps describe the merge better.

The signed tag being pulled is not stored in the integrator’s repository, not as atag object. Its content is stored, hidden, in a merge commit. This is done toavoid polluting the tag namespace with a large number of such working tags.The developer can safely delete the tag (git push public-repo --delete 1252-for-
maintainer) after it gets integrated.
Recording the signature inside the merge commit allows for after-the-factverification with the --show-signature option:
$ git log -1 --show-signature
commit 0507c804e0e297cd163481d4cb20f3f48ceb87cb
merged tag '1252-for-maintainer'
gpg: Signature made Wed Mar 19 12:23:33 2014 CEST using RSA key ID A0218851
gpg: Good signature from "Jane Doe <jane@company.com>"
Merge: 5d25848 1085f33
Author: Jane Doe <jane@company.com>
Date: Wed Mar 19 12:25:08 2014 +0200
 Merge tag 'for-maintainer'
 Work on task tsk-1252

SummaryThrough this chapter, we learned how to use Git for collaborative developmentand how to work together in a team on a project. We got to know differentcollaborative workflows, that is, different ways of setting up repositories forcollaboration. Which one to use depends on circumstances: how large the teamis, how diverse, and so on. This chapter focuses on repository-to-repositoryinteraction; the interplay between branches and remote-tracking branches inthose repositories is left for Chapter 8, Advanced Branching Techniques.We learned how Git can help manage information about remote repositoriesinvolved in the chosen workflow. We were shown how to store, view, andupdate this information. This chapter explains how one can manage triangular

workflows, in which you fetch from one repository (canonical), and push to theother (public).
We learned about the chain of trust: how to verify that a release comes fromthe maintainer, how to sign your work so that the maintainer can verify that itcomes from you, and how the Git architecture helps with this.
The next chapter, namely Chapter 7, Publishing Your Changes, will talk abouthow to get your contribution to other remote repositories. The two furtherfollowing chapters will expand on the topic of collaboration: Chapter 8,
Advanced Branching Techniques, will explore relations between local branchesand branches in a remote repository and how to set up branches forcollaboration, while Chapter 9, Merging Changes Together, will talk about theopposite issue—how to join the results of parallel work.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. What operation do you need to publish your changes to your public remote repository, and whatoperation do you need to get changes from a remote?
2. What is the difference between git fetch and git pull?
3. How can you remove stale remote-tracking branches (that is, remote-tracking branches where thecorresponding branch on the remote was deleted)?

AnswersHere are the answers to the questions given above:
1. Use git push to publish your changes, and use git fetch or git pull (or git remote update) toget changes from the remote repository.
2. The fetch operation only downloads changes and updates the remote-tracking branches, while the

pull operation also tries to update the current branch with merge or rebase (if it is configured astracking some branch in the remote repository).
3. You can use git branch -d -r to delete individual remote-tracking branches, or git remote pruneto delete all stale remote-tracking branches.

Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:

Scott Chacon and Ben Straub: Pro Git, 2nd Edition (2014) https://git-scm.com/book/en/v2
Chapter 5.1 Distributed Git - Distributed Workýows

Chapter 2.5 Git Basics - Working with Remotes

Chapter 7.4 Git Tools - Signing Your Work

Ryan Brown: gpg-sign releases (2014) https://gitready.com/advanced/2014/11/02/gpg-sign-releases.html
Danilo Bargen: Signing Git Commits with SSH Keys (2021) https://blog.dbrgn.ch/2021/11/16/git-ssh-signatures/
Carl Tashian: SSH Tips & Trick – Add a second factor to your SSH login (2020)https://smallstep.com/blog/ssh-tricks-and-tips/#add-a-second-factor-to-your-ssh
Junio C Hamano: Git Blame: Fun (?) with GnuPG (2014) https://git-blame.blogspot.com/2014/09/fun-with-gnupg.html

https://git-scm.com/book/en/v2
https://gitready.com/advanced/2014/11/02/gpg-sign-releases.html
https://smallstep.com/blog/ssh-tricks-and-tips/#add-a-second-factor-to-your-ssh
https://git-blame.blogspot.com/2014/09/fun-with-gnupg.html

7

Publishing Your Changes
Chapter 6, Collaborative Development with Git (the previous chapter), taughtyou how to use Git to work together as a team, focusing on repository-to-repository interaction. It described different ways of setting up repositories forcollaboration, presenting different collaborative workflows, such as centralizedand integration manager workflows. It also showed how Git managesinformation about remote repositories.In this chapter, you will find out how you can exchange information betweenyour local repository and remote repositories, and how Git can managecredentials that might be needed to access remote repositories.
This chapter will also teach you how to provide your changes upstream, so thatthey appear in the official history of the project, in its canonical repository. Thiscan be done by pushing your changes to a central repository, pushing them toyour own publishing repository and sending some kind of a pull request to theintegration manager, or even exchanging patches.This chapter will cover the following topics:

Transport protocols used by Git and their advantages and disadvantages
Managing credentials (passwords, keys) for remote repositories
Publishing changes: push and pull requests, and exchanging patches
Using bundles for offline transfer and speeding up the initial clone
Remote transport helpers and their use

Transport protocols and remote helpersIn general, URLs in the configuration of remote repository contain informationabout the transport protocol, the address of the remote server (whereappropriate), and the path to the repository. Sometimes, the server thatprovides access to the remote repository supports various transport protocols;you need to select which one to use. This section is intended to help with thischoice.

Local transport

If the remote repository is on the same local filesystem, you can use either thepath to the repository or the file:// schema to specify the repository URL:
/path/to/repo.git/
file:///path/to/repo.git/The former implies the --local option to the Git clone, which bypasses the smartGit-aware mechanism and simply makes a copy (or a hard link for immutablefiles under .git/objects, though you can avoid this with the --no-hardlinks option);the latter is slower but can be used to get a clean copy of a repository (forexample, after history rewriting done to remove an accidentally committedpassword or another secret; which is described in Chapter 10, Keeping History

Clean, in the Rewriting history section).
This transport is a nice option for quickly grabbing work from someone else’sworking repository, or for sharing work using a shared filesystem with theappropriate permissions.As a special case, a single dot (.) denotes the current repository. This meansthat
$ git pull . nextis, assuming that pull.rebase is set to false, roughly equivalent to
$ git merge next

Smart transports
When the repository you want to fetch from is on another machine, you need toaccess the Git server. Nowadays, Git-aware smart servers are most commonlyencountered. The smart downloader negotiates which revisions are necessary,and creates a customized packfile to send to a client. Similarly, during the push,the Git server talks to Git on the user’s machine (to the client) to find whichrevisions to upload.
Git-aware smart servers use the git upload-pack downloader for fetching and git
receive-pack for pushing. You can tell Git where to find them if they are not in
PATH (but, for example, are installed in one’s home directory) with the --upload-

pack and --receive-pack options for fetching and pushing, or the uploadpack and
receivepack configuration variables in the remote.<name> section.
With very few exceptions (such as the repository using submodules accessed byan ancient Git instance that does not understand them), Git transport isbackward- and forward-compatible—the client and server negotiate whatcapabilities they can both use.
The native Git protocolThe native transport, using git:// URLs, provides read-only anonymous access(though you could, in theory, configure Git to allow pushing by enabling the
receive-pack service, either from the command line via the --enable=receive-packoption, or via the daemon.receivePack boolean-valued configuration variable—usingthis mechanism is not recommended at all, even in a closed local network).
The Git protocol does no authentication, including no server authentication,and should be used with caution on unsecured networks. The git daemon TCPserver for this protocol normally listens on port 9418; you need to be able toaccess this port (through the firewall) to be able to use the native Git protocol.
TRIVIA
There is no secure version of the git:// protocol. There is no git:// over TLS like there is for the FTP and
HTTP protocols4namely, FTPS and HTTPS. On the other hand, one can consider SSH transport, as used by
Git, to be the git:// protocol over SSH.

The SSH protocolThe Secure Shell (SSH) transport protocol provides authenticated read-writeaccess. Git simply runs git upload-pack or git receive-pack on the server, using SSHto execute the remote command. There is no possibility for anonymous,unauthenticated access, though you could, as a workaround, set up a guestaccount for it (passwordless or with an empty password).
Using public-private key authentication allows access without requiring you toprovide a password on every connection. You might, however, need to provideit once to unlock a password-protected private key. You can read more aboutauthentication in the Credentials/password management section in thischapter. Many Git hosting sites and software forges require key authenticationfor accessing repositories via SSH.

For the SSH protocol, you can use the URL syntax with ssh:// as the protocolpart:
ssh://[user@]host.example.com[:port]/path/to/repo.git/Alternatively, you can use the scp-like syntax:
[user@]host.example.com:path/to/repo.git/The SSH protocol additionally supports the ~username expansion, just like thenative Git transport (~ is the home directory of the user you log in as, and ~useris the home directory of user), in both syntax forms:
ssh://[user@]host.example.com/~[user]/path/to/repo.git/
[user@]host.example.com:~[user]/path/to/repo.git/SSH uses the first contact authentication for servers (TOFU—short for Trust

On First Use)—it remembers the key that the server side previously used, andwarns the user if it has changed, asking for confirmation (the server key couldhave been changed legitimately, for example, due to an SSH server reinstall).You can check the server key fingerprint on the first connection.
The smart HTTP(S) protocolGit also supports the smart HTTP(S) protocol, which requires a Git-aware CGIor server module—for example, git-http-backend (itself a CGI module). Thisprotocol uses the following URL syntax:

http[s]://[user@]host.example.com[:port]/path/to/repo.git/By default, without any other configuration, Git allows anonymous downloads(git fetch, git pull, git clone, and git ls-remote), but requires that the client isauthenticated for upload (git push).
Standard HTTP authentication is used if authentication is required to access arepository, which is done by the HTTP server software. Using SSL/TLS withHTTPS ensures that if the password is required (for example, if the server usesbasic HTTP authentication), then it is sent encrypted and the server identity isverified (using server CA certificate).
Legacy (dumb) transports

Some transports do not require any Git-aware smart server—they don’t needGit installed on the server (for smart transports, at least git-upload-pack and/or
git-receive-pack is needed). Those are the FTP(S) and dumb HTTP(S) protocoltransports (nowadays, implemented using the remote-curl helper).
These transports need only the appropriate stock server (an FTP server, or aweb server), and up-to-date data from git update-server-info. When fetching fromsuch a server, Git uses the so-called commit walker downloader: going downfrom fetched branches and tags, Git walks down the commit chain, anddownloads objects or packs containing missing revisions and other data (forexample, file content at revision).This transport is inefficient (in terms of bandwidth, but especially in terms oflatency), but on the other hand, it can be resumed if interrupted. Nevertheless,there are better solutions than using dumb protocols—namely, involvingbundles (see the Offline transport with bundles section in this chapter), whenthe network connection to the server is unreliable enough that you can’t get theclone operation to finish.
Pushing to a dumb server is possible only via the HTTP and HTTPS protocols. Itrequires the web server to support WebDAV, and Git has to be built with the
expat library linked. The FTP and FTPS protocols are read-only (supportingonly clone, fetch, and pull).As a design feature, Git can automatically upgrade dumb protocol URLs tosmart URLs. Conversely, a Git-aware HTTP server can downgrade to thebackward-compatible dumb protocol (at least for fetching: smart HTTP serversdon’t support WebDAV-based dumb HTTP push operation). This feature allowsthe use of the same HTTP(S) URL for both dumb and smart access:

http[s]://[user@]host.example.com[:port]/path/to/repo.git/

Offline transport with bundles
Sometimes, there is no direct connection between your machine and the serverholding the Git repository that you want to fetch from. Or, perhaps there is noserver running, and you want to copy changes to another machine anyway.Maybe your network is down. Perhaps you’re working somewhere on-site and

don’t have access to the local network for security reasons. Maybe yourwireless/Ethernet card just broke.
Enter the git bundle command. This command will package up everything thatwould normally be transferred over the wire, putting objects and referencesinto a special binary archive file called bundle (like packfile, only with branchesand so on). You need to specify which commits are to be packed—somethingthat network protocols do automatically for you for online transport.
TRIVIA
When you are using one of the smart transports, a want/have negotiation phase takes place, where the
client tells the server what it does have in its repository and which advertised references on the server it
wants, to ünd common revisions. This is then used by the server to create a packüle, and to send the client
only what’s necessary, minimizing the bandwidth use.Next, you need to move this bundle (this archive) by some means to yourmachine. It can be done, for example, by so-called sneakernet, which meanssaving the bundle to removable storage and physically moving the media. Youcan then incorporate the bundle contents by using git clone or git fetch with thefilename of the bundle in place of the repository URL.
Proxies for Git transportsWhen direct access to the server is not possible, for example, from within afirewalled LAN, sometimes you can connect via a proxy.
For the native Git protocol (git://), you can use the core.gitProxy configurationvariable, or the GIT_PROXY_COMMAND environment variable to specify a proxycommand—for example, ssh. This can be set on a per-remote basis with specialsyntax for the core.gitProxy value—namely, <command> for <remote>; for example,
"ssh" for kernel.org.
You can use the http.proxy configuration variable or appropriate curlenvironment variables such as http_proxy to specify the HTTP proxy server to usefor the HTTP(S) protocol (http(s)://). This can be set on a per-remote basis withthe remote.<remote name>.proxy configuration variable.
You can configure SSH (using its configuration files—for example, ~/.ssh/config)to use tunneling (port forwarding) or a proxy command (for example, the
netcat/nc; or netcat mode of SSH—that is, ssh -W –—if your SSH implementationsupports this feature). It is a recommended solution for the SSH proxy; if

neither tunneling nor using a proxy is possible, you can use the ext:: transport-helper, as shown later in this chapter, in the Transport relay with remote
helpers section.
Cloning and updating with bundlesLet’s assume that you want to transfer the history of a project (say, limited tothe master branch for simplicity) from machineA (for example, your work computer)to machineB (for example, an onsite computer). There is, however, no directconnection between those two machines.First, we create a bundle that contains the whole history of the master branch(see Chapter 4, Exploring Project History), and tag this point of history to knowwhat we bundled, which will be needed later:
user@machineA ~$ cd repo
user@machineA repo$ git bundle create ../repo.bundle master
user@machineA repo$ git tag -f lastbundle masterHere, the bundle file was created outside the working directory. This is amatter of choice; storing it outside of the repository means that you don’t haveto worry about accidentally adding it to your project history, or having to add anew ignore rule. The *.bundle file extension is OR simply a matter of the namingconvention.

IMPORTANT NOTE
For security reasons, to avoid information disclosure about the parts of history that were deleted but not
purged (for example, an accidentally committed üle with a password), Git only allows fetching from git
show-ref-compatible references: branches, remote-tracking branches, and tags.

The same restrictions apply when creating a bundle. This means, for example, that (for implementation
reasons) you cannot run git bundle creates master^1. Though, of course, because you control the
server end, as a workaround you can create a new branch for master^, (temporarily) rewind master, or
check out the detached HEAD at master^.Then you transfer the just-created repo.bundle file to machineB (via email, on a USBpen drive, and so on). Because this bundle consists of a self-contained, wholesubset of the history, down to the first (parent-less) root commit, you cancreate a new repository by cloning from it, by simply putting the bundlefilename in place of the repository URL:
user@machineB ~$ git clone repo.bundle repo
Cloning into 'repo'...
warning: remote HEAD refers to non-existent ref, unable to checkout.
user@machineB ~$ cd repo

user@machineB repo$ git branch -a
 remotes/origin/masterOops. We didn’t bundle HEAD, so the Git clone didn’t know which branch iscurrent and therefore should be checked out:
user@machineB repo$ git bundle list-heads ../repo.bundle
5d2584867fe4e94ab7d211a206bc0bc3804d37a9 refs/heads/master

TIP
Because a bundle can be treated as a remote repository, we could have simply used the git ls-remote
../repo.bundle command here instead of git bundle list-heads ../repo.bundle.Therefore, with this bundle being as it is, we need to specify which branch tocheck out to avoid the problem (this would not be necessary if we had bundled
HEAD too):
user@machineB ~$ git clone repo.bundle --branch master repoInstead of cloning again, we can fix the problem with the failed checkout byselecting the current branch:
user@machineB repo$ git switch master
Already on 'master'
Branch 'master' set up to track remote branch 'master' from 'origin'.As you can see, here, Git guessed that when trying to switch to a non-existentlocal branch, master, what we actually wanted was to create a local branch tocreate new commits to submit to the remote master branch. In other words,create a local branch following (tracking) the remote branch with the samename existing in the origin remote. What Git did is the same as if we ran thefollowing command:
$ git switch --create master --track origin/masterTo update the repository on machineB cloned from the bundle, you can fetch orpull after replacing the original bundle stored at /home/user/repo.bundle with theone with incremental updates.

To create a bundle containing changes since the last transfer in our example,go to machineA and run the following command:
user@machineA repo$ git bundle create ../repo.bundle \
 lastbundle..master
user@machineA repo$ git tag -f lastbundle masterThis will bundle all changes since the lastbundle tag; this tag denotes what wascopied with the previous bundle (see Chapter 4, Exploring Project History, the

Double-dot notation section, for an explanation of double-dot syntax). Aftercreating a bundle, this will update the tag (using -f or --force to replace it), likewas done the first time when creating a bundle, so that the next bundle canalso be created incrementally from the now current point.
Then, you need to copy the bundle to machineB, replacing the old one. At thispoint, one can simply perform the pull operation to update the repository, asshown in the following example:
user@machineB repo$ git pullFrom /home/user/repo.bundle
 ba5807e..5d25848 master -> origin/master
Updating ba5807e..5d25848
Fast-forward

Using a bundle to update an existing repositorySometimes, you might have a repository cloned already, only for the network tofail. Or, perhaps you moved outside the local area network (LAN), and nowyou have no access to the server. The end result is that you have an existingrepository, but no direct connection to the upstream (to the repository wecloned from).
Now, if you don’t want to bundle up the whole repository, which is wasteful,like in the Cloning and updating with bundles section, you need to find someway to specify the cut-off point (the base) in such a way that it is surely presentin the target repository (which you want to update). You can specify the rangeof revisions to pack into the bundle using almost any technique from Chapter 4,
Exploring Project History. The only limitation is that the history, as was saidearlier, must start at a branch or tag (anything that git show-ref accepts). Youcan, of course, check the range with the git log command.Commonly used solutions for specifying the range of revisions to pack into abundle are as follows:

Use the tag that is present in both repositories:
git bundle create ../repo.bundle v0.1..master

Create a cut-off based on the time of commit creation:
git bundle create ../repo.bundle --since=1.week master

Bundle just the last few revisions, limiting the revision range by the number of commits:
git bundle create ../repo.bundle -5 master

TIP
It’s better to pack in too much than too little. You can check whether the repository has the requisite
commits to fetch from the bundle with git bundle verify. If you pack in too little, you’ll get the following
error:

user@machineB repo$ git pull ../repo.bundle master

error: Repository lacks these prerequisite commits:

error: ca3cdd6bb3fcd0c162a690d5383bdb8e8144b0d2Then, after transporting it to machineB, you can use the bundle file just like aregular repository to do a one-off pull (putting the bundle filename in place ofthe URL or the remote name):
user@machineB repo$ git pull ../repo.bundle master
From ../repo.bundle
 * branch master -> FETCH_HEAD
Updating ba5807e..5d25848If you don’t want to deal with the merge, you can fetch into the remote-trackingbranch (the <remote branch>:<remote-tracking branch> notation used here, which isknown as refspec, will be explained in Chapter 8, Advanced Branching

Techniques):
user@machineB repo$ git fetch ../repo.bundle \
 refs/heads/master:refs/remotes/origin/master
From ../repo.bundle
 ba5807e..5d25848 master -> origin/master
Updating ba5807e..5d25848Alternatively, you can use git remote add to create a new shortcut, using the pathto the bundle file in place of the repository URL. Then, you can simply deal withbundles as described in the previous section.

Utilizing a bundle to help with the initial cloneSmart transports provide much more effective transport than dumb ones. Onthe other hand, the concept of a resumable clone using smart transportremains elusive to this day (it is not available in Git version 2.34, thoughperhaps somebody will implement it in the future). For large projects with along history and with a large number of files, the initial clone might be quitelarge (for example, linux-next is more than 2.7 GB) and take a pretty long time.This might be a problem if the network is unreliable.
TIP 3 WORKAROUND

You can work around the issue of an unreliable network by using a shallow clone or a sparse clone (see
Chapter 12, Managing Large Repositories) and widening it step by step until you arrive at the full
repository. There are some third-party tools that do this automatically.You can create a bundle from the source repository, for example, with thefollowing command (which needs to run on the server):
$ git –git-dir=/dir/repo.git bundle create -- all HEADSome servers may offer such bundles to help with the initial clone. There is apractice where a bundle intended for cloning is available at the same URL asthe repository, but with a .bundle suffix instead of .git. For example,
https://git.example.com/user/repo.git has its bundle available at
https://git.example.com/user/repo.bundle.You can then download such a bundle, which is an ordinary static file, usingany resumable transport: HTTP(S), FTP(S), rsync, or even BitTorrent (with theappropriate client that supports resuming the download).
With modern Git, the user can specify the bundle URI with the --bundle-uricommand-line option, or a bundle list can be advertised by a Git server. A list ofbundle URIs can also be saved in a config file. Fetching from bundle servers(such as https://github.com/git-ecosystem/git-bundle-server) is then automatic.
Remote transport helpers
When Git doesn’t know how to handle a certain transport protocol (when onetries to use a protocol that doesn’t have built-in support), it attempts to use theappropriate remote helper for a protocol, if one exists. That’s why if there isan error within the protocol part of the repository URL—Git responds with anerror message that looks like the following:
$ git clone shh://git@example.com:repo
Cloning into 'repo'…
fatal: Unable to find remote helper for 'shh'
git: 'remote-shh' is not a git command. See 'git --help'.This error message means that Git tried to find git-remote-shh to handle the shhprotocol (actually a typo for ssh), but didn’t find an executable with such aname.You can explicitly request a specific remote helper with the <transport>::<address>syntax, where <transport> defines the helper (git remote-<transport>), and <address>

https://github.com/git-ecosystem/git-bundle-server

is a string that the helper uses to find the repository.
Modern Git implements support for the dumb HTTP, HTTPS, FTP, and FTPSprotocols with the curl family of remote helpers: git-remote-http, git-remote-https,
git-remote-ftp, and git-remote-ftps, respectively.
Transport relay with remote helpersGit includes two generic remote helpers that can be used to proxy smarttransports: the git-remote-fd helper to connect to the remote server via either abidirectional socket or a pair of pipes, and the git-remote-ext helper to use anexternal command to connect to the remote server.
In the case of the latter, which uses the "ext::<command> <arguments">" syntax forthe repository URL, Git runs the specified command to connect to the server,passing data for the server to the standard input of the command, andreceiving a response on its standard output. This data is assumed to be passedto a git:// server, git-upload-pack, git-receive-pack, or git-upload-archive (dependingon the situation).For example, let’s assume that you have your repository on a LAN host whereyou can log in using SSH. However, for security reasons, this host is not visibleon the internet, and you need to go through the gateway host: login.example.com:
user@home ~$ ssh user@login.example.com
user@login ~$ ssh work
user@work ~$ find . -name .git -type d -print
./repo/.gitThe trouble is that—also for security reasons—this gateway host either doesn’thave Git installed (reducing the attack surface) or doesn’t have your repositorypresent (it uses a different filesystem). This means that you cannot use theordinary SSH protocol—not unless you can set up an SSH tunnel from yourhome via a gateway to your work computer (with ssh -L). The SSH transport isjust git-receive-pack / git-upload-pack accessed remotely via SSH, with the path tothe repository as a parameter. This means that you can use the ext:: remotehelper:
user@home ~$ git clone \
 "ext::ssh -t ssh work %S 'repo'" repo
Cloning into 'repo'...
Checking connectivity... done.

Here, %S will be expanded by Git into the full name of the appropriate service—
git-upload-pack for fetching and git-receive-pack for pushing. The -t option isneeded if logging to the internal host uses interactive authentication (forexample, a password). Note that you need to give the name (repo, here) to theresult of cloning; otherwise, Git will use the command (ssh) as the repositoryname.
TIP
You can also use "ext::ssh [<parameters>...] %S '<repository>'" to use speciüc options for SSH
transport4for example, selecting the keypair to use without needing to edit .ssh/config.This is not the only possible solution—though there is no built-in support forsending the SSH transport through a proxy like there is for the native git://protocol (among others, core.gitProxy) and for HTTP (among others, http.proxy),you can do it by configuring the SSH using the ProxyCommand config option, or bycreating an SSH tunnel.On the other hand, you can also use the ext:: remote helper to proxy the git://protocol—for example, with the help of socat—including using a single proxy formultiple servers. See the git-remote-ext(1) manpage for details and examples.
Using foreign SCM repositories as remotesThe remote helper mechanism is very powerful. It can also be used to interactwith other version control systems, transparently using their repositories as ifthey were native Git repositories. Though there is no such built-in helper(unless you count the contrib/ area in the Git sources), you can find the git-
remote-hg, gitifyhg, or git-cinnabar helper to access Mercurial repositories, and git-
remote-bzr to access Bazaar repositories.
Once installed, those remote helper bridges will allow you to clone, fetch, andpush to and from the Mercurial or Bazaar repositories as if they were Git ones,using the <helper>::<URL> syntax. For example, to clone the Mercurial repository,you can simply run the following command:
$ git clone "hg::https://hg.example.com/repo"There is also the remote.<remote name>.vcs configuration variable, if you don’t likeusing the <helper>:: prefix in the repository URL. With this method, you can usethe same URL for Git as for the original version control system (VCS).

FOREIGN VERSION CONTROL SYSTEM CLIENTS
The alternative approach to using remote helper bridges is to use a specialized client, such as git-svn for
Subversion, or git-p4 for Perforce. Those clients interact with the foreign VCS (usually a centralized VCS),
manage and update the Git repository based on this interaction, and update the foreign repository based
on changes present in the Git repository.Of course, one needs to remember impedance mismatches between differentversion control systems, and the limitations of the remote helper mechanism.Some features do not translate at all or do not translate well—for example,octopus merges (with more than two parent commits) in Git, or multipleanonymous branches (heads) in Mercurial.
With remote helpers, there is also no place to fix mistakes, replace referencesto other revisions with target native syntax, and otherwise clean up artifactscreated by repository conversions—as can and should be done with one-timeconversion when changing version control systems. (Such a cleanup can bedone with, for example, the help of the reposurgeon third-party tool.)With remote helpers, you can even use things that are not version controlrepositories in the strict sense; for example, with the Git-Mediawiki project, youcan use Git to view and edit a MediaWiki-based wiki (for example, Wikipedia),treating the history of pages as a Git repository:
$ git clone "mediawiki::https://wiki.example.com"Besides that, there are remote helpers that allow additional transportprotocols, or storage options—such as git-remote-s3bundle to store the repositoryas a bundle file on Amazon S3, or git-remote-codecommit for AWS CodeCommit (ifyou don’t want to or cannot use HTTPS authentication with static credentials).There is also git-ssb to encode repositories in a peer-to-peer log store via theSecure ScuttleButt protocol.
Credentials/password management

In most cases, with the exception of the local transport (where filesystempermissions control access), publishing changes to the remote repositoryrequires authentication (the user identifies itself) and authorization (the givenuser has permission to perform the push operation). Sometimes, fetching therepository also requires authentication and authorization, like with privaterepositories.

Commonly used credentials for authentication are username and password.You can put the username in the HTTP and SSH repository URLs if you are notconcerned about information leakage (in respect of leaking the informationabout valid usernames), or you can use the credential helper mechanism. Youshould never put passwords in URLs, even though it is technically possible forHTTP ones—the password can be visible to other people, for example whenthey are listing processes.
Besides the mechanism inherent in the underlying transport engine, be it
SSH_ASKPASS for SSH or the ~/.netrc file for curl-based transport, Git provides itsown integrated solutions.
Asking for passwordsSome of the Git commands that interactively ask for a password (and ausername if it is not known)—such as git svn, the HTTP interface, or IMAPauthentication—can be told to use an external program. The program isinvoked with a suitable prompt (a so-called authentication domain,describing what the password is for), and Git reads the password from thestandard output of this program.
Git will try the following places to ask the user for usernames and passwords;see the gitcredentials(7) manpage:

The program specified by the GIT_ASKPASS environment variable, if set (Git-specific environmentvariables always have higher precedence than configuration variables)
Otherwise, the core.askpass configuration variable is used, if set
Otherwise, the SSH_ASKPASS environment variable is used, if set (it is not Git-specific, that is why it isconsulted later in the sequence)
Otherwise, the user is prompted on the terminal

This askpass external program is usually selected according to the desktopenvironment of the user (after installing it, if necessary):
(x11-)ssh-askpass provides a plain X-window dialog asking for the username and password
There is ssh-askpass-gnome for GNOME and ksshaskpass for KDE
mac-ssh-askpass can be used for macOS
win-ssh-askpass can be used for MS Windows

Git comes with a cross-platform password dialog in Tcl/Tk—git-gui--askpass—toaccompany the git gui graphical interface and the gitk history viewer.

The Git configuration precedence (that we have seen an example of here) willbe described in more detail in Chapter 13, Customizing and Extending Git.
Public key authentication for SSHFor the SSH transport protocol, there are additional authenticationmechanisms besides passwords. One of them is public key authentication.This method is very useful to avoid being asked for a password over and over.Also, the repository hosting service may require using it when providing SSHaccess—possibly because identifying a user based on their public key doesn’trequire an individual account (that’s what, for example, gitolite uses—https://gitolite.com).
The idea of public key authentication is that the user creates a public/private
key pair by running, for example, ssh-keygen. The public key is then sent to theserver, for example, by using ssh-copy-id (which also adds the public key, *.pub,at the end of the ~/.ssh/authorized_keys file on the remote server), or by pasting itinto a web form on a hosting service. You can then log in with your private keythat is on your local machine, for example, as ~/.ssh/id_rsa. You might need toconfigure SSH (in ~/.ssh/config on Linux, and a similar configuration file on MSWindows) to use a specific identity file for a given connection (hostname) if it isnot the default identity key.
Another convenient way to use public key authentication is with anauthentication agent such as ssh-agent (or Pageant from PuTTY on MSWindows). Utilizing an agent also makes it more convenient to work withpassphrase-protected private keys—you need to provide the password onlyonce, to the agent, at the time of adding the key (which might require useraction, for example, running ssh-add for ssh-agent).
Credential helpersIt can be cumbersome to input the same credentials over and over. For SSH,you can use public key authentication, but there is no true equivalent for othertransports. Git credential configuration provides two methods to at least reducethe number of questions.The first is the static configuration of default usernames (if one is not providedin the URL) for a given authentication context—for example, hostname:

https://gitolite.com/

[credential "https://git.example.com"]
 username = userIt helps if you don’t have secure storage for credentials.

The second is to use external programs from which Git can request bothusernames and passwords—credential helpers. These programs usuallyinterface with secure storage (a keychain, keyring, wallet, credentials manager,and so on) provided by the desktop environment or the operating system.Git, by default, includes at least the cache and store helpers. The cache helper(git-credential-cache) stores credentials in memory for a short period of time; bydefault, it caches usernames and passwords for 15 minutes. The store helper(git-credential-store) stores unencrypted credentials for an indefinitely long timeon disk, in files readable only by the user (similar to ~/.netrc); there is also athird-party netrc helper (git-credential-netrc) for GPG-encrypted netrc/authinfofiles.
Selecting a credential helper to use (and its options) can be configured eitherglobally or per authentication context, as in the previous example. Globalcredentials configuration looks like the following:

[credential]
 helper = cache --timeout=300This will make Git use the cache credential helper, which will then cachecredentials for 300 seconds (5 minutes). If the credential helper name is not anabsolute path (for example, /usr/local/bin/git-kde-credentials-helper), Git willprepend the git credential- prefix to the helper’s name. You can check whattypes of credential helpers are available with git help -a | grep credential-. Git forWindows also includes, optionally, git credential-helper-selection.

There exist credential helpers that use secure storage of the desktopenvironment. When you are using them, you need to provide the password onlyonce, to unlock the storage (some helpers can be found in the contrib/ area inGit sources). There is git-credential-libsecret for GNOME and KDE, git-credential-
osxkeychain for the macOS Keychain, and git-credential-manager for Microsoft’scross-platform Git Credential Manager (GCM).You can also use git-credential-oauth to avoid having to set up personal accesstokens or SSH keys. With this solution, the first time you authenticate, thehelper opens a browser window to the host. Subsequent access uses cached

credentials. Here, one can use the fact that Git supports multiple credentialhelpers. GitHub, GitLab, and Bitbucket are among the Git hosting services thatsupport OAuth authentication.
Git will use credential configuration for the most specific authenticationcontext, though if you want to distinguish the HTTP URL by pathname (forexample, providing different usernames to different repositories on the samehost), you need to set the useHttpPath configuration variable to true. If there aremultiple helpers configured for context, each will be tried in turn, until Gitacquires both a username and a password.
HISTORICAL NOTE
Before the introduction of credential helpers, one could use askpass programs that interface with the
desktop environment keychain4for example, kwalletaskpass (for KDE Wallet) or git-password (for the
macOS Keychain).

Publishing your changes upstreamThe Collaborative workflows section in Chapter 6, Collaborative Development
with Git explained various repository setups. Here, we’ll learn about a fewcommon patterns for contributing to a project. We’ll see what our main optionsfor publishing changes are.Before starting work on new changes, you should usually sync with the maindevelopment, incorporating the official version into your repository. This, andthe work of the maintainer, is left to be described in Chapter 9, Merging
Changes Together.
Pushing to a public repository

In a centralized workflow, publishing your changes consists simply of
pushing them to the central server, as shown in Figure 6.2. Because you sharethis central repository with other developers, it can happen that somebody hasalready pushed to the branch you are trying to update (the non-fast-forwardcase). In this scenario, you need to pull (fetch and merge, or fetch and rebase)others’ changes, before being able to push yours. This case is shown at thestart of the Updating your repository (with merge) section in Chapter 1, Git
Basics in Practice.

Another possible system with a similar workflow is when your team submitseach set of changes to the code review system—for example, Gerrit. Oneavailable option is to push to a special ref, refs/for/<branchname> (which is namedafter a target branch), in a special repository. Then, the change review servermakes each set of changes land automatically on a separate per-set ref (forexample, refs/changes/<change-id> for commits belonging to a series with the givenchange ID).
IMPORTANT NOTE
In both peer-to-peer (see Figure 6.3) and maintainer workýows, or the hierarchical workýow variant (Figure
6.4 and Figure 6.5, respectively), the ürst step in getting your changes included in the project is to perform
the push operation, but pushing to your own <public= repository (visible to the appropriate group) of your
fork of the project. Then, you need to ask your co-developers, or the project maintainer, to merge your
changes. You can do this, for example, by generating a pull request, as described below.

Generating a pull request

In all workflows other than the centralized workflow, one needs to send anotification that changes are available in the public repository to co-developers,to the maintainer, or to integration managers. The git request-pull command canhelp with this step. Given the starting point (the bottom of the revision range ofinterest), the URL or the name of the remote public repository, and optionally,the commit to end at (if it is not the HEAD), this command will generate asummary of changes:
$ git request-pull origin/master publish
The following changes since commit ba5807e44d75285244e1d2eacb1c10cbc5cf3935:
 Merge: strtol() + checks (2014-05-31 20:43:42 +0200)
are available in the Git repository at:
 https://git.example.com/random master
for you to fetch changes up to 82006acd359717624fb33a7ae554cba6be717911:
 Merge branch 'master' of https://git.company.com/random (2021-05-30 00:58:23 +0200)

Alice Developer (1):
 Support optional <count> parameter
 src/rand.c | 26 +++++++++++++++++++++-----
 1 files changed, 21 insertions(+), 5 deletions(-)The pull request contains the SHA-1 of the base of the changes (which is therevision just before the first commit, in the series proposed for pull), the title ofthe base commit, the URL, the branch of the public repository (suitable as git
pull parameters), the title of the final commit, the shortlog (the name of the git

shortlog output), and diffstat (the name of the git diff --stat output) of thechanges. This output can be sent to the maintainer—for example, by email.

Figure 7.1 – <New pull request= action shown in a list of branches on GitHubA lot of Git hosting software and services include a built-in equivalent of git
request-pull (for example, the Create pull request action in GitHub).
Exchanging patches
Many larger projects (and many open source projects) have establishedprocedures for accepting changes in the form of patches, for example, to lowerthe barrier to entry for contributing. If you want to send a one-off code proposalto a project but do not plan to be a regular contributor, sending patches mightbe easier than a full collaboration setup (acquiring permission to commit in thecentralized workflow, setting up a personal public repository for forking andsimilar workflows—on GitHub, that would consist of forking the project).Besides, one can generate patches with any compatible tool, and the projectcan accept patches no matter what is the version control setup.
TIP
Nowadays, with the proliferation of various free Git hosting services, it might be more diþcult to set up an
email client for sending properly formatted patch emails4though services such as GitGitGadget (for
submitting patches to the Git project mailing list), or the older submitGit service, could help. Git itself also
includes commands for sending mail, namely git send-email and git imap-send, both of which need
conüguration.Additionally, patches, being a text representation of changes, can be easilyunderstood by computers and humans alike. This makes them universallyappealing, and very useful for code review purposes. Many open sourceprojects historically used the public mailing list for that purpose: you can emaila patch to this list and the public can review and comment on your changes(with services such as public-inbox and lore+lei, it is possible even withoutsubscribing to the mailing list).
To generate email versions of each commit series, turning them into mbox-formatted patches, you can use the git format-patch command, as follows:

$ git format-patch -M -1
0001-Support-optional-count-parameter.patchYou can use any revision range specifier with this command. The mostcommonly used is limiting by the number of commits, as in the precedingexample, or by using the double-dot revision range syntax—for example, @{u}..(see Chapter 4, Exploring Project History, the Double-dot notation section).When generating a larger number of patches, it is often useful to select adirectory to save generated patches. This can be done with the -o <directory>option. The -M option for git format-patch (passed to git diff) turns on renamedetection; this can make patches smaller and easier to review.

The patch files end up looking like this:
From db23d0eb16f553dd17ed476bec731d65cf37cbdc Mon Sep 17 00:00:00 2001
From: Alice Developer <alice@company.com>
Date: Sat, 31 May 2014 20:25:40 +0200
Subject: [PATCH] Initialize random number generator
Signed-off-by: Alice Developer

 random.c | 2 ++
 1 files changed, 2 insertions(+), 0 deletions(-)
diff --git a/random.c b/random.c
index cc09a47..5e095ce 100644
--- a/random.c
+++ b/random.c
@@ -1,5 +1,6 @@
 #include <stdio.h>
 #include <stdlib.h>
+#include <time.h>
 int random_int(int max)
@@ -15,6 +16,7 @@ int main(int argc, char *argv[])
int max = atoi(argv[1]);
+ srand(time(NULL));
 int result = random_int(max);
 printf("%d\n", result);
--
2.42.0It is actually a complete email in the mbox format. The subject (after strippingthe [PATCH] prefix) and everything up to the three-dash line (---) forms thecommit message—the description of the change. To email this to a mailing listor a developer, you can use either git send-email or git imap-send, or any emailclient capable of sending plain text email. The maintainer can then use git am toapply the patch series, creating commits automatically; there’s more about thisin Chapter 9, Merging Changes Together, in the Applying a series of commits

from patches section.
EMAIL SUBJECT CONVENTION FOR PATCHES

The [PATCH] preüx is there to make it easier to distinguish patches from other emails. This preüx can4and
often does4include additional information, such as the number in the series (set) of patches, the revision
of the series, the information about it being a work in progress (WIP), or the Request For Comments
(RFC) status4for example, [RFC/PATCHv4 3/8].You can also edit these patch files to add more information for prospectivereviewers—for example, information about alternative approaches, thedifferences between previous revisions of the patch (previous attempts), or asummary and/or references to the discussion on implementing the patch (forexample, on a mailing list). You add such text between the --- line and thebeginning of the patch, before the summary of changes (diffstat); it will beignored by git am.
TIP 3 RANGE DIFF
If the series of patches is undergoing revision and needs to be redone in a diûerent way, it is recommended
practice to provide in the cover letter the git range-diff output, showing the diûerences between one
iteration of the series and the other.

SummaryIn this chapter, we have learned how to choose a transport protocol (if theremote server offers such a choice), and a few tricks such as using foreignrepositories as if they were native Git repositories and offline transport withbundles.Contact with remote repositories can require providing credentials—usually,the username and password, to be able to, for example, push to the repository.This chapter described how Git can help make this part easier thanks tocredential helpers.
Publishing your changes and sending them upstream may involve differentmechanisms, depending on the workflow. This chapter described push, pullrequest, and patch-based techniques.
The two following chapters expand on the topic of collaboration: Chapter 8,
Advanced Branching Techniques, explores relations between local branchesand branches in a remote repository, and how to set up branches forcollaboration, while Chapter 9, Merging Changes Together, talks about theopposite issue—how to join the results of parallel work.

QuestionsAnswer the following questions to test your knowledge of this chapter:
1. How can one clone a large repository when the connection to the host is quite unreliable, but you canlog in to the host with the remote repository?
2. What do you need to get your changes into the canonical repository in the centralized workflow, andwhat do you need to do in the integration manager workflow?
3. How can you set up Git so you would need to provide a password only once, and not for each contactwith the remote?
4. Can you use Git to interact with foreign version-control system repositories, to submit commits anddownload updates?

AnswersHere are the answers to the questions given above:
1. One possible solution is to use git bundle on the remote host, and send the generated file viaresumable transport such as HTTPS, rsync, or BitTorrent, or simply transport it via removable mediasuch as a USB stick.
2. In the centralized workflow, you need to push to said central canonical repository, which mightrequire merging changes from others first; in the integration manager workflow, you need to eitherpush to your public repository and send some kind of pull request (for example, with git request-

pull and email) against the canonical repository, or send patches by email to the maintainer.
3. You can set up a credential helper appropriate for the operating system and desktop environmentused; for SSH transport, you can also use ssh-agent or the equivalent.
4. With appropriate tools, you can either use Git to work as a client for a foreign version control system(for example, git svn) or use a remote transport helper to treat a foreign repository as a Git remote(for example, git-cinnabar).

Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:
Scott Chacon and Ben Straub: Pro Git, 2nd Edition (2014) https://git-scm.com/book/en/v2

Chapter 7.12 Git Tools – Bundling

Chapter 7.14 Git Tools - Credential Storage

Bundle URI: https://git-scm.com/docs/bundle-uri
Anthony Heddings: Should You Use HTTPS or SSH For Git? (2021)https://www.howtogeek.com/devops/should-you-use-https-or-ssh-for-git/#why-use-https
A visual guide to SSH tunnels https://robotmoon.com/ssh-tunnels/

https://git-scm.com/book/en/v2
https://git-scm.com/docs/bundle-uri
https://www.howtogeek.com/devops/should-you-use-https-or-ssh-for-git/#why-use-https
https://robotmoon.com/ssh-tunnels/

Carl Tashian: SSH Tips & Trick – Add a second factor to your SSH login (2020)https://smallstep.com/blog/ssh-tricks-and-tips/#add-a-second-factor-to-your-ssh
Greg Kroah-Hartman: <Patches carved into stone tablets=, or why the Linux kernel developers rely on
plain text email, a Kernel Recipes 2016 talk https://kernel-recipes.org/en/2016/talks/patches-carved-into-stone-tablets/

https://smallstep.com/blog/ssh-tricks-and-tips/#add-a-second-factor-to-your-ssh
https://kernel-recipes.org/en/2016/talks/patches-carved-into-stone-tablets/

8

Advanced Branching Techniques
Chapter 6, Collaborative Development with Git, described how to arrangeteamwork while focusing on repository-level interactions. In that chapter, youlearned about various centralized and distributed workflows, as well as theiradvantages and disadvantages.This chapter will dive deeper into the details of collaboration in distributeddevelopment. We’ll explore the relationships between local branches andbranches in remote repositories. Then, we’ll introduce the concept of remote-tracking branches, branch tracking, and upstream. This chapter will also teachus how to specify the synchronization of branches between repositories byusing refspecs and push modes.
You will also learn branching techniques: how branches can be used to createnew features, prepare new releases, and fix bugs. You will learn about theadvantages and disadvantages of different branching patterns. Among otherthings, this chapter will show you how to use branches so that it would be easyfor you to select which features will go into the next version of the project.In this chapter, we will cover the following topics:

Different kinds of branches, both long-lived and short-lived, and their purpose
Various branching patterns, and how they can be composed into workflows
Release engineering for different branching models
Using branches to fix a security issue in more than one released version
Remote-tracking branches and refspecs
Rules for fetching and pushing branches and tags
Selecting a push mode to fit the chosen collaboration workflow

The purpose of branchingA branch in a version control system is an active parallel line of development(also called a codeline). They are used to isolate, separate, and gatherdifferent types of work. For example, branches can be used to prevent your

current unfinished work on a feature in progress from interfering with themanagement of bug fixes (isolation), or to gather fixes for an older version ofthe developed software (gathering and integration).
A single Git repository can have an arbitrarily large number of branches.Moreover, with a distributed version control system, such as Git, there could bemany repositories for a single project (known as forks or clones), some publicand some private; each such repository will have their own local branches. Thiscan be considered source branching. Each developer would have at least oneprivate clone of the project’s public repository to work in.
A BIT OF HISTORY – A NOTE ON THE EVOLUTION OF BRANCH
MANAGEMENT
Early distributed version control systems used one branch per repository model. Both Bazaar (then Bazaar-
NG) and Mercurial documentation, at the time when they began their existence, recommended cloning the
repository to create a new branch.

Git, on the other hand, had good support for multiple branches in a single repository almost from the start.
However, in the beginning, it was assumed that there would be one central multibranch repository
interacting with many single-branch repositories (see, for example, the legacy .git/branches directory,
which was used to specify URLs and fetch branches, as described in the gitrepository-layout(7) man
page), though with Git it was more about defaults than capabilities.

Because branching is cheap in Git (and merging is easy), and collaboration is quite üexible, people started
using branches more and more, even for solitary work. This led to the wide use of the extremely useful
topic branch worküow (also known as feature branching).

Isolation versus integration

Version control systems such as Git allow different people to work on the samecode base without interfering with each other. They also makes it easy toswitch between different types of work. But this separated work would thenneed to be merged back together into some integration target to be useful andto be later included in a release.
We need isolation, but we also need to integrate changes, combining work intoa coherent whole. To avoid conflicts as best as possible, our changes need to bevisible to others, or even better be integrated. For example, if we change acalling convention of some API, but our work remains isolated, others cannoteasily adjust to those changes. They would use the old version of the API intheir work – leading to merge conflicts and a more difficult integration in the

future. So, from this point of view, earlier and more frequent integration issomething to be desired.
However, some features are more involved, and their development consists ofmany steps. The goal of frequent integration conflicts with the need to isolate
unûnished work, and to prevent such work from being visible. If we wantfrequent integration, we need to be able to handle such issues.
The path to production release
The main goal of software development is to deploy code into production, tocreate a usable release of the project, and to have something to be used. Aproper branching technique helps us achieve a stable base for creating such arelease.
What branching pattern to use depends on the particularities of the project. Forexample, the team may need to isolate a work in progress from a stable base.There can also be more or less friction in the release process. Additionally, youmight need to manage multiple versions of releases, or multiple versions of theproject in production.There are specific branching patterns to help you handle such issues.
Long-running and short-lived branches

Branches whose main purpose is to gather and integrate changes need to belong-lived, or even permanent. They are intended to last indefinitely, or at leastfor a very long time; they are rarely deleted.
From a collaboration point of view, a long-lived branch can be expected to bethere when you are next updating data or publishing changes. This means thatyou can safely start work by forking off any of the long-lived branches in theremote repository, and be assured that there should be no problems withintegrating that work. This means that at least one such branch must exist.Branches that people usually base their work on, that define the current
version of the project, are sometimes called mainlines.
While long-lived branches stay forever, short-lived or temporary branchesare created to deal with single issues, and are usually removed (deleted) after

dealing with said issue (after the branch is merged or the feature is dropped).They are intended to last only as long as the issue is present. Their purpose istime-limited.
Having a separate branch for a separate issue helps us isolate and gathersubsequent steps in the process of resolving a problem, whether it’s adding anew feature or creating an urgent bug fix. Those branches are usually namedafter their topic.
Visibility of branches

What you can find in public repositories are usually only long-lived branches. Inmost cases, these branches should never rewind (the new version is always adescendant of the old versions). This makes it possible for you to safely buildyour work on top of the public branch.
There are some special cases here, though; there can be branches that arerebuilt after each new release (requiring forced fetch at that time), and therecan be branches that do not fast forward. Each such case should be explicitlymentioned in the developer documentation to help you avoid unpleasantsurprises.
Because of their provisional nature, short-lived branches are usually onlypresent in the local private repository of a developer or integration manager(maintainer), and are not pushed to public distribution repositories. If theyappear in public repositories, they are often only present in a public repositoryof an individual contributor as a target for a pull request (see the blessedrepository workflow in Chapter 6, Collaborative Development with Git).
Alternatives to branching

With frequent integration, potential conflicts are discovered early. However,some features take longer to develop, and they are simply not ready when thetime comes to push them to the mainline. But teams don’t want to expose half-developed features. With a branching workflow geared toward integrationrather than isolation, there is often a need for some kind of mechanism to hideunfinished work.

One technique is to build backend code first, and only create the user interfacefor it when it is ready, like a keystone. On the other hand, changing the existingcode can be done by creating a temporary abstraction layer, which would thenallow you to switch the underlying implementation to the new one when it isready.
Another useful method is to hide different unfinished implementations behind
feature switches or feature toggles. This technique is useful outsideproviding separation for integrated but unfinished features. For example, withruntime feature toggles, you can compare two different algorithms on liveproduction data, or you can perform A/B tests.
Visibility without integration
An alternative to frequent integration into the mainline could be to use outsidechannels. It can be done by creating a proposed-updates type of branch, whichwould be used to merge all feature branches. This improves the visibility ofchanges and provides a place to test branch integrations.
Tools and services such as GitLive (available as a VS Code extension and as aJetBrains IDE plugin) exist that can show who is working on which branch, onwhich issue, and even show working copy local changes of teammates.
Branching patternsIn many cases, the choice of branching pattern (of the branching technique)depends on how stable the branch is, or in other words how healthy it is. A
stable branch, or a healthy branch is a branch in such a state that thecurrent tip commit on that branch always builds and deploys successfully, andthe software runs with zero or at most a few bugs.Ensuring that a branch is healthy pretty much requires doing daily builds andhaving a comprehensive suite of automated tests that are run frequently – if notat each commit, then at least at each integration (merge). However, explaininghow to do this is outside the scope of this book.
Integration patterns

Deciding what branching strategy to use to integrate individual changes into acoherent and healthy mainline depends on various factors. Techniques thattend toward frequent integration, such as continuous integration, require thebranch being merged into to be healthy. This requires a disciplined team,where each developer can make sure that each change is well-tested and doesnot break the developed application.
On the other hand, if it isn’t certain that the feature being developed is of agood enough quality, and we want it assessed as a unit only after it is finished,then integrating less frequently might make more sense. Requiring pre-integration code reviews also drives you toward specific branching patterns.
Mainline integrationThe simplest possible branching strategy is to work directly out of the mainline(the trunk) and merge your changes (commits) directly into it. In thisworkflow, the developer starts from the mainline and creates their work on topof it.
This strategy is called mainline integration or trunk-based development(the name depends on how the main branch is called).After the developer reaches a point where they want to integrate, they start byfetching the current state of the mainline. If other developers published theirchanges when they were working on the project, they would need to combinethose changes, using either a merge or a rebase operation – see Chapter 9,
Merging Changes Together for more detail. Then, they verify that the code ishealthy and push integrated changes into the mainline.
Topic branches-based developmentIn the topic branching pattern (also called feature branching), the idea is tomake a new separate branch for each topic. This might be creating a newfeature or a bug fix. This type of branch intends to gather subsequentdevelopment steps of a feature (where each step – a commit – should be a self-contained piece, easy to review), and to isolate the work on one feature fromwork on other topics. Using a feature branch allows topical changes to be kepttogether, and not mixed with other commits. It also makes it possible for a

whole topic to be dropped (or reverted) as a unit, be reviewed as a unit, and beaccepted (integrated) as a unit.
The end goal for the commits on a topic branch is to have them included in areleased version of a product. This means that, ultimately, the short-lived topicbranch is to be merged into the long-lived branch, which is gathering stablework, and must be deleted.To make it easier to integrate topic branches, the recommended practice is tocreate such branches by forking off the oldest, most stable integration branchthat you will eventually merge into. Usually, this means creating a branch,starting from the stable-work graduation branch. However, if a given featuredoes depend on a topic not yet in the stable line, you need to fork off theappropriate topic branch containing the dependency you need.
Note that if it turns out that you forked off the wrong branch, you can alwaysfix it by rebasing (see Chapter 9, Merging Changes Together, and Chapter 10,
Keeping History Clean), because topic branches are not public.
Continuous integrationWhen using the mainline integration pattern, integrations are as frequent aspossible: after each commit. Feature branching implies a lower bound to theperiod of integrations – you integrate fully developed cohesive features.
With the continuous integration pattern (which is also called scaled trunk-
based development), you try to integrate as frequently as possible – that is,whenever you have made a worthwhile number of changes and the branch isstill healthy. The work is best done with short-lived feature branches, justintegrated more frequently. The recommended practice is to integrate at leastdaily, with the feature branch living a few days at most.When using this pattern, you need to be able to deal with a partially builtfeature. If mainline code runs in production (continuous delivery), you need toconsider how to avoid exposing such unfinished features in the running code.This was described in the Alternatives to branching section.
Release engineering

If the mainline is kept healthy enough and is in an always-releasable state(following the tenets of continuous delivery), you can mark revision for releasesimply by creating a Git tag from the current tip. This simple branching patternis called the release-ready mainline.
But if this is not the case, or if you need to manage more than one version ofthe product, more complex branching patterns are needed. In that case,specialized branches are required on the path from the integration branch tothe production release.
Progressive-stability branchesOne possible solution to the problem of ongoing development not being stableenough to be always ready for the release (temporarily including some unstablecode), is to put less mature and more mature code in separate maturity
branches. Thus, the latest possibly unstable version is kept isolated from theone that is always ready for release. The intent of each of these branches is tointegrate the development work of the respective degree of stability, frommaintenance work (which accepts only relevant bugfixes), through stable work(production-ready), to unstable or development work (planning for the future) –for example, from maint, to master, to next:

Figure 8.1 – A linear view and a <silo= view of the maturity branches (also called progressive-stability
branches)

These branches form a hierarchy with a decreasing level of graduation or
stability of work, as shown in Figure 8.1. In the linear view (top of the figure),the stable revisions are further down the line in your commit history, and thecutting-edge unstable work is further up the history. Alternatively, we can thinkof branches as work silos (bottom of the figure), where work goes depending onthe stability (graduation) of changes. Note that, in real development,progressive-stability branches would not keep being this simple. There wouldbe new revisions on the branches after the forking points. Nevertheless, theoverall shape will be the same, even in the presence of merging.
Here and in the following figures, the chosen commit names (C1, C2, C3, andso on) are only to distinguish commits, and in some cases also to make it easyto see which commit corresponds to another.With maturation branches, the rule is to always merge more stable branchesinto less stable ones – that is, merge upwards. This would preserve the overallshape of branch silos (see Figure 8.3 in the Graduation or progressive-stability
branches worküow section of this chapter). This is because merging meansincluding all the changes from the merged branch.
Therefore, merging a less stable branch into a more stable one would bringunstable work to the stable branch, violating the purpose and the contract of astable branch.Often, we see the graduation branches of the following levels of stability:

The maint, maintenance, or fixes branch only contains bug fixes to the last major release; minorreleases are done with the help of this branch.
The main, master, trunk, or stable branch, with the development intended for the next majorrelease; the tip of this branch should always be in the production-ready state.
The next devel, development, unstable branch, where the new development goes to test whether itis ready for the next release; the tip can be used for nightly builds.
The pu or proposed branch for the proposed updates. This is the integration testing branch and ismeant for checking compatibility between different new features.

Having multiple long-running branches is not necessary, but it’s often helpful,especially in very large or complex projects. Often, in operations, each level ofstability corresponds to its own platform or deployment environment.
You don’t need to – and probably shouldn’t – use every type of branch listedhere. Pick only what is needed for your project.

Per-release branches and per-release maintenancePreparing for the new release of a project can be a lengthy and involvedprocess. Per-release branches can help with this. The release branch ismeant to separate the ongoing development from preparing for the newrelease. It allows other developers to continue working on writing new featuresand on integration testing, while the quality assurance team, with the help ofthe release manager, takes time to test and stabilize the release candidate.
After creating a new release, keeping such per-release branches allows us tosupport and maintain older released versions of the software. At these times,such branches work as a place to gather bug fixes (for their software versions)and create minor releases.Not all projects need to utilize per-release branches. You can prepare a newrelease on the stable-work graduation branch, or use a separate repository inplace of using a separate branch. Also, not all projects must provide support formore than the latest version.
This type of branch is often named after the release it is intended for – forexample, release-v1.4. It is better not to give the branch the same name that thetag has for the release.
Release train with feature-freezeIf your project is doing releases on a regular cadence (such as every 2 weeks orevery 6 months), and the release process is complex and involved (for example,there is external testing or a verification process), then it might be beneficial touse a release train branching pattern. It can be considered a variant of the per-release branch pattern. It is depicted in Figure 8.2:

Figure 8.2 – Release train branching pattern for monthly releases, with the May <train= tagged and
released into production and the June <train= in a state just after a feature freezeIn this approach, each per-release branch is coupled with a feature-freeze date(in advance of the planned release date). A new branch for the new release iscreated no later than the feature-freeze date for the previous release. After thefeature freeze, an integration branch turns into a release branch, acceptingonly bug fixes and changes that prepare the project for release. This approachis often used with feature branching.If there’s more than one per-release branch active and accepting features, thedeveloper can estimate how long would it take to finish the new feature andpush it to the “train” corresponding to the later date (loading future trains).Earlier departing “trains” can be regularly merged into later departing ones.

This pattern can be transitioned into the continuous delivery pattern(production-ready mainline) by increasing the frequency of “trains” andreducing friction in the release process.
Hotfix branches for security fixes
Hotûx branches are like release branches but for unplanned releases. Theirpurpose is to act upon the undesired state of a live production or a widelydeployed version, usually to resolve some critical bug in production (usually asevere security bug). This type of branch can be considered a longer-livedequivalent of the bugfix topic branches (see the Bugûx branches section of thischapter).
Other branching patterns involving long-lived
branches
The main purpose of the different types branches is to isolate and/or integratelines of development. However, branching patterns exist that do not fit aroundthe themes of team integration or the path to production (to release).
Per-customer or per-deployment branchesLet’s say that some of your project’s customers require a few customizationtweaks since they do things differently, or perhaps some deployment sites havespecial requirements. Suppose that these customizations cannot be done by

simply changing the configuration. In this case, you would need to createseparate lines of development for these customers or customizations.
But you don’t want these lines of development to remain separate. You expectthat there will be changes that apply to all of them. One solution is to use onebranch for each customization set, per customer, or per deployment. Anotherwould be to use separate repositories. Both solutions help maintain parallellines of development and transfer changes from one line to another.
Such environment branches can be considered an anti-pattern. With thisapproach, it is very easy to introduce changes that lead to different behavior inproduction and on the developer’s workstation, or end with having to maintainwildly divergent products for each customer.
Automation branchesSay that you are working on a web application, and you want to automate itsdeployment using a version control system. One solution would be to set up adaemon to watch a specific branch (for example, the one named deploy) forchanges. Updating this branch would automatically update and reload theapplication.This is, of course, not the only possible solution. Another possibility would be touse a separate deploy repository and set up hooks there, so pushing would causethe web application to refresh. Alternatively, you could configure a hook in apublic repository so that pushing to a specific branch triggers redeployment(this mechanism will be described in Chapter 14, Git Administration).
These techniques can also be used for continuous integration; instead ofdeploying the application, pushing it into a specific branch would cause the testsuite to run (the trigger could create a new commit on this branch or merge it).
Mob branches for anonymous push accessHaving a branch in a remote repository (on a server) with special treatment onpush is a technique that has many uses, including helping to collaborate. It canbe used to enable controlled anonymous push access for a project.Let’s assume that you want to allow random contributors to push into thecentral repository. However, you would want to do this in a managed way: one

solution is to create a special mob branch or a mob/* namespace (set of branches)with relaxed access control.
You’ll learn how to set this up in Chapter 14, Git Administration.
The orphan branch trickThe different types of branches described up to this point differed in theirpurpose and management. However, from a technical point of view (that is,from the point of view of the graph of commits), they all look the same. This isnot the case with the so-called orphan branches.
An orphan branch is a parallel disconnected (orphaned) line of developmentthat shares no revisions with the main history of a project. It is a reference to adisjoint subgraph in the DAG of revisions, without any intersection with themain DAG graph. In most cases, their checkout is also composed of differentfiles.Such branches are sometimes used as a trick to store tangentially relatedcontents in a single repository, instead of using separate repositories. (Whenusing separate repositories to store related content, you might want to usesome naming convention to denote this fact – for example, a common prefix.)They can be used to do the following:

Store the project’s web page files. For example, GitHub uses a branch named gh-pages for theproject’s pages.
Store generated files when the process of creating them requires some nonstandard toolchain. Forexample, the project documentation can be stored in the html, man, and pdf orphan branches (the
html branch can be also used to deploy the documentation). This way, the user can get specific formatof the documentation without needing to install the toolchain required to generate it.
Store the project TODO notes (for example, in the todo branch), perhaps together with storing theresome specialized maintainer tools (scripts).
Have deployment configuration for GitOps in the same repository as the source code, instead ofhaving two separate repositories – one for code and one for deployment configuration.

You can create such a branch with git checkout --orphan <new branch> or by pushinginto (or fetching into) a specific branch from a separate repository, as follows:
$ git fetch repo-htmldocs master:htmlThis command fetches the master branch from the unrelated repo-htmldocsrepository into the unconnected html “orphan” branch.

TRIVIA
Creating an orphan branch with git checkout --orphan does not technically create a branch – that is, it
does not make a new branch reference. What it does is point the symbolic HEAD reference to an unborn
branch. The reference is created after the ûrst commit on a new orphan branch. That’s why there is no
option to create an orphan branch with the git branch command.

Other types of short-lived branches
While long-lived branches stay forever, short-lived or temporary branches arecreated to deal with single issues, and are usually removed after dealing withsaid issue. They are intended to last only as long as the issue is present.
Because of their provisional nature, they are usually only present in the localprivate repository of a developer or integration manager (maintainer), and arenot pushed to public distribution repositories. If they appear in publicrepositories, they are there only in a public repository of an individualcontributor (see the blessed repository workflow in Chapter 6, Collaborative
Development with Git), as a target for a pull request.
Bugfix branchesWe can distinguish a special case of a topic branch whose purpose is fixing abug. Such a branch should be created starting from the oldest integrationbranch it applies to (the most stable branch that contains the bug). This usuallymeans forking off the maintenance branch or the divergence point of all theintegration branches rather than the tip of the stable branch. A bugfix branch’sgoal is to be merged into relevant long-lived integration branches.Bugfix branches can be thought of as a short-lived equivalent of a long-livedhotfix branch. Using them is a better alternative to simply committing fixes onthe maintenance branch (or another appropriate integration branch).
Detached HEAD – the anonymous branchYou can think of the detached HEAD state (described in Chapter 2,
Developing with Git) as the ultimate in temporary branches – so temporary thatit even doesn’t have a name. Git uses such anonymous branches automaticallyin a few situations, such as during bisection and rebasing.

Because, in Git, there is only one anonymous branch and it must always be thecurrent branch, it is usually better to create a true temporary branch with atemporary name; you can always change the name of the branch later.
One possible use of the detached HEAD is for proof-of-concept work. However,you need to remember to set the name of the branch if the changes turn out tobe worthwhile (or if you need to switch branches). It is easy to go from ananonymous branch to a named branch. You simply need to create a new branchfrom the current detached HEAD state.
Branching workflows and release engineeringNow that we know about the different branching patterns and their purposes,let’s examine how they can be composed into different branching workflows.Different situations call for different uses of branches, as well as differentpolicies. For example, smaller projects are better suited for simpler branchingworkflows, while larger projects might need more advanced ones.In this section, we’ll describe how to use a few common workflows. Eachworkflow is distinguished by the various types of branches it uses. In additionto getting to know what the ongoing development looks like for a givenworkflow, we’ll also examine what it recommends doing at the time of the newrelease (major and minor, where relevant).
The release and trunk branches workflow

One of the simplest workflows is to use just a single integration branch. Suchbranches are sometimes called trunk branches; in Git, it would usually be the
main or master branch (it is the default branch when creating a repository). In apure version of this workflow, you would commit everything to the said branch,at least during the normal development stage. This way of working comes fromthe times of centralized version control, when branching and especiallymerging were more expensive, and people avoided branch-heavy workflows.This workflow is well-suited for continuous integration. If you can maintain ahealthy trunk, new releases can be cut directly from it via tagging.
On the other hand, if the release process is more involved, this workflow can beused together with per-release branches. In this case, when we decide to cut

the new release, we create the new release branch out of the trunk. This isdone to avoid the interference between stabilizing for release and the ongoingdevelopment work. The rule is that all the stabilization work goes on therelease branch, while all the ongoing development goes to the trunk. Release
candidates are cut (tagged) from the release branch, as is the final version ofa major release. The release branch for a given version can be later used togather bug fixes and to cut minor releases from it.
The disadvantage of such a simple workflow is that it requires maintaining ahealthy branch. Otherwise, if we get in an unstable state during development, itcan be hard to come up with a good starting point for a new release. Analternative solution is to create revert commits on the release branch, undoingthe work that isn’t ready. However, this can be a lot of work, and it would makethe history of a project hard to follow.Another difficulty with this workflow is that a feature that looks good at firstglance might cause problems later. This is something this workflow has troubledealing with. If it turns out during development that some feature created withmultiple commits feature is not a good idea, reverting it can be difficult. This istrue especially if its commits are spread across the timeline (across thehistory).
Despite these problems, this simple workflow can be a good fit for a small orwell-disciplined team.
The graduation branches workflow
To be able to provide a stable line of the product, and to be able to test it inpractice as a kind of floating beta version, you need to separate work that isstable from the work that is ongoing and might destabilize code. That’s what
graduation branches are for – to integrate revisions with different degrees ofmaturation and stability (this type of long-running branch is also called an
integration branch or progressive-stability branch). See Figure 8.1 in the
Maturity or progressive-stability branches section, which shows a graph viewand a silo view of a simple case with progressive-stability branches and linearhistory. Let’s call the technique that utilizes mainly (or only) this type of branchthe graduation branches worküow.

Besides keeping stable and unstable development separate, there is also a needfor ongoing maintenance. If there is only one version of the product to support,and the process of creating a new release is simple enough, you can also usethe graduation-type branch for this.
Here, simple enough means that you can just create the next major release outof the stable branch.In such a situation, you would have at least three integration branches. Therewould be one branch for the ongoing maintenance work (containing only bugfixes to the last version), to create minor releases, another branch for stablework to create major releases (this branch can also be used for nightly stablebuilds), and another branch for ongoing development, possibly unstable:

Figure 8.3 – The graduation or progressive-stability branches workflow. You should never merge a less
stable branch into a more stable one as it would bring all the unstable historyYou can use this workflow as-is, with only graduation branches, and no othertypes of branches:

You commit bug fixes on the maintenance branch and merge it into the stable branch anddevelopment branch, if necessary
You create revisions with the well-tested work on the stable branch, merging it into the developmentbranch when needed (for example, if the new work depends on them)
You put the work in progress, which might be unstable, on the development branch

During normal development, you should never merge less stable branches intomore stable ones as this decreases their stability. This simple version of thisworkflow is shown in Figure 8.3.This, of course, requires that you know upfront whether the feature that youare working on should be considered stable or unstable. There is also an

underlying assumption that different features work well together from thestart. In practice, however, you would expect that each piece of thedevelopment matures from the proof of concept, through being a work inprogress during possibly several iterations, before it stabilizes. This problemcan be solved by using topic branches, as described next.
In the pure graduation branches workflow, you would create minor releases(with bug fixes) out of the maintenance branch. Major releases (with newfeatures) are created out of the stable-work branch. After a major release, thestable-work branch is merged into the maintenance branch to begin supportingthe new release that was just created. At this point, an unstable (development)branch can be merged into a stable one. This is the only time when mergingupstream – that is, merging fewer stable branches into more stable branches –should be done.
The topic branches workflow
The idea behind the topic branches workflow is to create a separate short-livedbranch for each topic or feature so that all the commits belonging to a giventopic (all the steps in its development) are kept together. The purpose of each
topic branch is to develop a new feature or create a bug fix:

Figure 8.4 – The topic branches workflow with one integration branch (master) and three topic or feature
branches. One of the topic branches is merged into the integration branch and deleted

In the topic branches worküow (also called the feature branches
worküow), you have at least two different types of branches. First, there needsto be at least one permanent (or just long-lived) integration branch. This type ofbranch is used purely for merging. Integration branches are public.
Second, there are separate short-lived temporary feature branches, eachintended for the development of a topic or the creation of a bug fix. They areused to carry all the steps, and only the steps required in the development of afeature or a fix – this is a unit of work for a developer. These branches can bedeleted after the feature or the bug fix is merged. Topic branches are usuallyprivate and are often not present in public repositories.When a feature is ready for review, its topic branch is often rebased to makeintegration easier, and optionally to make the history clearer. It is then sent forreview as a whole. The topic branch can be used in a pull request or can besent as a series of patches (for example, using git format-patch and git send-email).It is then often saved as a separate topic branch in a maintainer’s workingrepository (for example, using git am --3way if it was sent as patches) to help inexamining and managing it.
Then, the integration manager (the maintainer in the blessed repositoryworkflow, or simply another developer in the central repository workflow)reviews each topic branch and decides whether it is ready for inclusion in theselected integration branch. If it is, then it will be merged (perhaps with the --
no-ff option).
Graduation branches in a topic branch workflowThe simplest variant of the topic branches workflow uses only one integrationbranch. Usually, however, you would combine the graduation branchesworkflow with topic branches.

Figure 8.5 – The topic branches workflow with two graduation branches. Among topic branches, there is
one that is stable enough to be merged into both graduation branchesIn this often-used variant, the feature branch is started from the tip of a givenstable branch (usually) or the last major release, unless the branch requiressome other feature. In the latter case, the branch needs to be forked from(created from) the topic branch it depends on, such as the feat branch in Figure

8.5. Bugfix topic branches are created on top of the maintenance branch.
When the topic is considered done, it is merged into the development-workintegration branch (for example, next) to be tested. For example, in Figure 8.5,topic branches idea and iss92 are both merged into next, while feat is notconsidered ready yet. Adventurous users can use builds from a given unstablebranch to exercise the feature, though must take into account the possibility ofcrashes and data loss.After this examination, when the feature is considered to be ready to beincluded in the next release, it is merged into the stable-work integrationbranch (for example, master). Figure 8.5 includes one such branch: iss92. At thispoint, after merging it into the stable integration branch, the topic branch canbe deleted.
Using a feature branch allows topical revision to be kept together and notmixed with other commits. The topic branch workflow allows you to easily undo

topics as a whole and remove all bad commits together (removing a series ofcommits as a whole unit), instead of using a series of reverts.
If the feature turns out not to be ready, it is simply not merged into the stablebranch, and it remains present only in the development-work branch. However,if we realize that it wasn’t ready too late, after the topic was merged into thestable branch, we would need to revert the merge. This is a slightly moreadvanced operation than reverting a single commit, but it is less troublesomethan reverting commits one by one, while ensuring that all the commits getcorrectly reverted. Problems with reverting merges will be covered in Chapter
10, Keeping History Clean.The workflow for topic branches containing bug fixes is similar. The onlydifference is that you need to consider which of the integration branches thebugfix branch is to be merged into. This, of course, depends on the situation.Perhaps the bugfix applies only to the maintenance branch, because it wasaccidentally fixed by a new feature in the stable-work and development-workbranches; then, it is merged only to this branch. Perhaps the bug only appliesto the stable-work and development-work branches because it is about thefeature that was not present in the previous version, thus the maintenancebranch is excluded from being merged into.
Using a separate topic branch for bug fixing, instead of committing a bugfixdirectly, has an additional advantage: it allows us to easily correct the misstepif it turns out after the fact that the fix applies to more branches than wethought.For example, if it turns out that the fix needs to also be applied to themaintained version and not only to the current work, with the topic branch youcan simply merge the fix into additional branches. This is not the case if wewere to commit the fix directly to the stable branch. In the latter situation, youcannot use merging as it would destabilize the maintenance branch. You wouldneed to copy the revision with the fix by cherry-picking it from the branch itwas committed to into the maintenance branch (see Chapter 9, Merging
Changes Together, for a detailed description of this operation). But it meansthat duplicated commits are present in the history of the project, and cherry-picked commits can sometimes interact wrongly with the act of merging.

The topic branches workflow also allows us to check whether the featuresconflict with each other, and then fix them as necessary. You can simply createa throw-away integration branch and merge into it topic branches containingthese features, to test the interaction between them. You can even publish suchbranches meant for integration testing (named proposed-updates or just pu, forexample) to allow other developers to examine the works in progress. However,you should state explicitly in the developer documentation that said branchshould not be used as a basis to work on, as it is recreated each time fromscratch.
Branch management for a release in a topic branch
workflowLet’s assume that we’re using three graduation (integration) branches: maint formaintenance work on the last release, master for stable work, and next fordevelopment.The first thing that the maintainer (the release manager) needs to do beforecreating a new release is to verify that master is a superset of maint – that is, allthe bugs are also fixed in the version being considered for the next release. Youcan do this by checking whether the following command gives an empty output(see Chapter 4, Exploring Project History):
$ git log master..maintIf the preceding command shows some unmerged commits, the maintainerneeds to decide what to do with them. If these bug fixes don’t break anything,they can simply merge maint into master (as it’s merging the more stable branchinto the less stable one).

Now that the maintainer knows that master is a superset of maint, they can createthe new release from the remote master branch by tagging it and push the just-created tag to the distribution point (to the public repository) with thefollowing command:
$ git tag -s -m "Foo version 1.4" v1.4 master
$ git push origin v1.4 masterThe preceding command assumed that the public repository of the Foo projectis the one described by origin and that we use the double-digit version for majorreleases (following the semantic versioning specification).

TIP
If the maintainer wants to support more than one older version, they would need to copy an old
maintenance branch, as the next step would be to prepare it for maintaining the just-released revision: git
branch maint-1.3.x maint.Then, the maintainer updates maint to the new release, advancing the branch(note that step one ensured that maint was a subset of master):
$ git checkout maint
$ git merge --ff-only masterIf the second command fails, it means that some commits on the maint branchare not present in master, or to be more exact that master is not a strictdescendant of maint.Because we usually consider features for inclusion in master one by one, theremight be some topic branches that are merged into next, but they wereabandoned before they were merged into master (or they are not mergedbecause they were not ready). This means that though the next branch containsa superset of topic branches that compose the master branch, master is notnecessarily the ancestor of next.

That’s why advancing the next branch after a release can be more complicatedthan advancing the maint branch. One solution is to rewind and rebuild the nextbranch:
$ git checkout next
$ git reset --hard master
$ git merge ai/topic_in_next_only_1...You can find unmerged topics to be merged to rebuild next by running thefollowing command:
$ git branch --no-merged nextAfter creating the release after rebuilding next, other developers would have toforce fetch the next branch (see the next section) as it would not fast-forward ifit were not already configured to force fetch:
$ git pull
From git://git.example.com/pub/scm/project
 62b553c..c2e8e4b maint -> origin/maint
 a9583af..c5b9256 master -> origin/master
 + 990ffec...cc831f2 next -> origin/next (forced update)Notice the forced update for the next branch here.

git-flow – a successful Git branching model

The more advanced version of the topic branching workflow builds on top of thegraduation branch’s one. In some cases, an even more involved branchingmodel might be necessary, utilizing more types of branches: graduationbranches, release branches, hotfix branches, and topic branches. One suchmodel is git-flow.
This development model uses two main long-running graduation branches toseparate the production-ready stable state from the work involved withintegrating the latest delivered ongoing development. Let’s call these branches
master (stable work) and develop (gathers changes for the next release). Thelatter can be used for nightly builds. These two integration branches have aninfinite lifetime.
These branches are accompanied by supporting branches – that is, feature
branches, release branches, and hotûx branches.
Each new feature is developed on a topic branch. Such branches are forkedoff the tip of either the devel or master branch, depending on the requirements ofthe feature in question. When work on a feature is finished, its topic branch ismerged with the --no-ff option (so that there is always a merge commit where afeature can be described) into devel for integration testing. When they are readyfor the next release, they are merged into the master branch. A topic branchexists only as long as a feature is in development and is deleted when merged(or when abandoned).
The purpose of a release branch is twofold. When created, the goal is toprepare a new production release. This means doing last-minute cleanup,applying minor bug fixes, and preparing metadata for a release (for example,version numbers, release names, and so on). All but the last should be doneusing topic branches; metadata can be prepared directly on the release branch.This use of the release branch allows us to separate the quality assurance forthe upcoming release from the work developing features for the next bigrelease.Such release branches are forked off when the stable state reflects, or is closeto, the desired state planned for the new release. Each such branch is namedafter a release, usually something such as release-1.4 or release-v1.4.x. You would

usually create a few release candidates from this branch (tagging them v1.4-rc1and so on) before tagging the final state of the new release (for example, v1.4).
The release branch might exist only until the time the project release it wascreated for is rolled out, or it might be left to gather maintenance work: bugfixes for the given. In the latter situation, it replaces the maint branch of otherworkflows.
Hotûx branches are like release branches, but for an unplanned releaseusually connected with fixing serious security bugs. They are usually named
hotfix-1.4.1 or something similar. A hotfix branch is created out of an old releasetag if the respective release (maintenance) branch does not exist. The purposeof this type of branch is to resolve critical bugs found in a production version.After putting a fix on such branches, the minor release is cut (for each suchbranch).
Ship/Show/Ask – a modern branching strategy

This approach tries to provide a balance between the advantages of doing pre-integration code reviews with pull requests and feature branches, and high-frequency integration and release-ready mainline that scaled trunk-baseddevelopment provides.
In this workflow, you choose one of the three options – Ship, Show, or Ask –every time you make a change. With Ship, you add a change directly into themainline (like in trunk-based development). This is useful if you want fastintegration while being sure that the change is healthy – for example, if you adda feature using an established pattern, fix a simple bug, or updatedocumentation.
With Show, you open a pull request but merge it straight away (if theautomated checks pass). This allows for easy post-integration review while notmaking the feature wait.
Finally, with Ask, you follow the topic branch workflow and wait for the codereview before integration.
Fixing a security issue

Let’s examine another situation: how we can use branches to fix a bug, such asa security issue. This requires a slightly different technique than in ordinarydevelopment.
As explained in the The topic branches worküow section, while it is possible tocreate a bugfix commit directly on the most stable of the integration branchesthat is affected by the bug, it is usually better to create a separate bugfixbranch.You start by forking from the oldest (most stable) integration branch the fixneeds to be applied to, perhaps even at the branching point of all the branchesit would apply to. You put the fix (perhaps consisting of multiple commits) onthe branch that you have just created. After testing it, you simply merge thebugfix branch into each of the integration branches that need the fix.
This model can be also used to resolve conflicts (dependencies) betweenbranches at an early stage. Let’s assume that you are working on some newfeature (on a topic branch) that is not ready yet. While writing it, you noticedsome bugs in the development version and you know how to fix them. You wantto work on top of the fixed state, but you realize that other developers wouldalso want the bugfix. Committing the fix on top of the feature branch takes thebugfix hostage. Fixing the bug directly on an integration branch has a risk offorgetting to merge the bugfix into the feature in progress.The solution is to create a fix on a separate topic branch and merge it into boththe topic branch for the feature being developed and into the test integrationbranch (and possibly the graduation branches).
TIP
You can use similar techniques to create and manage some features that are requested by a subset of
customers. You need to simply create a separate topic branch for each such feature and merge it into the
individual, per-customer branches.The matter is a bit more complicated if there is security involved. In the case ofa severe security bug, you would want to fix it not only in the current versionbut also in all the widely used versions.To do this, you need to create a hotfix branch for various maintenance tracks(forking it from the specified version):
$ git checkout -b hotfix-1.9.x v1.9.4

Then, you need to merge the topic branch with the fix in question into the justcreated hotfix branch, to finally create the bugfix release:
$ git merge CVE-2014-1234
$ git tag -s -m "Project 1.9.5" v1.9.5

Interacting with branches in remote repositoriesAs we’ve seen, having many branches in a single repository is very useful. Easybranching and merging allow for powerful development models that utilizeadvanced branching techniques, such as topic branches. This means thatremote repositories will also contain many branches. Therefore, we have to gobeyond just the repository to the repository interaction, as described in Chapter
6, Collaborative Development with Git. We have to consider how to interactwith multiple branches in the remote repositories.
We also need to think about how many local branches in our repository relateto the branches in the remote repositories (or, in general, other refs). The otherimportant knowledge is how the tags in the local repository relate to the tags inother repositories.Understanding the interaction between repositories, the branches in theserepositories, and how to merge changes (as described in Chapter 9, Merging
Changes Together) is required to truly master collaboration with Git.
Upstream and downstream

In software development, upstream refers to a direction toward the originalauthors or the maintainers of the project. We can say that the repository isupstream from us if it is closer (in the repository-to-repository steps) to theblessed repository – the canonical source of the software. If a change (a patchor a commit) is accepted upstream, it will be included either immediately or ina future release of an application, and all the people downstream will receiveit.
Similarly, we can say that a given branch in a remote repository (themaintainer repository) is an upstream branch for a given local branch ifchanges in that local branch are to be ultimately merged and included in theremote branch.

CONFIGURING WHAT IS CONSIDERED UPSTREAM
A quick reminder: the upstream repository and the upstream branch in the said remote repository for a
given branch are deûned by the branch.<branchname>.remote and branch.<branchname>.merge
conûguration variables, respectively. The upstream branch can be referred to with the @{upstream} or
@{u} shortcut.

The upstream branch is usually set while creating a branch out of the remote-tracking branch, and it can be
modiûed using either git branch --set-upstream-to or git push --set-upstream.The upstream branch does not need to be a branch in the remote repository. Itcan be a local branch, though we usually say that it is a tracked branch ratherthan saying that it is an upstream one. This feature can be useful when onelocal branch is based on another local branch, such as when a topic branch isforked from another topic branch (because it contains the feature that is aprerequisite for the latter work).
Remote-tracking branches and refspec
While collaborating on a project, you will be interacting with many repositories(see Chapter 6, Collaborative Development with Git). Each of these remoterepositories you are interacting with will have a notion of the position of thebranches. For example, the master branch in the remote repository, origin,doesn’t need to be at the same place as your local master branch in your clone ofthe repository. In other words, they don’t need to point to the same commit inthe graph of revisions.
Remote-tracking branchesTo be able to check the integration status to see what changes there are in the
origin remote repository that are not yet in yours, or what changes you made inyour working repository that you have not published yet, you need to knowwhere the branches in the remote repositories are (well, where they were thelast time you contacted these repositories). This is the task of remote-tracking
branches – the references that track where the branch was in the remoterepository:

Figure 8.6 – Remote repository and local repository with local branches and remote-tracking branches.
The grayed-out text in the fetch command denotes the default implicit parameters.To track what happens in the remote repository, remote-tracking branches areupdated automatically; this means that you cannot create new local commits ontop of them (as you would lose these commits during updates). You need tocreate a local branch for it. This can be done, for example, by running git

checkout <branchname>, assuming that the local branch with the given name doesnot already exist. This command creates a new local branch out of the remotebranch’s <branchname> and sets the upstream information for it.

Refspec – remote to local branch mapping specificationAs described in Chapter 4, Exploring Project History, local branches are in the
refs/heads/ namespace, while remote-tracking branches for a given remote arein the refs/remotes/<remote name>/ namespace. But that’s just the default. The fetch(and push) lines in the remote.<remote name> configuration describe the mappingbetween branches (or refs in general) in the remote repository and the remote-tracking branches (or other refs) in the local repository.
This mapping is called refspec; it can be either explicit, mapping branches oneby one, or globbing, describing a mapping pattern.For example, the default mapping for the origin repository is as follows:

[remote "origin"]
 fetch = +refs/heads/*:refs/remotes/origin/*This says that, for example, the content of the master branch (whose full name is

refs/heads/master) in the remote repository, origin, is to be stored in the localclone of a repository in the remote-tracking branch, origin/master (whose fullname is refs/remotes/origin/master). The plus (+) sign at the beginning of thepattern tells Git to accept the updates to the remote-tracking branch that arenot fast-forwarded – that is, they are not descendants of the previous value.The mapping can be given using the fetch lines in the configuration for theremote, as shown previously, or can be also passed as arguments to a command(it is often enough to specify just the short name of the reference instead of thefull refspec). The configuration is only taken into account if there are norefspecs on the command line.
Fetching and pulling versus pushing

Sending changes (publishing) to the remote repository can be done with git
push, while getting changes from it can be done with git fetch. These commandssend changes in the opposite direction. However, note that your localrepository has a very important difference – it has you sitting next to you’rekeyboard so that you’re available to run other Git commands.That’s why there is no equivalent in the local-to-remote direction to git pull,which combines getting and integrating changes (see the next section). There

is simply nobody there to resolve possible conflicts (problems occurring duringdoing automated integration).
In particular, there is a difference between how branches and tags are fetchedand how they are pushed. This will be explained in detail later.
Pull – fetching and updating the current branchMany times, you want to incorporate changes from a specific branch of aremote repository into the current branch. The pull command downloadschanges (running git fetch with the parameters given); then, it automaticallyintegrates the retrieved branch head into the current branch. Depending on theconfiguration, it either calls git merge or git rebase to do that. You can use the --
rebase=false or --rebase option to override the default, something that can beconfigured globally with the pull.rebase configuration option or branch.<branch
name>.rebase per-branch configuration option.
Note that if there is no configuration for the remote (you are doing the pull byURL), Git uses the FETCH_HEAD ref to store tips of the fetched branches.There is also the git request-pull command to create information aboutpublished or pending changes for the pull-based workflows – for example, for avariant of the blessed repository workflow. It creates a plain text equivalent ofthe GitHub merge requests, one that is particularly suitable to send by email.
Pushing to the current branch in a non-bare remote
repositoryUsually, the repositories you push to are created for synchronization and are
bare – that is, without a working area. A bare repository doesn’t even have theconcept of the current branch (HEAD) – there is no worktree, so there is nochecked-out branch.
Sometimes, however, you might want to push to the non-bare repository. Thismay happen, for example, as a way of synchronizing two repositories, or as amechanism for deployment (for example, of a web page or a web application).By default, Git on the server will deny the ref update to the currently checked-out branch. This is because it brings HEAD out of sync with the worktree and thestaging area, which is very confusing if you don’t expect it. You can, however,enable such a push by setting receive.denyCurrentBranch to warn or ignore (changing

it from the default value of refuse). You can even make Git update the workingdirectory (which must be clean – that is, without any uncommitted changes) bysetting the said configuration variable to updateInstead.
An alternative and a more flexible solution to using git push for deployment is toconfigure appropriate hooks on the receiving side – see Chapter 13,
Customizing and Extending Git, for information on hooks in general, and
Chapter 14, Git Administration, for details on their use on the server.
The default fetch refspec and push modesWe usually fetch from public repositories with all the branches made public.Often, we want to get a full update of all the branches. That’s why git clone setsup the default fetch refspec in the way shown earlier in this chapter. Thecommon exception to the “fetch all” rule is following a pull request. But in thiscase, we have the repository and the branch (or the signed tag) stated explicitlyin the request, and we will run the pull command with the providedparameters: git pull <URL> <branch>.
On the other side, in the private working repository, there are usually manybranches that we don’t want to publish or, at least, we don’t want to publishthem yet. In most cases, we would want to publish a single branch: the one wewere working on and the one we know is ready. However, if you are theintegration manager, you would want to publish a carefully selected subset ofthe branches instead of just one single branch.This is yet another difference between fetching and pushing. That’s why Gitdoesn’t set up push refspec by default (you can configure it manuallynonetheless), but instead relies on the so-called push modes to decide whatshould be pushed where. Note that the push.default configuration variable usedto configure this applies only while running the git push command withoutbranches to push stated explicitly.
USING GIT PUSH TO SYNC OUT OF A HOST THAT ONE CANNOT
PULL FROM
When you work on two machines, machineA and machineB, each with its own worktree, a typical way to
synchronize between them is to run git pull from each other. However, in certain situations, you may
only be able to make the connection in one direction (for example, because of a ûrewall or intermittent
connectivity). Let’s assume that you can fetch and push from machineB, but you cannot fetch from
machineA.

You want to perform a push from machineB to machineA in such a way that the result of the operation is
practically indistinguishable from doing a fetch while being on machineA. For this, you need to specify, via
refspec, that you want to push the local branch into its remote-tracking branch:

machineB$ git push machineA:repo.git \

 refs/heads/master:refs/remotes/machineB/master

The ûrst parameter is the URL in the scp-like syntax, while the second parameter is refspec. You can set
this in the conûg ûle, in case you need to do something like this more often.

Fetching and pushing branches and tags
The next section will describe which push modes are available, and when to usethem (for which collaboration workflows). But first, we need to know how Gitbehaves concerning tags and branches while interacting with remoterepositories.
Because pushing is not the exact opposite of fetching, and because branchesand tags have different objectives (branches point to the lines of development,and tags point to name-specific revisions), their behavior is subtly different.
Fetching branchesFetching branches is quite simple. With the default configuration, the git fetchcommand downloads changes and updates remote-tracking branches (ifpossible). The latter is done according to the fetch refspec for the remote.
There are, of course, exceptions to this rule. One such exception is mirroringthe repository. In this case, all the refs from the remote repository are storedunder the same name in the local repository. Here, git clone --mirror wouldgenerate the following configuration for origin:

[remote "origin"]
 url = https://git.example.com/project
 fetch = +refs/*:refs/*
 mirror = trueThe names of refs that are fetched, together with the object names they pointat, are written to the .git/FETCH_HEAD file. This information is used, for example,by git pull; this is necessary if we are fetching via URL and not via a remotename. This is done because, when we fetch by the URL, there are simply noremote-tracking branches to store the information about the fetched branch tobe integrated.

You can delete remote-tracking branches on a case-by-case basis with git branch
-r -d; you can also remove them on a case-by-case basis for which thecorresponding branch in the remote repository no longer exists with git remote
prune (or with git fetch -- prune in modern Git).
Fetching tags and automatic tag followingThe situation with tags is a bit different. While we would want to make itpossible for different developers to work independently on the same branch (forexample, an integration branch such as master), in different repositories, wewould need for all developers to have one specific tag to always refer to thesame specific revision. That’s why the position of branches in remoterepositories is stored using a separate per-remote namespace,
refs/remotes/<remote name>/*, in remote-tracking branches, but tags are mirrored –each tag is stored with the same name in the refs/tags/* namespace.
TIP
Note that the positions of tags in the remote repository can be conûgured with the appropriate fetch
refspec; Git is that üexible. One example where it might be necessary is fetching a subproject, where we
want to store its tags in a separate namespace (more information on this issue in Chapter 11, Managing
Subprojects).This is also why, by default, while downloading changes, Git will also fetch andstore all the tags that point to the downloaded objects locally. You can disablethis automatic tag following with the --no-tags option. This option can be seton the command line as a parameter, or it can be configured with the remote.
<remote name>.tagopt setting.You can also make Git download all the tags with the --tags option, or by addingthe appropriate fetch refspec value for tags:

 fetch = +refs/tags/*:refs/tags/*

Pushing branches and tagsPushing is different. Pushing branches is (usually) governed by the selectedpush mode. You push a local branch (usually just a single current branch) toupdate a specific branch in the remote repository, from refs/heads/ locally to
refs/heads/ in remote. It is usually a branch with the same name, but it might bea differently named branch configured as upstream – details will be providedlater. You don’t need to specify the full refspec: using the ref name (for

example, the name of a branch) means pushing to the ref with the same namein the remote repository, creating it if it doesn’t exist. Pushing HEAD meanspushing the current branch into the branch with the same name (not to HEAD inremote – it usually doesn’t exist).
Usually, you push tags explicitly with git push <remote repository> <tag> (or tag
<tag> if there is both a tag and branch with the same name – both mean the
+refs/tags/<tag>:refs/tags/<tag> refspec). You can push all the tags with --tags (andwith appropriate refspec) and turn on the automatic tag with --follow-tags (it isnot turned on by default as it is for fetch).As a special case of refspec, pushing an “empty” source into some ref in remotedeletes it. The --delete option to git push is just a shortcut for using this type ofrefspec. For example, to delete a ref matching experimental in the remoterepository, you can run the following command:
$ git push origin :experimentalNote that the remote server might forbid the deletion of refs with
receive.denyDeletes configuration option or with hooks.
Push modes and their use

The behavior of git push, in the absence of the parameters specifying what topush, and in the absence of the configured push refspec, is specified by the
push mode.Different modes are available, each suitable for different collaborativeworkflows, which was shown in Chapter 6, Collaborative Development with Git.
The “simple” push mode – the defaultThe default push mode in Git 2.0 and later is the so-called simple mode. It wasdesigned with the idea of minimum surprise: the idea that it is better to preventpublishing a branch than to make some private changes accidentally public.With this mode, you always push the current local branch into the same namedbranch in the remote repository. If you push into the same repository you fetchfrom (the centralized workflow), it requires the upstream to be set for thecurrent branch. The upstream is named the same as the branch.

This means that in the centralized workflow (push into the same repository youfetch from), it works like upstream with the additional safety that the upstreammust have the same name as the current (pushed) branch. With a triangularworkflow, while pushing to a remote that is different from the remote younormally pull from, it works like current.
This is the safest option; it is well-suited for beginners, which is why it is thedefault mode. You can turn it on explicitly with git config push.default simple.
The “matching” push mode for maintainersBefore version 2.0 of Git, the default push mode was matching. This mode is mostuseful for the maintainer (also known as the integration manager) in a blessedrepository workflow. But most Git users are not maintainers; that’s why thedefault push mode was changed to simple.
The maintainer would get contributions from other developers, be it via pullrequests or patches sent in an email, and put them into topic branches. Theycould also create topic branches for their own contributions. Then, the topicbranches considered to be suitable were merged into the appropriateintegration branches (for example, maint, master, and next) – merging will becovered in Chapter 9, Merging Changes Together. All this is done in themaintainer’s private repository.The public blessed repository (one that everyone fetches from, as described in
Chapter 6, Collaborative Development with Git) should only contain long-running branches (otherwise, other developers could start basing their work ona branch that suddenly vanishes). Git cannot know by itself which branches arelong-lived and which are short-lived.
With the matching mode, Git will push all the local branches that have theirequivalent with the same name in the remote repository. This means that onlythe branches that are already published will be pushed to the remoterepository. To make a new branch public, you need to push it explicitly the firsttime, like so:
$ git push origin maint-1.4

IMPORTANT NOTE
Note that with this mode, unlike with other modes, using the git push command without providing a list of
branches to push can publish multiple branches at once, and may not publish the current branch.

To turn on the matching mode globally, you can run the following command:
$ git config push.default matchingIf you want to turn it on for a specific repository, you need to use a specialrefspec composed of a sole colon. Assuming that the said repository is named
origin and that we want a not forced push, it can be done with the followingcommand:
$ git config remote.origin.push :You can, of course, push matching branches by using the following refspec onthe command line:
$ git push origin :

The “upstream” push mode for the centralized
workflowIn the centralized workflow, there is a single shared central repository thatevery developer with commit access pushes to. This shared repository will onlyhave long-lived integration branches, usually only maint and master, andsometimes only master.
You should rather never work directly on master (perhaps except for simplesingle-commit topics), but rather fork a topic branch for each separate featureout of the remote-tracking branch:
$ git checkout -b feature-foo origin/masterIn the centralized workflow, the integration is distributed: each developer isresponsible for merging changes (in their topic branches), and publishing theresult to the master branch in the central repository. You would need to updatethe local master branch, merge the topic branch to it, and push it:
$ git checkout master
$ git pull
$ git merge feature-foo
$ git push origin masterAn alternate solution is to rebase the topic branch on the top of the remote-tracking branch rather than merging it. After rebasing, the topic branch shouldbe an ancestor of master in the remote repository, so we can simply push it into
master:

$ git checkout feature-foo
$ git pull --rebase
$ git push origin feature-foo:masterIn both cases, you are pushing the local branch (master in the merge-basedworkflow and the feature branch in the rebase-based workflow) into the branchit tracks in the remote repository – in this case, origin’s master.That is what the upstream push mode was created for:
$ git config push.default upstreamThis mode makes Git push the current branch to the specific branch in theremote repository – the branch whose changes are usually integrated into thecurrent branch. This branch in the remote repository is the upstream branch(and can be referenced as @{upstream}). Turning this mode on makes it possibleto simplify the last command in both examples to the following:
$ git pushThe information about the upstream is created either automatically (whileforking off the remote-tracking branch), or explicitly with the --track option. Itis stored in the configuration file and it can be edited with ordinaryconfiguration tools.

Alternatively, it can be changed later with the following:
$ git branch --set-upstream-to=<branchname>

The “current” push mode for the blessed repository
workflowIn the blessed repository workflow, each developer has a private and publicrepository. In this model, you fetch from the blessed repository and push it toyour public repository.In this workflow, you start working on a feature by creating a new topic branchfor it:
$ git checkout -b fix-tty-bug origin/masterWhen the features are ready, you push it into your public repository, perhapsrebasing it first to make it easier for the maintainer to merge it:
$ git push origin fix-tty-bug

Here, it is assumed that you used pushurl to configure the triangular workflow,and the push remote is origin. You would need to replace origin here with theappropriate name of the publishing remote if you are using a separate remotefor your public repository (using a separate repository makes it possible to useit not only for publishing but also for synchronization between differentmachines).
You can configure Git in such a way that when you’re on the fix-tty-bug branch,it is enough to just run git push. To do this, you need to set up Git to use the
current push mode, like so:
$ git config push.default currentThis mode will push the current branch to the branch with the same name atthe receiving end.Note that if you’re using a separate remote for the publishing repository, youwould need to set up the remote.pushDefault configuration option to be able to usejust git push for publishing.
SummaryThis chapter has shown how to effectively use branches for development andcollaboration. You also got to know a few useful tricks.
First, we learned about the various uses of branches, from integration, throughrelease management and the parallel development of features, to fixing bugs.You learned about different branching patterns and branching workflows. Thisknowledge should help you branch and customize workflows so that they fit theneeds of the project and your team’s preferences.You also learned how to deal with multiple branches per repository whiledownloading or publishing changes. Git provides flexibility in how theinformation on branches and other refs in the remote repository is managedusing the so-called refspecs to define a mapping to local refs: remote-trackingbranches, local branches, and tags. Usually, fetching is governed by fetchrefspec, but pushing is managed by the configured push mode. Variouscollaborative workflows require branch publishing to be handled differently;this chapter described which push mode to use with which workflow andexplains why.

The next chapter, Chapter 9, Merging Changes Together, will explain how tointegrate changes from other branches and other developers. You will learnabout merging and rebasing, and how to deal with situations where Git can’t dothis automatically (how to handle various types of merge conflicts). You willalso learn about cherry-picking and reverting commits.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. What are the advantages of frequent integration?
2. What are the advantages of topic branches?
3. How can you store a project web page or its GitOps configuration in the same repository as the code,while keeping their histories and files separate?
4. How can you synchronize the working directory of the Git repository hosted on other computers?

AnswersHere are the answers to this chapter’s questions:
1. More frequent integration leads to easier integration because with smaller differences, there is lesschance of conflict, and because conflicts are discovered earlier. It also makes it easier to maintain aproduction-ready mainline, decreasing the time it takes to put the feature into the productionenvironment.
2. Using topic branches makes it easier to review and examine the steps it took to create a feature andremove it if needed. The use of topic branches also plays nicely with the requirement of pre-integration code review.
3. You can use the “orphan” branch trick – for example, with git checkout -- orphan – to have two ormore unrelated histories in a single repository.
4. Log in to the other computer and use git pull; if this is not possible, you can git push into a non-bare repository (configuring what should happen to checked-out branches).

Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:
Martin Fowler, Patterns for Managing Source Code Branches (2020):https://martinfowler.com/articles/branching-patterns.html
Rouan Wilsenach, Ship / Show / Ask: A modern branching strategy (2021):https://martinfowler.com/articles/ship-show-ask.html

https://martinfowler.com/articles/branching-patterns.html
https://martinfowler.com/articles/ship-show-ask.html

Vincent Driessen, git-üow - A successful Git branching model (2010): https://nvie.com/posts/a-successful-git-branching-model/
gitworküows - An overview of recommended worküows with Git: https://git-scm.com/docs/gitworkflows
Paul Hammant and others, Trunk Based Development: https://trunkbaseddevelopment.com/
Junio C Hamano: Resolving conüicts/dependencies between topic branches early (2009):https://gitster.livejournal.com/27297.html
Junio C Hamano, Fun with various worküows 1 and 2 (2013): https://git-blame.blogspot.com/2013/06/fun-with-various-workflows-1.html and https://git-blame.blogspot.com/2013/06/fun-with-various-workflows-2.html

https://nvie.com/posts/a-successful-git-branching-model/
https://git-scm.com/docs/gitworkflows
https://trunkbaseddevelopment.com/
https://gitster.livejournal.com/27297.html
https://git-blame.blogspot.com/2013/06/fun-with-various-workflows-1.html
https://git-blame.blogspot.com/2013/06/fun-with-various-workflows-2.html

9

Merging Changes TogetherThe previous chapter, Advanced Branching Techniques, described how to usebranches effectively for collaboration and development.This chapter will teach you how to integrate changes from different parallellines of development together (that is, branches) by creating a merge commit,or by reapplying changes with the rebase operation. Here, the concepts ofmerge and rebase are explained, including the differences between them andhow they can be used. This chapter will also explain the different types ofmerge conflicts and teach you how to avoid them, examine them, and resolvethem.
In this chapter, we will cover the following topics:

Merging, merge strategies, and merge drivers
Cherry-picking and reverting a commit
Applying a patch and a patch series
Rebasing a branch and replaying its commits
A merge algorithm at file and contents level
Three stages in the index
Merge conflicts – how to examine and resolve them
Reusing recorded [conflict] resolutions with git rerere
An external tool – git-imerge

Methods of combining changesNow that you have changes from other people in the remote-tracking branches(or in the series of emails), you need to combine them, perhaps also with yourchanges.
Alternatively, your work on a new feature, created and performed on a separatetopic branch, is now ready to be included in the long-lived development branchand made available to other people. Maybe you have created a bug fix and want

to include it in all the long-lived graduation branches. In short, you want to jointwo divergent lines of development by integrating their changes.
Git provides a few different methods to combine changes and variations ofthese methods. One of these methods is a merge operation, joining two lines ofdevelopment with a two-parent commit. Another way to copy introduced workfrom one branch to another is via cherry-picking, which is creating a newcommit with the same changeset on another line of development (this issometimes necessary to use). Alternatively, you can reapply changes,transplanting one branch on top of another with rebase. We will now examineall these methods and their variants, see how they work, and when they can beused.In many cases, Git will be able to combine changes automatically; the nextsection will talk about what you can do if it fails and if there are mergeconflicts.
Merging branches

The merge operation joins two (or more) separate branches together,including all the changes since the point of divergence into the current branch.You do this with the git merge command:
$ git switch master
$ git merge bugfix123Here, we first switched to a branch we want to merge into (in this example,
master) and then provided the branch to be merged (here, bugfix123).
No divergence – fast-forward and up-to-date casesLet’s say that you need to create a fix for a bug somebody found. Let’s assumethat you have followed the recommendations of the topic branch workflow from
Chapter 8, Advanced Branching Techniques, and created a separate bugfixbranch, named i18n.In such cases, there is often no real divergence, which means that there wereno commits on the maintenance branch (the branch we are merging into), sincea bugfix branch was created. Because of this, Git would, by default, simplymove the branch pointer of the current branch forward:

$ git switch maint
Switched to branch 'maint'
$ git merge i18n
Updating f41c546..3a0b90c
Fast-forward
 src/random.c | 2 ++
 1 file changed, 2 insertions(+)You have probably seen this Fast-forward phrase among output messagesduring git pull, when there are no changes on the branch you pull into. Thefast-forward merge situation is shown in Figure 9.1.

Figure 9.1 – The master branch is fast-forwarded to i18n during the mergeThis case is important for the centralized and the peer-to-peer workflows(described in Chapter 6, Collaborative Development with Git), as it is the fast-forward merge that allows you to ultimately push your changes forward.

In some cases, that is not what you want. For example, note that after the fast-forward merge in Figure 9.1, we have lost the information that the C4 and C5commits were done on the i18n topic branch. We can force the creation of amerge commit (which is described in the next section), even in a case wherethere are no changes to the current branch, using the git merge --no-ffcommand. The default is --ff; to fail instead of creating a merge commit, youcan use --ff-only (ensuring fast-forward only).

Figure 9.2 – The master branch is up to date with respect to the i18n branch (i.e., it includes it)There is another situation where the head (tip) of one branch is the ancestor ofthe other – namely, the up-to-date scenario where the branch we try to merge isalready included (merged) in the current branch (Figure 9.2). Git doesn’t needto do anything in this case; it just informs the user about it:
$ git merge i18n
Already up to date.

Creating a merge commitWhen you are merging fully fledged feature branches, rather than mergingbugfix branches as in the previous section, the situation is usually differentfrom the previously described fast-forward case. In the case of feature branchworkflow, the development of the feature branch and integration branch wouldusually have diverged.Suppose that you have decided that your work on a feature (for example, workon adding support for internationalization on the i18n topic branch) is completeand ready to be included in the master stable branch. In order to do so with amerge operation, you need to first check out the branch you want to merge intoand then run the git merge command, with the branch being merged as aparameter:

$ git checkout master
Switched to branch 'master'
$ git merge i18n
Merge made by the 'ort' strategy.
 src/random.c |
2 ++
 1 file changed, 2 insertions(+)Because the top commit on the branch you are on (and merging into) is not adirect ancestor or a direct descendant of the branch you merge in, Git has to domore work than just moving the branch pointer. In this case, Git does a mergeof changes since the divergence and stores it as a merge commit on thecurrent branch. This commit has two parents, denoting that it was createdbased on more than one commit (more than one branch); the first parent is theprevious tip of the current branch, and the second parent is the tip of thebranch you merge in.Note that Git does start committing the result of merge if it can be doneautomatically, and if there are no conflicts. However, the fact that the mergesucceeded at the text level doesn’t necessarily mean that the merge result iscorrect. You can either ask Git to not automatically commit a merge with git
merge --no-commit to examine it first, or you can examine the merge commit andthen use the git commit --amend command if it is incorrect (see Figure 2.4).

Figure 9.3 – Three revisions used in a typical merge and the resulting merge commitGit creates contents of a merge commit (M in Figure 9.3), using by default (andin most cases) the three-way merge, which in turn uses the snapshots pointedto the tips of the branches being merged (master, C6, and i18n, C5) and thecommon ancestor of the two (C3 here, which you can find with the git merge-basecommand).A very important issue is that Git creates the merge commit contents basedusually only on the three revisions – merged into (ours), merged in (theirs), andthe common ancestor (merge base). It does not examine what happened on thedivergent parts of the branches; this is what makes merging fast. However,because of this, Git also does not know about the cherry-picked or revertedchanges on the branches being merged, which might lead to surprising results(see, for example, the section about reverting merges in Chapter 10, Keeping
History Clean).

Merge strategies and their optionsIn the merge message, we have seen that it was made by the 8ort9 strategy(known as recursive in older Git). The merge strategy is an algorithm that Gituses to compose the result of joining two or more lines of development.
There are a few merge strategies that you can select to use with the --strategy/-
s option to the git merge command. By default, Git uses the ort merge strategywhen joining two branches and a very simple octopus merge strategy whenjoining more than two branches. You can also choose the resolve mergestrategy if the default one fails; it is fast and safe, although less capable ofmerging.
The two remaining merge strategies are special-purpose algorithms. The oursmerge strategy can be used when we want to abandon changes in the merged-in branch but keep them in the history of the merged-into branch – for example,for documentation purposes. This strategy simply repeats the current snapshot(the ours version) as a merge commit. Note that this merge strategy, invokedwith --strategy=ours or -s ours, should be not confused with the ours option to thedefault ort merge strategy, --strategy=ort --strategy-option=ours, or just -Xours,which means something different.
The subtree merge strategy can be used for subsequent merges from anindependent project into a subdirectory (subtree) in a main project. Itautomatically figures out where the subproject was put. This topic, and theconcept of subtrees, will be described in more detail in Chapter 11, Managing
Subprojects.
The default ort (Ostensibly Recursive9s Twin) merge strategy, and itspredecessor, the recursive merge strategy, are named after how such astrategy deals with multiple merge bases and criss-cross merges. In the case ofmore than one merge base (which means that there is more than one commonancestor that can be used for a three-way merge), such a strategy creates amerge tree (conflicts and all) from the ancestors as a merge base – that is, itmerges recursively. Of course, again, these common ancestors being mergedcan have more than one merge base.
Some strategies are customizable and have their own options. You can pass anoption to a merge algorithm with -X<option> (or --strategy-option=<option>) on the

command line, or set it with the appropriate configuration variables. You willdiscover more about merge options in the section Resolving merge conüicts,when we will discuss solving merge conflicts.
A reminder – merge drivers
Chapter 3, Managing Your Worktrees, introduced git attributes – among others,
merge drivers. These drivers are user-defined and deal with merging filecontents if there is a conflict, replacing the default three-way file-level merge.Merge strategies, in contrast, deal with DAG-level merging (and tree-level –that is, merging directories), and you can only choose from the built-in options.
A reminder – signing merges and merging tagsIn Chapter 6, Collaborative Development with Git, you learned about signingyour work. While using merge to join two lines of development, you can eithermerge a signed tag, sign a merge commit, or both. Signing a merge commit isdone with the -S / --gpg-sign option to use the git merge or git commit command;the latter is used if there are conflicts, or if the --no-commit option was used whilemerging.
Copying and applying a changeset
The merging operation is about joining two lines of development (twobranches), including all the changes since their divergence. This means, asdescribed in Chapter 8, Advanced Branching Techniques, that if there is onecommit on the less stable branch (for example, master) that you want to havealso in a more stable branch (for example, maint), you cannot use the mergeoperation. You need to create a copy of such a commit. A situation such as thisshould be avoided (using topic branches), but it can happen, and handling it issometimes necessary.
Sometimes, the changes that need to be applied come not from the repository(as a revision in the DAG to be copied) but in the form of a patch – that is, aunified diff or an email generated with git format-patch (with a patch, plus acommit message).

Git includes the git am tool to handle the mass application of commit-containingpatches.
Both of these commands are useful on their own, but understanding thesemethods of getting changes is also useful to understand how cherry-picking andrebasing work.
Cherry-pick – creating a copy of a changesetYou can create a copy of a commit (or a series of commits) with the cherry-pickcommand. Given a series of commits (usually just a single commit), it appliesthe changes each one introduces, recording a new commit for each change.

Figure 9.4 – Cherry-picking the C4 commit from master to maintAn example of a cherry-pick operation is shown in Figure 9.4. (Note that herethe thick dotted arrow from C4 to C49 denotes a copy; it is not a reference.)The copying of changes does not mean that the snapshot (that is, the state of aproject) is the same in the original (C4 in Figure 9.4) and in the copy (C49 in
Figure 9.4); the latter will include other changes while missing others. Also,while the changes will usually be the same (as they are in Figure 9.4, where thedifference between C3 and C4 and the diff between C7 and C49 is the same),they can also be different – for example, if part of the changes was alreadypresent in the earlier commits.
Note that, by default, Git does not save information about where the cherry-picked commit came from. You can append this information to an originalcommit message, as a (cherry-picked from the commit <sha-1>) line with
git cherry-pick -x <commit>. This is only done for cherry-picks without conflicts.Remember that this information is only useful if you have access to the copiedcommit. Do not use it if you are copying commits from the private branch, asother developers won’t be able to make use of that information.
Revert – undoing the effect of a commitSometimes, it will turn out that, even with a code review, there will be somebad commits that you need to reverse (perhaps one turned out to be a not-so-good idea, or it contains bugs). If the commit is already made public, youcannot simply remove it; you need to undo its effects. This issue will beexplained in detail in Chapter 10, Keeping History Clean.
This “undoing of a commit” can be done by creating a commit with a reversal ofchanges, something like cherry-picking but applying the reversal of changes.This is done with the revert command (see Figure 9.5).

Figure 9.5 – The effect of using 'git revert master^' on a 'master' branch – creating a new commit,
denoted !C3, that undoes changes in the C3 commitThe name of this operation might be misleading. If you want to revert all thechanges made to the whole working area, you can use git reset (in particular,with the --hard option). If you want to revert changes made to a single file, use

git checkout <file> or git restore <file>. Both of these are explained in detail in
Chapter 3, Managing Your Worktrees. The git revert command records a newcommit to reverse the effect of the earlier commit (often, a faulty one).
Applying a series of commits from patchesSome collaborative workflows include exchanging the changes as patches viaemail (or another communication medium). This workflow is often encounteredin open source projects; it is often easier for a new or a sporadic contributor tocreate a specially crafted email (for example, with git format-patch) and send it toa maintainer or a mailing list, rather than setting up a public repository andsending a pull request.
You can apply a series of patches from a mailbox (in the mbox or maildir format;the latter is just a series of files) with the git am command. If these emails (orfiles) were created from the git format-patch output, you can use git am --3way to

use the three-way file merge if there are conflicts. Resolving conflicts will bediscussed in in the section, Resolving merge conüicts.
You can find both tools to help use the patch submission process by sending aseries of patches – for example, from the pull request on GitHub (e.g., the
GitGitGadget GitHub app, or the older submitGit web app, to submit patchesfrom GitHub’s pull request to the Git project mailing list) – and tools that trackweb page patches sent to a mailing list (for example, the patchwork tool).
Cherry-picking and reverting a mergeThis is all good, but what happens if you want to cherry-pick or revert a mergecommit? Such commits have more than one parent; thus, they have more thanone change associated with them.
In this case, you have to tell Git which change you want to pick up (in the caseof cherry-pick), or back out (in the case of revert) with the -m <parent number>option – for example, -m1.Note that reverting a merge undoes the changes, but it does not remove themerge from the history of the project. See the section on reverting merges in
Chapter 10, Keeping History Clean.
Rebasing a branch

Besides merging, Git supports an additional way to integrate changes from onebranch into another – namely, the rebase operation.Like a merge, it deals with the changes since the point of divergence (at least,by default). However, while a merge creates a new commit by joining twobranches, rebase takes the new commits from one branch (i.e., takes thecommits since the divergence) and reapplies them on top of the other branch –see Figure 9.6 for an example.

Figure 9.6 – The effects of the rebase operationWith merge, you first switch to the branch to be merged and then use themerge command to select a branch to merge in. With rebase, it is a bitdifferent. First, you select a branch to rebase (i.e., the changes to reapply) andthen use the rebase command to select where to put it. In both cases, you firstcheck out the branch to be modified, where a new commit or commits would be(a merge commit in the case of merging, and a replay of commits in the case ofrebasing):
$ git switch i18n
Switched to branch 'i18n'
$ git rebase master
Successfully rebased and updated refs/heads/master.

Alternatively, you can use git rebase master i18n as a shortcut. In this form, youcan easily see that the rebase operation takes the master..i18n range of revisions(this notation is explained in Chapter 4, Exploring Project History), replays iton top of master, and finally, points i18n to the replayed commits.
Note that old versions of commits don’t vanish, at least not immediately. Theywill be accessible via a reflog (and ORIG_HEAD) for a grace period. This means thatit is not that hard to check how replaying changed the snapshots of a projectand, with a bit more effort, how changesets themselves have changed.
Merge versus rebaseWe have these two ways of integrating changes – merge and rebase. How dothey differ, and what are their advantages and disadvantages? We can see bycomparing Figure 9.2 in the Creating a merge commit section with Figure 9.5in the Rebasing a branch section.
First, merge doesn’t change history (see Chapter 10, Keeping History Clean). Itcreates and adds a new commit (unless it is a fast-forward merge; then, it justadvances the branch head), but the commits that were reachable from thebranch remain reachable. This is not the case with rebase. Commits getrewritten, old versions are forgotten, and the DAG of revisions changes. Whatwas once reachable might no longer be reachable. This means that you shouldnot rebase published branches.Secondly, merge is a one-step operation, with one place to resolve mergeconflicts. The rebase operation is multi-step; the steps are smaller (if you followthe recommended practices and keep changes small – see Chapter 15, Git Best
Practices), but there are more of them.
Linked to this is the fact that the merge result is based (usually) on threecommits only, and that it does not take into account what happens on either ofthe branches that are integrated step by step; only the endpoints matter.Conversely, rebase reapplies each commit individually, so the road to the finalresult matters here.Third, the history looks different; you get a simple linear history with rebase,while using the merge operation leads to a complex history, with the lines ofdevelopment forking and joining. The history is simpler for rebase, but you losethe information that the changes were developed on a separate branch and that

they were grouped together, which you get with merge (at least with --no-ff).There is even the git-resurrect script in the Git contrib tools that uses theinformation stored in the commit messages of the merge commits to resurrectthe old, long-deleted feature branches.
The last difference is that, because of the underlying mechanism, rebase doesnot, by default, preserve merge commits while reapplying them. You need toexplicitly use the --rebase-merges option. The merge operation does not changethe history, so merge commits are left as they are.
Rebase backendsThe previous section described two mechanisms to copy or apply changes – the
git cherry-pick command and the pipeline from git format-patch to git am --3way.Either of them can be used by git rebase to reapply commits.
The default is to use the merge-based workflow, as if git rebase was called withthe --merge option. The default 'ort' merge strategy allows rebase to be aware ofthe renames on the upstream side (where we put the replayed commits). Withthis option, you can also select a specific merge strategy and pass options to it.To switch to a patch-based strategy, use git rebase --apply. In this case, you canpass some options to git am that does the actual replaying of changesets.
These options will be described later when we discuss conflicts.There is also an interactive rebase with its own set of options. This is one of themain tools in Chapter 10, Keeping History Clean. It can be used to executetests after each replayed commit to check that the replay is correct.
Advanced rebasing techniquesYou can also have your rebase operation replay on something other than thetarget branch of the rebase with --onto <newbase>.
Let’s assume that your featureA topic branch is based on the unstabledevelopment branch named next, as it is dependent on some feature that is notyet ready and not yet present in the stable branch (master). If the functionalityon which featureA depends is deemed stable and merged into master, you wouldwant to move this branch from being forked from next to being forked from

master. Alternatively, perhaps you started the server branch from the related
client branch, but you want to make it more obvious that they are independent.
You can do this with git rebase --onto master next featureA in the first case, and git
rebase --onto master server client in the second one (which is shown in Figure 9.7).

Figure 9.7 – The rebasing branch, moving it from one branch to another

Alternatively, perhaps you want to rebase only a part of the branch. You can dothis with git rebase --interactive, but you can also use git rebase --onto <new base>
<starting point> <branch>. You can even choose to rebase the whole branch(usually, an orphan branch) with the --root option. In this case, you wouldreplay the whole branch and not just a selected subset of it.
You can also keep the base commit as is with --keep-base, instead of followingthe upstream. With the --fork-point option, you can make Git find a bettercommon ancestor using reflog (to find where the branch was created) if it ispossible.
Squash merge
If the changes made on a branch are not worth preserving in detail and onlytheir result is, you can use squash merge as a way to integrate them as asingle commit. This can happen if the branch you want to integrate is full oftemporary, work-in-progress commits.
With git merge --squash, Git will produce the same result with respect to theworking tree (and to the staging area) as if a real merge happened, but it willnot perform the commit (the --commit option to git merge is incompatible with --
squash). This is done in such a way that the next git commit will create anordinary commit, not a merge commit. See Figure 9.8 for a comparison of themerge types.

Figure 9.8 – An ordinary merge versus a squash merge for the same set of branchesBy default, the commit message of a squashing commit begins with Squashed
commit of the following:, followed by (as shown in the example in Figure 9.8)the result of git log master..i18n. However, note that this technique should beused only if we intend to drop (delete) the “merged” branch. This is because Gitmight have trouble merging any further development on the squash-mergedbranch, as the graph of revisions does not indicate that the commit was theresult of a merge.The alternative is to use the squash command of an interactive rebase.
Resolving merge conflictsMerging in Git is typically fairly easy. Since Git stores and has access to a fullgraph of revisions, it can automatically find where the branches diverged andmerge only those divergent parts. This works even in the case of repeated

merges, so you can keep a very long-lived branch up to date by repeatedlymerging into it or rebasing it on top of new changes.
However, it is not always possible to automatically combine changes. There areproblems that Git cannot solve because, for example, there were differentchanges to the same area of a file on different branches. These problems arecalled merge conflicts. Similarly, there can be problems while reapplyingchanges, although you would still get merge conflicts in case of problems.
The three-way merge
Unlike some other version control systems, Git does not try to be overly cleverabout merge conflict resolutions and try to solve them all automatically. Git’sphilosophy is to be smart about determining the cases when a merge can beeasily done automatically (for example, taking renames into account) and, ifautomatic resolution is not possible, to not be overly clever about trying toresolve it. It is better to bail out and ask users to resolve a merge, perhapsunnecessary with a smart algorithm, than to automatically create an incorrectone.
Git uses the three-way merge algorithm to come up with the result of themerge, comparing the common ancestors (base), the side merged in (theirs),and the side merged into (ours). This algorithm is very simple, at least at thetree level – that is, the granularity level of files. The following table explains therules of the algorithm:
ancestor (base) HEAD (ours) branch (theirs) result

A A A A
A A B B
A B A B
A B B B
A B C merge

Table 9.1 – How a three-way merge algorithm works

As shown in the preceding table, the rules for the trivial tree-level three-waymerges are as follows:
If only one side changes a file, take the changed version
If both sides have the same changes, take the changed version
If one side has a different change from the other, there is a merge conflict at the content level

It is a bit more complicated if there is more than one ancestor, or if a file is notpresent in all the versions, but usually, it is enough to just know andunderstand these rules.If one side changes a file differently from the other (where the type of thechange counts – for example, renaming a file on one branch doesn’t conflictwith the changing contents of the file on the other branch), Git tries to mergethe files at the content level, using the provided merge driver if it is defined,and the content-level three-way merge otherwise (for text files).
The three-way file merge examines whether the changes touch different partsof a file (different lines are changed, and these changes are well separated bymore than three lines (the context size) away from each other). If thesechanges are present in different parts of the file, Git resolves the mergeautomatically (and tells us which files are auto-merged).However, if you change the same part of the same file differently in the twobranches that you’re merging together, Git won’t be able to merge themcleanly:
$ git merge i18n
Auto-merging src/rand.c
CONFLICT (content): Merge conflict in src/rand.c
Automatic merge failed; fix conflicts and then commit the result.This problem (a merge conflict) is then left for the user to resolve.
Examining failed merges
If Git is unable to automatically resolve a merge (or if you have passed the --no-
commit option to the git merge command), it will not create a merge commit. It willpause the process, waiting for you to resolve the conflict.
You can then always abort the merging process with git merge --abort.

Conflict markers in the working treeIf you want to see which files are still unmerged at any point after a mergeconflict, you can run git status:
$ git status
On branch master
You have unmerged paths.
 (fix conflicts and run "git commit")
 (use "git merge --abort" to abort the merge)
Unmerged paths:
 (use "git add <file>..." to mark resolution)
 both modified:
src/rand.cAnything that has not been resolved is listed as unmerged. In the case ofcontent conflicts, Git uses standard conflict markers, putting them around theplace of conflict, with the ours and theirs versions of the conflicted area inquestion. Your file will contain a section that will look somewhat like thefollowing:
<<<<<<< HEAD:src/rand.c
fprintf(stderr, "Usage: %s <number> [<count>]\n", argv[0]);
=======
fprintf(stderr, _("Usage: %s <number> [<count>\n"), argv[0]);
>>>>>>> i18n:src/rand.cThis means that the ours version on the current branch (HEAD) in the src/rand.cfile is there at the top of this block, between the <<<<<<< and ======= markers,while the theirs version on the i18n branch being merged (also from src/rand.c) isthere at the bottom, between the ======= and >>>>>>> markers.

You need to replace this whole block by the resolution of the merge, either bychoosing one side (and deleting the rest) or combining both changes, forexample:
fprintf(stderr, _("Usage: %s <number> [<count>]\n"), argv[0]);To help you avoid committing unresolved changes by mistake, Git by defaultchecks whether committed changes include something that looks like conflictmarkers, refusing to create a merge commit if it finds them. You can force thischeck to be skipped with the --no-verify option.If you need to examine a common ancestor version to resolve a conflict, you canswitch to diff3- or zdiff3-like conflict markers, which have an additional block,separated by |||||||. This new block shows the common ancestor (ours) version:
<<<<<<< HEAD:src/rand.c

fprintf(stderr, "Usage: %s <number> [<count>]\n", argv[0]);
|||||||
fprintf(stderr, "Usage: %s <number> [<count>\n", argv[0]);
=======
fprintf(stderr, _("Usage: %s <number> [<count>\n"), argv[0]);
>>>>>>> i18n:src/rand.cYou can replace merge conflict markers individually on a file-per-file basis byrechecking the file again, using the following command:

$ git checkout --conflict=diff3 src/rand.cIf you prefer to use this format all the time, you can set it as the default forfuture merge conflicts by setting merge.conflictStyle to diff3 or zdiff3 (from thedefault of merge).
Three stages in the indexHow does Git keep track of which files are merged and which are not? Conflictmarkers in the working directory files would not be enough. Sometimes, thereare legitimate contents that look like commit markers (for example, a file thatcontains an example of a merge conflict or files in the AsciiDoc format), andthere are more conflict types than CONFLICT(content). How does Git, forexample, represent the case where both sides renamed the file but in adifferent way, or where one side changed the file and the other side removedit?
It turns out that it is another use for the staging area of the commit (a mergecommit in this case), which is also known as the index. In the case of conflicts,Git stores all of the conflicted file versions in the index under stages; eachstage has a number associated with it.

Stage 1 is the common ancestor (base)
Stage 2 is the merged-into version from HEAD – that is, the current branch (ours)
Stage 3 is from MERGE_HEAD, the version you’re merging in (theirs)

You can see these stages for the unmerged files with the low-level (plumbing)command, git ls-files --unmerged (or for all the files with git ls-files --stage):
$ git ls-files --unmerged
100755 ac51efdc3df4f4fd318d1a02ad05331d8e2c9111 1
src/rand.c
100755 36c06c8752c78d2aaf89571132f3bf7841a7b5c3 2
src/rand.c
100755 e85207e04dfdd50b0a1e9febbc67fd837c44a1cd 3
src/rand.c

You can refer to each version with the :<stage number>:<pathname> specifier. Forexample, if you want to view a common ancestor version of src/rand.c, you canuse the following:
$ git show :1:src/rand.cIf there is no conflict, the file is in stage 0 of the index.

Examining differences – the combined diff formatYou can use the status command to find which files are unmerged, and conflictmarkers do a good job of showing conflicts. But how do we see only conflictsbefore we work on them, and how do we see how they were resolved? Theanswer is git diff.One thing to remember is that for merges, even merges in progress, Git willshow the so-called combined diff format. It looks like the following (for aconflicted file during a merge):
$ git diff
diff --cc src/rand.c
index 293c8fc,4b87d29..0000000
--- a/src/rand.c
+++ b/src/rand.c
@@@ -14,16 -14,13 +14,26 @@@ int main(int argc, char *argv[]
return EXIT_FAILURE;
}
++<<<<<<< HEAD:src/rand.c
 +fprintf(stderr, "Usage: %s <number> [<count>]\n", argv[0]);
++=======
+ fprintf(stderr, _("Usage: %s <number> [<count>\n"), argv[0]);
++>>>>>>> i18n:src/rand.cYou can see a few differences from the ordinary unified diff format described in

Chapter 2, Developing with Git. First, this uses diff --cc in the header to denotethat it uses the compact combined format (it would use diff --combined instead ifyou used the git diff -c command). The extended header lines, such as index
293c8fc,4b87d29..0000000, take into account that there is more than one sourceversion. The chunk header, @@@ -14,16 -14,13 +14,26 @@@, is modified (and isdifferent from the one for the ordinary patch) to prevent people from trying toapply a combined diff as a unified diff – for example, with the patch -p1command.
Each line of the diff command is prefixed by two or more characters (two in themost common cases of merging two branches); the first character informs usabout the state of the line in the first preimage (ours) as compared to the

result, the second character informs us about the other preimage (theirs), andso on. For example, ++ means that the line was not present in either of theversions being merged (here, in this example, you can find it on the line withthe conflict marker).
Examining differences is even more useful for checking the resolution of amerge conflict.To compare the result (i.e., the current state of the working directory) with theversion from the current branch (i.e., merged into) – that is, the ours version –you can use git diff –ours. This also applies to the version being merged (theirs)and the common ancestor version (base).
How did we get there – git log --mergeSometimes, we need more context to decide which version to choose or toresolve a conflict. One such technique is reviewing a little bit of history,recalling why the two lines of development that are merged touched the samearea of code.To get the full list of divergent commits that were included in either branch, wecan use the triple-dot syntax that you learned about in Chapter 4, Exploring
Project History, adding the --left-right option to make Git show which side thegiven commit belongs to:
$ git log --oneline --left-right HEAD...MERGE_HEADWe can further simplify this and limit the output to only those commits thattouched at least one of the conflicted files, with a --merge option to git log, forexample:
$ git log --oneline --left-right --mergeThis can be helpful in quickly giving you the context you need to understandwhy something conflicts and how to intelligently resolve it.
Avoiding merge conflicts

While Git prefers to fail to auto-merge clearly, rather than trying elaboratemerge algorithms, there are a few tools and options that you can use to help Gitavoid merge conflicts.

Useful merge optionsOne of the problems while merging branches might be that they use differentend-of-line normalization or clean/smudge filters (see Chapter 3, Managing
Your Worktrees). This might happen when one branch added such aconfiguration (e.g., changing a git attributes file) and the other did not. In thecase of end-of-line character configuration changes, you would get a lot ofspurious changes, where lines differ only in the EOL (end-of-line) characters. Inboth cases, while resolving a three-way merge, you can make Git run a virtualcheckout and check-in of all three stages of a file. This is done by passing the
renormalize option to the 'ort' merge strategy (git merge -Xrenormalize). This would,as the name suggests, normalize end-of-line characters, making them the samefor all stages.
Changing how end of line is defined can contribute to whitespace-relatedconflicts. It’s pretty easy to tell that this is the case when looking at theconflict, as every line is removed on one side and added again on the other, and
git diff --ignore-whitespace shows a more manageable conflict (or even a conflictthat is resolved). If you see that you have a lot of whitespace issues in a merge,you can abort and redo it, this time with -Xignore-all-space, -Xignore-space-change, -
Xignore-space-at-eol, or -Xignore-cr-at-eol.Note that whitespace changes mixed with other changes to a line are notignored.
Sometimes, mis-merges occur due to unimportant matching lines (for example,braces from distinct functions). You can make Git spend more time minimizingdifferences by selecting patience, a histogram, or a minimal diff algorithm with, -
Xdiff-algorithm=patience, and so on.If the problem is mis-detected renamed files, you can adjust the renamethreshold with -Xfind-renames=<n>.
Rerere – reuse recorded resolutionsThe rerere (reuse recorded resolutions) functionality is a bit of a hiddenfeature. As the name of the feature implies, it makes Git remember how eachconflict was resolved chunk by chunk, so that the next time Git sees the sameconflict, it will be able to resolve it automatically. However, note that Git will

stop at resolving conflicts and does not automatically commit the said rerere-based resolution, even if it resolves it cleanly (if it is superficially correct).
Such a functionality is useful in many scenarios. One example is a situationwhen you want a long-lived (i.e., long development) branch to merge cleanly atthe end of its cycle, but you do not want to create intermediate merge commits.In this situation, you can do trial merges (merge, and then delete merge),saving information about how merge conflicts were resolved to the rererecache. With this technique, the final merge should be easy, as most of it will becleanly resolved from the resolutions recorded earlier.Another situation in which you can make use of the rerere cache is when youmerge a bunch of topic branches into a testable permanent branch. If theintegration test for a branch fails, you want to be able to rewind the failedbranch but don’t want to lose the work spent on resolving a merge.
Alternatively, perhaps you have decided that you would rather use rebase thanmerge. The rerere mechanism allows us to translate the merge resolution intothe rebase resolution.To enable this functionality, simply set rerere.enabled to true, or create the .git/
rr-cache file.
Dealing with merge conflicts

Let’s assume that Git was not able to auto-merge cleanly and that there aremerge conflicts that you need to resolve to be able to create a new mergecommit. What are your options?
Aborting a mergeFirst, let’s cover how to get out of this situation. If you weren’t perhapsprepared for conflicts or you don’t know enough about how to resolve them,you can simply back out from the merge you started with git merge --abort.
This command tries to reset to the state before you started a merge. It might benot able to do this if you did not start from a clean state. Therefore, it is betterto stash away changes, if there are any, before performing a merge operation(which you can do with --autostash, or the merge.autoStash/rebase.autoStashconfiguration options).

Selecting the ours or theirs versionSometimes, it is enough to choose one version in the case of conflicts. If youwant to resolve all the conflicts this way, forcing all the chunks to resolve infavor of ours or theirs version, you can use the -Xours or -Xtheirs merge strategyoption, respectively. Note that -Xours (the merge option) is different from --
strategy=ours (the merge strategy); the latter creates a merge commit wherethe project state is the same as the ours version, instead of taking the oursversion only for conflicted files.
If you want to do this only for selected files, you can again check out the filewith the ours or theirs version with git checkout --ours or git checkout--theirs,respectively. Note that during the rebase, the ours and theirs version mayappear to be swapped.
You can examine the base, ours, or theirs version with git show :1:file, git
show:2:file, or git show:3:file, respectively, as described earlier.
Scriptable fixes – manual file remergingThere are types of changes that Git can’t handle automatically, but they arescriptable fixes. The merge can be done automatically, or at least is mucheasier, if we transform the ours, theirs, or base version first. Renormalizationafter changing how the file is checked out and stored in the repository (i.e., eoland clean/smudge filters) and handling the whitespace change are built-inoptions. Another example, but without built-in support, is changing theencoding of a file or another scriptable set of changes, such as renamingvariables.
To perform a scripted merge, you first need to extract a copy of each of theseversions of the conflicted file, which can be done with the git show command andwith :<stage>:<file>:
$ git show :1:src/rand.c >src/rand.common.c
$ git show :2:src/rand.c >src/rand.ours.c
$ git show :3:src/rand.c >src/rand.theirs.cNow that you have in the working area the contents of all three stages of thefiles, you can fix each version individually – for example, with dos2unix or iconv.You can then remerge the contents of the file with the following command:
$ git merge-file -p \

 rand.ours.c rand.common.c rand.theirs.c >rand.c

Using graphical merge toolsIf you want to use a graphical tool to help you resolve merge conflicts, you canrun git mergetool, which fires up a visual merge tool and guides the invoked toolthrough all the merge conflicts.
It has a wide set of preconfigured support for various graphical merge helpers.You can configure which tool you want to use with merge.tool. If you don’t dothis, Git will try all the possible tools in the sequence, which depends on theoperating system and the desktop environment.You can also configure a setup for your own tool.
Marking files as resolved and finalizing mergesAs described earlier, if there is a merge conflict for a file, it will have threestages in the index. To mark a file as resolved, you need to put the contents of afile into stage 0. This can be done by simply running git add <file> (running git
status will give you this hint).
When all the conflicts are resolved, you need to simply run git commit to finalizethe merge commit (or you can skip marking each file individually as resolvedand just run git commit -a). The default commit message for merge summarizeswhat we merge, including a list of the conflicts, if any were present. You canmake Git add a shortlog of the merged-in branches with the --log option for asingle merge, or set it up permanently with the merge.log configuration variable.
Resolving rebase conflictsWhen there is a problem with applying a patch or a patch series, cherry-pickingor reverting a commit, or rebasing a branch, Git will fall back to using thethree-way merge algorithm. How to resolve such conflicts is described in theearlier sections.
IMPORTANT NOTE
Note that when using merging strategies (the default), for technical reasons, ours is the so-far rebased
series – that is, the branch being integrated – while theirs is the working branch (the branch rebased onto).However, for some of these methods, such as rebase, applying a mailbox (git
am), or cherry-picking a series of commits, that are done stage by stage (a

sequencer operation), there are other issues – namely, what to do if there is aconflict during such a stage.
You have three options:

You can resolve the conflict and continue the operation with the --continue parameter (or, in thecase of git am, also --resolved)
You can abort the whole operation and reset HEAD to the original branch with --abort
You can use --skip to drop a revision, perhaps because the commit is already present in theupstream and we can drop it during replaying

git-imerge – an incremental merge and rebase for gitBoth rebase and merge have their disadvantages. With merge, you need toresolve one big conflict (although using test merges and rerere to keep up-to-date proposed resolutions could help with this) in an all-or-nothing fashion.There is almost no way to save partially a done merge or to test it; git stash canhelp, but it might be an inadequate solution.Rebase, conversely, is done in a step-by-step fashion, but it is not ideal forcollaboration; you should not rebase published parts of the history of theproject. You can interrupt a rebase, but it leaves you in a strange state (on ananonymous branch).
That’s why the git imerge third-party tool was created. It presents conflicts pair-wise in small steps. It records all the intermediate merges in such a way thatthey can be shared, so one person can start merging and the other can finish it.The final resolution can be stored as an ordinary merge, an ordinary rebase, ora rebase with history.
SummaryThis chapter has shown us how to effectively join two lines of developmenttogether, combining commits they gathered since their divergence.First, we got to know various methods of combining changes – merge, cherry-pick, and rebase. This part focused on explaining how these functionalitieswork at higher levels – at the level of the DAG of revisions. You learned howmerge and rebase work and what the difference is between them. Some of themore interesting uses of rebase, such as transplanting a topic branch from onelong-lived branch to another, were also shown.

Then, you learned what to do if Git is not able to automatically combinechanges – that is, what can be done in the presence of a merge conflict. Theimportant part of this process is to understand how the three-way mergealgorithm works, as well as how the index and the working area are affected ifthere are conflicts. You now know how to examine failed merges, examineproposed resolutions, avoid conflicts, and finally, resolve them and mark themas resolved.
The next chapter, Keeping History Clean, will explain why we might want torewrite history to keep it clean (and what that means). One of the tools torewrite history is an interactive rebase, a close cousin of an ordinary rebaseoperation described in this chapter. You will learn various methods to rewritecommits: how to reorder them, how to split them if they are too large, how tosquash the fixing commit with the commit it corrects, and how to remove a filefrom history. You will discover what you can do if you cannot rewrite history(understanding why rewriting published history is bad) but you still need tocorrect it, with git replace and git notes commands. We will also discuss otherapplications of these mechanisms.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. What are the advantages and disadvantages of using merge to integrate changes?
2. What are the advantages and disadvantages of using rebase to integrate changes?
3. How do we avoid resolving similar conflicts again and again during a merge or rebase?
4. How can we discover whether we are in the middle of merge or rebase, and remind ourselves on howto resolve conflict or abort an operation?

AnswersHere are the answers to the questions given above:
1. With merge, you do the integration in a single step (which can be an advantage or disadvantage), andyou need to test only a single commit – the result of the merge. You can easily see where the branchbegan and where it ended. The first-parent view can serve as a summary of the integrated branches.
2. With rebase, you do the integration step by step (which can be a disadvantage or an advantage). Eachof the rebased commits might need testing. The resulting history is much simpler, more linear, andeasier to see. Using bisection to find regression bugs should be faster with linear history.
3. You can use the rerere mechanism, which automatically reapplies recorded conflict resolutions.

4. Use the git status command.
Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:

Scott Chacon, Ben Straub: Pro Git, 2nd Edition (2014): https://git-scm.com/book/en/v2:
Chapter 3.6, Git Branching – Rebasing

Chapter 7.8, Git Tools – Advanced Merging

Chapter 7.9, Git Tools – Rerere

Julia Evans, git rebase: what can go wrong? (2023): https://jvns.ca/blog/2023/11/06/rebasing-what-can-go-wrong-/
Julia Evans, How git cherry-pick and revert use 3-way merge (2023):https://jvns.ca/blog/2023/11/10/how-cherry-pick-and-revert-work/
Junio C Hamano, Where do evil merges come from? (2013): https://git-blame.blogspot.com/2013/04/where-do-evil-merges-come-from.html
Nick Quaranto, git ready – keep either ûle in merge conüicts (2009):https://gitready.com/advanced/2009/02/25/keep-either-file-in-merge-conflicts.html
Learn to use email with git!: https://git-send-email.io/

https://git-scm.com/book/en/v2
https://jvns.ca/blog/2023/11/06/rebasing-what-can-go-wrong-/
https://jvns.ca/blog/2023/11/10/how-cherry-pick-and-revert-work/
https://git-blame.blogspot.com/2013/04/where-do-evil-merges-come-from.html
https://gitready.com/advanced/2009/02/25/keep-either-file-in-merge-conflicts.html
https://git-send-email.io/

10

Keeping History CleanThe previous chapter, Merging Changes Together, described how to joinchanges developed by different people (as described in Chapter 6,
Collaborative Development with Git), or just developed in a separate featurebranch (as shown in Chapter 8, Advanced Branching Techniques). One of thetechniques was rebase, which can help bring a branch to be merged to a betterstate. However, if we are rewriting history, perhaps it would be possible to alsomodify the rebased commits to be easier for review, making the developmentsteps of a feature clearer. If rewriting is forbidden, can one make historycleaner without it? How do we fix mistakes if we cannot rewrite project history?This chapter will answer all those questions. It will explain why one might wantto keep a clean history, when it can and should be done, and how it can bedone. Here you will find step-by-step instructions on how to reorder, squash,and split commits. This chapter will also describe how to do large-scale historyrewriting (for example, the clean-up after imports from other VCS) and what todo if one cannot rewrite history: in other words, using reverts, replacements,and notes.
To really understand some of the topics presented here, and to truly mastertheir use, you need some basics of Git internals. These are presented at thebeginning of this chapter.In this chapter, we will cover the following topics:

The basics of the object model of Git repositories
Why you shouldn’t rewrite published history, and how to recover from doing so
The interactive rebase: reordering, squashing, splitting, and testing commits
Large-scale scripted history rewriting
Reverting a revision, reverting a merge, and re-merging after a reverted merge
Amending history without rewriting with replacements
Appending additional information to objects with notes

An introduction to Git internals

To really understand and make good use of at least some of the methodsdescribed in this chapter, you will need to understand at least the very basics ofGit internals. Among other things, you will need to know how Git stores theinformation about revisions.
When describing Git internals, it will be useful to create different types of datato later examine. This can be achieved with a set of low-level commands thatGit provides as a supplement to user-facing high-level commands. These low-level commands operate on the level of the internal representation instead ofusing friendly abstractions. That makes those commands very flexible andpowerful, though perhaps not user-friendly.
Git objects

In Chapter 4, Exploring Project History, you learned that Git represents historyas the Directed Acyclic Graph (DAG) of revisions, where each revision is agraph node represented as a commit object. Each commit is identified by theSHA-1 identifier. We can use this identifier (in its full or ambiguous shortenedform) to refer to any given version.
The commit object consists of revision metadata, links to zero or more parentcommits, and the snapshot of the project’s files at the revision that itrepresents. The revision metadata includes information about who madechanges and when, who created the commit object (who entered changes intothe repository) and when, and of course the commit message.Beyond this fact, it is also useful, in some cases, to know how Git internallyrepresents the snapshot of a project’s files at the given revision. Git uses tree
objects to represent directories, and Binary Large Objects (blobs) torepresent the contents of a file.
Aside from the commit, tree, and blobs, there might also be tag objectsrepresenting annotated and signed tags.Each object is identified by the SHA-1 hash function over its contents, or to bemore exact, over the type and the size of the object plus its contents. Such acontent-based identifier does not require a central naming service. Thanks tothis fact, each and every distributed repository of the same project will use thesame identifiers, and we do not have to worry about name collisions:

calculate SHA-1 identifier of blob object with Git
$ printf "foo" | git hash-object -t blob --stdin
19102815663d23f8b75a47e7a01965dcdc96468c
calculate SHA-1 identifier of blob object by hand
$ printf "blob 3\0foo" | sha1sum
19102815663d23f8b75a47e7a01965dcdc96468c

OBJECT IDENTIFIER – SHA-1 TO SHA-256 TRANSITION
Over time, ýaws in the SHA-1 hash function have been discovered. Therefore, Git will transition to using
SHA-256 while providing interoperability. At the time of writing this, Git was still using SHA-1 by default.We can say that the Git repository is the content-addressed object database.That is, of course, not all there is; there are also references (branches andtags), various configuration files, and other things.
Let’s describe Git objects in more detail, starting from the bottom up. We canexamine objects with the low-level git cat-file command:

Blob: These objects store the contents of the file at the given revision. Such an object can be createdusing the low-level git hash-object -w command. Note that if different revisions have the samecontents of a file, it is stored only once thanks to content-based addressing:
$ git cat-file blob HEAD:COPYRIGHT

Copyright (c) 2014 Company

All Rights Reserved

Tree object: These objects represent directories. Each tree object is a list of entries, sorted byfilename. Each entry is composed of combined permissions and type, the name of the file or directory,and the link (that is, SHA-1 identifier) of an object connected with the given path, either the treeobject (representing the subdirectory), the blob (representing the file contents), or rarely the commitobject (representing the submodule; see Chapter 11, Managing Subprojects). Note that if differentrevisions have the same contents of a subdirectory, it will be stored only once thanks to content-basedaddressing:
$ git cat-file -p HEAD^{tree}

100644 blob 862aafd...

COPYRIGHT

100644 blob 25c3d1b...

Makefile

100644 blob bdf2c76...

README

040000 tree 7e44d2e...

srcNote that the real output includes full 40-character SHA-1 identifiers, notshortened ones as in the preceding example. You can create tree objects outof the index (which you can create using the git update-index command) with
git write-tree.
Commit object: These objects represent revisions. Each commit is composed of a set of headers (key-value data) that includes zero or more parent lines and exactly one tree line with the link to the treeobject representing a snapshot of the repository contents (the top directory of a project). You cancreate a commit with a given tree object as a revision snapshot by using the low-level git commit-
tree command, or by simply using git commit:

$ git cat-file -p HEAD

tree 752f12f08996b3c0352a189c5eed7cd7b32f42c7

parent cbb91914f7799cc8aed00baf2983449f2d806686

parent bb71a804f9686c4bada861b3fcd3cfb5600d2a47

author Joe Hacker <joe@example.com> 1401584917 +0200

committer Bob Developer <bob@example.com> 1401584917 +0200

Merge remote branch 'origin/multiple'

Tag object: These objects represent annotated tags, of which signed tags are a special case. Tags(lightweight and annotated) give a permanent name to a commit (such as v0.2) or any object. Tagobjects also consist of a series of headers (including links to the tagged object) and the tag message.You can create the tag object with a low-level git mktag command, or simply with git tag:
$ git cat-file tag v0.2

object 5d2584867fe4e94ab7d211a206bc0bc3804d37a9

type commit

tag v0.2

tagger John Tagger <john@example.com> 1401585007 +0200

random v0.2

INTERNAL DATETIME FORMAT
The Git internal format for the author, the committer, and the tagger dates is <unix timestamp>
<timezone offset>. The Unix timestamp (POSIX time) is the number of seconds since the Unix epoch,
which is 00:00:00 Coordinated Universal Time (UTC), Thursday, January 1 , 1970 (1970-01-
01T00:00:00Z), not counting leap seconds. This denotes when the event took place. You can print the Unix
timestamp with date "%s" and convert it into other formats with date --date="@<timestamp>".

st

The timezone oûset is a positive or negative oûset from UTC, in the HHMM (hours, minutes) format. For
example, CET (the timezone that is 2 hours ahead of UTC) is +0200. This can be used to ünd the local time
for an event.The relationship between different types of Git objects mentioned here isshown in Figure 10.1. It represents a typical case, with a tag pointing to acommit and with commits sharing the same contents of at least some files.

Figure 10.1 – The Git repository object modelSome Git commands work on any type of object. For example, you can tag anytype of object, not only commits. You can, among other things, tag a blob tokeep some unrelated piece of data in the repository and have it available ineach clone. Public keys can be such data.
Notes and replacements, which will be described later in this chapter, alsowork on any type of object.
Plumbing and porcelain Git commands
Git was developed in a bottom-up fashion. This means that its developmentstarted from basic blocks and built upward. Many of the user-facing commandswere once built as shell scripts utilizing these basic low-level blocks to do theirwork. Thanks to this, we can distinguish between the two types of Gitcommands.
The better-known type is porcelain commands, which are high-level user-facing commands (porcelain is a play on words on calling engine-levelcommands plumbing). The output of these commands is intended for the end

user. This means that their output can be changed to be more user-friendly.Therefore, their output can be different in different Git versions. The user issmart enough to understand what happens if they are presented with additionalinformation, changed wording, or changed formatting (for example).
This is not the case for the scripts you may write in this chapter, such as thoseused for rewriting with git filter-repo. Here, you need unchanging output – well,at least for the scripts that are used more than once (as hooks, as .gitattributedrivers, and as helpers). You can often find a switch, usually named --porcelain,that ensures that the command output is immutable. For other commands, thesolution is to specify the format fully. Alternatively, you can use low-levelcommands intended for scripting: plumbing commands. These commandsusually do not have user-friendly defaults, not to mention a “do what I mean”quality. Their output also does not depend on the Git configuration; not many ofthem can be configured via the Git configuration file.The git(1) manpage includes a list of all the Git commands, separated intoporcelain and plumbing. The distinction between plumbing and porcelaincommands was mentioned as a tip in Chapter 3, Managing Your Worktrees,when we encountered the first low-level plumbing command without a user-facing and user-friendly porcelain equivalent.
Rewriting historyMany times, while working on a project, you may want to revise your commithistory. One reason for this could be to make it easier to review beforesubmitting the changes upstream. Another reason would be to take reviewercomments into account in the next improved version of changes. Or perhapsyou’d like to have a clear history while finding regressions using bisection, asdescribed in Chapter 4, Exploring Project History.
One of the great things about Git is that it makes revising and rewriting historypossible while providing a wide set of tools to revise history and make it clean.
VIEWS ON REWRITING HISTORY
There are two conýicting views among users of the version control system. One states that history is
sacred and that you should show the true history of the development, warts, and all. The other states that
you should clean up the new history for better readability before publishing it.

An important issue to note is that even though we talk about “rewriting” thehistory, objects in Git (including commits) are immutable. This means that“rewriting” really means creating a modified copy of commits, a new path inthe DAG of revisions. Then, the appropriate branch reference is switched topoint to the just-created new path, to the changed copy of the history. Theoriginal, pre-rewrite commits are still there in the repository, referenced andavailable from the reflog (and also from ORIG_HEAD). Well, at least they will bethere until they get pruned (that is, deleted) as unreferenced and unreachableobjects during garbage collection, though this only happens after the reflogexpires.
Amending the last commit

The simplest case of history rewriting is correcting the latest commit on abranch.Sometimes you might notice a typo (an error) in a commit message, or that youhave committed an incomplete change in the last revision. If you have notpushed (published) your changes, you can amend the last commit. This is donewith the --amend option to the git commit command.
The result of amending a commit is shown in Figure 6 in Chapter 2, Developing
with Git. Note that there is no functional difference between amending the lastcommit and changing some commits deeper in the history. In both cases, youare creating a new commit, leaving the old version referenced by the reflog.The difference is in what happens to other commits.Here, the index (that is, the explicit staging area for commits) shows itsusefulness again. For example, if you want to simply fix only the commitmessage and you do not want to make any other changes, you can use git commit
--amend (note the lack of an -a or --all option). This works even if you havestarted work on a new commit – at least, assuming that you didn’t add anychanges to the index. If you did, you can put them away temporarily with git
stash, fix the commit message of the last commit, and then pop stashed changesand restore the index with git stash pop --index.
If, on the other hand, you realize that you have forgotten some changes, youcan just edit the files and use git commit --amend --all. If the changes are

interleaved, you can use git add or its interactive version (utilizing knowledgefrom Chapter 3, Managing Your Worktrees) to create the contents you want tohave, finalizing it with git commit --amend.
The interactive rebase

Sometimes you might want to edit commits deeper in the history or reorganizecommits into a logical sequence of steps. One of the built-in tools in Git that youcan use for this purpose is git rebase --interactive.Here, we will assume that you are working on a feature using a separate topicbranch, as well as a topic branch workflow described and recommended in
Chapter 8, Advanced Branching Techniques. We will also assume that you aredoing the work in a series of logical steps rather than in one large commit.
When implementing a new feature, you usually won’t do it perfectly from thevery beginning. You would want to introduce it in a series of small self-contained steps (see Chapter 15, Git Best Practices) to make code review, codeaudit, and bisection (finding the cause of regressions bugs) easier. Often, youwill only see how to split it better after finishing the work. It is alsounreasonable to expect that you would not make mistakes while implementinga new feature.Before submitting the changes (by either pushing them to the centralrepository, pushing them to your own public repository and sending pullrequests, or using some other workflow described in Chapter 6, Collaborative
Development with Git), you will often want to update your branch to the up-to-date state of the project to make it easier to merge. By rebasing your changeson top of the current state and having them up-to-date, you will make it easierfor the maintainer (the integration manager) to ultimately merge your changeswhen they are accepted for inclusion into the mainline. Interactive rebaseallows you to clean up history, as described earlier, while doing this work.
Aside from tidying up changes before publishing them, there is also additionaluse for tools such as interactive rebases. While working on a more involvedfeature, the very first submission is not always accepted into an upstream andadded to the project. Often, the process of patch review finds problems with thecode, or with the explanation of the changes. Perhaps something is missing (for

example, the feature might lack documentation or tests), some commit needs tobe fixed, or the submitted series of patches (or the branch submitted in the pullrequest) should be split into smaller commits for easy review. In this case, youwould also use an interactive rebase (or an equivalent tool) to prepare a newversion to submit, taking into account the results of the code inspection.
Reordering, removing, and fixing commitsRebase, as described in Chapter 9, Merging Changes Together, consists oftaking a series of changes of the commits being rebased and reapplying themon top of a new base (a new commit). In other words, rebase moves changesets,not snapshots. Git starts the interactive rebase by opening the instructionssheet corresponding to those operations of reapplying changes in the editor.
TIP
You can conügure the text editor used for editing the rebase instruction üle separately from the default
editor (which is used, for example, to edit commit messages) with the sequence.editor conüguration
variable, which can in turn be overridden by the GIT_SEQUENCE_EDITOR environment variable.Like in the case of the template for editing commits, the instruction sheet isaccompanied by the comments explaining what you can do with it (note that ifyou are using older Git, some interactive rebase commands might be missingfrom this sheet):

pick 89579c9 first commit in a branch
pick d996b71 second commit in a branch
pick 6c89dee third commit in a branch
Rebase 89579c9..6c89dee onto b8fffe1 (3 commands)
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
d, drop = remove commit
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.Note that empty commits will be marked with # empty at the end of the line.Depending on your version of Git and your configuration, the instruction sheetmay include more commands.

As explained in the comments, the instructions are in the order of execution,starting from the instruction on the top to create the first commit (with the newbase as its parent) and ending at the bottom with the instruction copying thecommit at the tip of the branch being rebased. This means that revisions arelisted in an increasing chronological order, with older commits first. This is thereverse order from the git log output, with the most recent commit first (unlessyou are using git log --reverse). This is quite understandable; the rebasereapplies changesets in the order in which they were added to the branch,while the log operation shows commits in the order of reachability from thetips.
Each line of the instruction sheet consists of three elements, separated byspaces:

First, there is a one-word command. By default, the interactive rebase starts with pick. Eachcommand has a one-letter shortcut that you can use instead of the long form, as shown in thecomments (for example, you can use p in place of pick).
Next, there is a uniquely shortened SHA-1 identifier of a commit to be used with the command.Strictly speaking, it is the identifier of a commit being rebased, which it had before the rebase processstarted. This shortened SHA-1 identifier is used to pick the appropriate commit (for example, whenreordering lines of the interactive rebase instruction sheet, which effectively means reordering
commits).
Lastly, there is the description (subject) of a commit. It is taken from the first line of the commitmessage. More specifically, it is the first paragraph of the commit message with the line breaksremoved, where a paragraph is defined as the set of subsequent lines of text, separated from otherparagraphs by at least one empty line – that is, two or more end-of-line characters. This is one of thereasons why the first line of the commit message should be a short description of changes (see
Chapter 15, Git Best Practices). This description is for you to help decide what to do with the commit;Git uses its SHA-1 identifier and ignores the rest of the line.

Reordering commits with the interactive rebase is as simple as reordering linesin the instruction sheet. Note, however, that if the changes are notindependent, you might need to resolve conflicts, even if there would be nomerge conflicts without reordering. In such cases, as instructed by Git, you willneed to fix conflicts, mark conflicts as resolved (for example, with git add), andthen run git rebase --continue. Git will remember that you are in the middle of aninteractive rebase, so you don’t need to repeat the --interactive option.
The other possibility of dealing with a conflict is skipping a commit, rather thanresolving a conflict, by running git rebase --skip. By default, rebase removeschanges that are already present in upstream; you might want to use this

command in case the rebase didn’t detect correctly that the commit in questionis already there in the branch we are transplanting revisions onto. In otherwords, do skip a commit if you know that the correct resolution of a conflict isan empty changeset.
TIP
You can also make Git present you with the instruction sheet again at any time when rebase stops for some
reason (including an error in the instruction sheet, such as using the squash command with the ürst
commit). You can do this with the git rebase --edit-todo command. After editing it, you can continue the
rebase.To remove changes you simply need to remove the relevant line from theinstruction sheet or comment it out, or better yet, use the drop command. Youcan use it to drop failed experiments or to make it easier on the rebase bydeleting changesets that you know are already present in the upstream beingrebased onto (though perhaps in a different form). Note though that removingthe instruction sheet altogether aborts the rebase.
To fix a commit, change the pick command preceding the relevant commit inthe instruction sheet to edit (or just e). This would make the rebase stop at thiscommit, that is, at this step of reapplying changes, similar to what happens inthe case of a conflict. To be precise, the interactive rebase applies the commitin question, making it the HEAD commit, and then stops the process, givingcontrol to the user . You can then fix this commit as if it were the current onewith git commit --amend, as described in Amending the last commit. Afterchanging it to your liking, run git rebase --continue, as explained in theinstruction that Git prints.
TIP
A proper Git-aware command line prompt, such as the one from the Git `contrib/` directory in the Git
source code, would tell you when you are in the middle of the rebase (see Chapter 13, Customizing and
Extending Git). If you are not using such a prompt, you can always check what’s happening with git
status, which says that there is a rebase in progress in such cases. You can also ünd instructions on what
you can do next there.Alternatively, you can always go to the state before starting the rebase with the
git rebase --abort command.
If you only want to change the commit message (for example, to fix a spellingerror or to include additional information), you can skip the need to run git
commit --amend and then git rebase --continue by using reword (or r) instead of edit.

Git will then automatically open the editor with the commit message. Savingchanges and exiting the editor will commit the changes, amend the commit,and continue the rebase.
Squashing commitsSometimes you might need to make one commit out of two or more, squashingthem together. Maybe you decided that it didn’t make sense to split thechanges and that they are better together.With the interactive rebase you can reorder these commits as needed, so thatthey are next to each other. Then, keep the pick command for the first of thecommits to be concatenated together (or change it to the edit command). Forthe rest of the commits, replace the pick command with either the squash or the
fixup command. Git will then accumulate the changes and create the commitwith all of them together. The suggested commit message for the folded commitis the commit message of the first commit, with the messages of the commitswith the squash command appended. Commit messages with the fixup commandare omitted. This means that the squash command is useful for squashingchanges, while fixup is useful for adding fixes. If commits had different authors,the folded commit will be attributed to the author of the first commit. Thecommitter will be you, the person performing the rebase.
Let’s assume that you noticed that you forgot to add some parts of the changesto the commit. Perhaps it is missing tests (or just negative tests) ordocumentation. The commit is in the past, so you cannot simply add to it byamending it. You could use the interactive rebase or the patch managementinterface to fix it, but it is often more effective to create the commit withforgotten changes and squash it later.Similarly, when you notice that the commit you created a while ago has a bug,instead of trying to edit it immediately, you can create a fixup commit with abug fix to be squashed later.
If you use this technique, there might be some delay between noticing the needto make changes or fix a bug and creating the appropriate commit. This gapincludes the time taken for the rebase operation.How do you then mark the commit being created for squashing or fixup? If youuse the commit message beginning with the magic squash! ... or fixup! ...

strings, respectively, preceding the description (the first line of the commitmessage, sometimes called the subject) of a commit to be squashed into, youcan then later ask Git to autosquash them, thus automatically modifying theto-do list of rebase -i. You can request this on an individual basis with the --
autosquash option, or you can enable this behavior by default with the
rebase.autoSquash configuration variable. To create an appropriate “magic”commit message, you can use git commit --squash/--fixup (when creating thecommit to be squashed into or the bugfix commit).
Splitting commitsSometimes, you might want to make two commits or more out of one commit,splitting it into two or more parts. You may have noticed that the commit is toolarge, perhaps because it tries to do too much, and should be split into smallerpieces. Or perhaps you have decided that some part of a changeset should bemoved from one commit to another, and extracting it into a separate commit isa first step toward accomplishing that.Git does not provide a one-step built-in command for this operation.Nevertheless, splitting commits is possible with the clever use of the interactiverebase.
To split a given commit, first mark it with the edit action. As described earlier,Git will stop at the specified commit and give the control back to the user. Inthe case of splitting a commit, when returning control to Git with git rebase --
continue, you would want to have two commits in place of one.The problem of splitting a commit is comparable to the problem of havingdifferent changes tangled together in the working directory from Chapter 2,
Developing With Git (the section about the interactive commit), and Chapter 3,
Managing Your Worktrees. The difference is that in the case of splitting acommit with the interactive rebase, when the rebase stops for editing, thecommit is already created and copied from the branch being rebased. This issimple to fix with git reset HEAD^; as described in Chapter 3, Managing Your
Worktrees, this command will keep the working area at the (entangled) state ofthe commit to be split while moving the HEAD pointer and the staging area forthe commit to the state before this revision. Then you can interactively addthose changes that you want to have in the first commit to the index, by

composing the intermediate step in the staging area. Next, you should checkwhether you have what you want in the index, then create a commit from itusing git commit without the -a or --all option. Repeat these last two steps asoften as necessary.
For the last commit in the series (which would be the second one, if you aresplitting the commit in two), you can do one of two things. The first option is toadd everything to the index, making the working copy clean, and create acommit from the index. The other option is to create a commit from the state ofthe working area (git commit --all). If you want to keep or start from the commitmessage of the original commit to be split, you can provide it with the --reuse-
message=<commit> or the --reedit-message=<commit> option while creating a commit. Ithink the simplest way of naming a commit that was split (or that is being split)is to use reflog – it will be the HEAD@{n} entry just before reset: moving to HEAD^ inthe git reflog output.Instead of crafting the commit in the staging area (the index) starting from theparent of the commit to be split and adding changes, perhaps interactively, youcould start directly from the final state—the commit to be split—and remove thechanges intended for the second step. This can be done, for example, with git
reset --patch HEAD^. Frankly, you can use any combination of techniques from
Chapter 3, Managing Your Worktrees. I find graphical commit tools such as git
gui quite useful for this purpose (you can find out about graphical commit tools,including some examples, in Chapter 13, Customizing and Extending Git).
If you are not absolutely sure that the intermediate revisions you are creatingin the index are consistent (they compile, pass the test suite, and so on), youshould use git stash save --keep-index to stash away the not-yet-committedchanges, bringing the working area to the state composed in the index. You canthen test the changes and amend the staging area if fixes are necessary.Alternatively, you can create the commit from the index and use a plain git
stash command to save the state of the working area after each commit. You canthen test and amend the created intermediate commit if fixes are necessary. Inboth cases, you need to restore the changes with git stash pop before working ona new commit in the split.
Testing each rebased commit

A good software development practice is to test each change before committingit. However, this practice is not always followed. Let’s assume that you forgotto test some commit or skipped it because the change seemed trivial and youwere pressed for time. The interactive rebase allows you to execute tests (tobe precise: any command) during the rebase process with the exec (or x) action.It is run between steps of rebasing commits. The exec command itself isformatted in a different way from the commands described earlier in thischapter: instead of SHA-1 and a summary of a commit, you provide thecommand to run.
The exec command launches the provided command (given by the rest of theline) in a shell: the one specified in the SHELL environment variable, or thedefault shell if SHELL is not set. This means that you can use shell feature. Forthe POSIX shell, this would mean using cd to change directories, > to redirectcommand output, ; and && to sequence multiple commands, and so on. It isimportant to remember that the command to be executed is run from the rootof the working tree, not from the current directory (i.e., not from thesubdirectory you were in when starting the interactive rebase).If you are strict about not publishing untested changes, you might have worriedabout the fact that rewritten commits rebased on top of the new changes mightnot pass tests, even if the original commits did. You can, however, make theinteractive rebase test each commit with the --exec option. Here is an example:
$ git rebase --interactive --exec "make test"This would modify the starting instruction sheet, inserting exec make test aftereach entry:
pick 89579c9 first commit in a branch
exec make test
pick d996b71 second commit in a branch
exec make test
pick 6c89dee third commit in a branch
exec make test

External tools – patching management interfaces

You might prefer to fix the old commit immediately at the time when you noticethe bug, instead of postponing it until the time when the branch is rebased. The

latter is usually done just before the branch is sent for review (to publish it).This might be quite some time after realizing the need to edit the past commit.
Git itself doesn’t make it easy to fix the found bug straight away, or at least, notwith built-in tools. You can, however, find third-party external tools thatimplement the patch management interface on the top of Git. Examples of suchtools include Stacked Git (StGit) and Git Quilt (Guilt) – the latter isunmaintained, but still usable.
These tools provide similar functionality to Quilt (that is, pushing or poppingpatches to and from a stack). With such tools, you have a set of work-in-progress “floating” patches in the Quilt-like stack. You also have acceptedchanges in the form of proper Git commits. You can convert between patch andcommit and vice-versa, move and edit patches around, move and edit commits(which is done by turning the commit and its children into patches, reorderingor editing patches, and then turning patches back into commits again), squashpatches, and so on.
This is, however, an additional tool to install, an additional set of operations tolearn (even if they make your work easier), and an additional set ofcomplications coming from the boundary between Git and the tool in question.An interactive rebase is powerful enough nowadays, and, with autosquash, theneed for another layer on top of Git is lessened.
Rewriting project history with Git filter-repo
In some use cases, you might need to use a more powerful tool for rewritingand cleaning up history than the interactive rebase. You might want somethingthat would rewrite full history non-interactively when given some specifiedalgorithm for doing the rewrite. Such a situation is a task for the git filter-repocommand.
This is an external project that needs to be installed in addition to Git.However, as it is a single-file Python script, installing it is trivial in most cases.It is now recommended by the Git project to use git filter-repo project insteadof the built-in git filter-branch command (which is now deprecated).The calling convention of this command is rather different than the conventionfor the interactive rebase. By default, it operates on the whole history of the

project, changing the full graph of revisions, though you can limit the operationto a selected branch or set of branches with the --refs option.
This command rewrites the Git revision history by applying custom filters oneach revision to be rewritten. That’s another difference: rebase works byreapplying changesets, while filter-branch works with snapshots. One of theconsequences of this is that for git filter-repo, a merge is simply a kind of acommit object, while the rebase drops merges and puts commits into a line, atleast unless you use the --rebase-merges option.Of course, with git filter-repo, you describe how to do the rewrite withappropriate options instead of doing the rewriting interactively. This meansthat the speed of the operation is not limited by the speed of user interactionbut by I/O.
SAFETY CHECK
Since git filter-repo is usually used for massive rewrites and does irreversible rewriting of the project’s
history, it needs to be run from the fresh clone. This means that the user would always have a good backup
in the form of a separate clone. If anything goes wrong, you can simply delete your clone and restart.

You can make git filter-repo ignore the fresh clone check with the --force option.

Running filter-repo without filtersIf you specify no filters, filter-repo will error out unless you specify --force. Inthis case, the commits will be recommitted without any changes. Such usagewould normally have no effect, but it is permitted to allow you to compensatefor some Git bugs in the future.This means that git filter-repo --force, without other options, can be used tomake effects implemented by replacement refs permanent. This way, you canuse the following technique: use git replace on specified commits to alterhistory, ensure that it looks correct, and then make the modificationpermanent. This is the simplest way to do commit parent rewriting.
IMPORTANT NOTE
The git filter-repo command command respects replacements (refs in the refs/replace/
namespace). Replacements is a technique to aûect the history (or rather, a view of it) without rewriting any
revisions. It will be explained later in the Replacements mechanism section.

Available filter types for filter-repo

There is a large set of different filtering options to specify how to rewritehistory. You can specify more than one option; they are applied in the order inwhich they are presented.
You can run the command multiple times to achieve your desired results. The --
analyze option can be used to analyze repository history, creating a directory ofreports, which (among other things) mention renames and list object sizes. Thisinformation may be useful in choosing how to filter your repo and to verify thechanges.The git filter-repo command supports the following types of filters:

Filtering based on paths, which specifies the paths to select or exclude. Note that renames are notfollowed, so you may need to specify both the old and new names of the path.
Renaming paths, which may be combined with path filtering.
Content editing filters, which involve replacing text in a project’s files, removing large blobs (files), orremoving specified blobs (versions of file contents).
Filtering commit messages with special support for filtering author names and emails with the help of
.mailmap or a mailmap-like file.
Renaming tags, which involves replacing one tag prefix with another.

For flexibility, filter-repo also allows you to specify functions in Python tofurther filter all changes using custom API, with various --<something>-callbackoptions, such as (for example) --filename-callback or --commit-callback.You can also configure how commits are rewritten and pruned. For example,you can decide whether to re-encode commit message into UTF-8, or whetherto prune commits that have become empty (that is, ones that bring no changesto the project).
Examples of using filter-repoLet’s assume that you committed the wrong file to the repository by mistake,and you want to remove that file from history. Perhaps this was a site-specific configuration file with passwords or their equivalent. Or perhaps,during git add ., you included a generated file that was not properly ignored(such as perhaps a large binary file). Alternatively, it might have turned outthat you don’t have the distribution rights to a file and you need to have itremoved to avoid copyright violations. Using git rm --cached would only remove

it from future commits. You can also quite easily remove the file from the latestversion by amending the commit (as described earlier in this chapter).
Let’s assume that the file is called passwords.txt. To excise it from the entirehistory, you can use the following command:
$ git filter-repo --path 'passwords.txt' --invert-pathsIf you want to delete all .DS_Store files in any directory (and not only from thetop directory of the project), you can use one of two commands. Here is thefirst option:
$ git filter-repo --invert-paths --path '.DS_Store' --use-base-nameYou can also use the following option:
$ git filter-repo --invert-paths --path-glob '*/.DS_Store' --path '.DS_Store'You can use filter-repo to remove all API keys or passwords from the historyby specifying the text to replace in files. You can match literal text, shell globs,or regular expressions, and specify the replacement (it will be ***REMOVED*** if thereplacement is not specified). For example, to remove accidentally committedGitHub Personal Access Tokens, you can use the file specifying the list ofexpressions, one per line. Let’s say that you create an expressions.txt file withthe following contents:
regex:ghp_ua[A-Za-z0-9]{20,}==><access_token>Then you need to run the following command:

$ git filter-repo --replace-text expressions.txtYou can use filter-repo to permanently join two repositories, connectinghistories. You can also use it to split history in two. The simplest solution is touse replacements, check that the joined or split history has rendered correctly,and then make the replacements permanent. For example, to split history andremove everything later than v1.0 tag, you can use the following:
$ git replace --graft v1.0^{commit}
$ git filter-repo --forceAnother common case is to fix erroneous names or email addresses in

commits. Perhaps you forgot to run git config to set your name and emailaddress before you started working and Git guessed them incorrectly (if itcouldn’t guess, it would ask before allowing a commit). Maybe you want to

open the sources of a formerly proprietary closed source program and need tochange your internal corporate email to your personal address. We’ll say thatyou want the change to be permanent instead of relying on the .mailmap file.
In any case, you can change email addresses in a whole history with filter-repo:
$ git filter-repo --use-mailmapIf you are open-sourcing a project, you could also want to add the Signed-off-by:lines for the Digital Certificate of Origin (see Chapter 15, Git Best Practices),and add the trailer to the commit message if one is not already present:
$ git filter-repo --message-callback '
 if b"Signed-off-by:" not in message:
 message += "\n\nSigned-off-by: Joe Hacker <joe@h.com>"
 return messageSuppose that you have noticed a typo in the name of a subdirectory, such as
inlude/ instead of include/. This can be fixed simply by running the following:
$ git filter-repo --path-rename inlude/:include/Often, some part of a larger project will take on a life on its own. In thoseinstances, it begins to make sense to separate the part from the project itstarted in. We would want to extract the history of this part to make its

subdirectory the new root. To rewrite history in this way and discard allother history, you can run the following:
$ git filter-repo --subdirectory-filter lib/fooHowever, perhaps a better solution would be to use a specialized third-partytool, namely git subtree. This tool (and its alternatives) will be discussed in

Chapter 11, Managing Subprojects.
External tools for large-scale history rewriting

The git filter-repo project is not the only solution for a large-scale rewriting ofthe project’s history. There are other tools that are more specialized, perhapsincluding lots of predefined clean-up operations or providing some level ofinteractivity with the ability for scripted rewrites (with a Read–Evaluate–Print
Loop (REPL), similar to interactive shells in some interpreted programminglanguages).

Removing files from the history with the BFG Repo
CleanerThe BFG Repo Cleaner is a specialized alternative to using git filter-repo. It isspecialized for the purpose of cleaning bad data out of your Git repositoryhistory by removing files and directories and replacing text in files (forexample, accidentally committed passwords or API keys with theirplaceholders). It can use multiple cores with parallel processing – BFG iswritten in Scala and uses JGit as a Git implementation.
BFG provides a set of command-line parameters that are specialized forremoving files and fixing them, such as --delete-files or --replace-text, a “querylanguage” of sorts. It lacks the flexibility of other tools. Nowadays, filter-repocan do everything it can. There is even bfg-ish, a reimplementation of BFGbased on filter-repo.One issue you need to remember is that BFG assumes that you have fixed thecontents of your current commit.
Editing the repository history with reposurgeonThe reposurgeon project was originally created to help clean up artifactscreated by the repository conversion (migrating from one version controlsystem to another). It relies on being able to parse, modify, and emit thecommand stream in the git fast-import format, which is a common export andimport format among source control systems nowadays thanks to it beingversion control-agnostic. The git filter-repo tool, which was described earlier inthis chapter, is also based on processing fast-import streams.
It can be used for history rewriting, including editing past commits andmetadata, excising commits, squashing (coalescing) and splitting commits,removing files and directories from history, and splitting and joining history.The advantage that reposurgeon has over git filter-repo is that it can be run in twomodes: either as an interactive interpreter, a kind of debugger or editor forhistory, with command history and tab completion; or in a batch mode toexecute commands given as arguments. This allows users to interactivelyinspect history and test changes, and then batch run them for all the revisions.
The disadvantage is in having to install and then learn to use a separate tool.

The perils of rewriting published history

There is, however, a very important principle to know about: you should never(or at least not without a very, very good reason) rewrite published history,especially when it comes to those commits that were pushed to the publicrepository or were otherwise made public. What you can do is change the partsof the graph of revisions that are private.The reason behind this rule is that rewriting published history could causetrouble for downstream developers if they have based their changes onrevisions that were rewritten.
This means that it is safe to rewrite and rebuild those public branches that areexplicitly stated and documented to be in flux, for example, as a way of showingwork in progress (such as 'proposed-updates' type of branch, that is used to testmerge all feature branches – see the Visibility without integration and
Progressive-stability branches sections in Chapter 8, Advanced Branching
Techniques). Another possibility for the safe rewriting of a public branch is todo it at specific stages of the project’s life, namely after creating a new release;again, this needs to be documented.
The consequences of upstream rewritesNow you will see, in a simple example, the perils of rewriting published history(for example, rebasing) and how it causes trouble. Let’s assume that there aretwo public branches that are of interest: master and subsys. The latter is based on(forked from) the former. Let’s also assume that a downstream developer (whomight be you) created a new topic branch based on the subsys branch for theirown work, but did not publish it yet; it is only present in their local repository.This situation is shown in Figure 10.2 (the revisions below the dashed lines,denoted by darker color, are present only in the local repository of thedownstream developer).

Figure 10.2 – The state of the local repository of a downstream developer before the rewrite of the
published history, with the new local work that was put on a topic branchThen, the upstream developer rewrites the subsys branch to start from thecurrent (topmost) revision in the master branch. This operation is called rebaseand was described in Chapter 9, Merging Changes Together (the previouschapter). Let’s assume that during the rewrite, one of the commits wasdropped; perhaps the same change was already present in master and wasskipped, perhaps it was dropped for some other reason, or perhaps it was orsquashed into the previous commit with the interactive rebase. The publicrepository now looks as follows:

Figure 10.3 – The state of a public upstream repository after rewrite, with an emphasized old base of the
rebased branch, plus a new base and rewritten commits (after the rebase)Note that in the default configuration, Git would refuse to push rewrittenhistory (it would deny a non-fast-forward push). You would need to force thepush.

The problem is with merging changes based on the pre-rewrite versions ofrevisions, such as the topic branch in this example.

Figure 10.4 – The situation after merging the changes that were based on pre-rewrite revisions into post-
rewrite branchesNotice that the merge brings the pre-rewrite version of revisions, includingcommits that were dropped during the rebase.If neither the downstream developer nor the upstream one notices that thepublished history has been rewritten, and one of them merges changes fromthe topic branch into, for example, the subsys branch it was based on, the mergewould bring about duplicated commits. As we can see in the example in Figure

10.3, after such a merge (denoted by M13 here), we have both the C3, C4, and
C5 pre-rewrite commits brought by the topic branch and the C3’ and C5’ post-rewrite commits (see Figure 10.4). Note that the C4 commit that was removedin the rewrite is back – it might have been a security bug!
Recovering from an upstream history rewriteHowever, what can we do if the upstream has rewritten the published history(for example, rebased it)? Can we avoid bringing the abandoned commits backand merging a duplicate or near-duplicate of the rewritten revisions? After all,if the rewrite is published, changing it would be yet another rewrite.
The solution is to rebase your work to fit with the new version from theupstream, moving it from the pre-rewrite upstream revisions to the post-rewriteones.

Figure 10.5 – The situation after a downstream rebase of a topic branch

In the case of our example, it would mean rebasing the topic branch onto a new(post-rewrite) version of subsys, as shown in Figure 10.5.
TIP
You might not have a local copy of the subsys branch; in this case, do substitute subsys with the
respective remote-tracking branch, for example, origin/subsys.Depending on whether the topic branch is public or not, it might mean that youare now breaking the promise of unaltered public history for your downstream.Recovering from an upstream rewrite might then result in a ripple of rebasesfollowing the rewrite down the river of downstreams (dependent repositories).An easy case is when subsys is simply rebased and the changes remain the same(which means that C4 vanished because C6-C9 included it). Then you cansimply rebase topic on top of its upstream, that is, subsys, with the following:
$ git rebase subsys topicThe topic part is not necessary if you are currently on it (if topic is the currentbranch). This rebases everything: the old version of subsys and your commits in
topic. This solution, however, relies on the fact that git rebase would skiprepeated commits (removing C3, C4, and C5, leaving only C10’ and C12’). Itmight be better and less error-prone to assume the more difficult case.
The hard case is when rewriting subsys involved some changes and was not apure rebase, or when an interactive rebase was used. In this case, it is better toexplicitly move just your changes, namely subsys@{1}..topic (assuming that the
subsys@{1} entry in the subsys reflog comes from before rewrite), stating that theyare moved on top of the new subsys. This can be done with the --onto option:
$ git rebase --onto subsys subsys@{1} topicYou can make Git use the reflog to find a better common ancestor with the --
fork-point option with the git rebase command, such as in the following example:
$ git rebase --fork-point subsys topicThe rebase would then move the changes to topic, starting with the result of the
git merge-base --fork-point subsys topic command. However, if the reflog of the
subsys branch does not contain necessary information, Git would fall backupstream, here to subsys.
IMPORTANT NOTE

You can use the interactive rebase instead of an ordinary rebase like in the narration mentioned earlier for
better control at the cost of more work (for example, to drop commits that are already present, but are not
detected by the rebase machinery as such).

Amending history without rewritingWhat should you do if what you need to fix is in the published part of thehistory? As described in The perils of rewriting published history, changingthose parts of the history that were made public can cause problems fordownstream developers. You had better not touch this part of the graph ofrevisions.
There are a few solutions to this problem. The most commonly used one is toput in a new fixup commit with appropriate changes (for example, a typo fix indocumentation). If what you need is to remove the changes, deciding that theyturned out to be bad to have in the history, you can create a commit to revertthe changes.If you fix a commit or revert one, it would be nice to annotate that commit withthe information that it was buggy, as well as which commit fixed (or reverted)it. Even though you cannot (and should not) edit the fixed commit to add thisinformation if the commit is public, Git provides the notes mechanism toappend extra information to existing commits, which is a bit like publishing anaddendum, errata, or amendment. However, remember that notes are notpublished by default; nonetheless, it is easy to publish them (you just need toremember to do it).
Reverting a commit

If you need to back out an existing commit, undoing the changes it brought, youcan use git revert. As described in Chapter 9, Merging Changes Together (see,for example, Figure 9.5 in that chapter), the revert operation creates a commitwith the reverse of any changes. For example, where the original adds a line,reversion removes it; where the original commit removes the line, reversionadds it.
TRIVIA
Note that diûerent version control systems use the name revert for diûerent operations. In particular, it is
often used to mean resetting the changes to a üle back to the latest committed version, throwing away

uncommitted changes. It is something that git reset -- <file> does in Git.This is best shown in an example. Let’s assume that the last commit on the
multiple branch has the following summary of its changes:
$ git show --stat multiple
commit bb71a804f9686c4bada861b3fcd3cfb5600d2a47
Author: Alice Developer <alice@company.com>
Date: Sun Jun 1 03:02:09 2014 +0200
 Support optional <count> parameter
 src/rand.c | 26 +++++++++++++++++++++-----
 1 file changed, 21 insertions(+), 5 deletions(-)Reverting this commit (which requires a clean working directory) would createa new revision. This revision undoes the changes that the reverted commitbrought:
$ git revert bb71a80
[master 76d9e25] Revert "Support optional <count> parameter"
 1 file changed, 5 insertions(+), 21 deletions(-)Git would ask for a commit message, which should explain why you revertedthe given revision: how it was faulty, and why it needed to be reverted ratherthan fixed. The default is to give the SHA-1 of the reverted commit:
$ git show --stat
commit 76d9e259db23d67982c50ec3e6f371db3ec9efc2
Author: Alice Developer <alice@example.com>
Date: Tue Jun 16 02:33:54 2015 +0200
 Revert "Support optional <count> parameter"
 This reverts commit bb71a804f9686c4bada861b3fcd3cfb5600d2a47.
 src/rand.c | 26 +++++---------------------
 1 file changed, 5 insertions(+), 21 deletions(-)Compare the summary of changes for the commit and its revert. In thepreceding example, the commit has 21 insertions and 5 deletions, while therevert has 5 insertions and 21 deletions (where line that changed from oneversion to the other counts as deletion of the old version and insertion of thenew).

A common practice is to leave the subject alone (which allows you to easily findreverts) but replace the content with a description of the reasoning behind therevert.
Reverting a faulty mergeSometimes, you might need to undo the effect of a merge. Suppose that youhave merged changes, but it turned out that they were merged prematurelyand that the merge brings regressions.

Let’s say that the branch that was merged is named topic, and that you weremerging it into the master branch. This situation is shown in Figure 10.6.

Figure 10.6 – An accidental or premature merge commit, a starting point for reverting merges and
redoing reverted merges.If you didn’t publish this merge commit before you noticed the mistake, and theunwanted merge exists only in your local repository, the easiest solution is todrop this commit with git reset --hard HEAD^ (see Chapter 3, Managing Your

Worktrees, for an explanation of the hard mode of git reset).What do you do if you realize only later that the merge was incorrect, forexample after one more commit was created on the master branch andpublished? One possibility is to revert the merge.
However, a merge commit has more than one parent, which means more thanone delta (or, more than one changeset). To run revert on a merge commit, youneed to specify which patch you are reverting, or, in other words, which parentis the mainline. In this particular scenario, assuming that there was one morecommit after the merge (and that the merge was two commits back in thehistory), the command to revert the merge would look like this:
$ git revert -m 1 HEAD^^
[master b2d820c] Revert "Merge branch 'topic'"The situation after reverting a merge is shown in Figure 10.7.

Figure 10.7 The history from the previous ügure after reverting merge; the square boxes attached to
selected commits symbolize their changesets in a diû-like formatStarting with the new !M1 commit (the !M1 symbol is used to representnegation or reversal of the M1 commit), it’s as if the merge never happened, atleast with regards to the changes.

Recovering from a reverted mergeLet’s assume that you continued work on a branch whose merge was reverted.Perhaps it was prematurely merged, but it doesn’t mean that the developmenton it has stopped. If you continue to work on the same branch, perhaps bycreating commits with fixes, they will get ready in some time, and then you willneed to be able to merge them correctly into the mainline again. Or perhapsthe mainline will mature enough to be able to accept a merge. Trouble liesahead if you simply try to merge your branch again the same way as last time.

Figure 10.8 – The unexpectedly erroneous result of trying to simply redo a reverted mergeThe unexpected result, as shown in Figure 10.8, is that Git has only brought thechanges since the reverted merge. The changes brought by the commits on aside branch, whose merge got reverted, are not here. In other words, youwould get a strange result: the new merge would not include the changes thatwere created on your branch (the side branch) before the merge that gotreverted.This is caused by the fact that git revert undoes changes (the data), but doesnot undo the history (the DAG of revisions). This means that the new mergesees C4, the commit on the side branch just before the reverted merge, as acommon ancestor. Since the default three-way merge strategy looks only at thestate of the ours, theirs, and base snapshots, it doesn’t search through thehistory to find that there was a revert there. It sees that both the commonancestor C4 and the merged branch (that is, theirs) C6 do include featuresbrought by the C3 and C4 commits, namely f3 and f4, while the branch that weare merging into (that is, ours) doesn’t have them because of the revert.
For the merge strategy, it looks exactly like the case where one branch deletedsomething, which means that this change (the removal) is the result of themerge (it looks like the case where there was change on only one side). Inparticular, it looks like the base and the side branch have the feature, but thecurrent branch doesn’t (because of the revert) – so the result doesn’t have iteither. You can find an explanation of the merging mechanism in Chapter 9,
Merging Changes Together.

There is more than one option to fix this issue and make Git re-merge the topicbranch correctly, which means including the f3 and f4 features in the result.The option that you should choose depends on the exact circumstances, forexample, whether the branch being merged is published or not. You don’tusually publish topic branches, and if you do, such as perhaps in the form of the
proposed-updates branch with all the topic branches merged in, it is with theunderstanding that they can and probably will be rewritten.

Figure 10.9 The history after re-merging (as M2) a reverted M1 merge, with revering revert !!M1 (replay)One option is to bring back deleted changes by reverting the revert. The resultis shown in Figure 10.9. In this case, you have brought changes to match therecorded history.
Another option would be to change the view of the history (perhapstemporarily), for example, by amending it with git replace, or by changing the
!M1 merge to a non-merge commit (this will be described later in the chapter).Both of those options are suitable in the situation where at least the parts of thebranch being merged, namely topic, were published.If the problem was some bugs in the commits being merged (on the topicbranch), and the branch being merged was not published, you can fix thesecommits with the interactive rebase, as described earlier. Rebasing changesthe history anyway. Therefore, if you additionally ensure that the new historyyou are creating with the rebase does not have any revision in common with theold history that includes the failed and reverted merge, re-merging the topicbranch would pose no challenges.

Figure 10.10 – The history after re-merging the rebased branch, which had its merge revertedUsually you would rebase a topic branch, topic in this case, on top of thecurrent state of the branch it was forked from, which is the master branch here.This way, your changes are kept up to date with the current work, which makesa later merge easier. Now that the topic branch has a new history, merging itinto master “again”, like in Figure 10.10, is easy and doesn’t give us anysurprises or trouble.
A more difficult case would be if the topic branch is for some reason required tokeep its base (such as being able to merge it into the maint branch too). This isnot more difficult in the sense that there would be problems with re-mergingthe topic branch after the rebase, but in that we need to ensure that the branchdoesn’t share history with the reverted merge arc after the rebase. The goal isto have history in the same shape as is shown in Figure 10. By default, a rebasetries to fast-forward revisions if they didn’t change (for example, leaving C3 inplace if the rebase didn’t modify it), so we need to use -f or --force-rebase toforce rebasing of unchanged skippable commits (or of --no-ff, which isequivalent) as well. The result is shown in Figure 10.11.

Figure 10.11 The history after re-merging an in-place-rebased topic branch, where a pre-rebase merge
was revertedSo, you should not be blindly reverting the revert of a merge. What to do withthe problem of re-merging after a reverted merge depends on how you want tohandle the branch being merged. If the branch is being rewritten (for example,using an interactive rebase), then reverting the revert would be an activelywrong thing to do because you could bring back errors that were fixed in therewrite.

Storing additional information with notes
The notes mechanism is a way to store additional information for an object,usually a commit, without touching the object itself. You can think of it as anattachment, or an appendix, that is “stapled” to an object. Each note belongs tosome category of notes so that notes used for different purposes can be keptseparate.
Adding notes to a commitSometimes you want to add extra information to a commit, particularlyinformation that is available only some time after its creation. It might be, forexample, a note that there was a bug found in the commit, and perhaps eventhat it was fixed in some specified future commit (in case of regression).

Perhaps we realized after the commit got published that we forgot to add someimportant information to the commit message, for example, to explain why itwas done. Or maybe we realized after the fact that there is another way ofdoing it and we want to create a note to ensure that we do not forget about it,and for other developers to share the idea.
Since history is immutable in Git, you cannot do this without rewriting thehistory (creating a modified copy and forgetting the old version of the history).The immutability of history is important; it allows people to sign revisions andtrust that, once inspected, history cannot change. What you can do instead isadd the extra message as a note.Let’s assume that codevelopers have switched from atoi() to strtol() becausethe former is deprecated. The change was made public since then. However,the commit message didn’t include an explanation of why it was deprecatedand why it is worth it to switch, even if the code after the change is longer.Let’s add the information as a note:
$ git notes add \
 -m 'atoi() invokes undefined behaviour upon error' v0.2~3We have added the note directly from the command line without invoking theeditor by using the -m flag (the same flag as for git commit) to simplify theexplanation of this example. The note will be visible when running git log or git
show:
$ git show --no-patch v0.2~3
commit 8c4ceca59d7402fb24a672c624b7ad816cf04e08
Author: Bob Hacker <bob@company.com>
Date: Sun Jun 1 01:46:19 2014 +0200
 Use strtol(), atoi() is deprecated
Notes:
 atoi() invokes undefined behaviour upon errorAs you can see from the preceding output, our note is shown after the commitmessage in the Notes: section. Displaying notes can be disabled with the --no-
notes option, and (re)enabled with --show-notes.
How notes are storedIn Git, notes are stored using extra references in the refs/notes/ namespace. Bydefault, commit notes are stored using the refs/notes/commits ref. This can bechanged using the core.notesRef configuration variable, which can in turn beoverridden with the GIT_NOTES_REF environment variable.

If the given ref does not exist, it is not an error, but it means that no notesshould be printed. These variables decide both which type of notes aredisplayed with the commit after the Notes: line and where to write the notecreated with git notes add.
You can see that the new type of has reference appeared in the repository:
$ git show-ref --abbrev commits
fcac4a6 refs/notes/commitsIf you examine the new reference, you will see that each note is stored in a filenamed after the SHA-1 identifier of the annotated object. This means that youcan have only one note of the given type for one object. You can always edit thenote, append to it (with git notes append), or replace its content (with git notes add
--force).
In interactive mode, Git opens the editor with the contents of the note, so edit,append, and replace operations work almost the same interactively. As opposedto commits, notes are mutable, or to be more exact, only the latest version ofeach note is used:
$ git show refs/notes/commits
commit fcac4a649d2458ba8417a6bbb845da4000bbfa10
Author: Alice Developer <alice@example.com>
Date: Tue Jun 16 19:48:37 2015 +0200
 Notes added by 'git notes add'
diff --git a/8c4ceca59d7402fb24a672c624b7ad816cf04e08
b/8c4ceca59d7402fb24a672c624b7ad816cf04e08
new file mode 100644
index 0000000..a033550
--- /dev/null
+++ b/8c4ceca59d7402fb24a672c624b7ad816cf04e08
@@ -0,0 +1 @@
+atoi() invokes undefined behaviour upon error
$ git log -1 --oneline \
 8c4ceca59d7402fb24a672c624b7ad816cf04e08
8c4ceca Use strtol(), atoi() is deprecatedNotes for commits are stored in a separate line of (meta) history, but this neednot be the case for the other categories of notes. The notes reference can pointdirectly to the tree object instead of the commit object such as for
refs/notes/commits.
One important issue that is often overlooked in books and articles is that it isthe full path to a file with the note’s contents, not the base name of the file, thatidentifies the object that the note is attached to. If there are many notes, Gitcan and will use a fan-out directory hierarchy, for example, storing the

preceding note at the 8c/4c/eca59d7402fb24a672c624b7ad816cf04e08 path (note theslashes).
Other categories and uses of notesNotes are usually added to commits. However, even for those notes that areattached to commits, it makes sense, at least in some cases, to store differentpieces of information using different categories of notes. This makes it possibleto decide which parts of information to display on an individual basis, andwhich parts to push to the public repository. It also allows us to query forspecific parts of information individually.To create a note in a namespace (category) that is different from the defaultone (where the default means notes/commits, or the value of the configurationvariable core.notesRef if it is set), you need to specify the category of notes whileadding it:
$ git notes --ref=issues add -m '#2' v0.2~3Now, by default, Git will only display the core.notesRef category of notes after thecommit message. To include other types of notes, you must either select thecategory to display with git log --notes=<category> (where <category> is either theunqualified or qualified reference name, or a glob; you can therefore use --
notes=* to show all categories) or configure which notes to display in addition tothe default with the display.notesRef configuration variable (or the
GIT_NOTES_DISPLAY_REF environment variable). You can either specify theconfiguration variable value multiple times, just like for remote.<remote-name>.push(or specify a colon-separated list of pathnames if you are using the environmentvariable), or you can specify a globing pattern:
$ git config notes.displayRef 'refs/notes/*'
$ git log -1 v0.2~3
commit 8c4ceca59d7402fb24a672c624b7ad816cf04e08
Author: Bob Hacker <bob@company.com>
Date: Sun Jun 1 01:46:19 2014 +0200
 Use strtol(), atoi() is deprecated
Notes:
 atoi() invokes undefined behaviour upon error
Notes (issues):
 #2There are many possible uses of notes. You can, for example, use notes toreliably mark which patches (which commits) were upstreamed (forward-

ported to the development branch) or downstreamed (back-ported to the

more stable branch or the stable repository), even if the upstreamed ordownstreamed version is not identical, and mark a patch as being deferred if itis not ready for either upstream or downstream.
If you require manual input, this is a bit more reliable than relying on the git
patch-id mechanism to detect when the changeset is already present (which youcan do by rebasing, by using git cherry-pick, or with the --cherry, --cherry-pick, or -
-cherry-mark option of git log). This is, of course, in case we are not using topicbranches from the start, but rather cherry-picking commits.Notes can also be used to store the results of the post-commit (but pre-merge)
code audit and to notify other developers of the reason(s) why this version ofthe patch was used.
Notes can also be used to handle marking bugs and bug fixes, as well as
verifying fixes. You will often find bugs in commits long after they getpublished; that is why you need notes for this purpose. If you find a bug beforepublishing, you would rewrite the buggy commit instead.In this case, when the bug gets reported, and if it was a regression, you wouldfirst find which revision introduced the bug (for example, with git bisect, asdescribed in Chapter 4, Exploring Project History). Then you would want tomark this commit, putting the identifier of a bug entry in the issue tracker forthe project (which is usually a number, or number preceded by some specificprefix such as Bug:1385) in the bugs, defects, or issues category of notes.Perhaps you would also want to include the description of a bug. If the bugaffects security, it might be assigned a vulnerability identifier, for example, a
Common Vulnerabilities and Exposures (CVE) number; this informationcould be put into the note in the CVE-IDs category.
Then, after some time, the bug will hopefully get fixed. Just like we marked thecommit with the information that it contains the bug, we can additionallyannotate it with the information on which commit fixes it, such as in a note inthe fixes category. Unfortunately, it might happen that the first attempt atfixing it doesn’t handle the bug entirely correctly and you have to amend a fix,or perhaps even create a fix for a fix. If you are using bugfix or hotfix branches(topic branches for bugfixes), as described in Chapter 8, Advanced Branching
Techniques, it will be easy to find and apply them together by merging theaforementioned bugfix branch. If you are not using this workflow, then it would

be a good idea to use notes to annotate fixes that should be cherry-pickedtogether with a supplementary commit, for example by adding a note in the
alsoCherryPick or seeAlso category, or whatever you want to name this category ofnotes. Perhaps the original submitter, or a Q&A group, would also get to the fixand test that it works correctly. It would be better if the commit was testedbefore publishing, but it is not always possible, so refs/notes/tests it is.
Third-party tools use (or could use) notes to store additional per-commit tool-
specific information. For example, Gerrit, which is a free web-based teamcode collaboration tool, stores information about code reviews in
refs/notes/reviews. This includes the name and email address of the Gerrit userthat submitted the change, the time the commit was submitted, the URL to thechange review in the Gerrit instance, review labels and scores (including theidentity of the reviewer), the name of project and branch, and so on:

Notes (review):
 Code-Review+2: John Reviewer <john@company.com>
 Verified+1: Jenkins
 Submitted-by: Bob Developer <bob@company.com>
 Submitted-at: Thu, 20 Oct 2014 20:11:16 +0100
 Reviewed-on: http://localhost:9080/7
 Project: common/random
 Branch: refs/heads/master

Notes as cacheGoing to a more exotic example, you can use the notes mechanism to store the
result of a build (either the archive, the installation package, or just theexecutable), attaching it to a commit or a tag. Theoretically, you could store abuild result in a tag, but you would usually expect a tag to contain a Pretty
Good Privacy (PGP) signature and perhaps also the release highlights. Also,you would, in almost all cases, want to fetch all the tags, while not everyonewants to pay for the cost of disk space for the convenience of pre-buildexecutables. You can select whether you want to fetch the given category ofnotes (for example to skip pre-built binaries) or not from case to case while youautofollow tags. That is why notes are better than tags for this purpose.
Here, the trouble is to correctly generate a binary note. You can binary-safelycreate a note with the following trick:
store binary note as a blob object in the repository
$ blob_sha=$(git hash-object -w ./a.out)

take the given blob object as the note message
$ git notes --ref=built add --allow-empty –C "$blob_sha" HEADYou cannot simply use -F ./a.out, as this is not binary-safe – comments (orrather what was misdetected as comments, that is, lines starting with #) wouldbe stripped.The notes mechanism is also used as a mechanism to enable storing cache forthe textconv filter (see the section on gitattributes in Chapter 3, Managing Your

Worktrees). All you need to do is configure the filter in question, setting its
cachetextconv to true:

[diff "jpeg"]
 textconv = exif
 cachetextconv = trueHere, notes in the refs/notes/textconv/jpeg namespace (named after the filter) areused to attach the text of the conversion to a blob.

Notes and rewriting historyNotes are attached to objects they annotate (usually commits) by their SHA-1identifier. What happens with notes when we are rewriting history then? In thenew, rewritten history, SHA-1 identifiers of objects are different in most cases.It turns out that you can configure this quite extensively. First, you can selectwhich categories of notes should be copied along with the annotated objectduring the rewrite with the notes.rewriteRef multi-value configuration variable.This setting can be overridden with the GIT_NOTES_REWRITE_REF environmentvariable with a colon-separated list of fully qualified notes references and globs(denoting reference patterns to match). There is no default value for thissetting; you must configure this variable to enable rewriting.
Second, you can also configure whether to copy a note during rewritingdepending on the exact type of the command doing the rewriting (rebase and
amend are currently supported as the value of the command). This can be donewith the boolean-valued notes.rewrite.<command> configuration variable.In addition, you can decide what to do if the target commit already has a notewhile copying notes during a rewrite, for example, while squashing commitsusing an interactive rebase. You have to decide between overwrite (taking thenote from the appended commit), concatenate (which is the default value),
cat_sort_uniq (like concatenate, but sorting lines and removing duplicates), and

ignore (using the note from the original commit being appended to) for the
notes.rewriteMode configuration variable or the GIT_NOTES_REWRITE_MODE environmentvariable.
Publishing and retrieving notesSo, we have notes in our own local repository. What do we do if we want toshare these notes? How do we make them public? How can we, and otherdevelopers, get notes from other public repositories?
We can employ our knowledge of Git here. The How notes are stored sectionexplained that notes are stored in the object database of the repository usingspecial references in the refs/notes/ namespace. The contents of the note isstored as a blob, referenced through this special ref. Commit notes (notes in
refs/notes/commits) store the history of notes, though Git allows you to store noteswithout history as well. So, what you need to do is get this special ref. Thecontents of the notes will follow. This is the usual mechanism of repositorysynchronization (object transfer).
This means that to publish your notes, you need to configure appropriate pushlines in the appropriate remote repository configuration (see Chapter 6,
Collaborative Development with Git). Assuming that you are using a separate
public remote (if you are the maintainer, you will probably simply use origin),which is perhaps set as remote.pushDefault, and that you would like to publishnotes in any category, you can run the following:
$ git config --add remote.public.push '+refs/notes/*:refs/notes/*'If push.default is set to matching (or Git is old enough to have this as the defaultbehavior), or the push lines use special refspecs such as : or +:, it is enough topush notes refs the first time, as they would be pushed automatically each timeafter:
$ git push origin 'refs/notes/*'The process of fetching notes is only slightly more involved. If you don’tproduce specified types of notes yourself, you can fetch notes in the “mirror-like” mode to the ref with the same name:
$ git config --add remote.origin.fetch '+refs/notes/*:refs/notes/*'

However, if there is a possibility of conflict, you would need to fetch notes fromthe remote into the remote-tracking notes reference, and then use git notes
merge to join them into your notes. Please see the documentation for details.
TIP
If you want to make it easy to merge Git notes, perhaps even automatically, then following the convention
of the Key: Value entries on separate lines for the content of notes, with duplicates removed, will help.There is no standard naming convention for remote-tracking notes references,but you can use either refs/notes/origin/* (so that the shortened commits notescategory from the origin remote is origin/commits, and so on), or go whole worksand fetch refs/* from the origin remote into refs/remotes/origin/refs/* (so that the
commits category lands in refs/remotes/origin/refs/notes/commits).
Using git replace
The original idea for the replace- or replacement-like mechanism was to makeit possible to join the history of two different repositories.
The original impulse was to be able to switch from the other version controlsystem to Git by creating two repositories: the first one for the current work,starting with the most recent version in the empty repository, and the secondone for the historical data, storing the conversion from the original system.That way, it would be possible to take time doing the faithful conversion of thehistorical data, and even fix it if the conversion were incorrect, withoutaffecting the current work.What was needed was some mechanism to connect the histories of those tworepositories, to have a full history for inspection going back to the creation of aproject (for example, for blame, that is, line-history annotation).
The replacements mechanismThe modern incarnation of such a tool is a replace (or replacements)mechanism. With it, you can replace any object with any object, or rathercreate a virtual history (virtual object database of a repository) by creating anoverlay, so that most Git commands return a replacement in place of theoriginal object.

However, the original object is still there, and Git’s behavior with respect to thereplacement mechanism was done in such a way as to eliminate the possibilityof losing data. You can get the original view with the --no-replace-objects optionpassed to the git wrapper, added before the command. You can also use the
GIT_NO_REPLACE_OBJECTS environment variable, instead. For example, to view theoriginal history, you can use git --no-replace-objects log.
The information about replacements is saved in the repository by storing theref named after the SHA-1 of the replaced object in the refs/replace/ namespace,with the SHA-1 of replacement as its sole content. However, there is no need toedit it by hand or with low-level plumbing commands – you can use the git
replace command.Almost all the commands use replacements unless they are told not to, asexplained previously. The exception is reachability analysis commands. Thismeans that Git would not remove the replaced objects because they are nolonger reachable if we take replacement into account. Of course, replacementobjects are reachable from the replace refs.
IMPORTANT NOTE
Currently, some of the mechanisms that are used to make Git faster for very large repositories (see
Chapter 12, Managing Large Repositories) don’t work if git replace is used.You can replace any object with any other object, though changing the type ofan object requires telling Git that you know what you are doing with git replace
-f <object> <replacement>. This is because such a change might lead to troubleswith Git, since it was expecting one type of object, and getting another.With git replace --edit <object>, you can edit its contents interactively. Whatreally happens is that Git opens the editor with the object contents, and afterediting, Git creates a new object and a replacement ref. The object format (inparticular, the commit object format, as one would almost always edit commits)was described at the beginning of this chapter. You can change the commitmessage, commit parents and authorship, and so on.
Example – joining histories with git replaceLet’s assume that you have split the repository into two, as described in anearlier section about filter-repo, perhaps for performance reasons. However,let’s say that you want to be able to treat the joined history as if it were one.

Or perhaps there was a natural history split after changing the version controlsystem to Git, with the fresh repository with the current work (started afterswitching from the current state of a project, with an empty history) and theconverted historical repository kept separate. This could be done to make theswitch faster. This technique has the advantage of allowing you to improve theconversion after the split.
This situation is shown in Figure 10.12, with the historical repository added asa remote to the current work repository (one with new commits).

Figure 10.12 – The view of a split history, with the replacements turned oû (git --no-replace-objects). The
shortened SHA-1 in the left upper corner of a commit denotes its identiüer.In many cases, you might want to create a kind of informational commit on topof the “historical” repository (the one with the older part of the history), forexample, adding the notification where one can find the current work repositoryto the README file. Such a commit is, for simplicity, not shown in Figure 10.12.How to join history depends somewhat on whether the history was originallysplit or joined. If it was originally joined, then split, just tell Git to replace the

post-split version with the pre-split version using git replace <post-split> <pre-
split>. If the repository was split from beginning, use the --edit or --graft optionof git replace.

Figure 10.13 – The view of a split history, joined using replacementsThe split history is there, it is just hidden from view. For all Git commands, thehistory looks like in Figure 10.13. You can, as described earlier, turn it off using

replacements; in this case, you would see the history as in Figure 10.12.
Historical note – graftsThe first attempt to create a mechanism to make it possible to join lines ofhistory came about in the form of grafts. It is a simple .git/info/grafts file withthe SHA-1 identifier of the affected commit and its replacement parents in line,separated by spaces.This mechanism was only for commits, and allowed only to change theparentage of the commit. There was no support for transport, that is, forpropagating this information from inside of Git. You could not turn the graftsmechanism off temporarily, at least not easily. Moreover, it was inherentlyunsafe because there were no exceptions for reachability-checking commands,making it possible for Git to remove needed objects by accident during pruning(garbage collecting).
However, you can find its use in examples. Nowadays, it is obsolete, especiallywith the existence of the git replace --graft option. If you use grafts, considerreplacing them with replacements objects; the contrib/convert-grafts-to-replace-
refs.sh script can help with this in the Git sources.
OTHER GRAFT-LIKE FILES IN GIT
The shallow clone (the result of git clone --depth=<N>, a clone with the shortened history) is managed
with a graft-like .git/shallow üle. This üle is managed by Git, however, not by the user.

Publishing and retrieving replacementsHow can you publish replacements, and how do you get them from the remoterepository? Since replacements use references, this is quite simple.
Each replacement is a separate reference in the refs/replaces/ namespace.Therefore, you can get all the replacements with the globing fetch or push line:

+refs/replace/*:refs/replace/*There can be only one replacement for an object, so there are no problems withmerging replacements. You can only choose between one replacement or theother.Theoretically, you could also request individual replacements by fetching (andpushing) individual replacement references instead of using the '*' wildcard.

SummaryThis chapter, along with Chapter 8, Advanced Branching Techniques, providedall the tools required to manage a clean, readable, and easy-to-review history ofa project.
You learned how to make history cleaner by rewriting it in this chapter. Youalso learned what rewriting history means in Git, when and why to avoid it, andhow to recover from an untimely upstream rewrite. You have learned to use aninteractive rebase to delete, reorder, squash and split commits, and how to testeach commit during the rebase. You know how to do a large-scale scriptedrewrite with filter-repo, as well as how to edit commits and commit metadataand how to permanently change history, such as by splitting it in two. You alsogot to know some third-party external tools, which can help with these tasks.You learned what to do if you cannot rewrite history: how to fix mistakes bycreating commits with appropriate changes (for example, with git revert), howto add extra information to the existing commits with notes, and how to changethe virtual view of the history with replacements. You learned to handlereverting a faulty merge and how to re-merge after a reverted merge. Youlearned how to fetch and publish both notes and replacements.
To really understand advanced history rewriting and the mechanism behindnotes and replacements, this chapter explained the basics of Git internals andlow-level commands that are usable for scripting (including scripted rewrite).
The following chapter, Chapter 11, Managing Subprojects, will explain andshow different ways to connect different subprojects in one repository, fromsubmodules to subtrees.
In the subsequent chapter, Chapter 12, Managing Large Repositories, you willalso learn techniques to manage (or mitigate managing) large-size assets insidea repository, or large numbers of files in a repository. Splitting a large projectinto submodules is one, but not the only, way to handle this issue.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. When working on a series of commits to implement a feature, how can you mark a bugfix commit forlater squashing into the original commit before publishing the series?

2. Why should you not rewrite (rebase or amend) published history if you are using merging to integratechanges?
3. How can you recover from the upstream rebase?
4. What can you do when you notice that you accidentally included some large file that should not be putin version control in a commit?
5. How can you undo the effect of the commit if you cannot rewrite history?
6. What mechanisms exist to amend history, or a view of history, without rewriting it?

AnswersHere are the answers to the questions given above:
1. You can use git commit --fixup when creating a bugfix, and then later git rebase --interactive

--autosquash before publishing the series.
2. You should not rewrite published history because other developers can do their work based on theversion before the changes, and then merging would bring older versions (from before the rewrite)back into existence.
3. Rebase your own changes on top of the new, rebased version of the upstream.
4. If the problem is in the most recent commit, you can amend it with git commit --amend. If you needto rewrite the whole history of the project, you can use the git filter-repo tool. Note, however, thecaveat that comes with rewriting published history, namely that it can cause problems for otherdevelopers when they will try to integrate their changes.
5. You can use git revert to create the commit that undoes changes brought by an unwanted commit.
6. You can use git notes to add extra information to commit objects after the fact, and you can use git

replace to change the effective shape of the history.
Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:

Scott Chacon and Ben Straub: Pro Git, 2nd Edition (2014) https://git-scm.com/book/en/v2.
Chapter 7.6, Git Tools - Rewriting History

Chapter 7.13, Git Tools - Replace

Aske Olsson and Rasmus Voss: Git Version Control Cookbook (2014), Packt Publishing Ltd
Chapter 5, Storing Additional Information in Your Repository

Chapter 8, Recovering From Mistakes

Git Documentation HOWTOs

https://git-scm.com/book/en/v2

How to revert a faulty mergehttps://github.com/git/git/blob/master/Documentation/howto/revert-a-faulty-merge.txt
How to revert an existing commithttps://github.com/git/git/blob/master/Documentation/howto/revert-branch-rebase.txt

Tyler Cipriani: Git Notes: Git’s Coolest, Most Unloved Feature (2022)https://tylercipriani.com/blog/2022/11/19/git-notes-gits-coolest-most-unloved-feature/
Elijah Newren: git ülter-repo https://github.com/newren/git-filter-repo
Stacked Git: StGit Tutorial https://stacked-git.github.io/guides/tutorial/
Jackson Gabbard: Stacked Diûs Versus Pull Requests (2018) https://jg.gg/2018/09/29/stacked-diffs-versus-pull-requests/

https://github.com/git/git/blob/master/Documentation/howto/revert-a-faulty-merge.txt
https://github.com/git/git/blob/master/Documentation/howto/revert-branch-rebase.txt
https://tylercipriani.com/blog/2022/11/19/git-notes-gits-coolest-most-unloved-feature/
https://github.com/newren/git-filter-repo
https://stacked-git.github.io/guides/tutorial/
https://jg.gg/2018/09/29/stacked-diffs-versus-pull-requests/

Part 3 - Managing, Configuring, and Extending GitThis part describes how to manage Git, how to customize and extend it, andhow to configure it. You will also learn how to automate things with Git hooks.You can also find information about setting up serving repositories if you don’tneed fully-featured repository hosting software. Finally, you will be presentedwith a collection of version-control, generic, and Git-specific recommendationsand best practices. This will cover issues such as managing a workingdirectory, creating commits and a series of commits (pull requests), submittingchanges for inclusion, and a peer review of changes.
This part has the following chapters:

Chapter 11, Managing Subprojects

Chapter 12, Managing Large Repositories

Chapter 13, Customizing and Extending Git

Chapter 14, Git Administration

Chapter 15, Git Best Practices

11

Managing SubprojectsIn Chapter 6, Collaborative Development with Git, we learned how to managemultiple repositories, while Chapter 8, Advanced Branching Techniques, taughtus various development techniques utilizing multiple branches, and multiplelines of development in these repositories. Up until now, these multiplerepositories were all being developed independently of each other. Repositoriesof the different projects were autonomous.This chapter will explain and show different ways to connect differentsubprojects in one single repository of the framework project, from the stronginclusion by embedding the code of one project in the other (subtrees) to thelight connection between projects by nesting repositories (submodules). Youwill learn how to add a subproject to a master project, how to update thesuperproject state, and how to update a subproject. We will find out how tosend our changes upstream, backport them to the appropriate project, andpush them to the appropriate repository. Different techniques of managingsubprojects have different advantages and drawbacks here.
In this chapter, we will cover the following topics:

Managing library and framework dependencies
Dependency management tools: managing dependencies outside of Git
Importing code into a superproject as a subtree
Using subtree merges; the git-subtree and git-stree tools
Nested repositories (submodules): a subproject inside a superproject
Internals of submodules: gitlinks, .gitmodules, and the .git file
Use cases for subtrees and submodules; comparison of approaches
Alternative third-party solutions and tools/helpers

Building a living frameworkThere are various reasons to join an external project to your own project. Asthere are different reasons to include a project (let’s call it a subproject, or a
module) inside another project (let’s call it a superproject, or a master

project), there are different types of inclusions geared toward differentcircumstances. They all have their advantages and disadvantages, and it isimportant to understand these to be able to choose the correct solution for yourproblem.
Let’s assume that you work on a web application and that your web app usesJavaScript (perhaps working as a single-page app). To make it easier todevelop, you probably use some JavaScript library or a web framework, such asReact.Such a library is a separate project. You would want to be able to pin it to aknown working version (to avoid problems where future changes to the librarywould make it stop working for your project), while also being able to reviewchanges and automatically update it to the new version. Perhaps you wouldwant to make your own changes to the library and send the proposed changesto the upstream. Of course, you would want users of your project to be able touse the library with your out-of-tree fixes, even if they are not yet accepted byoriginal developers. Conceivably, you might have customizations and changesthat you don’t want to publish (send to the upstream), but you might still makethem available.
This is all possible in Git. There are two main solutions for includingsubprojects: importing code into your project with the subtree merge strategyand linking subprojects with submodules.Both submodules and subtrees aim to reuse the code from another project,which usually has its own repository, putting it somewhere inside your ownrepository’s working directory tree. The goal is usually to benefit from thecentral maintenance of the reused code across a number of containerrepositories, without having to resort to clumsy, unreliable manualmaintenance (usually by copy-pasting).
Sometimes, it is more complicated. The typical situation in many companies isthat they use many in-house produced applications, which depend on thecommon utility library, or a set of libraries. You would often want to developeach of such applications separately, use it together with others, branch andmerge, and apply your own changes and customizations, all in their ownseparate Git repositories. But there are also advantages to having a single

monolithic repository (monorepo), such as simplified organizations,dependencies, cross-project changes, and tooling if you can get away with it.
The mechanism used by submodules and subtrees solutions (of having separateGit repositories for each application, framework, or library) is not withoutproblems. The development gets more complex because you now have multiplerepositories to interact with. If the library gets improved, you would want toupdate your subproject and need to test whether this new version correctlyworks with your code, then decide whether to use it in your superproject. Onthe other hand, at some point in time, you would want to send your changes tothe library itself to share their changes with other developers, if only to sharethe burden of maintaining these features (the out-of-tree patches bringmaintenance costs to keep them current).What to do in those cases? This chapter describes a few strategies used tomanage subprojects. For each technique, we will detail how to add suchsubprojects to superprojects, how to keep them up to date, how to create yourown changes, and how to publish selected changes upstream.
SUBDIRECTORY REQUIREMENT
Note that all the solutions require that all the üles of a subproject be contained in a single subdirectory of a
superproject. No currently available solution allows you to mix the subproject üles with other üles, or have
them occupy more than one directory.However you manage subprojects, be it subtrees, submodules, third-party tools,or dependency management outside Git, you should strive for the module codeto remain independent of the particularities of the superproject (or at least,handle such particularities using an external, possibly non-versionedconfiguration). Using superproject-specific modifications goes againstmodularization and encapsulation principles, unnecessarily coupling the twoprojects.On the other hand, sharing common components, libraries, and tooling, andkeeping them the same for all the distinct but related projects might be moreimportant than the autonomy of those projects (for example, if they are alldeveloped by the same company). It might be the case with the polyrepo setupthat introducing a new feature always makes it necessary to create multiplecommits in multiple repositories, instead of requiring only a single commit. Inthose cases, monorepo might be a better solution.

Managing dependencies outside of Git

In many cases, the development stack used allows you to simply use
packaging and formal dependency management. If it is possible, it isusually preferable to go this route. Using dependency management solutionslets you split your code base better and avoid a number of side effects,complications, and pitfalls that litter the submodule and subtree solution space(with different complications for different techniques). It removes the versioncontrol systems from the managing modules. It also lets you benefit fromversioning schemes, such as semantic versioning, for your dependencies.As a reminder, here’s a partial list (in alphabetical order) of the main languagesand development stacks, and their dependency management/packagingsystems and registries (see the full comparison at www.modulecounts.com):

Go has GoDoc
Java has Maven Central (Maven and Gradle)
JavaScript has npm (for Node.js) and Bower
.NET has NuGet
Objective-C has CocoaPods
Perl has Comprehensive Perl Archive Network (CPAN) and carton
PHP has Composer, Packagist, and good old PEAR and PECL
Python has Python Package Index (PyPI) and pip
Ruby has Bundler and RubyGems
Rust has Crates

Sometimes, just using the official package registry is not enough. You mightneed to apply some out-of-tree patches (changes) to customize the module(subproject) for your needs. Sometimes, however, for many reasons, you mightbe unable to publish these changes upstream to have them accepted. Perhapsthe changes are relevant only to your specific project, or the upstream is slowto respond to the proposed changes, or perhaps there are licenseconsiderations. Maybe the subproject in question is an in-house module thatcannot be made public, but which you are required to use for your companyprojects.
In all these cases, you need the custom package registry (the packagerepository) to be used in addition to the default one, or you need to let

http://www.modulecounts.com/

subprojects be managed as private packages, which these systems often allow.If there is no support for private packages, a tool to manage the privateregistry, such as Pinto or CPAN::Mini for Perl, would be also needed.
Manually importing the code into your project

Sometimes, the library or a tool that you want to include in your project is notavailable in the package registry (perhaps because of the software stack; forexample, package registries for C++ such as Conan or vcpkg are quite a newthing).Therefore, let’s take a look at one of the other possibilities: why don’t we simplyimport the library into some subdirectory in our project? If you need to bring itup to date, you can just copy the new version as a new set of files. In thisapproach, the subproject code is embedded inside the code of the superproject.
The simplest solution would be to just overwrite the contents of thesubproject’s directory each time we want to update the superproject to use thenew version. If the project you want to import doesn’t use Git, or if it doesn’tuse a version control system (VCS) at all, or if the repository it uses is notpublic, this will indeed be the only possible solution.
USING REPOSITORIES FROM A FOREIGN VCS AS A REMOTE
If the project you want to import (to embed) uses a VCS other than Git but there is a good conversion
mechanism (for example, with a fast import stream), you can use remote helpers to set up a foreign VCS
repository as a remote repository (via automatic conversion). You can check Chapter 6, Collaborative
Development with Git, and Chapter 13, Customizing and Extending Git, for more information.

This can be done, for example, with the Mercurial and Bazaar repositories, thanks to the git-remote-hg
and git-remote-bzr helpers.Moving to the new version of the imported library is quite simple (and themechanism is easy to understand). Remove all the files from the directory, addfiles from the new version of the library (for example, by extracting them fromthe archive), then use the git add command to the directory:
$ rm -rf mylib/
$ git rm mylib
$ tar -xzf /tmp/mylib-0.5.tar.gz
$ mv mylib-0.5 mylib
$ git add mylib
$ git commitThis method works quite well in simple cases with the following caveats:

In the Git history of your project, you have only the versions of the library at the time of import. Onthe one hand, this makes your project history clean and easy to understand; on the other hand, youdon’t have access to the fine-grained history of a subproject. For example, when using git bisect,you would only be able to find that it was introduced by upgrading the library, but not the exactcommit in the history of the library that introduced the bug in question.
If you want to customize the code of the library, fitting it to your project by adding the changesdependent on your application, you would need to reapply that customization in some way after youimport a new version. You could extract your changes with git diff (comparing it to the unchangedversion at the time of import) and then use git apply after upgrading the library. Or, you could use arebase, an interactive rebase, or some patch management interface; see Chapter 10, Keeping History
Clean. Git won’t do this automatically.
Each importing of the new version of the library requires running a specific sequence of commands toupdate the superproject: removing the old version of files, adding new ones, and committing thechange. It is not as easy as running git pull, though you can use scripts or aliases to help.

A Git subtree solution for embedding the
subproject codeIn a slightly more advanced solution, you can use the subtree merge to jointhe history of a subproject to the history of a superproject. This is onlysomewhat more complicated than an ordinary pull (at least, after thesubproject is imported), but provides a way to automatically merge changestogether.Depending on your requirements, this method might fit well with your needs. Ithas the following advantages:

You would always have the correct version of the library, never using the wrong library version byaccident.
The method is simple to explain and understand, using only the standard (and well-known) Gitfeatures. As you will see, the most important and most commonly used operations are easy to do andeasy to understand, and it is hard to go wrong.
The repository of your application is always self-contained; therefore, cloning it (with plain old git
clone) will always include everything that’s needed. This means that this method is a good fit for the
required dependencies.
It is easy to apply patches (for example, customizations) to the library inside your repository, even ifyou don’t have the commit rights to the upstream repository.
Creating a new branch in your application also creates a new branch for the library; it is the same forswitching branches. That’s the behavior you expect. This is contrasted with the submodule’s behavior(the other technique for managing subprojects).
If you are using the subtree merge strategy (described shortly in Chapter 9, Merging Changes
Together), for example, with git pull -s subtree, then getting a new library version will be as easy

as updating all the other parts of your project.
Unfortunately, however, this technique is not without its disadvantages. Formany people and for many projects, these disadvantages do not matter. Thesimplicity of the subtree-based method usually prevails over its faults.
Here are the problems with the subtree approach:

Each application using the library doubles its files. There is no easy and safe way to share its objectsamong different projects and different repositories. (See the following callout about the possibility ofsharing the Git object database.)
Each application using the library has its files checked out in the working area, though you canchange it with the help of the sparse checkout (which will be described in the next chapter: Chapter
12, Handling Large Repositories).
If your application introduces changes to its copy of the library, it is not that easy to publish thesechanges and send them upstream. Third-party tools such as git subtree or git stree can help here.They have specialized subcommands to extract the subproject’s changes.
Because of the lack of separation between the subproject files and the superproject files, it is quiteeasy to mix the changes to the library and the changes to the application in one commit. In suchcases, you might need to rewrite the history (or the copy of a history), as described in Chapter 10,
Keeping History Clean.

The first two issues mean that subtrees are not a good fit to manage thesubprojects that are optional dependencies (needed only for some extrafeatures) or optional components (such as themes, extensions, or plugins),especially those that are installed by a mere presence in the appropriate placein the filesystem hierarchy.
SHARING OBJECTS BETWEEN FORKS (COPIES) WITH ALTERNATES
You can mitigate the duplication of objects in the repository with alternates or, in other words, with git
clone --reference. However, then you would need to take greater care about garbage collection. The
problematic parts are those parts of the history that are referenced in the borrower repository (that is, one
with alternates set up), but are not referenced in the lender reference’s repository. The description and
explanation of the alternate mechanisms will be presented in Chapter 14, Git Administration.There are different technical ways to handle and manage the subtree-importedsubprojects. You can use classic Git commands, just using the appropriateoptions while affecting the subproject, such as --strategy=subtree (or the subtreeoption to the default recursive merge strategy, --strategy-option=subtree=<path>) for
merge, cherry-pick, and related operations. This manual approach workseverywhere, is actually quite simple in most cases, and offers the best degree ofcontrol over operations. However, it requires a good understanding of theunderlying concepts.

In modern Git (since version 1.7.11), there is the git subtree command availableamong installed binaries. It comes from the contrib/ area and is not fullyintegrated (for example, with respect to its documentation). This script is welltested and robust, but some of its notions are rather peculiar or confusing, andthis command does not support the whole range of possible subtree operations.Additionally, this tool supports only the import with history workflow (whichwill be defined later), which some say clutters the history graph.
There are also other third-party scripts that help with subtrees; among them is
git-subrepo.
Creating a remote for a subproject
Usually, while importing a subproject, you would want to be able to update theembedded files easily. You would want to continue interacting with thesubproject. For this, you would add that subproject (for example, the commonlibrary) as a remote reference in your own (super)project and fetch it:
$ git remote add mylib_repo https://git.example.com/mylib.git
$ git fetch mylib_repo
warning: no common commits
From https://git.example.com/mylib.git
* [new branch] master -> mylib_repo/masterNote that, in this example, progress messages were removed for simplicity.

You can then examine the mylib_repo/master remote-tracking branch, which canbe done either by checking it out into the detached HEAD with git checkout
mylib_repo/master, or by creating a local branch out of it and checking this localbranch out with git checkout -b mylib_branch mylib_repo/master. Alternatively, youcan just list its files with git ls-tree -r --abbrev mylib repo/master. You will see thenthat the subproject has a different project root from your superproject.Additionally, as can be seen from the warning: no common commitsmessage, this remote-tracking branch contains a completely different historycoming from a separate project.
Adding a subproject as a subtree
If you are not using specialized tools such as git subtree but a manual approach,the next step will be a bit complicated and will require you to use some

advanced Git concepts and techniques. Fortunately, it needs to be done onlyonce.
First, if you want to import the subproject history, you would need to create amerge commit that will import the subproject in question. You need to have thefiles of the subproject in the given directory in a superproject. Unfortunately (atleast, with the current version of Git as of writing this chapter), using the -
Xsubtree=mylib/ merge strategy option would not work as expected. We wouldhave to do it in two steps: prepare the parents and then prepare the contents.The first step would then be to prepare a merge commit using the ours mergestrategy, but without creating it (writing it to the repository). This strategyjoins histories, but takes the current version of the files from the currentbranch:
$ git merge --no-commit --strategy=ours --allow-unrelated-histories mylib_repo/master
Automatic merge went well; stopped before committing as requestedIf you want to have simple history, similar to the one we get from just copyingfiles, you can skip this step.We now need to update our index (the staging area for the commits) with thecontents of the master branch from the library repository and update ourworking directory with it. All this needs to happen in the proper subfolder too.This can be done with the low-level (plumbing) git read-tree command:
$ git read-tree --prefix=mylib/ -u mylib_repo/master
$ git status
On branch master
All conflicts fixed but you are still merging.
 (use "git commit" to conclude merge)
Changes to be committed:
 new file: mylib/README [...]We have used the -u option, so the working directory is updated along with theindex. We then need simply to finalize the merge with git commit, as Git tells us.

IMPORTANT NOTE!
It is important to not forget the trailing slash in the argument of the --prefix option. Checked-out üles are
literally preüxed with it.This set of steps is described in the HOWTO section of the Git documentation,namely, in How to use the subtree merge strategy. This HOWTO is availableat https://kernel.org/pub/software/scm/git/docs/howto/using-merge-subtree.html.

https://kernel.org/pub/software/scm/git/docs/howto/using-merge-subtree.html

It is much easier to use tools such as git subtree:
$ git subtree add --prefix=mylib mylib_repo master
git fetch mylib_repo master
From https://git.example.com/mylib.git
* branch master -> FETCH_HEAD
Added dir 'mylib'The git subtree command would fetch the subtree’s remote when necessary;there’s no need for the manual fetch that you had to perform in the manualsolution.

If you examine the history, for example, with git log --oneline --graph --decorate,you will see that this command merged the library’s history with the history ofthe application (of the superproject). If you don’t want this, tough luck. The --
squash option that git subtree offers on its add, pull, and merge subcommands won’thelp here. One of the peculiarities of this tool is that this option doesn’t createa squash merge, but simply merges the squashed subproject’s history (as if itwere squashed with an interactive rebase). The commit message would looklike this: Squashed 8mylib/9 content from commit 5e28a71. See Figure
11.2(b) later in this chapter.If you want a subtree without its history attached to the superproject history, asin Figure 11.2(c), consider using the external tool, git-subrepo. It has theadditional advantage that it remembers the subtree settings:
$ git subrepo clone \
 https://git.example.com/mylib.git mylib/
Subrepo 'https://git.example.com/mylib.git' (master) cloned into 'mylib'.The information about the subproject repository URL, the main branch, theoriginal commit, and so on, is stored in the .gitrepo file in the directory with thesubproject. All subsequent git subrepo commands refer to the embeddedsubproject by the name of the directory it is in (which is mylib/ in the precedingexample).

You can achieve similar results with the external git-stree tool, which wasdeprecated in favor of git-subrepo.
Cloning and updating superprojects with subtrees
All right! Now that we have our project with a library embedded as a subtree,what do we need to do to get it? Because the concept behind subtrees is to

have just one repository (the container), you can simply clone this repository.
To get an up-to-date repository, you just need a regular pull; this would bringboth the superproject (the container) and subproject (the library) up to date.This works regardless of the approach taken, the tool used, and the manner inwhich the subtree was added. It is a great advantage of the subtrees approach.
Getting updates from subprojects with a subtree
merge

Let’s see what happens if there are some new changes in the subproject sincewe imported it. It is easy to bring the version embedded in the superproject upto date:
$ git pull --strategy subtree mylib_repo master
From https://git.example.com/mylib.git
 * branch master -> FETCH_HEAD
Merge made by the 'subtree' strategy.You could have fetched and then merged instead, which allows for greatercontrol. Or, you could have rebased instead of merging, if you prefer; thatworks too.

IMPORTANCE OF SELECTING SUBTREE MERGE STRATEGY
Don’t forget to select the merge strategy with -s subtree while pulling a subproject. Merging could work
even without it because Git does rename detection and would usually be able to discover that the üles
were moved from the root directory (in the subproject) to a subdirectory (in the superproject we are
merging into). The problematic case is when there are conýicting üles inside and outside of the subproject.
Potential candidates are Makeüles and other standard ülenames.

If there are some problems with Git detecting the correct directory to merge into, or if you need advanced
features of an ordinary ort merge strategy (which is the default), you can instead use -Xsubtree=
<path/to/subproject>, the subtree option of the ort merge strategy.You may need to adjust other parts of the application code to work properlywith the updated code of the library.
Note that, with this solution, you have a subproject history attached to yourapplication history, as you can see in Figure 11.1:

Figure 11.1 – History of a superproject with a subtree-merged subproject inside the 8maps/9 directory.
Subproject history is available in the superproject via relevant remote-tracking branchIf you don’t want to have the history of a subproject entangled in the history ofa master project and prefer a simpler-looking history (as shown in Figure 11.1),you can use the --squash option of the git merge (or git pull) command to squashit:

$ git merge -s subtree --squash mylib_repo/master
Squash commit -- not updating HEAD
Automatic merge went well; stopped before committing as requested
$ git commit -m "Updated the library"Squash merge is described in Chapter 9, Merging Changes Together.

In this case, in the history, you would have only the fact that the version of thesubproject had changed, which has its advantages and disadvantages. You get
simpler history but also simplified history.With the git subtree or git subrepo tools, it is enough to use their pullsubcommand; they supply the subtree merge strategy themselves. However,currently, git subtree pull requires you to respecify --prefix and the entiresubtree settings.

Figure 11.2 – Different types of subtree merges: (a) subtree merge, (b) subtree merge of squashed
commits, (c) squashed subtree mergeNote that the git subtree command always merges, even with the --squash option;it simply squashes the subproject commits before merging (such as the squashinstruction in the interactive rebase). In turn, git subrepo pull always squashesthe merge (such as git merge --squash), which keeps the superproject history andsubproject history separated without polluting the graph of the history. All thiscan be seen in Figure 11.2. Note that the dotted line in (c) denotes howcommits C2 and C4 were made, and not that it is the parent commit.

Showing changes between a subtree and its
upstream
To find out the differences between the subproject and the current version inthe working directory, you need nontypical selector syntax for git diff. This isbecause all the files in the subproject (for example, in the mylib_repo/masterremote-tracking branch) are in the root directory, while they are in the mylib/directory in the superproject (for example, in master). We need to select thesubdirectory to be compared with master, putting it after the revision identifierand the colon (skipping it would mean that it would be compared with the rootdirectory of the superproject).
The command looks as follows:
$ git diff master:mylib mylib_repo/master

Similarly, to check after the subtree merge whether the commit we just created(HEAD) has the same contents in the mylib/ directory as the merged in the commit,that is, HEAD^2, we can use the following:
$ git diff HEAD:mylib HEAD^2

Sending changes to the upstream of a subtree
In some cases, the subtree code of a subproject can only be used or testedinside the container code; most themes and plugins have such constraints. Inthis situation, you’ll be forced to evolve your subtree code straight inside themaster project code base, before you finally backport it to the subprojectupstream.
These changes often require adjustments in the rest of the superproject code;though it is recommended to make two separate commits (one for the subtreecode change and one for the rest), it is not strictly necessary. You can tell Git toextract only the subproject changes. The problem is with the commit messagesof the split changes, as Git is not able to automatically extract relevant parts ofthe changeset description.Another common occurrence, which is best avoided but is sometimesnecessary, is the need to customize the subproject’s code in a container-specificway (configure it specifically for a master project), usually without pushingthese changes back upstream. You should carefully distinguish between bothsituations, keeping each use case’s changes (backportable and non-backportable) in their own commits.
There are different ways to deal with this issue. You can avoid the problem ofextracting changes to be sent upstream by requiring that all the subtreechanges have to be done in a separate module-only repository. If it is possible,we can even require that all the subproject changes have to be sent upstreamfirst, and we can get the changes into the container only through upstreamacceptance.If you need to be able to extract the subtree changes, then one possible solutionis to utilize git filter-branch --directory-filter (or --index-filter with theappropriate script). Another simple solution is to just use git subtree push. Both

of the methods, however, backport every commit that touches the subtree inquestion.
If you want to send upstream only a selection of the changes to the subprojectof those that made it into the master project repository, then the solution is abit more complicated. One possibility is to create a local branch meantspecifically for backporting out of the subproject remote-tracking branch.Forking it from said subtree-tracking branch means that it has the subtree asthe root and it would include only the submodule files.This branch, intended for backporting changes to the subproject, would need tohave the appropriate branch in the remote of the subproject upstreamrepository as its upstream branch. With such a setup, we would then be able touse git cherry-pick --strategy=subtree the commits we’re interested in sending tothe subproject’s upstream onto it. Then, we can simply git push this branch intothe subproject’s repository.
CHERRY PICKING AND SUBMODULES
It is prudent to specify --strategy=subtree even if cherry-pick would work without it, to make sure that
the üles outside the subproject’s directory (outside subtree) will get quietly ignored. This can be used to
extract the subtree changes from the mixed commit; without this option, Git will refuse to complete the
cherry-pick.This requires much more steps than ordinary git push. Fortunately, you need toface this problem only while sending the changes made in the superprojectrepository back to the subproject. As you have seen, fetching changes from thesubproject into the superproject is much, much simpler.Well, using git-stree would make this trivial; you just need to list the commits tobe pushed to backport:
$ git stree push mylib_repo master~3 master~1
• 5e28a71 [To backport] Support for creating debug symbols
• 5b0aa4b [To backport] Timestamping (requires application tweaks)
✔ STree 'mylib_repo' successfully backported local changes to its remoteIn fact, this tool internally uses the same technique, creating and using abackport-specific local branch for the subproject.
The Git submodules solution – a repository inside
a repository

The subtrees method of importing the code (and possibly also the history) of asubproject into the superproject has its disadvantages. In many cases, thesubproject and the container are two different projects: your applicationdepends on the library, but it is obvious that they are separate entities. Joiningthe histories of the two doesn’t look like the best solution.
Additionally, the embedded code and imported history of a subproject arealways here. Therefore, the subtrees technique is not a good fit for optionaldependencies and components (such as plugins or themes). It also doesn’tallow you to have different access controls for the subproject’s history, with thepossible exception of restricting write access to the subproject (actually to thesubdirectory of a subproject), by using Git repository management solutionssuch as gitolite (you can find more in Chapter 14, Git Administration).The submodule solution is to keep the subproject code and history in its ownrepository and to embed this repository inside the working area of asuperproject, but not to add its files as superproject files.
Gitlinks, .git files, and the git submodule
command
Git includes the command named git submodule, which is intended to work withsubmodules. However, to utilize it correctly, you need to understand at leastsome of the details of its operation. It is a combination of two distinct features:the so-called gitlinks and the git submodule tool itself.
Both in the subtree solution and the submodule solution, subprojects need to becontained in their own folder inside the working directory of the superproject.But while, with subtrees, the code of the subproject belongs to the superprojectrepository, this is not the case for submodules. With submodules, eachsubproject has instead its own repository somewhere inside its containerrepository. The code of the submodule belongs to its repository, and thesuperproject itself simply stores the meta-information required to getappropriate revisions of the subproject files.In practice, in modern Git, submodules use a simple .git file with a single
gitdir: line containing a relative path to the actual repository folder. Thesubmodule repository is actually located inside the superproject’s .git/modules

folder (and has core.worktree set up appropriately). This is done mostly to handlethe case when the superproject has branches that don’t have a submodule atall. It allows us to avoid having to scrap the submodule’s repository whileswitching to the superproject revision without it.
TIP
You can think of the .git üle with the gitdir: line as a symbolic reference equivalent for the .git
directories, an OS-independent symbolic link replacement. The path to the repository doesn’t need to be a
relative path:

$ ls -aloF plugins/demo/
total 10
drwxr-xr-x 1 user 0 Jul 13 01:26 ./
drwxr-xr-x 1 user 0 Jul 13 01:26 ../
-rw-r--r-- 1 user 32 Jul 13 01:26 .git
-rw-r--r-- 1 user 9 Jul 13 01:26 README
[…]
$ cat plugins/demo/.git
gitdir: ../../.git/modules/plugins/demoBe that as it may, the contained superproject and the subproject module trulyact as (and, in fact, are) independent repositories: they have their own history,their own staging area, and their own current branch. Therefore, you shouldtake care while typing commands, minding whether you’re inside thesubmodule or outside it, as the context and impact of your commands differdrastically!

The main idea behind the typical use of submodules is that the superprojectcommit remembers the exact revision of the subproject; this reference uses theSHA1 identifier of the subproject commit. Instead of using a manifest-like fileas in some dependency management tools, the submodules solution stores thisinformation in a tree object using so-called gitlinks. Gitlink is a reference froma tree object (in the superproject repository) to a commit object (usually, inthe submodule repository); see Figure 11.3. The faint shade of submodule fileson the left-hand side denotes that they are present as files in the workingdirectory of the superproject, but are not in the superproject repositorythemselves.

Figure 11.3 – The history of a superproject with a subproject linked as a submodule inside the 8maps/9
subdirectory. Subproject history is separateRecall that, following the description of the types of objects in the repositorydatabase from Chapter 10, Keeping History Clean, each commit object(representing a revision of a project) points exactly to one tree object with thesnapshot of the repository contents. Each tree object references blobs andtrees, representing file contents and directory contents, respectively. The treeobject referenced by the commit object uniquely identifies the set of filecontents, filenames, and file permissions contained in a revision associated withthe commit object.

Let’s remember that the commit objects themselves are connected with eachother, creating the Directed Acyclic Graph (DAG) of revisions. Each commitobject references zero or more parent commits, which together describe thehistory of a project.Each type of reference mentioned earlier took part in the reachability check. Ifthe object pointed to was missing, it means that the repository is corrupt.
It is not so for gitlinks. Entries in the tree object pointing to the commits referto the objects in the other separate repository, namely, in the subproject(submodule) repository. The fact that the submodule commit being unreachable

is not an error is what allows us to optionally include submodules: nosubmodule repository, no commit referenced in gitlink.
The results of running git ls-tree --abbrev HEAD on a project with all the types ofobjects is as follows:
040000 tree 573f464 docs
100755 blob f27adc2 executable.sh
100644 blob 1083735 README.txt
040000 tree ef9bcb4 subdirectory
160000 commit 5b0aa4b submodule
120000 blob 3295d66 symlinkCompare it with the contents of the working area (with ls -l -o -F):
drwxr-xr-x 5 user 12288 06-28 17:18 docs/
-rwxr-xr-x 1 user 36983 02-20 20:11 executable.sh*
-rw-r--r-- 1 user 2628 2015-01-03 README.txt
drwxr-xr-x 3 user 4096 06-28 17:19 subdirectory/
drwxr-xr-x 48 user 36864 06-28 17:19 submodule/
lrwxrwxrwx 1 user 32 06-28 17:18 symlink -> docs/toc.html

Adding a subproject as a submodule

To manage submodules there is the git submodule command. It was created tohelp manage the filesystem contents, the metadata, and the configuration ofyour submodules, as well as inspect their status and update them.With subtrees, the first step was usually to add a subproject repository as aremote, which meant that objects from the subproject repository were fetchedinto the superproject object database.
To add the given repository as a submodule at a specific directory in thesuperproject, use the add subcommand of the git submodule:
$ git submodule add https://git.example.com/demo-plugin.git plugins/demo
Cloning into 'plugins/demo'...
done.

NOTE ABOUT ADDING SUBPROJECTS VIA A PATH TO THEIR
REPOSITORY
While using paths instead of URLs for remotes, you need to remember that the relative paths for remotes
are interpreted relative to our main remote, not to the root directory of our repository.This command stores the information about the submodule, for example, theURL of the repository, in the .gitmodules file. It creates a .gitmodules file if it doesnot exist:

[submodule "plugins/demo"]
 url = https://git.example.com/demo-plugin.gitNote that a submodule gets a name equal to its path. You can set the nameexplicitly with the --name option (or by editing the configuration); git mv on asubmodule directory will change the submodule path but keep the same name.

REUSE OF AUTHENTICATION WHILE FETCHING SUBMODULES
While storing the URL of a remote repository, it is often acceptable and useful to store the username with
the subproject information (for example, storing the username in a URL, such as
user@git.company.com:mylib.git).

However, remembering the username as a part of the URL is undesirable in .gitmodules, as this üle must
be visible to other developers (which often use diûerent usernames for authentication). Fortunately, the
commands that descend into submodules can reuse the authentication from cloning (or fetching) a
superproject.The add subcommand also runs an equivalent of git submodule init for you,assuming that if you have added a submodule, you are interested in it. Thisadds some submodule-specific settings to the local configuration of the masterproject:

[submodule "plugins/demo"]
 url = https://git.example.com/demo-plugin.gitWhy the duplication? Why store the same information in .gitmodules and in .git/

config? Well, because while the .gitmodules file is meant for all developers, wecan fit our local configuration to specific local circumstances. The other reasonfor using two different files is that while the presence of the submoduleinformation in .gitmodules means only that the subproject is available, having italso in .git/ config implies that we are interested in a given submodule (and thatwe want it to be present).You can create and edit the .gitmodules file by hand or with git config -f
.gitmodules.
This file is usually committed to the superproject repository (similar to
.gitignore and .gitattributes files), where it serves as the list of possiblesubprojects.All the other subcommands require the .gitmodules file to be present; forexample, if we would run git submodule update before adding it, we would get thefollowing:
$ git submodule update

No submodule mapping found in .gitmodules for path 'plugins/demo'That’s why git submodule add stages both the .gitmodules file and the submoduleitself:
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 new file: .gitmodules
 new file: plugins/demoNote that the whole submodule, which is a directory, looks to git status like thenew file. By default, most Git commands are limited to the active containerrepository only and do not descend to the nested repositories of thesubmodules. As we will see, this is configurable.
Cloning superprojects with submodules
One important issue is that, by default, if you clone the superproject repository,you will not get any submodules. All the submodules will be missing from theworking duplicated directory; only their base directories are here. Thisbehavior is the basis of the optionality of submodules.
We need then to tell Git that we are interested in a given submodule. This isdone by calling the git submodule init command. What this command does is copythe submodule settings from the .gitmodules file into the superproject’srepository configuration, namely, .git/config, registering the submodule:
$ git submodule init plugins/demo
Submodule 'plugins/demo' (https://git.example.com/demo-plugin.git) registered for path
'plugins/demo'The init subcommand adds the following two lines to the .git/config file:
[submodule "plugins/demo"]
 url = https://git.example.com/demo-plugin.gitThis separate local configuration for the submodules you are interested inallows you also to configure your local submodules to point to a differentlocation URL (perhaps, a per-company reference clone of a subproject’srepository) from the one that is present in the .gitmodules file.

This mechanism also makes it possible to provide a new URL if the repository ofa subproject has moved. That’s why the local configuration overrides the onethat is recorded in .gitmodules; otherwise, you would not be able to fetch from

the current URL when switched to the version before the URL change. On theother hand, if the repository moved and the .gitmodules file was updatedaccordingly, we can re-extract the new URL from .gitmodules into localconfiguration with git submodule sync.
We have told Git that we are interested in the given submodule. However, wehave still not fetched the submodule commits from its remote and neither havewe checked it out and have its files present in the working directory of thesuperproject. We can do this with git submodule update.
SHORTCUT COMMAND
In practice, while dealing with submodules using repositories, we usually group the two commands (init
and update) into one with git submodule update --init; unless we need to customize the URL.If you are interested in all the submodules, you can use git clone --recursive (or
git clone --recurse-submodules) to automatically initialize and update eachsubmodule right after cloning.
To temporarily remove a submodule, retaining the possibility of restoring itlater, you can mark it as not interesting with git remote deinit. This just affects
.git/config. To permanently remove a submodule, you need to first deinitialize it,and then remove it from .gitmodules and from the working area (with git rm).
Updating submodules after superproject changes
To update the submodule so that the working directory contents reflect thestate of a submodule in the current version of the superproject, you need toperform git submodule update. This command updates the files of the subprojector, if necessary, clones the initial submodule repository:
$ rm -rf plugins/demo # clean start for this example
$ git submodule update
Submodule path 'plugins/demo': checked out '5e28a713d8e87…'The git submodule update command goes to the repository referenced by
.git/config, fetches the ID of the commit found in the index (git ls-tree HEAD --
plugins/demo), and checks out this version into the directory given by .git/config.You can, of course, specify the submodule you want to update, giving the pathto the submodule as a parameter.

Because we are here checking out the revision given by gitlink, and not by abranch, git submodule update detaches the subproject’s HEAD (see Figure 11.3). Thiscommand rewinds the subproject straight to the version recorded in thesupermodule.
There are a few more things that you need to know:

If you are changing the current revision of a superproject in any way, either by changing a branch,importing a branch with git pull, or rewinding the history with git reset, you need to run git
submodule update to get the matching content to submodules. This is not done automatically bydefault, because it could lead to potentially losing your work in a submodule.
Conversely, if you switch to another branch, or otherwise change the current revision in asuperproject, and do not run git submodule update, Git would consider that you changed yoursubmodule directory deliberately to point to a new commit (while it is really an old commit that youused before but forgot to update). If, in this situation, you would run git commit -a, then byaccident, you will change the gitlink, leading to having an incorrect version of a submodule stored inthe superproject history.
You can upgrade the gitlink reference simply by fetching (or switching to) the version of a submoduleyou want to have by using ordinary Git commands inside the subproject and then committing thisversion in the supermodule. You don’t need to use the git submodule command here.

You can have Git automatically fetch the initialized submodules while pullingthe updates from the master project’s remote repository. This behavior can beconfigured using fetch.recurseSubmodules (or submodule.<name>.fetchRecurseSubmodules).The default value for this configuration is on-demand (to fetch if gitlink changesand the submodule commit that it points to is missing). You can set it to yes or
no to turn recursively fetching submodules on or off unconditionally. Thecorresponding command-line option is --recurse-submodules.
You can pass the --recurse-submodules command-line option to many Gitcommands, including the git pull command, which would then fetch initializedmodules and update working trees of active submodules.
ALWAYS RECURSING INTO ACTIVE SUBMODULES
To make those Git commands that support it use the --recurse-submodules option by default, you can set
the submodule.recurse conüguration option to true. The checkout, fetch, grep, pull, push, read-tree,
reset, restore, and switch commands are supported.Note that instead of checking out the gitlinked revision on the detached HEAD,we can merge the commit recorded in the superproject into the current branchin the submodule with --merge, or rebase the current branch on top of the gitlinkwith --rebase, just like with git pull. The submodule repository branch used

defaults to master, but the branch name may be overridden by setting the
submodule.<name>.branch option in either .gitmodules or .git/config, with the lattertaking precedence.
As you can see, using gitlinks and the git submodule command is quitecomplicated. Fundamentally, the concept of gitlink might fit well with therelationship between subprojects and your superproject, but using thisinformation correctly is harder than you think. On the other hand, it gives greatflexibility and power.
Examining changes in a submodule
By default, the status, logs, and diff output are based solely on the state of theactive repository and do not descend into submodules. This is oftenproblematic; you would need to remember to run git submodule summary. It is easyto miss a regression if you are limited to this view: you can see that thesubmodule has changed but you can’t see how.
You can, however, set up Git to make it use a submodule-aware status withthe status.submoduleSummary configuration variable. If it is set to a nonzero number,this number will provide the --summary-limit restriction; a value of true or -1 willmean an unlimited number.After setting this configuration, you would get something like the following:
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 new file: .gitmodules
 new file: plugins/demo
Submodule changes to be committed:
* plugins/demo 0000000...5e28a71 (3):
 > Fix repository name in a README fileThe status extends the always present information that the submodule changed(new file: plugins/demo), adding the information that the submodule presentat plugins/demo got three new commits, and showing the summary for the lastone (Fix repository name in a README file). The right-pointing anglebracket (>) preceding the summary line means that the commit was added, thatis, present in the working area but not (yet) in the superproject commit.

TRIVIA

Actually, this added part is just the git submodule summary output.For the submodule in question, a series of commits in the submodule betweenthe submodule version in the given superproject’s commit and the submoduleversion in the index or the working tree (the former shown by using --cached)are listed. There is also git submodule status for short information about eachmodule.The git diff command’s default output also doesn’t tell much about the changein the submodule, just that it is different:
$ git diff HEAD -- plugins/demo
diff --git a/plugins/demo b/plugins/demo
new file mode 160000
index 0000000..5e28a71
--- /dev/null
+++ b/plugins/demo
@@ -0,0 +1 @@
+Subproject commit 5e28a713d8e875f2cf1060c2580886dec3e5b04cFortunately, there is the --submodule=log command-line option (which you canenable by default with the diff.submodule configuration setting) that lets us seesomething more useful:
$ git diff HEAD --submodule=log -- plugins/demoSubmodule subrepo 0000000...5e28a71 (new
submodule)Instead of using log, we can use the short format that shows just the names ofthe commits, which is the default if the format is not given (that is, with just git
diff --submodule). Alternatively, we can use the diff format to show an inline diffof the changed contents of the submodule.
Getting updates from the upstream of the
submodule
To remind you, the submodule commits are referenced in gitlinks using theSHA1 identifier, which always resolves to the same revision; it is not a volatile(inconstant) reference such as a branch name. Because of this, a submodule ina superproject does not automatically upgrade (which could possibly bebreaking the application). However, sometimes, you may want to update thesubproject to its upstream.
Let’s assume that the subproject repository got new revisions published and,for our superproject, we want to update to the new version of a submodule.

To achieve this, we need to update the local repository of a submodule, movethe version we want to the working directory of the superproject, and, finally,commit the submodule change in the superproject.
We can do this manually, starting by first changing the current directory to beinside the working directory of the submodule. Then, inside the submodule, weperform git fetch to get the data to the local clone of the repository (in
.git/modules/ in the superproject). After verifying what we have with git log, wecan then update the working directory. If there are no local changes, you cansimply check out the desired revision. Finally, you need to create a commit in asuperproject.In addition to the finer-grained control, this approach has the added benefit ofworking regardless of your current state (whether you are on an active branchor on a detached HEAD).
Another way to go about this would be, working from the container repository,to explicitly upgrade the submodule to its tracked remote branch with git
submodule update --remote. Similarly to the ordinary update command, you canchoose to merge or rebase instead of checking out a branch; you can configurethe default way of updating with the submodule.<name>.update configurationvariable, and the default upstream branch with submodule.<name>.branch.
VARIANTS OF GIT SUBMODULE UPDATE
In short, submodule update --remote --merge will merge the upstream’s subproject changes into the
submodule, while submodule update --merge will merge the superproject gitlink changes into the
submodule.The git submodule update --remote command would fetch new changes from thesubmodule remote site automatically unless told not to with --no-fetch.
Sending submodule changes upstream

One of the major dangers in making changes live directly in a submodule (andnot via its standalone repository) is forgetting to push the submodule. A goodpractice for submodules is to commit changes to the submodule first, push themodule changes, and only then get back to the container project, commit it,and push the container changes.

If you only push to the supermodule repository, forgetting about the submodulepush, then other developers will get an error while trying to get the updates.Though Git does not complain while fetching the superproject, you would seethe problem in the git submodule summary output (and in the git status output, ifproperly configured) and while trying to update the working area:
$ git submodule summary
* plugins/demo 12e3a52...0e90143:
 Warn: plugins/demo doesn't contain commit 12e3a529698c519b2fab790…
$ git submodule update
fatal: reference is not a tree: 12e3a529698c519b2fab790…
Unable to checkout '12e3a529698c519b2fab790…' in submodule path 'plugins/demo'You can plainly see how important it is to remember to push the submodule.You can ask Git to automatically push the submodules while pushing thesuperproject, if it is necessary, with git push --recurse-submodules=on-demand (theother option is just to check). You can also use the push. recurseSubmodulesconfiguration option.
Transforming a subfolder into a subtree or
submoduleThe first issue that comes to mind while thinking of the use cases of subprojectsin Git is about having the source code of the base project ready for suchdivision.
Submodules and subtrees are always expressed as subdirectories of thesuperproject (the master project). You can’t mix files from different subsystemsin one directory.Experience shows that most systems use such a directory hierarchy, even inmonolithic repositories, which is a good beginning for modularization efforts.Therefore, transforming a subfolder into a real submodule/subtree is fairly easyand can be done in the following sequence of steps:

1. Move the subdirectory in question outside the working area of a superproject to have it beside the topdirectory of the superproject. If it is important to keep the history of a subproject, consider using git
subtree split, or git filter-branch --subdirectory-filter or its equivalent, perhaps togetherwith tools such as reposurgeon to clean up the history. See Chapter 10, Keeping History Clean, formore details.

2. Rename the directory with the subproject repository to better express the essence of the extractedcomponent. For example, a subdirectory originally named refresh could be renamed refresh-
client-app-plugin.

3. Create the public repository (upstream) for the subproject as a first-class project (for example, createa new project on GitHub to keep extracted code, either under the same organization as asuperproject, or under a specialized organization for application plugins).
4. Initialize a self-sufficient and standalone plugin as a Git repository with git init. If, in step 1, youhave extracted the history of the subdirectory into some branch, then push this branch into the just-created repository. Set up the public repository created in step 3 as a default remote repository andpush the initial commit (or the whole history) to the just-created URL to store the subproject code.
5. In the superproject, read the subproject you have just extracted but, this time, as a proper submoduleor subtree, whichever solution is a better fit and whichever method you prefer to use. Use the URL ofthe just-created public repository for the subproject.
6. Commit the changes in the superproject and push them to its public repository, in the case ofsubmodules, including the newly created (or the just modified) .gitmodules file.

The recommended practice for the transformation of a subdirectory into astandalone submodule is to use a read-only URL for cloning (adding back) asubmodule. This means that you can use either the git:// protocol (warning: inthis case, the server is unauthenticated) or https:// without a username. Thegoal of this recommendation is to enforce separation by moving the work on asubmodule code to a standalone separate subproject repository. In order toensure that the submodule commits are available to all other developers, everychange should go through the public repository for a subproject.If this recommendation (best practice) is met with a categorical refusal, inpractice, you could work on the subproject source code directly inside thesuperproject, though it is more error-prone. You would need to remember tocommit and push in the submodule first, doing it from inside of the nestedsubmodule subdirectory; otherwise, other developers would be not able to getthe changes. This combined approach might be simpler to use, but it loses thetrue separation between implementing and consuming changes, which shouldbe better assumed while using submodules.
Subtrees versus submodulesIn general, subtrees are easier to use and less tricky. Many people go withsubmodules, because of the better built-in tooling (they have their own Gitcommand, namely, git submodule), detailed documentation, and similarity to theSubversion externals, making them feel falsely familiar. Adding a submodule isvery simple (just run git submodule add), especially compared to adding a subtreewithout the help of third-party tools such as git subtree or git subrepo.

The major difference between subtrees and submodules is that, with subtrees,there’s only one repository, which means just one life cycle. Submodules andsimilar solutions use nested repositories, each with its own lifeline.
Though submodules are easy to set up and fairly flexible, they are also fraughtwith peril, and you need to practice vigilance while working with them. The factthat the submodules are opt-in also means that the changes touching thesubmodules demand a manual update by every collaborator. Subtrees arealways there, so getting the superproject’s changes means getting thesubproject’s too.Commands such as status, diff, and log display precious little information aboutsubmodules, unless properly configured to cross the repository boundary; it iseasy to miss a change. With subtrees, status works normally, while diff and logneed some care because the subproject commits have a different root directory.The latter assumes that you did not decide to not include the subproject history(by squashing subtree merges). Then, the problem is only with the remote-tracking branches in the subproject’s repository, if any.
Because the life cycles of different repositories are separate, updating asubmodule inside its containing project requires two commits and two pushes.Updating a subtree-merged subproject is very simple: only one commit and onepush. On the other hand, publishing the subproject changes upstream is mucheasier with submodules, while it requires changeset extraction with subtrees(here, tools such as git subtree help a lot).The next major issue, and a source of problems, is that the submodule has twosources of the current revision: the gitlink in the superproject and the branchesin the submodule’s clone of the repository. This means that git remote updateworks a bit like a sideways push into a non-bare repository (see Chapter 8,
Advanced Branching Techniques). Submodule heads are, therefore, generallydetached, so any local update requires various preparatory actions to avoidcreating a lost commit. There is no such issue with subtrees. All the revisionchanging commands work as usual with subtrees, bringing the subprojectdirectory to the correct version without the requirement of any additionalaction. Getting changes from the subproject repository is just a subtree mergeaway. The only difference between ordinary pull is the -s subtree option.

Still, sometimes, submodules are the right choice. Compared to subtrees, theyallow for a subproject (a module) to be not fetched, which is helpful when yourcode base is massive. Submodules are also useful when the heavymodularization is not natively handled, or not well natively handled, by thedevelopment stack’s ecosystem.
Submodules might also themselves be superprojects for other submodules,creating a hierarchy of subprojects. Using nested submodules is made easierthanks to the git submodule status, update, foreach, and sync subcommands allsupporting the --recursive switch.
Use cases for subtrees
With subtrees, there is only one repository (no nested repositories), just like aregular code base. This means that there is just one life cycle. One of the keybenefits of subtrees is being able to mix container-specific customizations withgeneral-purpose fixes and enhancements.
Projects can be organized and grouped together in whatever way you find to bemost logically consistent. Using a single repository also reduces the overheadof managing dependencies.The basic example of using subtrees is managing the customized version of alibrary, a required dependency. It is easy to get a development environment setup to run builds and tests. Monorepo makes it also viable to have one universalversion number for all the projects. Atomic cross-submodule commits arepossible; therefore, a repository can always be in a consistent state.
You can also use subtrees for embedding related projects, such as a GUI or aweb interface, inside a superproject. In fact, many use cases for submodulescan also apply to the subtrees solution, with the exception of the cases wherethere is a need for a subproject to be optional, or to have different accesspermissions than a master project. In those cases, you need to use submodules.
Use cases for monorepo
If all subprojects are managed by a single organization or a company, then itmight be advantageous to have all those inter-related projects in a single

repository, which we call monorepo.
One of the advantages is simplified organization. You can group and organizeprojects in whatever way you find to be most logically consistent. You don’tneed to consider how to split them into separate repositories, and how to jointhem into a superproject. It is also easier to navigate and search the history andthe contents if all is in the single repository.Because atomic cross-project commits are possible with monorepo, therepository can be always in a consistent state. It is easier to ensure thateverything uses the same version of a specific component. Making cross-repository/cross-project changes in a polyrepo setting (multiple repositories,one per project, managed with a subtree or submodule strategy) is much moredifficult than in a monorepo.
It is also easier to keep consistent tooling and a common continuous
integration (CI) infrastructure.
Use cases for submodules
The strongest argument for the use of submodules is the issue ofmodularization. Here, the main area of use for submodules is handling pluginsand extensions. Some programming ecosystems, such as ANSI C and C++ andalso Objectve-C, lack good and standard support for managing version-lockedmultimodule projects. In this case, a plugin-like code can be included in theapplication (superproject) using submodules, without sacrificing the ability toeasily update to the latest version of a plugin from its repository. Thetraditional solution of putting instructions about how to copy plugins in theREADME disconnects it from the historical metadata.
This schema can be extended also to the non-compiled code, such as the EmacsLisp settings, configuration in dotfiles, (including frameworks such as oh-my-zsh),and themes (also for web applications). In these situations, what is usuallyneeded to use a component is the physical presence of a module code atconventional locations inside the master project tree, which is mandated by thetechnology or framework being used. For instance, themes and plugins forWordPress, Magento, and so on are often de facto installed this way. In manycases, you need to be in a superproject to test these optional components.

Yet another particular use case for submodules is the division based on access
control and visibility restriction of a complex application. For example, theproject might use a cryptographic code with license restrictions, limiting accessto it to a small subset of developers. With this code in a submodule withrestricted access to its repository, other developers would simply be unable toclone this submodule. In this solution, the common build system needs to beable to skip cryptographic components if it is not available. On the other hand,the dedicated build server can be configured in such a way that the client getsthe application built with crypto enabled.
A similar visibility restriction purpose, but in reverse, is making the sourcecode of examples available long before it was to be published. This allows forbetter code thanks to the social input. The main repository for a book itself canbe closed (private), but having an examples/ directory contain a submoduleintended for a sample source code allows you to make this subrepositorypublic. While generating the book in the PDF and EPUB (and perhaps alsoMOBI) formats, the build process can then embed these examples (orfragments of them), as if they were ordinary subdirectories.
Third-party subproject management solutionsIf you don’t find a good fit in either git subtree or git submodule, you can try to useone of the many third-party projects to manage dependencies, subprojects, orcollections of repositories.One such tool is repo (https://android.googlesource.com/tools/repo/) used bythe Android open source project to unify the many Git repositories for cross-network operations.
Another tool is gil (gitlinks) (https://github.com/chronoxor/gil) to managecomplex recursive repositories dependencies, with cross references and cycles.Compared to submodules, gil avoids including the same dependency multipletimes if the superproject and its subproject use the same library as adependency. This tool also makes it easier to contribute changes upstream thanwith git subtree.If you need to split a single monolithic repository into many standalonerepositories, besides git subtree split, you can use a third-party splitsh-lite tool.

https://android.googlesource.com/tools/repo/
https://github.com/chronoxor/gil

If, on the other hand, you have multiple separate repositories that you want tomerge into a single monorepo, you can use the tomono tool.
You can find many other such tools.
IMPORTANT CONSIDERATION
When choosing between native support and one of the many tools to manage many repositories together,
you should check whether the tool in question uses a subtree-like or submodule-like approach to ünd
whether it would be a good üt for your project.

SummaryThis chapter provided all the tools you need to manage multicomponentprojects with Git, from libraries and graphical interfaces, through plugins andthemes, to frameworks.You learned about the concept behind the subtrees technique and how to use itto manage subprojects. You know how to create, update, examine, and managesubprojects using subtrees.
You got to know the submodule approach of nested repositories for optionaldependencies. You learned the ideas behind gitlinks, .gitmodules, and .git files.You encountered the pitfalls and traps for the unwary that you need to bevigilant about while using submodules. You know the reason for these problemsand understand the notions behind them. You know how to create, update,examine, and manage subprojects using submodules.You learned when to use subtrees and submodules, and their advantages anddisadvantages. You know a few use cases for each technique.
Now that you know how to use Git effectively in a variety of circumstances andhave learned the high-level ideas behind Git behavior that help you understandit, it’s time to tackle how to make Git easier to use in Chapter 13, Customizing
and Extending Git.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. What are subtrees, and what are their advantages and disadvantages?
2. What are submodules, and what are their advantages and disadvantages?

3. Why is the information about submodules duplicated between .gitmodules and project configuration?
AnswersHere are the answers to the questions given above:

1. With subtree merging, the history of the subproject (or its summary) is included in the superprojectrepository, and subproject files are put directly in a subirectory of the superproject and aresuperproject files. Subtrees can be used only for required dependencies, as they are embedded in asuperproject. They are simpler to understand and use.
2. With submodules, repositories and the histories of superproject and subproject are kept separate. Asuperproject includes a link to the commit in a subproject. Submodules can be initialized and active,but can also be kept inactive, thus they can be used for optional dependencies. To include a change,you need to make a change in a subproject and to include it in a commit in a superproject.
3. The information in the project configuration file about submodules is local to the repository and,among others, defines which submodules are active and which are not.

Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:
git-submodule – Initialize, update, or inspect submodules: https://git-scm.com/docs/git-submodule
git-subtree – Merge subtrees together and split the repository into subtrees:https://github.com/git/git/blob/master/contrib/subtree/git-subtree.txt
Git documentation HOWTO – How to use the subtree merge strategy:https://github.com/git/git/blob/master/Documentation/howto/using-merge-subtree.txt
Scott Chacon, Ben Straub: Pro Git, 2nd Edition (2014) https://git-scm.com/book/en/v2

Chapter 7.11 Git Tools - Submodules

Eric Pidoux, Git Best Practices Guide (2014), Packt Publishing Ltd
Chapter 4, Going Deeper into Git, Managing Git Submodules

Johan Abildskov, Practical Git: Confident Git Through Practice (2020), Apress
Chapter 8, Additional Git Features – Git Submodules

Everything you need to know about monorepos and the tools to build them: https://monorepo.tools/

https://git-scm.com/docs/git-submodule
https://github.com/git/git/blob/master/contrib/subtree/git-subtree.txt
https://github.com/git/git/blob/master/Documentation/howto/using-merge-subtree.txt
https://git-scm.com/book/en/v2
https://monorepo.tools/

12

Managing Large RepositoriesBecause of its distributed nature, Git includes the full change history in eachcopy of the repository. Every clone gets not only all the files but every revisionof every file ever committed. This allows for efficient development (localoperations not involving a network are usually fast enough so that they are nota bottleneck) and efficient collaboration with others (their distributed natureallows for many collaborative workflows).But what happens when the repository you want to work on is huge? Can weavoid taking a large amount of disk space for version control storage? Is itpossible to reduce the amount of data that end users need to retrieve whilecloning the repository? Do we need to have all files present to be able to workon a project?
If you think about it, there are broadly three main reasons for repositories tobecome massive: they can accumulate a very long history (every revisiondirection), they can include huge binary assets that need to be managedtogether with code, the project can include a large number of files (every filedirection), or any combination of those. For those scenarios, the techniques andworkarounds are different and can be applied independently, though modernGit also includes a one-stop solution.
Submodules (presented in the previous chapter, Managing Subprojects) aresometimes used to manage large-size assets. This chapter will describe howthis can be done while also presenting alternate solutions to the problem ofhandling large binary files and other large assets in Git.
In this chapter, we will cover the following topics:

Git and large files
Handling repositories with a very long history with a shallow clone
Storing large binary files in a submodule or outside the repository
Reducing the size of the working directory with sparse checkout
How to make a local repository smaller with a sparse clone
Which operations will require network access in different variants of sparse clone

Faster operations with filesystem monitor
Scalar – Git at scale for everyoneThe simplest way to configure Git so that it works better with largerepositories, apart from enabling the relevant Git features, is to use the built-in
scalar tool. This executable has been present in Git since version 2.38, whichwas released in 2022. Earlier, it was a separate project, then part of Microsoft’sfork of Git.
Using it is very simple: instead of using git clone, you use scalar clone. If therepository has already been cloned, you can run scalar register to achieve thesame result. One of the things that the command does is schedule backgroundmaintenance; you can stop this and remove the repository from the list ofrepositories that have been registered with scalar by using the scalar unregistercommand. The scalar delete command unregisters the repository and removes itfrom the filesystem.After a scalar upgrade (which might be caused by moving to newer Git), you canrun scalar reconfigure --all to upgrade all repositories registered with Scalar.
By registering the repository with Scalar (or the top-level directory of theproject, which is called the enlistment in the Scalar documentation), you canturn on partial clone and sparse-checkout, configure Git to use filesystem
monitor, and turn on background maintenance tasks such as repository
prefetching.All these features will be described in the following sections, as will some otherfeatures for handling large Git repositories that are more specific to users’needs.
Handling repositories with a very long historyEven though Git can effectively handle repositories with a long history, very oldprojects spanning a huge number of revisions can become a pain to clone. Inmany cases, you aren’t interested in ancient history and don’t want to pay thetime to get all the revisions of a project and the disk space to store them. In thissection, we will talk about techniques that you can use to clone truncatedhistory, or how to make Git fast despite the long history.

For example, if you want to propose a new feature or a bug fix, you might notwant to wait for the full clone to finish, which may take a while.
EDITING PROJECT FILES ONLINE
Some Git repository hosting services, such as GitHub, oûer a web-based interface to manage repositories,
including in-browser üle management and editing. They may even automatically create a fork of the
repository so that you can write and propose changes.

But a web-based interface doesn’t cover everything, and you might be using self-hosted repositories or a
service that doesn’t provide this feature.However, fixing the bug might require running git bisect on your machine,where the regression bug is easily reproducible (see Chapter 4, Exploring
Project History, for how to use bisection). If you’re tight on space and time, youmight want to try to do either a shallow clone (described in the followingsubsection) or a sparse clone (described later in this chapter).
Using shallow clones to get truncated history

The simple solution to a fast clone and to save disk space is to perform a
shallow clone using Git. This operation allows you to get a local copy of therepository with the history truncated to a particular specified depth – that is,the number of latest revisions.How do you do it? Just use the --depth option:
$ git clone --depth=1 https://git.company.com/projectThe preceding command only clones the most recent revision of the primarybranch. This trick can save quite a bit of time and relieve a great deal of loadfrom the servers. Often, a shallow clone finishes in seconds rather thanminutes, which is a significant improvement. This can be useful if you’re onlyinterested in checking out project files, and not in the whole history, such aswhat’s inside Git hooks or GitHub Actions – that is, the case of builds where youdelete the clone immediately after the action.

Since version 1.9, Git supports pull and push operations even with shallowclones, though some care is still required. You can change the depth of ashallow clone by providing the --depth=<n> option to git fetch (however, note thattags for the deepened commits aren’t fetched). To turn a shallow repositoryinto a complete one, use --unshallow.

IMPORTANT NOTE
Since the commit history in a shallow clone is truncated, commands such as git merge-base and git log
show diûerent results than they would in a full clone. This will happen if you try to go outside the depth of
the clone. Also, because of how the Git server is optimized, incremental fetch in a shallow repository might
take longer than using fetch in a full repository. Fetch might also unexpectedly make the repository not so
shallow.Note that git clone --depth=1 may still get all the branches and all the tags. Thiscan happen if the remote repository doesn’t have HEAD, so it doesn’t have aprimary branch selected; otherwise, only the tip of the said single branch isfetched. Long-lived projects usually had many releases during their longhistory. To save time, you would need to combine shallow clone with the nextsolution: branch limiting.
With modern Git, it might make more sense to use the partial clone featureinstead.
Cloning only a single branch
By default, Git clones all the branches and tags (if you want to fetch notes orreplacements, you need to specify them explicitly). You can limit the amount ofhistory you clone by specifying that you want to clone only a single branch:
$ git clone --branch master --single-branch \
 https://git.company.com/projectBecause most of the project history (most of the DAG of revisions) is sharedamong branches, with very few exceptions, you probably won’t see a hugedifference using this technique.This feature might be quite useful if you don’t want detached orphan branchesor the opposite: you only want an orphan branch (for example, with a web pagefor a project, or a branch used for GitHub Pages). Single-branch cloning workswell in regard to saving disk space when they’re used together with a veryshallow clone (with so short a history that most branches don’t have time toconverge).
Making operations faster in repositories with a
long history

One of the features that makes Git faster on repositories with a very longhistory is the commit-graph file. Using this feature, which is turned on bydefault as of Git 2.24, configures Git to periodically write or update a helper filewith a serialized (and easy-to-access) graph of revisions. This makes Gitoperations that query project history much faster.
You can turn this feature off by setting the core.commitGraph configuration variableto false. If you need to refresh the helper file, you can do this with the git commit-
graph write command.
AVOIDING DOING THE WORK
One unexpected place that might get slower with long history is running git status. This is caused by the
command in question computing detailed ahead/behind counts for the current branch (how many commits
you have on the local branch ahead of the upstream branch in the remote repository, how many commits in
the remote repository you are behind).

You can turn oû computing this information with the --no-ahead-behind option, or by setting the
status.aheadBehind conüguration variable to false. Nowadays, git status will print this advice when it
is slowed by ahead/behind calculations.

Handling repositories with large binary filesIn some specific circumstances, you might need to track huge binary assets inthe code base. For example, gaming teams have to handle huge 3D models, andweb development teams might need to track raw image assets or Photoshopdocuments. Both gaming development and web development might requirevideo files to be under version control. Additionally, sometimes, you might wantthe convenience of including large binary deliverables that are difficult orexpensive to generate – for example, storing a snapshot of a virtual machineimage.
There are some tweaks you can make to improve how binary assets are handledby Git. For binary files that change significantly from version to version (andnot just change some metadata headers), you might want to turn off the delta
compression by adding -delta explicitly for specific types of files in a
.gitattributes file (see Chapter 3, Managing Your Worktrees, and Chapter 13,
Customizing and Extending Git). Git will automatically turn off deltacompression for any file above the core.bigFileThreshold size, which is 512 MiB bydefault. You may also want to turn the compression off (for example, if a file isin the compressed format already). However, because core.compression and

core.looseCompression are global for the whole repository, it makes more sense ifbinary assets are in a separate repository (submodule).
Splitting the binary asset folder into a separate
submodule

One possible way of handling large binary asset folders is to split them into aseparate repository and pull the assets into your main project as a submodule.The use of submodules gives you a way to control when assets are updated.Moreover, if a developer doesn’t need those binary assets to work, they cansimply exclude the submodule with assets from fetching.
The limitation is that you need to have a separate folder with these huge binaryassets that you want to handle this way. Additionally, the service hosting thesubmodule repository with those large assets needs to be able to store thoselarge files; many Git hosting sites impose hard limits on the maximum size of afile, or of the repository.
Storing large binary files outside the repository
Another solution is to use one of the many third-party tools that try to solve theproblem of handling large binary files in Git repositories. Many of them use asimilar paradigm, namely storing the contents of huge binary files outside therepository while providing some kind of pointers to the contents in thecheckout.
There are three parts to each such implementation:

How they store the information about the contents of the managed files inside the repository
How they share large binary files between a team
How they integrate with Git (and their performance penalty)

While choosing a solution, you need to take this data into account, along withthe operating system support, ease of use, and the size of the community.
What’s stored in the repository and what’s checked in might be a symlink to thefile or the key, or it might be a pointer file (often plain text), which acts as areference to the actual file contents (by name or by the cryptographic hash offile contents). The tracked files need to be stored in some kind of backend for

collaboration (cloud service, rsync, shared directory, and so on). Backendsmight be accessed directly by the client, or there might be a separate serverwith a defined API into which the blobs are written, which would, in turn,offload the storage elsewhere.
The tool might either require the use of separate commands for checking outand committing large files and for fetching from and pushing to the backend, orit might be integrated into Git. The integrated solution uses the clean/smudgefilters to handle check-out and check-in transparently, and the pre-push hook tosend large file contents transparently together. You only need to state whichfiles to track and, of course, initialize the repository for the tool use.The advantage of a filter-based approach is its ease of use; however, there is aperformance penalty because of how this approach works. Using separatecommands to handle large binary assets makes the learning curve a bit steeperbut provides better performance. Some tools provide both interfaces.
Among different solutions, there’s git-annex, which has a large community andsupport for various backends, and Git-Large File Storage (Git-LFS), createdby GitHub, which provides good Microsoft Windows support, a client-serverapproach, and transparency (with support for a filter-based approach). The Git-LFS extension is supported not only by GitHub but also by other Git hostingsites and software forges, such as GitLab, Bitbucket, and Gitea. Specializedservices and projects for implementing Git-LFS also exist.There are many other such tools, but those two are the most popular, and bothare still maintained.
VERSIONING DATA FILES FOR DATA ANALYSIS AND MACHINE
LEARNING
Machine learning projects often process large üles or large numbers of üles. Those include the raw dataset,
but also the results of various pre-processing steps, as well as the trained model.

You want to store those large üles or directories somewhere to avoid having to re-download or re-compute
them. On the other hand, you also want to be able to recreate everything from scratch, to make the
science reproducible. Those requirements are diûerent enough from the ones that are encountered in
typical software projects that need to handle large assets, where specialized solutions for integrating data
handling and version control are necessary. Among such solutions, there’s Data Version Control (DVC)
and Pachyderm.

Handling repositories with a large number of files

The rise in the use of monorepos (this concept was explained in detail in
Chapter 11, Managing Subprojects) has led to the need to handle repositorieswith large amounts of files. In a monorepo – that is, a repository composed ofmany interconnected subprojects – you would usually work on a singlesubproject and access and change files only within a specific subdirectory.
Limiting the number of working directory files
with sparse checkout

Git includes the sparse checkout technique, which allows you to explicitlydetail which files and folders you want to populate on checkout. This mode canbe turned on by setting the core.sparseCheckout configuration variable to true anduses the .git/info/sparse-checkout file with the gitignore-like syntax to specifywhat is to appear in the working directory. The index (also known as thestaging area) is populated in full, with the skip-worktree flag set for files missingfrom checkout.
While it can be helpful if you have a huge tree of folders, it doesn’t affect theoverall size of the local repository itself. To reduce the size of the repository, itneeds to be used together with sparse clone (which will be described later).However, sparse checkout definitions are extremely generic. This makes thefeature very flexible but at the cost of bad performance for large definitionsand large amounts of files. With a monorepo, you don’t need that flexibility aseach subproject is contained in its own subdirectory – you only directorymatches in sparse checkout definitions.
To achieve this, you need to use <cone mode= sparse-checkout. Note thatsince Git 2.37, the non-cone mode of the sparse-checkout feature is deprecated(see, for example, the git sparse-checkout command’s documentation). This modehas the additional advantage that it is much easier to use. Everything ismanaged with the help of the git sparse-checkout command.To restrict your working directory to a given set of directories, run thefollowing command:
$ git sparse-checkout set <directory_1> <directory_2>

Earlier versions of the feature required you to run git sparse-checkout init --conefirst, but using this command is no longer needed, and the init subcommand isitself being deprecated.
TIP
If you’re cloning a repository with a large number of üles, you can avoid ülling out the working directory
with them by using the --no-checkout or --sparse option of git clone (the second option will only check
out üles in the top directory of the project). You can add the --filter=blob:none option for even more
speed (turning on blobless sparse clone).At any point, you can check which directories are included in your sparse-
checkout definitions, and are present in your working directory, using thefollowing command:
$ git sparse-checkout listYou can add a new directory to your existing sparse checkout with the addsubcommand, as shown in the following example:
$ git sparse-checkout add <new_directory>At the time of writing, there’s no remove subcommand. To remove a directoryfrom the list of checked-out files, you would need to edit the contents of the
.git/info/sparse-checkout file and then run the following subcommand:
$ git sparse-checkout reapplyThis subcommand reapplies the existing sparse directory specifications to makethe working directory match. It can also be used when some operation updatesthe working directory without fully respecting sparse-checkout definitions. Thismight be caused by using tools external to Git, or by running Git commandsthat do not fully support sparse checkouts.You can turn off this feature and restore the working directory so that itincludes all files by running the git sparse-checkout disable command.
Reducing the local repository size with sparse
clone

The initial section of Chapter 11, Managing Subprojects, described how Gitstores the history of the project, which includes a description of changes,directory structure, and file contents at each revision. This data is stored using

different types of objects: tag objects, commit objects, tree objects, and blobobjects. Objects reference other objects: tags point to commits, commits pointto a parent commit(s), trees represent the state of the project at a givenrevision, and trees point to other trees and blobs.
When running the ordinary git clone command, the client asks the server for thelatest commits (representing the latest revisions). The server provides thoseobjects, all objects they point to, all objects those objects point to, and so on. Inshort, the server provides those commit objects and every other reachableobject (excluding possibly those objects that the client already has). The resultis that you have the whole history of the whole project available locally.Nowadays, however, many developers have network connections available asthey work. Modern Git only allows you to download a subset of objects via
partial clone. In this case, Git remembers where it can get the rest of theobjects, and later asks the server for more data when it turns out to benecessary.
Git’s partial clone feature can be enabled by specifying the --filter option whenrunning the git clone command. There are several filters available, but theserver that hosts the repository you’re cloning can choose to deny your filterand revert to creating a full clone.Running git fetch in sparse clone preserves sparse clone filters, and it doesn’tdownload those types of objects that would not be downloaded by the initialclone.
The two most commonly used filters that should be supported by most Githosting sites are as follows:

Blobless clone: git clone --filter=blob:none <url>
Treeless clone: git clone --filter=tree:0 <url>

When using the --filter=blob:none option, the initial git clone command willdownload everything but the blob objects (which ordinarily contain differentversions of file contents for different files). The checkout part of the cloneoperation (if not suppressed) will download blobs for current versions of projectfiles. The Git client knows how to batch those download requests to ask theserver only for the missing blobs.

With blobless clone, you will trigger a blob download whenever you need the
contents of the file. This means that git log, git merge-base, and other commandsthat do not examine file contents run without the need for additional downloadof blob objects.
Moreover, to examine if the file has been changed, Git can simply compareobject IDs, and it doesn’t need to access the actual contents. Therefore,examining file history with git log -- <path> doesn’t need to download anyobjects either. This command runs with the same performance as in a fullclone. This is the result of the fact that the object ID is based on thecryptographic hash of file contents (Git currently uses SHA-1 for this purpose).Git commands such as git checkout/git switch, git reset --hard <revision>, and git
merge need to download blobs to populate the working directory, the index (thestaging area), or both. To compute diffs, Git also needs to have blobs tocompare; therefore, commands such as git diff or git blame <path> might triggerblob downloads the first time they are run with specific arguments.
In some repositories, the tree data might be a significant portion of therepository’s size. This might happen if the repository has a large amount of filesand directories and deep and wide directory hierarchies. In such cases, using a
treeless clone with the --filter=tree:0 option might offer a better solution.Note that any objects that are only referenced by those objects that wereskipped due to the selected filter will also be missing. This means that thetreeless clone is more sparse than the blobless clone (as only trees can point toblobs… well, a tag object can point to a blob object, but you won’t typicallyencounter this).
The advantage of a treeless clone over a blobless clone is a much faster initialclone and faster subsequent fetches. The disadvantage is that working in atreeless clone is more difficult because downloading a missing tree whenneeded is more expensive. It is also more difficult for the server to notice thatthe client already has some tree objects locally, so the request might send moredata than necessary. Additionally, more commands require additional data tobe downloaded. An example of this is git log -- <file>, which in the bloblessclone could be run without the need to download anything extra. In a treelessclone, the command will start downloading trees for almost every commit in thehistory.

TREELESS CLONES AND SUBMODULES
The repositories that contain submodules (see Chapter 11, Managing Subprojects) may behave poorly with
treeless clones. If you get too many tree download requests, you can either turn oû the automatic fetching
of submodules by ensuring that the fetch.recurseSubmodules conüguration variable is set to false (or by
using the --no-recurse-submodules option) or also ülter submodules by setting the
clone.filterSubmodules conüg option (or using the --recurse-submodules --filter=tree:0 --also-
filter-submodules combination of command-line options).Treeless clones are helpful for automatic builds, when you want to quicklyclone the project, check out a single revision, compile it and/or run a test, andthen throw away the repository (instead of using shallow clone). They are alsouseful if all you’re interested in is examining the history of the whole project.
The treeless clone is a special case of the depth-limited clone; the full syntaxof the tree filter specification is --filter=tree:<depth>. In this case, the clone omitsall blobs and trees whose depth from the root tree (from the top directory ofthe project) is greater than or equal to the specified limit. It can be easily seenthat with <depth> being equal to 0 (that is, --filter=tree:0), the clone will notinclude any trees or blobs (except for those required for initial checkout).
Omitting large file contents with sparse cloneThe partial clone can also work as a tool to help you work with large files. Thisrequires that the Git server (the Git hosting site) supports the specific type offilter. It also doesn’t remove the requirement that at least one remoterepository must include those large files and their history so that you candownload them on demand.You can do this by providing the --filter=blob:limit=<size> option when you’recloning, where <size> can include the k, m, and g suffixes. This will make Gitomit blobs of the size at least <size> bytes, be it KiB, MiB, or GiB (depending onthe suffix). For example, blob:limit=1k is the same as blob:limit=1024.
Matching clone sparsity to checkout sparsityModern Git includes basic support for the sparse clone filter, which makes itomit all blobs that would be not required for sparse checkout. For securityreasons, however, support for the easier-to-use form of --filter=sparse:path=<path>was dropped from Git. The supported form is --filter=sparse:oid=<blob-ish>. Thisform is safe against the time of check to time of use problem, as opposed to the

path-based form, because <blob-ish> (that is, a reference to a blob object)ultimately resolves to the object ID that defines its contents.
At the time of writing, you would be hard to find a Git server that supports thisfilter and doesn’t respond with warning: filtering not recognized by server,
ignoring. But when it starts getting widely supported, one possible solutionwould be to create a tag for every sparse checkout pattern of interest, and thenuse the selected tag for blob-ish:
$ git sparse-checkout set <subdir>
$ git hash-object -t blob -w .git/info/sparse-checkout
bd177ff9527327c67f50c644c421d280bb8b55f5
$ git tag -a -m 'sparse-checkout pattern for <subdir>'
 sparse/<subdir> bd177ff9527327c67f50c644c421d280bb8b55f5
$ git push origin tag sparse-checkout/<subdirectory>
To <repository url>
* [new tag] sparse/<subdir> -> sparse/<subdir>Of course, in the third step, you need to use the SHA-1 that’s output from theprevious command.

In this case, cloning would use the --filter=sparse:oid=sparse/<subdir>^{blob} option(where you would need to use the name of the tag that was created by thesequence of commands shown previously).
Faster checking for file changes with filesystem
monitor

When you run a Git command that operates on the worktree, such as git statusor git diff, Git has to discover what changed relative to the index, or relative tothe specified revision. It does that by searching the entire worktree, which forrepositories with a large number of files can take a long time. It also has torediscover the same information from scratch every time you run such acommand.Filesystem monitor is a long-running daemon or a service process that does thefollowing:
Registers with the operating system to watch specified directories and receive change notificationevents for directories and files of interest
Keeps the pathnames of those changed watched files and directories in some (in-memory) datastructure that can be queried quickly
Responds to client requests for a list of files and directories that have been modified recently

Since version 2.37, Git includes the built-in file system monitor (FSMonitor)known as git fsmonitor--daemon. It is currently available on macOS and Windows.This daemon listens for IPC connections from client processes, such as git
status, and sends a list of changed files over a Unix domain socket or a namedpipe.
Turning it on is very simple; you just need to configure Git to use it. This can bedone with the following command:
$ git config core.fsmonitor trueThis monitor works well with core.untrackedCache, so it is recommended to set thisconfiguration option to true as well.You can query this daemon for the list of watched repositories:
$ git fsmonitor--daemon status
fsmonitor-daemon is watching 'C:/work/chromium'If either the operating system or the filesystem the repository is on does notallow you to use this monitor, there is an option to use the hook-based file

system monitor. This type of hook can be turned on by setting the
core.fsmonitor config option to the path to the filesystem monitor hook. The hookmust support the fsmonitor-watchman hook protocol, and when run return the list ofchanged files on standard output.Git comes with the fsmonitor-watchman.sample file, which is installed inside the
.git/hooks/ directory. Before turning it on, as described in the previousparagraph, rename it by removing the *.sample suffix. If the file is missing, youcan download it from https://github.com/git/git/tree/master/templates. Thishook requires the Watchman file’s watching service(https://facebook.github.io/watchman/) to be installed.
SummaryThis chapter provided solutions to handling large Git repositories, from the useof the Scalar tool to specialized solutions.
First, you learned how to use shallow clone to download and operate on theselected shallow subset of the project history.

https://github.com/git/git/tree/master/templates
https://facebook.github.io/watchman/

Then, you learned how to handle large files by storing them outside therepository or separating them into submodules. The problem of large data indata science projects was briefly mentioned, as were specialized solutions tothis problem.
Finally, you learned how to manage large monorepos with sparse checkout,sparse clone, and filesystem monitor.The next chapter will help you make Git easier to use and better fit it to yourspecific circumstances. This includes configuring repository maintenance,which is particularly important for making working with large repositoriessmooth.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. What is the simplest solution to handling large repositories?
2. How you can make cloning faster for repositories with a long history?
3. How can you handle large files that are needed only by some developers?
4. What techniques make working with repositories with large numbers of files faster?
5. What’s the difference between shallow clone, sparse clone, and sparse checkout?

AnswersHere are the answers to this chapter’s questions:
1. Use the built-in scalar tool, either using it to clone the repository or to register the given repositorywith the tool.
2. You can use shallow clone or blobless sparse clone. In the first case, you would get a shortenedhistory, while in the second case, the repository’s size will be smaller but some operations will requirenetwork access to download additional data.
3. You can store large files outside the repository with Git-LFS or git-annex (or a similar solution). Youcan clone the repository without downloading large file data with the sparse clone feature.
4. Use the sparse checkout feature if you’re only working inside a specific subdirectory, use sparse cloneto reduce repository size, and use filesystem monitor (if possible) to make operations faster.
5. Shallow clone only downloads selected part of the repository history, and all local operations arelimited to this selection, though it is easy to change the depth of the history. Sparse clone reducesrepository size by downloading only a selected subset of objects, fetching those objects on demand, astheir presence becomes necessary to perform operations. Sparse checkout reduces the number ofchecked-out files, making the working directory smaller (and operations faster).

Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:
Introducing Scalar: Git at scale for everyone, by Derrick Stolee (2020):https://devblogs.microsoft.com/devops/introducing-scalar/
The Story of Scalar, by Derrick Stolee and Victoria Dye (2022): https://github.blog/2022-10-13-the-story-of-scalar/
scalar(1) - A tool for managing large Git repositories: https://git-scm.com/docs/scalar
Supercharging the Git Commit Graph, by Derrick Stolee (2018):https://devblogs.microsoft.com/devops/supercharging-the-git-commit-graph/
git-commit-graph(1) - Write and verify Git commit-graph files: https://git-scm.com/docs/git-commit-graph
Git LFS - Git Large File Storage: https://git-lfs.com/
git-annex: https://git-annex.branchable.com/
Get up to speed with partial clone and shallow clone, by Derrick Stolee (2020):https://github.blog/2020-12-21-get-up-to-speed-with-partial-clone-and-shallow-clone/
Bring your monorepo down to size with sparse-checkout, by Derrick Stolee (2020):https://github.blog/2020-01-17-bring-your-monorepo-down-to-size-with-sparse-checkout/
git-sparse-checkout(1) - Reduce your working tree to a subset of tracked files: https://git-scm.com/docs/git-sparse-checkout
git-clone(1) - Clone a repository into a new directory: https://git-scm.com/docs/git-clone
Improve Git monorepo performance with a file system monitor, Jeff Hostetler (2022):https://github.blog/2022-06-29-improve-git-monorepo-performance-with-a-file-system-monitor/
git-fsmonitor--daemon - A Built-in Filesystem Monitor: https://git-scm.com/docs/git-fsmonitor--daemon
githooks - Hooks used by Git: fsmonitor-watchman: https://git-scm.com/docs/githooks#_fsmonitor_watchman

https://devblogs.microsoft.com/devops/introducing-scalar/
https://github.blog/2022-10-13-the-story-of-scalar/
https://git-scm.com/docs/scalar
https://devblogs.microsoft.com/devops/supercharging-the-git-commit-graph/
https://git-scm.com/docs/git-commit-graph
https://git-lfs.com/
https://git-annex.branchable.com/
https://github.blog/2020-12-21-get-up-to-speed-with-partial-clone-and-shallow-clone/
https://github.blog/2020-01-17-bring-your-monorepo-down-to-size-with-sparse-checkout/
https://git-scm.com/docs/git-sparse-checkout
https://git-scm.com/docs/git-clone
https://github.blog/2022-06-29-improve-git-monorepo-performance-with-a-file-system-monitor/
https://git-scm.com/docs/git-fsmonitor--daemon
https://git-scm.com/docs/githooks#_fsmonitor_watchman

13

Customizing and Extending GitEarlier chapters were designed to help you understand how Git works andmaster Git as a version control system. The following two chapters will help youset up and configure Git, so that you can use it more effectively for yourself(this chapter) and help other developers use it (the next chapter).This chapter will cover configuring and extending Git to fit one’s needs. First, itwill show how to set up a Git command line to make it easier to use. For sometasks, though it is easier to use visual tools; the short introduction to graphicalinterfaces in this chapter should help you in choosing one. Next, there will bean explanation of how to change and configure Git behavior, from configurationfiles (with the selected configuration options described) to a per-fileconfiguration with the .gitattributes file.
Then this chapter will cover how to automate Git with hooks, describing forexample how to make Git check whether the commit being created passescoding guidelines for a project. This part will focus on the client-side hook, andwill only touch upon the server-side hooks— those are left for Chapter 14, Git
Administration. The last part of the chapter will describe how to extend Git,from the Git command aliases, through integrating new user-visible commands,to helpers and drivers (new backend abilities).Many issues, such as gitattributes, remote and credential helpers, and thebasics of the Git configuration should be known from the previous chapters.This chapter will gather this information in a single place, and expand it a bit.
In this chapter, we will cover the following topics:

Setting up the shell prompt and Tab completion for a command line
Types and examples of graphical user interfaces
Configuration files and basic configuration options
Installing and using various types of hooks
Simple and complex aliases
Extending Git with new commands and helpers

Git on the command lineThere are a lot of different ways to use the Git version control system. Thereare many graphical user interfaces (GUIs) of varying use cases andcapabilities, and there exist tools and plugins that allow integration with an
integrated development environment (IDE) or a file manager.
However, the command line is the only place you can run all of the Gitcommands and which provides support for all their options. New features,which you might want to use, are developed for the command line first. Also,most of the GUIs implement only some subsets of the Git functionality.Mastering the command line always guarantees a deep understanding of tools,mechanisms, and their abilities. Just knowing how to use a GUI is probably notenough to get a founded knowledge.Whether you use Git on a command line from choice, as a preferredenvironment, or you need it because it is the only way to access the requiredfunctionality, there are a few shell features that Git can tap into to make yourexperience a lot friendlier.
Git-aware command prompt

It’s useful to customize your shell prompt to show information about the stateof the Git repository we are in.
DEFINITION
The shell prompt is a short text message that is written to the terminal or the console output to notify the
user of the interactive shell that some typed input is expected (usually a shell command).This information can be as simple or as complex as you want. Git’s promptmight be similar to the ordinary command-line prompt (to reduce dissonance),or visibly different (to be able to easily distinguish that we are inside the Gitrepository).
There is an example implementation for bash and zsh shells in the contrib/ area. Ifyou install Git from the sources, just copy the contrib/completion/git-prompt.sh fileto your home directory; if you have installed Git on Linux via a packagemanager, you will probably have it at /etc/bash_completion.d/git-prompt.sh. This fileprovides the __git_ps1 shell function to generate a Git-aware prompt in the Git

repositories, but first, you need to source this file in your .bashrc or .zshrc shellconfiguration file:
if [-f /etc/bash_completion.d/git-prompt.sh]; then
 source /etc/bash_completion.d/git-prompt.sh
fiThe shell prompt is configured using environment variables. To set up aprompt, you must change, directly or indirectly, the PS1 (prompt string one, thedefault interaction prompt) environment variable. Thus, one solution to create aGit-aware command prompt is to include a call to the __git_ps1 shell function inthe PS1 environment variable, by using command substitution:
export PS1='\u@\h:\w$(git_ps1 " (%s)")\$ 'Note that, for zsh, you would also need to turn on the command substitution inthe shell prompt with the setopt PROMPT_SUBST command.

Alternatively, for a slightly faster prompt and the possibility of color, you canuse __git_ps1 to set PS1. This is done with the PROMPT_COMMAND environment variablein bash and with the precmd() function in zsh. You can find more information aboutthis option in the comments in the git-prompt.sh file; for bash, it could be thefollowing:
PROMPT_COMMAND='__git_ps1 "\\u@\\h:\\w" "\\\$ "'With this configuration (either solution), the prompt will look as follows:
bob@host.company.org:~/random/src (master)$The Git Bash command from Git for Windows comes out of the box with asimilar prompt configured (though the Git Bash default prompt takes two lines,not one).The bash and zsh shell prompts can be customized with the use of specialcharacters that get expanded by a shell. In the example used here (you can findmore for example in the Bash Reference Manual), we have the following:

\u means the current user (bob)
\h is the current hostname (host.company.org)
\w means the current working directory (~/random/src)
\$ prints the $ part of the prompt (# if you are logged in as the root user)

$(...) in the PS1 setup is used to call external commands and shell functions.
__git_ps1 " (%s)" here calls the git_ps1 shell function provided by git-prompt.sh witha formatting argument: the %s token is the placeholder for the presented Gitstatus. Note that you need to either use single quotes while setting the PS1variable from the command line, as in the example shown here, or escape shellsubstitution, so it is expanded while showing the prompt and not while definingthe variable.
If you are using the __git_ps1 function, Git will also display information about thecurrent ongoing multistep operation: merging, rebasing, bisecting, and so on.For example, during an interactive rebase (-i) on the branch master, the relevantpart of the prompt would be master|REBASE-i. It is very useful to have thisinformation right here in the command prompt, especially if you get interruptedin the middle of the operation.It is also possible to indicate in the command prompt the state of the workingtree, the index, and so on. We can enable these features by exporting theselected subset of these environment variables (for some features you canadditionally turn it off on a per-repository basis with provided boolean-valuedconfiguration variables):

GIT_PS1_SHOWDIRTYSTATE (with bash.showDirtyState for per-repository settings) shows “*” forunstaged changes and “+” for staged changes, if set to a non-empty value.
GIT_PS1_SHOWSTASHSTATE shows “$” if something is stashed.
GIT_PS1_SHOWUNTRACKEDFILES and bash.showUntrackedFiles show “%” if there are untracked filesin the working directory.
GIT_PS1_SHOWUPSTREAM and bash.showUpstream can be used to configure the ahead-behind state ofthe upstream repository, with a value of auto in a space-separated list of values makes the promptshow whether you are behind “<”, up to date “=”, or ahead “>” of the upstream, name shows theupstream name, and verbose details the number of commits you are ahead/behind (with sign; forexample "+1" for being 1 commit ahead). git compares HEAD to @{upstream} and svn to the SVNupstream.
GIT_PS1_DESCRIBE_STYLE can be set to configure how to show information about a detached HEADsituation; it can be set to one of the following values: contains uses newer annotated tags(v1.6.3.2~35), branch uses newer tag or branch (main~4), describe uses the older annotated tag(v1.6.3.1-13-gdd42c2f), tag uses any tag, default shows tag only if it is exactly matching the currentcommit.
GIT_PS1_SHOWCONFLICTSTATE set to “yes” will notify the user if there are unresolved conflicts with
|CONFLICT.

GIT_PS1_SHOWCOLORHINTS can be used to configure colored hints about the current dirty state, that isabout whether there are uncommitted changes (like git status -sb does).
GIT_PS1_HIDE_IF_PWD_IGNORED or bash.hideIfPwdIgnored are used to not show a Git-aware promptif the current directory is set to be ignored by Git, even if we are inside a repository.

If you are using the zsh shell, you can take a look at the zsh-git set of scripts, the
zshkit configuration scripts, or the oh-my-zsh framework available for zsh, insteadof using bash—first complete the prompt setup from the Git contrib/.Alternatively, you can use the vcs_info subsystem built in to zsh.There are also alternative prompt solutions for bash (usually for multipledifferent shells), for example, git-radar or powerline-shell.
TIP
You can, of course, generate your own Git-aware prompt. For example, you might want to split the current
directory into the repository path part and the project subdirectory path part with the help of the git rev-
parse command.

Command-line completion for Git
Another shell feature that makes it easier to work with the Git command line isthe programmable command-line completion. This feature can dramaticallyspeed up typing Git commands. Command-line completion allows you to typethe first few characters of a command, or a filename, and press the completionkey (usually Tab) to fill the rest of the item. With the Git-aware completion, youcan also fill in subcommands, command-line parameters, remotes, branches,and tags (ref names), each only where appropriate (for example, remote namesare completed only if the command expects the remote name at a givenposition).
Git comes with built-in (but not always installed) support for the auto-completion of Git commands for the bash and zsh shells.For bash, if the completion functionality is not installed with Git (at
/etc/bash_completion.d/git.sh in Linux by default), you need to get a copy of the
contrib/completion/git-completion.bash file out of the Git source code. Copy itsomewhere accessible, such as your home directory, and source it from your
.bashrc or .bash_profile:
. ~/git-completion.bash

Once the completion for Git is enabled, to test it, you can start to type a Gitcommand, then press the Tab key. For example, you can type git check and thenpress Tab:
$ git check<TAB>With Git completion enabled, the bash (or zsh) shell would autocomplete whatyou entered so far to git checkout.

Similarly, in an ambiguous case, a double Tab press shows all the possiblecompletions (though this is not true for all shells; some instead cycle throughdifferent completions):
$ git che<TAB><TAB>
checkout cherry cherry-pickThe completion feature also works with options; this is quite useful if you don’tremember the exact option but only the prefix:
$ git config --<TAB><TAB>
--add --get-regexp --remove-section --unset
[…]

IMPORTANT NOTE
Instead of the list of possible completions, some shells use (or can be conügured to use) rotating
completion, where with multiple possible completions, each Tab shows a diûerent completion for the same
preüx (cycling through them).Note that command-line completion (also called tab completion) generallyworks only in the interactive mode, and is based on the unambiguous prefix,not on the unambiguous abbreviation.
Autocorrection for Git commands

An unrelated built-in Git tool, but similar to tab completion, is autocorrection.By default, if you type something that looks like a mistyped command, Githelpfully tries to figure out what you meant. It still refuses to perform theguessed operation, even if there is only one candidate:
$ git chekout
git: 'chekout' is not a git command. See 'git --help'.
The most similar command is
 checkout

However, with the help.autoCorrect configuration variable set to a positivenumber, Git will automatically correct and execute the mistyped commandsafter waiting for the given number of deciseconds (0.1 of second). You can usea negative value with this option for immediate execution, or zero to go back tothe default:
$ git chekout
WARNING: You called a Git command named 'chekout', which does not exist.
Continuing in 0.1 seconds, assuming that you meant 'checkout'.
Your branch is up-to-date with 'origin/master'.If there is more than one command that can be deduced from the entered text,nothing will be executed. This mechanism works only for Git commands; youcannot autocorrect subcommands, parameters, and options (as opposed to tabcompletion).
Making the command line prettier
Git fully supports a colored terminal output, which greatly aids in visuallyparsing the command output. A number of options can help you set the coloringto your preference.
First, you can specify when to use colors, such as for the output of certaincommands. There is a color.ui master switch to control output coloring to turnoff all of Git’s colored terminal outputs and set them to false. The defaultsetting for this configuration variable is auto, which makes Git color the outputwhen it’s going straight to a terminal, but omit the color-control codes whenthe output is redirected to a file or a pipe.You can also set color.ui to always, though you’d rarely want this: if you wantcolor codes in your redirected output, simply pass a --color flag to the Gitcommand; conversely, the --no-color option would turn off the colored output.
If you want to be more specific about which commands and which parts of theoutput are colored, Git provides appropriate coloring settings: color.branch,
color.diff, color.interactive, color.status, and so on. Just as with the color.ui masterswitch, each of these can be set to true, false, auto, and always.In addition, each of these settings has subsettings that you can use to setspecific colors for specific parts of the output. The color value of suchconfiguration variables – for example, color.diff.meta (to configure the coloring

of meta information in your diff output) – consists of space-separated names ofthe foreground color, the background color (if set), and the text attribute.
You can set the color to any of the following values: normal, black, red, green, yellow,
blue, magenta, cyan, or white. As for the attributes, you can choose from bold, dim, ul(underline), blink, and reverse (swap the foreground color with the backgroundone).The pretty formats for git log also include an option to set colors; see the git logdocumentation for more information.
EXTERNAL TOOLS
There are diû syntax highlighters that can be used with Git. They can be set up to work as a pager with the
core.pager conüg variable, or conügured via an alias. Examples include delta
(https://dandavison.github.io/delta) and diff-highlight from the contrib area of Git source code.

Alternative command line

To understand some of the rough edges of the Git user’s interface, you need toremember that Git was developed to a large extent in a bottom-up fashion.Historically, Git began as a tool to write version-control systems (you can seehow early Git was used in the A Git core tutorial for developers documentationthat you can view with the git help core-tutorial command).The first alternative “porcelain” (i.e., alternative user interface) for Git was
Cogito. Nowadays, Cogito is no more; all of its features have long beenincorporated into Git (or replaced by better solutions). There were someattempts to write wrapper scripts (alternative UIs) designed to make it easy tolearn and use, for example, Easy Git (eg) and the newer Gitless. Jujutsu (jj) isa version control system in the early stages of development that can use Gitrepositories to store project history, and thus can be thought as a layer on topof Git, too.
There are also external Git porcelains that do not intend to replace the wholeuser interface, but either provide access to some extra features, or wrap Git toprovide some restricted feature set. Patch management interfaces, such as
StGit, TopGit, or Guilt (formerly Git Queues (gq)), are created to make it easyto rewrite, manipulate, and clean up selected parts of the unpublished history;these were mentioned as an alternative to an interactive rebase in Chapter 10,

https://dandavison.github.io/delta

Keeping History Clean. Then, there are single-file version control systems, suchas Zit, which use Git as a backend.
ALTERNATIVE IMPLEMENTATIONS
Beside alternative user interfaces, there are also diûerent implementations of Git (deüned as reading and
writing Git repositories). They are at diûerent stages of completeness. Besides the core C implementation,
there is JGit in Java, and also the libgit2 project—the modern basis of Git bindings for various
programming languages.

Graphical interfacesYou have learned how to use Git on the command line. The previous sectiontold you how to customize and configure it to make it even more effective. Butthe terminal is not the end. There are other kinds of environments you can useto manage Git repositories. Sometimes, a visual representation is what youneed.
Now, we’ll take a short look at the various kinds of user-centered graphicaltools for Git; the tour of Git administrative tools is left for the next chapter,
Chapter 14, Git Administration.
Types of graphical tools
Different tools and interfaces are tailored for different workflows. Some toolsexpose only a selected subset of the Git functionality or encourage a specificway of working with version control.
To be able to make an informed choice when selecting a graphical tool for Git,you need to know what types of operations the different types of tools support.Note that one tool can support more than one type of use.
First, there is the graphical history viewer. You can think of it as a powerfulGUI over git log. This is the tool to be used when you are trying to findsomething that happened in the past, or you are visualizing and browsing yourproject’s history and the layout of branches. Such tools usually accept revisionselection command-line options, such as --all. Command-line Git has git log --
graph and the less-used git show-branch that uses ASCII art to show the history.
A similar tool is graphical blame, showing the line-wise history of a file. Foreach line, it can show when that line was created and when it was moved or

copied to the current place. You can examine the details of each of the commitsshown and usually browse through the history of the lines in a file. Other toolswith similar applications, namely examining the evolution of the line range (git
log -L) and the so-called pickaxe search (git log -S), do not have many GUIs.
Next, there are commit tools meant primarily to craft (and amend) commits,though usually they also include some kind of worktree management (forexample, ignoring files and switching branches) and functionality for
management of remotes. Such tools usually show both unstaged and stagedchanges, allowing you to move files between these states. Some of those tools,such as the interactive versions of git add, git reset, and so on, even allow you tostage and unstage individual chunks of changes. A graphical version of aninteractive add is described in Chapter 3, Managing Your Worktrees, andmentioned in Chapter 2, Developing with Git. There are also tools to craftcommit messages following specified criteria.
Then, we have üle manager integration (or graphical shell integration).These plugins usually show the status of the file in Git(tracked/untracked/ignored) using icon overlays. They can offer a contextmenu for a repository, directory, and file, often with accompanying keyboardshortcuts. They may also bring drag and drop support.
Programmer editors and IDE) often offer support for IDE integration with Git(or version control in general). These offer repository management (as a part ofteam project management), make it possible to perform Git operations directlyfrom the IDE, show the status of the current file and the repository, andperhaps even annotate the view of the file with version control information.They often include the commit tool, remote management, the history viewer,and the diff viewer.
Git repositories’ hosting sites often offer workflow-oriented desktop clients.These mostly focus on a curated set of commonly used features that work welltogether in the flow. They automate common Git tasks. They are often designedto highlight their service, offering extra features and integration, but they willwork with any repository hosted anywhere.
There are even specialized editors and pagers, such as a graphical editor forthe interactive rebase instruction sheet (see Chapter 9, Merging Changes
Together), that can be set up with the sequence.editor config variable, or a syntax

highlighting tool for diffs that can be set up as the default Git pager with
core.pager.
Graphical diff and merge tools

Graphical diff tools and graphical merge tools are somewhat special cases. Inthese categories, Git includes the commands for integration with third-partygraphical tools, namely, git difftool and git mergetool. These tools are then calledfrom the Git repository. Note that this is different from the external diff or diffmerge drivers, which replace ordinary git diff or augment it.Although Git has an internal implementation of diff and a mechanism for mergeconflict resolutions (see Chapter 9, Merging Changes Together), you can use anexternal graphical diff tool instead. These are often used to show thedifferences better (usually, as a side-by-side diff, possibly with refinements),and help resolve a merge (often with a three-pane interface).
Configuring the graphical diff or graphical merge tool requires configuring anumber of custom settings. To tell which tool to use for diff and merge,respectively, you can set up diff.tool and merge.tool, respectively. Withoutsetting, for example, the merge.tool configuration variable, the git mergetoolcommand would print the information on how to configure it, and will attemptto run one of predefined tools:
$ git mergetool
This message is displayed because 'merge.tool' is not configured.
See 'git mergetool --tool-help' or 'git help config' for more details.
'git mergetool' will now attempt to use one of the following tools:
tortoisemerge emerge vimdiff
No files need mergingRunning git mergetool --tool-help will show all the available tools, including thosethat are not installed. If the tool you use is not in $PATH, or it has the wrongversion of the tool, you can use mergetool.<tool>.path to set or override the pathfor the given tool:
$ git mergetool --tool-help
'git mergetool --tool=<tool>' may be set to one of the following:
 vimdiff Use Vim with a custom layout
[…]
The following tools are valid, but not currently available:
 araxis Use Araxis Merge
[…]
Some of the tools listed above only work in a windowed
environment. If run in a terminal-only session, they will fail.

If there is no built-in support for your tool, you can still use it; you just need toconfigure it. The mergetool.<tool>.cmd configuration variable specifies how to runthe command, while mergetool.<tool>.trustExitCode tells Git whether the exit codeof that program indicates a successful merge resolution or not. The relevantfragment of the configuration file (for a graphical mergetool named extMerge)could look as follows:
[merge]
 tool = extMerge
[mergetool "extMerge"]
 cmd = extMerge "$BASE" "$LOCAL" "$REMOTE" "$MERGED"There are a few config options that control git mergetool behavior, either globallyor on a per-tool basis. One of those is mergetool.hideResolved (and its per-tool
mergetool.<tool>.hideResolved variant), which makes Git resolve as many conflictsas possible by itself, and presents only unresolved conflicts to the merge tool.Note that some merge tools do this themselves.Some merge tools, such as vimdiff, are text interface tools that can workwithout the need for a graphical session. If you want to run one tool in textmode (for example, when using plain SSH access to a remote host), andanother one in graphical mode, you can do this by configuring mergetool.tool inone tool, and mergetool.guitool in another – and use git mergetool --gui to invokethe GUI one.
Graphical interface examples

In this section, you will be presented with a selection of tools around Git thatyou could use, or that might prompt you to research further. A nice way to helpyou start this research is to list some selected GUI clients.There are two visual tools that are a part of Git and are usually installed with it,namely gitk and git-gui. They are written in Tcl/Tk. gitk is a graphical
history viewer, while git gui is a graphical commit tool; there is also git gui
blame, a visually interactive line-history browser. These tools areinterconnected: for example, browsing history from git gui opens gitk.
Visual tools do not need to use the graphical environment. There is tig (shortfor Text Interface for Git) that uses a nurses-based text-mode interface (TUI)

and functions as a repository browser and commit tool and can act as a Gitpager.
Another TUI example is git interactive-rebase-tool, which can be set up as aninteractive sequence editor for the interactive rebase instruction sheet.
There is git cola, developed in Python and available for all the operatingsystems, which includes commit tools and remotes management, and also a diffviewer. Then, there is the simple and colorful Gitg tool for GNOME; you willget a graphical history viewer, diff viewer, and file browser.
One of the more popular open source GUI tools for macOS is GitX. There are alot of forks of this tool; one of the more interesting ones is Gitbox. It featuresboth the history viewer and commit tools.
For MS Windows, there is TortoiseGit and git-cheetah, both of which offerintegration into the Windows context menu, so you can perform Git commandsinside Windows Explorer (the file manager integration and shell interface).
GitHub Inc. and Atlassian both released a desktop GUI tool that you can easilyuse with your GitHub or Bitbucket repository, respectively, but neither tool isnot limited to only interacting with a single service (GitHub or Bitbucket,respectively). Both GitHub Client and SourceTree feature repositorymanagement and offer a range of other common facilities to enhance yourdevelopment workflow.Many programming editors and IDEs have support for managing Gitrepositories, and sometimes also for interacting with Git hosting sites. This canbe either built in, or available as IDE plugins or extensions. Examples include
GitLens for Visual Studio Code, Magit for GNU Emacs, and Fugitive for ViM.Those tools often show information such as which lines are added or changed,or who authored them, inside the editor pane.
Configuring GitSo far, while describing how Git works and how to use it, we have introduced anumber of ways to change its behavior. In this section, it will be explained in asystematic fashion how to configure Git operations on a temporary andpermanent basis. We will also see how you can make Git behave in acustomized fashion by introducing and reintroducing several important

configuration settings. With these tools, it’s easy to get Git to work the way youwant it to.
Command-line options and environment variables

Git processes the switches that change its behavior in a hierarchical fashion,from the least specific to the most specific one, with the most specific one (andshortest term) taking precedence.The most specific one, overriding all the others, is the command-line options.They affect, obviously, only the current Git command.
IMPORTANT NOTE
One issue to note is that some command-line options, for example, --no-pager or --no-replace-objects,
go to the git wrapper, not to the Git command itself. Examine, for example, the following line to see the
distinction:

$ git --no-replace-objects log -5 --oneline --graph --decorateYou can find the conventions used through the Git command-line interface onthe manpage.
The second way to change how the Git command works is to use environmentvariables. They are specific to the current shell, and you need to use the exportbuilt-in command (or its equivalent) to propagate the variables to thesubprocesses if a replacement is used. There are some environment variablesthat apply to all core Git commands, and some that are specific to a given(sub)command.Git also makes use of some nonspecific environment variables. These are meantas a last resort; they are overridden by their Git-specific equivalents. Examplesinclude variables such as PAGER and EDITOR.
Git configuration files

The final way to customize how Git works is with the configuration files. Inmany cases, there is a command-line option to configure an action, anenvironment variable for it, and finally a configuration variable, in descendingorder of preference.

Git uses a series of configuration files to determine non-default behavior thatyou might want to have. There are four layers of these files that Git looksthrough for configuration values. Git reads all these files in order from the leastspecific to the most specific one. The settings in the later ones override thoseset in the earlier ones. You can access the Git configuration with the git configcommand: by default, it operates on the union of all the files, but you canspecify which one you want to access with the command-line options. You canalso access any given file following the configuration file syntax (such as the
.gitmodules file mentioned in Chapter 11, Managing Subprojects) by using the --
file=<pathname> option (or the GIT_CONFIG environment variable).
TIP
You can also read the values from any blob with conüguration-like contents; for example, you may use git
config --blob=master:.gitmodules to read from the .gitmodules üle in the master branch.The first place Git looks for configuration is the system-wide conüguration
üle. If Git is installed with the default settings, it can be found in /etc/gitconfig.Well, at least, on Linux it is there, as the Filesystem Hierarchy Standard(FHS) states that /etc is the directory for storing the host-specific system-wideconfiguration files; Git for Windows puts this file in the subdirectory of its
Program Files folder. This file contains the values for every user on the systemand all their repositories. To make git config read from and write and to this filespecifically (and to open it with --edit), pass the --system option to the git configcommand.You can skip the reading settings from this file with the GIT_CONFIG_NOSYSTEMenvironment variable. This can be used to set up a predictable environment orto avoid using a buggy configuration you can’t fix.
The next place Git looks is the user-speciüc conüguration üle: ~/.gitconfig,falling back to ~/.config/git/config if it exists (with the default configuration).This file is specific to each user and it affects all of the user’s repositories. Ifyou pass the --global option to git config, it will read and write from this filespecifically. Reminder: here, as in the other places, ~ (the tilde character)denotes the home directory of the current user ($HOME).
Finally, Git looks for the configuration values in the per-repository
conüguration üle in the Git repository you are currently using, which is (bydefault and for non-bare repositories) .git/config. Values set there are specific

to that local single repository. You can make Git read and write to this file bypassing the --local option.
With modern Git, if the extensions.worktreeConfig is set to true (the default value isfalse), there can also be a per-worktree conüguration üle in the
.git/config.worktree file (see the git worktree command).Each of these levels (system, global, and local) overrides the values from theprevious level, so for example, values in .git/config trump those in ~/.gitconfig;well, unless the configuration variable is multivalued.
TIP
You can use the fact that the local (per-repository) conüguration overrides the global (per-user)
conüguration to have your default identity in the per-user üle and to override it if necessary on a per-
repository basis with a per-repository conüguration üle.Finally, you can set the config variable for an individual command with the -coption to the git wrapper:
$ git -c foo.int=1k config --get --type=int foo.int
1024See the following sections for a full explanation of this result.

The syntax of Git configuration filesGit’s configuration files are plain text, so you can also customize Git’s behaviorby manually editing the chosen file. The syntax is fairly flexible and permissive;whitespaces are mostly ignored (contrary to .gitattributes). The hash # and thesemicolon ; characters begin comments, which last until the end of the line.Blank lines are ignored.
The file consists of sections and variables, and its syntax is similar to the syntaxof INI files. Both the section names and variable names are case-insensitive. Asection begins with the name of the section in square brackets [section] andcontinues until the next section. Each variable must begin at some section,which means that there must be a section header before the first setting of avariable. Sections can repeat and can be empty.Sections can be further divided into subsections. Subsection names are case-sensitive and can contain any character except newline (double quotes " andbackslash \ must be escaped as \" and \\, respectively). The beginning of thesubsection will look as follows:

[section "subsection"]All the other lines (and the remainder of the line after the section header) arerecognized as a setting variable in the name = value form. As a special case, just
name is a shorthand for name = true (boolean variables). Such lines can becontinued to the next line by ending it with \ (the backslash character), that isby escaping the end-of-line character. Leading and trailing whitespaces arediscarded; internal whitespaces within the value are retained verbatim. You canuse double quotes to preserve leading or trailing whitespaces in values.
Includes and conditional includesYou can include one config file from another by setting the special variable
include.path to the path of the file to be included. The included file will beexpanded immediately, similar to the mechanism of #include in C and C++. Thepath is relative to the configuration file with the include directive. You can turnthis feature off with the --no-includes option.
You can also conditionally include a config file from another similarly by settingan includeIf.<condition>.path variable. The condition starts with a keyword,followed by a colon :, and data relevant to the type of conditional included.The supported keywords are as follows:

gitdir, where the data that follows the keyword is used as a glob pattern to match the location of the
.git directory (of the repo itself). For convenience, ~and ~/ at the beginning of the pattern aresubstituted with the location of the home directory, and ./ at the beginning of the pattern is replacedwith the directory containing the current config file. There is also gitdir/i variant that does thematching in a case-insensitive way.
onbranch, which can be used to match the currently checked-out branch against the glob pattern.
hasconüg:remote.*.url, which checks whether, in any of the configuration, there exists at least oneremote URL that matches the glob pattern.

For example, to use a different configuration for repositories inside the work-
repos/ subdirectory in your home directory, you could use the following:

[includeIf "gitdir:~/work-repos/"]
 path = ~/work.inc

Accessing the Git configurationYou can use the git config command to access the Git configuration, startingfrom listing the configuration entries in a canonical form, through examining

individual variables, to editing and adding entries.
You can query the existing configuration with git config --list, adding anappropriate parameter if you want to limit to a single configuration layer. On aLinux box with the default installation, in the fresh empty Git repository justafter git init, the local (per-repository) setting would look approximately likethe following:
$ git config --list --local
core.repositoryformatversion=0
core.filemode=false
core.bare=false
core.logallrefupdates=trueYou can also use git var -l to list all configuration and environment variablesaffecting Git.You can also query a single key with git config, limiting (or not) the scope to thespecified file, by giving the name of the configuration variable as a parameter(optionally preceded by --get), with the section, optional subsection, andvariable name (key) separated by a dot:
$ git config user.emailThis would return the last value, that is, the one with the greatest precedence.You can get all the values with --get-all, or specific keys with --get-regexp=<match>.This is quite useful while accessing a multivalued option such as refspecs for aremote.

TYPES OF CONFIGURATION VARIABLES AND TYPE SPECIFIERS
While requesting (or writing) a conüg variable, you can give a type speciüer with the --type=<type>
option. The type can be bool, which ensures that the returned value is true or false; int, which expands
the optional value suffix of k (1,024 elements), m (1024k), or g (1024m); path, which expands ~ for the
value of $HOME; and ~user for the home directory of the given user, and expiry-date to convert a üxed or
relative date string to a timestamp.

There is also bool-or-int, and a few options related to storing colors and retrieving color escape codes;
see the git config documentation.With --get, --get-all, and --get-regexp, you can also limit the listing (and thesettings for multiple-valued variables) to only those variables matching thevalue regexp (which is passed as an optional last parameter). For example, tofind all configurations that affect proxying for a given host, you can use thefollowing command:
$ git config --get core.gitproxy 'for kernel\.org$'

You can also use the git config command to set the configuration variable value.The local layer (per-repository file) is the default for writing if nothing else isspecified. For example, to set the email address of the user, which is to becommon to most of their repositories, you can run the following:
$ git config --global user.name "Alice Developer"For multivalue configuration options (multivar), you can add multiple lines to itby using the --add option. To change a single entry of a multivar config variable,you can use something like the following command, where the first valuedenotes which value to change, and the second denotes the new value:
$ git config core.gitproxy '"ssh" for kernel.org' '"ssh" for kernel\.org$'It is also very easy to delete configuration entries with git config --unset.

Instead of setting all the configuration values on the command line, as shown inthe preceding example, it is possible to set or change them just by editing therelevant configuration file directly. Simply open the configuration file in yourfavorite editor, or run the git config --edit command.The local repository configuration file just after a fresh git init on Linux looksas follows:
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = trueIf you want to change a configuration by editing the configuration file, it mightbe prudent to first find out where the configuration variable you want tochange came from.

Finding where configuration value came fromWith three (or four) layers of configuration files, it might be difficult to find outwhere the given configuration variable was set, and whether it was overriddenor added to in a more specific configuration file. Then there is the additionalcomplication of taking into account the include and includeIf sections.That is where the --show-origin and --show-source options passed to the git configcommand together with the --list or --get/--get-all options can help. The git
config --list command will list all variables set in config files, along with their

values. The --show-scope option augments the output of all queried config optionswith the scope of that value (worktree, local, global, system, command), while -
-show-source shows the origin type (file, standard input, command line, blob) andthe actual origin (config file path, or blob ID, if applicable).
DEBUGGING PER-FILE CONFIGURATION
You can use git check-ignore to examine why a üle is ignored, and git check-attr to ünd out the
attributes assigned to the üle and where they came from.For example, let’s assume that user identity is defined in a per-userconfiguration file: ~/.gitconfig
[user]
 name = Joe Random
 email = joe@company.comLet’s also assume that the git config command was used to create the work.incfile in the top directory of the project, and to include it from the per-repositoryconfig file:
$ git config --file=conf.inc foo.bar val
$ git config --local include.path ./conf.incIn that context, we would get the following query results, shown here inshortened form:
$ git config --show-scope --show-origin --list
global file:/home/joe/.gitconfig user.name=Joe Random
global file:/home/joe/.gitconfig user.email=joe@company.com
local file:.git/config core.repositoryformatversion=0
local file:.git/config core.filemode=false
[…]
local file:.git/config include.path=./../conf.inc
local file:.git/./../conf.inc foo.bar=valThe first column shows the scope, the second column the origin, and the thirdthe fully qualified config variable and its value.

Basic client-side configurationYou can divide the configuration options recognized by Git into two categories:client side and server side. The majority of the options are about configuringyour personal working preferences; they are client side. The server-sideconfiguration will be touched upon in more detail in Chapter 14, Git
Administration; in this section, you will find only the basics.

There are many supported configuration options, but only a small fraction ofthem needs to be set; a large fraction of them has sensible defaults, andexplicitly setting them is only useful in certain edge cases. There are a lot ofoptions available; you can see a list of all the options with git config --help. Herewe’ll be covering only the most common and most useful options.
Two variables that really need to be set up are user.email and
user.name.Those configuration variables define the user’s identity (though inmodern Git, you can set up separate identities for authoring changes and forcommitting them with author.name and committer.name). Also, if you aresigning annotated tags or commits (as discussed in Chapter 6, Collaborative
Development with Git), you might want to set up your GPG signing key ID. Thisis done with the user.signingKey configuration setting.By default, Git uses whatever you’ve set on the system as your default texteditor (defined with the VISUAL or EDITOR environment variables; the first only forthe graphical desktop environment) to create and edit your commit and tagmessages. It also uses whatever you have set as the pager (PAGER) for paginatingand browsing the output of the Git commands. To change this default tosomething else, you can use the core.editor setting. The same goes for
core.pager. Git would ultimately fall back on the vi editor and on the lesspager.
With Git, the pager is invoked automatically. The default less pager supportsnot only pagination, but also incremental search and other features.
IMPORTANT NOTE
With the default conüguration (the LESS environment variable is not set), less when invoked by Git works
as if it was invoked with LESS=FRX. This means that it would skip pagination if there were less than one
page of output, it would pass through ANSI color codes, and it would not clear the screen on exit.Creating commit messages is also affected by commit.template. If you set thisconfiguration variable, Git will use that file as the default message when youcommit. The template is not distributed with the repository in general. Notethat Git would add the status information to the commit message templateunless it is forbidden to do it by setting commit.status to false.
Such a template is quite convenient if you have a commit-message policy, as itgreatly increases the chances of this policy being followed. It can, for example,include the commented-out instructions for filling the commit message. You can

augment this solution with an appropriate hook that checks whether thecommit message matches the policy (see the Commit process hooks sectionlater in this chapter).
The status of the files in the working area is affected by the ignore patterns andthe file attributes (see Chapter 3, Managing Your Worktrees). You can putignore patterns in your project’s in-tree .gitignore file (usually, .gitignore is aboutwhich files are not to be tracked, and it is tracked itself by Git), or in the
.git/info/excludes file for local and private patterns, to define which files are notinteresting. These are project-specific; sometimes, you would want to write akind of global (per-user) .gitignore file. You can use core.excludesFile tocustomize the path to the said file; in modern Git, there is a default value forthis path, namely, ~/.config/git/ignore. There is also a corresponding
core.attributesFile for this kind of global .gitattributes files, which defaults to
~/.config/git/attributes.
TRIVIA
Actually, it is $XDG_CONFIG_HOME/git/ignore; if the $XDG_CONFIG_HOME environment variable is not set or
is empty, $HOME/.config/git/ignore is used.Although Git has an internal implementation of diff, you can set up an externaltool to be used instead with the help of diû.external. You would usually wantto create a wrapper script that massages the parameters that Git passes to itand passes the ones needed in the order external diff requires. By default, Gitpasses the following arguments to the diff program:
path old-file old-hex old-mode new-file new-hex new-modeSee also the Graphical diû and merge tools section for the configuration of git
difftool and git mergetool.
The rebase and merge setup, configuring pullWhen performing git pull operation, Git needs to know whether you prefer touse the merge operation to join the local history and the history fetched fromthe remote, or the rebase operation to join histories. That is why it requires youto provide a value for the pull.rebase configuration variable. You can find moreinformation on the topic of merge and rebase in Chapter 9, Merging Changes
Together.

There are several configuration settings that can be used to configure thebehavior of git pull. There is the pull.rebase configuration option and a branch-specific branch.<name>.rebase option that, when set to true, tells Git to perform arebase during the pull operation (for the <name> branch only in the latter case). Ifset to false, then git pull performs a merge. Both can also be set to merges to runrebase with the --rebase-merges option, to have local merge commits not beflattened in the process of rebasing.
You can make Git automatically set up the per-branch “pull to rebase”configuration while creating specific kinds of new branches with
branch.autoSetupRebase. You can set it to never, local (for locally tracked branchesonly), remote (for remote tracked branches only), or always (for local plusremote). There is also branch.autoSetupMerge to set up a branch to track anotherbranch.
Preserving undo information – the expiry of objectsBy default, Git will automatically remove unreferenced objects, clean reýogs ofstale entries, and pack loose objects, all to keep the size of the repository down.You can also run the garbage collection manually with the git gc command. Youshould know about a repository’s object-oriented structure from Chapter 10,
Keeping History Clean.
Git will, for safety reasons, use a grace period of two weeks while removingunreferenced objects; this can be changed with the gc.pruneExpire configuration:the setting is usually a relative date (for example, 1.month.ago; you can use dotsas word separators). To disable the grace period (which is usually done fromthe command line), the now value can be used.The branch tip history is kept for 90 days by default (or gc.reflogExpire, if set) forreachable revisions, and for 30 days (or gc.reflogExpireUnreachable) for reflogentries that are not a part of the current history. Both settings can beconfigured on a per-reframe basis, by supplying a pattern of the ref name to bematched as a subsection name, that is, gc.<pattern>.reflogExpire, and similar forthe other setting. This can be used to change the expire settings for HEAD or for
refs/stash (see Chapter 3, Managing Your Worktrees), or for remote-trackingbranches refs/remotes/* separately. The setting is a length of time (for example,

6 months); to completely turn off reflog expiry, use the value of never. You canuse the latter, for example, to switch off the expiring of stash entries.
Formatting and whitespaceCode formatting and whitespace issues are some of the more frustrating andsubtle problems you may encounter while collaborating, especially with cross-platform development. It’s very easy for patches and merges to introducesubtle and unnecessary whitespace changes, because editing the code cansilently introduce such changes (which are often not visible), and because thereare different notions of line endings on different operating systems: MSWindows, Linux, and macOS. Git has a few configuration options to help withthese issues.
One important issue for cross-platform work is the notion of line-ending. Thisis because MS Windows uses a combination of a carriage return (CR)character and a linefeed (LF) character for new lines in text files, whereasmacOS and Linux use only a linefeed character. Many editors on MS Windowswill silently replace existing LF-style line endings with CRLF or use CRLF fornew lines, which leads to subtle but annoying issues.
Git can handle this issue by auto-converting line endings into LF when you adda file to the index. If your editor uses CRLF line endings, Git can also convertline endings to the native form when it checks out code in your filesystem.There are two configuration settings that affect this matter: core.eol and
core.autocrlf. The first setting, core.eol, sets the line ending to be used whilechecking out files into the working directory for files that have the text propertyset (see the following Per-üle conüguration with gitattributes section, whichsummarizes and recalls information about the file attributes from Chapter 3,
Managing Your Worktrees).The second and older setting, core.autocrlf, can be used to turn on the automaticconversion of line endings to CRLF. Setting it to true converts the LF lineendings in the repository into CRLF when you check out files, and vice versawhen you stage them; this is the setting you would probably want on aWindows machine. (This is almost the same as setting the text attribute to autoon all the files and core.eol to crlf.) You can tell Git to convert CRLF to LF on acommit but not the other way around by setting core.autocrlf to input instead;

this is the setting to use if you are on a Linux or Mac system. To turn off thisfunctionality, recording the line-endings in the repository as they are set thisconfiguration value to false.
This handles one part of the whitespace issues – line-ending variance, and onevector of introducing them – editing files. Git also comes with a way to detectand fix some of the other whitespace issues. It can be configured to look for aset of common whitespace problems. The core.whitespace configuration settingcan be used to activate them (for those disabled by default) or turn them off(for those enabled by default). The three that are turned on by default are thefollowing:

blank-at-eol: This looks for trailing spaces at the end of a line
blank-at-eof: This notices blank lines at the end of a file
space-before-tab: This looks for spaces immediately before the tabs at the initial (beginning) indentpart of the line

The trailing-space value in core.whitespace is a shorthand to cover both blank-at-eoland blank-at-eof.
The three that are disabled by default but can be turned on are the following:

indent-with-non-tab: This treats the line that is indented with space characters instead of theequivalent tabs as an error (where equivalence is controlled by the tabwidth option). This optionenforces indenting with Tab characters.
tab-in-indent: This watches for tabs in the initial indentation portion of the line (here, tabwidth isused to fix such whitespace errors). This option enforces indenting with space characters.
cr-at-eol: This tells Git that carriage returns at the end of the lines are OK (allowing CRLF endingsin the repository).

You can tell Git which of these you want enabled or disabled by setting
core.whitespace to the comma-separated list of values. To disable an option,prepend it with the - prefix in front of the value. For example, if you want allbut cr-at-eol and tab-in-indent to be set, and also while setting the Tab spacevalue to 4, you can use:
$ git config --local core.whitespace \
 trailing-space,space-before-tab,indent-with-non-tab,tabwidth=4You can also set these options on a per-file basis with the whitespace attribute.For example, you can use it to turn off checking for whitespace problems in testcases to handle whitespace issues or ensure that the Python 2 code indentswith spaces:

*.py whitespace=tab-in-indent

EDITORCONFIG
There exists the EditorConüg project (https://editorconüg.org/) that consists of a üle format for deüning
coding styles, including the type of line endings, and a collection of text editor plugins that make editors
adhere to the chosen style. The .editorconfig üle should be tracked by Git.Git will detect these issues when you run a git diff command and inform youabout them using the color.diff.whitespace color, so you can notice them andpossibly fix them before you create a new commit. While applying patches with
git apply, you can ask Git to either warn about the whitespace issues with git
apply --whitespace=warn, error out with --whitespace=error, or you can have Git try toautomatically fix the issue with --whitespace=fix. The same applies to the git
rebase command as well.
Server-side configurationThere are a few configuration options available for the server side of Git. Theywill be described in more detail in Chapter 14, Git Administration; here you willfind a short summary of some of the more interesting parameters.You can make the Git server check for object consistency, namely, that everyobject received during a push matches its SHA-1 identifier, and that it is a validobject, with a receive.fsckObjects Boolean-valued configuration variable. It isturned off by default because git fsck is a fairly expensive operation, and itmight slow down operations, especially on large pushes (which are common inlarge repositories). This is a check against faulty or malicious clients.
If you rewrite commits that you have already pushed to a server (which is badpractice, as explained in Chapter 10, Keeping History Clean) and try to pushagain, you’ll be denied. The client might, however, force-update the remotebranch with the --force flag to the git push command. However, the server canbe told to refuse force-pushes by setting receive.denyNonFastForward to true.The receive.denyDeletes setting blocks one of the workarounds to the
denyNonFastForward policy, namely, deleting and recreating a branch. This forbidsthe deletion of branches and tags; you must remove refs from the servermanually.
All of these features could also be implemented via the server-side receive-likehooks; this will be covered in the Installing a Git hook section, and also to some

https://editorconfig.org/

extent in Chapter 14, Git Administration.
Per-file configuration with gitattributes

Some of the customizations can also be specified for a path (perhaps via glob)so that Git applies these settings only for a subset of files or for a subdirectory.These path-specific settings are called gitattributes.The order of precedence of applying this type of settings starts with the per-repository local (per-user) per-path settings in the $GIT_DIR/info/attributes file.Then, the .gitattributes files are consulted, starting with the one in the samedirectory as the path in question, going up through the .gitattributes files in theparent directories, up to the top level of the worktree (the root directory of aproject).
Finally, the global per-user attributes file (specified by core.attributesFile, or at
~/.config/git/attributes if this is not set) and the system-wide file (in
/etc/gitattributes in the default installation) are considered.
Available Git attributes are described in detail in Chapter 3, Managing Your
Worktrees. Using attributes, you can, among others, do things such as specifythe separate merge strategies via merge drivers for the specific kind of files(for example, ChangeLog), tell Git how to diff non-text files, or have Git filtercontent during checkout (on writing to the working area, that is, to thefilesystem) and commit (on staging contents and committing changes to therepository, that is, creating objects in the repository database).
Syntax of the Git attributes fileA gitattributes file is a simple text file that sets up the local configuration on aper-path basis. Blank lines and lines starting with the hash character (#) areignored; thus, a line starting with # serves as a comment, while blank lines canserve as separators for readability. To specify a set of attributes for a path, puta pattern followed by an attributes list, separated by a horizontal whitespace:
pattern attribute1 attribute2When more than one pattern matches the path, a later line overrides an earlierline, just like for the .gitignore files (you can also think that the Git attributes

files are read from the least specific system-wide file to the most specific localrepository file).
Git uses a backslash (\) as an escape character for patterns. Thus, for patternsthat begin with a hash, you need to put a backslash in front of the first hash(that is written as \#). Because the attributes information is separated bywhitespaces, trailing spaces in the pattern are ignored and inner spaces aretreated as the end of the pattern unless they are quoted with a backslash (thatis, written as “\ “).If the pattern does not contain a slash (/), which is a directory separator, Gitwill treat the pattern as a shell glob pattern and will check for a match againstthe pathname relative to the location of the .gitattributes file (or the top levelfor other attribute files). Thus, for example, the *.c patterns match the C filesanywhere down from the place the .gitattributes file resides. A leading slashmatches the beginning of the pathname. For example, /*.c matches bisect.c butnot builtin/bisect--helper.c, while the *.c pattern would match both.
If the pattern includes at least one slash, Git will treat it as a shell glob suitablefor consumption by the fnmatch(3) function call with the FNM_PATHNAME flag. Thismeans that the wildcards in the pattern will not match the directory separator,that is, the slash (/) in the pathname; the match is anchored to the beginning ofthe path. For example, the include/*.h pattern matches include/version.h but not
include/linux/asm.h or libxdiff/includes/xdiff.h. The shell glob wildcards are thefollowing:

* matching any string (including empty)
? matching any single character
[…] expression matching the character class (inside brackets, asterisks and question marks lose theirspecial meaning); note that unlike in regular expressions, the complementation/negation of thecharacter class is done with ! and not ^. For example, to match anything but a number, one can usethe [!0-9] shell pattern, which is equivalent to [^0-9] in a regexp.

Two consecutive asterisks (**) in patterns may have a special meaning, but onlybetween two slashes (/**/), or between a slash and at the beginning or the endof the pattern. Such a wildcard matches zero or more path components. Thus, aleading ** followed by a slash (**/) means a match in all directories, while atrailing /** matches every file or directory inside the specified directory.
Each attribute can be in one of four states for a given path:

First, it can be set (the attribute has a special value of true). This is specified by simply listing thename of the attribute in the attribute list, for example, text.
Second, it can be unset (the attribute has a special value of false). This is specified by listing thename of the attribute prefixed with minus, for example, -text.
Third, it can be set to a speciüc value; this is specified by listing the name of the attribute followedby an equal sign and its value, for example, text=auto (note that there cannot be any whitespacearound the equal sign as opposed to the configuration file syntax).
If no pattern matches the path, and nothing dictates whether the path has or does not have attributes,the attribute is said to be unspeciüed (you can override the setting for an attribute, forcing it to beexplicitly unspecified with !text).

If you find yourself using the same set of attributes over and over for manydifferent patterns, you should consider defining a macro attribute. This can bedefined in the local, global, or system-wide attributes file, but (from all possibleplaces for a repository-specific attributes file), macros can be defined only inthe top level .gitignore file. The macro is defined using [attr]<macro> in place ofthe file pattern; the attributes list defines the expansion of the macro. Forexample, the built-in binary macro attribute is defined as follows:
[attr]binary -diff -merge -textBut command-line options, environment variables, configuration files,gitattributes, and gitignore files are not the only ways to change what Git isdoing. There is also the hooks mechanism, which can be used to make Gittrigger user-defined actions automatically at specific points in Git’s execution.
Automating Git with hooksThere are usually certain prerequisites to the code that is produced, either self-induced or enforced externally. The code should always be able to compile andpass at least a fast subset of the tests. With some development workflows, eachcommit message may need to reference an issue ID (or match the messagetemplate), or include a digital certificate of origin in the form of the Signed-
oû-by line. In many cases, these parts of the development process can beautomated by Git.Like many programming tools, Git includes a way to fire custom functionalitycontained in the user-provided code (custom scripts), when certain importantpre-defined actions occur, that is, when certain events trigger. Such afunctionality invoked as an event handler is called a hook. It allows us to take

additional action and, at least for some hooks, also to stop the triggeredfunctionality.
Hooks in Git can be divided into client-side and server-side hooks. Client-side
hooks are triggered by local operations (on the client) such as committing,applying a patch series, rebasing, and merging. Server-side hooks on theother hand run on the server when network operations occur, such as receivingpushed commits.
You can also divide hooks into prehooks and post hooks. Pre hooks are calledbefore an operation is finished, usually before the next step while performingan operation. If they exit with a nonzero value, they will cancel the current Gitoperation. Post hooks are invoked after an operation finishes and can be usedfor notification and logs; they cannot cancel an operation.
Installing a Git hook

The hooks in Git are executable programs (usually scripts), which are stored inthe hooks/ subdirectory of the Git repository administrative area, that is,
.git/hooks/ for non-bare repositories. You can change the location of thedirectory that Git searches for hooks via core.hooksPath configuration variable.Hook programs are each named after the event that triggers them. This meansthat if you want one event to trigger more than one script, you will need toimplement multiplexing yourself.
When you initialize a new repository with git init (this is done also while using
git clone to create a copy of the other repository; clone calls init internally), Gitpopulates the .git/hooks/ directory with a bunch of inactive example scripts.Many of these are useful by themselves, but they also document the hook’s API.All the examples are written as shell or Perl scripts, but any properly namedexecutable would work just fine. If you want to use bundled example hookscripts, you’ll need to rename them, stripping the .sample extension andensuring that they have the executable permission bit.
A template for repositories

Sometimes you would want to have the same set of hooks for all yourrepositories. You can have a global (per-user and system-wide) configurationfile, a global attributes file, and a global ignore list. It turns out that it ispossible to select hooks to be populated during the creation of the repository.The default sample hooks that get copied to the .git/hooks repository arepopulated from /usr/share/git-core/templates.
Also, the alternative directory with the repository creation templates can begiven as a parameter to the --template command-line option (to git clone and git
init), as the GIT_TEMPLATE_DIR environment variable, or as the init.templateDirconfiguration option (which can be set in a per-user configuration file). Thisdirectory must follow the directory structure of .git (of $GIT_DIR), which meansthat the hooks need to be in the hooks/ subdirectory there.Note, however, that this mechanism has some limitations. As the files from thetemplate directory are only copied to the Git repositories on their initialization,updates to the template directory do not affect the existing repositories.Though you can re-run git init in the existing repository to reinitialize it, justremember to save any modifications made to the hooks.
HOOK MANAGEMENT TOOLS
Maintaining hooks for a team of developers can be tricky. There are many tools and frameworks for Git
hook management; examples include Husky and pre-commit. You can ünd more examples of such tools
listed on the https://githooks.com site. Those tools often allow for easier skipping hooks, running common
code for all the hooks, or running multiple scripts for a speciüc hook.

Client-side hooks

There are quite a few client-side hooks. They can be divided into the commit-workflow hooks (a set of hooks invoked by the different stages of creating anew commit), apply-email workflow hooks, and everything else (not organizedinto a multihook workflow).
IMPORTANT NOTE
It is important to note that hooks are not copied when you clone a repository. This is done partially for
security reasons, as hooks run unattended and mostly invisibly. You need to copy (and rename) üles
themselves, though you can control which hooks get installed when creating or reinitializing a repository
(see the previous subsection). This means that you cannot rely on the client-side hooks to enforce a policy;
if you need to introduce some hard requirements, you’ll need to do it on the server side.

https://githooks.com/

Commit process hooksThere are four client-side hooks invoked (by default) while committing changes.They are as follows.
The pre-commit hookThe pre-commit hook is run first, even before you invoke the editor to type inthe commit message. It is used to inspect the snapshot to be committed tocheck whether you haven’t forgotten anything. A nonzero exit from this hookaborts the commit. You can bypass invoking this hook altogether with git commit
-–no-verifies. This hook takes no parameters.
This hook can, among others, be used to check for the correct code style, runthe static code analyzer (linter) to check for problematic constructs, make surethat the code compiles and that it passes all the tests (and that the new code iscovered by the tests), or check for the appropriate documentation on some newfunctionality. The default hook checks for whitespace errors (trailingwhitespace by default) with git diff --check (or rather its plumbing equivalent),and optionally for non-ASCII filenames in the changed files. You can, forexample, make a hook that asks for a confirmation while committing with adirty work-arena (for the changes in the worktree that would not be a part ofthe commit being created); though it is an advanced technique. Or, you canhave it check whether there is documentation and unit tests on the newmethods.
There is also the pre-merge-commit hook that is invoked by git merge. Bydefault the hook, when enabled, runs the pre-commit hook.
The prepare-commit-msg hookThe prepare-commit-msg hook is run after the default commit message iscreated (including the static text of the file given by commit.template, if any), andbefore the commit message is opened in the editor. It lets you edit the defaultcommit message or create a template programmatically, before the commitauthor sees it. If the hook fails with a nonzero status, the commit will beaborted. This hook takes as parameters the path to the file that holds thecommit message (later passed to the editor) and the information about sourceof the commit message (the latter is not present for ordinary git commit):
message if the -m or -F option was given, template if the-t option was given or

commit.template was set, merge if the commit is merged or the .git/MERGE_MSG fileexists, squash if the .git/SQUASH_MSG file exists, or commit if the message comesfrom the other commit: the -c, -C, or --amend option was given. In the last case,the hook gets additional parameters, namely, a SHA-1 hash of the commit thatis the source of the message.
The purpose of this hook is to edit or create the commit message, and this hookis not suppressed by the --no-verify option. This hook is most useful when it isused to affect commits where the default message is autogenerated, such asthe templated commit message, merged commits, squashed commits, andamended commits. The sample hook that Git provides comments out the
Conflict: part of the merge commit message.Another example of what this hook can do is to use the description of thecurrent branch given by branch.<branch-name>.description, if it exists, as a base for abranch-dependent dynamic commit template. Or perhaps, it can check whetherwe are on the topic branch, and then list all the issues assigned to you on aproject issue tracker, to make it easy to add the proper artifact ID to thecommit message.
The commit-msg hookThe commit-msg hook is run after the developer writes the commit message,but before the commit is actually written to the repository. It takes oneparameter, a path to the temporary file with the commit message provided bythe user (by default, .git/COMMIT_EDITMSG).If this script exits with a nonzero status, Git aborts the commit process, so youcan use it to validate that, for example, the commit message matches theproject state, or that the commit message conforms to the required pattern.The sample hook provided by Git can check, sort, and remove duplicated Signed-
off-by: lines (which might be not what you want to use, if signoffs are to be achain of provenance). You could conceivably check in this hook whether thereferences to the issue numbers are correct (and perhaps expand them, addingthe current summary of each mentioned issue).
Gerrit Code Review provides a commit-msg hook (which needs to be installed inthe local Git repository) to automatically create, insert, and maintain a unique
Change-Id: line above the signoffs during git commit. This line is used to track the

iterations of coming up with a commit; if the commit message in the revisionpushed to Gerrit lacks such information, the server will provide instructions onhow to get and install that hook script.
The post-commit hookThe post-commit hook runs after the entire process is completed. It doesn’ttake any parameters, but at this point of the commit operation, the revision thatgot created during commit is available as HEAD. The exit status of this hook isignored. There is also the post-merge hook.Generally, this script (like most of the post-* scripts) is most often used fornotifications and logging, and it obviously cannot affect the outcome of git
commit. You can use it, for example, to trigger a local build in a continuousintegration tool such as Jenkins. In most cases, however, you would want to dothis with the post-receive hook on the dedicated continuous integration server.
Another use case is to list information about all the TODO and FIXMEcomments in the code and documentation (for example, the author, version, filepath, line number, and message), printing them to the standard output of thehook, so that that they are not forgotten and remain up to date and useful.
Hooks for applying patches from emailsYou can set up three client-side hooks for the email-based workflow (wherecommits are sent by email). They are all invoked by the git am command (thename of which comes from apply mailbox), which can be used to take savedemails with patches (created, for example, with git format-patch and sent with git
sent-email) and turn them into a series of commits. We will cover these hooksnext.
The applypatch-msg hookThe first hook to run is the applypatch-msg hook. It is run after extractingthe commit message from the patch and before applying the patch itself. Asusual, for a hook which is not a post-* hook, Git aborts applying the patch if thishook exists with a nonzero status. It takes a single argument: the name of thetemporary file with the extracted commit message.
You can use this hook to make sure that the commit message is properlyformatted, or to normalize the commit message by having the script alter the

file. The example applypatch-msg hook provided by Git simply runs the commit-msghook if it exists as a hook (the file exists and is executable).
The pre-applypatch hookThe next hook to run is the pre-applypatch hook. It is run after the patch isapplied to the working area, but before the commit is created. You can use it toinspect the state of the project before making a commit; for example, byrunning tests. Exiting with a nonzero status aborts the git am script withoutcommitting the patch.The sample hook provided by Git simply runs the pre-commit hook, if present.
The post-applypatch hookThe last hook to run is the post-applypatch hook, which runs after the commitis made. It can be used for notifying or logging, for example, notifying all thedevelopers or just the author of the patch that you have applied it.
Other client-side hooksThere are a few other client-side hooks that do not fit into a series of steps in asingle process.
The pre-rebase hookThe pre-rebase hook runs before you rebase anything. Like all the pre-* hooks,it can abort the rebase process with a nonzero exit code. You can use this hookto disallow rebasing (and thus rewriting) any commits that were alreadypublished. The hook is called with the name of the base branch (the upstreamthe series was forked from), and the name of the branch being rebased. Thename of the branch being rebased is passed to the hook only if it is not thecurrent branch. The sample pre-rebase hook provided by Git tries to do this,though it makes some assumptions specific to Git’s project development thatmay not match your workflow (take note that amending commits also rewritesthem, and that rebasing may create a copy of a branch instead of rewriting it).
The pre-push hookThe pre-push hook runs during the git push operation, after checking theremote status and identifying which revisions are missing on the server, butbefore any changes are pushed. The hook is called with the reference to the

remote (the URL or the remote name) and the actual push URL (the location ofremote) as the script parameters. Information about the commits to be pushedis provided on the standard input, one line per ref to be updated. You can usethis hook to validate a set of ref updates before a push occurs; a nonzero exitcode aborts the push. The example installed simply checks whether there arecommits beginning with WIP in a set of revisions to be pushed or marked withthe nopush keyword in the commit message, and when either of those is true,it aborts the push. You can even make a hook prompt the user to confirm theyare sure. This hook compliments the server-side checks, avoiding data transferthat would fail validation anyway.
The post-rewrite hookThe post-rewrite hook is run by commands that rewrite history (i.e., thatreplace commits), such as git commit --amend and git rebase. Note, however, thatthis hook is not run by large-scale history rewriting, such as git filter-repo. Thetype of command that triggered the rewrite (amend or rebase) is passed as asingle argument, while the list of rewrites is sent to the standard input. Thishook has many of the same uses as the post-checkout and post-merge hooks, and itruns after the automatic copying of notes, which is controlled by the
notes.rewriteRef configuration variable (you can find more about the notesmechanism in Chapter 10, Keeping History Clean).
The post-checkout and post-merge hooksThe post-checkout hook is run after a successful git checkout (or git checkout
<file>) after having updated the worktree. The hook is given three parameters:the SHA-1 hashes of the previous and current HEAD (which may or may not bedifferent) and a flag indicating whether it was a whole project checkout (youwere changing branches; the flag parameter is 1) or a file checkout (retrievingfiles from the index or named commit; the flag parameter is 0). As a specialcase, during the initial checkout after git clone, this hook passes the all-zeroSHA-1 as the first parameter (as a source revision). You can use this hook to setup your working directory properly for your use case. This may mean handlinglarge binary files outside the repository (as an alternative to applying the filterGit attribute on a per-file basis) that you don’t want to have in the repository,or setting the working directory metadata properties such as full permissions,owner, group, times, extended attributes, or ACLs. It can also be used to

perform repository validity checks or enhance the git checkout output by auto-displaying the differences (or just the diff statistics) from the previous checked-out revision (if they were different).
The post-merge hook runs after a successful merge operation. You can use itin a way similar to post-checkout to restore data and metadata in the working treethat Git doesn’t track, such as full permissions data (or just make it invoke post-
checkout directly). This hook can likewise validate the presence of files externalto Git control that you might want copied in when the working tree changes.For Git, objects in the repository (for example, commit objects representingrevisions) are immutable; rewriting history (even amending a commit) is in factcreating a modified copy and switching to it, leaving the pre-rewrite historyabandoned.
The pre-auto-gc hookDeleting a branch also leaves abandoned history. To prevent the repositoryfrom growing too much, Git occasionally performs garbage collection byremoving old unreferenced objects. In all but the most ancient instances of Git,this is done as a part of normal Git operations by invoking git gc --auto. The
pre-auto-gc hook is invoked just before garbage collection takes place andcan be used to abort the operation, for example, if you are on battery power. Itcan also be used to notify you that garbage collection is happening.
Server-side hooks
In addition to the client-side hooks, which are run in your own repository, thereare a couple of important server-side hooks that a system administrator canuse to enforce nearly any kind of policy for your project.
These hooks are run before and after you do a push to the server. The prehooks (as mentioned earlier) can exit nonzero to reject a push or part of it;messages printed by the pre hooks will be sent back to the client (sender). Youcan use these hooks to set up complex push policies. Git repositorymanagement tools, such as gitolite and Git hosting solutions, use these toimplement more involved access control for repositories. The post hooks can beused for notification, starting a build process (or just to rebuild and redeploy

the documentation), or running a full test suite, for example as a part of a CIsolution.
When writing server-side hooks, you need to take into account where in thesequence of operations the hook takes place and what information is availablethere, in the form of parameters, on the standard input, and in the repository.Let’s review what happens on the server when it receives a push:

1. Simplifying it a bit, the first step is that all the objects that were present in the client and missing onthe server are sent to the server and stored (but are not yet referenced). If the receiving end fails todo this correctly (for example, because of the lack of disk space), the whole push operation will fail.
2. The pre-receive hook is run. It takes a list describing the references that are being pushed on itsstandard input. If it exits with a nonzero status, it aborts the whole operation and none of thereferences that were pushed are accepted.
3. For each ref being updated, the built-in sanity checks may reject the push to the ref, including thecheck for an update of a checked-out branch, a non-fast-forward push (unless forced), and so on.
4. The update hook is run for each ref, passing ref to be pushed in arguments; if this script exits with anonzero status, only this ref will be rejected.
5. For each pushed ref, the ref in question is updated (unless it was rejected in an earlier stage).
6. The post-receive hook is run, taking the same data as the pre-receive one. This one can be used toupdate other services (for example, to notify CI servers) or notify users (via an email or a mailing list,IRC, or a ticket-tracking system).

If the push is atomic, either all the refs are updated (if none were rejected), ornone are updated.
For each ref that was updated, the post-update hook is run. This can also beused for logging. The sample hook runs git update-server-info to prepare arepository, saving extra information to be used over dumb transports, though itwould work better if run once as post-receive.If push tries to update the currently checked-out branch and the
receive.denyCurrentBranch configuration variable is set to updateInstead, then the
push-to-checkout hook is run.
IMPORTANT NOTE
You need to remember that in pre hooks, you don’t have refs updated yet, and that post hooks cannot
aûect the result of an operation. You can use pre hooks for access control (permission checking), and post
hooks for notiücation and updating side data and logs.You will see example hooks (server-side and client-side) for the Git-enforcedpolicy in Chapter 14, Git Administration. You will also learn how other tools use

those hooks, for example, for use in access control and triggering actions onpush.
Extending GitGit provides a few mechanisms to extend it. You can add shortcuts and createnew commands, and add support for new transports; all without requiring youto modify Git sources.
Command aliases for Git

There is one little tip that can make your Git command-line experience simpler,easier, and more familiar, namely, Git aliases. It is very easy in theory tocreate an alias. You simply need to create an alias.<command-name> configurationvariable; its value is the expansion of the alias.One of the uses for aliases is defining short abbreviations for commonly usedcommands and their arguments. Another is creating new commands. Here area couple of examples you might want to set up:
$ git config --global alias.co checkout
$ git config --global alias.ps = '--paginate status'
$ git config --global alias.lg "log --graph --oneline --decorate"
$ git config --global alias.aliases 'config --get-regexp ^alias\.'The preceding setup means that typing, for example, git co would be the sameas typing git checkout, and git aliases would print all defined aliases. Aliases takearguments just as the regular Git commands do. Git does not provide anydefault aliases to define shortcuts for common operations, unless you use `git-fc` project, a friendly fork of Git by Felipe Contreras.Arguments here are split by spaces and the usual shell quoting and escaping issupported. Notably, you can use a quote pair ("a b") or a backslash (a\ b) toinclude a space in a single argument.

IMPORTANT NOTE
Note, however, that you cannot have an alias with the same name as a Git command. In other words, you
cannot use aliases to change the behavior of commands. The reasoning behind this restriction is that it
could make existing scripts and hooks fail unexpectedly. Aliases that hide existing Git commands (with the
same name as Git commands) are simply ignored.

You might, however, want to run an external command rather than a Gitcommand in an alias. Or, you might want to join together the result of a fewseparate commands. In this case, you can start the alias definition with the !character:
$ git config --global alias.unmerged \
 '!git ls-files --unmerged | cut -f2 | sort -u'Because here the first command of the expansion of an alias can be an externaltool, you need to specify the git wrapper explicitly, as shown in the precedingexample.

NOTE
Note that in many shells, for example, in bash, the exclamation character ! is the history expansion
character and it needs to be escaped as \! or be within single quotes (').Note that such shell commands will be executed from the top-level directory ofa repository (after doing cd to a top-level), which may not necessarily be thecurrent directory. Git sets the GIT_PREFIX environment variable to the currentdirectory path relative to the top directory of a repository, that is, git rev-parse -
-show-prefix. As usual, git rev-parse (and some git wrapper options) may be of usehere.
The fact mentioned earlier can be used while creating aliases. The git servealias, running git daemon to serve (read-only) the current repository at
git://127.0.0.1/, makes use of the fact that the shell commands in aliases areexecuted from the top-level directory of a repo:
[alias]
 serve = !git daemon --reuseaddr --verbose --base-path=. --export-all ./.gitSometimes, you need to reorder arguments, use an argument twice, or pass anargument to the command early in the pipeline. You would want to refer tosubsequent arguments as $1, $2, and so on, or to all arguments as $@, just like inshell scripts. One trick that you can find in older examples is to run a shell witha -c argument, like in the first of the examples mentioned next; the final dash isso that the arguments start with $1, not with $0. A more modern idiom is todefine and immediately execute a shell function, like in the second example (itis a preferred solution because it uses one level of quoting less, and lets youuse standard shell argument processing):
[alias]

 record-1 = !sh -c 'git add -p -- $@ && git commit' -
 record-2 = !f() { git add -p -- $@ && git commit }; fAliases are integrated with command-line completion. While determining whichcompletion to use for an alias, Git searches for a git command, skipping anopening brace or a single quote (thus, supporting both of the idioms mentionedearlier). With modern Git you can use the null command “:” to declare thedesired completion style. For example, alias expanding to the following:
!f() { : git commit ; ... } fwould use a command completion for git commit, regardless of the rest of thealias.Git aliases are also integrated with the help system. If you use the --help optionon an alias, Git tells you its expansion (so you can check the relevant manpage):
$ git co --help
'git co' is aliased to 'checkout'

Adding new Git commands

Aliases are best at taking small one-liners and converting them into smalluseful Git commands. You can write complex aliases, but when it comes tolarger scripts, you would probably like to incorporate them into Git directly.Git subcommands can be standalone executables that live in the Git executionpath (which you can find by running git --exec-path); on Linux, this is normally
/usr/libexec/git-core. The git executable itself is a thin wrapper that knows wherethe subcommands live. If git foo is not a built-in command, the wrappersearches for the git-foo command first in the Git exec path, then in the rest ofyour $PATH. The latter makes it possible to write local Git extensions (local Gitcommands) without requiring access to the system’s space.
This feature is what it makes possible to have a user interface more or lessintegrated with the rest of Git in projects such as git imerge (see Chapter 9,
Merging Changes Together), or git lfs or git annex (see Chapter 12, Managing
Large Repositories). It is also how projects such as Git Extras, providing extraGit commands, were made.

Note, however, that if you don’t install the documentation for your command intypical places, or configure the documentation system to find the help page fora command, then git foo --help won’t work correctly.
You can list all external commands installed this way with git --list-cmds=others,or you can use git help --all, and the following list will appear at the end of itscommand output:
$ git --list-cmds=others
 credential-helper-selector
 credential-manager
 lfs

Credential helpers and remote helpers
There is another place where simply putting an appropriately namedexecutable enhances and extends Git. Remote helper programs are invokedby Git when it needs to interact with remote repositories and remote transportprotocols not supported by Git natively. You can find more about them in
Chapter 6, Collaborative Development with Git.
When Git encounters a URL of the form <transport>://<address>, where <transport>is a (pseudo)protocol that is not natively supported, it automatically invokes the
git remote-<transport> command with a remote and full remote URL as arguments.A URL of the form <transport>::<address> also invokes this remote helper, but withjust <address> as a second argument in the place of a URL. Additionally, with
remote.<remote-name>.vcs set to <transport>, Git would explicitly invoke git remote-
<transport> to access that remote.The helpers mechanism in Git is about interacting with external scripts using awell-defined format.
Each remote helper is expected to support a subset of commands. You can findmore information about the issue of creating new helpers on the gitremote-
helpers(1) man page.
There is another type of helpers in Git, namely, credentials helpers. They canbe used by Git to get the credentials from the user required, for example, toaccess a remote repository over HTTP. They are specified by the configuration,though, just like the merge and diff drivers and the clean and smudge filters.

SummaryThis chapter provided all the tools you need to use Git effectively. You got toknow how to make the command-line interface easier to use and more effectivewith the Git-aware dynamic command prompt, command-line completion,autocorrection for Git commands, and using colors. You learned of theexistence of alternative interfaces, from alternative porcelains to the varioustypes of graphical clients.
You were reminded of the various ways to change the behavior of Gitcommands. You discovered how Git accesses its configuration and learnedabout a selected subset of configuration variables. You have learned how toautomate Git with hooks and how to make use of them. Finally, you havelearned how to extend Git with new commands and support new URL schemes.This chapter was mainly about making Git more effective for you; the nextchapter, Chapter 14, Git Administration, explains how to make Git moreeffective for other developers. You will cover more about server-side hooks andsee their usage. You will also learn about repository maintenance.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. How do you save and reuse your favorite combination of options for the Git command?
2. How can you find all created aliases?
3. How do you run a graphical tool to display a git diff, or to help with resolving a merge?
4. How can you find where a given configuration came from?
5. How can you help ensure that a commit matches the recommended best practices?

AnswersHere are the answers to the questions given above:
1. Use a Git alias, a shell alias, or a shell function.
2. You can use the git config --get-regexp ^alias\. command.
3. Use git difftool for displaying differences, or git mergetool to help with resolving mergeconflicts. There is built-in support for many of the existing graphical tools.
4. If it is about configuration values, you can use git config --show-origin (or --show-scope). If it isabout per-file attributes, use git check-attr. If it is about ignoring files, use git check-ignore.

5. Use the pre-commit hook (and other similar hooks) to warn if best practices are not being followed.There are many third-party tools that help with hook management and often support various helpertools such as linters and code formatting tools.
Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:

Scott Chacon, Ben Straub: Pro Git, 2nd Edition (2014), Apress https://git-scm.com/book/en/v2
Chapter 2 - Git Basics, Section 2.1 - Git Aliases

Chapter 8 - Customizing Git

Appendix A: Git in Other Environments

Matthew Hudson: Git Hooks - A Guide for Programmers https://githooks.com/
bash/zsh git prompt support https://github.com/git/git/blob/master/contrib/completion/git-prompt.sh
bash/zsh completion support for core Githttps://github.com/git/git/blob/master/contrib/completion/git-completion.bash
Seth House: Conýict resolution in various mergetools (2020)https://www.eseth.org/2020/mergetools.html
Julia Evans: Popular git conüg options (2024) https://jvns.ca/blog/2024/02/16/popular-git-config-options/
Ricardo Gerardi: 8 Git aliases that make me more eûicient (2020)https://opensource.com/article/20/11/git-aliases
Git SCM Wiki (archived): Aliaseshttps://archive.kernel.org/oldwiki/git.wiki.kernel.org/index.php/Aliases.html
Git Homepage - GUI Clients https://git-scm.com/downloads/guis
Git Rev News https://git.github.io/rev_news/

https://git-scm.com/book/en/v2
https://githooks.com/
https://github.com/git/git/blob/master/contrib/completion/git-prompt.sh
https://github.com/git/git/blob/master/contrib/completion/git-completion.bash
https://www.eseth.org/2020/mergetools.html
https://jvns.ca/blog/2024/02/16/popular-git-config-options/
https://opensource.com/article/20/11/git-aliases
https://archive.kernel.org/oldwiki/git.wiki.kernel.org/index.php/Aliases.html
https://git-scm.com/downloads/guis
https://git.github.io/rev_news/

14

Git AdministrationThe previous chapter, Customizing and Extending Git, among other things,explained how to use Git hooks for automation. The client-side hooks weredescribed in detail, while the server-side hooks were only covered briefly. Inthis chapter, we will cover server-side hooks comprehensively and discussclient-side hooks’ usage as helpers.The earlier chapters helped master your work with Git as a developer, as ateam member collaborating with others, and as a maintainer. When the bookdiscussed setting up repositories and branch structure, it was from the point ofview of a Git user.
This chapter is intended to help those of you who are in a situation of dealingwith the administrative side of Git. This includes setting up remote Gitrepositories and configuring their access. This chapter covers the workrequired to make Git go smoothly (that is, Git maintenance) and finding andrecovering from repository errors. It also describes how to use server-sidehooks to implement and enforce a development policy. Additionally, you willfind here a short description of the various types of tools that can be used tomanage remote repositories, helping you to choose from them.In this chapter, we will cover the following topics:

Server-side hooks – implementing a policy and notifications
How to set up Git on a server
Third-party tools to manage remote repositories
Signed pushes to assert updating refs and enable audits
Reducing the size of hosted repositories with alternates and namespaces
Improving server performance and helping the initial clone
Checking for repository corruption and fixing a repository
Recovering from errors with the help of reflogs and git fsck
Git repository maintenance and repacking
Augmenting development workflows with Git

Repository maintenanceOccasionally, you may need to do some cleanup of a repository, usually to makeit more compact. Such cleanups are also a very important step after migratinga repository from another version control system.
Automatic housekeeping with git-gc

Modern Git (or, rather, all but ancient Git) from time to time runs the git gc --
auto command in each repository. This command checks whether there are toomany loose objects (objects stored as separate files, with one file per object,rather than those stored together in a packfile; objects are almost alwayscreated loosely), and if so, then it launches the garbage collection operation.Garbage collection means gathering up all the loose objects and placing themin packfiles, as well as consolidating many small packfiles into one largepackfile. Additionally, it packs references into the packed-refs file. Objects thatare unreachable even via reflog and are safely old are, by default, packedseparately into a cruft pack. Git then deletes loose objects, cruft packs, andpackfiles that got repacked (with some safety margin relating to the age of theloose objects files), thus pruning old unreachable objects. There are variousconfiguration knobs in the gc.* namespace to control garbage collectionoperations.You can run auto gc manually with git gc --auto or force garbage collection with
git gc. The git count-objects command (sometimes with the help of the -vparameter) can be used to check whether there are signs that a repack isneeded. You can even run individual steps of the garbage collection individuallywith git repack, git pack-refs, git prune, and git prune-packed.
By default, Git will try to reuse the results of an earlier packing to reduce CPUtime spent on repacking, while still providing good disk space utilization. Insome cases, you will want to more aggressively optimize the size of therepository at the cost of it taking more time; this is possible with git gc --
aggressive (or by repacking the repository by hand with git repack, run withappropriate parameters). It is recommended to do this after importing fromother version control systems, as the mechanism that Git uses for importing(namely, the fast-import stream) is optimized for the speed of the operation, notfor the final repository size.

There are issues of maintenance not covered by git gc because of their nature.One of them is pruning (deleting) remote-tracking branches that were deletedin the remote repository. This can be done with git fetch --prune or git remote
prune, or on a per-branch basis with git branch --delete --remotes <remote-tracking
branch>. This action is left to the user and not run by git gc, as Git simply cannotknow whether you have based your own work on the remote-tracking branchthat will be pruned.
Periodic maintenance with git-maintenance

Git commands that add data to the repository, such as git add or git fetch, cantrigger automatic garbage collection and perform some repository optimization.However, because they need to provide a responsive user interface, this doesnot trigger more costly repository optimizations. Those tasks include updatingthe commit graph data, prefetching from remote repositories (so that git fetchwill have fewer objects to download), cleaning up loose objects, and doing anincremental repack. Such optimization tasks often scale with the full size of therepository.A better solution is to run the maintenance tasks that are expensive in thebackground, periodically – hourly, daily, or weekly. With modern Git, you canschedule those tasks with the help of the git maintenance command. It willschedule those jobs differently depending on the operating system.
You can configure how often a given task is run. Note that git maintenance run, aprocess that performs scheduled tasks, puts a lock on the repository’s objectdatabase, preventing competing processes from leaving the repository in anunpredicted state. This is not the case for git gc; therefore, if you do periodicmaintenance, use git maintenance run --task=gc instead of the git gc command.
Data recovery and troubleshootingIt is almost impossible to never make any mistakes. This applies also to usingGit. The knowledge presented in this book, and your experience with using Git,should help to reduce the number of mistakes. Note that Git tries quite hardnot to help you avoid losing your work; many mistakes are recoverable. Thenext subsection will explain how you can try to recover from an error.

Recovering a lost commit

It may happen that you accidentally lost a commit. Perhaps you force-deletedan incorrect branch that you were going to work on, you rewound the branch toan incorrect place, or you were on an incorrect branch while starting anoperation. Assuming something like this happened, is there any way to get yourcommits back and undo the mistake?Because Git does not delete objects immediately and keeps them for a while,only deleting them if they are unreachable during the garbage collection phase,the commit you lost will be there; you just need to find it. The garbagecollection operation has, as mentioned, its own safety margins; however, if youfind that you need to troubleshoot, it is better to turn off automatic garbagecollection temporarily with git config gc.auto never (and turning off the gc task ifit is scheduled to run periodically with git maintenance, by setting
maintenance.gc.enabled to false or by turning maintenance off with git maintenance
unregister).
Often, the simplest way to find and recover lost commits is to use the git reflogtool. For each branch, and separately for the HEAD, Git silently records (logs)where the tip of the branch was in your local repository, what time it was there,and how it got there. This record is called the reýog. Each time you commit orrewind a branch, the reflog for the branch and the HEAD is updated. Each timeyou change the branches, the HEAD reflog is updated, and so on.You can see where the tip of a branch has been at any time by running git
reflog or git reflog <branch>. You can also run git log -g, where -g is a short way ofsaying --walk-reflog; this gives you a normal configurable log output. There isalso --grep-reflog=<pattern> to search the reflog:
$ git reflog
6c89dee HEAD@{0}: commit: Ping asynchronously
d996b71 HEAD@{1}: rebase -i (finish): returning to refs/heads/ajax
d996b71 HEAD@{2}: rebase -i (continue): Ping asynchronously WIP
89579c9 HEAD@{3}: rebase -i (pick): Use Ajax mode
7c6d322 HEAD@{4}: commit (amend): Simplify index()
e1e6f65 HEAD@{5}: cherry-pick: fast-forward
eea7a7c HEAD@{6}: checkout: moving from ssh-check to ajax
c3e77bf HEAD@{7}: reset: moving to ajax@{1}You should remember the <ref>@{<n>} syntax from Chapter 4, Exploring Project

History. With the information from reflogs, you can rewind the branch in

question to the version from before the set of operations, or you can start a newbranch, starting with any commit in the list.
Let’s assume that your loss was caused by deleting the wrong branch. Becauseof the way reflogs are implemented (e.g., logs for a branch named foo – that is,for the refs/heads/foo ref – are kept in the .git/logs/refs/heads/foo file), a reflog fora given branch is deleted, together with the branch. You might still have thenecessary information in the HEAD reflog, unless you have manipulated thebranch tip without involving the working area, but it might not be easy to findit.In a case where the information is not present in reflogs, one way to find thenecessary information to recover lost objects is to use the git fsck utility, whichchecks your repository for integrity. With the --full option, you can use thiscommand to show all unreferenced objects:
$ git fsck --full
Checking object directories: 100% (256/256), done.
Checking objects: 100% (58/58), done.
dangling commit 50b836cb93af955ca99f2ccd4a1cc4014dc01a58
dangling blob 59fc7435baf79180a3835dddc52752f6044bab99
dangling blob fd64375c1f2b17b735f3145446d267822ae3ddd5
[...]You can see the SHA1 identifiers of the unreferenced (lost) commits in the lineswith the dangling commit string prefix. To examine all these danglingcommits, you can filter the git fsck output for the commits with grep "commit",extract their SHA1 identifiers with cut -d' ' -f3, and then feed these revisionsinto git log --stdin --no-walk, as shown here:
$ git fsck --full | grep "commit" | cut -d' ' -f3 | git log --stdin --no- walk

TIP
The same technique, but with using blob command, can be used to recover accidentally deleted üles –
assuming that you have used git add with the version of the üle you want to recover.

Troubleshooting Git
The main purpose of git fsck is to check for repository corruption. Besideshaving the option to find dangling objects, this command runs sanity checks foreach object and tracks the reachability fully. It can find corrupted and missingobjects; then, if the corruption was limited to your clone and the correct

version can be found in other repositories (in backups and other archives), youcan try to recover those objects from an uncorrupted source.
Sometimes, however, the error might be more difficult to recover from. You cantry to find a Git expert outside your team, but often, the data in the repositoryis proprietary. Creating a minimal reproduction of the problem is not alwayspossible. With modern Git, if the problem is structural, you can try to use git
fast-export --anonymize to strip the repository from the data, while ensuring thatthe anonymized repository reproduces the issue. Reproducing some bugs mayrequire referencing particular commits or paths; with modern Git, you can askfor a particular token to be left as-is, or mapped to a new value with a set of --
anonymize-map options.If the repository is fine but the problem is with the Git operations, you can tryto use various tracking and debugging mechanisms built into Git, or you can tryto increase the verbosity of the commands. You can turn on tracing with theappropriate environment variables (which we will show later). The trace outputcan be written to a standard error stream by setting the value of theappropriate environment variable to 1, 2, or true. The 0 or false value disablesit. Other integer values between 2 and 10 will be interpreted as open filedescriptors to be used for trace output. You can also set such environmentvariables to the absolute path of the file to write trace messages to.
These tracking-related variables include the following (see the manpage of the
git wrapper for the complete list):

GIT_TRACE: This enables general trace messages that do not fit into any specific category. Thisincludes the expansion of Git aliases (see Chapter 13, Customizing and Extending Git), built-incommand execution, and external command execution (such as pager, editor, or helper).
GIT_TRACE_PACKET: This enables packet-level tracking of the network operations for the “smart”transport protocols. This can help to debug protocol issues or any troubles with the remote server thatyou set up. To debug and fetch from shallow repositories, there is GIT_TRACE_SHALLOW.
GIT_TRACE_CURL (possibly with GIT_TRACE_CURL_NO_DATA): This enables a curl full trace dump of theHTTP(S) transport protocol, similar to running the curl --trace-ascii option.
GIT_TRACE_SETUP: This enables trace messages, printing information about the location of theadministrative area of the repository, the working area, the current working directory, and the prefix(the last one is the subdirectory inside the repository directory structure).
GIT_TRACE_PERFORMANCE: This shows the total execution time of each Git command.

With modern Git, you can enable more detailed trace messages from the trace2library, either in a simple text-based format meant for human consumption with
GIT_TRACE2, or in the JSON-based format meant for machine interpretation with
GIT_TRACE2_EVENT. In addition to redirecting the output from a standard error, to agiven file descriptor, or to a given file, you can also ask to write output files to agiven directory (one file per process) and even ask to open the path as a Unixdomain socket. The Trace2 API replacement for GIT_TRACE_PERFORMANCE is
GIT_TRACE2_PERF. Instead of environment variables, you can use the
trace2.normalTarget, trace2.eventTarget, and trace2.perfTarget configuration variables,respectively.
There is also GIT_CURL_VERBOSE to emit all the messages generated by the curllibrary for the network operations over HTTP, and GIT_MERGE_VERBOSITY to controlthe amount of output shown by the recursive merge strategy.
Git on the serverThe previous chapters should have given you enough knowledge to master mostof the day-to-day version control tasks in Git. Chapter 6, Collaborative
Development with Git, explained how you can lay out repositories forcollaboration. Here, we will explain how to set up Git repositories to enableremote access on a server, allowing you to fetch from and push to them.The topic of administration of the Git repositories is a large one. There arebooks written about specific repository management solutions, such as Gitolite,Gerrit, GitHub, or GitLab. Here, you will hopefully find enough information tohelp you choose a solution or your own.
Let’s start with the tools and mechanisms to manage remote repositoriesthemselves, and then move on to the ways of serving Git repositories (i.e.,putting Git on the server).
Server-side hooks
Hooks that are invoked on the server can be used for server administration;among others, these hooks can control access to the remote repository byperforming the authorization step, and they can ensure that the commitsentering the repository meet certain minimal criteria. The latter is best done

with the additional help of client-side hooks, which were discussed in Chapter
13, Customizing and Extending Git. That way, users are not notified that theircommits do not pass muster only when they want to publish them. Conversely,client-side hooks implementing validation are easy to skip with the --no-verifyoption (so server-side validation is necessary), and you need to remember toinstall them.
IMPORTANT NOTE
Note, however, that server-side hooks are invoked only during the push operation; you need other solutions
for access control to the fetch (and clone) operation.

Hooks are also obviously not run while using <dumb= protocols – there is no Git on the server invoked then.While writing hooks to implement some Git-enforced policy, you need toremember at what stage the hook in question is run and what information isavailable then. It is also important to know how the relevant information ispassed to the hook; however, you can find the last quite easily in the Gitdocumentation on the githooks man page. The previous chapter included asimple summary of server-side hooks. Here, we will expand a bit on this topic.
All the server-side hooks are invoked by git receive-pack, which is responsible forreceiving published commits (which are received in the form of a packfile,hence the name of the command). If a hook, except for a post-* one, exits withthe non-zero status, then the operation is interrupted and no further stages arerun. The post hooks are run after the operation finishes, so there is nothing tointerrupt.Both the standard output and the standard error output are forwarded to git
send-pack at the client end, so the hooks can simply pass messages for the userby printing them (for example, with echo, if the hook was written as a shellscript). Note that the client doesn’t disconnect until all the hooks completetheir operation, so be careful if you try to do anything that may take a longtime, such as automated tests. It is better to have a hook simply start such longoperations asynchronously and exit, allowing the client to finish.
You need to remember that, with pre-hooks, you don’t have refs updated yet,and that post-hooks cannot affect the result of an operation. You can use pre-hooks for access control (permission checking),and post-hooks for notification,updating the side data, and logging. Hooks are listed in the order of operation.

The pre-receive hookThe first hook to run is the pre-receive hook. It is invoked just before you startupdating refs (branches, tags, notes, and so on) in the remote repository, butafter all the objects are received. It is invoked once for the receive operation. Ifthe server fails to receive published objects (for example, because of a lack ofdisk space or incorrect permissions), the whole git push operation will failbefore Git invokes this hook.
This hook receives no arguments; all the information is received on thestandard input of the script. For each ref to be updated, it receives a line in thefollowing format:
<old-SHA1-value> <new-SHA1-value> <full-ref-name>Refs that need to be created will have the old SHA1 value of 40 zeros, whilerefs that need to be deleted will have a new SHA1 value equal to the same. Thesame convention is used in all the other places, where the hooks receive the oldand new state of the updated ref.

PUSH OPTIONS
You can pass additional data to the server with git push --push-option=<option> or the
push.pushOption conüguration variable. Both can be given multiple times. This data is then passed to pre-
receive and post-receive hooks via environment variables – GIT_PUSH_OPTION_COUNT and
GIT_PUSH_OPTION_0, GIT_PUSH_OPTION_1, and so on.This hook can be used to quickly abort the operation if the update cannot to beaccepted – for example, if the received commits do not follow the specifiedpolicy or if the signed push (more on this later) is invalid. Note that to use it foraccess control (i.e., authorization) you need to get the authentication tokensomehow, be it with the getpwuid command or with an environment variable suchas USER. However, this depends on the server setup and the serverconfiguration.
The push-to-checkout hook to push to non-bare
repositoriesWhen pushing to the non-bare repositories, if a push operation tries to updatethe currently checked-out branch, then the push-to-checkout hook will berun. This is done if the receive.denyCurrentBranch configuration variable is set tothe updateInstead value (instead of one of the true or refuse, warn or false, or ignore

values). This hook receives the SHA1 identifier of the commit that will be thetip of the current branch that is going to be updated.
This mechanism is intended to synchronize working directories when one sideis not easily accessible interactively (for example, accessible via interactive
ssh), or as a simple deployment scheme. It can be used to deploy to a livewebsite or to run code tests on different operating systems.If this hook is not present, Git will refuse the update of the ref if either theworking tree or the index (the staging area) differs from HEAD – that is, if thestatus is “not clean.” This hook should be used to override this default behavior.
You can craft this hook to have it make changes to the working tree and theindex that are necessary to bring them to the desired state. For example, thehook can simply run git read-tree -u -m HEAD "$1" to switch to the new branch tip(the -u option updates the files in the working tree), while keeping the localchanges (the -m option makes it perform a fast-forward merge with twocommits/trees). If this hook exits with a nonzero status, then Git will refuse topush to the currently checked-out branch.
The update hookThe next to run is the update hook, which is invoked separately for each refthat is updated. This hook is invoked after the non-fast-forward check (unlessthe push is forced) and the per-ref built-in sanity checks that can be configuredwith receive. denyDeletes, receive.denyDeleteCurrent, receive.denyCurrentBranch, and
receive.denyNonFastForwards.
Note that exiting with nonzero refuses the ref to be updated; if the push is
atomic (git push --atomic), then refusing any ref to be updated will abandon thewhole push operation. With an ordinary push, only the update of a single refwill be refused; the push of other refs will proceed normally.This hook receives the information about the ref to be updated as itsparameters, in order:

The full name of the ref that is updated,
The old SHA1 object name stored in the ref before the push operation
The new SHA1 object name to be stored in the ref after the push operation

The update.sample hook example can be used to block unannotated tags fromentering the repository, and also to allow or deny deleting and modifying tagsand deleting and creating branches. All the configurable of this sample hook isdone with the appropriate hooks.* configuration variables, rather than beinghardcoded. There is also the update-paranoid Perl script in contrib/hooks/, whichcan be used as an example of how to use this hook for access control. This hookis configured with an external configuration file, where, among other options,you can set up access so that only commits and tags from specified authors areallowed, and authors are required to have correct access permissions.
Many repository management tools, such as Gitolite, set up and use this hookfor their work. You need to read the tool documentation if you want, for somereason, to run your own update hook together with the one provided by such atool, perhaps with the help of some hook management tool (see, for example, alist of such tools on https://githooks.com/).
The post-receive hookThen, after all the refs are updated, the post-receive hook is run. It takes thesame data as the pre-receive one. Only now do all the refs point to the newSHA1s. It can happen that another user has modified the ref after it wasupdated but before the hook was able to evaluate it. This hook can be used toupdate other services (for example, notify the continuous integration server),notify users (via an email or a mailing list, a chat channel, or a ticket-trackingsystem), or log the information about the push for audit (for example, aboutsigned pushes). It supersedes the post-update hook, and should be used instead.
There is no default post-receive hook, but you can find the simple post-receive-
email script, and its replacement, git-multimail, in the contrib/hooks/ area.These two example hooks are actually developed separately from Git itself, butfor convenience, they are provided with the Git source. git-multimail sends oneemail summarizing each changed ref, one email for each new commit with thechanges – threaded (as a reply) to the corresponding ref change email, and oneannouncement email for each new annotated tag. Each of these is separatelyconfigurable with respect to the email address used and, to some extent, alsowith respect to the information included in the emails.

https://githooks.com/

To provide an example of third-party tools, irker includes the script to be usedas Git’s post-receive hook to send notifications about the new changes to theappropriate IRC channel, using the irker daemon (set up separately).
The post-update hook (a legacy mechanism)Then, the post-update hook is run. Each ref that was actually successfullyupdated passes its name as one of parameters; this hook takes a variablenumber of parameters. This is only partial information; you don’t know whatthe original (old) and updated (new) values of the updated refs were, and thecurrent position of the ref is prone to race conditions (as explained before).Therefore, if you actually need the position of the refs, the post-receive hook is abetter solution.The sample hook runs git update-server-info to prepare a repository for use overthe dumb transports(described in the Legacy (dumb) transports section of
Chapter 7, Publishing Your Changes, and in the Dumb protocols section later inthis chapter), by creating and saving some extra information. If the directorywith the repository is to be accessible via plain HTTP or other walker-basedtransport like FTP, you may consider enabling it. However, in modern Git, it isenough to simply set receive.updateServerInfo to true so that a hook is no longernecessary.
Using hooks to implement Git-enforced policy

The only way to truly enforce a policy is to implement it using server-sidehooks, either pre-receive or update; if you want a per-ref decision, you need to usethe latter. Client-side hooks can be used to help developers pay attention to thepolicy, but these can be disabled, skipped, or not enabled.
Enforcing the policy with server-side hooksOne part of the development policy could be requiring that each commitmessage adheres to a specified template. For example, you could require eachnon-merge commit message to include the digital certiücate of origin in theform of the Signed-oû-by: line, or that each commit refers to the issue trackerticket by including a string that looks like ref: 2387. The possibilities areendless.

To implement such a hook, you first need to turn the old and new values for aref (that you got by either reading them line by line from the standard input in
pre-receive, or as the update hook parameters) into a list of all the commits thatare being pushed. You need to take care of the corner cases – deleting a ref (nocommits pushed), creating a new ref, and a possibility of non-fast-forwardpushes (where you need to use the merge base as the lower limit of the revisionrange – for example, with the git merge-base command), pushes to tags, pushes tonotes, and other non-branch pushes. The operation of turning a revision rangeinto a list of commits can be done with the git rev-list command, which is a low-level equivalent (plumbing) of the user-facing git log command (porcelain); bydefault, this command prints out only the SHA1 values of the commits in thespecified revision range, one per line, and no other information.
Then, for each revision, you need to grab the commit message and checkwhether it matches the template specified in the policy. You can use anotherplumbing command, called git cat-file, and then extract the commit messagefrom this command output by skipping everything before the first blank line.This blank line separates commit metadata in the raw form from the commitbody:
$ git cat-file commit a7b1a955
tree 171626fc3b628182703c3b3c5da6a8c65b187b52
parent 5d2584867fe4e94ab7d211a206bc0bc3804d37a9
author Alice Developer 1440011825 +0200
committer Alice Developer 1440011825 +0200
Added COPYRIGHT fileAlternatively, you can use git show -s or git log -1, which are both porcelaincommands, instead of git cat-file. However, you would then need to specify theexact output format – for example, git show -s --format=%B <SHA1>.

When you have these commit messages, you can then use the regularexpression match or another tool on each of the commit messages caught tocheck whether they matche the policy.Another part of the policy may be the restrictions on how branches aremanaged. For example, you may want to prevent the deletion of long-liveddevelopment stage branches (see Chapter 8, Advanced Branching Techniques),while allowing the deletion of topic branches. To distinguish between them –that is, to find out whether the branch being deleted is a topic branch or not –you can either include a configurable list of branches to manage strictly, or you

can assume that topic branches always use the <user>/<topic> namingconvention. The latter solution can be enforced by requiring the newly createdbranches, which should be topic branches only, to match this namingconvention.
Conceivably, you could make a policy that topic branches can be fast-forwardedonly if they are not merged in, although implementing checks for this policywould be nontrivial.Usually, only specific people have permission to push to the official repositoryof a project (holding a so-called commit bit). With server-side hooks, you canconfigure the repository so that it allows anyone to push, but only to the specialmob branch; all the other push access is restricted.
You can also use server-side hooks to require that only annotated tags areallowed in the repository, that tags are signed with a public key that is presentin the specified key server (and, thus, can be verified by other developers), andthat tags cannot be deleted or updated. If needed, you can restrict signed tagsto those coming from the selected (and configured) set of users – for example,enforcing a policy that only one of the maintainers can mark a project for arelease (by creating an appropriately named tag – e.g., v0.9).
Early notices about policy violations with client-side
hooksIt would be not a good solution to have strict enforcement of developmentpolicies and not provide users with a way to help watch and fulfill thosepolicies. Having your work rejected during a push can be frustrating; to fix theissue preventing one from publishing the commit, you would have to edit yourlocal history of the project (that is, rewrite your changes). See Chapter 10,
Keeping History Clean, for details on how to do it.
The answer to that problem is to provide some client-side hooks that users caninstall and have Git notify them immediately when they violate the policy, whichwould make their changes get rejected by the server. The intent is to helpcorrect any problem as fast as possible, usually before committing the changes.These client-side hooks must be distributed somehow, as hooks are not copiedwhen cloning a repository. Various ways to distribute these hooks are describedin Chapter 13, Customizing and Extending Git.

If there are any limitations on the contents of the changes (for example, somefiles might be changed only by specified developers), a warning message can becreated with pre-commit hook. The prepare-commit-msg hook (and the commit.templateconfiguration variable) can provide the developer with a customized templateto be filled in while working on a commit message. You can also make Git checkthe commit message, just before the commit is recorded, with the commit-msghook. This hook would find out and inform you whether you have correctlyformatted the commit message and whether it includes all the informationrequired by the policy. This hook can also be used instead of or in addition to
pre-commit, checking whether you are modifying the files you are not allowed to.
The pre-rebase hook can be used to verify that you don’t try to rewrite history ina manner that would lead to a non-fast-forward push (with
receive.denyNonFastForwards on the server, forcing a push won’t work anyway).As a last resort, there is a pre-push hook, which can check for correctness beforetrying to connect to the remote repository.
Signed pushes

Chapter 6, Collaborative Development with Git, includes a description ofvarious mechanisms that a developer can use to ensure the integrity andauthenticity of their work – signed tags, signed commits, and signed merges(merging signed tags). All these mechanisms assert that the objects (and thechanges they contain) came from the signer.However, signed tags and commits do not assert that the developer wanted tohave a particular revision at the tip of a particular branch. Authentication doneby the hosting site cannot be easily audited later, and it requires you to trustthe hosting site and its authentication mechanism. Modern Git (version 2.2 ornewer) allows you to sign pushes for this purpose.
Signed pushes require the server to set up receive.certNonceSeed and the client touse git push --signed. Handling of signed pushes is done with the server-sidehooks. Currently, none of the Git forges such as GitHub, GitLab, Bitbucket, orGitea support signed pushes; there are tools such as gittuf or Kernel.org
Transparency Log Monitor that provide transparency logs for pushoperations.

The signed push certificate sent by the client is stored in the repository as ablob object and is verified using the GPG (GNU Privacy Guard). The pre-
receive hook can then examine various GIT_PUSH_CERT_* environment variables (seethe git-receive-pack man page for the details) to decide whether to accept ordeny a given signed push.
Logging signed pushes for audit can be done with the post-receive hook. You canhave this hook send an email notification about the signed push or have itappend information about the push to a log file. The push certiücate that issigned includes an identifier for the client’s GPG key, the URL of the repository,and the information about the operations performed on the branches or tags, inthe same format as the pre-receive and post-receive input.
Serving Git repositories

In Chapter 6, Collaborative Development with Git, we examined four majorprotocols used by Git to connect with remote repositories – local, HTTP, SSH(Secure Shell), and Git (the native protocol). This was done from the point ofview of a client connecting to the repository, discussing what these protocolsare and which one to use if the remote repository offers more than one.
This chapter will offer the administrator’s side of view, explaining how to set upand later move rephrased Git repositories to be served with different transportprotocols. Here, we will also examine, for each protocol, what authenticationand authorization look like.
Local protocolThis is the most basic protocol, where a client uses a path to the repository orthe file:// URL to access remotes. You just need to have a shared filesystem,such as an NFS or SMB/CIFS mount, which contains Git repositories to serve.This is a nice option if you already have access to a networked filesystem, asyou don’t need to set up any server.
Access to repositories using a file-based transport protocol is controlled by theexisting file permissions and network access permissions. You need readpermissions to fetch and clone and write permissions to push.

In the latter case, if you want to enable a push, you’d better set up a repositoryin such a way that pushing does not screw up the permissions. This can behelped by creating a repository with the --shared option to use git init (or git
clone). This option allows users belonging to the same group to push into therepository by using the sticky group ID, ensuring that the repositories stayavailable to all the group members.
The disadvantage of this method is that shared access to a networkedfilesystem is, generally, more difficult to set up and reach safely from multipleremote locations than basic network access and setting up an appropriateserver. Mounting the remote disk over the internet can be difficult and slow.This protocol does not protect the repository against accidental damage. Everyuser has full access to the repository’s internal files, and there is nothingpreventing them from accidentally corrupting the repository.
The SSH protocolSSH is a common transport protocol (commonly used by Linux users) to self-host Git repositories. SSH access to servers is often already set up in manycases as a way to safely log in to the remote machine; if not, it is generallyquite easy to set up and use. SSH is an authenticated and encrypted networkprotocol.Conversely, you can’t serve anonymous access to Git repositories over SSH.People must have at least limited access to your machine over SSH; thisprotocol does not allow anonymous read-only access to published repositories.
Generally, there are two ways to give access to Git repositories over SSH. Thefirst is to have a separate account on the server for each client trying to accessthe repository (although such an account can be limited and does not need fullshell access, you can, in this case, use git-shell as a login shell for Git-specificaccounts). This can be used both with ordinary SSH access, where you providethe password, and with a public-key login. In a one-account-per-user case, theaccess control situation is similar to the local protocol – namely, access iscontrolled with filesystem permissions.A second method is to create a single shell account, which is often the git user,specifically to access Git repositories and use public-key login to authenticateusers. Each user who will have access to the repositories would then need to

send their SSH public key to the administrator, who would then add this key tothe list of authorized keys. The actual user is identified by the key they use toconnect to the server.
Another alternative is to have the SSH server authenticated from an LDAPserver or some other centralized authentication scheme (often to implementsingle sign-on). As long as the client can get (limited) shell access, any SSHauthentication mechanism can be used.
Anonymous Git protocolNext is the Git protocol. This is served by a special and really simple TCPdaemon, which listens on a dedicated port (by default, port 9418). This is (orwas) a common choice for fast, anonymous, and unauthenticated read-onlyaccess to Git repositories.
The Git protocol server, git daemon, is relatively easy to set up. Basically, youneed to run this command, usually in a daemonized manner. How to run thedaemon (the server) depends on the operating system you use. It can be a
systemd unit file, an Upstart script, or a sysvinit script. A common solution is touse inetd or xinetd.You can remap all the repository requests relative to the given path (a projectroot for the Git repositories) with --base-path=<directory>. There is also supportfor virtual hosting; see the git-daemon documentation for more details. By default,
git daemon will export only the repositories that have the git-daemon-export-ok fileinside gitdir, unless the --export-all option is used. Usually, you would also wantto turn on --reuseaddr, allowing the server to restart without waiting for theconnection to time out.
The downside of the Git protocol is the lack of authentication and the obscureport that it runs on (which may require you to punch a hole in the firewall). Thelack of authentication is because, by default, it is used only for read access –that is, for fetching and cloning repositories. Generally, it is paired with eitherSSH (always authenticated and never anonymous) or HTTPS for pushing.You can configure it to allow for a push (by starting the receive-pack service withthe --enable=<service> command-line option or, on a per-repository basis, bysetting the daemon.receivePack configuration to true), but it is generally notrecommended. The only information available to hooks to implement access

control is the client address, unless you require all the pushes to be signed. Youcan run external commands in an access hook, but this would not provide muchmore information about the client.
TIP
One service you might consider enabling is upload-archive, which serves git archive --remote.This lack of authentication means that not only does the Git server not knowwho accesses the repositories, but also that the client must trust the network tonot spoof the address while accessing the server. This transportation is notencrypted.
The smart HTTP(S) protocolSetting up the so-called “smart” HTTP(S) protocol consists basically of enablinga server script that would invoke git receive-pack and git upload-pack on theserver. Git provides a CGI script named git-http-backend for this task. This CGIscript can detect whether the client understands the smart HTTP protocol; ifnot, it will fall back on the “dumb” behavior (a backward compatibility feature).To use this protocol, you need a CGI server – for example, Apache (with thisserver , you would also need the mod_cgi module or its equivalent, and the mod_envand mod_alias modules). The parameters are passed using environment variables(hence the need for mod_env when using Apache) – GIT_PROJECT_ROOT to specifywhere repositories are and an optional GIT_HTTP_EXPORT_ALL if you want to have allthe repositories exported, not only those with the git-daemon-export-ok file inthem.
The authentication is done by the web server. In particular, you can set it up toallow unauthenticated anonymous read-only access, while requiringauthentication for a push. Utilizing HTTPS gives encryption and serverauthentication, like with the SSH protocol. The URL for fetching and pushing isthe same when using HTTP(S); you can also configure it so that the webinterface to browse Git repositories uses the same URL for fetching.
NOTE
The documentation of git-http-backend includes a setup for Apache for diûerent situations, including
unauthenticated read and authenticated write. The setup presented there is a bit involved because initial
ref advertisements use the query string, while the receive-pack service invocation uses path info.

Conversely, requiring authentication with any valid account for reads and writes, and leaving the restriction
of writes to the server-side hook, is a simpler and often acceptable solution.If you try to push to the repository that requires authentication, the server canprompt for credentials. Because the HTTP protocol is stateless and involvesmore than one connection sometimes, it is useful to utilize credential helpers(see Chapter 13, Customizing and Extending Git) to avoid either having to givethe password more than once for a single operation, or having to save thepassword somewhere on the disk (for example, in the remote URL).
GITOLITE FOR SMART HTTPS ACCESS CONTROL
While Gitolite (https://gitolite.com/) provides an access control layer on top of Git for access over SSH, it
can be conügured to perform authorization for smart HTTP mode.

Dumb protocolsIf you cannot run Git on the server, you can still use the dumb protocol, whichdoes not require it. The dumb HTTP(S) protocol expects the Git repository to beserved like normal static files from the web server. However, to be able to usethis kind of protocol, Git requires the extra objects/info/packs and info/refs files tobe present on the server and kept up to date with git update-server-info. Thiscommand is usually run on a push via one of the earlier mentioned smartprotocols (the default post-update hook does that, and so does git-receive-pack if
receive.updateServerInfo is set to true).It is possible to push with the dumb protocol, but this requires a setup thatallows you to update files using a specified transport; for the dumb HTTP(S)transport protocol, this means configuring WebDAV.
Authentication, in this case, is done by the web server for static files.Obviously, for this kind of transport, Git’s server-side hooks are not invoked,and thus they cannot be used to further restrict access.
HISTORICAL NOTE
Note that, for modern Git, the dumb transport is implemented using the curl family of remote helpers,
which may be not installed by default.This transport works (for fetching) by downloading requested refs (as plainfiles), examining where to find files containing the referenced commit objects(hence the need for server information files, at least for objects in packfiles),getting them, and then walking through the chain of revisions, examining each

https://gitolite.com/

object needed, and downloading new files if the object is not present yet in thelocal repository. This walker method can be horrendously inefficient if therepository is not packed well with respect to the requested revision range. Itrequires a large number of connections and always downloads the whole pack,even if only one object from it is needed.
With smart protocols, Git on the client side and Git on the server side negotiatebetween themselves which objects need to be sent (a want/have negotiation).Git then creates a customized packfile, utilizing the knowledge of what objectsare already present on the other side, and usually includes only deltas – that is,the difference from what the other side has (a thin packfile). The other siderewrites the received packfile to be self-contained.
Remote helpersGit allows us to create support for new transport protocols by writing remotehelper programs. This mechanism can be also used to support foreignrepositories. Git interacts with a repository requiring a remote helper byspawning the helper as an independent child process, communicating with thisprocess through its standard input and output with a set of commands. The useof remote transport helpers is described in Chapter 6, Collaborative
Development with Git.
You can find third-party remote helpers to add support to the new ways ofaccessing repositories – for example, there is git-remote-dropbox to use Dropbox tostore the remote Git repository. Note, however, that remote helpers are(possibly yet) limited in features compared to built-in transport support.
Tools to manage Git repositories
Nowadays, there is no need to write a Git repository management solutionyourself. There is a wide range of various third-party solutions that you can use.It is impossible to list them all, and even giving recommendations is risky. TheGit ecosystem is actively developed; which tool is the best could have changedsince the time of writing.
I’d like to focus here just on the types of tools for administrators, just as I didfor GUIs in Chapter 13, Customizing and Extending Git.

First, there are Git repository management solutions (we have seen oneexample of such in the form of the update-paranoid script in the contrib/ area).These tools focus on access control, usually the authorization part, making iteasy to add repositories and manage their permissions. An example of such atool is Gitolite.
They often support some mechanism to add your own additional accessconstraints.
Then, there are web interfaces that allow us to view Git repositories using aweb browser. Some make it even possible to create new revisions using a webinterface. They differ in capabilities, but they usually offer at least a list ofavailable Git repositories, a summary view for each one, an equivalent of the git
log and git show commands, and a view with a list of files in the repository. Anexample of such tools is the gitweb script in Perl that is distributed with Git;another is cgit, used by git.kernel.org.
Also useful are the code review (code collaboration) tools. These make itpossible for developers in a team to review each other’s proposed changesusing a web interface. These tools often allow the creation of new projects andthe handling of access management. An example of such a tool is Gerrit CodeReview.
Finally, there are Git hosting solutions, also called software forges, usuallywith a web interface for the administrative side of managing repositories,allowing us to add users, create repositories, manage their access, and oftenwork from the web browser on Git repositories. Examples of such tools areGitLab and Gitea. There are also similar source code management systems,which provide (among other web-based interfaces) repository hosting services,together with the features to collaborate and manage development. Oneexample of such a system is Kallithea; however, nowadays, many softwareforges include some source code management features, such as issue tracking,and CI/CD (Continuous Integration/Continuous Delivery) pipelines.
Of course, you don’t need to self-host your code. There is a plethora of third-party hosted options – GitHub, Bitbucket, and so on. There are even hostedsolutions using open source hosting management tools, such as GitLab andCodeberg.

http://git.kernel.org/

Tips and tricks to host repositories

If you want to self-host Git repositories, there are a few things that may helpyou with server performance and user satisfaction.
Reducing the size taken by repositoriesIf you are hosting many forks (clones) of the same repository, you might wantto reduce disk usage by somehow sharing common objects. One solution is touse alternates (for example, with git clone --reference) while creating a fork. Inthis case, the derived repository would look to its parent object storage if theobject is not found on its own.
There are, however, two problems with this approach. First, you need to ensurethat the object the borrowing repository relies on does not vanish from therepository set as the alternate object storage (the repository you borrow from).This can be done, for example, by linking the borrowing repository refs in therepository lending the objects, (e.g., in the refs/borrowed/ namespace). Second isthat the objects entering the borrowing repository are not automatically de-duplicated; you need to run git repack -a -d -l, which internally passes the --
local option to git pack-objects.An alternate solution would be to keep every fork together in a singlerepository and use git namespaces to manage separate views into the DAG ofrevisions, one for each fork. With plain Git, this solution means that therepository is addressed by the URL of the common object storage and thenamespace to select a particular fork. Usually, this is managed by a serverconfiguration or a repository management tool; such a mechanism translatesthe address of the repository into a common repository and the namespace. The
git-http-backend manpage includes an example configuration to serve multiplerepositories from different namespaces in a single repository. Gitolite also hassome support for namespaces in the form of logical and backing repositoriesand option namespace.pattern, although not every feature works for logicalrepositories.
Storing multiple repositories as the namespace of a single repository avoidsstoring duplicated copies of the same objects. It automatically preventsduplication between new objects without the need for ongoing maintenance, asopposed to the alternate solution. Conversely, security is weaker; you need to

treat anyone with access to the single namespace, which is within therepository, as if they had access to all the other namespaces (although thismight not be a problem for your case).
Speeding up smart protocols with pack bitmapsAnother issue that you can stumble upon while self-hosting repositories is theperformance of smart protocols. For the clients of your server, it is importantthat operations finish quickly; as an administrator, you would not want togenerate a high CPU load on the server due to serving Git repositories.One feature, ported from JGit, should significantly improve the performance ofthe counting objects phase, while serving objects from a repository that uses it.This feature is a bitmap-index üle, available since Git 2.0.
THE BITMAP-INDEX FILE
The major function of the bitmap-index üle is providing for a selected subset of commits, including the
most recent ones, bit vectors (bitmaps) that store reachability information for a set of objects in a packüle,
or in a multi-pack index. In each bit vector, the value of 1 at index i means that the i-th object (in the
order deüned by a packüle or a multi-pack index üle) is reachable from the commit that the given bit
vector belongs to.This file is stored alongside packfiles and their indexes. It can be generatedmanually by running git repack -A -d --write-bitmap-index, or it can be generatedautomatically together with the packfile by setting the repack.writeBitmapsconfiguration variable to true. The disadvantage of this solution is that bitmapstake additional disk space, and the initial repack requires extra time to createbitmap-index. With modern Git, thanks to the multi-pack index, you no longerneed to repack everything into a single packfile to be able to use the bitmapfile. This feature also makes it faster to update the bitmap.
Nowadays, this feature is turned on by default for bare repositories.
Solving the large non-resumable initial clone problemRepositories with a large code base and a long history can get quite large. Theproblem is that the initial clone, where you need to get everything in a possiblylarge repository, is an all-or-nothing operation, at least for modern (safe andeffective) smart transfer protocols – SSH, git://, and smart HTTP(S). This mightbe a problem if a network connection is not very reliable. There is no supportfor a resumable clone, and it unfortunately looks like it is a fundamentally hard

problem to solve for Git developers. This does not mean, however, that you, asa hosting administrator, can do nothing to help users get this initial clone.
One solution is to create, with the git bundle command, a static file that can beused for the initial clone, or as a reference repository for the initial clone (thelatter can be done with the git clone --reference=<bundle> --dissociate commandafter downloading the bundle). This bundle file can be distributed using anytransport – in particular, one that can be resumed if interrupted, be it HTTP(S),FTP, rsync, or BitTorrent. The convention that people use, besides explaininghow to get such a bundle in the developer documentation, is to use the sameURL as that used for the repository but with the .bundle extension (instead of anempty extension or a .git suffix). If the bundle is available via the HTTP(S) orSSH protocols, it can be used without explicitly downloading it first with git
clone --bundle-uri=<bundle uri>.
There is also the bundle-uri capability of Git, where the server suggests whereyou can download such a bundle from the client, which in turn can use thebundle to speed up the initial clone. At the time of writing, no software forgesupports this feature, but there is the git bundle-server(https://github.com/git-ecosystem/git-bundle-server) web server andmanagement interface for use with this feature.
There are also more esoteric approaches to solving the problem of the initialclone cost, such as a step-by-step deepening of a shallow clone (or perhaps justusing a shallow clone with git clone --depth is all that’s needed), starting with apartial clone, or using approaches such as GitTorrent.
Augmenting development workflowsHandling version control is only a part of the development workflow. There isalso work management, code review and audit, running automated tests, andgenerating builds.Many of these steps can be aided by specialized tools. Many of them offer Gitintegration. For example, code review can be managed using Gerrit, requiringthat each change passes a review before being made public. Another example issetting up development environments so that pushing changes to the publicrepository can automatically close tickets in the issue tracker, based on the

https://github.com/git-ecosystem/git-bundle-server
https://github.com/git-ecosystem/git-bundle-server

patterns in the commit messages. This can be done with server-side hooks orwith the hosting service’s Webhooks.
A repository can serve as a gateway, running automated tests (for example,with the help of Jenkins’ or Hudson’s continuous integration service) anddeploying changes to ensure quality environments only after passing all ofthese tests. Another repository can be configured to trigger builds for varioussupported systems. Many tools and services support push-to-deploymechanisms (for example, Heroku or Google’s App Engine).Git can automatically notify users and developers about published changes.This can be done via email, a mailing list, an IRC/Discord/Slack channel, or aweb-based dashboard application. The possibilities are plentiful; you only needto find them.
Defining development workflows in the repository

Many software forges allow you to automate, customize, and execute softwaredevelopment workflows right from the repository. Those solutions, such as
GitHub Actions and GitLab CI/CD, let you run various workflows (for example,to run tests or to deploy an application) when other events happen in yourrepository at the software forge. Those workflows are run using runners, eithervirtual machines or containers. They are usually defined by a YAML filechecked into your repository.While the specific dialect of the YAML markup language, the pathname of thefile, and the available pre-defined actions differ from service to service, theyare similar enough that you should be able to migrate from one solution to theother.
GitOps – using Git for operational procedures

The natural extension of defining software development workflows in the Gitrepository is to use Git to automatically manage deployment infrastructure,especially for cloud-native applications. This is called GitOps – an operationalframework that uses the Git repository to store infrastructure as code (IoC)files and application configuration files. This data can be stored in the samerepository as the application code, or in a separate repository.

GitOps ensures that the infrastructure (including the development, testing, anddeployment environments) is immediately reproducible, based on the state ofthe Git repository. This provides version control for operations should arollback be needed.
Often, the infrastructure configuration is defined declaratively, and aspecialized software agent (such as Argo CD, Flux, or Gitkube) running in thecloud pulls from the Git repository at regular intervals and checks theconfiguration against the live state, adjusting the state as necessary.
SummaryThis chapter covered various issues related to the administrative side ofworking with Git. You learned the basics of maintenance, data recovery, andrepository troubleshooting. You also learned how to set up Git on a server, howto use server-side hooks, and how to manage remote repositories. The chaptercovered tips and tricks for a better remote performance. It described how youcan use Git (with the help of third-party tools) to augment developmentworkflows. The information in this chapter should help you to choose a Gitrepository management solution, or even write your own.The next chapter will include a set of recommendations and best practices,both specific to Git and those that are version control-agnostic. A policy basedon these suggestions can be enforced and encouraged with the help of the toolsexplored in this chapter.
QuestionsAnswer the following questions to test your knowledge of this chapter:

1. How do you set up automatic repository maintenance to ensure that Git operations will not slowdown?
2. How you can try to recover a lost commit?
3. How do you find out why some Git commands started to perform badly and took too much time toexecute?
4. How you can ensure that development follows a given defined policy?
5. What is the simplest solution to sharing the repository privately, where all developers work on a singlecomputer (on a single machine)?

AnswersHere are the answers to the questions given above:
1. Use the git maintenance command.
2. First, check the branch and HEAD reflogs if the lost committing question is not readily available fromthere. If this fails, you can try to browse through unreachable commits with git fsck.
3. You can use the “Git trace” mechanism – for example, with the GIT_TRACE2_PERF or

GIT_TRACE_PERFORMANCE environment variables.
4. Use your software forge features, if possible (for example, to protect a branch against changes ordeletion), or use server-side hooks. Enforcing the policy can be helped, but not ensured, with client-side hooks.
5. Simply create the bare repository with git init --bare --shared, while ensuring that alldevelopers that need access to it have appropriate filesystem permissions. If necessary, push to thatrepository.

Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:
Scott Chacon, Ben Straub: Pro Git, 2nd Edition, Apress (2014) Chapter 4, Git on the Serverhttps://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols
Scott Chacon: Git Tips 2: New Stuû in Git (2024) https://blog.gitbutler.com/git-tips-2-new-stuff-in-git/#git-maintenance
Konstantin Ryabitsev: Signed git pushes (2020) https://people.kernel.org/monsieuricon/signed-git-pushes
Vicent Martí: Counting Objects (2015) https://github.blog/2015-09-22-counting-objects/
Sitaram Chamarty: Gitolite Essentials, Packt (2014)https://subscription.packtpub.com/book/programming/9781783282371
Derrick Stolee: Exploring new frontiers for Git push performance (2019)https://devblogs.microsoft.com/devops/exploring-new-frontiers-for-git-push-performance/
Taylor Blau: Scaling monorepo maintenance (2021) https://github.blog/2021-04-29-scaling-monorepo-maintenance/

https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols
https://blog.gitbutler.com/git-tips-2-new-stuff-in-git/#git-maintenance
https://people.kernel.org/monsieuricon/signed-git-pushes
https://github.blog/2015-09-22-counting-objects/
https://subscription.packtpub.com/book/programming/9781783282371
https://devblogs.microsoft.com/devops/exploring-new-frontiers-for-git-push-performance/
https://github.blog/2021-04-29-scaling-monorepo-maintenance/

15

Git Best PracticesThe last chapter of Mastering Git presents a collection of generic and Git-specific version control recommendations and best practices. You haveencountered many of these recommendations already in the earlier chapters;they are here as a summary and as a reminder. For details and the reasoningbehind each best practice, refer to the specific chapters.This chapter will cover the issues of managing the working directory, creatingcommits and series of commits (pull requests), submitting changes forinclusion, and the peer review of changes.
In this chapter, we will cover the following topics:

How to separate projects into repositories
What types of data to store in a repository and which files Git should ignore
What to check before creating a new commit
How to create a good commit and a good commit series (or, in other words, how to create a good pullrequest)
How to choose an effective branching strategy, and how to name branches and tags
How to review changes and how to respond to the review

Starting a projectWhen starting a project, you should choose and clearly define a projectgovernance model (who manages work, who integrates changes, and who isresponsible for what). You should decide about the license and the copyright ofthe code: whether it is work for hire and whether contributions require acopyright assignment, a contributor agreement, a contributor licenseagreement, or simply a digital certificate of origin.
Dividing work into repositories
In centralized version control systems, often everything is put under the sameproject tree. With distributed version control systems such as Git, it very much

depends on the nature of the project. Often, it is better to split separateprojects into separate repositories, but if those projects are tightly coupledtogether it might be better to use a monorepo – all projects in a single largerepository.
If some part of the code is needed by multiple separate projects, considerextracting it into its own project and then incorporating it as a submodule orsubtree, grouping concepts into a superproject. See Chapter 11, Managing
Subprojects, for the details.
Selecting the collaboration workflow
You need to make decisions on the collaboration structure, whether yourproject will use a dispersed contributor model, a “blessed” repository model, ora central repository, and so on (as found in Chapter 6, Collaborative
Development with Git).
This often requires setting up an access control mechanism and deciding on thepermission structure; see Chapter 14, Git Administration, for details on howone can set up this.
You also need to decide on the branching patterns to use. See Chapter 8,
Advanced Branching Techniques, for examples of the most common patterns.You need to decide how to integrate changes, and how to isolate independentwork. Those branching patterns are often grouped together into a single namedbranching workflow.
This decision about branching doesn’t need to be cast in stone. As your projectand your team experience grow, you might want to consider changing thebranching model, for example, from the trunk-based workflow to a plainbranch-per-feature model, a GitHub flow, or any of the other derivatives.The decisions about licensing, the collaboration structure, and the branchingmodel should all be stated explicitly in the developer documentation (at aminimum in the README and LICENSE/COPYRIGHT files, and perhaps also in
CodingGuidelines and CodeOfConduct). You need to remember that if the way in whichthe project is developed changes, this documentation needs to be updated toreflect the changes. This can happen, for example, because the project hasgrown beyond its initial stage.

Choosing which files to keep under version
control

In most cases, you should not include any of the generated files in the versioncontrol system (though there are some very rare exceptions). You should trackonly the sources (the original resources); Git works best if these sources areplain text files, but it also works well with binary files.
To avoid accidentally including unwanted files in a repository, you should usethe gitignore patterns. These ignore patterns that are specific to a project(for example, results and by-products of a build system) should go into the
.gitignore file in the project tree; those specific to the developer (for example,backup files created by the editor one uses or the operating system-specifichelper files) should go into their per-user core.excludesFile (which, in modern Git,is the ~/.config/git/ignore file), or into a local configuration of the specific cloneof the repository, that is, .git/info/excludes. See Chapter 3, Managing Your
Worktrees, for details.A good start for ignore patterns is the https://gitignore.io site with its .gitignoretemplates for various operating systems, IDEs, and programming languages.
Another suggestion is to not add to Git the configuration files that mightchange from environment to environment (for example, those that are differentfor MS Windows and Linux).
Working on a projectHere are some guidelines on how to create changes and develop new revisions.These guidelines can be used either for your work on your own project, or tohelp contribute your code to a project maintained by somebody else.Different projects can use different development workflows; therefore, some ofthe recommendations presented here might not make sense depending on thegiven workflow in use.
Working on a topic branch

Branching in Git has two functions (Chapter 8, Advanced Branching
Techniques): as a mediator for the code contributed by developers keeping to

https://gitignore.io/

the specified level of code stability and maturity (long-running publicbranches), providing the road to integration and deployment, and as a sandbox
for the development of a new idea (short-lived private branches).
The ability to sandbox changes is why it is considered a good practice to createa separate branch for each new task you work on. Such a branch is called atopic branch or a feature branch. Using separate branches makes it possible toswitch between tasks easily, and to keep disparate pieces of work in progressfrom interfering with each other. On the other hand, if such branches are long-lived, it would go against continuous integration (CI) practices, reducechangeset visibility, and lead to more difficult integration because of largerdivergence.You should choose short and descriptive names for branches. There aredifferent naming conventions for topic branches; the convention your projectuses should be specified in the developer documentation. In general, branchesare usually named with a summary of a topic they host, usually in all-lowercaseand with the spaces between words replaced by hyphens or underscores (seethe git-check-ref-format manpage to know what is forbidden in branch names).Branch names can include slashes (be hierarchical).
If you are using an issue tracker, then a branch that fixes a bug or implementsan issue can have its name prefixed with the identifier (the number) of theticket describing the issue, for example, 1234-doc_spellcheck. On the other hand,the maintainer, while gathering submissions from other developers, could putthese submissions in topic branches named after the initials of the developerand the name of the topic, for example, ad/whitespace-cleanup (this is an exampleof a hierarchical branch name).It is considered a good practice to delete your topic branch from your localrepository, and also from the upstream repository after you are done with thebranch in question, to reduce clutter.
Deciding what to base your work on

As a developer, you are usually working on some specific issue at a given time,be it a bug fix, an enhancement, a correction to some topic, or a new feature.

Where to start your work on a given topic, and what branch to base your workon, both depend on the branching workflow chosen for the project (see Chapter
8, Advanced Branching Techniques, for a selection of branching workflows).This decision also depends on the type of work you do.
For a topic branch workflow (or a branch-per-feature workflow), you wouldwant to base your work on the oldest and most stable long-running branch thatyour change is relevant to, and for which you plan to merge your changes into.This is because, as described in Chapter 8, Advanced Branching Techniques,you should never merge a less stable branch into a more stable branch.The reason behind this best practice rule is to avoid destabilizing the branch asmerging carries over all the changes.Different types of changes require a different long-lived branch to be used as abase for a topic branch with those changes, or to put those changes onto. Ingeneral, to help developers working on a project, this information should bedescribed in the developer documentation; not everybody needs to beknowledgeable about the branching workflow used by the project.
The following describes what is usually used as a base branch, depending onthe purpose of the changes:

Bugfix: In this case, the topic branch (the bugfix branch) should be based on the oldest and the moststable branch in which the bug is present. This means, in general, starting with the maintenancebranch. If the bug is not present in the maintenance branch, then base the bugfix branch on the stablebranch. For a bug that is not present in the stable branch, find the topic branch that introduced it andbase your work on top of that topic branch.
New feature: In this case, the topic branch (the feature branch) should be based on the stablebranch, if possible. If the new feature depends on some topic that is not ready for the stable branch,then base your work on that topic (from a topic branch).
Corrections and enhancements to a topic that didn’t get merged into the stable branch should bebased on the tip of the topic branch being corrected. If the topic in question is not consideredpublished, it’s alright to make changes to the steps of the topic, squashing minor corrections in theseries (see the section about rewriting history in Chapter 10, Keeping History Clean).

If the project you are contributing to is large enough to have dedicatedmaintainers for selected parts (subsystems) of the system, you first need todecide which repository and fork (sometimes named “a tree”) to base yourwork on.
Splitting changes into logically separate steps

Unless your work is really simple and can be done in a single step (a singlecommit)—as is the case with many bugfixes—you should make separatecommits for logically separate changes, one commit per single step. Thosecommits should be ordered logically.
Following good practice for commit messages (with an explanation of what youhave done—see the next section) could help in deciding when to commit. If yourdescription gets too long and you begin to see that you have two independentchanges squashed together, that’s a sign that you probably need to split yourcommit into finer-grained pieces and use smaller steps.Remember, however, that it is a matter of balance between the projectconventions and the development workflow chosen. Changes should, at aminimum, stand on their own. At each step (at each commit) of theimplementation of a feature, the code compiles and the program passes the testsuite. You should commit early and often. Smaller self-contained revisionsare easier to review, and with smaller (but still complete) changes, it is easierto find regression bugs with git bisect (which is described in Chapter 4,
Exploring Project History).
Note that you don’t necessarily need to come up with the perfect sequence ofsteps from the start. If you notice that you have entangled the work directory’sstate, you can make use of the staging area, using an interactive add todisentangle it (this is described in Chapter 2, Developing with Git, and Chapter
3, Managing Your Worktrees). You can also use an interactive rebase or asimilar technique, as shown in Chapter 10, Keeping History Clean, to curatecommits into an easy-to-read (and easy-to-bisect) history before publishing.
IMPORTANT NOTE
You should remember that a commit is a place to record your result (or a particular step towards the
result), not a place to save the temporary state of your work. If you need to temporarily save the current
state before going back to it, use git stash.

Writing a good commit message
A good commit message should include an explanation for the change withsufficient detail so that other developers on the team (including reviewers andthe maintainer) can judge whether it is a good idea to include the change in the

codebase. This good-or-not decision should not require them to read the actualchanges to find out what the commit intends to do.
The first line of the commit message should be a short, terse description (fromaround 50 to 72 characters) with a summary of the changes. It should beseparated by an empty line from the rest of the commit message, if there is one.This is partly because, in many places, such as in the git log --oneline commandoutput, in a graphical history viewer such as gitk, and in the instruction sheet of
git rebase --interactive, you will see only this one line of the commit message andhave to decide the action with respect to that commit on the basis of this oneline. If you have trouble with coming up with a good summary of changes, thismight mean that these changes need to be split into smaller steps.There are various conventions for this summary line of changes. Oneconvention is to prefix the first summary line with area:, which is an identifierfor the general area of the code being modified: the name of the subsystem, ofan affected subdirectory, or a filename of a file being changed. If thedevelopment is managed via an issue tracker, this summary line can start withsomething like the [#1234] prefix, where 1234 is the identifier of an issue ortask implemented in the commit. In general, when not sure about whatinformation to include in the commit message, refer to the developmentdocumentation or fall back to the current convention used by other commits inthe history.
TIP
If you are using agile development methods, you can look for especially good commit messages during
retrospectives and add them as examples to the developer documentation for the future.For all but trivial changes, there should be a longer meaningful description, thebody of the commit message. There is something that people coming from otherversion control systems might need to unlearn: namely, not writing a commitmessage at all or writing it all on one long line. Note that Git will not allow thecreation of a commit with an empty commit message unless forced to with --
allow-empty.The commit message should do the following:

Include the rationale for the commit, explaining the problem that the commit tries to solve – the why,in other words. It should include a description of what is wrong with the current code or the currentbehavior of the project without the change. This should be self-contained, but it can refer to other

sources including the issue tracker (the bug tracker) or other external documents such as articles,wikis, or Common Vulnerabilities and Exposures (CVEs).
Include a quick summary. In most cases, it should also explain the how and justify the way the commitsolves the problem.
Describe why you think the result with the change is better; this part of the description does not needto explain what the code does, as that is largely a task for the code comments.
If there was more than one possible solution, include a description of the alternative solutions thatwere considered but ultimately discarded, perhaps with links to the discussion or review(s).

It’s a good idea to try to make sure that your explanation of the changes can beunderstood without access to any external resources (that is, without accessingthe issue tracker, the internet, or a mailing list archive). Instead of justreferring to the discussion, or in addition to giving a URL or an issue number,write a summary of the relevant points in the commit message.One of the possible recommendations when writing a commit message is todescribe changes in the imperative mood, for example, make foo do bar, as ifyou are giving orders to the codebase to change its behavior, instead of writing
This commit makes... or [I] changed
Here, commit.template and commit message hooks can help in following thesepractices. see Chapter 13, Customizing and Extending Git, for details (and
Chapter 14, Git Administration, for a description of the way to enforce thisrecommendation).
Preparing changes for submission
If the topic branch was started a long time ago, consider rebasing the branch tobe submitted on top of the current tip of the base branch. This should make iteasier to integrate changes in the future. If your topic branch was based on thedevelopment version, or on the other in-flight topic branch (perhaps because itdepended on some specific feature), and the branch it was based on gotmerged into a stable line of development, you should rebase your changes ontop of the stable integration branch instead.
Rebasing is also a chance for a final clean-up of the history; the chance to makesubmitted changes easier to review. Simply run an interactive rebase with git
rebase --interactive, or a patch management tool if you prefer (see Chapter 10,
Keeping History Clean). One caveat: do not rewrite the published history.

Consider testing that your changes merge cleanly, and fix it if they don’t (ifpossible). Make sure that they apply or merge cleanly into the appropriateintegration branch.
Take a last look at your commits to be submitted. Make sure that your changesdo not add the commented-out (or the ifdef-ed-out) code, nor any extra files notrelated to the purpose of the patch (for example, changes in an upcomingfeature). Review your commit series before submission to ensure accuracy.
Integrating changesThe exact details on how to submit changes for merging depends, of course, onthe development workflow that the project is using. Various classes of possibleworkflows are described in Chapter 6, Collaborative Development with Git.

Submitting and describing changes
If the project has a dedicated maintainer or, at least someone responsible formerging the proposed changes into the official version, you also need todescribe the submitted changes as a whole (in addition to describing eachcommit in the series). This can be done in the form of a cover letter for thepatch series while sending changes as patches via email. It can also be donewith comments in the pull request while using the collocated contributorrepositories model, or it can be the description in an email with a pull request,which already includes the URL and the branch in your public repository withchanges (generated with git request-pull).
This cover letter or pull request should include a description of the purpose ofthe patch series or the pull request. Consider also providing an overview of whythe work is taking place (with any relevant links and a summary of thediscussion). Be explicit in stating that it is a work in progress in the descriptionof changes.In the dispersed contributor model, where changes are submitted for review aspatches or patch series, usually to a mailing list, you should use Git-based toolssuch as git format-patch and, if possible, git send-email. Multiple related patchesshould be grouped together, for example, in their own email thread. The

convention is to send them as replies to an additional cover letter message,which should describe the feature as a whole.
If the changes are sent to the mailing list, it is a common convention to prefixyour subject line with [PATCH] or [PATCH m/n] (where m is the patch number in theseries of the n patches). This lets people easily distinguish patch submissionsfrom other emails. This part can be done with git format-patch. What you need todecide yourself is whether to use additional markers after PATCH to mark thenature of the series, for example, PATCH/RFC. (RFC here means Request For
Comments, i.e., an idea for a feature with an example of its implementation.Such a patch series should only be examined if the idea is worthy; it is notready to be applied/merged yet and is provided only for discussion among thedevelopers.)In the collocated contributor repositories model, where all the developers usethe same Git hosting website or software (for example, GitHub, Bitbucket,GitLab, or a private instance of it), you would push changes to your own publicrepository, a fork of the official version. Then, you would create a mergerequest or pull request, usually via the web interface of the hosting service,again describing the changes as a whole there.
In the case of using the central repository (perhaps in a shared maintenancemodel), you would push changes to a separate and possibly new branch in theintegration repository, and then send an announcement to the maintainer sothat they can find the changes to merge. The details of this step depend on theexact setup; sending announcements might be done via email, some kind ofinternal messaging mechanism, or even via tickets (or the comments in thetickets).The development documentation might include rules specifying where to sendannouncements and/or changes. It is considered a courtesy to notify the peoplewho are involved in the area of code you are changing about the new changes(you can use git blame and git shortlog to identify these
people; see Chapter 4, Exploring Project History). These people are important;they can write comments about the change and help review it.
CREDITING PEOPLE AND SIGNING YOUR WORK
Some open source projects, in order to improve the tracking provenance of the code, use the sign-off
procedure borrowed from the Linux kernel called Digital Certiücate of Origin. The sign-off is a simple

line at the end of the commit message, like the following example:

Signed-oû-by: Random Developer <rdeveloper@company.com>

By adding this line, you certify that the contribution is either created as a whole or in part by you, or is
based on previous work, or was provided directly to you, and that everybody in the chain has the right to
submit it under the appropriate license. If your work is based on work by somebody else, or if you are just
passing somebody’s work, then there can be multiple sign-off lines forming a chain of provenance.

In order to credit people who helped with creating the commit, you can append to the commit message
other trailers, such as Reported-by:, Reviewed-by:, Acked-by: (this one states that it was liked by the
person responsible for the area covered by the change), or Tested-by:.

The art of the change review
Completing a peer review of changes is time-consuming (although so is usingversion control), but the benefits are huge: better code quality, a reduction inthe time needed for quality assurance testing, transfer of knowledge, and so on.The change can be reviewed by a peer developer, reviewed by a community(requiring consensus), or reviewed by the maintainer or one of theirlieutenants.
Before beginning the code review process, you should read through thedescription of the proposed changes to discover why the change was proposedand decide whether you are the correct person to perform the review (that isone of the reasons why good commit messages are so important). You need tounderstand the problem that the change tries to solve. You should familiarizeyourself with the context of the issue, and with the code in the area of changes.The first step is to reproduce the state before the change and check whetherthe program works as described (for example, that the bug in a bugfix can bereproduced). Then, you need to check out the topic branch with the proposedchanges and verify that the result works correctly. If it works, review theproposed changes, creating a comprehensive list of everything wrong (thoughif there are errors early in the process, it might be unnecessary to go deeper),as follows:

Are the commit messages descriptive enough? Is the code easily understood?
Is the contribution architected correctly? is it architecturally sound?
Does the code comply with the project’s coding standards and with the agreed-upon codingconventions?
Are the changes limited to the scope described in the commit message?

Does the code follow the industry’s best practices? Is it safe and efficient?
Is there any redundant or duplicate code? Is the code as modular as possible?
Does the code introduce any regressions in the test suite? If it is a new feature, does the changeinclude the tests for the new feature, both positive and negative?
Is the new code performing the way it did before the change (within the project’s tolerances)?
Are all the words spelled correctly, and does the new version follow the formatting guidelines for thecontent?

This is only one possible proposal for such a code review checklist. Dependingon the specifics of the project, there might be more questions that need to beasked as a part of the review; make the team write their own checklist. You canfind good examples online.
Divide the problems that you have found during reviews into the followingcategories:

Wrong problem: This feature does not lie within the scope of the project. It is sometimes used for abug that cannot be reproduced. Is the idea behind the contribution sound? If so, eject the changeswith or without prejudice and do not continue the analysis for the review.
Does not work: This does not compile, introduces a regression, doesn’t pass the test suite, doesn’t fixthe bug, and so on. These problems absolutely must be fixed.
Fails best practices: This does not follow the industry guidelines or the project’s coding conventions.Is the contribution polished? These are pretty important to fix, but there might be some nuances as towhy it is written the way it is.
Does not match reviewer preferences. In this case, you should suggest modifications, oralternatively ask for clarification.

Minor problems, for example, typos or spelling errors, can be fixed immediatelyby the reviewer. If the exact problem repeats itself, however, consider askingthe original author for a fix and resubmission; this is done to spread knowledge.You should not be making any substantive edits in the review process (barringextenuating circumstances).
Ask, don’t tell. Explain your reasoning about why the code should be changed.Offer ways to improve the code. Distinguish between facts and opinions.
Responding to reviews and comments
Changes are not always accepted on the first try. You can and will getsuggestions for improvement (and other comments) from the maintainer, the

code reviewer, and other developers. You might even get these comments inthe patch form or a fixup commit form.
First, consider leading your response with an expression of appreciation for thecommenter having taken the time to perform a review. If anything in the reviewis unclear, do ask for clarification; if there is a lack of understanding betweenyou and the reviewer, offer clarification.The next step is often to polish and refine the changes. Then, you shouldresubmit them (perhaps, marking them as v2). You should respond to thereview for each commit and for the whole series.
If you are responding to comments in a pull request, reply in the same way. Inthe case of patch submissions via email, you can put the comments for a newversion (with a response to the review or a description of the difference fromthe previous attempt), either between three dashes --- and the diffstat, or atthe top of an email separated from what is to be in the commit message by a“scissors” line, for example, --- >8 ---. An explanation of the changes that staysconstant between iterations, but nevertheless should be not included in thecommit message, can be kept in the Git notes (see Chapter 10, Keeping History
Clean) and inserted automatically via git format-patch --notes.Depending on the project’s governance structure, you will likely have to waitfor the changes to be considered good and ready for inclusion. This can be thedecision of a benevolent dictator for life in open source projects, or the decisionof the team leader, a committee, or a consensus. It is considered a goodpractice to summarize the discussion while submitting a final version of afeature.
Note that changes that have been accepted might nevertheless go through afew more stages before finally graduating to the stable branch and beingpresent in the project.
Other recommendationsIn this section, you will find the best practices and recommendations that donot fit cleanly into one of the areas described so far, namely starting a project,working on a project, and integrating changes.

Don’t panic, recovery is almost always possible

As long as you have committed your work and stored your changes in therepository, it will not be lost. It could only perhaps be misplaced. Git also triesto preserve your current uncommitted (unsaved) work, but it cannot distinguishfor example between the accidental and the conscious removal of all thechanges to the working directory with git reset --hard. Therefore, make sure tocommit or stash your current work before trying to recover lost commits.Thanks to the reflog (both for the specific branch and for the HEAD ref), it is easyto undo most operations. Then, there is the list of stashed changes (see Chapter
3, Managing Your Worktrees), where your changes might be hiding. And thereis git fsck as the last resort. See Chapter 14, Git Administration, for somefurther information about data recovery.
If the problem is that you have made a mess of the working directory, stop andthink. Do not drop your changes needlessly. With the help of interactive add,interactive reset (the --patch option), and interactive checkout (the same), youcan usually disentangle the mess.Running git status and carefully reading its output helps in many cases whereyou are stuck after doing some lesser-known git operation.
If you have a problem with a rebase or merge, and you cannot pass theresponsibility to another developer, there is always the third-party git-imergetool.
Don’t change the published history
Once you have made your changes public, you should ideally consider thoserevisions to be etched in stone, immutable, and unchanging. If you findproblems with commits, create a fix (perhaps by undoing the effect of thechanges with git revert). This is all described in Chapter 10, Keeping History
Clean: that is, unless it is stated explicitly in the development documentationthat these specific branches can be rewritten or redone; but it is neverthelessbetter to avoid creating such branches.
In some rare cases, you might really need to change the history: remove a file,clean up an unencrypted stored password, remove accidentally added large

files, and so on. If you need to do it, notify all the developers of the fact.
Numbering and tagging releases

Before you release a new version of your project, mark the version to bereleased with a signed tag. This ensures the integrity of the just-createdrevision.There are various conventions for naming the release tags and using releasenumbering. One of the more common ones is tagging releases by using, forexample, 1.0.2 or v1.0.2 as a tag name.
TIP
If the integrity of the project is important, consider using signed merges for integration (that is, merging
signed tags). See Chapter 6, Collaborative Development with Git, and for signed pushes, see Chapter 14,
Git Administration.There are different conventions for naming releases. For example, with time-based releases, there is the convention of naming releases after dates, such as
2015.04 (or 15.04). Then, there is the common convention of semantic
versioning (http://semver.org/) with the MAJOR.MINOR.PATCH numbering, where
PATCH increases when you are making backward-compatible bug fixes, MINOR isincreased when adding functionality that is backward compatible, and the MAJORversion is increased when making incompatible API changes. Even when notusing full semantic versioning, it is common to add a third number formaintenance releases, for example, v1.0 and v1.0.3.
Automate where possible
You should not only have the coding standards written down in thedevelopment documentation; you also need to enforce them. Following thesestandards can be facilitated with client-side hooks (Chapter 13, Customizing
and Extending Git) and enforced with server-side hooks (Chapter 14, Git
Administration).
Hooks can also help by automatically managing tickets in the issue tracker andselecting an operation based on given triggers (patterns) in the commitmessage. Hooks can also be used to protect against rewriting the history.

http://semver.org/

Consider using third-party solutions, such as Gitolite or GitLab, to enforce rulesfor access control. If you need to do a code review, use appropriate tools suchas Gerrit or the pull requests of GitHub, Bitbucket, or GitLab.
SummaryThese recommendations, based on the best practices of using Git as a versioncontrol system, can really help your development and your team. You havelearned the steps along the road, starting from an idea, going all the way, andending with the changes being integrated into the project. These checklistsshould help you develop better code.
Further readingTo learn more about the topics that were covered in this chapter, take a look atthe following resources:

Emma Jane Hogbin Westby: Git for Teams (2015), O’Reilly Media
Learn Git Branching https://learngitbranching.js.org/
Conventional Commits: A specification for adding human and machine-readable meaning to commit
messages https://www.conventionalcommits.org/
Commitizen - a release management tool designed for teams https://commitizen-tools.github.io/commitizen/
Sage Sharp: The Gentle Art Of Patch Review (2014) https://sage.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/
Dangit, Git!?! https://dangitgit.com/en
Julia Evans: Oh shit, git! Zine https://wizardzines.com/zines/oh-shit-git/
Semantic Versioning 2.0.0 https://semver.org/

https://learngitbranching.js.org/
https://www.conventionalcommits.org/
https://commitizen-tools.github.io/commitizen/
https://sage.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/
https://dangitgit.com/en
https://wizardzines.com/zines/oh-shit-git/
https://semver.org/

Index

As this ebook edition doesn't have fixed pagination, the page numbers below
are hyperlinked for reference only, based on the printed edition of this book.

Symbols.gitattributes files 66.gitignore file 63
Aamend 248
ancestry 107annotated tags 16, 47, 157
applypatch-msg hook 356Ask 204
attribute macro 76authentication domain 175
authorversus committer 131
autocorrection 334automatic tag following 211
auto-merged 233autosquash 253
Bbare repositories 142benevolent dictator 148
bfg-ish 260

BFG Repo Cleaner
files, removing from history with 260Binary Large Objects (blobs) 244

bisect command 127bitmap-index file 385
blame command 125blobless clone 323
branches 4, 47, 101, 186anonymous branches 51, 52

creating 47, 48deleting 54, 55
downstream 206fetching 210, 211
interaction, in remote repositories 205listing 53
merge commit, creating 222, 223merge drivers 224
merges, signing 224merge strategies 223
merging 220name, changing 56
no divergence 220-222pushing 210
pushing 212rebasing 227, 228
resetting 53, 54rewinding 53, 54

selecting 50
switch command DWIM-mery 52switching 50
switching, obstacles 50tags, merging 224
upstream 205branch head 101

branchingalternatives 188
isolation, versus integration 186long-running branch 187
production release, path 187purpose 186
short-lived branches 187validity 187
visibility, without integration 188workflow 196

branching patternsintegration patterns 189
involving long-lived branches 193release engineering 190
short-lived branches, types 195branching patterns, involving long-lived branches
automation branches 194mob branches, for anonymous push access 194
orphan branch trick 194, 195per-customer or per-deployment branches 193

branching workflow
git-flow 203graduation branches workflow 197, 198
release and trunk branches workflow 196, 197security issue, fixing 204, 205
Ship/Show/Ask strategy 204topic branches workflow 199

branch managementevolution 186
branch namesdisambiguation, between path names 123
branch operation 100branch points 102
branch rebasingadvanced rebasing techniques 230, 231

backends 229versus merge 229
branch tip 101buggy commit

finding 128, 129built-in file system monitor (FSMonitor) 325
bundleused, for cloning and updating 168-170

used, for updating existing repository 170, 171utilizing, to help with initial cone 171, 172
bundle-uri capability 386
C

cachetextconv 274
carriage return (CR) 348central canonical repository 5
centralized workflow 144, 145, 178pros and cons 145
change hunks 40changes

combining, methods 219changeset
cherry-picking 227copy, creating 225, 226
effect of commit, undoing 226, 227merge, reverting 227
series of commits, applying from patches 227changes, publishing upstream 178
patches, exchanging 180, 182pull request, generating 179, 180
pushing, to public repository 178character encoding 76

cherry-picking 201client-side hooks 353, 354
commit process hooks 354post-checkout hook 358
post-merge hook 358post-rewrite hook 358
pre-auto-gc hook 358pre-push hook 357

pre-rebase hook 357
used, for applying patch from emails 356clone 4, 186

codeimporting, manually 288, 289
codeline 186code review/code collaboration 384
collaborative workflows 142bare repository 142

centralized workflow 144, 145hierarchical or dictator-and-lieutenants workflow 148, 149
maintainer or integration manager workflow 147non-bare repositories 142
peer-to-peer or forking workflow 145, 146repositories 142
repository, interacting with 143combined diff format 236

command-line completion 333, 334commit 60
amending 45, 46changes, examining 33
changes, selecting interactively 42-44commit-msg hook 355
creating 30creating, step by step 44, 45
extending, in project’s history 30, 31files, selecting to 42

index, as staging area 31-33
post-commit hook 356pre-commit hook 354
prepare-commit-msg hook 355selective commit 42

commit bit 377commit-graph file 318
commit historyadditional information, storing with notes 269

amending 248, 249amending, without rewriting 264
faulty merge, reverting 265-267history and notes, rewriting 274
interactive rebase 249, 250notes, adding 270
notes, as cache 274notes, categories and uses 272, 273
notes, publishing and retrieving 275, 276notes, storing 270, 271
recovering, from reverted merge 267-269reverting 264, 265
rewriting 248commit history, interactive rebase
fixing 250-252removing 250-252
reordering 250-252commit message 9, 30

commit-msg hook 355
commit object 244commits history

external tools 255, 256commits history, interactive rebase
rebased commit, testing 254, 255splitting 253, 254
squashing 252, 253committed file contents
examining 33committer
versus author 131commit walker 166

Common Vulnerabilities and Exposures (CVE) 119, 273, 396Comprehensive Perl Archive Network (CPAN) 287
conditional includes 30context lines 40
continuous integration (CI) 145, 311, 393Continuous Integration/Continuous Delivery (CI/CD) 384
continuous integration pattern 190Coordinated Universal Time (UTC) 246
credential helper mechanism 175credentials helpers 177, 363
credentials/password management 175asking, for passwords 175, 176

credential helpers 177, 178public key authentication, for SSH 176

current push mode 215
custom package registry 288
DData Version Control (DVC) 320
default remote-tracking branch 152delta compression 319
depth-limited clone 324detached HEAD 29, 51, 196
detached working directory 92development workflows

augmenting 386, 387defining, in repository 387
diff drivers 69output, configuring 70
diffs and binary filesgenerating 69
Digital Certificate of Origin 399Directed Acyclic Graph (DAG) 30, 98, 99, 244, 300

branches 100names of references (branches and tags) 101, 102
tags 100whole-tree commits 100

directed edges 99directed graph 98
distributed version control systems (DVCSs) 4, 98do what I mean (DWIM) 52
downstreamed (back-ported) 272

EEditorConfig project
URL 350enlistment 316

external diff driver 70
Ffailed merges--merge option, to git log 237

combined diff format 236conflict markers, in worktree 233, 235
examining 233stages, in index 235

feature branches workflow 199feature branching 186, 189
feature switches 188feature toggles 188
fetchingversus pushing 208
fetching notes 276fetch refspec 209
file attributes 66attribute macros, defining 76

binary files, identifying 67, 68built-in attributes 76
diff configuration 68end-of-line conversions, identifying 67, 68
files, transforming 72, 73

keyword expansion and substitution 74, 75
merge configuration 68files
changes, ignoring in tracked files 65history 123
history simplification 125ignored files, listing 64
ignoring 59, 60line-wise history, with blame command 125, 126
marking, as intentionally untracked (ignored) 60-62multiple working directories 92, 93
obligatory file transformations 73, 74path limiting 123, 124
resetting, to old version 91re-tracking 60
type selection, for ignoring 63un-modifying 89, 90
un-staging 89, 90un-tracking 60, 89, 90
working area, cleaning 91, 92Filesystem Hierarchy Standard (FHS) 341

filesystem monitorfile changes, checking with 325
follows tags 158forking 180

workflow 145, 146fork point 102

forks 186
formal dependency management 287
Ggarbage collection process 54
generated files 392Gerrit 273
gil toolreference link 312
Git 4automating, with hooks 353

branches 47command aliases 360-362
configuring 339credential helpers and remote helpers 363
dependencies, managing 287, 288example 4
extending 360on server 372
troubleshooting 371, 372Git aliases 360

git-annex 320git bisect
buggy commit, finding 128, 129bugs, finding with 127
process, starting 128testing, automating 129, 130

git bundle-server 386

Git commands
adding 362plumbing and porcelain 247

Git configuration 339accessing 343
command-line options and environment variables 339, 340config variable 343
files 340, 341per-file configuration, with gitattributes 350
syntax, of Git attributes file 351, 352type specifiers 343

Git configuration filesbasic client-side configuration 345, 346
conditional includes 342, 344configuration value 344, 345
formatting and whitespace issues 348, 349includes 342, 344
rebase and merge setup 347server-side configuration 350
syntax 342undo information, preserving 347, 348

Git Credential Manager (GCM) 178Git-enforced policy
implementing, with hooks 376using, with server-side hooks 376, 377

Git, examplebranching and merging 22, 24-26

collaborative development 9-22
setup and initialization 5-9git files command 299-301

Git filter-repoproject history, rewriting with 256
git-flow 203git-gc

used, for automatic housekeeping 368Git hook
client-side hooks 354installing 353
server-side hooks 359template for repositories 353, 354

Git hosting 384gitignore files 60
gitignore patterns 392Git internals 244

objects 244-247Git-Large File Storage (Git-LFS) 320
gitlinks command 298-301git log command

line-wise history, with blame command 118git log output
authors, mapping 134changes, formatting 132, 133
changes, including 132, 133changes, summing up 132, 133

contributions, summarizing 133, 134
file at revision, viewing 134, 135formatting 130
predefined output formats 130-132revision, viewing 134, 135
selecting 130user-defined output formats 130-132

git-maintenanceused, for periodic maintenance 368, 369
git namespaces 385Gitolite

for smart HTTPS access control 382reference link 176
URL 382Git, on command line 330
alternative command line 335autocorrection 334
command-line completion 333customizing 334, 335
Git-aware command prompt 330-332GitOps 387

git push 210Git Quilt (Guilt) 255
git replacegrafts 279

histories, joining with 277, 279replacements mechanism 276, 277

replacements, publishing and retrieving 280
using 276Git repositories
anonymous Git protocol 380, 381best practices and recommendations 401-403
changes, integrating 397-401dumb protocols 382, 383
hosting, tips and tricks 384-386local protocol 379, 380
managing, tools 383, 384project, starting 391-393
remote helpers 383serving 379
smart HTTP(S) protocol 381, 382SSH protocol 380
working, on project 393-397git reset <commit> command 54

git stash commandand staging area 84, 85
used, for stashing changes 83using 83, 84

git submodule command 299-301Git submodules solution 298
submodule changes upstream, sending 308submodules changes, examining 306, 307
submodules, updating 304, 305subproject as submodule, adding 301-303

subproject, cloning with submodules 303
updates, obtaining from upstream submodule 307, 308Git subtree solution
for embedding subproject code 289-291remote reference, creating 291, 292
subproject, adding as subtree 292, 293subproject changes, displaying 296
subproject changes, sending to 297, 298superprojects, cloning with subtrees 294
superprojects update, with subtree merge 294, 295superprojects, updating with subtrees 294

Git transportsproxies 167, 168
gittuf 379glob patterns 105
GNU Portability Library (Gnulib) 71graduation branches 203
graduation branches workflow 197, 198grafts 279
graphical commit tool 339graphical history viewer 339
graphical interfaces 336examples 338, 339

graphical diff 337, 338graphical tools, types 336, 337
merge tools 337, 338graphical tools

commit tools 336
graphical blame 336graphical history viewer 336

graphical user interfaces (GUIs) 330
Hhealthy branch 188
hierarchical (dictator-and-lieutenants) workflow 148, 149pros and cons 149
hierarchical branch name 394hook-based file system monitor 326
hooks 353Git, automating with 353

used, for implementing Git-enforced policy 376hooks, for applying patches from emails
applypatch-msg hook 356post-applypatch hook 357
pre-applypatch hook 357Hotfix branches 193, 204

hunk 40, 70
Iignored fileslisting 64
ignore patterns 21immutable 248
index 60inefeed (LF) 348

infrastructure as code (IoC) 387
integrated development environment (IDE) 330integration branch 197
integration manager 213integration manager (maintainer) workflow 147

advantages 147disadvantages 148
integration patterns 189continuous integration 190

mainline integration 189topic branches-based development 189, 190
interactive line-history browser 339interactive rebase 45, 78, 249, 250
isolationversus integration 186
issue tracker ticket 376
JJGit 336
Jupyter Notebook 73
KKernel.org Transparency Log Monitor 379keyword anchor 74
keyword expansion 74keyword substitution 75

limitation 75
L

large non-resumable initial clone problem
solving 386large-scale history rewriting
external tools 259files, removing from history with BFG Repo Cleaner 260
repository history, editing with reposurgeon 260leaf nodes 99

legacy (dumb) transports 166libgit2 336
lieutenants 148lightweight tags 47, 156
local area network (LAN) 170local transport 164
long-lived branch 187lost commit

recovering 369, 370
Mmainline integration 189
mainlines 187maintainer workflow 147
malicious intent 155master project 286
matching push mode 213maturity branches 190
merge commits 102merge conflicts

avoiding 237

dealing with 238
failed merges, examining 233files, marking as resolved 240
git merge 240graphical merge tools, using 239
merge, aborting 238merge options 237
merges, finalizing 240ours or theirs version, selecting 239
rebase conflicts, resolving 240rerere 238
resolving 232scriptable fixes 239
three-way merge 232, 233merge drivers 69

merge operation 102merge strategy 223
merge upwards 191Merkle tree 156
methods, of combining changes 220branches, merging 220

changeset, applying 225changeset, copying 225
squash merge 231, 232minor releases 197

mirroring 210mixed reset 78

monolithic repository (monorepo) 286, 392
use cases 311

Nnbdev 73
nodes 99non-bare remote repository

current branch, pushing to 209non-bare repositories 143
notes 69, 264adding, to commit 270

additional information, storing 269as cache 274
categories and uses 272, 273publishing and retrieving 275, 276
storing 270, 271

Ooffline transportwith bundles 167
OpenDocument Format (ODF) 73orphan branches 99, 194

creating 49Ostensibly Recursive’s Twin (ort0) 224
PPachyderm 320
packaging 287pack bitmaps

used, for speeding up smart protocols 385
parent 31partial clone 317
patch 255patch stack management interface (StGit) 45
pathspec magic 124peer-to-peer (forking) workflow 145, 146

advantages 146disadvantages 146
pending changes for correctness, examiningdifferences, from last revision 36, 37

unified Git diff format 37-42working directory status 33-36
per-commit tool-specific information 273per-release branches 192
per-repository configuration file 341per-worktree configuration file 341
pickaxe search 121plumbing commands 102, 248

versus porcelain commands 65policy violations, with client-side hooks
early notices 378porcelain commands 247
versus plumbing commands 65Portable Object (.po) 76

post-applypatch hook 357post-checkout hook 358

post-commit hook 356
post hooks 353post-merge hook 358
post-msg hook 356post-receive hook 359, 375
Post-rewrite hook 358post-update hook 359, 376
PowerShell script files (*.ps1) 76pre-applypatch hook 357
pre-auto-gc hook 358pre-commit hook 354, 355
pre-hooks 353prepare-commit-msg hook 355
pre-rebase hook 357pre-receive hook 359, 373, 374
Pretty Good Privacy (PGP) 274private GPG key 157
progressive-stability branch 197project files

editing, online 316project history
changes in revision, searching 121, 122number of revisions, limiting 118
revision metadata, matching 118searching 118
types of changes, selecting 122project history, with Git filter-repo

filter-repo without filters, running 256, 257
filter types, availability checking for 257using, examples 258, 259

public key authentication 176public/private key pair 176
publishing tags 157pull command 208
pullingversus pushing 208
pull request 147generating 179, 180
push certificate 379push mode 209, 212

current push mode 215matching push mode 213
simple push mode 212upstream push mode 214
uses 212push-to-checkout hook 360, 374

Python Package Index (PyPI) 288
QQuilt 255
RRead-Evaluate-Print Loop (REPL) 259
rebasing 143recursive 223

references (refs) 100
reflog 26, 31, 369refspec 207
release and trunk branches workflow 196, 197release branch 203
release candidates 197release engineering 190

hotfix branches, for security fixes 193per-release branches 192
per-release maintenance 192progressive-stability branches 190, 191
release train, with feature-freeze 192, 193release-ready mainline 190

remotedefault branch, setting 153
deleting 154list of branches tracked, changing 153
remote-tracking branches, deleting 154remote URLs, changing 153
renaming 152remote helpers 288, 363

remote reference 291remote repositories
information, updating 152managing 149
new remote, adding 151origin remote 150

remotes, examining 150, 151
remotes, listing 150, 151support, for triangular workflows 154, 155

remote-tracking branches 151, 206, 207remote transport helpers 172
foreign SCM repositories, using as remotes 174using, with transport relay 173, 174

remove changes 252rename detection 126
rename tracking 126reordering commits 251
repositories, with large binary files 318binary asset folder, splitting into separate sub module 319

storing, outside repository 319, 320repositories, with large number of files 320
changes, checking with filesystem monitor 325, 326contents, omitting with sparse clone 324, 325
local repository size, reducing with sparse clone 322-324number of working directory files, limiting with sparse checkout 321

repositories, with long historyhandling 316
operations, making fast 318shallow clones, using to obtain truncated history 317
single branch, cloning 318repository 4

repository maintenance 368automatic housekeeping, with git-gc 368

periodic maintenance, with git-maintenance 368, 369
reposurgeonused, for editing repository history 260
repo toolreference link 312
Request For Comments (RFC) 182, 398reset command 53

branch head, resetting 78, 79branch, rewinding with 80
changes, discarding with 80commit, amending 78
commit, removing 78commits, moving to feature branch 81
commits, squashing with 78index, resetting 78, 79
merge or pull, undoing 81mistakes, fixing with 77
the branch head, rewinding with 77used, for splitting commit in two 79

reuse recorded resolutions (rerere) 238revision control 4
revision metadata, matching 118commit contents, matching 119

commit parents 120time-limiting options 118, 119
revision rangecreating, by including and excluding revisions 112

double-dot notation 111, 112
for single revision 113selecting 110
single revision, as revision range 110triple-dot notation 113-115

rewriting published history 260, 261consequences, of upstream rewrites 261, 262
recovering, from upstream history rewrite 262, 263root nodes 99

Ssafe resetchanges, keeping 82
current changes, rebasing 82working 82

scalar tool 316scaled trunk-based development 190
Secure Shell (SSH) 165, 379security issue

fixing 204semantic versioning 287
URL 402server-side hooks 353, 359, 372, 373
post-receive hook 375, 376post-update hook 376
pre-receive hook 373, 374push-to-checkout hook, to pushing to non-bare repositories 374
update hook 374

used, for enforcing policy 376, 377
SHA-1 hash function 105, 106shallow clone 280, 317
shell glob pattern 60, 61shell prompt 330
Ship 204short-lived branches

anonymous branch (detached HEAD) 196bugfix branches 196
types 195short-lived (temporary) branches 187, 188

shortlog 180Show 204
signed commits 158, 159signed pushes 378, 379
signed tags 16, 47, 157merging, with merged tags 159, 160
simple push mode 212single revision selection 103

--branches 104, 105--tags 104, 105
ancestry references 107, 108branch and tag references 104
HEAD 103remote-tracking branches, upstreaming 109, 110
reverse ancestry references 108revisions, selecting via commit message 110

SHA-1 105-107
SHA-1 identifier 105-107shortnames, relogging 108, 109

smart HTTP(S) protocol 381smart transports 164
native Git protocol 165smart HTTP(S) protocol 166
SSH protocol 165snapshot 100

sneakernet 167soft reset 78
software forges 384source branching 186
source code management 384sparse checkout technique 66, 290, 321
sparse clone 321local repository size, reducing with 322, 323

used, for matching clone sparsity 324, 325used, for omitting large file contents 324
squash merge 231, 232, 293SSH tunnel 173
stable branch 188Stacked Git (StGit) 255
staged file contentsexamining 33
staging area 29, 59stash 45

internals 85, 86
recovering 87un-applying 86

subfoldertransforming, into submodule 309
transforming, into subtree 309subject 253

submodule 286, 319subfolder, transforming into 309
use cases 311, 312versus subtree 310

submodule-aware status 306subproject 286
subproject codeembedding, with Git subtree solution 289-291
subtree 286subfolder, transforming into 308, 309

use cases 311versus submodule 310
subtree approachproblems 290
subtree merge 289superproject 286
supporting branches 203system-wide configuration file 341
Ttab completion 334

tag 16, 100
tag objects 157, 244tag operation 100
tags 16, 47, 100fetching 210, 211

pushing 210, 212tangled working copy problem 42
third-party subproject management solutions 312three-way merge algorithm 232, 233

performing 71topic branch 203
topic branches workflow 199graduation branches 200-202
topic branching pattern 189tracked branch 206
tracked file 31, 59transport protocols 163

credentials/password management 175legacy (dumb) transports 166
local transport 164offline transport with bundles 167
remote transport helpers 172smart transports 164

treeless clone 323, 324tree objects 244
trial merges 238triangular workflow 150, 154

trunk 189
trunk-based development 189trunk branches 196
trust chainannotated tags 157

content-addressed storage 155, 156lightweight tags 156
publishing tags 157signed tags 157
tag verification 158Trust On First Use (TOFU) 166

Uunified diff format 29update hook 359, 374
upstream branch 206upstreamed (forward-ported) 272
upstream push mode 214upstream repository 206
Vversion control system (VCS) 4, 97, 174, 288
Wweb interfaces 384
whitespace error 76WIP commit

state, saving and restoring with 79work in progress (WIP) 77, 182

worktree 4, 59
file contents, searching 89files and directories, examining 87, 88
managing 87

packtpub.com
Subscribe to our online digital library for full access to over 7,000 books andvideos, as well as industry leading tools to help you plan your personaldevelopment and advance your career. For more information, please visit ourwebsite.
Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos from over 4,000industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, withPDF and ePub files available? You can upgrade to the eBook version atpacktpub.com and as a print book customer, you are entitled to a discount onthe eBook copy. Get in touch with us at customercare@packtpub.com for moredetails.At www.packtpub.com, you can also read a collection of free technical articles,sign up for a range of free newsletters, and receive exclusive discounts andoffers on Packt books and eBooks.
Other Books You May EnjoyIf you enjoyed this book, you may be interested in these other books by Packt:

http://packtpub.com/
http://packtpub.com/
mailto:customercare@packtpub.com
http://www.packtpub.com/

GitHub Actions Cookbook
Michael KaufmannISBN: 978-1-83546-894-4

https://packt.link/1835468942

Author and debug GitHub Actions workflows with VS Code and Copilot
Run your workflows on GitHub-provided VMs (Linux, Windows, and macOS) or host your own runnersin your infrastructure
Understand how to secure your workflows with GitHub Actions
Boost your productivity by automating workflows using GitHub's powerful tools, such as the CLI, APIs,SDKs, and access tokens
Deploy to any cloud and platform in a secure and reliable way with staged or ring-based deployments

DevOps Unleashed with Git and GitHub
Yuki HattoriISBN: 978-1-83546-371-0

https://packt.link/1835463711

Master the fundamentals of Git and GitHub
Unlock DevOps principles that drive automation, continuous integration and continuous deployment(CI/ CD), and monitoring
Facilitate seamless cross-team collaboration
Boost productivity using GitHub Actions
Measure and improve development velocity
Leverage the GitHub Copilot AI tool to elevate your developer experience

Packt is searching for authors like youIf you're interested in becoming an author for Packt, please visitauthors.packtpub.com and apply today. We have worked with thousands ofdevelopers and tech professionals, just like you, to help them share theirinsight with the global tech community. You can make a general application,apply for a specific hot topic that we are recruiting an author for, or submityour own idea.
Share Your ThoughtsNow you’ve finished Mastering Git, we’d love to hear your thoughts! If youpurchased the book from Amazon, please click here to go straight to theAmazon review page for this book and share your feedback or leave a review onthe site that you purchased it from.Your review is important to us and the tech community and will help us makesure we’re delivering excellent quality content.
Download a free PDF copy of this bookThanks for purchasing this book!
Do you like to read on the go but are unable to carry your print bookseverywhere?Is your eBook purchase not compatible with the device of your choice?
Don’t worry, now with every Packt book you get a DRM-free PDF version ofthat book at no cost.

http://authors.packtpub.com/
https://packt.link/r/1-835-08607-1

Read anywhere, any place, on any device. Search, copy, and paste code fromyour favorite technical books directly into your application.
The perks don’t stop there, you can get exclusive access to discounts,newsletters, and great free content in your inbox dailyFollow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83508-607-0

2. Submit your proof of purchase
3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83508-607-0

	Mastering Git
	Contributors
	About the author
	About the reviewer
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book
	Part 1 - Exploring Project History and Managing Your Own Work
	Chapter 1: Git Basics in Practice
	Technical requirements
	A brief introduction to version control and Git
	Git by example
	Setup and initialization
	Collaborative development
	Branching and merging
	Summary
	Questions
	Answers
	Further reading
	Chapter 2: Developing with Git
	Creating a new commit
	How a new commit extends a project’s history
	The index — a staging area for commits
	Examining the changes to be committed
	Selective commit
	Amending a commit
	Working with branches and tags
	Creating a new branch
	Creating orphan branches
	Selecting and switching to a branch
	Listing branches and tags
	Rewinding or resetting a branch
	Deleting a branch
	Changing the branch name
	Summary
	Questions
	Answers
	Further reading
	Chapter 3: Managing Your Worktrees
	Ignoring files
	Marking files as intentionally untracked (ignored)
	Which types of files should be ignored?
	Listing ignored files
	Trick – ignoring changes in tracked files
	File attributes
	Identifying binary files and end-of-line conversions
	Diff and merge configuration
	Transforming files (content filtering)
	Keyword expansion and substitution
	Other built-in attributes
	Defining attribute macros
	Fixing mistakes with the reset command
	Rewinding the branch head, softly
	Resetting the branch head and the index
	Discarding changes and rewinding the branch
	Safer reset – keeping your changes
	Stashing away your changes
	Using git stash
	Stash and the staging area
	Stash internals
	Managing worktrees and the staging area
	Examining files and directories
	Searching file contents
	Un-tracking, un-staging, and un-modifying files
	Resetting a file to the old version
	Cleaning the working area
	Multiple working directories
	Summary
	Questions
	Answers
	Further reading
	Chapter 4: Exploring Project History
	DAGs
	Whole-tree commits
	Branches and tags
	Branch points
	Merge commits
	Single revision selection
	HEAD – the implicit revision
	Branch and tag references
	The --branches, --tags, and similar options
	SHA-1 and the shortened SHA-1 identifier
	Ancestry references
	Reverse ancestry references – git-describe output
	Reflogging shortnames
	Upstreaming remote-tracking branches
	Selecting revisions via a commit message
	Selecting the revision range
	Single revision as a revision range
	Double-dot notation
	Creating the range by including and excluding revisions
	The revision range for a single revision
	Triple-dot notation
	Summary
	Questions
	Answers
	Further reading
	Chapter 5: Searching Through the Repository
	Searching the history
	Limiting the number of revisions
	Matching revision metadata
	Searching changes in revisions
	Selecting types of changes
	History of a file
	Path limiting
	History simplification
	Blame — the line-wise history of a file
	Finding bugs with git bisect
	Starting the git bisect process
	Finding the buggy commit
	Automating testing during the git bisect process
	Selecting and formatting the git log output
	Predefined and user-defined output formats
	Including, formatting, and summing up changes
	Summarizing contributions
	Mapping authors
	Viewing a revision and a file at revision
	Summary
	Questions
	Answers
	Further reading
	Part 2 - Working with Other Developers
	Chapter 6: Collaborative Development with Git
	Collaborative workflows
	Bare repositories
	Interacting with other repositories
	The centralized workflow
	The peer-to-peer or forking workflow
	The maintainer or integration manager workflow
	The hierarchical or dictator-and-lieutenants workflow
	Managing remote repositories
	The “origin” remote
	Listing and examining remotes
	Adding a new remote
	Updating information about remotes
	Support for triangular workflows
	Chain of trust
	Content-addressed storage
	Lightweight, annotated, and signed tags
	Signed commits
	Merging signed tags (merge tags)
	Summary
	Questions
	Answers
	Further reading
	Chapter 7: Publishing Your Changes
	Transport protocols and remote helpers
	Local transport
	Smart transports
	Legacy (dumb) transports
	Offline transport with bundles
	Remote transport helpers
	Credentials/password management
	Publishing your changes upstream
	Pushing to a public repository
	Generating a pull request
	Exchanging patches
	Summary
	Questions
	Answers
	Further reading
	Chapter 8: Advanced Branching Techniques
	The purpose of branching
	Isolation versus integration
	The path to production release
	Long-running and short-lived branches
	Visibility of branches
	Alternatives to branching
	Visibility without integration
	Branching patterns
	Integration patterns
	Release engineering
	Other branching patterns involving long-lived branches
	Other types of short-lived branches
	Branching workflows and release engineering
	The release and trunk branches workflow
	The graduation branches workflow
	The topic branches workflow
	git-flow – a successful Git branching model
	Ship/Show/Ask – a modern branching strategy
	Fixing a security issue
	Interacting with branches in remote repositories
	Upstream and downstream
	Remote-tracking branches and refspec
	Fetching and pulling versus pushing
	Fetching and pushing branches and tags
	Push modes and their use
	Summary
	Questions
	Answers
	Further reading
	Chapter 9: Merging Changes Together
	Methods of combining changes
	Merging branches
	Copying and applying a changeset
	Rebasing a branch
	Squash merge
	Resolving merge conflicts
	The three-way merge
	Examining failed merges
	Avoiding merge conflicts
	Dealing with merge conflicts
	Summary
	Questions
	Answers
	Further reading
	Chapter 10: Keeping History Clean
	An introduction to Git internals
	Git objects
	Plumbing and porcelain Git commands
	Rewriting history
	Amending the last commit
	The interactive rebase
	External tools – patching management interfaces
	Rewriting project history with Git filter-repo
	External tools for large-scale history rewriting
	The perils of rewriting published history
	Amending history without rewriting
	Reverting a commit
	Storing additional information with notes
	Using git replace
	Summary
	Questions
	Answers
	Further reading
	Part 3 - Managing, Configuring, and Extending Git
	Chapter 11: Managing Subprojects
	Building a living framework
	Managing dependencies outside of Git
	Manually importing the code into your project
	A Git subtree solution for embedding the subproject code
	Creating a remote for a subproject
	Adding a subproject as a subtree
	Cloning and updating superprojects with subtrees
	Getting updates from subprojects with a subtree merge
	Showing changes between a subtree and its upstream
	Sending changes to the upstream of a subtree
	The Git submodules solution – a repository inside a repository
	Gitlinks, .git files, and the git submodule command
	Adding a subproject as a submodule
	Cloning superprojects with submodules
	Updating submodules after superproject changes
	Examining changes in a submodule
	Getting updates from the upstream of the submodule
	Sending submodule changes upstream
	Transforming a subfolder into a subtree or submodule
	Subtrees versus submodules
	Use cases for subtrees
	Use cases for monorepo
	Use cases for submodules
	Third-party subproject management solutions
	Summary
	Questions
	Answers
	Further reading
	Chapter 12: Managing Large Repositories
	Scalar – Git at scale for everyone
	Handling repositories with a very long history
	Using shallow clones to get truncated history
	Cloning only a single branch
	Making operations faster in repositories with a long history
	Handling repositories with large binary files
	Splitting the binary asset folder into a separate submodule
	Storing large binary files outside the repository
	Handling repositories with a large number of files
	Limiting the number of working directory files with sparse checkout
	Reducing the local repository size with sparse clone
	Faster checking for file changes with filesystem monitor
	Summary
	Questions
	Answers
	Further reading
	Chapter 13: Customizing and Extending Git
	Git on the command line
	Git-aware command prompt
	Command-line completion for Git
	Autocorrection for Git commands
	Making the command line prettier
	Alternative command line
	Graphical interfaces
	Types of graphical tools
	Graphical diff and merge tools
	Graphical interface examples
	Configuring Git
	Command-line options and environment variables
	Git configuration files
	Per-file configuration with gitattributes
	Automating Git with hooks
	Installing a Git hook
	A template for repositories
	Client-side hooks
	Server-side hooks
	Extending Git
	Command aliases for Git
	Adding new Git commands
	Credential helpers and remote helpers
	Summary
	Questions
	Answers
	Further reading
	Chapter 14: Git Administration
	Repository maintenance
	Automatic housekeeping with git-gc
	Periodic maintenance with git-maintenance
	Data recovery and troubleshooting
	Recovering a lost commit
	Troubleshooting Git
	Git on the server
	Server-side hooks
	Using hooks to implement Git-enforced policy
	Signed pushes
	Serving Git repositories
	Tools to manage Git repositories
	Tips and tricks to host repositories
	Augmenting development workflows
	Defining development workflows in the repository
	GitOps – using Git for operational procedures
	Summary
	Questions
	Answers
	Further reading
	Chapter 15: Git Best Practices
	Starting a project
	Dividing work into repositories
	Selecting the collaboration workflow
	Choosing which files to keep under version control
	Working on a project
	Working on a topic branch
	Deciding what to base your work on
	Splitting changes into logically separate steps
	Writing a good commit message
	Preparing changes for submission
	Integrating changes
	Submitting and describing changes
	The art of the change review
	Responding to reviews and comments
	Other recommendations
	Don’t panic, recovery is almost always possible
	Don’t change the published history
	Numbering and tagging releases
	Automate where possible
	Summary
	Further reading
	Index
	Why subscribe?
	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

