

Mastering Git

Mastering Computer Science
Series Editor: Sufyan bin Uzayr

Mastering Git: A Beginner’s Guide

Sumanna Kaul, Shahryar Raz, and Divya Sachdeva

Mastering Ruby on Rails: A Beginner’s Guide

Mathew Rooney and Madina Karybzhanova

Mastering Sketch: A Beginner’s Guide

Mathew Rooney and Md Javed Khan

Mastering C#: A Beginner’s Guide

Mohamed Musthafa MC, Divya Sachdeva, and Reza Nafim

Mastering GitHub Pages: A Beginner’s Guide

Sumanna Kaul and Shahryar Raz

Mastering Unity: A Beginner’s Guide

Divya Sachdeva and Aruqqa Khateib

For more information about this series, please visit: https://

www.routledge.com/Mastering-Computer-Science/

book-series/MCS

�e “Mastering Computer Science” series of books are

authored by the Zeba Academy team members, led by

Sufyan bin Uzayr.

Zeba Academy is an EdTech venture that develops

courses and content for learners primarily in STEM

�elds, and o�ers education consulting to Universities

and Institutions worldwide. For more info, please visit

https://zeba.academy

https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://www.routledge.com/Mastering-Computer-Science/book-series/MCS
https://zeba.academy

Mastering Git

A Beginner’s Guide

Edited by Sufyan bin Uzayr

First edition published 2022

by CRC Press

6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press

2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the

author and publisher cannot assume responsibility for the validity of all materials or

the consequences of their use. The authors and publishers have attempted to trace

the copyright holders of all material reproduced in this publication and apologize to

copyright holders if permission to publish in this form has not been obtained. If any

copyright material has not been acknowledged please write and let us know so we may

rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,

reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other

means, now known or hereafter invented, including photocopying, microfilming, and

recording, or in any information storage or retrieval system, without written permission

from the publishers.

For permission to photocopy or use material electronically from this work, access www.

copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood

Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC

please contact mpkbookspermissions@tandf.co.uk

Trademark Notice: Product or corporate names may be trademarks or registered

trademarks and are used only for identification and explanation without intent to

infringe.

ISBN: 9781032134161 (hbk)

ISBN: 9781032134154 (pbk)

ISBN: 9781003229100 (ebk)

DOI: 10.1201/9781003229100

Typeset in Minion

by KnowledgeWorks Global Ltd.

https://www.copyright.com
https://www.copyright.com
https://doi.org/10.1201/9781003229100
mailto:mpkbookspermissions@tandf.co.uk

v

Contents

About the Editor, xiii

CHAPTER 1 ◾ Getting Started 1

VERSION CONTROL BASICS 2

WHAT IS GIT? 9

ADVANTAGES OF GIT 15

For Development 16

Git for Marketing 17

Git for Product Management 17

Git for Designing 18

Git for Customer Support 19

Git for HR 19

Git for Budget Management 19

DISADVANTAGES OF GIT 19

HISTORY OF GIT 26

REFERENCES 33

vi ◾ Contents

CHAPTER 2 ◾ The Basics 35

INSTALLING GIT 35

FIRST TIME GIT SET UP 39

Establishing Your Identity 41

Editing 41

Default Branch Name 42

Check the Settings 42

Creating a New Repo 44

Git Clone 44

Saving Changes 45

Git Push 45

Bare and Cloned Repositories 46

Reverting Changes 46

TIPS AND TROUBLESHOOTING 47

CHAPTER 3 ◾ Working with Repositories 57

WHAT ARE GIT REPOSITORIES? 58

RECORDING CHANGES TO REPOS 60

WORKING WITH REMOTES 67

GIT ALIASES 72

TAGGING 80

How to List Your Tags? 80

Creating Tags 81

Annotated Tags 82

Lightweight Tags 82

Tagging Later 82

Contents ◾ vii

Sharing Tags 83

Deleting Tags 83

Check Out the Tags 84

Retagging or Replacing Old Tags 85

CHAPTER 4 ◾ Working with Branches 87

WHAT ARE BRANCHES? 88

Working 90

Common Commands 91

Creation of Branches 91

Creation of Remote Branches 92

Deleting Branches 92

BRANCHING AND MERGING 93

De�nition of Git Branching 93

Branch Naming 95

BRANCH WORKFLOWS 99

How It Works 100

Beginning with the Main Branch 101

Creating a New Branch 101

Subsequent Tasks 101

Push Feature Branch to Remote 101

Resolve Feedback 102

Merge Your Pull Request 102

Pull Requests 102

REMOTE BRANCHES 106

Pushing 108

viii ◾ Contents

Tracking Branches 109

Pulling 111

Deleting the Remote Branches 111

CHAPTER 5 ◾ Working with Servers 113

GETTING GIT ON SERVER 114

Putting the Bare Repository on a Server 114

Small Setups 115

SSH Access 116

SERVER SETUP 117

DISTRIBUTED GIT AND PROJECTS 119

Distributed Work�ow 120

Centralized Work�ow 120

Integrator-Manager Work�ow 121

Dictator and Lieutenants Work�ow 123

Contributing to Projects 124

Commit Guidelines 126

CHAPTER 6 ◾ GitHub 129

WHAT IS GITHUB? 129

Account Set Up and Con�guration 131

SSH Access 134

Your Avatar 135

Email Addresses 135

Two-Factor Authentication 136

Contents ◾ ix

HISTORY OF GITHUB 137

Acquired by Microso� 139

Mascot 141

HOW TO USE GITHUB 144

How to Create a Repository on GitHub? 144

Create Branches 145

Making Commits 146

Pull Command 147

Merge Command 148

Cloning and Forking GitHub Repository 148

DIFFERENT TYPES OF ACCOUNTS 149

Personal User Accounts 149

Organization Accounts 150

Enterprise Accounts 151

CHAPTER 7 ◾ GitLab 153

WHAT IS GITLAB 153

HISTORY OF GITLAB 155

HOW TO USE GITLAB 161

GitLab and SSH Keys 161

Prerequisites 162

Supported SSH Key Types 162

Generating the SSH Keys 163

Con�gure Your SSH to Point to a Di�erent

Directory 164

Updating Your SSH Key Passphrase 165

x ◾ Contents

Upgrade Your RSA Pair to a More Secure

Format 165

Adding an SSH Key to Your GitLab Account 166

Verifying �at You Can Connect 166

Using Di�erent Keys for Di�erent

Repositories 167

Using Di�erent Accounts on a Single GitLab

Instance 167

Con�gure Two-Factor Authentication (2FA) 168

Using EGit on Eclipse 169

Use SSH on Microso� Windows 169

Overriding SSH Settings on GitLab Server 170

Troubleshooting SSH Connections 170

Creating a Project 172

Creating a Group 172

Reserved Project and Group Names 173

How to Create a Branch 174

Feature Branch Work�ow 175

Creating Forks 175

Adding a File to a Repository 176

Create a New Issue 177

Creating Merge Requests 177

From an Issue 178

When You Have to Add, Edit, or Upload

a File 179

When You Create a Branch 180

Contents ◾ xi

When You Use Git Commands Locally 180

When You Have to Work in a Fork 181

By Sending an Email 182

Add Attachments When Creating Merge

Request by Email 183

Set the Default Target Project 184

Working with Projects 184

Project Templates 186

Enterprise Templates 187

Custom Project Templates 188

Star a Project 190

Group Push Rules 194

Checking If Access Was Blocked Due to IP

Restriction 194

FREE AND ENTERPRISE ACCOUNTS 195

CHAPTER 8 ◾ Bitbucket 197

WHAT IS BITBUCKET 197

Services 199

Bitbucket Cloud 199

Granting Repository Access to Users

and Groups 201

Update User/Group Access 203

Branch Permissions 204

Suggesting or Requiring Checks before a

Merge Takes Place 205

xii ◾ Contents

Using Pull Requests for Code Review 210

Pull Request Process 210

Pull Request Authors 210

Pull Request Reviewers 211

How to Restore a Deleted Branch 212

Bitbucket Server 213

HISTORY 214

FREE AND ENTERPRISE ACCOUNTS 216

Free 216

Standard 216

Premium 217

Overage Protection 217

Changing Your Plan 218

Updated Credit Card Details 219

See the Users on Your Plan 220

APPRAISAL, 223

INDEX, 231

xiii

About the Editor

Sufyan bin Uzayr is a writer, coder, and entrepreneur with

more than a decade of experience in the industry. He has

authored several books in the past, pertaining to a diverse

range of topics, ranging from History to Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT

company specializing in EdTech solutions. He also runs

Zeba Academy, an online learning and teaching vertical

with a focus on STEM �elds.

Sufyan specializes in a wide variety of technologies,

such as JavaScript, Dart, WordPress, Drupal, Linux, and

Python. He holds multiple degrees, including ones in

Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between

four countries. He has lived and taught in universities and

educational institutions around the globe. Sufyan takes a

keen interest in technology, politics, literature, history, and

sports, and in his spare time, he enjoys teaching coding

and English to young students.

Learn more at sufyanism.com.

http://taylorandfrancis.com

1DOI: 10.1201/9781003229100-1

C H A P T E R 1

Getting Started

IN THIS CHAPTER

➢ Version Control Basics

➢ What is Git

➢ Advantages of Git

➢ Disadvantages of Git

➢ History of Git

�is book should hopefully be a comprehensive guide for

learning all the essentials of Git for all the developers and

learners out there. To begin with, in Chapter 1, we will be

covering a fairly diverse set of topics, from the basic func-

tioning of version control systems (VCSs), to an important

and successful example of the so�ware, Git, its history,

advantages, as well as disadvantages. So, let’s begin.

https://doi.org/10.1201/9781003229100-1

2 ◾ Mastering Git

VERSION CONTROL BASICS

A version control is a kind of system which allows you to

keep track of the changes that have been made to a code

over a duration of time. Making use of version control

comes with its advantages. A version control so�ware

will keep track of all the changes that have been made to

a code in a special, speci�c database. �is means that you

can, at any given point in time, revert back to the older

versions of the code you are working on. Consequently, it

is easier to track the mistakes committed and rectify them

while ensuring minimal disruption to your team members.

Collaboration on the same code, therefore, become a sig-

ni�cantly more manageable task.

Because coding is an essential part of the data sciences,

it is recommended to make use of version control to ensure

proper maintenance of the databases as well as the source

code. All the changes made are recorded, and the proper

streamlining of group projects signi�cantly enhances their

e�ciency. Without a VCS, you and your team member are

working on a shared folder and the same bunch of �les. At

some point in time, one individual is bound to overwrite

the work of others. With a VCS, everyone can work freely,

on any �le at any given point in time. �e so�ware will

eventually collate all the changes for a common version.

One will never be confused as to where the latest version of

a particular project is, it is always in your VCS.

Git happens to be one of the most popular VCSs. Not only

that, Git is a distributed version control system (DVCS), i.e.

a system of peer-to-peer version control, unlike centralized

systems like Subversion (SVN). In Git, the changes made

are not stored in one central repository. �is will be a very

Getting Started ◾ 3

complicated process, since every individual working on a

speci�c project not only has to have access to the central

repository, but also has to download the latest version of

a speci�c project in order to be able to make changes to it.

Git instead gives everyone a localized repository with its

own speci�c history. So, Git is this fairly simple and e�-

cient tool that facilitates version control in collaboration

with a�liated services like GitHub, a Git repository host-

ing service which also provides access control and various

task management tools for projects.

Version control is also variably referred to as source

control. It has now become a very crucial aspect of high-

performing development, since, with the acceleration of

development environments, version control so�wares help

teams work faster and smarter. VCS also ensures a signi�-

cant increase in successful deployments as well as a reduc-

tion in development time, making them especially useful

for DevOps teams, who are responsible for combining so�-

ware development with IT operations.

A source code is of critical importance for any and every

so�ware project. It is a precious asset containing knowl-

edge about the problem at hand that the developers have

collected and collated through tremendous e�ort. A VCS

protects the source code from a potential catastrophe as

well as the vagaries of human error. So�ware developers,

o�en working in teams, are always in the process of writ-

ing new source code as well as making changes to the pre-

existing source code. �e code for a particular project or

app so�ware is usually arranged in the form of a folder,

also referred to as a “�le tree”. One developer may be writ-

ing a new source code, while another is �xing an unrelated

4 ◾ Mastering Git

bug by making modi�cations to the existing source code.

A good VCS will ensure that this concurrent work does

not con�ict with each other. Changes being made in one

part of the so�ware will inevitably be incompatible with

the work done by another coder in a di�erent part of the

so�ware. �ese issues have to be discovered and resolved

without hindering the development being made by the rest

of the team. Additionally, any change being made to the

code may lead to the rise of more bugs. A code needs to

perpetually be tested; a good VCS ensures that the develop-

ment and testing go on smoothly till a new code is created.

Further, a good VCS should work on any platform rather

than prescribing the Operating System a coder must use. It

is important to support a developer’s preferred work�ow

instead of imposing a speci�c methodology of working.

Without VCS, a so�ware development team is bound to

run into problems like a set of incompatible changes incor-

porated that then have to be separately, and painstakingly,

�gured out and reworked. �e powerful advantages of a

VCS are further magni�ed as so�ware development teams

scale up to include more coders, wherein a VCS plays an

indispensable role in preserving the e�ciency, speed, and

agility of the teams.

VCSs are of two types: Source Code Management (SCM)

tools and Revision Control System (RCS). RCSs work well

as standalone applications. Applications like word proces-

sors or spreadsheets have various mechanisms for control.

�ere are numerous unique features of VCSs—the user is

provided with an updated history for various types of �les,

no other repository system is needed, the repository can be

cloned depending on the needs and availability of the team

Getting Started ◾ 5

members. �e last feature, in particular, can be a life-saver

in case of system failures or accidental deletions. Further,

VCS usually comes with a tag system that can help the user

to di�erentiate between alpha, beta, or numerous other

release versions for multiple documents.

Regardless of the kind of VCS one is working with, they

o�er the crucial facility of traceability. Every change made

can not only be tracked, but also annotated to highlight

the purpose and intent of the coder and its connection to

the larger project. �is allows the coders to make suitable

changes that are in accordance with the long-term design

of a speci�c system. �is is of particular help while work-

ing on legacy codes, since it helps the developers assess

the amount of future work needed with a fair degree of

accuracy.

VCSs can also be subdivided into three kinds:

1. Local VCS: Local VCS keeps track of �les within the

local system. �is approach is commonly used and

simple, but also prone to errors, since the odds of

writing into the wrong �le are higher.

2. Centralized VCSs: Here, all the changes made to

the �le are kept track of by the centralized server.

�e centralized server contains all the information

on the numerous versions of the main �les, along

with the list of clients who have access to the �les.

TortoiseSVN, a SVN client, which is implemented

as a Microso� Windows shell extension, to help pro-

grammers in managing the di�erent versions of the

source code for their programs, is a good example of

centralized VCS.

6 ◾ Mastering Git

3. DVCS: DVCS was developed in order to overcome

the limitations of the centralized VCS. �e clients

are allowed to completely replicate the repository as

well as its full history. In case a server dies, any of the

client repositories should be copied to the server in

order to resuscitate it. Every single clone contains a

full backup of all the data. Git is a popular and highly

successful example of DVCS.

While it is certainly possible to work on projects without

VCS, these systems have become so ubiquitous that doing

so would involve a professional risk that no development

team will be willing to take. �e moot question then is not

if we should use a VCS, but what kind of VCS should one

use. Di�erent kinds of VCSs available for so�ware develop-

ment teams are Git, Mercurial, SVN, Concurrent Version

System (CVS), etc. Mercurial is a freely available SCM tool

that can handle projects of varying complexity, with its easy

to handle and intuitive interface. While CVS works on dis-

tributed application structure for so�ware development,

SVN is a free VCS by CollabNet which can store and man-

age your TestComplete test projects as well as project suites.

�ere are some handy tips and tricks you can use for

smooth functioning while working with VCS, whether it is

the centralized VCS or the DVCS.

• Write a good, descriptive commit message. �is

is useful especially when someone is examining a

change, and can therefore understand the purpose

and intent of the change, if you convey the same with

clarity. When someone is examining changes related

Getting Started ◾ 7

to a concept, they are bound to look through the

commit messages. Commits are elementary units for

working in Git. Without commits, you will be unable

to share your work with others.

• Ensure that each commit has a single purpose and

that it only focuses on implementing that purpose.

�e purpose of version history is rendered redundant

if a single commit contains code for multiple pur-

poses, or if code for a speci�c purpose is spread across

multiple commits.

• Avoid indiscriminate commits and always ensure

that you provide speci�c �les to commit. Whenever

committing changes, you must make sure that you

have not committed more than you intended to.

• Incorporate the changes other team members have

made, and ensure that you are working on the most

up-to-date version of the main �le. If you do so, you

are avoiding potential con�icts and incompatibilities

that are certain to come if two commands go against

each other.

• In a similar vein as the last point, make sure you

share the changes you have made as soon as possible

with your colleagues, before you go on to make other,

unrelated changes to the main �le. Basically, establish

a coordination routine with your fellow team mem-

bers to ensure the minimization of con�icting situa-

tions. For these purposes, Git provides the option of

creating a Bare Git repository. In Git, a repository can

be created using the git init command as well as the

8 ◾ Mastering Git

git init—bare command. Repositories created using

the former are called working directories, while the

ones created using the latter are known as bare repos.

Bares Repos and Working Directories are structurally

di�erent. While the latter is used for work, the former

is only meant to be shared with fellow developers at

a centralized place where everyone can record their

changes. Since Git is a DVCS, no one can directly edit

the �le in the shared central repository. So the coders

instead can clone the shared bare repo and make the

necessary changes within their working copies, and

later they make changes made available to their team

members. Since a shared bare repo will not be edited,

it does not have a working tree.

• Do not use very long lines, keep the limit of each

sentence to 80 characters. With long lines, there are

chances that multiple edits will fall within the same

line and subsequently con�ict with one another.

Also, do not re�ll or rejustify the paragraphs. It

changes every line of the paragraph, making it harder

to determine what changes were made in a particular

commit.

• Do not commit generated �les to version control.

VCS is meant for �les that are supposed to be edited.

For example, you must not commit .pdf �les which

have been generated from a text formatting applica-

tion. However, you can commit the source �les from

which the .pdf �les have been generated.

• Understand and learn about your merge tools. You

are likely to create con�icts if you are having a bad

Getting Started ◾ 9

mental health day, are stressed out due to an upcom-

ing deadline, etc. To handle these circumstances,

become well versed with your Merge tool.

• Never forget to obtain and store your own copy of the

project �le, also referred to as “cloning” or “checking

out”.

WHAT IS GIT?

Git is a version control so�ware meant for tracking changes

in a given set of �les, for ensuring coordinated work among

programmers who are collaboratively developing a source

code for so�ware development. Its proposed goals are

speed, support for distributed, non-linear work�ows, as

well as data integrity. To quote its original author, Linus

Torvalds, “You can do a lot of things with Git, and many of

the rules of what you *should* do are not so much techni-

cal limitations but are about what works well when work-

ing together with other people. So Git is a very powerful set

of tools” (Torvalds, 2015).

Git is a free plus open-source so�ware distributed

under the GNU General Public License version 2. Apart

from version control, Git is also used for other applications

including content management as well as con�guration

management. �e creator of the operating system Linux,

Linus Torvalds, developed and launched Git in 2005. He

took up this project because all the open-source VCSs

available at that time were failing to match the require-

ments of the Linux kernel development. Basically, the rela-

tionship between the VCS BitKeeper and the Linux team

had broken. Some kernel developers also made signi�cant

contributions to Git’s early development. Junio Hamano

10 ◾ Mastering Git

has been responsible for the core development and main-

tenance of the system since 2005. Each and every Git

directory on every system is an absolute repository with a

full-�edged history and powerful abilities of tracking ver-

sions of the central code, irrespective of a central server

or access to networks. �is is unlike most client-server

systems, but a feature that is shared by other DVCSs. It is

important to note how Git records change. While CVSs

store the changes made to a �le over a period of time, Git

merely stores the snapshot of the changed �le. �is means

that if a �le has not changed between two versions, Git will

not copy it again and will simply retain the reference of

the original �le. �is also ensures memory optimization

within the system.

Git has a small footprint, high speed, and is easy to

learn. Its salient features include providing a convenient

staging area, ensuring space for multiple work�ows, as well

as provision for cheap local branching. Understanding the

fundamentals of Git is very important if you intend to use

it for work purposes in the future. If you are familiar with

other kinds of VCSs, particularly centralized VCSs, it is

better to keep that information aside while studying Git to

avoid any unnecessary confusion. Even though Git’s user

interface seems similar to that of other VCSs, Git stores and

processes information in a signi�cantly di�erent fashion.

In Git, most operations require only local resources and

�les for purposes of operation. Due to this, Git has a tre-

mendously high speed, as the entire history of the project

is on your local disk, making the operations nearly instan-

taneous. �is further implies that as a coder, you can do

almost everything on Git, even if you are o�ine. �ere is

Getting Started ◾ 11

no conception of a master or central repository with Git.

�e Git repository on your system is self-contained and

requires no other server. It contains information on all

the branches, commits, tags, everything. If your VPN cli-

ent is not working properly, it doesn’t matter. You can still

work. �is liberty is practically impossible for other sys-

tems. SVN and CVS allow you to edit �les, but you cannot

commit changes to your database if you’re o�ine, since the

database itself is online. Perforce also cannot be operated

o�ine.

Also, in GitHub, all data fed is checksummed before

storage, and is subsequently referred to using that check-

sum, making it impossible to create changes in the �le

without Git coming to know of them. �is happens to be

one of the core features of Git and is integrated into the

system at the minutest levels. If you lose information in

transit, or if a �le gets corrupted, Git will be able to detect

it. �e name of the mechanism that Git makes use of for

checksumming is called SHA-1 hash. It is a 40 character

string that is composed of hexadecimal characters which

are calculated using either the contents of a particular �le,

or the directory structure of Git. You should see hash val-

ues a lot in Git since it makes extensive use of them. So

much so that Git stores everything in its database not with

�le names, but utilizing the hash value of its contents.

With Git, you can also push and pull changes from other

Git repositories. �ose repositories could be anywhere,

your own �le system, that of a colleague, or even a distant

server. So, you can make changes in your own repository,

fetch changes incorporated by other team members, and

consequently, merge the data as many times as is needed.

12 ◾ Mastering Git

�is means that you can work in isolation, but also syn-

chronize the data easily with the rest of your team. Push

and Pull features are exceptions to all the other operations

on Git that are carried out locally. Not only that, the cen-

tralized approach of systems like SVN too can be replicated

on Git using platforms like GitHub, GitLab, Bitbucket, etc.

Git just adds data. Any action you do on Git basically

only adds more data to the Git repository. �e system

ensures you cannot erase data or do anything that can-

not be undone. You will of course lose changes if you do

not commit them properly, but once you have commit-

ted data into a snapshot in Git, it is unlikely that you will

lose it, particularly if you continue pushing your database

into another repository. So, Git o�ers you a safe space to

experiment without the fear of screwing up things too

dramatically.

Git o�ers a few basic tools to undo the changes you have

made. However, be mindful that you cannot undo some of

the undos themselves. �is is a space where you may end

up losing work if you mismanage. A common undo that is

used o�en is if you mess up your commit message or com-

mit too early, without adding the necessary �les. To redo

that particular commit, make the additional changes you

forgot about, stage them, and recommit using the amend

option. From Git version 2.23.0, the command git restore,

an alternative to git reset, can also be used for purposes of

undoing changes.

Git is not a SCM tool, as per its initial design approach.

Nevertheless, its features being created as needed, Git has

now developed a set of characteristics that can be expected

out of a traditional SCM system. Git utilizes two data

Getting Started ◾ 13

structures, a mutable index, also referred to as a stage or

cache, that caches information regarding the working

directory, as well as an append-only object database, which

is immutable and contains the next revision to be commit-

ted. You will encounter �ve di�erent objects within the

object database:

1. Blob: It is the content of a �le. Blobs do not have

timestamps, or even a proper �le name. In Git, each

blob is a version of the �le, and contains that particu-

lar �le’s data.

2. Tree Object: A directory containing the list of �le

names.

3. Commit Object: It contains the name of a tree object,

a log message, a timestamp, as well as the names

of parent commit objects. It basically acts as a link

between the tree objects in history.

4. Tag: Contains metadata related to another object. It

is most commonly used to store a digital signature of

a commit object.

5. Pack�le: A compressed Zlib version of multiple other

objects. Advantages of use include ease of transporta-

tion through network protocols as well as the com-

pactness provided.

Every object in Git is identi�ed using the SHA-1 hash of

its contents. Git computes the hash value and utilizes it

for naming the object. Every object is put into a directory

using the �rst two characters of its hash. �e remaining

14 ◾ Mastering Git

hash is used as a �le name for the object. Further, to show

the locations of various commits, Git stores labels called

refs, short for references.

Another important thing to learn about Git, it has three

main states that contain your �les, Modi�ed, Staged, and

Committed. Modi�ed implies you have made changes to the

�le but are yet to commit those changes to your database.

A staged state is when you mark a modi�ed version of the

�le to go to your next commit snapshot. Committed implies

that the data has been safely secured into the database.

Parallelly, there are also three central sections of any

Git project—the working tree, the staging area, and the Git

directory. �e working tree is a checkout of a version of the

project. �e �les are pulled directly from the compressed

database of the Git directory, and placed on your disk for

you to conduct the necessary edits. �e staging area, also

known as the “index”, is a �le in the Git directory stor-

ing the information that will go into your next commit.

Remember that the staging area is a place to assemble your

commits and save the snapshots of all the work you have

done so far. You are allowed to choose the �les as well as

the lines that are to be a part of your next commit, allow-

ing you to manufacture commits relevant to the work that

you are doing. Adding certain �les to the staging area is

only preparing yourself for the next commit, and not the

actual act of committing, for which you need to use the git

commit command. Once a commit is created, it will move

to the repository, rendering the staging area vacant. Once a

commit is created, even if the entire working tree happens

to get deleted and even if the staging area has been cleared,

your content can still be recovered. �e Git directory stores

Getting Started ◾ 15

the object database and the metadata for your project. It is

the most important aspect of Git. �e directory is what gets

copied when you clone a repository from another system.

So an elementary Git work�ow will follow the following

steps:

• You will modify the �les in the working tree.

• �e changes you want to make in your next commit

have to be selectively staged.

• You commit, taking the �les from the staging area, and

storing their snapshot permanently in the Git directory.

All in all, a particular version of the �le will be considered

committed if it has been saved within the Git directory. It

is considered staged if it has been modi�ed and sent to the

staging area. And if has been changed since checkout but

is yet to be staged, it will be considered modi�ed. Commits

are the stable snapshots stored within the Git repository.

Git shall never modify the contents of a commit unless, of

course, you explicitly ask it to do so.

ADVANTAGES OF GIT

Moving from a centralized VCS to Git will fundamentally

change the way your coders create so�ware. If your orga-

nization is heavily reliant on so�ware for critical applica-

tions, the altered work�ow is bound to impact the entire

business. Hopefully, Git should bene�t each and every

aspect of your organization, whether it is marketing or

development. Some of the bene�ts that Git provides to cod-

ers are speed, simplicity, proper distribution, a conducive

16 ◾ Mastering Git

environment for parallel development with the support of

hundreds of branches, as well as integrity. Git, therefore, is

necessary not just for e�ective so�ware development, but

also for conducting business with e�ciency and agility.

For Development

Git’s branching capabilities happen to be one of its most

advantageous features. Unlike the branches of centralized

VCSs, Git branches are cheap and easier to merge. �is

provides the facility of feature branch work�ow, which

can signi�cantly bene�t an organization. Every change to

the code base is provided in an isolated environment. �e

main branch contains the production quality code, and

any change, big or small, consequently has to be commit-

ted to a new branch. Your development work is thus repre-

sented with as much focus as your backlog. A Jira ticket, for

example, can be addressed using its own feature branch.

Being a DVCS, Git provides better speed. Everyone

can work on their own changes separately in their local

repositories without any threat of blocking and intermit-

tent interruptions. If a developer accidentally eliminates

her/his own repository, they can simply clone someone

else’s and start anew. �is makes sure that Git is resilient to

crashes since each node (a system on which a single devel-

oper works) has a copy of the source tree. Apart from this,

the issues of security are e�ectively handled by Git with the

cryptographic method SHA-1, an algorithm responsible

for managing your versions, directory, and �les, to make

sure that your work is not corrupted.

SCM tools like Bitbucket further enhance Git’s core

functionality with facilities like pull requests. A developer

Getting Started ◾ 17

can ask another to merge their branch in their own reposi-

tory, allowing them to keep track of changes committed.

�is also helps in initiating deliberations on the work done

before committing it to the main codebase. Junior develop-

ers can also utilize pull requests as formal code reviews to

make sure that they are not botching up the entire project.

Git is highly popular among open-source projects, mak-

ing it easy to leverage third parties as well as encouraging

them to fork their own open-source code. Today, a formi-

dable number of projects, both personal as well as com-

mercial, make use of Git for purposes of version control. If

you are using Git, you will not have to train new hires since

they will probably already be familiar with the system.

Git facilitates a faster release cycle as well as an agile

work�ow, wherein smaller changes are shared more fre-

quently by team members. So, naturally, Git works very

well with fast delivery environments, allowing you to auto-

mate deployment as per your wants and needs.

Git for Marketing

Git can fundamentally change a traditional development

work�ow for marketing, wherein a centralized VCS would

roll up all the changes committed into a single release. A

shorter development cycle allows Git to synchronize mul-

tiple activities with separate releases.

Git for Product Management

�e features utilized here are similar to the ones incorpo-

rated for purposes of marketing. �e frequent releases will

naturally imply more customer feedback as well as updates

that will have to be incorporated in response to that feedback.

18 ◾ Mastering Git

With Git, you can push out a solution for your customers as

soon as your developers have resolved the issue with code

changes. If your priorities change and you have to wait

before introducing a new feature, that particular branch can

sit in waiting till your engineers come around to it.

Git for Designing

Git provides a healthy and safe atmosphere for your design-

ers to experiment. Feature branches allow rapid prototyp-

ing, and allow the designers to observe how their changes

will eventually look like in the working copy, without the

threat of destroying the present functionality of the prod-

uct. �is also allows the designers to provide updates to

other important stakeholders. Pull requests to help every-

one involved to come aboard the iteration process. Working

via branches also means that you can incorporate the

changes, or not. �ere is no pressure to do either, and the

UI developers can make sure that only their best, most well-

thought-out ideas eventually reach their customers. Other

features that are of particular help to the designers are:

• Context Switching: You can switch back and forth

between commits, and codes, old and new.

• Role-Based Code: Multiple lines of functionality. A

branch can go into production, while the other is still

being tested.

• Disposable Experimentation: Try out new ideas and

discard them, if found unviable, without a�ecting the

functionality of the source code, and the product at

large.

Getting Started ◾ 19

Git for Customer Support

If a customer is going through an issue, you can immedi-

ately provide a bug �x, instead of making them wait for

your next monolithic version release. Your developers can

patch the problem immediately, improving your customer

satisfaction and ratings.

Git for HR

Using Git will encourage developers to join your organiza-

tion, since employees are drawn to companies providing

healthy opportunities for career growth and development,

and leveraging Git is an advantage that any developer

would like to have, whether your organization happens to

be big or small.

Git for Budget Management

E�ciency is perhaps the most salient feature of Git. �e

organization does not lose man-hours spent on integrating

changes in centralized VCS. �e work of junior developers

too is e�ectively utilized. Designers are allowed to test fea-

tures on the product with signi�cantly less overhead. �e

marketing team can avoid putting e�orts in features that

are unpopular, and customer complaints can be responded

to promptly.

DISADVANTAGES OF GIT

Some of the disadvantages of making use of GIT are:

• Git is slow on Windows, and requires long and con-

voluted command lines for input. Further, it cannot

keep track of renaming, and requires a high degree of

20 ◾ Mastering Git

technical knowledge from the developer. Commands

like Git Rebase can also invalidate tests or change the

chronology of commits, defying the very purpose of

version history. Furthermore, code merging making

use of the command line does not entail a straight-

forward process, particularly if there are con�icts

involved. Needless to say, merging is a ripe location of

disputes among developers. Creating open commu-

nication channels to deliberate on the merging pro-

cess, before integrating all the modi�cations together

should help in reducing con�icts. Commands, in

general, can be confusing, simply because there are so

many of them. For example, if you are a user moving

from SVN to Git, and you need to �nd Git’s equiva-

lent of “svn revert”, you have to make use of a speci�c

kind of git checkout. Mercurial, a distributed revision

control tool, on the other hand, has a fairly smaller,

more comprehensible set of commands, enhancing

the accessibility of the tool. Not only that, because the

developer commits to the server in SVN, they take

into account changes incorporated by one another

sooner and not later, reducing the possibility of hard-

to-resolve con�icts or disagreements, a possibility

in Git because the developers work independently

and sometimes end up deviating too far from each

other’s work.

• �e Graphical User Interface (GUI) is not e�ective

and di�cult to maneuver through. Git also has poor

usability ratings, and makes use of a large amount of

resources, slowing down the user’s performance.

Getting Started ◾ 21

• It is important that the central service sets up mul-

tiple package repositories for each and every proj-

ect. �is is because Git does not provide support for

checking out sub-trees. Furthermore, it is very dif-

�cult to merge without committing. �is leads to a

fairly large number of small commits, making the

repository history very complex and di�cult to read.

Commits can be combined using Git Rebase, but

that too is a very complex process that the developers

must �rst learn and understand properly.

• Git cannot keep track of empty folders and su�ers

due to a lack of Windows support.

• Multiple branches are needed to support the parallel

development being conducted by coding teams. �e

overall data model is highly complex with index, local,

and remote repositories, working copies, etc. Also,

Git works with an exclusive set of jargon words whose

meaning is not what it explicitly seems; terms like ref,

remote, index, refspec, origin, tracking branches,

stash, pull, staging, rebase, revert, reset, re�og, and

so many others, need to be learnt about properly to

work on Git with a fair degree of agility. �ese issues

make the learning process slower and more di�cult,

especially for inexperienced developers trying to get

up to speed. To make rapid and e�ective use of Git

repositories, a developer should know basic program-

ming languages like Hypertext Markup Language

(HTML), JavaScript, Cascading Style Sheets (CSS),

etc. You must also be familiar with working on open-

source applications and other platforms. Technical

22 ◾ Mastering Git

know-how on other aspects of work that a program-

mer must be well-versed with include:

• Knowledge of how one can back up the work

on the servers as well as platforms available like

GitHub.

• A basic as well as high-level comprehension of

Git commands to work around the Git repos with

e�ciency.

• How one can set up and install Git on di�erent

kinds of Operating Systems, along with being

well-versed vis-à-vis the Git work�ow, from cre-

ating a new repo, deleting an old one, as well as

merging two repos, to the cloning of a repo, rais-

ing a pull request, and other commands.

• Git cannot support binary �les. It drags and its speed

is dramatically reduced if �les containing non-text

information are to be used o�en. Git also lacks in-

built access control, as well as access control mecha-

nisms for purposes of security. �e process of packing

too is immensely costly. Its performance is recog-

nized as poor for �les containing a large amount of

data. Mercurial, another source control management

(SCM) tool, works signi�cantly better on repositories

containing a number of multi-megabyte �les.

Apart from these factors, transitioning to Git isn’t con-

sidered particularly necessary for products where the

focus is primarily on maintenance, i.e. the development

aspect is minimal and innovation is, for all practical pur-

poses, absent. Git is also not e�cient when it comes to

Getting Started ◾ 23

maintaining a large number of �les. Due to its complexity,

it has a high level of error-proneness, so the IT administra-

tors of an organization must carefully plan the architecture

as well as the hierarchy of GIT transition. Along with this,

developers should be able to make use of source control

without getting bogged down with confusion.

Unlike Perforce and other systems, Git does not allow

you to tag, branch, or clone only a part of the repository.

You must branch/tag the whole repository. So, if you are

working on multiple projects, which many do, you must

keep track of multiple Git repositories. �is makes �les

hard to �nd, despite the obvious improvements it makes to

the performance of the team members. Additionally, tran-

sitioning massive SVN projects to Git can become an ardu-

ous task. And some projects require developers to work

on common parts. �is is what has led to the introduction

of the concept of the submodule, which has its own set of

command-line switches as well as operations.

Git also delves into the status of a remote server only

if speci�cally asked to do so. �is leads to issues. Git log

shows you the work being done locally, as well as the work

done by other team members before the last pull took

place. It is not possible for you to be aware of what exactly

is going on the remote server unless you make use of non-

Git tools like GitHub. �e absence of up-to-date informa-

tion from the remote repository also leads to the problem

of incorrect messaging. �e code might inform you that

your branch is up-to-date with the latest information, but

it is most probably a lie. Git will not come to know if and

when you have fallen behind unless it is explicitly asked to

seek out that information from the remote repository. �is

24 ◾ Mastering Git

is misleading though not a design �aw per se. Not seeking

out information from the remote server is what is behind

the superior performance and speed of Git. Git also is not

restricted from modifying and browsing the central repos-

itory. Furthermore, it primarily works only on the Linux

and the Unix platforms. Git VCS is certainly suitable for

the developers working on open-source projects. However,

the likelihood of too many versions, as well as practically

unlimited rights of management to team members, creates

a risk of asset loss, which is bound to hamper the compa-

ny’s project management. Due to this lack of a strategy to

manage permissions, anybody with an account can import

or export code, delete branches, perform rollback opera-

tions, etc. �e utilization of script tools for the purposes of

de�ning permissions can strongly help in mitigating the

e�ects of this problem.

In the case of SVN, except in case of grid failures, data

incorporated in the server is fairly secure. However, Git

here faces a few issues. If you do not remember to push

your stu�, it is very likely that you will lose it. Local fold-

ers can get deleted or overwritten. Additionally, even the

changes that have been made and committed sometimes

might not be safe. Deletion of Git branches might make

certain commits inaccessible, since they stop belonging to

the history of any particular branch. Commits of this kind

will get quickly deleted, leading to you losing your work.

Not only that, because of issues of network latency, some-

times the speed of accessing remote repositories is dramat-

ically reduced on Git.

It is also possible to end up working on the wrong area

in Git, especially if you forget to conduct the checkout

Getting Started ◾ 25

command, and subsequently forget that you had le� the

repository in a branch. In the case of SVN, you can clearly

see all the �les, making it apparent which part you were

earlier working on, signi�cantly reducing the chances of

this error being committed.

So, all in all, an arena where Git can potentially improve

is widely recognized to be user-friendliness. Despite it

being generally recognized as a useful solution for many

so�ware development life cycle problems, it has its own

share of limitations. In comparison to Mercurial, for

example, Git has a way steeper learning curve, with a sig-

ni�cant duration of time required for people to understand

the ins and outs of how Git stores and manipulates version

history. �e lack of intuition of its instructions has been

pointed out by many. �is is the reason behind why a sig-

ni�cant number of commercial products seem to be �ll-

ing the lacunae of Git. Vendors tend to incorporate uni�ed

hook management, incorporating layers of access control,

as well as other convenient features to their Git version

control project. �ese tools facilitate the members of the

development teams, engineers, etc. to safely interact with

Git and its many features.

Basically, if you have a strong requirement for a single,

master copy of the code for your organization, you are

recommended to use SVN. However, if you just intend

to maintain parallel, but shared di�erent customizations

of the same product, go for Git. Git is an e�ective tool for

the purposes it was originally designed for, the distrib-

uted development of open-source projects. However, due

to signi�cant complexity as well as the introduction of a

plethora of new operations and concepts, Git will not be

26 ◾ Mastering Git

suitable for all projects, and a centralized source control

system might do a better job for some speci�c projects.

Your choice of VCS, therefore, should be made keeping in

mind the nature of projects you/your organization gener-

ally handles.

HISTORY OF GIT

�e development of Git began due to a creative con�ict.

It was during the early years of Linux kernel mainte-

nance, i.e. from 1991 to 2002 that the so�ware changes

were passed around as archived �les as well as patches.

Eventually, in 2002, the Linux kernel project started using

a proprietary DVCS which was called BitKeeper. BitKeeper

was a proprietary, paid-for tool even at that point of time,

but the Linux development community was allowed to use

it free of cost. However, in 2005, the relationship between

the Linux kernel community and the commercial com-

pany responsible for the development and maintenance

of BitKeeper went sour, and the tool’s free-of-cost status,

subsequently was revoked. �e man who was the copy-

right holder of BitKeeper, Larry McVoy, withdrew the free

use of the product a�er his claim that Andrew Tridgell

had created SourcePuller by making use of reverse engi-

neering processes on the BitKeeper’s protocols. �is same

incident was also responsible for spurring the creation

of another VCS, Mercurial. McVoy’s accusations led the

Linux development community, particularly Linux creator

Linus Torvalds, to build a tool of their own, utilizing their

learnings and experiences with BitKeeper. Torvalds called

the system “Git” because he liked the word, when he came

across it in a Beatles song I’m So Tired (verse two). He says,

Getting Started ◾ 27

“�e in-joke was that I name all my projects a�er myself,

and this one was named ‘Git.’ Git is British slang for ‘stupid

person’…. �ere’s a made-up acronym for it, too—Global

Information Tracker—but that’s really a ‘backronym,’

[something] made up a�er the fact” (Favell, 2020).

When the development is primarily being done by an in-

house coding team, and has to be well managed and con-

trolled, a centralized VCS should work perfectly decently.

However, if there are hundreds or thousands of develop-

ers involved in a project, working remotely, independently,

and voluntarily, with a high degree of experimentation

involved, as it was in the case of projects like Linux, DVCS,

then embodied by BitKeeper was way more ideal. Git,

Monotone, and Mercurial, ultimately were modeled a�er

the achievements of BitKeeper. To quote Torvalds, “BK was

the big conceptual in�uence for the usage model, and really

should get all the credit. For various reasons, I wanted to

make the Git implementation and logic completely dif-

ferent from BK, but the conceptual notion of ‘distributed

VCS’ really was the number one goal, and BK taught me

the importance of that…Being truly distributed means

forks are non-issues, and anybody can fork a project and

do their own development, and then come back a month

or a year later and say, ‘Look at this great thing I’ve done’”

(Favell, 2020).

A recurrent issue with the Client-Server VCSs also was

that whoever hosted the main repository on their server

also was the “owner” of the source code. �e innovation of

DVCSs resolved this problem. Now, there was no central-

ized repository under an individual’s ownership, just a lot

of clones that the developers could independently work on.

28 ◾ Mastering Git

In the absence of a central “master” location, anyone could

become a host and carry out their own development, which

would later have to be merged. Merging the peripheral

branches to the central repository was also a space riddled

with its own set of problems. �e use of cryptographic

hash, a unique number for identi�cation, to index every

object, proved to be a major innovation here. While the

use of hashes was not started by Git, the VCS did take it

to a new level, wherein hashes were not merely utilized to

identify newer versions of the elements of the �le, but also

how those versions were related to each other, with regard

to the commits made, the larger tree, etc. With the use of

the command “git di�”, Git could successfully identify all

the committed changes between the source code and the

newer versions of the �le, or even whole trees, by look-

ing through the indexes of the hashes. �is process also

ends up becoming an intermediate step before performing

merges, as it allows you to incrementally resolve the con-

�icts that will arise. �e innovation of staging area, to con-

duct a comparison of di�erent versions, as well as resolve

the issues being encountered between the source code and

additions made, before performing the merge, was revo-

lutionary, though it was not immediately accepted by the

developers used to other VCSs.

So, some of the goals that the developers had in mind

were—the role of distribution, good ability in handling

huge projects like the Linux kernel with a fair degree of

e�ciency and agility, particularly vis-à-vis the speed as

well as the data size of the �les, a simple design, provid-

ing a strong platform for non-linear development, i.e. the

capacity to maintain thousands of parallel branches at

Getting Started ◾ 29

the same time, speed, etc. As a design criterion, Torvalds

speci�ed that patching must not take more than three sec-

onds. Further, he kept the example of Concurrent Versions

Systems, i.e. CVSs in mind as to what not to do for his

own DVCS. �e work�ow intended was modeled a�er

BitKeeper, along with safeguards against threats of corrup-

tion, whether it be malicious or accidental. Ultimately, Git

was launched, and the �rst merge of multiple branches on

it occurred on April 18, 2005. Torvalds was able to achieve

the performance goals he had in mind; on April 29, early

Git successfully benchmarked recording patches to Linux

kernel tree at the speed of 6.7 patches per second.

However, it was also important to appoint a maintainer

for the newly created VCS. A�er writing Git, Torvalds gave

it to the open-source community for reviews and contribu-

tions. On July 26, 2005, Torvalds handed over the responsi-

bility of the maintenance of the project to Junio Hamano,

a major contributor who remains the core maintainer of

Git to this date. Hamano’s innovations turned out to be

so in�uential that a�er only a few months of Git’s launch,

Torvalds was able to take a step back and concentrate on

Linux again, passing the responsibility of the maintenance

of Git to Hamano. For Torvalds, “He had that obvious and

all-important but hard-to-describe ‘good taste’ when it came

to code and features…Junio really should get pretty much

all the credit for Git—I started it, and I’ll take credit for the

design, but as a project, Junio is the person who has main-

tained it and made it be such a pleasant tool to use.” Hamano

still controls the larger direction of Git as a so�ware, and is

the �nal word on the changes made to the code, apart from

holding the record for most commits (Favell, 2020).

30 ◾ Mastering Git

Other important contributors during the early develop-

ment of Git were Je� King, Shawn Pearce, and Johannes

Schindelin. �ey started out as volunteers, and are now

employed full-time by companies that rely on Git to con-

duct their daily operations, and therefore make invest-

ments to ensure its upkeep and improvement. Je� King,

also known as Pe�, started making contributions as a stu-

dent. He did his �rst commit in 2006, when he spotted and

�xed a bug in git-CSV import, while moving his reposito-

ries to Git from CVS. To quote King, “I was a graduate stu-

dent in computer science at the time,” he says, “so I spent

a lot of time lurking on Git’s mailing list, answering ques-

tions and �xing bugs—sometimes things that bothered me,

sometimes in response to other people’s reports. By around

2008, I had become one of the main contributors, quite by

accident” (Favell, 2020). King has since been employed by

GitHub, and now works for the website, apart from making

additional contributions to Git.

Shawn Pearce too did exemplary work on JGit, which

was responsible for opening up Git to the Android and Java

ecosystems, while Johannes Schindelin worked on Git for

Windows, which subsequently opened up the Windows

community to Git. Later, they ended up working at Google

and Microso�, respectively.

Since its conception in 2005, Git has undergone a vari-

ety of changes, but has managed to retain the initial quali-

ties it was supposed to embody according to its developers.

�e DVCS remains highly popular among coders and

engineers, because it is incredibly fast, very e�cient even in

case of fairly huge projects, along with providing a spacious

environment for branching and non-linear development.

Getting Started ◾ 31

We should now examine the reasons responsible for the

wild success of Git, the undisputed leader of a highly com-

petitive �eld. Today, world over, a large number of start-

ups, multinationals, and collectives, including Google,

Microso�, and others, make use of Git to maintain source

codes of their so�ware projects. Many host their own Git

projects, others utilize Git through its commercial hosting

companies like GitHub, founded in 2007, GitLab, founded

in 2011, as well as Bitbucket, founded in 2010. GitHub, the

largest among the three of them, has 40 million developers

attached to it, and was acquired in 2018 by Microso� for

a huge sum of $7.5 billion. While an aspect of its obvious

appeal is that like Linux and Android, it is open source,

there are other VCSs that happen to be open-source, like

SVN, Mercurial, Monotone, CVS, etc. so being open-source

alone cannot explain Git’s emergence and ascendancy. Git’s

dominance over the market can be best demonstrated by a

2018 survey of developers by question and answer website

Stack Over�ow, where they enquired into the VCS choices

of over 74,000 respondents. Git emerged as a clear numero

uno, with over 88% mentioning it as their mode of con-

ducting their daily programming operations. �e very dis-

tant competitors were SVN, with 16.6% penetration, Team

Foundation Version Control (11.3%), and Mercurial (3.7%).

�ese results were so dramatic that Stack Over�ow did not

even bother asking the same question in its 2019 edition

of the same survey. Git, of course, was the fastest DVCS,

and remains so. With Git, once developers learnt the use

of features available at the given speed, it became virtu-

ally impossible to go back to a slower so�ware. Switching

from one branch to another was fast, so was creating a

32 ◾ Mastering Git

whole new branch. Merging branches too was an opera-

tion speedily conducted, only depending on the number of

changed �les. Mercurial was a potential competitor, but it

was signi�cantly slower and did not provide any extra fea-

tures over Git. Initially, some preferred Mercurial because

it could, unlike Git, run natively on Windows. However,

the later versions of Git have worked upon this limitation,

with Windows now providing native binary support to Git

as well. Further, Mercurial stored branches, bookmarks,

unnamed branches, etc. in its repository. Git refers to all

these just as a branch. So, even in order to perform the �rst

commit, you must be able to select good branch names in

Mercurial, since they will get stored in the repository along

with your commits later on. In Git, a branch name is only

the location of present work, and not a part of the commit

data which will eventually be stored in DAG.

Furthermore, Git always allowed making changes to

the DAG even a�er the commit had been already per-

formed. �is allowed for the rewriting of the history of a

branch, ensuring a better, more readable version history

for the project. �is was done by allowing commands

like “git rebase -i” and for more signi�cant changes, “git

�lter-branch”.

Historically, a number of major open-source projects

switched to Git the years a�er its high-pro�le launch in

2005. So, it got a signi�cant number of high-pro�le in�u-

encers early on in its development. Keith Packard famously

chose Git for the X Window System in 2007. In his article

“Repository Formats Matter,” he wrote, “I know Git suf-

fers from its association with the wild and wooly kernel

developers, but they’ve pushed this tool to the limits and

Getting Started ◾ 33

it continues to shine. Right now, there’s nothing even close

in performance, reliability and functionality…Small incre-

mental changes have been made which make the tools

more consistent, and I hope to see those discussions con-

tinue” (Packard, 2007). Packard’s decision for the X proj-

ect proved in�uential, and several other projects came to

similar conclusions regarding the utility of Git indepen-

dently. However, the project hosting sites such as Google

Code and SourceForge refrained from supporting Git in its

early years despite some interest from the developers. �e

absent functionality of Git opened the doors for the launch

of GitHub in early 2008. �e subsequent social interactions

facilitated by GitHub, the variety of developer support tools

like fork, milestones, like, report issue, etc. further fueled

the growth prospects of Git, making it highly viable for

developers, young and old alike. Git also came out 14 years

a�er the initial release of the Linux kernel, the UNIX-like

OS, which meant that at the time of its release, Linus was

signi�cantly famous and well-known, so the VCS created

too became popular fairly easily.

In this chapter, we learnt the basics of VCS so�ware, pre-

liminary details on Linus Torvalds-created Git, the history of

the system, as well as its advantages and disadvantages. In the

next chapter, we move to the installation of the so�ware, what

to do when you have to set it up for the �rst time, as well as

the tips and troubleshooting involved in the same processes.

REFERENCES
Favell, A. (2020, February 4). �e history of git: �e road to

domination. �e History of Git: �e Road to Domination.
ht tps://w w w.welcometothejungle.com/en/art icles/
btc-history-git.

https://www.welcometothejungle.com
https://www.welcometothejungle.com

34 ◾ Mastering Git

Foundation, T. L. (2017, August 22). 10 years of Git: An inter-
view with git creator Linus Torvalds. Linux Foundation.
Retrieved September 10, 2021, from https://www.linux-
foundation.org/blog/10-years-of-git-an-interview-with-
git-creator-linus-torvalds/.

Packard, K. (2007). Repository Formats Matter. https://keithp.
com/blogs/Repository_Formats_Matter/.

https://www.linuxfoundation.org
https://www.linuxfoundation.org
https://www.linuxfoundation.org
https://keithp.com
https://keithp.com

35DOI: 10.1201/9781003229100-2

C H A P T E R 2

The Basics

IN THIS CHAPTER

 ➢ Installing Git

 ➢ First Time Git Setup

 ➢ Tips and Troubleshooting

In the previous chapter, we covered a host of topics, includ-

ing Version Control Basics, information on Git, its advan-

tages, disadvantages, history, features, etc. In this chapter,

we continue our journey with details on installation, �rst-

time setup, as well as tips and troubleshooting tricks that

can be used for Git. Read on to �nd out more.

INSTALLING GIT

Git can be easily installed on most of the operating systems

like Linux, Mac, Windows, etc. Mostly, Git comes prein-

stalled on the Linux and Mac Machines. So you best �rst

https://doi.org/10.1201/9781003229100-2

36 ◾ Mastering Git

check whether your system already contains Git, lest you

reinstall it unnecessarily.

To check for Git, open your terminal application. On

Mac, you should look for a command prompt application

known as “Terminal”. On Windows, open the Windows

command prompt or “Git Bash”. On opening the terminal

application, type “git version”. �e output should tell you

which version of Git is installed on your system, or it will

let you know that “git” is a foreign command. If you get

the latter result, you will have to install Git on your system

manually.

Before being able to use Git, you must ensure that the

latest version of the so�ware is installed on your computer.

You can install Git through another installer, through

a package, or by downloading the source code, and then

compiling it on your own. Installing GitHub Desktop

should also install Git within your system if you already

don’t have it. GitHub Desktop will give you a command-

line version of Git, alongside an e�ective Graphical User

Interface (GUI). Whether you have Git installed or not,

GitHub Desktop acts as a simple and e�cient collabora-

tive tool for Git. It will simplify your development work-

�ow, allow you to add co-authors to your commits, see

pull requests for your repositories as if it were from a local

branch, permit syntax highlighting, etc.

If you wish to install Git on Linux through a binary

installer, you should make use of the package manage-

ment tool which comes alongside the distribution. If you

use RPM-based distribution tools like Red Hat Enterprise

Linux (RHEL), Community Enterprise Operating System

(CentOS), or Fedora, make use of DNF. With Ubuntu or

The Basics ◾ 37

any other Debian-based distribution, use the command

“apt”. It is best to install Git on Linux with the preferred

package manager of your system’s Linux distribution.

You can also build from source using tarballs, i.e. the tape

archives used for opening as well as creating archive �les

on Linux and the other operating systems similar to Unix.

Several methods can potentially be adopted to install

Git on a Mac. Apple tends to maintain their own fork

of Git, but it usually falls behind the mainstream Git by

many versions. �e simplest way to go about your purpose

is through the installation of the Xcode Command Line

Tools. For Mavericks 10.9 and above, try running the com-

mand “git” from the Terminal. �is should prompt you to

install Git if you haven’t done so already. Utilize a binary

installer if you want the up-to-date version. You will also

be able to �nd a Git installer for MacOS from the o�cial

Git website.

You can also install Git from Homebrew, which is an

immensely popular package manager for Mac. To install

Git on Homebrew, open a terminal window and use the

command: “brew install git”. Check that the command

output has been completed, then verify the Git installation

using the command “git version”.

�e o�cial Git website is also the go-to place for

installing Git on Windows. Visit the URL git-scm.com/

download/win and your Git download should start auto-

matically. Keep in mind that this is a project called Git for

Windows, which is separate from Git. For an automated

installation, you should utilize the community-maintained

Git Chocolatey Package. Chocolatey packages usually

install everything you need in order to maintain a piece of

38 ◾ Mastering Git

so�ware into a single artifact, containing executable �les,

zips, scripts, wrapping installers, etc. into a complete com-

pilation package �le.

For Windows, you should also install Git extensions.

Potential alternatives for Git extensions include TortoiseGit

for the integration of Windows Explorer with Git, as well as

Git Source Control Provider. Apart from this, you should

also set up your Secure Shell (SSH) keys. �e main purpose

of SSH keys is that they link two systems with secure keys,

which usually consist of numbers and letters to ensure

secure communication. Git primarily uses SSH keys for

internal communication. During work, whenever you will

push to a remote repository or pull down from a private

repository, you shall be making use of SSH. SSH keys are

generally considered more secure than usernames as well

as passwords. So, to interact with most repositories, you

will have to generate an SSH, and that can be done using

a tool called PuTTY. Your SSH keys will always come in

pairs. You will have a private key (which you won’t be able

to see) as well as a public key which has to be pasted into

the repositories that you have access to.

To acquire the latest version, it is recommended that

you install Git from the source. �ough Git has made sig-

ni�cant progress in recent years, the fact remains that the

binary installers still tend to lag behind. For installing Git

from source, you must have access to the libraries Git is

heavily dependent on; they are libiconv, expat, openssl,

zlib, curl, and Autotools. If your system has DNF or apt-

get, use them for installation with minimal dependencies.

With Debian-based distribution, you will be needing an

install-info package. For RPM-based distribution, acquire

The Basics ◾ 39

the getopt package, usually preinstalled in distros that are

based on Debian. With all the necessary dependencies, you

should acquire the latest tarball from the o�cial websites

of Kernel or GitHub. �e GitHub page usually provides

more clarity on what the latest version is, though release

signatures are available on Kernel pages as well.

Git is also accompanied by built-in GUI tools for

committing as well as browsing. Depending on the plat-

form-speci�c experiences you seek, there are a num-

ber of third-party tools available, like GitHub Desktop,

SourceTree, TortoiseGit, Git Extensions, Magit, GitKraken,

GitUp, Sublime Merge, Tower, SmartGit, Fugitive, Fork,

gitg, GitAhead, GitEye, LazyGit, ungit, Guitar, Working

Copy, Pocket Git, GitFox, gmaster, GitVine, and many,

many others. If you have already installed Git, you should

also be able to acquire the latest development versions from

Git via the code:

git clone https://github.com/git/git

You can also go through the present contents of the Git

repository through its web interface.

FIRST TIME GIT SET UP

Git is a type of free and open-source distributed version

control system (VCS). It is also the most widely used mod-

ern VCS in today’s world. Git works well on a wide variety

of operating systems as well as Integrated Development

Environments (IDEs). A�er installing Git on your system,

there are a few things that you must do to customize the

https://github.com

40 ◾ Mastering Git

Git environment according to your needs. You should have

to perform these actions only once in a system, and they

should stick through despite the upgrades. You can also

alter these changes as and when you need by going through

the commands again.

Git is enabled with a tool called “git con�g” which allows

you to control the con�guration variables, thus moderat-

ing various aspects of how Git operates and looks. �ese

variables are generally stored in three places:

1. [path]/etc/gitcon�g �le: �is �le contains all the

values for every user on the system as well as all the

repositories. Since this is a system con�guration �le,

you must have administrative privileges if you want

to make changes to it.

2. ~/.gitcon�g �le: It contains values speci�c to you,

i.e. the user. �e “global” option can make Git spe-

ci�cally read or write to this �le, which consequently

can a�ect all the repositories you use on your system.

Once you have de�ned the ~/.gitcon�g �le, you are

allowed to copy it to any other system where you use

Git. �is command will therefore ensure that you

have the same identity as well as settings across all

the systems that you use Git on.

3. Con�g �le in the Git directory: �is �le is speci�c

to a particular repository that you are currently

using. �e default “local” will make Git write to

and read from this �le. However, it is important that

you are located in a Git Repository for this option to

work well.

The Basics ◾ 41

Moreover, the values of each level override the previous

one. So, the values of .git/con�g will supersede those of

[path]/etc/gitcon�g, etc.

Establishing Your Identity

�e most necessary thing to do a�er installing Git is set-

ting your user name as well as password. �is is because

every commit you create will require this information, as

well as contain it. As mentioned earlier, you will hopefully

have to do it only once when you pass the “global” option,

because Git will subsequently record it and conduct all the

operations in your name on that system. If you need to

change your name or email address for particular projects,

you should run the command, but not the “global” option

when you are working on that project. Several GUI tools

will be able to help you to do this as and when you run

them on your so�ware.

Editing

A�er setting up your identity, you need to now go into the

con�guration details of the text editor that will be utilized

whenever Git needs you to type up a message. Without

your intervention, Git will end up using the default editor

of your system. If you need to use a di�erent text editor, say

Emacs, do the following:

$ git config --global core. editor emacs

To use a di�erent editor on Windows, you will have to

type out the complete path leading up to its executable �le.

�is too will vary depending on how your editor has been

packaged.

42 ◾ Mastering Git

Default Branch Name

Git will create a default branch called “master” as and when

you create a new repository with “git init”. From Git 2.28

onward, you can give a di�erent name to the initial branch

if you want to do so. To set “main” as the default branch

name, you will need to do the following:

$ git config - -global init.defaultBranch

main

Check the Settings

If you want to go through all the con�guration settings

of your Git, utilize the “git con�g - -list” command, and

your Git should be able to list out all the settings it can �nd

at that point of time. You might sometimes see a few keys

more than once. �is is because Git ends up reading the

same key from multiple sources. In cases of this kind, Git

will make use of the last value it sees for every unique key.

If you want to check what a particular key’s value is accord-

ing to Git, make use of the command “git con�g <key>”.

Because of reading a value from multiple �les, it is pos-

sible that sometimes, you might get an unexpected value

for a variable, and you cannot �gure out the reasons for the

same. If that happens, you can enquire Git on the “origin”

of that value, and it should be able to tell you which �le had

the �nal say in determining the provided value.

Git also allows you to decide the colors for your con-

sole. �e Linux OS users can make use of third-party Zsh

con�gurators like oh my zsh in order to customize their

terminal look with a variety of themes. �e “color.ui” is

the meta con�guration that will include di�erent color

The Basics ◾ 43

con�gurations available alongside your git commands.

Apart from color.ui, there are several other granular color

settings. Like color.ui, these color settings can be set to

false, always, or auto. �ese color settings usually also have

a particular color value set. Some of the examples of sup-

ported color values are normal, black, white, cyan (a mix-

ture of green and blue), magenta, red, green, yellow, and

blue. Colors might also be speci�ed using ANSI 256 color

values, hexadecimal color codes like #�0000 if your termi-

nal can facilitate it, etc.

Further, some so�wares, like Apache Netbeans, also

make use of badges and color coding to projects, fold-

ers, and package nodes, to inform the developer regard-

ing the status of �les contained within the local node. A

blue badge, for example, denotes the presence of �les that

have been added, deleted, or modi�ed, in the main work-

ing tree. �is badge is also used to mark packages, but not

the sub-packages. �e badge also indicates changes within

a particular item, for projects, folders, as well as subfolders.

A red badge, on the other hand, contains �les with con-

�icts. Like the blue badge, the marker is meant for pack-

ages, and not sub-packages. �e badge is used to indicate

the con�icts within a particular item, for the projects, fold-

ers, and subfolders.

Color coding, as mentioned above, is also utilized by

Git to denote the current status of the �les with regard to

their repository. Black, i.e. no speci�c color means that the

�les have not undergone any changes. Blue means that the

�le has been modi�ed locally. Green implies that a �le has

been locally added. Red implies the existence of an internal

con�ict. And gray indicates that the �le has been ignored

44 ◾ Mastering Git

by Git, and therefore shall not be included in the version-

ing commands, i.e. Commit and Update. A �le cannot be

ignored if it is versioned.

�ere are other preliminary steps you must be familiar

with in order to be able to work on Git. �ese are:

Creating a New Repo

You will have to use the git init command to create a new

repo. git init is a one-time command that you are supposed

to use during the new repo’s initial setup. �is command

conceives a new .git subdirectory within your current oper-

ations directory. It is also used to create a new main branch.

Let’s assume that you have an existing project folder for

which you have to create a new repo. So, to successfully

conduct this operation, you must �rst cd the root project

folder followed by the execution of the git init command.

Pointing git init toward an existing project directory will

further execute the initialization setup that has been men-

tioned above, but limited to that project directory only.

Git Clone

�is will help in creating clones of an existing repository. If

a particular project has already been set up in the Git cen-

tral repository, the clone command should help the users in

creating the local development clones for conducting their

edits and commits. Cloning is a one-time operation, just

like git init. Once a coder obtains her/his working copy,

all the version control operations will subsequently be con-

ducted locally. git clone creates copies of remote reposito-

ries. You give git clone a repository URL to work with. Git

supports quite a few di�erent network protocols as well as

The Basics ◾ 45

their corresponding URL formats. On the execution of this

command, the latest version of the repo �les on the remote

servers shall be pulled down and included in a new folder.

�e new folder shall contain the complete history of the

remote repository as well as the newly created branch.

Saving Changes

With the repository cloned, you can now begin committing

the �le version changes to it. A�er executing this action,

your repo will have CommitTest.txt added to the history

and will be tracking all the future updates to the �le to

maintain a proper record of the version history. Executing

the git add—all command should also be able to take any

changed or untracked �les in the repo and subsequently

add them for the purposes of updating the repo’s working

tree.

Git Push

Git Push plays an important role in ensuring Repo-to-

repo collaboration. Git’s understanding of a “working

copy” is di�erent from that of Subversion (SVN) wherein

you checkout the code from a repository. Git does not

discriminate between the working copies and the central

repository, they are all to be considered full-�edged Git

Repositories in and of themselves. So while the function-

ing of SVN is predicated on the relationship between the

central repository and the working copies, the operations

on Git, conversely, rely on how the repositories interact

with each other. In Git, commits are to be pushed up and

pulled down from one repository to other. Of course, you

are allowed to give speci�c repositories special meaning.

46 ◾ Mastering Git

For example, you could simply label a Git Repo as a “cen-

tral repository” to replicate a centralized work�ow on Git.

However, functions of this kind have to be accomplished

via conventions, and are not built-in into the VCS.

Bare and Cloned Repositories

Using the git clone command allows your repository to be

con�gured for remote collaboration. Subsequently, if you

make your changes and commit them, git push should be

able to push those changes to your remote repositories.

However, if you use git init in order to make a fresh repo,

you will not have a remote repo to push your changes to.

When initializing a new repo, you can go to a Git service

like Bitbucket to create a repo there. You will acquire a Git

URL which can then be added to your local Git repository

and later git push to the hosted repository. A�er creating a

remote repo, you will also need to update your local reposi-

tory with proper mapping. If you wish to host your own

remote repo, you will have to set up a “Bare Repository”.

�is can be used to create a central but remote repository

for Git.

Reverting Changes

To do away with the local changes made to speci�c �les in

the working tree as well as replacing the same �les with the

ones in the Index, do the following:

• Select a versioned �le or folder, say from the Files,

Favorites, or the Projects window.

• Go to Team > Revert Modi�cations from the central

menu.

The Basics ◾ 47

• Specify the additional options. (For example, choose

whether to “Revert only Uncommitted Changes in

Index to HEAD”, “Revert all uncommitted changes in

Working Tree and Index”, or “Revert Uncommitted

in the Working Tree to the State in Index”)

• Click on the “Revert” button.

�e IDE should now replace the selected �les with the ones

you have speci�ed.

TIPS AND TROUBLESHOOTING

Git is a highly popular VCS widely used for a number of

commercial as well as private development works. No mat-

ter how adept you might become at using this VCS, there

are always new things to learn. �e following tips and

tricks should hopefully help you in operating the system

with signi�cant agility:

• Autocorrection: We all end up making typographi-

cal errors sometimes, but with Git’s auto-correct fea-

ture enabled, you can allow it to automatically �x a

mistyped command or subcommand. For example,

for the purposes of checking the status, you make

use of git status, but accidentally mistype it as “git

stats”. Normally, Git will simply inform you that the

command you have used is not valid. For times when

this becomes a recurrent issue, it is best for you to

enable Git autocorrection within your Git con�gu-

ration. If you wish to apply this con�guration only

for the repository you are working on currently, you

should omit the—global option from your command.

48 ◾ Mastering Git

�e auto-correction feature should subsequently be

enabled. Now, rather than suggesting the alterna-

tive, correct subcommand, Git will just run with the

feature’s top suggestion, which was git status in our

example.

• Counting commits: During development, you might

need to know the count of your commits for multiple

reasons. �e number of commits lets the developers

know how a particular project is progressing, as well

as the needs, if any, to increase the build number.

Using the following command, counting your commits

should be a fairly simple and straightforward process:

$ git rev-list - -count

Do make sure that the branch name you provide is a valid

branch name from your current repository.

• Repo optimization: Your code repository is of

immense value for your organization. Make habits

of a few safe practices to ensure that your repository

is clean, decently maintained, and updated. Make

use of the .gitignore �le. �is ensures that Git won’t

store unwanted records like temporary �les, binaries,

etc. in your repository unnecessarily. Using the Git

Garbage collection can also prove to be of signi�-

cant value, especially if you and your team members

make heavy use of push and pull commands. �is

command is an internal utility feature that cleans

up inaccessible or “orphaned” git objects from your

repositories.

The Basics ◾ 49

• Data backup: While it is mostly okay to get rid of

your untracked �les; in some situations, you might

also have to back them up in case you need them later.

Git, along with Bash Command Piping, allows you to

create a zip archive of your untracked �les. �e �les

listed in. gitignore however, are excluded.

• Familiarize yourself with your .git folder: Each

repository has a special, hidden folder called the .git

folder. While your working tree contains the state of

�les in your present checkout, it is the .git folder that

contains the versioning information of the project

�les. Not only that, but this folder also contains all the

references, repository data, con�guration �les, logs,

information about the state of HEAD, etc. Deleting

this folder will eliminate your project history, though

your source code will survive. �is implies that the

local copy of your project is not under version control

anymore. You will not be able to track your changes,

or push/pull to/from a remote repository. �e .git

folder is managed by the Git so�ware and mostly

should not be messed around with. Nevertheless,

you can look through the artifacts in the directory,

whether it be the current state of the HEAD, or an

available description of your repository. �e Git

Hooks folder will o�er you examples of the hook �les

that can be read through to acquire an understand-

ing of what is possible on Git via the use of Git hooks.

• View the �le of another branch: Git also has com-

mands available to view the contents of a �le from

another branch without actually having to switch

50 ◾ Mastering Git

your branch. For example, if you want to go through
the contents of the ἀle xyz on the main branch, exe-
cute the command:

$ git show main:xyz

Now, y ou w ould b e a ble t o v iew t he c ontents o f t he ἀ le
from your own terminal.

• Conducting searches: You can conduct searches on
Git e ven i f you a re u nsure about which commit, or
branch, you made your changes to. �is should save
you plenty of time as well as boost your productivity.

Because Git is very e�cient at helping small teams in man-
aging t heir s o�ware d evelopment, k eeping s ome t ips i n
mind c an ma ke c ollaborative w ork e ven m ore e �ective.
To make Git work well with diverse teams, with members
having varying levels of expertise, keep the following tips
in mind:

• Formalize y our G it c onventions: Ma ke s ure t hat
your team has a standard set of conventions for cod-
ing, tagging, branch naming, etc. Every organization
has its own set of good practices, and you should also
be able to ἀnd recommendations from coders work-
ing i n t eams online. W hat i s c rucial i s t hat a s tan-
dardized s et o f r ules i s e stablished r ight f rom t he
start and followed through by the entire team. �is is
also important because team members usually have
a varying set of capacities, so maintaining a basic set

The Basics ◾ 51

of instructions for the common Git operations helps

build a sense of cohesion and uniformity with regard

to the project.

Merging changes: Each team member will usually work

on a separate feature branch. Despite that, some com-

mon �les are modi�ed by everyone. So while merg-

ing the changes to the master branch, the process will

not be instant or automatic. Human intervention and

even deliberation between team members will be a

must to reconcile the di�erent changes made to a �le.

So you will have to learn how to handle the various

Git Merge techniques. Git has features for the editors

to be able to resolve the merge con�icts. �ere are

options to conduct a merge in each part of the �le

where they are needed. You can choose to keep your

changes, the changes made by the other developers,

or both if they are not mutually incompatible. You

are advised to pick a di�erent code editor if your Git

doesn’t provide you with these facilities.

Rebasing: Rebase your feature branch against the mas-

ter branch o�en. �is should rewrite the history of

your features branch. Doing so will make your fea-

tures branch look like the master one, with all the

updates of the master incorporated in it as well.

Further, all the commits you made will be replayed

at the top, and therefore will be appearing sequen-

tially in the Git logs. �ere will be merge con�icts as

you go along the way, but this is also the best way of

resolving them, as it will only impact your features

branch. So, �x the con�icts, perform the regression

52 ◾ Mastering Git

testing, then merge the feature branch back with the

master, i.e. rebase and perform the merge. However,

in the meantime, if someone else has pushed changes

into the master branch that con�ict with yours, the

Git Merge will have problems again, which you will

have to resolve, before repeating the regression test-

ing all over again. �is might take time, but it will

make your commit history accessible as well as read-

able, containing a meaningful arrangement of fea-

tures. If you do not rebase regularly, the history of the

master branch will contain commits from a plethora

of features that are being developed simultaneously.

�is kind of history is highly convoluted, and very

di�cult to read through. So the commit times are not

that important as long as you have a history that can

be easily reviewed.

Removing commits before merge: When working on

your node, you will obviously commit even if the

changes in themselves are minor. However, if every

feature branch is creating scores of commits, the total

number for the master branch will become unneces-

sarily huge, as more features will be added later on.

Ideally, only a few commits (go for a single-digit num-

ber) should be sent out for a single features branch.

To do this, eliminate multiple commits into only a

few by framing more complex messages. Basically,

you will have to revise the commits, choose to pick

or squash them. Picking implies retaining the com-

mit in its original state, while squashing would imply

choosing to merge a commit with one or two others.

�is will give you an opportunity to edit, clean up,

The Basics ◾ 53

improve clarity, as well as get rid of a few commits

that retrospectively do not look too necessary and

can be done away with, for example, a commit on �x-

ing a typographical issue. Crucially, do not forget to

update your remote feature branch, since your com-

mit history has now been rewritten.

Using tags: If you wish to preserve the present state of

a branch to record a milestone or for any other rea-

son, you are advised to make use of tags. While your

branch is keeping a record of its history through

commits, a tag is a snapshot of the state of the branch

at the moment it is taken. So, a tag can be understood

as a branch without history, or a pointer to a speci�c

commit that was made immediately before the tag

was taken.

Con�guration control entails preserving the di�er-

ent stages of a particular code so that those stages can

be revisited, if needed, in the future. For example, a cus-

tomer was provided with a so�ware that corresponds to

a tag that was created. Now, if the customer happens to

report an issue with the system, you will have to repro-

duce that state of code to allow the developers to come

up with a bug �x. But the code has evolved since that

point of time, and the tag then can help you in resolv-

ing the matter at hand. Sometimes, the developed code

might have automatically resolved the issue being faced

by the customer, but obviously, it might not necessarily

always be so. A tag will recreate the branch that you

can then, work on. Apart from this, Git gives you the

options to use annotated as well as signed tags, if you

�nd that they can bene�t your project.

54 ◾ Mastering Git

Embedding: �e binary �les created as part of the

embedded projects have a �xed name. �e �le name,

however, cannot lead you to the corresponding tag

you need to revisit. So you must remember to embed

the tag within the so�ware during build time to be

prepared to resolve any issues pertaining to it that

might arise in the future. �e process of embedding

can be automated during the build process. Usually,

the tag string generated by the command git describe

is inserted within the code before conducting code

compilation so that the resultant executable should

be able to print the tag string when it is booting up.

So, whenever a customer reports a particular issue,

they are guided to send you the boot output, or one

of its copies.

Editing commits: Important to resolve typos. Use of—

amend to create new and accurate commits. However,

you cannot use this command for modifying com-

mits that have already been pushed to the central

repository.

If you forgot to mention the name of a �le while

using Git Add, add it on later and use the amend

option:

git add name_forgotten_file

git commit --amend

Pre-push cleaning: Amend is the best option for edit-

ing your commits on Git. However, it cannot be used

if the commit you intend to edit is not the last one

The Basics ◾ 55

you worked on. Rebasing comes to your rescue in

situations of that kind. Rebasing also o�ers you other

options apart from editing the commits. You are also

allowed to delete, reorder, or squash the commits.

You can also remove a �le from Git, without removing it

from the �le system. Sometimes, it is possible that you end

up with a bunch of unnecessary �les during the conduc-

tion of the git add command. In situations of this kind, use

the git rm command to remove the said �les from the stag-

ing area. �e �le will also be added to .gitignore so that the

so�ware does not make the same mistake again.

You must also have the technical know-how of reverting

pushed commits. Despite amendments and rebasing, there

will be instances when �awed commits will end up reach-

ing your central repository. However, there are a set of git

revert commands that allow you to revert commits with a

speci�c ID, the second to last commit you worked on, and

even multiple commits together. Of course, sometimes you

might not want to create more revert commits, and only

wish to apply changes to your working tree. For this, you

can use the—no-commit/-n command option.

Git makes sure that you do not have to resolve repeated

merge con�icts. Fixing merge con�icts is already a tiresome

process. Say, you have to merge multiple feature branches

together, and there is a range of con�icts. You resolve them

and then realize that one of the branches is not prepared

for the merge yet, so you must postpone the process. You

will now merge at the due appointed hour, but because Git

has recorded your resolutions, you will not have to work on

the con�icts you previously resolved all over again.

56 ◾ Mastering Git

In case you have to �nd a problematic commit a�er the

merge has been completed, the process can be particularly

di�cult as well as time-consuming. For this, Git allows

you to use a set of commands (git bisect commands) for

dissecting a particular session, marking the current revi-

sion as bad, marking the last observable good revision, etc.

�e tips and tricks mentioned above, if learnt, remem-

bered, and utilized properly, should help you navigate the

charted but di�cult terrains of Git. Good Luck!

�is chapter helped us in learning about how to install

our Git for the �rst time, set it up properly, as well as the

tips for troubleshooting and smooth functioning of the

system. �e next chapter will have us shi�ing our focus

onto Git Repositories, how to record changes on them,

working with remotes, the concepts of git aliases as well as

tagging. Read on.

57DOI: 10.1201/9781003229100-3

C H A P T E R 3

Working with

Repositories

IN THIS CHAPTER

 ➢ What are Git Repositories?

 ➢ Recording Changes to Repos

 ➢ Working with Remotes

 ➢ Git Aliases

 ➢ Tagging

In the previous chapter, we were educated on the basics of

Git, its installation, �rst-time setup, and the important tips

to keep in mind for troubleshooting and properly conducted

development work. Now, as we begin this chapter, we will

shi� our focus to Git Repositories, what they are, how they

https://doi.org/10.1201/9781003229100-3

58 ◾ Mastering Git

record changes, how we can work with Remotes, concepts

like Git Aliases as well as Tagging. Read on to learn more!

WHAT ARE GIT REPOSITORIES?

Repositories in Git refer to a collection of �les that con-

tain the di�erent versions of the same project. �ese �les

are imported from the repository to the node, i.e. the local

system of the developers for further changes and develop-

ments to the contents of the �le. �e version control system

(VCS) so�ware creates these versions and subsequently

stores them in the Repositories. Using the various Git tools

at our disposal in order to furnish copies of the existing Git

repository is referred to as the process of cloning. Once we

are done with the process of cloning, a copy of the reposi-

tory is received by the user to work on.

Users are allowed to create a new repository as well as

delete an existing one. �e most convenient way of delet-

ing a repository is by deleting the folder that contains it.

Based on their usage in the server, repositories can be

divided into two kinds: Bare Repositories and Non-Bare

Repositories. �e former is exclusively meant for sharing,

while the latter can be edited and modi�ed as per the needs

and aims of the developer. Unless a parameter has been

speci�ed through code during the cloning process, it, by

default, creates Non-Bare repos that act as working copies

for developers.

• Working area: A working tree refers to a set of �les

that have originated from a particular version of a

repository. A working tree will be able to keep track

of the changes made by a particular user in a version

Working with Repositories ◾ 59

of the repository. Whenever an operation is to be

conducted, Git will only look through the �les in the

working area, and not all of the modi�ed �les. Even

for commit operations, only the �les present in the

working area are considered by Git. �e working tree

user gets to change �les by creating new �les, as well

as by modifying or removing the existing �les. �ere

are a few stages a �le goes through in the working tree

of a Git repository:

• Modi�ed: When changes have been made to a

�le, but those changes are yet to be staged.

• Staged: �e �le has been committed and lies in

the working area, for the next commit to take place.

• Tracked: When the Git repository is able to track

a �le, i.e. the �le has been committed but not

staged in the working directory.

• Untracked: Git repository is unable to track a �le,

implying that the �le has neither been staged nor

committed.

A�er making changes in the working area, the user can

update these modi�cations to the Git repository, or even

revert them. A Git repository is a safe space to perform a

number of operations that will eventually create di�erent

versions of a particular project �le. �ese operations might

include creating a new repository or deleting an old one,

the addition of �les, committing an action, etc. A�er per-

forming the required modi�cations in the working area,

you have to save these changes to the local repository. To

60 ◾ Mastering Git

do this, �rst add your changes to the Index, i.e. the stag-

ing area, followed by committing those indexed changes

to your local repository. You can add your changes to the

index by making use of the git add command. �e com-

mitting process, on the other hand, is done through the use

of the git commit command. In addition to this, Git makes

use of the push and pull commands in order to allow the

user to synchronize their local repositories with reposito-

ries on remote servers, i.e. the nodes of other developers.

RECORDING CHANGES TO REPOS

A�er you have a Git repository on your system as well as

the working copies of all its �les, you now need to start

making changes based on your development needs as well

as committing snapshots of the same changes into your

repository every time your project reaches a state of exis-

tence that you feel you need to record. Needless to say,

saving or recording changes in a Git repository as well as

for other VCSs is a more nuanced process than saving in

traditional �le editing applications, word processors, etc.

�e Git equivalent of saving is “committing”. While the

traditional understanding of saving implies a �le system

operation that either overwrites an existing �le or writes a

new one, the Git commit is an operation acting on a com-

pendium of directories and �les, as the abbreviation VCS

(which Git is an example of) should at least partially clarify.

Saving changes in Git is also di�erent from saving

changes in a di�erent kind of a VCS, say Subversion (SVN).

SVN’s commits, also known as “check-ins” make remote

pushes to a centralized server. So SVN, unlike Git, needs

proper access to the Internet, to record changes made to its

Working with Repositories ◾ 61

projects. �e Git commits, on the other hand, can be built

up and easily captured via the local node only, and later

pushed to a remote server, as and when needed, by making

use of the git push-u origin main command. �e di�erence

between the way these two systems record changes can be

attributed to their di�erent structural designs. While Git

is a distributed application model, SVN is a centralized

VCS. Distributed applications are generally considered to

be more robust since they are not hyper-dependent on a

centralized server.

When you edit �les, Git records them as modi�ed since

you have changed them a�er your last commit. As your

work progresses, you will stage some of the modi�ed �les

and then commit the changes made, and the cycle will go

on in this manner.

�e git status command is the command you need to

look for to determine which state a particular �le is in .git

add is what you will have to use so that your system can

begin tracking a new �le. So, if you wish to track the xyz

�le, you need to do the following:

 $ git add xyz

�is �le will now be tracked by the system, and shall be in

the staging area for you to clean your commit. An impor-

tant point to note about the git add command is that it

takes the path name for either a �le or directory; if it hap-

pens to be a directory, the command shall add all the �les

in your directory recursively. git add is a multi-purpose

command, you use it to track new �les as well as stage

�les, apart from marking con�ict-riddled merge �les as

resolved. Furthermore, Git stages a particular �le exactly

62 ◾ Mastering Git

as it was when you decided to use the git add command. If

and when you choose to commit, the version of the chosen

�le as it was when you had last run the git add command

will be how it shall be going in the commit, not the ver-

sion of the �le as it had looked in your working directory

when you were running the git commit. So if you happen

to modify a �le a�er running the git add command, you

need to run it again to stage the latest version of your �le.

�e results provided by the git status command are

pretty impressive. However, they are also quite verbose.

Git also happens to have a short status �ag that allows you

to see your changes in a more concise fashion. Untracked

�les are usually marked with the sign “??”, “A” is used to

indicate new �les that have been recently added to the

staging area, modi�ed �les are marked with an “M”, etc.

Additionally, the output will have two columns, the le�-

hand column is used to indicate the status of the staging

area, while the right-hand column will tell you the present

status of the working tree. If a �le was modi�ed, staged,

then modi�ed again, it will contain changes that are both

staged and unstaged.

�ere will always be a few kinds of �les that you do

not wish for your Git system to add or even show as being

untracked. �ese mostly tend to be the automatically gen-

erated �les like the log �les as well as the �les produced

by your in-built systems. For them, use the command

.gitignore. �is will make sure that you avoid committing

the �les you actually do not want in your Git repository,

like coding �les (ending with “.o” or an “.a”), �les names

ending with a tilde (~), generated by text editors to mark

temporary �les, etc.

Working with Repositories ◾ 63

A few pointers to keep in mind vis-à-vis the norms for

patterns for the �le types to use for .gitignore are:

• Lines starting with # as well as the blank lines need

to be ignored.

• You need to make sure that you apply standard glob pat-

terns recursively throughout your entire working tree.

• You should start patterns with a forward slash (/) in

order to avoid recursivity.

• To specify a directory, end your patterns with a for-

ward slash, the sign ‘/’.

• For negating a particular pattern, use an exclamation

mark (!).

Glob patterns are usually really simple and regular expres-

sions that shells tend to use. You should use two asterisks

for your code to match the nested directories, for example,

a/**/z will match with a/z, a/b/z, a/b/c/z, a/b/c/d/z, a/b/c/d/

e/z, and so on. Additionally, an asterisk (*) should match

zero or more characters, [abc] will match any character

that is inside the brackets, brackets containing characters

separated using a hyphen [0-9] will match any of the char-

acters between them, a question mark (?) should be able

to match a single character, etc. In case you want to begin

with a solid foundation for your project, you should make

use of GitHub to give you a decently comprehensive list

of .gitignore �le examples that should be a part of your

code. Moreover, it is possible for a repository to have one.

gitignore �le in the whole directory that gets recursively

64 ◾ Mastering Git

applied to the entire repository. But there are bound to be

more .gitignore �les in the sub-directories. In the case of

the nested .gitignore �les, the rules apply only for the �les

of that particular directory. �e Linux Kernel, for example,

contains 206 .gitignore �les in its source repository.

While the git status command is useful for its own pur-

poses, it will not tell you what exactly is the nature of the

changes that have been made, just the �les that have under-

gone a change. To know about the kind of change that has

taken place, use the git di� command. It will tell you what all

you have changed that is yet to be staged, and what has been

staged but not yet committed (git di�—staged). git di� will tell

you not just about the changed �les, but also the patch that was

reworked by you, like the lines that were added or removed,

etc. However, git di� will tell you about all the changes since

the last commit that are yet to be staged. If you have staged all

your changes, git di� will give no output. Further, if you want

a graphical or external di� viewing program for your project,

run git di�ool rather than git di�, as it lets you view your

di�s in di�erent so�wares like vimdi�, emerge, etc.

Once the staging area is set up the way you want it to

be, it is time to commit your changes. Anything unstaged,

i.e. anything git add command hasn’t been run on since

you edited it, will not be a part of your commit. It will,

however, remain as a modi�ed �le on your local disk. To

put it simply, if you saw that everything had been staged

when you last used git status, it is time for committing the

changes. Committing initiates the editor of your choice,

via the command line git commit. Your choice of the editor

can be recon�gured through the Git settings that we had

delved into in the earlier sections of this book.

Working with Repositories ◾ 65

Once you have created your �rst commit, you should also

be able to see some output that the commit gives regard-

ing itself, what the SHA-1 checksum of the commit is, how

many �les underwent a change, the lines that were added or

removed from the commit, etc. A commit will also record

a snapshot of the setup of your staging area. Anything that

you did not stage lies modi�ed, and you will have to make

another commit, so as to make that change a part of your his-

tory. Every commit is necessarily accompanied by a snapshot

of that particular stage, which can be recreated/revisited by

the user later. Moreover, if the staging area is proving to be too

complex for your work�ow in the project, it can be skipped

through a simple shortcut. Add the “-a” option to your git

commit command, and Git should automatically be able to

stage every �le that was being tracked before the commit,

thereby allowing you to skip the git add part. While this is a

very convenient option, bear in mind that sometimes, it might

cause you to include unnecessary and unwanted changes.

In order to remove a �le from Git, make sure that you

remove it from your tracked �les, i.e. your staging area,

and then commit. �e git rm command should be able to

do that, removing the �le from your working directory

lest it shows up as untracked the next time around. On the

other hand, if you simply remove that �le from your work-

ing directory, it will show up as unstaged in your git status

output, i.e. a change that is yet to be staged for a commit.

Further, if you had modi�ed a particular �le or sent it to

the staging area, you can remove it using the -f option. �is

option acts as a safety feature, preventing the accidental

elimination of data that is yet to be recorded using a snap-

shot or that otherwise cannot be recovered.

66 ◾ Mastering Git

You might also want to try keeping the �le in your work-

ing tree, while removing it from your staging area. So, store

the �le at a place where Git cannot track it anymore. �is

can be remarkably useful if you did not add something

with the .gitignore �le, and subsequently staged it, say a set

of .a compiled �les, or a huge log �le, etc. and can be con-

ducted using the—cached option. You should also be able

to pass directories, �le-glob patterns, �les, etc. through the

git rm command.

Unlike other VCSs, Git does not track �le movement.

When you rename a �le in Git, it shall not store metadata

to let you know that you renamed that �le, though the sys-

tem itself is smart about realizing that later on, a�er the

action has been conducted.

Lastly, a couple of tips and tricks to help you conduct

your work smoothly while recording changes to your

repositories:

�ere are di�erent sets of changes you will have to make

as part of your development work. So, you should separate

your bug �xes, improvements, new features, etc. into dif-

ferent, well-annotated commits for your team members to

understand the purpose and the reasoning behind your

work when it is being reviewed. �is work will also prove

signi�cant while conducting merges.

To make your commits easily comprehensible for other

team members, use the following structure:

Line 1: Details of the Changes made

Line 2: *Blank*

Line 3: Reason for the said changes

Working with Repositories ◾ 67

WORKING WITH REMOTES

In Git, a remote is a common repository that all the mem-

bers of a team make use of in order to be able to exchange

the changes they have made to the program. In many cases,

the remote repository is stored on code hosting services like

GitHub or an internal server. Unlike the local repository, a

remote does not come along with a �le tree of the project’s

present state. It merely contains the .git versioning data.

SVN makes use of one centralized repository that serves

the developers as a communication hub, wherein collabo-

ration takes place via the movement of changesets between

the central repository and the working copies. Git, on the

contrary, makes use of the distributed collaboration sys-

tem, wherein every developer has a copy of their repository,

containing its own branch structure and location history.

Users cannot share a single changeset, but have to create a

series of commits. �en, the so�ware lets you share whole

branches between repositories. �ese branches have to be

subsequently merged. �e git remote command then is a

piece of the broader system at hand that is responsible for

synchronizing the changes being made. �e records regis-

tered through the utilization of the git remote command

have to be used alongside git push, git pull, as well as the

git fetch commands. All these commands play their own

respective roles to facilitate the syncing responsibilities of

the so�ware.

Being able to manage your remote repositories is a very

crucial aspect of successfully running a project on Git. �e

remote repositories contain di�erent versions of the �le

you are supposed to be working on, that are being hosted

on the Internet or a di�erent server. �ere can be many of

68 ◾ Mastering Git

them, and for you, they will either be read-only �les or the

read/write kind of �les. Collaboration with multiple devel-

opers will involve your abilities at managing these many

remote repositories, as well as pushing and pulling the data

to and from them, as and when you are required to share

work. You must be able to remove repositories that are not

relevant to your work, add other remote repositories, man-

age the remote branches, see if they are tracked or not, etc.

We should be able to learn some remote management tips

in this section:

• Showing remotes: �e git remote command helps

you see the remote servers that have been recon�g-

ured by you. You should be able to see a list of the

shortnames of remote handles that you specify. If you

clone a repository, you should be able to see “origin”,

which is the default name of the server you cloned

from in the Git system. Specifying “-v” should also

show you the URLs stored by Git to ensure the use of

shortnames while reading and writing to that remote

repository. If you are working on a repository with

several remotes, the commands will list them all. So

pulling contributions from the other users should be

fairly doable.

• Adding remote repositories: We know how the

git clone command surreptitiously adds the origin

remote for your use. However, you can also add a new

remote explicitly. For this purpose, you need to use

the git remote add <shortname> <url> command.

Using string pb within the command can further

replace the use of the entire URL.

Working with Repositories ◾ 69

Pulling and Fetching from remote repositories—

To get data from your remote projects, run the

command:

$ git fetch <remote>

�is command should be able to go to that remote

repository and pull down the data from that remote

project that you need to have. �is will give you

references to all the branches from that repository,

which you can choose to examine or merge anytime.

On the cloning of a repository, the command tends

to automatically add it under the name “origin”. So,

the command git fetch origin fetches any recent

work that has been pushed to the server since you

last cloned it/fetched from it. �e git fetch command

will only download the data to the local repository, it

will not modify anything or even merge the fetched

data to your work. You will have to do so manually

whenever you are ready. If your branch is currently

set to track a branch of a remote repository, the git

pull command will do a good job of fetching as well

as merging that remote branch with the branch

you are presently working on. �is should entail

a comfortable work�ow for you, since by default,

the git clone command will set up the local mas-

ter branch so that it can track the master branch

of the remote repository on the server you used for

the purposes of cloning. From Git Version 2.27, the

git pull command will keep giving you warnings

until you do not con�gure the pull.rebase variable.

70 ◾ Mastering Git

Additionally, in order to set the default behavior of Git,

use the command:

git config -- global pull.rebase "false"

To rebase while pulling: git con�g -- global pull.

rebase “true”

• Pushing to remotes: If you have a project you want to

share with others, you shall have to push it upstream.

�e required command is: git push <remote>

<branch>. If you wish to push the “master” branch

to the “origin” server (cloning should set up these

names for you), use the following command to push

your commits:

$ git push origin master

�is will work only if you have cloned from a server

to which you have access to write. Additionally,

nobody else must have pushed in the meanwhile. If

you and another developer are cloning at the same

time, and s/he pushes upstream, followed by you

pushing upstream, your push, i.e. the latter push

will be rejected, and rightly so. You then will have to

fetch the work they have done and incorporate it into

yours, before you are allowed to push again.

Ultimately, it should be easy to synchronize

between multiple git repositories, particularly push-

ing to multiple remotes. Make sure that you are able

to maintain multiple mirrors, i.e. copies of the same

repository. �en, all you have to do is set up several

push URLs on a remote, followed by using the git

push command on that remote in a regular fashion.

Working with Repositories ◾ 71

• Inspecting remotes: To acquire more informa-

tion about a particular remote, use the git remote

show <remote> command. �is should give you

the remote repository’s URL, alongside the track-

ing branch information. �is command lists the

remote references it has pulled down. It also usefully

informs you that if you run the git pull command

while being on the master branch, it will be auto-

matically merging the remote’s master branch with

the local one a�er it is fetched. Another important

command providing you with extensive information

is the git remote show. It will tell you which branch

has been automatically pushed to when you run the

git push command on some branches. Further, it

will inform you about the remote branches on the

servers that you do not yet have access to, the remote

branches that were removed, as well as the local

branches which should be able to merge automati-

cally with the remote branches if you were to run

the git pull command.

• Removing and renaming remotes: With the com-

mand git remote rename, you will be able to change a

remote’s shortnames. A shortname is actually a key to

your remote location. So, if it happens that you have

more than one remote location in your local reposi-

tory, you will not have to type out URLs repeatedly.

Notably, changing a remote’s shortname will lead to

changes in the remote-tracking branch names too. If

you change xyz to abc, what had been referenced as

xyz/master will now be available at abc/master.

72 ◾ Mastering Git

Additionally, if you want to remove a remote, say,

because a contributor has le�, or a server has been moved,

make use of the command git remote remove or alter-

natively, git remote rm. If you delete the reference to a

remote in this manner, all the associated con�guration

settings, as well as remote-tracking branches shall also be

eliminated.

GIT ALIASES

One of the features that will undoubtedly make your Git

experience easier: aliases. If you plan to work on Git con-

sistently, aliases are something that you ought to famil-

iarize yourself with. If you have only typed out your text

partially, there is no way for Git to automatically compre-

hend your command. If you do not wish to type the whole

text while using the many commands that you will have to

on Git, you can always use the git con�g command so that

you can set up an alias for those commands that you tend

to use frequently.

Although the Graphical User Interface (GUI) of Git

is very useful when it comes to ensuring an integrated

development environment (IDE), like Visual Studio (VS)

Code, Intelli, etc. at other times, you will have to resort to

command-line interface (CLI) for better work and higher

productivity. A CLI is usually de�ned as a user interface

of an application, which accepts a line at a time typed in

commands. �e program that handles such an interface is

known as a command-line processor or a command-line

interpreter. Today, most users tend to rely on GUIs as well

as menu-driven interactions. But, some maintenance and

programming jobs might not have a GUI at all, preferring

Working with Repositories ◾ 73

instead to use command lines only. �e CLI programs are

better handled via scripting. Many so�ware systems make

use of CLIs for the purposes of control and operation. �is

also includes utility programs as well as programming

environments, in general.

�e term “alias” is synonymous with the word “short-

cut”. Alias creation is also available in utilities like bash

shell, a command language as well as a Unix shell developed

by GNU Project’s Brian Fox as a so�ware replacement for

the Bourne shell. Aliases create shorter commands which

map for the long commands. �ey ensure more e�cient

work�ows since lesser keystrokes are needed to execute a

particular command. For example, via the use of the com-

mand: “$git con�g --global alias.ci commit”, you will now

have to use git ci whenever you want to refer to git commit

in your code. Similarly, the git checkout command is also

a frequently used command in Git, adding up a signi�cant

number of cumulative keystrokes over a period of time.

Here, you can always create an alias mapping git co with

git checkout, which should save precious �ngertip power as

well as e�ort through a shorter keystroke form, by the typ-

ing of “git co”. As you move on your development journey

with Git, you will have to use a plethora of commands; so

it will not hurt to make convenient aliases for each one of

them. Not only that, you are also allowed to create com-

mands that you think should exist. For example, if you face

usability issues while unstaging a �le, you should add your

own unstage alias to Git. Basically, Git will replace every

command with the alias you have created for it. However,

there will be instances where you want to run an external

command, and not the Git subcommand. For cases like

74 ◾ Mastering Git

that, you should begin your command with the “!” charac-

ter. �is will be particularly useful for the developers who

write their own tools to work with a proper Git repository.

For the git search commit, Git alias allows you to de�ne

many complex aliases, like executing the external shell

commands, executing custom scripts as well as more lay-

ered commands, like those for shell pipes, etc. For exam-

ple, you could de�ne these alias to conduct searches within

your commits, as well as to search for particular strings, as

per your wants and needs.

It is crucial to remember that there is no speci�c com-

mand for git aliases. Aliases are to be created via the use of

the git con�g command as well as Git’s con�guration �les.

�e git con�g command is a very useful command that

helps in the quick creation of aliases. It is a helper com-

mand so that we can write to the local as well as the global

Git con�g �les. Here, the values in a local �le shall apply

only to a single repository, while the con�guration values

of a global �le apply to a single user. Git utilizes a hierar-

chical approach toward con�guration, wherein the settings

of a broader scope are to be inherited, if not straight-up

overridden. At the top level is the system con�g, for all

users, that is stored in/etc/git. �is is followed by the global

con�g that can override the system defaults with the per-

sonal ones, and is located inside the home directory of the

user, for example, $HOME/.con�g/git/con�g or $HOME/.

gitcon�g. Lastly, there is the local con�g for a particular

repository, located at .git/con�g in the repository root, i.e.

the repo’s .git directory, which should be able to override

the other aforementioned con�gs, to be able to set speci�c

options for the repositories. �e local con�guration applies

Working with Repositories ◾ 75

to the context repository that git con�g gets invoked in.

If you do not specify which level you want to work with,

the local con�g will be chosen by the so�ware as default.

Basically, all the di�erent kinds of con�guration �les share

the same syntax, but have di�erent scopes, o�ering the

user a lot of �exibility while working on the development

of a particular project. Like for other con�guration �les,

the scope of aliases can be local as well as global. �ese

local and global con�g �les can be manually edited as well

as saved, in order to create aliases. �e global con�g �le

is stored at the �le path $HOME/.gitcon�g. On the other

hand, the local path is found within the active git reposi-

tory/.git/con�g. Another example of how an alias section

should look like:

[alias]

co = checkout

Co here is a shortcut for the word

"checkout".

Also, creating aliases implies creating only shortcuts. �e

source commands are not modi�ed, compromised, or

devalued in any fashion. �e git checkout command is still

open and available for use, though now, we have the option

of using the git co alias as well, which serves our purposes

better. �e aliases are also created using the—global �ag,

which means that they are to be stored in the Git’s global

operating system level con�guration �le. On the Linux

systems, for example, the global con�g �le is found in the

User’s home directory at /.gitcon�g.

Git, thus, o�ers its users the ability to make aliases the

equivalents of the source commands. For utilizing aliases to

76 ◾ Mastering Git

create new Git commands, remove the recently added �les

from the staging area. �is can be done through leverag-

ing options to the command git reset. A new alias will

have to be created in order to encapsulate this behavior,

along with a new alias-command-keyword, which should

ideally be easy to remember. Aliases wrap the standard

git commands into a new, faux, but convenient com-

mand. You should be able to see the entire set of aliases

by listing your con�guration using the Git command git

con�g. Even though aliases can be de�ned by using shells

like Bash or Zsh, utilizing Git over them will o�er you

a set of advantages. Firstly, you will be able to use your

aliases across a number of shells without needing any

kind of additional con�guration. If Git is de�ning your

aliases for you, you will also be able to take advantage of

native integration with Git’s autocorrect feature, wherein

Git will suggest aliases as alternatives if you happen to

accidentally mistype a command. Lastly, Git will save

your aliases in the user’s con�guration �le, so that you

should be able to transfer them to other machines by sim-

ply copying a single �le. Irrespective of the methods you

use, de�ning aliases will de�nitely improve your over-

all experience of conducting project development work

through Git. Some of the useful aliases you can make on

Git are following:

• Git status: Git command-line users have to make use

of the status command to be able to see changed or

untracked �les. �is command, by default, gives out

verbose output with a lot of lines, that the user does

not necessarily want or require. Here, you should

Working with Repositories ◾ 77

make use of a single alias in order to address both

of the components: ensure the de�nition of alias as

st in order to shorten the command to be used with

the option of “-sb”. �is should output a less lengthy

status along with the provided branch information. If

you make use of this alias on a perfectly clean branch,

your output should look something like this:

$ git st

master

Making use of it on a branch that has untracked as

well as changed �les should produce the result:

$ git st

master

 M test2

?? test3

• Git last commit: �is command is used to give you

details about the very last commit you made.

• Git log --one line: You can create this alias to make

sure that your commits are displayed purely as single

lines in order to lead to a more concise output.

$ git config --global alias.ll 'log

--oneline'

• Git commit: �e command git commit is to be used

when you are making a lot of changes to a particular

Git repository. �e git commit -m command can be

made much more e�cient with the use of the cm alias.

78 ◾ Mastering Git

• Git Remote: �e command git remote -v lists out all

the remote repositories that have been con�gured.

�is command can be shortened by making use of

the alias rv.

$ git config --global alias.rv 'remote

-v'

• Git Di�: �is command displays the di�erences

between the �les in various di�erent commits, as well as

the di�erences between a commit and the working tree.

It can be shortened and simpli�ed by making use of the

d alias. �e standard git di� command should work

perfectly �ne when you have to make small changes.

But in case the changes required are complex and multi-

layered, you are advised to make use of an external tool

like vimdi� to make things easier for yourself. �e alias

dv should be able to display di�s using vimdi�. So, you

need to create it, and subsequently use the parameter

-y in order to be able to skip the con�rmation prompt.

• Git Con�g List: Using the gl alias should make it

easier for you to list all the user con�gurations avail-

able. �is should also allow you to see all the de�ned

aliases, alongside other con�guration options.

Ultimately, Git aliases are an immensely useful feature

that can tremendously improve your e�ciency through

the optimization of the execution of several repetitive and

common commands. Git has not put a limit on the num-

ber of aliases to be used, so you should be able to de�ne

as many of them as you need to, and many developers do.

Working with Repositories ◾ 79

Conversely, you can choose to use aliases only for your

most-used commands, since de�ning many of them shall

make it harder for you to memorize them, and you will

have to look them up in order to be able to use them, neu-

tralizing the ergonomic bene�ts they are supposed to pro-

vide to you as well as to your organization.

For better Git aliases, you can also mine your CLI his-

tory. CLI improvements usually have the potential to tre-

mendously improve your work�ow. Aliases are useful, but

which aliases are the most suitable for you? We have pro-

vided a list of common commands whose aliases you can

make above. But you would have to know what your most-

used commands are, right? You should probably be able to

guess the most used command in your work, or perhaps

even the top two, but there are many you will simply be

clueless about. �is is where you can let your CLI history

intervene on your behalf. Our focus here is on git aliases,

but this strategy should work very well for command-line

tools you make use of, as well.

�e �rst step is to use the command history to �nd out

what commands you run most frequently. �e command

history should be able to print every line that you have run

recently in your shell, that too in a chronological order. �is is

going to give us the data that we need, making use of history,

the �lters used for various git commands, counting of the

repeated lines, as well as sorting them by the repeated count.

Use head -n X if you just want the search to focus on top x

results. �e results from this code should give you signi�cant

information about your most-used commands, allowing you

to begin creating your aliases. However, you must keep some

catches in mind. For example, if the git commit command

80 ◾ Mastering Git

doesn’t come up in your results at all, this is probably because

the commits might contain inline messages, and therefore

each commit is treated as unique by the so�ware.

Using this wisdom, you should be able to reframe your

commands, to get better, more speci�c results, that serve and

satisfy the concerns of your work in a meaningful fashion.

TAGGING

Let’s begin by de�ning tagging, and how it involves the use

of the git tag command. Tags are references that point to

some speci�c points that are contained in the git history.

Tagging is utilized to capture a particular point in history,

and made use of for a marked version release. A tag, then,

is a branch that is immune to any kind of change. Tags,

unlike branches, will not have a history of commits a�er

being created. �e Git so�ware allows you to create tags,

delete them, list them all, share them, etc.

Like the other VCSs, Git can tag speci�c points in a

repository’s history as being signi�cant. People usually

make use of this functionality provided by the so�ware

to mark out the release points (v1.0, v2.0, etc.). By the end

of this section, you should be able to have an elementary

understanding of how you can create as well as delete tags,

how you can list existing tags, what those various kinds of

tags are, etc.

How to List Your Tags?

In Git, listing the tags constitutes a fairly straightforward

process. Type “git tag” (with either -l or -list):

$ git tag

v1.0

v2.0

Working with Repositories ◾ 81

You should get a list of all your tags arranged in an alpha-

betical order. �e said order, in which they are placed,

however, is not of any relevance to us. You can also con-

duct searches to look for tags that match a certain pattern.

�e Git source repo happens to contain more than �ve

hundred tags. Do remember that choosing between the

-l or -list option is mandatory if you want your so�ware

to list out tag wildcards. �is is optional when you just

want the whole list of tags, because here, the command

git tag, when you run it, shall be implicitly assuming that

you want a listing, and so it will provide you one. But

if you are supplying a wildcard pattern to the so�ware,

it expects you to choose between -l or -list to be able to

match tag names.

Creating Tags

�ere are two kinds of tags that Git o�ers—lightweight and

annotated. A lightweight tag is like a branch that doesn’t

change much; it is only a pointer to a particular command.

�e annotated tags, however, are stored in the Git database

as complete objects. �ey contain a lot of extra metadata like

the tagger name, email, as well as date, are checksummed,

contain a tagging message, and are to be signed as well as

veri�ed using GNU Privacy Guard, abbreviated as GPG.

Like commits as well as commit messages, the annotated

tags are accompanied by a tagging message. It is further

recommended that you should be able to create annotated

tags in order to acquire all this information; nevertheless,

lightweight tags are also available to be worked with in case

you only want a temporary tag, and do not want to retain

other information.

82 ◾ Mastering Git

Annotated Tags

�e process of creating an annotated tag in Git is fairly

simple. You just have to specify “-a” when you have to run

the tag command. “-m” stands for tagging message, which

is to be stored with the tag. Git also tends to launch your

editor if you fail to specify a message to go along with your

annotated tag, so that you are able to type it in. By using

the git show command, you should also be able to see the

tag data alongside the commit which has been tagged. �is

should also show you the date the commit was tagged on,

the tagger information, as well as the annotation message

available.

Lightweight Tags

Commits can also be tagged by utilizing lightweight tags.

�is includes the commit checksum which is stored in a

�le, and where no other information is to be kept. In order

to create a lightweight tag, you just need to provide a tag

name, rather than supplying options like -a, -s, -m, etc. For

lightweight tags, the git show command will just show you

the commit, and not the extra tag information that comes

with it, which was visible in the case of annotated tags.

Tagging Later

You can tag commits even a�er you have moved away from

them. Let’s say you forgot to tag a project, of a speci�c com-

mit. You need not worry because this issue can be resolved

a�er the fact. To tag your commit now, make sure that you

specify the commit checksum, or at least a part of it, at the

end of your command. Post this, you should be able to see

that your commit has now been tagged.

Working with Repositories ◾ 83

You should also be well-versed with how you can tag

your old commits. By default, the git tag should be able to

create a tag on your commit that the Head is referring to.

Alternatively, the git tag can be passed around as a refer-

ence point for a speci�c commit. �is should be able to tag

your passed commit instead of defaulting it to Head. If you

need to gather the list of all your older commits, you can do

so via the execution of the git log command.

Sharing Tags

�e git push command cannot transfer tags to remote serv-

ers on its own. You shall have to explicitly push your tags to

a shared server a�er you create them. �is process is akin to

sharing remote branches; you should be able to carry it out

by running the command git push origin <tagname>. If you

have many tags, and you wish to push them all at once, you

are recommended to use the—tags option for the git push

command. �is will ensure the transfer of all your tags to the

remote server, that aren’t already there. So, now if someone

will pull from your repository, or simply clone it, they should

be able to acquire all of your tags simultaneously. However,

do keep in mind that the git push command will push both

annotated as well as lightweight tags. �is is because cur-

rently, the Git so�ware does not o�er us any option of being

able to push only the lightweight tags. However, if you intend

to push only the annotated tags to your remote repositories,

you should use the git push <remote> -follow-tags.

Deleting Tags

In order to delete a tag from your local repository, you

would have to use the command git tag -d <tagname>.

84 ◾ Mastering Git

However, remember that the tags will not be removed from

the remote servers. In order to be able to do so, there are two

command variations you will need to learn to use. �e �rst

kind is git push <remote> :refs/tags/<tagname>. �e code

used here can be basically interpreted as a null tag value

that is being pushed to the remote tag, in e�ect deleting it.

�e second type of command for the purpose of deleting

a tag is more intuitive:

$ git push origin --delete <tagname>

Check Out the Tags

To see the versions of the di�erent �les that a tag is point-

ing to, you will have to utilize the command git checkout

with respect to that particular tag, even though this will

put your repository in a “detached head” state, which can

lead to signi�cant side-e�ects. In the “detached head” state,

if you make modi�cations and then create a commit, the

tag will be able to stay the same, but the new commit shall

not belong to any branch and will be pretty much, inac-

cessible, except if you make use of its exact commit hash

address location. So, if you have to make changes, like �x-

ing the bug of an older version of a particular so�ware, you

will have to create another branch. If you do this as well as

make the commit, the branch created will be slightly dif-

ferent than the tag since it will be moving forward with

new changes, so you have to be careful while dealing with

this aspect of checking out your tags.

Apart from this, Git also allows you to tag the contents

of a single �le without requiring its �le name in any man-

ner whatsoever. Having said that, these tags tend to have

Working with Repositories ◾ 85

limited utility. Tags are expected to point us in the direc-

tion of commits, and the special tags intended for the non-

commits tend to display variations in their behavior; for

example, you will not be able to check out these special

tags. So, it is strongly recommended that you never make

use of non-commit tags. When you want only some �les

of yours to be tagged, it is always better to use a separate

repo for them, or di�erent branches, given that git always

tends to go through the whole tree in order to check its

operations.

You can tag a commit only as a snapshot in order to

record the history of your repository. Git stores these

�les as blobs, and you should make use of git notes to add

any form of supplementary information to these blobs.

However, keep in mind that the note is attached to a par-

ticular blob, so if the �le changes a blob, and acquires a new

one, implying a new SHA-1 hash value, the new blob will

not retain the same note.

Retagging or Replacing Old Tags

If you attempt creating a new tag with the same identi�er

as that of an already existing tag, Git will show an error

message. Furthermore, if you make an attempt to tag an

older commit with a preexisting tag identi�er, Git will

again display the same error. In that event, you will have to

update an existing tag, i.e. the -f FORCE option will have

to be used.

With this, our discussion of Tagging comes to an end.

In this chapter, we attempted to focus on several aspects of

what working with Git Repositories entails, the de�nition

of repositories, how we can record changes to our repos,

86 ◾ Mastering Git

working with Remotes, git aliases, as well as tagging. �e

next chapter will be able to provide you with a detailed

discussion on working with branches, the de�nition of

branches, branching and merging, branch work�ows as

well as remote branches. Read on.

87DOI: 10.1201/9781003229100-4

C H A P T E R 4

Working with

Branches

IN THIS CHAPTER

 ➢ What are branches?

 ➢ Branching and Merging

 ➢ Branch Work�ows

 ➢ Remote Branches

In the previous chapter, we learnt about Git Repositories

through our extensive discussions on recording change

to repos, working with Remotes, Git aliases, tagging, etc.

In this chapter, we will shi� the focus of our discussion

to branches, as we will read and learn about Git branches,

branching and merging, branch work�ows as well as

remote branches. So, let’s begin with alacrity.

https://doi.org/10.1201/9781003229100-4

88 ◾ Mastering Git

WHAT ARE BRANCHES?

In this section, we will be conducting a detailed exposition

of the Git branch command, as well as a discussion of the

Git branching model, in general. Code branching allows

the so�ware development teams to be able to work on the

di�erent aspects of a particular project without impacting

each other’s e�orts. �is system ensures e�cient organiza-

tion in a shared codebase, conducted via the processes like

merging as well as branching.

A branch is supposed to be a copy of a codeline, which

is to be managed by the version control system (VCS).

Branches allow for parallel work, along with a well-demar-

cated separation of work-in-progress code with the stable

as well as tried-and-tested code. �e codebase of a VCS

is variously referred to as a baseline, master, mainline, or

trunk. �e so�ware, Perforce, for example, makes use of

the term mainline. Developers have to work individually,

so therefore, they create branches, with direct or indirect

origin from the mainline, in order to be able to experiment

in isolation. �is ensures the stability of the overall project/

product. It is a very good practice to keep on updating the

working branches with changes made in the code. �is is

done in VCSs through the process of merging.

Branching inevitably leads to the establishment of a

relationship between the branch as well as the main code-

line that the branch diverged from. As one developer keeps

on working on their own branch, others might also be

submitting their changes to the central codeline. So, merg-

ing needs to be a consistent and frequently-done practice,

particularly to ensure minimal con�icts with the work of

other developers. A lot of VCSs, like TFS, SVN, Git, etc.

Working with Branches ◾ 89

avoid a systematic tracking of the relationships between

branches. In case a developer wants to submit her/his

changes, they need to �gure out where they need to con-

duct the merge. In order to properly grapple with this issue,

the companies devote a lot of their resources in order to

implement complex (and costly) scripting for their respec-

tive VCSs. Furthermore, they might also outline an estab-

lished branching strategy, that everyone is largely expected

to adhere to. �e fact is that as projects, teams, as well as

codebases continue to grow, the potential issues around

the processes of branching will also become more complex

and tough to handle. As it is, with thousands or even hun-

dreds of developers working on the code of the same proj-

ect almost simultaneously, it becomes next to impossible to

be able to keep track of everything.

�e feature of branching is available in several VCSs

available in the market, at present. In VCSs other than Git,

branching is o�en an expensive process with regard to your

time as well as the disk space available. In Git, however,

the branches are a daily part of the developmental process.

Git branches basically point to a snapshot of the changes

you have made to your code. If you wish to include a new

feature or �x an irritant bug, no matter how big or small

the development is supposed to be, you will inevitably end

up spawning a new branch in order to be able to encap-

sulate those changes. Branching, thus, makes it harder to

allow bad and unstable code to be able to get merged in

the central code base, giving you a chance to clean up your

history before carrying out a merge into the main branch.

Via branching, a repository can sustain multiple parallel

lines of isolated development by each of its developers, for

90 ◾ Mastering Git

di�erent features of the project at hand. Apart from this,

branching also contributes to keeping the main branch

impervious to questionable code. As mentioned previously,

the implementation of Git branches is much more conve-

nient than the models of other VCSs. Rather than copy-

ing �les from directory to directory, Git is able to store a

branch as a reference to a speci�c commit. So, the branch

itself is not a container of commits, but every branch is rep-

resentative of the tip of a sequence of commits. �e history

of any branch can be extrapolated via the relationships of

commits to one another.

Here, it is also important to realize that Git branches

are unlike the branches of Subversion (SVN). While SVN

branches are only able to capture the large-scale develop-

ment e�ort, that too rarely, Git branches tend to play an

integral role to carry out your everyday work�ow. Now,

let’s delve into Git’s internal branching architecture in a

more detailed fashion.

Working

A branch is supposed to represent an independent line of

development. Branches are an abstract form of the editing-

staging-committing process. Branches give you a com-

pletely fresh staging area, project history, as well as working

directory. Any new commit created is to be recorded in the

history of the current branch, resulting in a fork in the work-

ing history of the project. �e git branch commands allow

you to create, rename, list, as well as delete the branches.

However, the commands available on the so�ware cannot

allow you to switch between multiple branches, or combine

a forked history that had been divided earlier. �is is the

Working with Branches ◾ 91

reason why the git branch is so perfectly integrated with

the git merge as well as the git checkout commands.

Common Commands

• git branch: It provides a list of all the branches in

your repository. Another synonymous command for

it is the git branch—list.

• git branch <branch>: Should be able to create a new

branch called “branch”. �is will not allow you to be

able to check out the new branch.

• git branch -d <branch>: Will delete the speci�ed

branch for you. �is is a “safe” command because

Git will not delete the branch if it happens to contain

unmerged changes.

• git branch -D <branch>: A modi�cation of the pre-

vious command that will force delete the mentioned

branch, despite it having unmerged changes. You can

use this command if you wish to permanently do

away with all the commits a�liated with a speci�c

type of development.

• git branch -m <branch>: Will rename the current

branch to <branch>.

• git branch -a: Will list out all the remote branches of

the project �le.

Creation of Branches

It is desirable and imperative for us to restate that branches are

just supposed to be pointers for the commits. Whenever you

92 ◾ Mastering Git

will create a new Git branch, Git will simply just add a new

pointer. �ere is no need to change the history of the repos-

itory in any manner whatsoever. A�er creating a branch,

you are expected to follow it up with the creation of com-

mits, using the commands git checkout, the standard git

add, as well as the git commit commands.

Creation of Remote Branches

All of the aforementioned examples have demonstrated

local branch operations. �e git branch command too

tends to work on remote branches only. In order to be able

to operate on remote branches, you will �rst have to con-

�gure a remote repo, and subsequently add it to the local

repo con�g. �is command should be able to push a copy

of the local branch toward the remote repo.

Deleting Branches

Once you have completed your work on a branch, and have

merged it to the main codebase as well, you will be well-

advised to delete the branch without having to lose any his-

tory. However, you will end up receiving an error message

if you attempt to delete a branch without having merged

it. �is should protect you from losing access to a whole

line of development that you might have worked very hard

on. If you must delete the branch anyhow, you could, as

mentioned previously as well, use the command git branch

-D <branch>, which will force delete the branch whether it

has been merged or not. Because it will eliminate a branch

irrespective of its status, and without giving you a second

warning, make sure you are careful with it and use it with

good jurisprudence. �e previously mentioned commands

Working with Branches ◾ 93

will be able to eliminate only a local copy of the branch.

It is very much possible that the branch still exists on a

remote repo. In order to eliminate a remote branch, you

will have to use the following command: git push origin

--delete “�le name”.

BRANCHING AND MERGING

As we learnt in the previous section, you can make use of Git

in order to create branches for your project/s. Git branching

makes sure that multiple developers are able to work on a par-

ticular project by being able to modify the working codebase.

In this section, you shall be able to learn more about Git

branching, the various ways of creating branches, as well

as how we should be able to merge the said branches to a

remote or local repository.

De�nition of Git Branching

Git branching is a tremendously useful feature because it

permits the developers to fork out of the production ver-

sion of code in order to be able to add a feature, or �x a

bug, etc. Developers create branches to be allowed to work

with a copy of the central code without having to modify

the existing version. �e creation of branches allows you to

isolate the changes you want to make to the copy of your

code, which you will be well-advised to test before merging

it into the main branch.

Ensure remembering that there is nothing exceptional or

special in the main branch. It is simply the �rst copy that

was put to use to initialize the Git repository through the

use of the git init command. When you create a commit,

Git’s so�ware is able to identify the snapshot of �les taken

up using a unique SHA-1 hash address. SHA-1 (Secure

94 ◾ Mastering Git

Hash Algorithm 1) is a kind of cryptographic hash function
which takes in an input and follows up by producing a 160-
bit (or 20 byte) hash value that is known as a message digest.
�is message is usually rendered as a hexadecimal number,
which is 40 digits long. Revision Control Systems like Git,
Monotone, Mercurial, etc. make use of SHA-1, not for secu-
rity c rucially, b ut i n o rder t o b e a ble t o i dentify multiple
revisions, as well a s ensure t hat t he data has not changed
in a ny w ay, d ue t o a ccidentally c aused c orruption. L inus
Torvalds, the creator of Git, has said this about SHA-1,1

If you have disk corruption, if you have DRAM
corruption, if you have any kind of problems at all,
Git will notice them. It’s not a question of if, it’s a
guarantee. You can have people who try to be mali-
cious. �ey w on’t s ucceed. … N obody ha s b een
able to break SHA-1, but the point is the SHA-1,
as far as Git is concerned, isn’t even a security fea-
ture. It’s purely a c onsistency check. �e security
parts are elsewhere, so a lot of people assume that
since Git uses SHA-1 and SHA-1 is used for crypto-
graphically secure stu�, they think that, Okay, it’s
a huge security feature. It has nothing at all to do
with security, it’s just the best hash you can get. …

I guarantee you, if you put your data in Git, you
can trust the fact that �ve years later, a�er it was
converted f rom your ha rd d isk to DVD to what-
ever new technology and you copied it along, �ve
years later you can verify that the data you get back
out is the exact same data you put in. …

1 https://www.youtube.com/watch?v=4XpnKHJAok8&t=3380s and https://en.
wikipedia.org/wiki/SHA-1#Data_integrity, last edited Jan. 14, 2022

https://www.youtube.com
https://en.wikipedia.org
https://en.wikipedia.org

Working with Branches ◾ 95

One of the reasons I care is for the kernel, we

had a break in on one of the BitKeeper sites where

people tried to corrupt the kernel source code

repositories. However Git does not require the sec-

ond preimage resistance of SHA-1 as a security fea-

ture, since it will always prefer to keep the earliest

version of an object in case of collision, preventing

an attacker from surreptitiously overwriting �les.

So, when you shall initially create a branch, Git basically

creates a new pointer to the same commit that the main

branch is presently working on. As you go along your cod-

ing journey and create new commits in your branch, Git

will ensure the creation of new pointers to keep track of

all the changes you have been making. �e latest com-

mits come ahead of the commits of the central branch.

Subsequently, each branch will take track of its own �le

versions. Git comes to know which branch you have

checked out by making use of a special pointer called

HEAD. Whenever you create a new branch, Git does not

immediately change the HEAD pointer to a new branch.

Nevertheless, you should be able to see HEAD when you

create new branches, and subsequently view their commit

logs. �is branching function makes Git really powerful.

Several people create multiple branches so that they can

work on their code, and later merge their changes to the

main branch. Branches are supposed to be temporary, and

need to be deleted when the work has been completed.

Branch Naming

You can name branches anything you like. However, your

organization or the project you are currently working on,

96 ◾ Mastering Git

might have standardized rules for branch naming conven-

tions. For example, you might be recommended to name

a particular branch based on the �rst, last, full name, or

initials, etc. of the person who was responsible for work-

ing on that branch as well as a concise description of the

work item. You could also name a branch as per its func-

tion, whether it works on a feature, bug �x, hot�x, etc.

Furthermore, you could name a branch a�er its di�erent

development cycles. As more projects and work items come

up, you can create a branch for that item, from its particu-

lar branch. Not only that, you can create branches from

other branches as well.

To create a branch, use the git branch command, and

follow it up with the name of the branch. A�er creating the

branch, you can use the git branch command again to be

able to view all the available branches. Creating a branch

will not automatically switch, and take you to the newly

created branch. Git tends to use an asterisk, as well as a dif-

ferently colored font to identify which branch is currently

active.

If you have to create a new branch and checkout that

branch simultaneously, make use of the git checkout com-

mand. A�er this command is completed, Git has moved its

HEAD to a new branch.

Git also allows you to create a branch from a previous

commit on a currently existing branch. A commit is simply

a snapshot in time of a particular bunch of �les in a Git

repository. You will create a branch out of a commit if you

wish to work on a particular snapshot of the �les. Before

the creation of the branch, you must know the SHA-1 iden-

ti�er of the commit. You will have to make use of the git

Working with Branches ◾ 97

log command to view the previous commits as well as �nd

the identi�er that you are looking for. Each commit should

have a complete SHA-1 hash as its identi�er. Nevertheless,

the �rst few characters should su�ce for you to actually

identify the commit.

If you work on the development of speci�c features or

bug �xes, you are probably used to creating branches out of

branches to work on an item. Creating a new branch out of

an existing branch is no di�erent than creating a branch

out of the main branch. You will have to specify the name

of the other branch in order to initiate the command.

You sometimes will also have to download a branch

from a remote repository in order to be able to work. Just

as you have a local copy of a repository to work with, so

do your other colleagues. �ese developers have branches

they are working on, and they can push these branches to a

remote repository. Along your way, you might have to work

on another branch that is not local to your system. You will

have to pull or download those speci�c branches from a

remote repository so that you are able to use it on your sys-

tem. In order to retrieve a branch from a remote reposi-

tory, use the git pull command against the origin as well as

specify the name of the branch. If you now check through

the list of all the available branches, the new branch shall

not appear automatically. Nevertheless, you can checkout

this branch, as well as begin working on it as well.

Once you are done with the developmental work on

the new branch, you will have to combine it into the main

branch. Merging will take up the changes you have made

to your existing branch, and subsequently combine them

with the main branch. �ere are two ways Git utilizes to

98 ◾ Mastering Git

perform the task of merging history, depending on the

commit history involved, the fast forward, and the three-

way merge. In the case of the former, when you have to

combine a particular branch with the main branch, Git

will compel the main branch pointer to move ahead to a

commit with a shared ancestor. In the case of the three-

way merge, Git tends to take snapshots of three di�erent

commits so that it is able to create a new one.

To merge branches locally, i.e. in a local repository, use

the command git checkout, so that you are able to switch

to the branch that you eventually want to merge into. �is

branch is usually the main branch. Next, you will have

to make use of the command git merge so that you can

specify the name of the branch that is to be merged, and

subsequently conduct the operation. Do note that this kind

of a merge will come under the category of a fast-forward

merge.

Now, we come to the question of merging your branches

to remote repositories. If you have created a new branch

in your local repository, the remote repository is obviously

not aware of its existence. Before pushing your branch code

into the remote repository, you will have to set the remote

repository as an upstream branch. �is is done by using the

git push command. �is command will not only set your

upstream branch, but simultaneously push your branch

contents to the remote repository.

You must also be well-versed with how to merge a Main

into a branch. During the developmental work, other

developers will surely merge their own work to the main

branch, thus updating it. �is means that your branch

now is out-of-date and missing the full contents of the

Working with Branches ◾ 99

main branch. To resolve this issue, you need to merge the

main branch into your own branch. For this, check out

your branch, and subsequently make use of the git merge

command.

BRANCH WORKFLOWS

�e core principle behind the feature branch work�ow

is that the code development for one particular feature

should be conducted on a separate branch rather than the

main branch. �is structure allows for multiple developers

to be able to work on feature, without having to disturb

the well-established main code. �is, additionally ensures

that the main branch shall never contain broken or bad

code, which is a great advantage for the environments built

for the sake of carrying out continuous integration. �e

encapsulation of feature development also allows for the

developers to leverage pull requests, and allows for the ini-

tiation of discussions and deliberations around particular

branch developments. �ey also allow the developers the

ability to sign o� from a feature before it gets integrated

with the rest of the project. Additionally, if you �nd your-

self stuck while working on a particular feature, you have

the facility of opening a pull request to ask your colleagues

for feedback as well as suggestions. �e pull requests basi-

cally make it remarkably easy for the team members to

provide comments on each other’s work, fostering a spirit

of cooperation as well as collaboration.

�e Git Feature Branch Work�ow then is a composable

work�ow that can also be leveraged by the other high-level

Git work�ows. It is branching model-focused, making it

an important inspiration for the creation as well as the

100 ◾ Mastering Git

management of the branches. Other work�ows tend to be

more repo-focused. �e Git Feature Branch Work�ow can

usually be easily incorporated into other kinds of work-

�ows. For example, the Git�ow, as well as the Git Forking

Work�ow, traditionally use Git Feature Branch Work�ow

for their branching models.

How It Works

�e Git Feature Branch Work�ow assumes the presence

of a central repository, with “main” representing the o�-

cial history of the project at hand. Instead of making their

commits directly on the local main branch, the developers

have to create a new branch every time they must begin

work on a new feature. Feature branches must ideally be

given descriptive names like “Bug-Fix-603”. �e chief idea

is to render a clear and focused purpose to every branch.

Git has not established any technical distinctions between

the main branch and the feature branches, so the develop-

ers should be able to easily edit, stage, as well as commit

changes to a feature branch.

Additionally, you can and should push your feature

branches to the central repository. �is will make it pos-

sible for you to be able to share a feature with your devel-

opment team members without tampering with the o�cial

code in any manner whatsoever. Since the main happens

to be the only “special” branch, storing multiple feature

branches on your central repository should hopefully not

pose any problems. It also happens to be an easy and con-

venient method of ensuring a backup for the local commits

of all the developers working on the team. Let us now go

through the lifecycle of a feature branch:

Working with Branches ◾ 101

Beginning with the Main Branch

All the feature branches are created from the latest code of

a project. �is state of the code is maintained and updated

on the main branch. You can switch the repo to the main

branch, pull the latest commits from it, and subsequently

reset the repo’s local copy of the main branch so that you

can match it to the latest version of the code.

Creating a New Branch

You are supposed to use a separate branch for every issue

or feature that you must work on. A�er the creation of the

branch, you must check it out locally, and any changes that

you shall make will be found on that branch.

Subsequent Tasks

Update, add, commit, and follow it up with pushing the

changes. On your branch, make the edits, stage, as well as

commit those changes in the regular fashion, developing

your feature with as many commits as you deem neces-

sary. When done, push your commits, updating your fea-

ture branch to Bitbucket, which is a Git-based source code

repository hosting service that was launched in 2008.

Push Feature Branch to Remote

It is always a good idea to push your feature branch up

toward the central repository. �is should be able to

serve as a convenient backup, particularly while you are

collaborating with fellow developers, as this would give

them the access to be able to view the commits to the new

branch. �is command also pushes new features to the

central repository (origin), and the -u �ag adds them as

102 ◾ Mastering Git

a remote-tracking branch. A�er setting up your tracking

branch, the git push command can be invoked in order to

automatically push the new feature branches to the cen-

tral repository. If you need to get feedback on a new fea-

ture branch, you must create a pull request, preferably in

systems providing repository management solutions like

Bitbucket Data Center, Bitbucket Cloud, etc. �ey should

be able to help you add reviewers, and subsequently, you

must make sure that everything is okay before conducting

your merges.

Resolve Feedback

Teammates can comment, provide feedback, and eventu-

ally approve of the pushed commits. You must resolve the

comments locally, commit, and then push the suggested

changes to Bitbucket. Your updates should appear in the

pull request.

Merge Your Pull Request

Before merging, resolve the merge con�icts, if any. Merge

con�icts are bound to occur if others have made changes

to the repo. When your pull request does not contain

any con�icts and is approved, you are free to add your

code to the main branch. Merge using the pull request in

Bitbucket.

Pull Requests

Apart from separating the feature development, branches

allow the developers to discuss changes through pull

requests. Once you have completed your work on a feature,

you do not have to immediately merge it into the main.

Working with Branches ◾ 103

Instead, you need to push the feature branch into the cen-

tral server, and �le a pull request that asks to merge their

additions into the main. �is will give the other developers

an opportunity to review your work before it becomes part

of the primary codebase.

Code review is considered to be a signi�cant advan-

tage of pull requests, but its design is actually supposed to

facilitate a general way to talk and discuss about the code

at hand. So pull requests can be understood as discussions

pertaining to a speci�c branch. So, they can also be uti-

lized quite early in the development process. For example,

if you need help in the development of a particular feature,

all you need to do is �le a pull request. �e interested par-

ties, including hopefully your seniors, more experienced

programmers, etc. will be noti�ed automatically, and they

should be able to see your question right next to the asso-

ciated commits. Once a pull request has been accepted,

the act of publishing the feature is pretty much the same

as it is in the Centralized Work�ow. First, make sure that

you synchronize the local main with the upstream main.

�en, merge the feature branch into the main, and subse-

quently, push back the updated main to the central reposi-

tory. Pull requests should also be facilitated by product

repository management solutions like Bitbucket Server, or

Bitbucket Cloud.

Now, to better understand the work�ow, let’s take an

example. �ree coders A, B, and C, are working on a proj-

ect together. �e project involves a code review of a new

feature pull request. Before developing the feature, A needs

a separate branch to work on. He can request for the new

branch through either checking out a branch based on

104 ◾ Mastering Git

main, or using the -b �ag to create the branch in case it

doesn’t already exist. Using this branch, A edits, stages,

as well as commits changes in a regular fashion, building

the feature with as many commits as he deems necessary.

A adds some commits to his feature during the morning.

Now, before leaving for Lunch, it will be a good idea for

him to push up his feature branch to the central reposi-

tory. �is will not only serve as a good backup, but if A

has to collaborate with other developers, they should now

have access to his initial commits. �e git push command

will push the branch in question to the origin, i.e. the cen-

tral repository, and the -u �ag can be utilized to add it as

a remote-tracking branch. A�er the setup of the tracking

branch, A can git push without any parameters in order to

push his feature.

A�er his lunch, A is able to complete his feature. He

�les a pull request to let the rest of his team know that he’s

done, before merging his branch into the main. But, he also

will have to ensure that the central repository has his most

recent commits. A�er using the git push command, he �les

the pull request in his Git Graphical User Interface (GUI),

asking to merge his feature into the main, and his team

members are noti�ed of it automatically. A positive aspect

of the pull requests is that they are able to show comments

next to the relevant commits, making it easy to put on

questions about the relevant changesets.

Now, B receives the pull request, and looks through the

feature branch that A worked on. He decides that he feels it

might be useful to make a few alterations before integrat-

ing it with the o�cial project. A and B then interact with

each other via the pull request.

Working with Branches ◾ 105

Now, in order to make the necessary changes, A uses the

very same process he did to create the �rst iteration of his

feature. He edits, stages, commits, and pushes his updates

to the central repository in the end. All of this activity will

be visible through the pull request, and B can look into it,

and still make comments along the way. If he wanted, B

could have also pulled A’s branch in his local repository,

and worked on it himself. Any commits that B might have

added, if such a scenario had occurred, would have also

shown up in the pull request.

Once B is prepared to accept the pull request, either A

or B will have to merge the feature into the stable prod-

uct. �is leads to a merge commit, a symbolic fusion of the

feature with the remaining code base. However, if you are

partial to linear history, Git can also allow you to rebase

the feature onto the main branch, before being able to exe-

cute the merge, leading to a fast-forward merge.

Several GUIs should be able to automate the accep-

tance process for pull requests by running all of the rel-

evant commands just through the click of an “Accept”

button. If your so�ware does not have that facility, it

should at least have the ability to automatically close the

pull request whenever the feature branch gets merged into

the main one.

C, in the meantime, has been doing the same thing.

While A and B have been jointly working on A’s feature, C

has been on his own feature branch. By isolating di�erent

features into separate branches, everybody should be able

to work independently, and yet, it is no big deal to be able

to share your changes with fellow developers, and conduct

deliberations, if you deem it necessary.

106 ◾ Mastering Git

All in all, the Git Feature Branch Work�ow helps you

organize as well as track branches focused on business

domain feature sets. �ere are other Git Work�ows, like

the Git Forking Work�ow, as well as the Git�ow Work�ow,

that are repo-focused and can leverage the Git Feature

Branch Work�ow in order to manage their branching

models. Some key pointers to keep in mind related to the

Feature Branch Work�ow are:

• focused on branch patterns

• are leveraged by other repo oriented work�ows

• promotes collaboration with fellow developers through

pull requests and merge reviews

You can also make use of git rebase during review and

merge stages to create and enforce a cohesive Git history of

your feature merges.

REMOTE BRANCHES

Remote references are the references or pointers in your

remote repositories, and include branches, tags, etc. You

should also be able to get a full list of the remote references

directly with the command “git ls-remote <remote>” or

even “git remote show <remote>” for the remote branches

as well as additional information. Nevertheless, the more

common way used is through taking advantage of the

remote-tracking branches.

Remote-tracking branches happen to be references to

the state of your remote branches. �ey are local refer-

ences that cannot be moved. Git moves them around for

Working with Branches ◾ 107

you whenever you conduct any network communication,

to ensure that they accurately represent the current state

of your remote repository. See them as bookmarks, which

remind you where the branches of your remote repositories

were the last time you were connected to them.

Remote-tracking branches are named using the form

<remote>/<branch>. For instance, if you want to see what

your master branch on the origin remote looked like as of

the last time that you communicated with it, you should

check the origin or master branch. If you are working on

an issue with a fellow coder, and they push up a branch,

you might be having your own version of that branch (with

the same name), but the branch on the server shall be rep-

resented by your partner’s version of it.

To understand the idea better, let’s take an example.

Let’s assume that you have a Git server on your network at

git.companyname.com. If you were to clone from it, Git’s

clone command will automatically name it as origin, pull

down its data, create a pointer toward the master branch,

and name it as “master” or “origin” locally. Git will also

give you your own local master branch, which will start at

the same place as the origin’s master branch, so that you

have something to work toward.

Just like the branch name “master” does not hold any

special signi�cance for Git, neither does the name “origin”.

Just as the “master” is a default name for the starting branch

when you have to run the command git init, “origin” is the

default name of a remote when you must run the command

git clone. You will work on your local master branch, and in

the meanwhile, someone else will push git.companyname.

com and update the master branch. �en on, your histories

108 ◾ Mastering Git

will move forward di�erently. �is means that as changes

are pushed more and more o�en, local and remote work will

diverge. Additionally, as long as you stay out of touch with

your origin server, your origin/master pointer will not move.

To synchronize your work within a given remote, you

will have to run the git fetch <remote> command or git

fetch origin. �is command will look up which server ori-

gin is (git.companyname.com), and fetches any data from

it that you might not have, along with updating your local

database, moving the origin/master pointer to a new, more

up-to-date position.

Now, let’s look at the case of having many remote servers,

and what the remote branches for remote projects of that

kind might look like. Let us assume that we have another

internal Git server used for development by one of the cod-

ing teams. �e server is located at git.team1.companyname.

com. You will add it as a new remote reference to the cur-

rent project that you have been working on, by running

the command git remote add. You could name this remote

“teamone”, which could be the shortname for its URL.

Now, you should run the command git fetch teamone

in order to fetch everything teamone’s remote server has

that you do not have yet. Because this server has a subset of

data that your origin server has now, Git does not fetch any

data, but simply sets a remote-tracking branch called team/

one master so as to point out the commit that teamone has

in place of its master branch.

Pushing

When you have to share a branch with the other coders,

you must push it up to a remote that you have access to.

Working with Branches ◾ 109

Your local branches will not automatically be synchro-

nized to the remotes that you are writing to, you shall have

to explicitly push the branches that you want to share.

�is way, you will be able to use private branches for the

work that you do not wish to share, and only push up the

topic branches that you look forward to collaborating on.

If there is a branch that you want to work on with others,

you should push it up the same way you had pushed your

�rst branch, through the use of the command git push

<remote> <branch>.

Remember that if you are using an HTTPS URL for

pushing, the Git server shall be asking you for your name

as well as password for the purposes of authentication.

It will be prompting you on the terminal, by default, for

this information, so that the server is able to tell if you

can be allowed to push. If you do not wish to type your

password everytime that you have to go for a push, it is

recommended that you set up a “credential cache”. �e

simplest way to do it is to just keep it in your memory for

a few minutes. �en, you should be able to easily set up

by running the command “git con�g -- global credential.

helper cache”. It also becomes important to understand

that when you conduct a fetch that is bringing down new

remote-tracking branches, you will possess local as well as

editable copies of them automatically. �is means that you

do not get a new branch, simply a pointer that you will not

be able to modify.

Tracking Branches

To checkout a local branch from a remote-tracking branch

should automatically create what is known as a “tracking

110 ◾ Mastering Git

branch”. Additionally, the branch it tracks is known as

an “upstream branch”. Tracking branches are the local

branches that have a direct relationship with the remote

branch. If you happen to be on a tracking branch, and end

up typing git pull, Git will automatically know what server

it is supposed to fetch from, as well as which branch to con-

duct the merge in.

In general, when you clone a repository, it should auto-

matically create a master branch that tracks the origin/

master. However, if you wish, you can also set up other

tracking branches, like the ones that track branches on

other remotes, or the ones that do not track the master

branch. If the branch name you are attempting to check

out does not exist, or exactly matches a name only on one

remote, Git should be able to create a tracking branch for

you. If a local branch has already been created, and you

wish to set it to a remote branch that you just pulled down,

or wish to change the upstream branch you have been

tracking, you should use the -u or --set-upstream-to option

to git branch, and subsequently explicitly set it at any point

of time. When you will have a tracking branch set up, you

should be able to refer to its upstream branch with the @

{upstream} or the @{u} shorthand. So while you are on

the master branch or its tracking origin/master, you will

be able to say something like git merge @{u} instead of git

merge origin/master, if you so wish.

If you need to see what tracking branches you have set

up, you should use the -vv option to git branch. �is should

list out all your local branches with more information, like

which branch is tracking, and whether your local branch

Working with Branches ◾ 111

is behind, ahead, or both. For totally up-to-date ahead

and behind numbers, you will have to fetch from all your

remotes, which could be performed through the command:

$ git fetch --all; git branch -vv

Pulling

While the git fetch command should fetch all the changes

on the server that you might not have yet, it shall not be

able to modify your working directory in any way what-

soever. It will simply acquire the data for you, and allow

you to merge it yourself. However, in most cases, post git

merge, a command called git pull, which is basically the

same as git fetch, is carried out. If you have a set up track-

ing branch, either through explicitly setting it, or via hav-

ing it created for yourself through the clone or checkout

commands, git pull should be able to look up what server

and branch are currently being tracked by your branch,

fetch from the said server, and then attempt to merge in

that remote branch. Generally speaking, it is better to use

fetch and merge commands directly and explicitly, as the

git pull can sometimes be confusing.

Deleting the Remote Branches

Let’s say that you are done with your work on a remote

branch. You and your collaborators have �nished their

work on a particular feature, and have also merged it into

your remote’s master branch. You should now be able to

delete a remote branch using the --delete option in the git

push command.

112 ◾ Mastering Git

In this chapter, we focused extensively on branches, and

learnt about branching and merging, branch work�ows,

remote branches, etc. In the next chapter, we will be turn-

ing our attention to the utility of servers, how to get Git on

servers, the server setup, and information on distributed

Git and projects. Read on to learn more.

113DOI: 10.1201/9781003229100-5

C H A P T E R 5

Working with

Servers

IN THIS CHAPTER

 ➢ Getting Git on Server

 ➢ Server Setup

 ➢ Distributed Git and Projects

In the previous chapter, we learnt about branches, how to

work with branches on Git, branch work�ows, branching,

and merging, as well as remote branches. In this chapter,

we move toward learning more about servers, how to work

with them, how to get Git on server, the server set up, as

well as the Distributed Git and Projects. Let’s start then.

https://doi.org/10.1201/9781003229100-5

114 ◾ Mastering Git

GETTING GIT ON SERVER

Now, we have to focus on how to set up a Git service by

running these protocols on your own server. We shall be

demonstrating the steps as well as the commands that are

required to do simpli�ed and basic installations on a server

based on Linux, though it is also possible to run these ser-

vices on Windows servers or the MacOS. �e actual setup

of a production server using your own infrastructure will

de�nitely entail di�erences in security measures, as well

as operating system tools, but this is bound to give you a

general idea of what all seems to be involved.

In order to set up any sort of Git server, initially, you will

have to export an existing repository into a completely bare

repository, i.e. a repository that does not contain a working

directory. �is is generally a fairly straightforward process.

In order to clone your repository for the sake of creating a

fresh bare repository, you will have to run the clone com-

mand with the -- bare option. Conventionally, the bare repos-

itory directory names �nish with the su�x .git. Running

the clone command should be able to give you a copy of the

Git Directory data in your project directory. Now, you have

a Git repository by itself, sans the working directory, and

can now create a directory speci�cally for it only.

Putting the Bare Repository on a Server

So, you have a bare copy of your repository. Now, all you

have to do is put it on a server, and then set up your pro-

tocols. Let us assume that you have set up a server called

git.abc.com to which you also have the Secure Shell (SSH)

access, and wish to store all your Git repositories under its

directory. Assuming that a directory exists on that server,

Working with Servers ◾ 115

you should be able to set up your new repository by copying

over your bare repository. �is should allow other users,

who possess the SSH-based read access to the directory on

that server, to be able to clone your repository. If a user

happens to SSH into a server, and also has to write access

to the directory, they should also automatically have the

push access. Git should be able to automatically add group

write permissions to a particular repository if you will run

the git init command with the -- shared option. Remember

that by running this command, you will not be destroying

any commits, refs, etc. during the process.

We can see how easy it can be to take up a Git reposi-

tory, create a bare version of it, and then place it on a

server where you and your collaborators should be able

to gain access through SSH. With this, you and your fel-

low developers should be able to collaborate on the same

project. Additionally, note that this is pretty much all you

need in order to be able to run a useful server on Git, to

which several people have access. Just make sure that you

add SSH-enabled accounts on a server, as well as stick to

a bare repository somewhere that all your users have read

and write access to. You should be good to go with this.

Nothing else is required.

Small Setups

If you are a start-up, a small company, or are simply trying

out Git in your organizational space, with only a few devel-

opers, things should hopefully be fairly simple for you. One

of the most complex aspects of setting up a Git server tends

to be user management. If you need some repositories to be

read-only for certain users, and want read as well as write

116 ◾ Mastering Git

access for others, getting access and permissions tends to be a

convoluted process, certainly di�cult to arrange and handle.

SSH Access

If you have a server setup, to which all your developers

already have the SSH access, it is usually the easiest to set

up your �rst repository there, since it requires almost no

work. If you want a more complex system of access control

type permissions on your repositories, you should be able

to handle them using the regular �lesystem permissions of

the OS of your server.

If you need to place your repositories in a server that

does not have accounts for everyone on your team for

whom you wish to grant the write access and whatever

related permissions are needed, then you have to set up an

SSH access for them. We will assume that if you happen

to have a server with which this function can be achieved,

then you already have an SSH server installed, and that is

how you are accessing the server in the �rst place.

�ere are a few ways, with which you could give access

to everyone on your team. �e �rst is to make sure that you

set up accounts for everybody, which is a fairly straight-

forward task, but can actually turn out to be a pretty cum-

bersome process. You might not want to run adduser (or

its alternative useradd), and then have to set temporary

passwords for every new user. Another method that can

be used is the creation of a single Git user account on your

machine, asking every user who will be having write access

to send you an SSH public key, and subsequently add that

key to a proper, speci�c �le in the new Git account. �is will

not be a�ecting your commit data in any way whatsoever,

Working with Servers ◾ 117

the SSH user you will be connecting as will not a�ect the

commits that have been recorded. Lastly, you can also try

having your SSH server authenticated from a Lightweight

Directory Access Protocol (LDAP) server or some other

legitimate, centralized authentication source that you

might already have set up. As long as every user is able to

get their shell access to the machine, any SSH authentica-

tion mechanism or methodology that you can come up

with should hopefully work and serve the purpose at hand.

SERVER SETUP

Let us now walk through the setup of the SSH access from

the server-side. �is example will have us making use of

the authorized_keys method so that we are able to get our

users authenticated. We will also have to assume that we

are working on a standard Linux distribution like Ubuntu.

A signi�cant amount of what has been described here can be

automated via the use of the ssh-copy-id command, instead

of having to manually copy or install the public keys.

First, you will have to create a Git user account as well as

a .ssh directory for that particular user. Next, you will have

to add the developer SSH public keys into the �le autho-

rized_keys for the availability of the Git user. Let us pre-

sume that you happen to have access to some of the trusted

public keys, and have also saved them to temporary �les.

You will now have to append them to the Git user’s �le

authorized_keys located in the .ssh directory. Following

this, you should be able to set up an empty repository

by running the command git init along with the -- bare

option, which should be able to initialize your repository

without really needing a working directory. �is should

118 ◾ Mastering Git

allow anyone to push the �rst version of their project into

the repository because they will add it as a remote, and fol-

low it up by pushing up the branch. Do keep in mind that

someone has to shell onto the machine as well as create a

bare repository every single time you have to add a project.

We can use gitserver as the hostname of the server onto

which you had set up your Git user as well as the reposi-

tory. If you have been running it internally, and you have

now set Domain Name System (DNS) for gitserver in order

to be able to point to that server, then you should be using

the commands pretty much as you usually do. Now, others

should be able to clone it as well as push changes back up

quite easily. Using this method, we can quickly get a read

as well as write Git server up and running for a bunch of

developers. You should also note that currently, all of these

users should also be able to log in to the server, as well as

get a shell as a Git user. If you wish to restrict that, you shall

have to change the shell to something else �rst.

You should be able to easily restrict the Git user account

to only the Git-related activities, with the aid of a limited

shell tool known as git-shell, which comes along with the

Git. If you will set this as the Git user’s account login shell,

then that account will not be able to have a normal shell

access to your server. In order to use this, make sure that

you specify git-shell rather than bash or csh for that par-

ticular account’s login shell. In order to do so, you �rst

have to add the full pathname of the git-shell command,

and check for if it’s already not there. Now, you should be

able to edit a shell for your users. Additionally, the Git user

can still use the SSH connection, in order to push and pull

the Git Repositories, but is not allowed to shell onto the

Working with Servers ◾ 119

machine. If you try to do so, you will receive a login rejec-

tion from the so�ware. At this point of time, users should

be able to use the SSH port, forwarding to be able to access

any host the Git server can reach. If it is important for you

to prevent that, you need to edit the authorized_keys �le as

well as prepare the options that you would want each key

to restrict itself to. Now, the Git network commands will

still be working �ne, but the users shall not be able to get a

shell. As per the usual output, you should also be able to set

up a directory in a Git user’s home directory, which should

be able to customize the git-shell command for a while. For

example, you shall be able to restrict the Git commands

which the server will accept, or you could customize the

messages that users should be able to see if they attempt

to enter using SSH. You could also run git help shell if you

want more information on how to customize a shell.

DISTRIBUTED GIT AND PROJECTS

Now that we have set up a remote Git repository as a focal

point where all the developers should be able to share their

code, and we have familiarized ourselves with the basic Git

commands in a local work�ow, we should now look at how

we can utilize some of the distributed work�ows that the

Git has bestowed upon us. We will learn how to work with

Git in a distributed environment as a contributor as well as

an integrator. �is means that we will be getting educated

on how we can contribute code successfully to a particular

project, making it as easy and convenient as possible for us

as well as the project maintainers, along with understand-

ing how we can maintain a project successfully while a sig-

ni�cant number of developers are contributing.

120 ◾ Mastering Git

Distributed Work�ow

Unlike the Centralized Version Control Systems (VCS), the

distributed system of Git allows us to be way more �exible

in how our coders and developers interact as well as collabo-

rate with each other on speci�c tasks that are essential for the

project. In the centralized system, every developer is consid-

ered to be a node working nearly equally with a central hub.

In Git, though, every developer is a potential node as well as

a hub; that is to say, every developer makes code contribu-

tions to other repositories, as well as helps in maintaining the

public repository from which others can base their work, and

to which they can contribute. �is gives us a variety of work-

�ow opportunities for our projects as well as our teams, so we

shall be delving into a few common paradigms which allow

us to take advantage of the �exibility the so�ware renders us.

We will also be looking into the merits as well as the demer-

its of every single design; which should help you to choose

which one you deem the most suitable for your purposes, or

the features you could mix and match from each one.

Centralized Work�ow

�e centralized systems usually o�er us a single kind of

collaboration model, the centralized work�ow. �e central

hub, or the repository, accepts the code, and everybody else

has to synchronize their work with it. Several developers

are nodes, i.e. the consumers of that hub, and are expected

to synchronize with that centralized location. �is means

that if there are two developers both cloning from the

hub as well as making changes as they deem �t, the �rst

developer who will push their changes back will manage to

do so without facing any problem. �e second developer,

Working with Servers ◾ 121

however, will have to merge the �rst one’s work before push-

ing the changes up, so that he does not overwrite the changes

incorporated by the �rst developer. �is concept holds true

for Git, for Subversion, or for any other Centralized VCS,

and this model works perfectly well in Git, even though it is

not a Centralized VCS as such. If you happen to be used to

and comfortable with a centralized work�ow in your orga-

nization or as part of your team, you should easily be able

to continue using that kind of a work�ow, with the so�ware

of Git. Just set up a single repository, and give push access to

all the members of your team; Git will make sure that your

users are unable to overwrite each other.

Let’s take an example to understand this concept better.

Two developers, A and B, started working on a project at the

same time. A was able to �nish his changes �rst, and subse-

quently pushed them to the server. �is was followed by B

trying to push her changes, but the server ended up reject-

ing them. B is informed that she is trying to push the non-

fast-forward changes, so she will not be able to do so until

she completes her fetches, and follows it up by merging.

Many developers �nd this kind of a work�ow very attrac-

tive, because it happens to be a paradigm that many seem

to be familiar and comfortable with. Additionally, this kind

of work�ow is not merely limited to small teams. �rough

Git’s branching model, it should be possible for hundreds

of developers to be able to successfully work on one project

via the use of dozens of branches simultaneously.

Integrator-Manager Work�ow

Since Git allows you to have several remote repositories, it

is also possible to have a kind of a work�ow where each and

122 ◾ Mastering Git

every developer will have access to their own public repos-

itory as well as the read access to those of others who are

working as part of the same team. �is situation can o�en

include a canonical repository that is supposed to represent

the “o�cial” project. In order to contribute to that project,

you will have to create your own public clone of the project,

and subsequently push your changes to it. �en, you will

have to send a request to the maintainer of the main proj-

ect, so that you can pull in the changes you have made. �e

maintainer then, should be able to add your repository as a

remote, ensure testing your changes locally, merging them

into their respective branches, and then pushing them back

to their repository. To reiterate, all the steps involved in the

Integration-Manager Work�ow in a chronological order are:

• The project maintainer will push to their public

repository.

• A contributor will clone that repository and make all

the necessary changes.

• �e contributor will push to their own public copy.

• �e contributor will send the maintainer an email,

asking them to pull all the changes made.

• �e maintainer will add the contributor’s repository

as a remote and conduct the merge locally.

• �e maintainer will push the merged changes to the

main repository.

�e Integration-Manager Work�ow is a fairly common

work�ow in hub-based tools like GitLab or GitHub, where

Working with Servers ◾ 123

it is quite easy to fork out a project, and push your changes

to the fork, so that everyone is able to see it. One of the most

signi�cant advantages of this kind of work�ow is that you

can continue to work, while the maintainer of the main

repository should be able to pull in your changes at any

point of time. Contributors do not even need to wait for the

main project to incorporate their changes, each party has

the freedom to work at its own pace.

Dictator and Lieutenants Work�ow

�is is a kind of a multiple-repository work�ow. It is gen-

erally used for huge projects with hundreds and hundreds

of collaborators; a famous example being the Linux kernel.

Many integration managers are supposed to be in charge

of certain components of the repository. �ey are known

as lieutenants. All the lieutenants themselves have one inte-

gration manager, who is known as a benevolent dictator. For

example, Junio Hamano is the benevolent dictator as well as

the maintainer of Git, who also has the �nal say on the pro-

posed changes for the central code. �e benevolent dictator

is supposed to push from their own directory to a reference

repository, from which all the coding collaborators will

have to pull. So, the entire process in the Benevolent dicta-

tor work�ow tends to look something like this:

• Regular developers work on their respective topic

branches, and later rebase their work on top of the

master. �e master branch belongs to the reference

repository to which the dictator is supposed to push.

• Lieutenants merge the topic branches of the developers

into their master branch.

124 ◾ Mastering Git

• �e lieutenants’ master branches are merged into the

dictator’s master branch by him.

• �e dictator pushes the master branch into the ref-

erence repository so that the other developers can

rebase from it.

�is kind of work�ow, however, is not very common.

Nevertheless, it can be useful for massive projects, or in

immensely hierarchical environments. �is work�ow also

allows the project leader, or the dictator, to delegate a lot of

the work, as well as collect large subsets of code at numer-

ous points, before eventually integrating them.

So, these are some of the most-used work�ows, which

are possible in a distributed system like Git. But many

other variations are possible, and you can employ a diverse

range of features and spend proper time for research and

exploration, before �guring out what kind of work�ow will

best suit your real-world needs.

Contributing to Projects

It is di�cult to wax eloquent on how you could be able to

contribute to a particular project, since there are numer-

ous variations on how one could go about achieving their

objectives. Since Git is highly �exible, people tend to work

together in a variety of ways, and it can be highly prob-

lematic to opine upon how one should contribute, since

every project is a bit di�erent. Some of the variables that

are involved in project development are the active con-

tributor count, commit access, chosen work�ow, as well as

the external contribution method. Let’s delve into each of

these factors for our better understanding.

Working with Servers ◾ 125

�e �rst variable is the active contributor count, i.e.

how many contributors will be actively writing code for

this project, and how o�en? In many cases, you will have

two or three developers with only a few commits a day, or

possibly even less for projects that are somewhat dormant.

For bigger organizations and massive projects, the num-

ber of active developers could go up to thousands, with

hundreds and thousands of commits being made per day.

�is is a very, very important aspect because, with more

developers coming on board, you will run into more and

more issues involving making sure that your code is being

applied cleanly and can be easily merged together. Changes

that you submit might be rendered obsolete, or heavily

broken, due to the work that was being merged when you

were working, or waiting for your changes to be approved

or implemented. You will have to consistently ensure that

your commits are valid, and your code is regularly updated.

�e next factor is the work�ow that is being used for

the project. Is it centralized, with every developer given

equal write access to the central codeline? Will you be hav-

ing a maintainer or an integration manager who will be

checking all of the patches? Are all the patches being peer-

reviewed as well as approved? Will you be involved in that

process? Is there a lieutenant system in place, and would

you have to submit your work to the lieutenants �rst?

�e next factor is the commit access. �e work�ow

needed in order to be able to contribute to a project is way

di�erent depending on whether and what kind of access

you have to a particular project. If you have not been given

the write access, what exactly is the nature and form of the

contributed work that you shall have to submit? Does this

126 ◾ Mastering Git

involve a policy? How much work are you expected to con-

tribute at a time? How o�en will you have to contribute?

All of these questions have to be pondered upon as well

as considered, since they will a�ect how you can contribute

e�ectively to a project, and what work�ows are preferred

by you as well as available to you.

Commit Guidelines

First and foremost, a quick note about commit messages: if

you have a good guideline for creating commits, then stick

to it, as it makes working with Git as well as collaborating

with other developers a signi�cantly better experience. �e

Git project also provides a document laying down a num-

ber of e�ective tips for creating commits from which you

could send out patches.

First and foremost, your submissions must not contain

any whitespace errors. Git gives you a fairly easy way to

check for this issue. Before you commit, you will have to run

the command git di� --check, which will be able to identify

the possible whitespace errors and list them out for you as

well. If you will run this command before doing your com-

mits, you will be able to tell if there are whitespace issues in

your code that are bound to annoy your fellow developers.

Next, you should try to make each commit a logi-

cally separated changeset. Additionally, try to make your

changes brief as well as digestible. Do not code for a couple

of days on �ve separate issues, and then submit it all as one

huge commit. Even if you do not wish to commit imme-

diately, make sure that you utilize the staging area mean-

ingfully, splitting your work into at least one commit per

issue, with every commit made accompanied by a useful

Working with Servers ◾ 127

and concise message explaining the changes you have cho-

sen to make. If some changes are modifying the same �le,

use the command git add --patch in order to partially stage

the �les (comes under the ambit of Interactive Staging). At

the tip of the branch, the project snapshot remains identi-

cal, whether you commit once or thrice, as long as your

changes have been added at some point, so attempt to

make things easier for your fellow developers when they

shall have to review the changes that you have made. �is

approach will also make it easier if you wish to pull out or

revert your changesets, if you wish to do so later. So, make

sure that you stage �les in an interactive fashion to cra� a

clean as well as an understandable history for your com-

mits before sending out your work to somebody else.

Next, let’s discuss the commit message. Make a habit

of dra�ing out quality commit messages that make col-

laboration on Git a highly smooth and convenient pro-

cess. �e general rule goes that you should start out with a

single line that is not more than 50 characters, and is able

to describe the changeset in a concise as well as meaning-

ful way, followed by a single blank line, which is then fol-

lowed by a more detailed explanation of the changeset. �e

Git project also asks that your detailed explanation must

contain the motivation for the change that you made, and

contrast the implementation now with its erstwhile behav-

ior. Additionally, your commit message should necessarily

be dra�ed as imperatives, i.e. write “Fix bug” not “Fixed

the bug” or “Will Fix the Bug”. �is convention is used to

match up with the commit messages that are generated by

the commands git merge as well as git revert. You should

try wrapping up the explanatory text in around 72 odd

128 ◾ Mastering Git

characters. For better understanding, think of the �rst line

as a Subject Line in an email, whereas the rest of the text

is the email body. �e blank space between the two lines

is of critical importance, unless of course, you choose to

do away with the second line altogether. Tools like Rebase

will get confused in absence of the required blank space.

Bullet points can be used, if you wish to do so. Typically, a

hyphen or an asterisk is used in place of the bullet, followed

by a single space, with blanks between lines, as has been

mentioned previously as well. You must also make use of a

hanging indent.

If you will keep all these pointers in mind while writ-

ing your commit messages, things should be much easier

for you and your collaborators as you work together for the

success of your project. �e Git project also contains good,

well-formatted commit messages. You should try running

the command git log -- no-merges, and be able to see what a

well-formatted commit history for a project should look like.

With this, we reach the end of this chapter. In this

chapter, we discussed how we can work with servers, from

getting Git on a server and the Server Setup to Distributed

Git & Projects. In the next chapter, we jump to GitHub, its

history, how to use it, di�erent kinds of accounts, etc. To

know more, read on.

129DOI: 10.1201/9781003229100-6

C H A P T E R 6

GitHub

IN THIS CHAPTER

 ➢ What is GitHub

 ➢ History of GitHub

 ➢ How to use GitHub

 ➢ Di�erent types of Accounts

In the previous chapter, we focused on servers, how to man-

age work on Git using them, the Server Setup, Distributed

Git and Projects, etc. In this chapter, we will move to an

associated, yet fresh topic, GitHub, with a focus on its his-

tory, use, other linked issues, etc.

WHAT IS GITHUB?

I have seen some truly revolutionary actions happen

in communities on GitHub. People are collaborating

https://doi.org/10.1201/9781003229100-6

130 ◾ Mastering Git

on code but they’re also having foundational con-

versations on best practices and how so�ware,

as a whole, is built. More and more, GitHub is an

Internet archive. It’s a deeply social and critical

piece of our infrastructure.

MIKHAEL GLUKHOVSKY

Developer, Stripe

GitHub, Inc. is an Internet Hosting provider for so�ware

development as well as version control using Git. It o�ers

source code management (SCM) as well as the distrib-

uted version control functionality provided by Git, apart

from the other features of its own. It provides collabora-

tion features like feature requests, task management, bug

tracking, continuous integration, wikis, as well as access

control for di�erent projects that you might choose to

undertake. With its headquarters in California, it has been

GitHub ◾ 131

a subsidiary of Microso�, since the multinational technol-

ogy corporation acquired it in 2018. Usually, it is utilized

to host open-source projects. GitHub claims to have more

than 190 million repositories, with at least 28 million pub-

lic repositories included in that number, as well as over

40 million users, as of January 2020. As of April 2020, it

is recognized as the largest source code host. A signi�cant

percentage of the existing Git repositories are hosted on

GitHub, and several open-source projects make use of the

provider for Git Hosting, code review, issue tracking, and

many other things. So while it might not be a direct part

of the Git project, there is a very high chance that you will

want to or have to interact with GitHub at some point of

time, if you continue to operate on Git professionally.

Now, we will learn about how we can use GitHub profes-

sionally, as well as e�ectively. We will delve into how we can

sign up for as well as manage an account, the creation and use

of Git repositories, common work�ows that should help you

in contributing to projects, along with accepting contribu-

tions to yours, the programmatic interface of GitHub, as well

as a number of other tips that should make your life easier.

Account Set Up and Con�guration

�e �rst thing you should be doing is to set up a free user

account. Just visit github.com, choose a username that has

not been already taken, give an email address as well as

password, and follow it up by clicking on the big green

“Sign Up for GitHub” button.

A�er passing through the GitHub sign-up form, the next

thing you should see is the pricing page for the upgraded

plans, but it will be better to ignore this for now, as a learner

132 ◾ Mastering Git

and a beginner. GitHub will also send you an email in order

to be able to verify the address you provided. It is immensely

important that you do not skip this step and complete the

veri�cation process in full and proper. Following this, you

should click the Octocat logo at the top-le� of the screen,

which should be able to take you to the dashboard page of

your account. You are now all set to use GitHub.

Notably, GitHub provides almost all its functions in

the free accounts only, except for some advanced features.

GitHub’s paid services include advanced features and tools,

as well as higher limits for the free services. �ere are three

plans that GitHub o�ers: Free, Team, and Enterprise. �e

Free plan provides the basic services for individuals as well

as organizations. �ey include:

• Unlimited public as well as private repositories.

• 2000 automation minutes per month (free for the

public repositories).

• New issues as well as projects (with limited beta).

• 500 MB package storage (this is free for public

repositories).

• Community support.

�e Team package, meant for advanced collaboration between

individuals and organizations, provides everything available

in the Free pack as well as:

• Protected Branches.

• Ability to dra� pull requests.

GitHub ◾ 133

• Several reviewers fpr pull requests.

• Required reviewers.

• Code owners.

• 3000 automation minutes per month (this is free for

public repositories).

• Pages and Wikis.

• 2 GB package storage (this is free for public repositories).

• Web-based support.

�e Enterprise Package, meant for security, compliance,

as well as �exible deployment, will o�er you everything

provided by the Team package and other bene�ts like:

• Automatic security as well as version updates.

• Advanced Auditing.

• Security Assertion Markup Language (SAML) sin-

gle sign-on. �is feature is used for the purposes of

online security, wherein you should be able to access

several web applications using a single set of login

credentials.

• GitHub Connect.

• 50 GB of packages storage (this is free for public

repositories).

• 50,000 automation minutes per month (this is free for

public repositories).

134 ◾ Mastering Git

Exclusive Add-Ons like:

• Premium Support.

• Token, secret, as well as code scanning.

While the free package, as the name would suggest, is free

of cost, the Team and the Enterprise Packages should cost

you $4 and $21 per user per month, respectively.

SSH Access

As of now, you can absolutely connect with the Git

repositories, using the https://protocol. You will have to

authenticate with your username and password that you

just used for the setup process. However, in order to sim-

ply clone public projects, you will not even have to sign

up, the account comes into play only if we want to fork

projects or push toward our forks. If you want to use the

Secure Shell (SSH) Remotes, you might need to con�gure

a public key. If you happen to not have one, you might

want to get it generated. �e process to get this done is

similar across all Operating Systems. First, make sure

that you already do not have one. Usually, by default, a

user’s SSH keys are stored in that user’s ~/ .ssh directory.

You should also be able to see if you have a key already

by going to that directory and asking for its contents to

be listed. If you do not �nd your private key, as well as

an associated public key, or if you do not even have a. ssh

directory, you should be able to create them by running

a program known as ssh-keygen, provided by the SSH

package on Linux/macOS systems and coming with Git

for the Windows.

https://protocol.com

GitHub ◾ 135

Now, open your account settings, by clicking on the set-

tings icon at the top-right of the window. �en select the

“SSH Keys” section on the le�-hand side. �en, click on the

“Add an SSH key” button, give a name to your key, paste

the contents of the public key into the text area, and press

“Add Key”. Note that you should name your SSH key some-

thing that you will be able to remember later on. You can

name each of the keys like “Work Account”, “Work Laptop”,

etc. since it will allow you to revoke a key later, as you will

easily be able to tell what exactly you are looking for.

Your Avatar

Next, if you wish to do so, you should replace the avatar that

has been generated for you with an image of your choice.

First, go to the tab “Pro�le” (it is located above the SSH keys

tab) and press on “Upload new picture”. Crop the image as

you deem �t, and click on the button “Set new pro�le pic-

ture”. Now, wherever you will interact on the site, people

will be able to see your avatar as well as your username. If

you had earlier uploaded an avatar to the highly popular

Gravatar service (usually used for WordPress accounts),

that avatar shall be used by default, and you will not have

to perform this step at all.

Email Addresses

Your email address is of particular importance on GitHub.

�is is because GitHub maps your Git commits to your

user through the use of your email ID. If you happen to

use multiple email addresses while doing your commits

and you want to ensure that GitHub links them up prop-

erly, you will have to add all the email addresses you have

136 ◾ Mastering Git

used or intend to use in the future to the Emails tab in the

Admin section. In the “Add Email Addresses” section, we

should be able to see some of the states that are possible.

�e topmost address is usually the one that is veri�ed and

set as your primary address. �is means that all the noti�-

cations and receipts that GitHub wants to send to you will

be sent out at this address. �e second address should also

hopefully be veri�ed, and so you could set it as your pri-

mary if you wish to do so. If you have also decided to use

an unveri�ed email address, that is perfectly alright, but

GitHub will not allow you to make it your primary email

address, even if you wish to do so. If GitHub shall see any

of these email addresses in your commit messages in any

repository of the site, they will automatically be linked to

you/your user from now onward.

Two-Factor Authentication

Lastly, for additional security, you should certainly set up

your Two-Factor Authentication (2FA). 2FA is a kind of an

authentication mechanism that has been becoming more

and more popular recently in order to mitigate the risk of

your account becoming compromised if your password is

somehow stolen. Turn it on and GitHub will ask you for

two separate methods of authentication, so that if one of

them happens to get compromised, some attacker will not

be able to gain access to your account.

You should be able to �nd the 2FA set-up under the

“Security” Tab of your account settings. First, click on the

“Set up two-factor authentication” button. �is should

be able to take you to a con�guration page where you

should choose to use a phone app in order to generate your

GitHub ◾ 137

secondary code, i.e. a “time based one-time password”), or

you could ask GitHub to reach out to you by sending you a

code via SMS each time you have to log in.

A�er you make a choice on what method you prefer as

well as follow the given instructions for setting up 2FA,

your account should de�nitely be a little more secure, and

you will have to provide a code along with your password

whenever you feel the need to login to GitHub, to ensure

that your account is not jeopardized due to security reasons.

HISTORY OF GITHUB

�e development of GitHub.com platform started on

October 19, 2007. �e o�cial website was launched in the

April 2008 by Chris Wanstrath, Tom Preseten-Werner, P.J.

Hyett, as well as Scott Chacon a�er it had been available

for a few months as a beta release. GitHub, Inc. was ini-

tially supposed to be a �at organization, with no middle

managers whatsoever. �e company adopted the prin-

ciple of self-management, wherein every worker had to

play a part of the manager for her/himself. Additionally,

GitHub’s employees could choose to work on the projects

that they were interested in (open allocation), even though

the salaries were determined by the chief executive. In 2014

eventually, the organization introduced a layer of middle-

management for better e�ciency in handling its a�airs.

GitHub started out as a bootstrapped start-up business,

which in its early years managed to generate su�cient rev-

enue in order to be funded solely by the three co-founders,

who were also able to take on employees. Four years a�er

the company began, Andreessen Horowitz gave it an

investment of hundred million dollars in venture capital.

138 ◾ Mastering Git

July 2015 saw GitHub raising another $250 million worth

of venture capital in a round of B series. �e investors this

time around were Sequoia Capital, Andreessen Horowitz,

�rive Capital, as well as other venture capital funds. By

July 2021, GitHub had made $650 million, according to the

Annual Recurring Revenue. GitHub had been developed

by Chris Wanstrath, P.J. Hyett, Tom Preseten-Werner, as

well as Scott Chacon using Ruby on Rails, a server-side

web application framework written in the programming

language Ruby under the MIT License. While its primary

service started in February 2008, the company itself has

existed since 2007, with its main o�ce located in San

Francisco, California. On February 24, 2009, then in its

second year, the company announced that within the �rst

year of being online, it had accumulated more than 46,000

public repositories, 17,000 among them having been cre-

ated in the previous month. At that point of time, around

6200 repositories were being forked at least once, while

4600 had already been merged. In the same year, GitHub’s

o�cial site was harnessed by more than 100,000 users, and

had also grown to host 90,000 distinct public repositories,

12,000 of which had been forked at least once, for a sum total

of 135,000 repositories. By 2010, GitHub was hosting over

a million repositories. A year later, this number had dou-

bled. ReadWriteWeb, a web technology blog reported that

GitHub was able to even surpass other SCM companies like

SourceForge and GoogleCode as far as the total number of

commits made from the duration of January to May 2011

were concerned. On the date of January 16, 2013, GitHub

o�cially passed the three million users mark, and was sub-

sequently hosting more than �ve million repositories. By

GitHub ◾ 139

the end of the same year, the number of total repositories

had again doubled, with the number now reaching ten mil-

lion. 2012 saw GitHub raising $100 million worth of funds

from Andreessen Horowitz with a total valuation of $750

million. On July 29, 2015, it got reported that GitHub had

raised a funding of $250 million in a round that had been

led by Sequoia Capital, an American venture capital �rm.

�e other investors of that round had been Andreessen

Horowitz, Institutional Venture Partners (IVP), as well as

�rive Capital, known for mostly investing in technology

companies. �e round had valued the company at approxi-

mately $2 billion. �e year 2015 saw GitHub open its �rst

o�ce outside the United States, in Tokyo, Japan. In 2016,

the company made an appearance on the Forbes Cloud 100

list at the rank of 14. However, it hasn’t managed to make

an appearance since. On February 28, 2018, the company

fell victim to the third-biggest distributed denial-of-service

attack (DDoS) in history, with its incoming tra�c reaching

a peak of around 1.35 terabytes each second. On June 19,

2018, GitHub expanded GitHub Education by o�ering free

education bundles to schools.

Acquired by Microsoft

From 2012 onward, Microso� became a crucial customer

as well as a signi�cant user of GitHub, utilizing its services

to be able to host open-source projects as well as devel-

opment tools like Chakra Core, .NET Core, PowerShell,

MS Build, Visual Studio Code, Power Toys, Windows

Terminal, Windows Calculator, as well as a bulk of its

product documentation (now found on Microso� Docs).

On June 4, 2018, Microso� expressed its intent to acquire

140 ◾ Mastering Git

GitHub for $7.5 billion. �e deal was closed on October 26,

2018. GitHub, nevertheless, still continues to operate inde-

pendently as a platform, community, as well as a business.

Under Microso�, the service came under the leadership

of Xamarin’s Nat Friedman, reporting to the Executive

Vice-President of Microso� Cloud & AI, Scott Guthrie.

�e GitHub CEO Chris Wanstrath was kept as a “technical

fellow,” with him reporting to Guthrie as well. However,

this acquisition too had its fair share of controversies.

Developers like Kyle Simpson, author as well as JavaScript

trainer, and Rafael Laguna, CEO, Open-Xchange (a web-

oriented communication, collaboration, as well as o�ce

productivity so�ware suite) expressed their concerns and

uneasiness over Microso�’s purchase, citing Microso�’s

handling, or mishandling of previous purchases, like

Nokia’s mobile business, Skype, etc.

�is acquisition was in line with the business strategy

of the corporation under CEO Satya Nadella, which saw a

greater emphasis being put on the cloud computing services,

as well as the contributions to and the development of open-

source so�ware. In 2016, Microso� was on the top of the

list of ten di�erent organizations with the most open-source

contributors on GitHub. Harvard Business Review asserted

that Microso� intending to acquire GitHub was merely to

get access to its user base, which it could use as a loss leader,

in order to encourage the use of its other development ser-

vices and products. �e concerns expressed over GitHub’s

sale seemed to bene�t its competitors, at least for a while.

GitLab, a commercial open-source so�ware that runs a

hosted service version control system, Bitbucket (owned by

Atlassian), as well as SourceForge (owned by BizX) reported

GitHub ◾ 141

a bolstered interest from the market, with spikes in new

users who intended to migrate their projects from GitHub to

their respective services. GitHub acquired Semmle, a code

analysis tool in September 2019. February 2020 saw GitHub

being launched in India with much fanfare under the name

GitHub India Private Limited. Later on, GitHub went on to

acquire npm, a JavaScript packaging vendor, for an undis-

closed amount of money, closing the deal on April 15, 2020.

In July 2020, the GitHub Archive Program was founded, in

order to archive its open-source code for perpetuity.

Mascot

GitHub’s mascot is an “octocat,” an anthropomorphized

creature with �ve octopus-like arms. �is character was

the brainchild of graphic designer Simon Oxley as clip

art that he intended to sell on iStock, an online royalty-

free, international microstock photography provider based

in Canada. GitHub was interested in Oxley’s work a�er

Twitter chose a bird that he designed for their own logo.

�e illustration that GitHub eventually chose was a char-

acter that Oxley had named “Octopuss”. Since GitHub

wanted Octopuss as their logo (a use that the iStock license

does not permit), they negotiated with Oxley in order to

be able to buy the exclusive rights of the image. GitHub

rechristened Octopuss to Octocat, and trademarked the

character along with this new name. Later, GitHub hired

an illustrator named Cameron McEfee to adapt Octocat

for di�erent purposes on the website as well as the promo-

tional materials; McEfee and various other GitHub users

have since created hundreds and hundreds of variations of

the character, which are available on the GitHub Octodex.

142 ◾ Mastering Git

So, basically while there were many prospective preach-

ers who could have spread the open-source religion,

whether it was Google Code or SourceForge, GitHub even-

tually trumped them all. When Git was released in 2005,

open-source was experiencing something akin to a renais-

sance. Interest in as well as a desire to adopt Linux was

strong. �e �rst Web 2.0 applications were beginning to

emerge. Several companies preferred to migrate their tech

stacks to the available open-source servers. Although Git

made collaborating on open-source projects e�cient as

well as e�ortless by introducing the concept of forking,

there was one thing that Git couldn’t do: help coders �nd

these open-source projects. A lot of programmers had been

working on many exciting open-source projects, but to �nd

them in the �rst place was a very di�cult task.

It is this lacuna that GitHub set out to �ll, and managed

to do so in time, passing with �ying colors. When Hyett

and Wanstrath began working on what ultimately became

GitHub in 2007, both of them were working as program-

mers for a tech website called CNET (short for Computer

Network). Both liked the development framework that was

o�ered by Ruby on Rails. While holding their day jobs,

Hyett and Wanstrath ended up developing several sug-

gestions as well as improvements for the codebase of their

favorite Rails. However, no one was interested in looking at

their code, at least not at that point of time. As was the stan-

dard procedure for most open-source projects at that time,

Rails’ codebase was kept in check by a small as well as tight-

knit group of coders who were managing the contributions

that had been made to the main code manually. �ey were

the project gatekeepers, and even if one of them had ended

GitHub ◾ 143

up liking the work done by Hyett and Wanstrath, merg-

ing patches for real was not a straightforward process at

all. On some level, making contributions to Rails became a

matter of who you knew, and rather than what you knew.

It is serendipitous that their enduring contribution would

be GitHub, an essential provider tool for Git today, because

Torvalds’ conception of Git, too, was in many ways rooted

in ideas like the democratization of code development, as

well as allowing developers to collaborate on projects with

minimal gatekeeping involved. Nevertheless, despite the

signi�cant convenience that Git ended up giving devel-

opers, there was also an incredible lack of collaborative

tools for it. Sharing code between two developers in itself

was an arduous process. So�ware developers would tend

to email patches between themselves until the changes

in code would be able to resolve whatever issue had been

cropping up. It becomes easy to see why something like

GitHub was so sorely needed. Other developments were

also being o�ered for the improvement of Git. �e so�ware

used to primarily rely on the Command Line Interface, but

the GUI too was soon developed for it. Preston-Werner,

a Ruby programmer from the Bay area, started working

on a project known as “Grit”, conceived of as a tool that

would allow the coders to be able to access Git repositories

in an object-oriented manner using the language Ruby on

Rails. His objective was clear: to create a place that would

be able to host entire code libraries, and where program-

mers would be able to work on code projects more collab-

oratively, along with learning more about Git as well as its

potential uses. As Preston-Werner conceived it, it would be

a “Git hub”.

144 ◾ Mastering Git

HOW TO USE GITHUB

GitHub is a web-based platform that is used for version con-

trol. Git, on the other hand, simpli�es the process of work-

ing with other developers, fostering the spirit as well as the

practical possibilities of collaboration. Team members are

supposed to work on their respective �le, and later merge the

changes into the master branch of the project. Skills pertain-

ing to Git as well as GitHub have slowly been promoted from

preferred skills to must-have skills for multiple job roles.

How to Create a Repository on GitHub?

A repository is a storage space for your product. �e reposi-

tory can be local, i.e. available on a folder in your computer,

or it could be a storage space provided by an online host,

like GitHub. You should be able to keep your code �les,

images, text �les, or any other kind of a �le in a reposi-

tory. You will require a GitHub repository for your project,

when you are done making changes to your �les, and they

are now prepared to be uploaded. �e GitHub repository

will thus act as your remote repository. In order to create a

repository on GitHub, follow the given steps:

• Visit the link GitHub.com. Fill the Sign-Up form, and

press on the button “Sign up for GitHub”.

• Click on the option “Start a new project”.

• Enter a name for your repository, and follow it up by

clicking on the button “Create Repository”. You are

also allowed to give a description of your repository,

though this step is absolutely optional.

GitHub ◾ 145

Now, you shall be able to notice that by default, a GitHub

repository is public, which means that anyone should be

able to see the contents of your repository/project. In the

case of a private repository, which comes as part of the paid

version of GitHub, you should be able to choose the enti-

ties to whom you will allow access to your repository as

well as its contents. Also, you should be able to initialize

your repository through a README �le. �e README

�le contains the description of your �le, and once you

have checked this box, it should be the �rst �le in your

repository. Now that your repository has been successfully

created, you are ready to make commits, push, pull, and

perform all the necessary operations. Now, we move on to

understanding branching in GitHub.

Create Branches

Branches will help you in working on multiple versions

of a repository at a particular time. You might want to

add a new feature (still in the development phase), but are

unsure if whether making changes to the main codeline

will be worth it. Git Branching to the rescue! Branches

should allow you to move back and forth between dif-

ferent versions of your project. In the aforementioned

scenario, you will be well-advised to fork out a branch

and test the new feature without any adverse e�ects on

the main branch. Once your changes are tried, tested,

and approved, you can merge the changes from the

new branch to the main branch. Here, the main branch

refers to the master branch, present in your repository

by default.

146 ◾ Mastering Git

In order to create a new branch in GitHub, you will have

to follow the provided set of instructions:

• Click on the drop-down option of “Branch: master”.

• Just as you click on the branch, you will be able to

�nd an existing branch, or you shall have to cre-

ate one. Let’s say we create a branch and name it

“readme-changes”. A�er creating the new branch,

you shall have two branches in your repository, the

read-me, i.e. the master branch, as well as the branch

readme-changes. �e new branch is a mere clone of

the master branch. To make it di�erent, you will have

to make changes via several operations that we will

now delve into.

Making Commits

Committing will save changes to your �le. A commit

should ideally be accompanied by a message justifying and

explaining the changes that have been made. �e commit

message is not compulsory, yet is strongly recommended

by nearly all organizations, for purposes of di�erentiation,

and helping the collaborators understand the history of a

�le as well as the changes made. In order to make your �rst

commit on GitHub, follow the given steps in a chronologi-

cal order:

• Click on the “readme-changes” �le that we created in

the last section.

• Press on “Edit” or a pencil icon which you should be

able to �nd in the right-most corner of this �le.

GitHub ◾ 147

• Once you click on it, an editor will open where you

should be able to type in the changes required.

• Write a commit message identifying the changes made.

(Recollect the line-wise format: describe changes-

blank-explanation of changes).

• Click on “Commit Changes” in the end.

Pull Command

Pull command is one of the most important commands in

GitHub. It will inform you regarding the changes made to

a �le, request your fellow contributors to view it, and merge

it with the master branch as well. Once a commit has been

made, anyone should be able to pull the �le, and initiate a

discussion on the change/s. Once the iteration process is

complete, the �le/s can be merged. If there are any con-

�icts between the di�erent changesets, they will have to

be resolved in order to complete the merge. Now, let us go

through the various steps involved in order to conduct a

pull request on GitHub:

• Click on the “Pull Requests” tab.

• Press on “New Pull Request”.

• A�er clicking on the pull request, select the branch

and click on the �le to be able to view the changes

between the two �les that are present in our repository.

• Click on “Create Pull Request”.

• Enter the title, description of your changes, followed

up by clicking on “Create pull request”.

148 ◾ Mastering Git

Merge Command

�rough the use of the Merge command, we merge the

changes made into the master branch. To use the Merge

command on GitHub, follow these steps in a chronological

order:

• Click on the “Merge pull request” to merge your

changes into the master branch.

• Click on “Con�rm Merge”.

• You should be able to delete the branch once all of its

changes have been incorporated, and if there were no

con�icts.

Cloning and Forking GitHub Repository

Cloning is essential so that we can download codes from

remote repositories, and make suitable changes to them

using commits. To clone on GitHub, you simply need

to press the green-colored button that contains the text

“Clone or Download”.

Forking is done to create a new branch, and subsequently

make changes to the central codeline, while usually focus-

ing on one particular feature, the new branch created is

generally referred to as a feature branch. A few pointers

that you need to be keep in mind about Forking:

• Changes made to the original repository will get

re�ected back to the forked repository.

• If you will make changes in a forked repository, it shall

not be getting re�ected to the original repository until

and unless you call for a pull request.

GitHub ◾ 149

In order to be able to fork a repository in GitHub, make

sure that you follow the given sequence of steps:

• Go to the Explore section and make a search on the

public repositories.

• You should open a repository, and you will be able to

�nd a number besides the “Fork” button telling you

how many times it has previously been forked. Click

on “fork”.

A�er you click on Fork, it will take some time for the so�-

ware to give you your own local version of the public repos-

itory. Once done, you will be able to notice the name of that

particular repository under your account. Congratulations!

You have successfully managed to fork out an existing

repository under your own account on GitHub.

DIFFERENT TYPES OF ACCOUNTS

On GitHub, your user account is your identity for all prac-

tical purposes. Your user account is allowed to be a member

of as many organizations as you want to be a�liated with.

Organizations mostly belong to the enterprise accounts.

Personal User Accounts

Every person who will use GitHub will have a personal

account, which will include:

• Limitless private as well as public repositories with

GitHub free.

• No limit on collaborators (GitHub Free).

150 ◾ Mastering Git

• Supplementary features for the private repositories

with GitHub Pro.

• Can collaborate to work on repositories.

Remember that you are allowed to use a single account

for multiple purposes, for personal use as well as busi-

ness purposes. It is generally recommended to avoid

creating multiple accounts because of the problems that

might ensue. Nevertheless, GitHub does provide you

the facility to be able to merge several user accounts

together. Furthermore, while the GitHub user accounts

are intended to be used by human beings, you could also

give one to a robot, like a continuous integration bot, if

you need to.

Organization Accounts

Organization Accounts are de�ned as shared accounts

where large groups of people are able to collaborate across

multiple projects at the same time. Administrators or the

owners tend to manage the access of various members to

an organization’s data as well as projects through a host

of administrative features as well as robust, sophisticated

security. Various features that you will be able to �nd in

Organization accounts are:

• Unlimited membership with a plethora of roles which

will grant you di�erent levels of access to an organi-

zation as well as its data.

• An ability to give their members a gamut of access

permissions to their organization’s repositories.

GitHub ◾ 151

• Nested teams which will re�ect your group or com-

pany’s structure with cascading access mentions as

well as permissions.

• �e ability for the owners of an organization to

check the 2FA status of the members of the account/

organization.

• �e option to make the 2FA mandatory for all the

members of the project.

You should be able to make use of organization accounts

for free through GitHub Free. �e facilities include unlim-

ited repositories with all the features, unlimited collabora-

tors to work on projects with, as well as unlimited private

repositories with limited features. For more features, like

better support coverage, sophisticated user authentication

as well as management, you should upgrade to GitHub

Team or GitHub Enterprise Cloud. If you use the latter, in

particular, you will have the option to purchase the license

for GitHub Advanced Security and use the features of pri-

vate repositories.

Enterprise Accounts

�rough enterprise accounts, you should be able to man-

age billing as well as policy for multiple GitHub.com orga-

nizations at the same time. Enterprise accounts are usually

available with GitHub Enterprise Cloud as well as GitHub

Enterprise Server.

With this, we have come to the end of this chapter on

GitHub. In this chapter, we talked about what GitHub is,

152 ◾ Mastering Git

its history, di�erent ways of using GitHub, as well as the

di�erent types of accounts that are available on GitHub.

com. In the next chapter, we will move to GitLab, and learn

about what it is, its history, how to use it, and other details

on it. Read on to know more.

153DOI: 10.1201/9781003229100-7

C H A P T E R 7

GitLab

IN THIS CHAPTER

 ➢ What is GitLab

 ➢ History of GitLab

 ➢ How to use GitLab

 ➢ Free and Enterprise accounts

In the previous chapter, we focused our mental faculties

on GitHub, what it was, its history, how to use it, di�erent

kinds of accounts it o�ers, etc. With this chapter, we move

on to GitLab, keeping our concerns in similar directions.

So, let’s begin.

WHAT IS GITLAB

GitLab is a web-oriented DevOps tool that should be able

to provide you with a Git repository manager and features

pertaining to continuous integration and deployment,

https://doi.org/10.1201/9781003229100-7

154 ◾ Mastering Git

providing wiki, issue-tracking, etc. by making use of an

open-source license that was developed by Git Inc. DevOps

here refers to a compendium of practices that are able to

combine so�ware development (Dev) with IT opera-

tions (Ops). �e chief aim of DevOps is to reduce a sys-

tem’s development life cycle, as well as provide continuous

delivery of quality so�ware. DevOps conceptually is o�en

complemented by the idea of Agile so�ware development,

which is also the source of several ideas that DevOps con-

tinues to grapple with. As a project, GitLab was created

and developed by Dmitriy Zaporozhets and Valery Sizov.

Its code was originally written using Ruby on Rails, as well

as some of the later parts in Go, a statically typed, com-

piled programming language, that was designed at Google.

�e code was supposed to work to provide a source code

management (SCM) solution to improve the process of

collaboration between a so�ware development team. Later,

its evolution took it toward becoming an integrated solu-

tion for the so�ware development life cycle, and eventu-

ally to the entire DevOps life cycle. �e latest technology

stack of the tool includes Ruby on Rails, Go, as well as

Vue.js, an open-source JavaScript framework utilized for

building single-page applications as well as user inter-

faces. GitLab follows the model of open-core development,

wherein the core functionality had been released under

MIT’s open-source license, while the supplementary fea-

tures of functionality, like multiple issue assignees, code

owners, dependency scanning, as well as insights, are to

be kept under the ambit of a proprietary license. GitLab’s

services are only available in the English language, while

its headquarters are located in San Francisco, California,

GitLab ◾ 155

United States. Its services are available worldwide, and it

is owned by GitLab Inc. �e names of the founders are

Sytse “Sid” Sijbrandij, Dmitriy Zaporozhets, and Valery

Sizov, while the key members of the organization include

Sijbrandij as CEO and Co-Founder, and Zaporozhets and

Sizov as co-founders. �e total revenue generated by the

so�ware company amounted to 150 million American dol-

lars in 2020, while the total number of employees are 1419.

�e URL for the service is gitlab.com, and the registration

in order to be able to avail the service launched in 2014

is optional.

HISTORY OF GITLAB

In 2011, Dmitriy Zaporozhets was in need of a good tool

in order to be able to collaborate with his team. He was in

want of something that was e�cient as well as enjoyable so

he could actually focus on and enjoy his work, rather than

getting caught up in the tools themselves. GitLab was cre-

ated by Zaporozhets from his house in Ukraine, a home

without running water. �e GitLab o�cial website claims

156 ◾ Mastering Git

that “Dmitriy perceived not having a great collaboration

tool as a bigger problem than his daily trip to the com-

munal well.” As a result, in collaboration with Valery, he

began the creation of GitLab as a solution to the problem

at hand. �e �rst commit was made on October 8, 2011.

�e name of the company was inspired by and drawn

from GitWeb, and several other products that were a�li-

ated with Git.

In 2012, Sijbrandij came across GitLab for the �rst time,

and felt it natural that a collaboration tool for program-

mers be open source, so that as many as possible could

contribute to it. He was a Ruby programmer himself, so he

went through the source code and was seriously impressed

by the quality of the code developed, a�er more than 300

contributions were made in the �rst year of the project. He

subsequently reached out to Hacker News, a social news

website with computer science as well as entrepreneur-

ship as its primary concerns, asking them if they would be

interested in using GitLab.com. Hundreds of people chose

to sign up for the beta version of the product. November

2012 saw Dmitriy making the �rst version of GitLab

Continuous Integration (CI). By 2013, huge organizations

that were making use of GitLab asked Sijbrandij to include

the features that they were searching for, to improve the

e�ciency of their companies as well as the work done there.

Dmitriy too decided that he wanted to work on GitLab full

time. Sid and Dmitriy then teamed up and subsequently

introduced the Enterprise Edition of GitLab along with the

features that were being asked for by the larger organiza-

tions. �is was done by splitting the product into two dis-

parate versions: GitLab CE, i.e. Community Edition and

GitLab ◾ 157

GitLab EE—the Enterprise Edition. At that point of time, the

licenses of both stayed the same, both being free as well as

open-source so�wares distributed under the License of MIT.

2014 saw GitLab being o�cially incorporated as a lim-

ited liability corporation. In February 2014, it announced

its adoption of an open-core business model. An open-core

model tends to be a business model that is meant to be used

for the monetization of open-source so�ware that is pro-

duced commercially. GitLab EE was set under EE License,

the source available proprietary, containing features that

are not present in the CE Version. �e GitLab CE Licensing

Model, however, did not change, and the company contin-

ued to develop as well as support the CE Edition. GitLab

EE became a restricted license; however, its source code,

issues, and in particular, the merge requests stayed publicly

visible. �e company also continued releasing newer ver-

sions of the so�ware every 22nd day of the month, just as it

had every year before and has every year since. January 22,

2014 witnessed the release of GitLab 6.5, while the newest

version by December 2014 was GitLab 7.6. Subsequently,

GitLab also sent their application to Y Combinator,

an American seed money startup accelerator that was

launched in March 2005. At the start of 2015, almost the

entire team of GitLab went to Silicon Valley so that they

could participate in the Y Combinator. In July 2013, the

company decided to split the product into two disparate

versions: GitLab CE: Community Edition and GitLab EE:

Enterprise Edition.

In March 2015, the company was able to acquire

Gitorious, a competitor that was also providing services

pertaining to hosting Git. Gitorious had around 822,000

158 ◾ Mastering Git

registered users at that point of time. �e said users

were encouraged to make a shi� to GitLab; the services

provided by Gitorious were subsequently disbanded in

June 2015. An alumnus of the Y Combinator seed accel-

erator program of its Winter 2015 batch, the company

now managed to raise a further $1.5 million in its seed

funding. Its customers by 2015 included Alibaba Group, a

Chinese multinational technology company that special-

izes in e-commerce, Internet, retail, as well as technology,

International Businesses Machine Corporation (IBM), and

SpaceX, the Elon Musk-led American aerospace manu-

facturer, space communications as well as transportation

services company with its headquarters in Hawthorne,

California. A further $4 million were raised in Series A

funding in September 2015 from Khosla Ventures, a ven-

ture capital �rm that aims to focus on early-stage compa-

nies in domains as diverse as Internet, mobile, computing,

biotechnology, silicon technology, biotechnology, health-

care, as well as clean technology sectors. �e year 2016

proved to be a period of growth and the total number of

people who contributed to the GitLab were more than

1000. �e open-core business model of the company was

also con�rmed by its CEO. August Capital, and existing

investors Y Combinator and Khosla Ventures, again par-

ticipated in the Series B funding, leading GitLab to raise

$20 million.

In January 2017, in the a�ermath of a cyber attack, an

administrator for a GitLab database accidentally deleted

an entire production database. �e issue and merge data

for six hours was eliminated. �ankfully, it was eventually

recovered, with the recovery process being live-streamed

GitLab ◾ 159

on YouTube. On March 15, 2017, GitLab acquired Gitter,

an open-source instant messaging as well as chat room

system for the users and the developers of GitLab as well

as GitHub’s repositories. However, it was also announced

that the stated intent of GitLab was to allow for Gitter to

continue as a standalone project. Furthermore, GitLab also

announced that the code would be open-source and under

an MIT License by June 2017. GitLab also raised $20 million

in the Series C round that was led by GV (Google Ventures)

as well as others. January 2018 saw GitLab acquiring

Gemnasium, a service providing security scanners with

alerts for the security vulnerabilities of the open-source

libraries of multiple languages. Gemnasium’s services

were scheduled for a complete shutdown on the May 15.

Gemnasium’s technology as well as traits were integrated

into GitLab EE as well as parts of CI/CD (Continuous

Integration/Continuous Deployment). GitLab announced

its integration with Google Kubernetes Engine (GKE), in

order to simplify the processes of spinning up new clusters

to be able to deploy applications.

May 2018 saw GNOME (an acronym for GNU Network

Object Model Environment), a desktop environment with

Unix-like OSs, move to GitLab with its more than 400

projects and 900 contributors. GitLab had to move from

Microso� Azure to Google Cloud Platform on August 11,

2018, thereby making its services inaccessible to the users

of Cuba, Crimea, North Korea, Kenya, Iran, Sudan, and

Syria, compelled due to the sanctions imposed by the

O�ce of Foreign Assets Control of the United States. In

order to be able to grapple with this issue, Framaso�, a

non-pro�t organization, provided a Debian mirror in

160 ◾ Mastering Git

order to make GitLab CE available in the aforementioned

countries. On August 1, 2018, GitLab began the develop-

ment of Meltano, another open-source DataOps platform.

ICONIQ Capital’s participation in September 2018 led

to GitLab raising a $100 million in the Series D-Round

funding in September 2018. Later in 2018, GitLab was

considered the �rst partly Ukrainian unicorn to be val-

ued at more than $1 billion. 2019 saw the company rais-

ing $268 million in the Series E-Round funding initiated

by ICONIQ Capital, an American investment as well as

wealth management �rm, and the famous �nance-service

company Goldman Sachs.

At that point of time, the company’s value was estimated

to be $2.7 billion. In 2019, SWFI reported that GitLab was

expected to reach $100 million of ARR by January 2020.

Today, more than 100,000 organizations as well as millions

of users are making use of GitLab to meet their ends. In

September, the team announced their master plan of rais-

ing more than 20 million dollars in the B Round of �nanc-

ing. By 2020, GitLab had more than 1200 team members

in over 65 countries, making it the world’s largest all-

remote company before the COVID-19 pandemic struck.

Every single employee of GitLab works remotely, there are

no central headquarters or o�ces belonging to the com-

pany all over the globe. GitLab experienced 50× growth in

4 years, reaching the $100M ARR, i.e. Annual Recurring

Revenue mark in the year 2020. �e company’s current

value is $2.75 billion, and it has raised $426M till date. �e

company is still strongly oriented toward community con-

tributions, with over 650 code contributions made every

month from more than 2500 contributors. Due to their

GitLab ◾ 161

DevOps platform, by August 2021, the company was able

to grow to more than a million active license users as well

as over thirty million registered users.

�e company itself grew to more than 1400 team mem-

bers in as many as 65 countries as well as regions all over

the globe. It continues to support as well as educate enter-

prises regarding the advantages of remote work by con-

ducting more than 60 collaborative discussions on remote

work with organizations, universities, Vice-Chancellors,

etc. since the pandemic started. As of 2021, GitLab has

managed to expand its business to the Chinese market,

has had OMERS participate in its secondary share invest-

ment, and has also managed to create Meltano, a new open

source ELT platform.

HOW TO USE GITLAB

Now, we will learn in detail about the functionality of

GitLab.

GitLab and SSH Keys

To recapitulate what has been established in the previ-

ous chapters, Git is a distributed Version Control System

(VCS) that allows you to work locally, and subsequently

share or “push” your changes to a server, so that your fel-

low developers as well as reviewers can see them too. In

this case, that server happens to be the GitLab. GitLab uti-

lizes the SSH (Shell) Protocol in order to be able to securely

communicate with Git. When you make use of SSH keys

in order to authenticate the GitLab remote server, you

will not have to supply your username or password every

 single time.

162 ◾ Mastering Git

Prerequisites

To be able to use SSH for your communication with GitLab,

you will need the following:

• An open SSH client, which should come pre-installed

on all kinds of devices, like MacOS, Windows 10,

GNU/Linux, etc.

• An SSH version that is either 6.5 or later. �e versions

before this made use of MD5 signature, a hash algo-

rithm (like SHA-1) that is usually used to check for

data integrity. MD5 now is not recognized to be secure.

To be able to view the version of SSH that has been installed

in your system, run the command ssh -V.

Supported SSH Key Types

If you wish to be able to communicate with GitLab, you

can make use of the following SSH key types:

• ED25519: �ese keys are considered to be more secure

and better performing than the RSA keys. OpenSSH

6.5 introduced these keys in 2014, and you should be

able to �nd them on most operating systems.

• RSA: Generally, ED25519 is considered to be more

secure than RSA. Nevertheless, if you happen to be

using an RSA key, the United States Institute of Science

and Technology generally recommends a key size of at

least 2048 bits. �e default key size will have to depend

on your version of ssh-keygen. To know the details, you

will have to review the man page for the command.

GitLab ◾ 163

• DSA: Were deprecated in GitLab 11.0.

• ECDSA: �e security issues pertaining to DSA apply

in a similar fashion to ECDSA.

Administrators should be able to restrict which keys are to

be permitted, as well as their minimal lengths.

But how to check if you have an existing SSH key pair?

Follow the given steps:

• On Windows, macOS, or Linux, go see your home

directory.

• Now, go to the .ssh/subdirectory. If it doesn’t exist,

you are either not in the home directory, or haven’t

ever used ssh before. In the case of the latter, you will

have to generate an SSH key pair.

• Check for �les in one of the following formats:

Algorithm Public Key Private Key

ED25519 id_ed25519.pub id_ed25519

RSA id_rsa.pub id_rsa

DSA id_dsa.pub id_dsa

ECDSA id_ecdsa.pub id_ecdsa

Generating the SSH Keys

If you do not have an SSH pair of keys, you shall have to

generate a new one:

• First, open a terminal.

• Type out the command ssh-keygen -t and follow it

up with a key type as well as an optional comment.

�is comment has to be included in the .pub �le that

164 ◾ Mastering Git

will be created. You might also want to use an email

address for the comment.

• Press Enter.

• Accept the suggested �lename as well as directory,

unless you happen to be generating a deploy key or

wish to save it in a speci�c directory where you have

stored your other keys. You should also be able to

dedicate an SSH key pair to a speci�c host.

• Give your passphrase.

• A con�rmation should now be displayed, which

includes information about where your �les are stored.

A public and private key are thus generated. In the end,

add the public SSH to your GitLab account, and keep your

private key secure.

Con�gure Your SSH to Point to a Different Directory

If you forgot to save your SSH key pair in the default direc-

tory, you need to con�gure your SSH client so that it can

point to the directory where your private key has been

stored.

Steps:

• Open a terminal window and run the command eval

$(ssh-agent -s)

ssh-add <directory to private SSHkey>

• Save the settings you need in the ~/.ssh/con�g �le.

GitLab ◾ 165

Public SSH keys have to be unique to GitLab since they

will bind your account. Your SSH key should be the only

identi�er you have on you when you push code with SSH.

�e key must uniquely map to a single user.

Updating Your SSH Key Passphrase

You should be able to update the passphrase for your SSH

key.

• Open a terminal and run the command

ssh-keygen -p -f/path/to/ssh_key

• When prompted, type your passphrase and press

Enter.

Upgrade Your RSA Pair to a More Secure Format

If your version of OpenSSH lies between 6.5 and 7.8, you

should be able to save your private RSA SSH in a better

secured OpenSSH format.

• Open a terminal window and run the command:

ssh-keygen -o -f ~/.ssh/id_rsa

OR You could generate a fresh RSA key with a better

encryption format using the command:

ssh-keygen -o -t rsa -b 4096 -C

"<comment>"

166 ◾ Mastering Git

Adding an SSH Key to Your GitLab Account

To be able to use SSH with GitLab, you must copy your

public key into your GitLab account.

• First, make sure that you copy the contents of your

key �le. You should be able to do this manually, or

you could use a script.

• Sign in to GitLab.

• At the top bar, in the right corner, make a choice of

your avatar.

• Select Preferences.

• From the le� sidebar, select SSH keys.

• Within the Key box, you would have to paste the con-

tents of your public key. If you do so manually, make

sure that you are copying and pasting the entire key.

• In the Title box, you will have to type out a descrip-

tion, like Home Workstation or Work Laptop.

• You shall also have the option of specifying an expi-

ration date (from GitLab 12.9 onward), though this

is optional.

• Select “Add Key”.

Verifying That You Can Connect

In order to verify that your SSH key was added correctly,

follow the given steps:

• In GitLab.com, make sure that you are connected

to the correct server, and con�rm the SSH host keys

using �ngerprints.

GitLab ◾ 167

• Open a terminal window and run the command:

ssh -T git@gitlab.example.com

• If connecting for the �rst time, ensure that you verify

the authenticity of the GitLab host.

• Run the command ssh -T git@gitlab.example.com

again. If you followed all the provided steps correctly,

you should now receive a “Welcome to GitLab, @

username!” message.

If the Welcome message hasn’t appeared, you will have to

troubleshoot by running ssh in the verbose mode:

ssh -Tvvv git@gitlab.example.com

Using Different Keys for Different Repositories

You are allowed to use di�erent keys for each repository.

To do so, open a terminal window, and run the command:

git config core.sshCommand "ssh -o

IdentitiesOnly=Yes -i ~/.ssh/private-key-

filename-for-this-repository -F/dev/null"

�is command will not use the SSH Agent and will also

require Git 2.10 or later.

Using Different Accounts on a Single GitLab Instance

You are also allowed to use multiple accounts in order to

connect to a single instance of GitLab. Let us �rst de�ne

what are instance domains? In the instance domains,

there is a system instance, which consists of a number of

mailto:git@gitlab.example.com
mailto:git@gitlab.example.com
mailto:git@gitlab.example.com

168 ◾ Mastering Git

block instances, which end up forming a tree-like struc-

ture with the system instance as a root. Coming back to

our central topic, what we seek to do can be achieved using

the command in the previous section. However, even if you

were able to set “IdentitiesOnly” to “yes”, you shall not be

able to sign in if there is an IdentityFile that exists outside

of a host block. However, you can always assign aliases to

hosts in the ~.ssh/con�g �le.

• For hosts, use an alias like user_1/2.gitlab.com.

Advanced con�gurations can be di�cult to main-

tain, so these strings should be easier to comprehend

when you make use of tools like git remote.

• For the IdentifyFile, use the path of the private key.

You can then use the git clone command to clone your

repositories, and ensure to update a previously-cloned

repository that will be aliased as an origin. Keep in mind

that private as well as public keys contain sensitive data.

You have to ensure that the permissions on the �les make

them readable to you, and yet not accessible to others.

Con�gure Two-Factor Authentication (2FA)

You should be able to set up two-factor authentication (2FA)

for Git over SSH. �e OTP veri�cation can be done through

the designated GitLab Shell Command:

ssh git@<hostname> 2fa_verify

Once the OTP gets veri�ed, Git through SSvH operations

can be utilized for a duration of 15 minutes (default setting)

with the associated SSH key.

GitLab ◾ 169

Using EGit on Eclipse

If you are using EGit, you should be able to add your SSH

key to Eclipse using the following steps:

• Click on Window>Preferences in order to open the

Eclipse Preference Dialog. Navigate through and

expand your Network Connections option and sub-

sequently select SSH. Make sure that your SSH2 home

is con�gured correctly (in most cases, it is ~/.ssh) and

contains your SSH 2 keys as well.

• If you don’t have SSH keys, you should also be able

to generate them from the second tab of this dialog

called “Key Management”. Make sure that you utilize

a good passphrase in order to protect your private key.

• Now, upload your public SSH key to your GitLab pro-

�le settings.

Use SSH on Microsoft Windows

If you use Windows 10, you should either be using the

Windows Subsystem for Linux with WSL 2 with both git

as well as ssh pre-installed, or install Git for Windows to

be able to use SSH through Powershell. �e SSH key that

is generated by WSL is never directly available for Git for

Windows, and vice versa, since both have a di�erent home

directory, /home/<user> for WSL, and C:\Users\<user> for

Microso�.

You should also be able to copy over the .ssh/directory in

order to be able to use the same key, or for generating a key in

each particular environment. Alternative tools that can be

used for this purpose include Cygwin, as well as PuttyGen.

170 ◾ Mastering Git

Overriding SSH Settings on GitLab Server

GitLab is able to integrate with a system-installed SSH dae-

mon as well as designate a user (usually named git) through

whom all access requests are to be handled. Users who are

able to connect with the GitLab server through SSH are iden-

ti�ed by their SSH key instead of their username. SSH cli-

ent operations that are performed on the GitLab server are

executed by the so�ware as this user. You should be able to

modify this SSH con�guration. For example, you should be

able to specify a private SSH key for the user to be able to

use to conduct the authentication requests. However, bear in

mind that such a practice is discouraged since it is not sup-

ported and also contains major security risks. GitLab actually

checks for this condition, and should be able to direct you to

know if your server is con�gured in that manner. Make sure

that you remove the custom con�guration as soon as you are

able to, since these customizations might stop working at any

point of time as they are explicitly not supported.

Troubleshooting SSH Connections

When you run the command git clone, you will be

prompted to provide a password. �is will indicate that

something is wrong with your SSH setup.

• Ensure that you generated your SSH key correctly as

well as add it to your GitLab pro�le.

• Manually register for the private SSH key by running

the command ssh-agent.

• Debug your connection by running the command

ssh -Tv git@example.com. Needless to say, replace

example.com with your GitLab URL.

mailto:git@example.com

GitLab ◾ 171

You can also restrict the allowed SSH key technolo-

gies as well as their minimum length. �e command ssh-

keygen allows the users to create their RSA keys with as

little as 768 bits, falling well below the recommendations

from standard groups like US NIST. Some organizations

that are making use of GitLab must enforce the rule of

the minimum key strength, in order to ensure regulatory

compliance as well as to satisfy the internal security policy.

Additionally, many standard groups recommend the use of

RSA, ECDSA, or even ED25519 over the much older DSA,

and the administrators might need to limit the permitted

SSH key algorithms.

In order to restrict the allowed SSH key technology

along with the minimum key length for each technology,

follow the given steps:

• At the top bar, select Menu followed by the option of

Admin.

• In the le� sidebar, choose Settings > General.

• Expand the section containing details on the Visibility

and access controls section. If you see a restriction

imposed on a speci�c type of key, users should not be

able to upload the new SSH keys which fail to meet

the prescribed requirements. �e keys which won’t

meet it will be disabled (not removed) and the users

will not be able to pull or push code using them. You

will also �nd an icon (with the symbol of an exclama-

tion mark) containing a restricted key in the section

meant for SSH keys on your pro�le. Hover your cur-

sor over the icon, and you will get the reason as to

why that particular key has been restricted.

172 ◾ Mastering Git

By default, the self-managed settings of the supported key

types in GitLab.com are following:

• DSA SSH keys are disallowed (from GitLab 11.0).

• RSA SSH keys are allowed.

• ECDSA SSH keys are permitted.

• ED25519 SSH keys are permitted as well.

Creating a Project

In order to create a new project in GitLab, follow the given

steps:

1. Find your dashboard, and in it, click on the green

New project button or, you could use the plus icon

found in the navigation bar. �is should be able to

open up the New project page.

2. Once you are on the New project page, choose whether

you want to create a new blank project, use one of the

available templates in order to do so, run CI/CD pipe-

lines for external repositories, import a project from

the new repository, if it is enabled for your GitLab

instance, etc. If not, contact your GitLab administrator.

Creating a Group

In order to create a group, follow the provided steps:

• On the top bar, select Menu > Groups, and on the right,

select “Create Group”. From the le� side of the search

box, select the plus sign and then, click on “New Group”.

GitLab ◾ 173

• Select “Create Group”.

• For the group name, you can only use alphanumeric

characters, underscores, as well as emojis. �e use of

dashes, spaces, dots, as well as parentheses, should

not be used at the beginning of the name. �ere are

also a set of reserved names that cannot be used as

group names.

• For Group URL, used for the namespace, use only

alphanumeric characters, dashes, dots, as well as

underscores. However, the URL cannot start with

dashes, or end with dots.

• Choose your visibility level. Public, Private, or

Internal are the options o�ered.

• Personalize your experience with GitLab through

answering questions like what your role is going to

be, who will be able to use your group, what shall you

be using this group for, etc.

• You will also have to invite fellow GitLab members as

well as the other users to join this group.

Reserved Project and Group Names

All project and group names are not allowed, since they

might con�ict with the present routes that are being used

by GitLab. �ere is a list of words that are not to be used

as project or group names. �ey can be divided into three

categories:

• TOP_LEVEL_ROUTES: �ese are names that have

been reserved as user names or by top-level groups.

174 ◾ Mastering Git

• PROJECT_WILDCARD_ROUTES: �ese are names

that have been reserved for child groups as well as

projects.

• GROUP_ROUTES: �ese are names which have been

reserved for all groups and projects.

�e project names you are not allowed to use currently

are, \-, badges, blame, builds, blob, create, commits, edit,

create_dir, �les, environments/folders, gitlab-lfs/objects,

�nd_�le, info/lfs/objects, preview, new, refs, raw, update,

tree, and wikis. Additionally, the reserved names for the

groups include .well-known, \ -, 422.html, 404.html,

500.html, 502.html, 503.html, api, admin, apple-touch-

icon-precomposed.png, apple-touch-icon.png, dash-

board, assets, explore, deploy.html, favicon.png, favicon.

ico, groups, �les, help, health_check, import, help, jwt,

login, pro�le, oauth, public, projects, robots.txt, search, s,

sitemap, sitemap, sitemap.xml, sitemap.xml.gz, snippets,

unsubscribes, uploads, users, v2, and slash-command-

logo.png. Lastly, \- is unavailable as a subgroup name.

How to Create a Branch

A branch constitutes an independent line of development

as far as a project is concerned. When you are creating a

branch using your web interface or in your terminal win-

dow, you are essentially creating a snapshot of a particu-

lar branch, generally the main branch, in its present state.

�en, as in Git, you are allowed to make changes in your

feature branch, without a�ecting the main code line. �e

history of the changes made in your branch will be kept

track of by the so�ware. When you are done with making

GitLab ◾ 175

changes, you are allowed to merge them into the rest of the

codebase using a merge request.

Feature Branch Work�ow

Steps:

• Clone the project using the command -- git clone

git@example.com:project-name.git.

• Create a branch of your feature

git checkout -b $feature_name

• Write your code. Commit the changes with the com-

mand: git commit -am “My feature is ready”.

• Push your branch to the GitLab: git push origin

$feature_name.

• Review the code from the commits page.

• Carry out a merge request.

• Your team lead will now review the code, and then

merge it to the main branch.

Creating Forks

A fork is a clone of an original repository that coders are

supposed to put in another namespace where they can

experiment as well as apply changes that might or might

not be shared later, without a�ecting the main project. In

order to create a fork on an existing project in GitLab:

• Go to the project’s homepage, and click on the Fork

option on the top right.

mailto:git@example.com

176 ◾ Mastering Git

• Select the project you want to fork to. Below “Select

a namespace to fork the project”, make sure that you

identify the project that you wish to fork to, and sub-

sequently click on “Select”. Only namespaces you have

permissions for will be shown to you. Alternatively,

if your GitLab administrator can manage to enable

the experimental fork project form using the com-

mand “Feature.enable(:fork_project_form)”, follow the

instructions provided at the option “Creating a fork”

providing your project name, URL, slug (i.e. path to a

project), description (optional), as well as the visibility

level you deem appropriate. However, bear in mind

that the new fork project form is still under develop-

ment and so, not ready for production use. It is found

deployed behind a feature �ag that is disabled by default,

unless, as mentioned previously, GitLab administra-

tors via the use of GitLab Rails Console can enable it.

GitLab creates your fork for you, and then redirects you

to the project page for you to �nd it. �e permissions that

you have in the namespace will also be your permissions in

the fork. If a public project with a repository feature set of

the option “Members Only” is forked, the repository in the

fork is public. �e owner of that fork shall have to manually

change its visibility.

Adding a File to a Repository

Adding �les to a repository is a minor, but important task.

Bringing di�erent kinds of �les to a repository, like code,

documents, images, etc. will allow them to be tracked by

Git’s so�ware, even if they have been created elsewhere.

GitLab ◾ 177

You should be able to add a �le to a repository in your

terminal window, and then push the same to GitLab. You

need to also be able to use the web interface, which might

be a way simpler solution for you. If you want to create

a �le �rst, for example, a README.md text �le, even

that can be done from the terminal window or the web

interface.

Create a New Issue

When you are able to create a new issue, you shall be

prompted to �ll in the data as well as the �elds of the issue.

If you happen to know the values that you want to assign

to an issue, you should use the Quick Actions feature to be

able to input the said values. When creating an issue, you

should also associate it with an existing epic from a current

group by selection using the Epic dropdown.

Creating Merge Requests

�ere are several ways you can employ in order to be able

to create a merge request.

To create a merge request from a list of the merge-requests:

• From the top bar, select Menu>Projects, and subse-

quently �nd your project.

• On the le� menu, choose Merge Requests.

• From the top right, select New Merge Request.

• Select a source as well as a target branch, followed by

the option “Compare branches and continue”.

• Fill out all �elds and then click on Create merge request.

178 ◾ Mastering Git

From an Issue

You can create a new branch from an issue, a feature

introduced from GitLab 8.6 onward. If your develop-

ment work�ow ends up requiring an issue for every

merge request that it has to make, you will have to cre-

ate a branch directly from the issue in order to speed up

the process. �e new branch, and subsequently its merge

request, will be marked as related to the issue at hand.

A�er merging, the merge request will close the issue. You

should be able to see a Create merge request dropdown

below the location of the issue description. �e Create

merge request button will not be displayed in one of the

following cases:

• A branch with the same name is already in existence.

• A merge request exists for this branch already.

• �e project has an active fork relationship.

In order to make this button appear, try to remove the proj-

ect’s fork relationship. A�er you remove it, the fork rela-

tionship will not be able to be restored. �e project will

no longer be able to receive or send merge requests to the

source projects, or the other forks. You will see a dropdown

containing the options Create merge request and branch as

well as Create branch. Select one of those options, a new

branch or a branch, and your merge request will be created

based on the default branch of your project. �e name of a

branch is based on an internal ID, as well as the issue title.

If you will click on the Create branch button in an empty

GitLab ◾ 179

repository project, GitLab will be performing the following

actions:

• Create a default branch.

• Commit a blank README.md �le to it. It should

Create as well as redirect you to a new branch based

on the title of the issue.

• If your project was con�gured with a deployment ser-

vice, like Kubernetes, GitLab will be prompting you

to set up the option “auto deploy” by helping you cre-

ate a �le of the format .gitlab-ci.yml.

A�er the branch has been created, you should be able to edit

�les in the repository so that you can �x this issue. When you

create a merge request based on the newly-created branch, the

description �eld will display the issue closing pattern Closes

#ID wherein “ID” is said to be the ID of the given issue. �e

issue will be closed a�er the merge request gets accepted.

When You Have to Add, Edit, or Upload a File

You can also create a merge request whenever you add,

edit, or upload a �le to a particular repository.

• Add, edit, or upload your �le to the repository.

• Enter the reason for the commit made in the section

“Commit Message”.

• Select the Target branch or create a brand new branch

by typing out your name (without using any capital

letters, spaces, or special characters).

180 ◾ Mastering Git

• Select the “Start a new merge request with these

changes” checkbox or toggle. �is checkbox or toggle

needs to be visible only if the target happens to be dif-

ferent from the source branch, or if the source branch

has been put under protection.

• Select “Commit Changes”.

When You Create a Branch

To create merge requests on the creation of a branch:

• From the top bar, choose Menu>Projects to be able to

�nd your project.

• In the le� menu, select Repository>Branches.

• Type out a branch name and select the option “New

Branch”.

• On the right side above the �le list, choose “Create

Merge Request”. A merge has been created. �e

default branch will be the target.

• Fill out all the blank �elds, and choose “Create Merge

Request”.

When You Use Git Commands Locally

In order to create a merge request via running various

Git commands on your local machine, follow the given

steps:

• Create a branch using the command git checkout -b

my-new-branch

GitLab ◾ 181

• Create, edit, or delete the �les as per your need. �en

stage and commit them with the command:

git add.

git commit -m "My commit message"

• Push your branch to GitLab:

git push origin my-new-branch

GitLab will also prompt you to create a merge request

using a direct link.

• Copy the same link and paste it in your browser.

You should also be able to add other �ags to your com-

mands when you are pushing through the command line

in order to reduce the need for editing the merge requests

manually via the use of UI.

When You Have to Work in a Fork

If you wish to create a merge request from your fork in

order to be able to contribute to the main project, follow

the given steps:

• From the top bar, select Menu>Project.

• Select your fork from the repository.

• From the le� menu, go to the option “Merge Request”,

and select “New merge request”.

• From the Source branch drop-down list box, select the

branch from your forked repository as the source branch.

182 ◾ Mastering Git

• �en, from the Target branch drop-down list box,

select the branch of the upstream repository as a

target branch. You should be able to set a default

target project in order to change the default target

branch, a useful method if you are working on a

forked project.

• Select Compare branches and continue.

• Click on Submit merge request.

A�er your work has been merged, if you do not intend to

make any further contributions to your upstream project,

then you should ideally unlink your fork from it. For this

purpose, go to Settings>Advanced Settings, and eliminate

the forking relationship.

By Sending an Email

A brief caveat: the standard format of the generated email

address was changed from GitLab 11.7 onward. �e earlier

format is still being supported so the existing aliases as well

as contacts will still be able to work. Now, coming to the

main point, you should be able to create a merge request by

sending out an email to GitLab. �e merge request-target

branch is always the project’s default branch.

What needs to be ensured:

• A GitLab administrator will have to con�gure the

incoming mail.

• A GitLab administrator will have to con�gure the

Reply by email.

GitLab ◾ 183

In order to create a merge request by sending out an email

• From the top bar, select Menu>Projects in order to be

able to �nd your project.

• Go to the top le� menu, select the option “Merge

Requests”.

• From the top right, select the option “Email a new

merge request to this project”. An email address will

be displayed. You must copy this address, and also

make sure that it stays private.

• Open an email and compose a message containing

the following information: the TO line must be the

email address that you copied, the subject line has to

be the source branch name, and the message body

has got to be the merge request description.

• Send the email.

Your merge request shall be created.

Add Attachments When Creating Merge Request by Email

From GitLab 11.5 onward, you are allowed to add commits

to a merge request simply by adding patches as attach-

ments to your email. All attachments with a �lename that

ends with .patch are considered as patches, and processed

ordered by name. �e combined size of all the patches can

be upto 2 MB. If the source branch from the subject is non-

existent, it can be created from the repository’s HEAD or

the speci�ed target branch. You should also be able to spec-

ify the target branch by using the command/target_branch

184 ◾ Mastering Git

quick action. If the source branch is already in existence,

the patches are usually applied on the top of it.

Set the Default Target Project

�e source and the target project of merge requests are

usually the same, unless some forking has been involved.

Creating a fork of the project could cause one of the two

scenarios, especially if you are creating a new merge

request:

• You will target an upstream project, i.e. the project

you forked as well as the default option.

• You will target your own fork.

In order to have merge requests from a fork by default target

your own fork (rather than the upstream project), you will

need to change the default.

• On the top bar, choose Menu>Project.

• From the le� side of the menu, click on “Settings”,

then “General”, then “Merge Requests”.

• In the Target project section, choose the option which

you want to use for the default target project.

• Click on “Save Changes”.

Working with Projects

Most of the work in GitLab consists of a project. Files and

codes are to be saved in projects, and most of the features

tend to be within the scope of projects. For you to be able

GitLab ◾ 185

to explore the most popular projects available on GitLab,

follow the given steps:

• From the top bar, select Menu>Project.

• Click on Explore Projects.

GitLab tends to display a list of projects, sorted according

to the last updated date. To view the projects with the most

stars, click on Most stars. To be able to view projects with

the most number of comments in the past month, click on

Trending. Do keep in mind that by default, /explore is visible

to unauthorized users as well. But, if the public visibility

level has been restricted, /explore should be visible only to

signed-in users.

In order to create a new blank project on the New

Project page:

• Click on “Create Blank Project.”

• Provide the mentioned information: �rst, the name

of the project in the �eld “Project name”. Bear in

mind that you are not allowed to use special charac-

ters, but you can use hyphens, spaces, underscores,

and even emojis. When adding the name, the Project

slug tends to auto-populate. �e slug is what the

GitLab instance will be using as the URL, i.e. the

path to the project. If you want a di�erent slug, you

will have to input the project name �rst, and then

change the slug later.

Second, the path of your project in the Project slug

�eld. �is is the URL path of your project that GitLab

186 ◾ Mastering Git

instance tends to use. If you le� the space for the

Project name as blank, it will auto-populate anyway

when you �ll in the space for Project slug.

�e project description (is optional) will allow you

to provide a description for your project’s dashboard,

which should help others in understanding what

your project primarily is about. As mentioned previ-

ously, it is not necessarily required. Nevertheless, it is

a good idea to �ll this section in anyway.

Ensure that you change the visibility level as per

your project’s access as well as viewing rights for its

users.

Select “Initialize Repository with a README”

option in order to create a README �le, so that when

your Git Repository is initialized, it has a default

branch, and also can be cloned.

• Finally, click on “Create Project.”

Project Templates

Project Templates are important since they are able to pre-

populate a new project with all the necessary �les that you

shall need to get started quickly. �ere are two di�erent

kinds of project templates:

• Built-in Templates that tend to be sourced, developed

and maintained from project templates as well as

other page groups.

• Custom Project Templates, for custom templates that

have been con�gured by GitLab administrators as

well as users. To be able to use a built template on the

GitLab ◾ 187

New Project page: �rst, click on Click from template.

Select the Built-in tab. From the available list of tem-

plates, click on the preview button, to see the template

source itself, as well as the Use template button, in

order to start creating a project. Lastly, �nish creat-

ing the project by �lling out the details of the project.

�is process is the same as creating a blank project.

Enterprise Templates

GitLab is also developing Enterprise templates in order to

help you streamline your audit management with a few

selected regulatory standards. �ese templates should

be able to automatically import the issues that will cor-

respond to each regulatory requirement. To create a new

project with an Enterprise template, follow these steps on

the New project page:

• Click on “Create from template.”

• Press the button that shall take you to the built-in tab.

• �ere should be a list of built-in Enterprise templates

that are available. Press on the Preview button to

look at the source of the template. �en, use the “Use

Template” button so that you can start creating your

project.

• Finish the task at hand by �lling out the details of the

project. �is process tends to be the same as that of

creating a blank project.

GitLab can also furnish the HIPAA Audit Protocol Template,

which was �rst provided in GitLab 12.10. Further, GitLab

188 ◾ Mastering Git

also provides you with the space as well as the avenues to

improve upon the existing built-in templates or even con-

tribute new ones that you yourself have developed.

Custom Project Templates

�ese were introduced in GitLab 11.2. Being able to create

new projects based on the custom templates for projects is

a highly convenient option to ensure that you are quickly

able to start your projects. Custom projects are available

from the Instance (at instance level), as well as at the group

level from the Group tab in the Create from template page.

In order to be able to create a custom project template on

the New Project page:

• Click on “Create from template”.

• Select either the Instance tab or the Group tab.

• �ere will be a list of the available custom templates.

You could click on the Preview button to see the tem-

plate source, and the Use Template button in order to

be able to start creating your projects.

• Lastly, �nish creating your project by �lling out its

details. Here also, the process tends to be the same as

creating a blank project.

Next, we will learn about how to push to create a new proj-

ect. �is feature was introduced from GitLab Version 10.5.

Basically, when you have created a new repository locally,

you do not have to sign in to the GitLab interface in order to

create a project as well as clone its repository. You should

GitLab ◾ 189

be able to directly push your new repository to the GitLab,

which should be able to create your new project without

leaving your terminal. In order to push for a new project,

follow the given steps:

• Identify the namespace to which you want to add

the new project, as you will be needing this informa-

tion in order to carry out a future step. To be able

to determine if you have permission to create new

projects in a particular namespace, view the page of

the group in a web browser to ascertain that the page

displays a New project button. Since project creation

permissions are dependent on a multitude of factors,

you will be well advised to reach out to your GitLab

administrator if you are unsure.

• If you wish to push during SSH, make sure that you

have created an SSH key and also added it to your

GitLab account.

• You can push using various methods. Here, do make

sure that you give the domain name of the machine

hosting your Git repository instead of gitlab.exam-

ple.com, the name of your namespace instead of

“namespace”, as well as the name of your new project,

instead of “myproject”. To push with SSH, the required

command will be git push --set-upstream git@git-

lab.example.com:namespace/myproject.git master.

On the other hand, to make the push with HTTPS:

git push --set-upstream https://gitlab.example.com/

namespace/myproject.git.master. Additionally, in

https://gitlab.example.com
https://gitlab.example.com
https://gitlab.example.com
https://gitlab.example.com

190 ◾ Mastering Git

order to export your existing repository tags, you will

be well advised to append the --tags �ag to your git

push command.

• When the push is completed, a message from GitLab

will let you know that your project was created.

• To con�gure the remote, you will have to alter the

command git remote add origin https://gitlab.exam-

ple.com/namespace/myproject.git in order to provide

your namespace as well as project names. However,

this step is optional and so completely up to you.

You should now be able to see your new project at https://

gitlab.example.com/namespace/myproject. Your project’s

visibility is always Private by default, but you can always

go and change it from your project’s settings. �ere is a

prerequisite though, you must have the role of an owner for

the particular group whose visibility you want to change.

�e steps to do so are following:

• From the top bar, select Menu>Groups and then �nd

your project.

• From the le� sidebar, select Settings>General.

• Expand the options Naming as well as Visibility.

• For the visibility level, choose Private, Internal, or Public.

• Click on Save Changes.

Star a Project

Starring a project will make it easier for you to �nd it among

other projects that you frequently use as well. �e number

https://gitlab.example.com
https://gitlab.example.com
https://gitlab.example.com
https://gitlab.example.com

GitLab ◾ 191

of stars a project is associated with also indicates its popu-

larity. In order to star a project:

• Go to the homepage of the project that you wish to

star.

• Click on the option of “Star” that you will �nd in the

upper right corner of the page.

In order to view your starred projects:

• Select the options Menu>Project from the top bar.

• Click on “Starred Projects”.

• GitLab will display a range of information regarding

your starred projects, including: project description

(i.e. name, description, as well as icon), number of

times that the project has been starred, number of

forks the project contains, number of open issues as

well as merge requests, etc.

To delete a project, navigate through the home page of that

project, and follow the provided steps:

• Go to Settings>General.

• Expand upon the Advanced section.

• Scroll down to the delete project section.

• Click on Delete project.

• Con�rm the action by typing out the expected text.

192 ◾ Mastering Git

Projects that are located in the personal namespaces shall

be deleted immediately on request.

Apart from that, you can also enable delayed project

removal, by con�guring your projects in a group (but not

your personal namespace) to get deleted later, i.e. a�er a

delayed interval, during which the projects are in a read-

only state and can still be restored. �e default interval

period is seven days, but it can also be con�gured. You can

also change the period to 0, thus enabling the immediate

removal of projects as well as groups. �is feature of default

deletion delay has been introduced from GitLab 12.6. �e

steps are fairly simple:

• Select the desired option.

• Click on Save Changes.

On GitLab.com, you would have to �nd the settings page

in order to �nd out what the default setting is. To allow for

delayed deletion of projects in a particular group, follow

the given steps:

• Go to Settings>General.

• Make sure that you expand the Permissions, LFS, as

well as 2FA section.

• Check the option “Enable Delayed Project Removal”.

• �is is optional. In order to prevent the subgroups

from being able to change the settings, select the

option “Enforce for all subgroups”.

• Click on “Save Changes”.

GitLab ◾ 193

Note: From GitLab 13.11 and onward, the group setting

for delayed project removal is inherited by subgroups.

However, as per the rules of the Cascading settings, these

inheritances can be overruled, unless they have been

enforced by an ancestor.

You can also prevent the forking of projects outside the

group. �is feature was introduced from GitLab 13.3 and

onward. As we all know by now, by default, the projects of a

group can be forked. On the Premium and higher tiers, you

can stop the projects in a group from getting forked outside

of the present top-tier group. Earlier, this setting was avail-

able only for the groups that enforced a Group Managed

Account in Security Assertion Markup Language (SAML).

�is setting can also be removed from the SAML setting

page, and subsequently migrated to the page meant for

group settings. In the interim, both of these settings are to

be taken into consideration. Even if one of them happens

to be true, the group will not be able to allow outside forks.

Here is the list of steps you need to follow to prevent your

projects from being forked outside the group:

• Choose Settings>General from the page of the top-

level group.

• Expand the sections meant for Permissions, 2FA, as

well as LFS.

• Check the option “Prevent project forking outside

current group”.

• Press on “Save Changes”.

Do not worry. �e existing forks shall not be removed.

194 ◾ Mastering Git

Group Push Rules

Group Push Rules allows for the maintainers of a group to

establish push rules for the new projects of a speci�c group.

To con�gure the push rules for a group, you shall have to

follow the provided set of instructions:

• Go to that particular group’s Push Rules page.

• Select the settings that you desire.

• Select the option “Save Push Rules”.

�e new subgroups of a group will have push rules decided

for them based on these factors:

• �e closest parent group with its push rules de�ned.

• Push rules that have been set at an instance level, if

the push rules of the parent groups have not been

de�ned.

Checking If Access Was Blocked Due to IP Restriction

If a user comes across a 404 message when s/he was expect-

ing regular access, and the problem seems to be limited to a

particular group, search for auth.log rails log for the given:

• json.message: “Attempting to access IP restricted

Group”

• json.allowed: false

When you are viewing these log entries, compare your

remote.ip with the list of permitted IPs for the group.

GitLab ◾ 195

�ese are some of the GitLab basics whose functional-

ity you need to be well versed with in order to operate Git

on it. Nevertheless, this guide is by no means exhaustive,

and you should be able to understand the workings of the

so�ware as you use it in practical settings.

FREE AND ENTERPRISE ACCOUNTS

Now, let’s brie�y move to the pricing plan o�ered by

GitLab.

• FREE: �is plan will provide free-forever features to

individual users. Needless to say, it is absolutely free

of cost. �e features you will be provided with include

the span of a DevOps lifecycle, free static websites,

400 CI/CD minutes per month.

• PREMIUM: �is pack will enhance team productiv-

ity as well as coordination. It is priced at $19 per user

per month, amounting to the annual bill of 228 USD

(the prices mentioned are usually subject to the appli-

cable local as well as withholding taxes, they will prob-

ably also vary if you do not purchase them directly via

the company, but through a partner or a reseller). �e

features provided will be everything that is present in

the Free pack, along with other features like advanced

CI/CD, faster code reviews, release controls, agile

Enterprise planning, Self-managed reliability, as well

as 10,000 CI/CD minutes per month.

• ULTIMATE: �is is an Enterprise Account. �is pack

will ensure that you acquire organization-wide secu-

rity, compliance, as well as planning. It costs $99 per

user per month, and billed annually at 1188 USD.

196 ◾ Mastering Git

�e features provided include everything from the

Premium pack as well as native cloud security,

advanced security testing, portfolio management,

ensuring compliance, value stream management,

allowing free guest users, as well as providing upto

50,000 CI/CD minutes per month.

All the plans provide unlimited private repositories. �ey

can be used as SaaS or Self-Managed. But what are SaaS and

self-managed? GitLab can also be divided into GitLab SaaS

and GitLab Self-Managed. In the case of the former, the

company will host the project, and you would not have to

worry about downloading and installing the GitLab so�-

ware yourself. Additionally, no technical setup is required.

For GitLab Self-Managed on the other hand, you will play

the part of the host. �is so�ware shall require the Linux

experience. You will have to download and install the so�-

ware on your own infrastructure, or you could do so in the

public cloud environment o�ered by the company.

In this chapter, we delved into GitLab, what it exactly is,

the history of its development and acquisitions, several ele-

ments of its functionality, di�erent kinds of accounts avail-

able, etc. Moving to the next chapter, we shall be dealing

with BitBucket, looking at it through a similar lens, with

an emphasis on its de�nition and functions as well as its

history and the various types of accounts that are available

on it. So, read on.

197DOI: 10.1201/9781003229100-8

C H A P T E R 8

Bitbucket

IN THIS CHAPTER

 ➢ What is Bitbucket

 ➢ History of Bitbucket

 ➢ How to use Bitbucket

 ➢ Free and Enterprise accounts

In the previous chapter, we learned about GitLab, what it is,

its history, functionality, and commands, the accounts it

o�ers, etc. Now, we move on to Bitbucket, with a similar set

of concerns in mind. So, let us proceed.

WHAT IS BITBUCKET

Bitbucket is a Git-based source code repository hosting ser-

vice that happens to be owned by Atlassian Corporation Plc.

(Programmable Logic Controller), an Australian so�ware

company which develops products for project managers,

https://doi.org/10.1201/9781003229100-8

198 ◾ Mastering Git

so�ware developers, as well as other so�ware development

teams. Atlassian acquired Bitbucket in 2010. Bitbucket was

then recognized as a hosted service that was used to enable

code collaboration. In May 2012, Atlassian released Stash, a

Git repository that was meant for enterprises, and rechris-

tened it as Bitbucket Server. Bitbucket o�ers free accounts as

well as commercial plans with unlimited private reposito-

ries. It provides collaborative version control, and is available

in a plethora of languages like English, Russian, German,

Chinese, French, Spanish, Japanese, Hindi, Korean, as well

as Portuguese. �e o�cial URL is BitBucket.org, while the

name of the creator is Jesper Noehr. �e service registration

requires an optional OpenID, which is a decentralized as

well as open standard authentication protocol that was pro-

moted by the non-pro�t organization OpenID Foundation.

�e service is presently available online, and was launched

13 years ago in 2008 using Python, a high-level interpreted

general-purpose programming language.

Bitbucket ◾ 199

Services

Bitbucket Cloud

Bitbucket Cloud (earlier known as just Bitbucket) is written

in Python and utilizes Django, a web framework following

the model-template-views, i.e. the MTV architectural pat-

tern. Mostly, Bitbucket is only used for code as well as code

reviews. �e service provides a plethora of features like:

• Bitbucket pipelines, a regular as well as continuous

delivery service.

• Pull requests with code reviews along with comments.

• Two-Step Veri�cation.

• IP Whitelisting.

• Merge Checks.

• Code Search (Alpha).

• Git Large File Storage (LFS).

• Issue-tracking.

• Wikis.

• Documentation, including automatically rendered

README �les from a plethora of Markdown-like

�le formats. Markdown here is a lightweight markup

language which can be used for adding formatting

elements to plaintext format text documents.

• Static sites that are being hosted on Bitbucket Cloud,

i.e. the static websites having the Bitbucket.io domain

in their URL.

200 ◾ Mastering Git

• Add-ons as well as integrations.

• Snippets that allow the developers to share code seg-

ments as well as �les.

• Smart Mirroring.

• Representational State Transfer (REST) Application

Programming Interface (APIs) that allow you to build

various third-party applications which should be able

to use any kind of development language. A REST

API is an application programming interface that

conforms to the constraints of REST Architectural

style as well as allows for interaction with the RESTful

Web Services. REST was invented and developed by

the computer scientist Roy Fielding.

So, Bitbucket is our Git repository management solution

that is designed for highly professional teams. It will give

you a central place so that you are able to manage all your

Git repositories, collaborate with your fellow developers for

your source code, as well as guide you through the devel-

opment �ow. It gives you amazing facilities like:

• Access Control so that you are able to restrict access

to your source code.

• Work�ow control in order to be able to enforce a

project or a team work�ow.

• Jira Integration that provides full development

traceability.

• Full Rest API in order to be able to build features that

are customized to your speci�c work�ow.

Bitbucket ◾ 201

Now, let’s discuss how to go about operating on Bitbucket

using instructions for a variety of functions like:

Granting Repository Access to Users and Groups

Whenever you create a repository, you have got to specify

whether it is supposed to be public or private. If your repos-

itory is public, anyone should be able to access it. However,

if it is private, only a few selected list of individuals as well

as groups will have access to it.

To create groups, you shall have to go to the User

Groups page of your workspace Settings. If you happened

to have created a new group for a workspace, Bitbucket

would not automatically add it to the existing repositories

of the workspace. Alternatively, if you create a new group

from the designated workspace, Bitbucket will not be

adding it to the list of your personal repositories. Users,

as well as groups, usually have one of the provided levels

of access:

• Admin: �is level will allow the users to do every-

thing within a particular repository, like change the

settings of the repository, update the user permis-

sions, as well as delete the entire repository.

• Write: �is will allow the users to contribute to the

repository by being able to push the changes directly.

• Read: �is will allow the users to view, clone, as well

as fork the repository code, but not push the changes.

Read Access will also allow the users to be able to

create issues, comment on the said issues, edit wiki

pages, etc.

202 ◾ Mastering Git

Steps:

• User Access: Make sure that you enter a user as well

as an access type to be able to add a user to a repo.

• Group Access: Pick a group and then access type to

add a group to a particular repo.

• Remove: Click to be able to remove access for a user

or a group.

• Change Access: Click on any of the access types to

change the access for a user or a group.

If a user happens to delete his or her account, Bitbucket

will be automatically deleting that particular user from all

their repository access lists.

For when you are adding users, remember that if you

are on a free plan and the number of users who happen to

have access to your private repositories is going over �ve,

the access will be becoming read-only until you manage to

upgrade your account or at least remove users from a group

or the individual repositories. You along with the other

repository administrators will still be having access to the

repository. Also, you will not be able to add a workspace

to your repository. �e only workspace that has access will

have to be the workspace that owns the repository, but you

should also be able to transfer repositories to your work-

space if you deem it necessary. Or else, create a new group

and subsequently, add the speci�c users that you want to

that particular group.

You must also learn how to add group access to a reposi-

tory. Whenever you create a new repository, Bitbucket checks

Bitbucket ◾ 203

to see if the owner of the repository is in any groups with

an access level of read, write, or admin. If the workspace

does, Bitbucket will be adding those groups to the new

repository alongside a default permission. If a group

does not have any access, that group shall not be appear-

ing on the “User and group access” page. However, you

should still be able to add that group along with all the

required as well as suitable access. These are the steps

to follow:

• Go to the User and Group Access page, click on the

option “Select a group” and subsequently scroll down

to your new group or start typing its name in the text

box to be able to �nd it.

• A�er you have made the selection of the right group,

select the suitable access level from your access drop-

down list.

• Click on “Add” and add the group to the repository.

Update User/Group Access

In order to be able to update group access, click the new

access level of the group from the page “User and Group

Access”. When you are done with changing your group

access or removing a group from the repository entirely,

you will be able to establish repository-level group settings.

�ese changes shall remain in e�ect for that speci�c repos-

itory, even if you were to later change the group’s access

from the workspace or the account’s User group’s page.

While user groups are generally the best way to manage

access to your repositories, you should also be able to add

204 ◾ Mastering Git

the users individually. In order to be able to add individual

users to your repository:

• Go to the User and Group Access page, enter the name

as well as the email address of a user of Bitbucket

inside the Users text box.

• Choose an access level from the options available in

the dropdown menu.

• Press the button “Add”.

If you are adding the email address of someone without

their account, that person shall be receiving an email

prompting them to create one. Once the user has access to

Bitbucket, s/he will be able to access the repository as well.

Branch Permissions

For Bitbucket, branch permissions should help you to

enforce speci�c work�ows as well as prevent errors like a

workspace member managing to delete the master branch.

With proper branch permissions, you should be able to:

• Closely control the users as well as the groups who

are allowed to write or merge to any branch.

• Create permissions for a particular branch type, as

well as pattern. For example, ensure that/Project

limits its access to all branches that have names like

Project 1/2/3, and so on.

If you need even tighter control over the work�ow of your

workspace, you should check out the feature of merge checks.

Bitbucket ◾ 205

�ey will allow you to recommend or even require particu-

lar conditions on your merges for individual branches as

well as the branch patterns. We will also be looking at the

di�erent aspects of merge checks in the next section of this

chapter. If you have got the branching model enabled, you

should be able to con�gure permissions for all the branches

of a particular type. �is can prove to be exceptionally use-

ful when you wish to restrict the merge access on all the

release branches, for example. Not only that, the so�ware

of Bitbucket makes sure that the branch permissions are

never overlapping with each other.

Suggesting or Requiring Checks
before a Merge Takes Place

Merge checks are de�ned as checks that allow you to rec-

ommend as well as require the particular conditions on

merges for the branch patterns as well as the individual

branches. Merge checks are supposed to be working in

tandem with the branch permissions in order to give the

members of the workspace some �exibility as well as con-

trol over their development work�ow. Providing the users

with these recommended checks for their consideration

before they conduct the merge is available to everyone on

Bitbucket. Nevertheless, there are also options available to

conduct the Premium Merge Checks:

• Enforce the merge checks to ensure that every pull

request is completely vetted before the actual act of

merge takes place.

• Ask for another approval from the reviewers, if the

source branch of a pull request happens to get modi�ed.

206 ◾ Mastering Git

�ere are di�erent purposes that merge checks tend to

serve. �ey are:

• Dependent Merges

• �ese will ensure that users are only able to merge

changes with the passing builds.

• Select a particular number of successful builds

before actually conducting the merge.

• Can be used with Bitbucket Pipelines, a build tool

integration or the commit status REST API.

• Code Review Completion

• It ties your merges to the code reviews.

• Allows your colleagues to work collaboratively

with the aid of pull requests at their disposal.

• Keep your work�ow consistent so that the devel-

opers always know what they need to do in order

to conduct the merge.

• Task Completion

• You will be able to create tasks on pull requests

in order to mark out the changes that have to be

made.

• Management of a pull request as it is progressing

toward approval.

• Make sure that all the tasks in a pull request are

completed before the �nal merge is conducted.

Bitbucket ◾ 207

To reiterate, you will need to use merge checks for pur-

poses of recommendation as well as requiring that a set of

conditions be met before a merge gets actually conducted.

If you select any of the options that have been provided

below, but you do not have the Premium plan, Atlassian

will warn the users that they still have unresolved merge

checks, but will not stop the act of merging if the user still

wishes to proceed. If you want your users or developers to

be prevented from merging, you will need to upgrade to

a Premium plan and further select “Prevent a merge with

unresolved merge checks”. Some of the important merge

checks are:

Setting Result

Check for at least {#number}

approvals

Users will get a noti�cation

if/when their pull requests do

not have the prescribed

number of approvals.

Check for the unresolved pull

request tasks

Users should get a noti�cation

whenever they have pull

request tasks that are yet to be

�nished.

Check for {#} passed builds in the

last commit

Users shall get a noti�cation if

and when they do not have the

prescribed number of

successful builds in their most

recent commit.

Automatically merge a pull request

when all the checks are passed

�e admin should enable this

feature so that so that a queued

up merge will be triggered

automatically once all the merge

checks have been successfully

passed.

208 ◾ Mastering Git

Furthermore, on the Premium plan, you shall also have

access to the given settings:

Setting Result

Enforce all the merge checks to

ensure that every pull request

has been completely vetted

before the merge takes place

Here, users will not be able to

conduct the merge as long as their

pull requests continue to have

unresolved merge checks. �ey

will get to see a checklist of all the

issues that they need to resolve via

their codes before it might be

allowed for the merge to be

executed.

Reset the approvals when your

source branch has been

modi�ed

If any changes are made to the

source branch of the pull request,

the pull request will be making

automatic updates without seeking

any kind of approval, and the

reviewers shall subsequently have

to review as well as approve of the

pull request again.

You need to �rst navigate to the repository where you wish

to add the branch permissions, then follow it up by going to

Repository Settings>Branch permissions. In order to add

permissions as well as merge checks to the main branch,

take care to follow the given set of instructions:

• Click on “Add a branch permission”.

• Enter the provided details into each �eld: Branch (in

this case, Main), Write Access (the individual you

want to automatically get the merge through the

pull request permissions), and Merge via pull request

(again, the name of the said individual).

Bitbucket ◾ 209

• Expand “Add merge checks”, then click on “Checked

for {#} passed builds on the last commit”, and add a

number from the dropdown options.

• Click on Save.

�is setup should help the member of your workspace

have access control to the central branch. Because only the

production-ready code has to be merged, a merge check is

required only for the successful builds.

Next, how to add permissions as well as merge checks to

a developing branch:

• Click on “Add a branch permission”.

• You, then need to enter the following details into each

of the �elds that have been mentioned here: the name

of the branch or the pattern, write access, as well as

who gets to Merge via the pull requests.

• Expand the Add Merge Checks: Click on “Check for

at least {#} approvals” and select the suitable num-

ber from the list of dropdown options, subsequently,

click on “Check for at least {#} approval from default

reviewers” and choose the number of default review-

ers that you want, if you have established any for this

pull request, from whom you want to approve the pull

request, then click on “Check for the unresolved pull

request tasks”, for the option “Check for {#} passed

builds on the last commit” choose the number you

want from the dropdown options.

• Finally, click on Save.

210 ◾ Mastering Git

Using Pull Requests for Code Review

A�er you have added �les as well as made updates in

the existing code, it is time to merge that code into your

Bitbucket Cloud Repository. Before you make the merge,

you will have to ensure that the quality of the code is con-

sistent with, and will not harm, break, or tamper with any

of the existing, tried and tested features in the code. To be

able to receive the feedback that your code needs for you to

undertake improvements as well as updates, you should cre-

ate a pull request that must include all the lines of code that

you have contributed to the project. Pull Requests impor-

tantly provide you with a method for requesting reviews

for your code from your colleagues as well as checking the

build status dependent on your latest commit made. As far

as the larger work�ow is concerned, to use pull requests, you

require a branch or a fork, so that you are able to develop

your code on a separate line from the primary codebase.

Pull Request Process

Collaboration as well as code review are the core of pull

requests. Depending on your role in the process of code

development, whether you are an author or a reviewer, or

both, you are supposed to make use of the pull requests.

Pull Request Authors

If you are searching for and want to �nd out the pull requests

that you created, you will have to check for the option “Your

pull requests” list on the “Your Work” option on your dash-

board. As a pull request author, it is imperative that the code

review process begins a�er you have created and sent a pull

request to your reviewers. If you could not add the viewers

Bitbucket ◾ 211

during the creation, you can always go back to the pull request

and edit it to add them later on. A�er you have created the

pull request as well as added the reviewers, you should ideally

wait to receive their approvals. However, the iterations and

the deliberations will soon begin as the reviewers will start

looking through your code as well as making comments. You

will also be receiving the email noti�cations of the ongoing

discussions, where you must participate, keeping your point

across with clarity as well as precision, thus becoming an

active contributor in the code review process.

Pull Request Reviewers

To �nd out the requests that you have been asked to review,

check for the “Pull Requests to Review” list on the “Your

Work” dashboard. You also could go to the Pull Requests

page in the repositories of your workspace if you wish

to help your colleagues with the other pull requests that

they are supposed to check. Whenever a workspace mem-

ber will add you as a reviewer, Bitbucket shall notify you

over email. Post the initial noti�cation regarding the pull

request creation, you will keep on getting email noti�ca-

tions with regard to the following actions:

• �e author has made updates.

• Another user has made a comment.

• A reviewer has sent approval.

• �e user has merged the pull request.

If you seek to disable these noti�cations, you shall have to

unwatch the pull request. During the code review, you will

212 ◾ Mastering Git

have to comment with your suggestions, feedback, as well

as ideas. You must take your time to consider if there are

logic errors, if all the cases have been fully implemented, if

there are existing automated tests that need to be rewrit-

ten, as well as whether the code conforms to the existing

style guidelines. A�er you are done with your review, if

you deem the pull request to be ready for merging (or if

you trust that the author shall be able to resolve the issues

pointed out before merge), you should click on the Approve

button at the top right. A green checkmark would appear

next to your name in the Reviewers section a�er you send

an approval for a pull request. Do remember that if your

workspace operates on a Premium plan, the admins might

not be able to pull requests that do not contain a certain

number of approvals from being merged.

How to Restore a Deleted Branch

Sometimes, it is possible for you to accidentally delete an

entire branch. For cases like these, make sure everything

is being performed locally, as well as that your repo is in

the state that you need it to be in, before making a push to

the Bitbucket Cloud. It will again be a good idea for you

to clone your repo, and then perform these solutions �rst.

• If you deleted a branch, you should be able to see

something similar on your terminal window:

Deleted branch <branch-name> (was <sha>)

• If you need to restore the branch, you will have to

make use of the command:

git checkout -b <branch> <sha>

Bitbucket ◾ 213

Say, you don’t remember the SHA, then you could,

• Find the SHA for the commit at the tip of the branch

you deleted using the git re�og command.

• Now, to restore the branch, use ‘git checkout -b

<branch> <sha>.

Say, if the commits are not there in your re�og,

• You should try recovering the branch by resetting it

to the SHA of the commit found.

• You should then be able to display every commit

using either of these:

git log -p<commit>

git cat-file -p <commit>

Bitbucket Server

Bitbucket Server (earlier known as Stash) is a combina-

tion of web interface product as well as a Git server that

is written in Java, a class-based, high-level, object-oriented

programming language designed so that it has as less

implementation dependencies as possible, and built with

Apache Maven, a built-automation tool that is mostly used

for Java projects. Bitbucket Server allows its users to be able

to do basic Git operations (like merging code or reviewing,

similar to GitHub) while also being able to control the read

as well as the write access to code. It also allows for integra-

tion with other products of Atlassian. Bitbucket Server is

also a commercial so�ware product that can be licensed for

214 ◾ Mastering Git

running on-premises. Atlassian provides Bitbucket Servers

to open source projects meeting a speci�ed criteria for free,

as well as to the non-pro�t organizations and other organi-

zations that happen to be non-academic, non-government,

non-political, non-commercial, and secular. For commer-

cial as well as academic consumers, the complete source

code is available, albeit under a developer source license.

HISTORY

Bitbucket, earlier, was an independent startup company

that was founded by Jesper Nøhr in 2008. On September 29,

2010, Bitbucket got acquired by Atlassian. Bitbucket was

then popularly known as a Mercurial Project Hosting site.

Mercurial, referenced earlier in this book, is a distributed

revision control tool meant to be used by so�ware devel-

opers that was released in 2005. �e product development

and so�ware company Atlassian had already made it clear

that it would be investing heavily in the enterprise space.

Neither of the parties ended up disclosing the terms and

conditions of the deal. Bitbucket then used to play host to

over 60,000 accounts and was the premier code collabora-

tion provider for the distributed VCS o�ered by Mercurial

as well as a general services provider for the developers who

wished to share as well as encourage collaboration in their

projects. Bitbucket was understood as being quite similar

to GitHub as well as Google Code, and was also hosting the

codes of many incredible open-source projects like Adium,

Opera, MailChimp, etc. Bitbucket was incorporated into

Atlassian’s family of an extensive range of development

products and so�ware collaboration tools that were help-

ing various teams to conceive, plan, develop, as well as

Bitbucket ◾ 215

launch their products. �ese products had included the

issue tracker JIRA as well as Con�uence (known to be a

facilitator of content collaboration). �e company’s o�er-

ings, even then, were utilized by more than 20,000 custom-

ers worldwide, including organizations like Zynga, Cisco,

Adobe, as well as Facebook. As per the decisions made dur-

ing the process of integration, Atlassian made Bitbucket

completely and absolutely free, apart from o�ering free

hosting for as many as 5-devs, and giving out unlimited

repositories as well. At the time of the launch of Bitbucket

as an Atlassian product, the company also o�ered a free

year for a ten-user account, as a promotional tactic. �e

company representatives had been quoted saying that the

acquisition had helped the company in �lling a lacuna in

its product o�erings, and had thus made Atlassian a sig-

ni�cantly more comprehensive platform for its customers

involved in the �eld of so�ware development. �e devel-

opers had �nally got a place to host their code, as well as

keep a track of their project issues within the domain of

Atlassian. �e company’s Jay Simon had then declared that

the company was seeking to become what Adobe was for

designers, except for the technical development teams. By

September 2015, Atlassian renamed their Stash product as

Bitbucket Server. In July 2016, Bitbucket was added as sup-

port for Git LFS. �en in 2020, Bitbucket removed its sup-

port for its original repository, the format of Mercurial, a

distributed revision control tool that is meant to be used

by so�ware developers for their projects, and is supported

on Microso� Windows, as well as Unix-like operating sys-

tems of FreeBSD (Berkeley Distribution So�ware), macOS,

as well as Linux.

216 ◾ Mastering Git

FREE AND ENTERPRISE ACCOUNTS

�is s ection i s a g uide o n h ow t o ma nage y our p lan a s
well as billing for the Bitbucket Cloud. Basically, Bitbucket
Cloud provides an unlimited number of private as well as
public repositories to everyone who has a free account. You
are allowed to grant as many users as you want to be able
to ha ve a ccess t o y our p ublic r epositories. B itbucket w ill
also determine the cost depending on the number of users
who will be able to have access to your private repositories.
�ere are three diἀerent plans provided by the company:
they are called free, standard, as w ell a s premium. E ach
plan is accompanied by a g iven amount of build minutes
for Pipelines, as well as a mandated �le storage for Git LFS,
but you should also be able to acquire additional storage as
well as minutes. Keep in mind that updating your current
plan will not be able to increase the size of your repository.
�ere is a g iven size limit for the repositories—2 GB. �is
applies to all plans, Free, Standard, as well as Premium.

Let’s brie�y delve into the features provided by each plan.

Free

• It is free of cost for upto �ve users.

• It provides 50 build minutes per month and has
the LFS of 1 GB in all.

• It does not provide Overage protection.

Standard

• It costs $3 every user per month, or a �at rate of $15
per month for any number of users from one to �ve.

Bitbucket ◾ 217

• �e build minutes are 2500 per minute per month,

while the LFS is 5 GB in all.

• It provides overage protection.

Premium

• It costs $6 per user per month, or a �at rate of $30 per

month for any number of users ranging between one

and �ve.

• �e total build minutes provided are 3500 per minute

per month, and the LFS is 10 GB in all. Other features

provided include deployment permissions, IP allowlist-

ing, merge checks, requiring 2SV, access controls, etc.

• Overage protection is included.

However, keep in mind that these plans and prices go

through a regular process of changes as well as revisions,

so you should check the o�cial page of Bitbucket for per-

fectly updated plans as well as prices.

Overage Protection

�e standard as well as the premium plans includes over-

age protection for your build minutes as well as a LFS for all

users belonging to the workspace. However, if you happen

to go over your build minutes, Bitbucket will automatically

add more minutes in your current month. But when the

next billing cycle starts, the build minute usage will reset,

and you will not be billed the additional charge (unless you

have gone over the limit again). Similarly, if you go beyond

the limit of the LFS, Bitbucket will again automatically add

218 ◾ Mastering Git

more to the LFS capacity. You shall continue to be billed for

the supplementary LFS capacity on a monthly basis cost per

100 GB of additional storage as long as you will be using it.

�e charges of overages are $10 per 1000 additional build

minutes for each billing cycle, as well as the same price, i.e.

$10 per 100 GB of LFS, as per your needs.

If you happen to be on the free plan, make sure that you

are able to purchase additional storage or minutes, what-

ever it is that you require in order to be able to complete

your work. You shall have to enter the details required of a

credit card that is associated with your Bitbucket account.

Rest assured, you will be billed if and only if you have

exceeded the limit that had been explicitly mentioned in

your plan, whether it will be for storage or the build min-

utes. However, if you choose to not purchase any additional

minutes or storage, and still end up going over the pre-

scribed limit, you shall not be able to run more pipelines in

that particular month or even use more LFS.

Changing Your Plan

In order to change your current Bitbucket plan, follow the

provided steps:

• Open your Workspace settings via clicking on “Your

pro�le and settings” avatar> the name of the current

workspace, and subsequently click on “Settings” from

the le� sidebar.

• Choose Plan details under Plans and Billing on the

le� panel.

• Click on “Upgrade plan” or “Change plan”.

Bitbucket ◾ 219

• On the Bitbucket Cloud plans page, click on one among

the Free, Standard, or Premium buttons for the plan

that you need.

• In the section for “Enter your billing details”, enter

the required information.

• Click on Purchase.

In the case of the free plan with extra minutes as well as stor-

age, under the section “Free plan”, depending on your plan,

you will see the options “Get more minutes and storage” or

“Only pay for extra storage and minutes”. Click on these

options, if you need extra minutes as well as storage along with

the Free plan. If you are paying for extra storage as well as min-

utes alongside the Free plan and now wish to stop, you will be

able to see an option “Stop paying for storage and minutes”.

Once you are done, your payment information is

recorded and now, you should be able to see your new plan

in the Plan Details page. Your credit card will be billed

monthly as per the plan that you have chosen as well as the

number of users on your account. If you happen to miss a

payment, you get downgraded to a Free plan with a �ve-

user limit. If you used to have the premium plan, you will

now lose any saved Premium settings.

Updated Credit Card Details

If you wish to change a credit card that has been associated with

your account, do take care to follow all the mentioned steps:

• Open the Workspace settings by clicking on Your pro-

�le and settings avatar>the name of the workspace,

and subsequently click on settings in the le� sidebar.

220 ◾ Mastering Git

• Select the option “Plan Details” under Plans and

Billing on the le� panel. You should be able to see

your credit card details in the section for the Billing

details at the right side of your plan details.

• Click on the option “Update Credit Card”. If you have

not been able to add your credit card yet, you will also

have to use another option that you will clearly be

able to see called “Add credit card”.

• On the “Enter your billing Details” screen, make the

appropriate changes as per your needs to your credit

card details.

• Lastly, click on the “Purchase” option.

Remember that whenever you have to make updates to

anything on this screen, you shall have to re-enter your

credit card information.

See the Users on Your Plan

If you wish to see the users that are currently on your

Bitbucket plan, you will have to follow the provided steps:

• Open your Workspace settings by clicking on “Your

pro�le and settings”>the name of the workspace, and

then subsequently click on settings in the le� sidebar.

• On the le� panel, select the option “Users on Plan”

under Plans and Billing.

• On the Users on Plan page, you shall be able to see all

the users who have access to your private repositories.

From there, click on “View Access” to be able to see

Bitbucket ◾ 221

which repositories they have access to as well as the
groups that they are a part of. Click on the icon of
“X” to remove the users from this list, which should
also be able to remove them from those repositories
as well as groups.

Additionally, there are three deployment options that are
available, as far as the case of Bitbucket is concerned. �ey are:

• Bitbucket Cloud: It is hosted on Atlassian’s servers
and a ccessed t hrough t he u se o f a U RL. B itbucket
Cloud provides its users with Pipelines, an exclusive as
well as a built-in continuous integration tool, enabling
you t o b uild, t est, a s w ell a s d eploy f rom d irectly
within your Bitbucket. However, there are also some
restricted functions in the Atlassian Cloud Apps.

• Bitbucket Server: It is hosted on-location and within
your e nvironment. B itbucket S erver w ill n ot c ome
with a b uilt-in t esting o r d eployment t ool, b ut i t
does tend to have a strong system of integration with
Bamboo, the popular continuous integration as well
as c ontinuous d elivery t ool t hat s hould b e a ble t o
allow y ou t o c ompletely a utomate y our b uild p ro-
cesses. You will also have more apps at your disposal
than Cloud, and their licensing will be permanent.

• Bitbucket Data Center: �e Enterprise oἀering from
Bitbucket resembles a single instance of Bitbucket
Server for its users, even though it is hosted on a sig-
ni�cant number of servers within a cluster of your own
environment. �is leads to signi�cant advantages like:

222 ◾ Mastering Git

• Performance at Scale: Because a cluster of multiple

machines running the Bitbucket Server should be

able to handle more load than a single machine pos-

sibly could.

• High Availability: Because if one cluster node hap-

pens to go down, then the rest of the cluster nodes

should be able to still continue servicing requests for

users so that there is little to no loss of availability.

• Smart Mirroring: Smart Mirror should be able to

improve Git clone speeds, particularly for distributed

teams that continue to work with huge repositories.

Pull Requests with special features like in-line comment-

ing to enhance the spirit as well as the practicality of col-

laboration between the di�erent members of a so�ware

development team.

223DOI: 10.1201/9781003229100-9

Appraisal

We have studied a lot of topics pertaining to Git in this

book. Now, let us brie�y go over the contents of this text so

that we can revise and restate the facts and the information

about Git that we studied.

Chapter 1 began with us talking about the basics of

Version Control, what it is “A version control is a kind of

system which allows you to keep track of the changes that

have been made to a code over a duration of time. Making

use of version control comes with its advantages. A ver-

sion control so�ware will keep track of all the changes

that have been made to a code in a special, speci�c data-

base. �is means that you can, at any given point in time,

revert back to the older versions of the code you are work-

ing on.” Given its role in the world of technology in its

present shape and form, VCS also ensures a signi�cant

increase in successful deployments as well as a reduction

in development time. �is makes them especially use-

ful for DevOps teams, who are responsible for combin-

ing so�ware development with IT operations. Some types

are “SCM (Source Code Management) tools” and “RCS

(Revision Control System).”

https://doi.org/10.1201/9781003229100-9

224 ◾ Appraisal

�e next section focused on the eponymous concern of

this textbook Git. We learnt that “Git is a Version Control

so�ware meant for tracking changes in a given set of �les,

for ensuring coordinated work among programmers who

are collaboratively developing a source code for so�ware

development,” and that “Its proposed goals are speed, sup-

port for distributed, non-linear work�ows, as well as data

integrity.” A crucial reason as to why the so�ware is so

quick is that it does require regular access to the Internet

to be able to function. If you are working on your system,

you already have a copy of your master branch, so you will

make the required set of changes on it without having to be

online. Of course, you will have to push and pull changes at

some point of time, ideally consistently and regularly, and

that will require access to the Internet since we will have

to interact with other systems and networks. Now, let’s

recall what pushing and pulling were. �e push command

implies the pushing of the contents of a local repository

to a remote repository. �e push command is used a�er a

local repository is modi�ed, and so these changes need to

be shared with the other team members for them to work

on an up-to-date code. Pull, on the other hand, moves in

the opposite direction (obviously). A Pull command is to

be utilized in order to fetch as well as merge changes from

remote repository to the local repository.

�e pull command has been recognized as a fusion of

two di�erent commands, git fetch as well as the git merge

command, one followed by the other. �e Git fetch com-

mand is able to download the required code from the

remote repository, while the Git Merge command helps in

combining the multiple changesets of both the branches

Appraisal ◾ 225

into a single, seamless code line. We also came to about

the di�erent objects within the object database, the three

main stages that our �le will belong to within this so�ware

“Modi�ed, Staged, and Committed,” the “three central

sections of any Git project – the working tree, the staging

area, and the Git directory,” etc. Quick de�nitions. What

is a working tree? A working tree, also known as a work-

ing directory, consists of all the �les that you are working

on at the present moment. What, then, is a staging area? A

staging area, or index, is a location of commit-preparation.

�e index conducts comparisons of the �les present in the

working tree with the �les of the repository. And working

directory? A working directory, .gitfolder in Git, consti-

tutes all the information that is important for your proj-

ect’s version control, all the information regarding your

commits, remote repositories, etc. �e working directory,

for example, will have a log storing your commit history so

that you can roll back to an older changeset if that is what

your work demands.

�en, there were the sections on the advantages and the

disadvantages of this so�ware. We were told about Git’s

better speed, its ease in “leverage third parties as well as

encouraging them to fork their own open-source code,”

how the “shorter development cycle allows Git to synchro-

nize multiple activities with separate releases,” as well as

how its “Graphical User Interface (GUI) is not e�ective

and di�cult to maneuver through,” how it cannot “keep

track of empty folders and su�ers due to a lack of Windows

support,” “cannot support binary �les,” along with com-

paring its features as a Version Control System (VCS) to

other examples of Version Control so�wares like Perforce

226 ◾ Appraisal

and Subversion. Brief details on the last two. Perforce or

Perforce So�ware, Inc. is a so�ware developer known for

its version control system, developer collaboration, web

application services, among others. Subversion, i.e. Apache

Subversion too is a so�ware versioning as well as revision

control system distributed open source under the Apache

License.

�e section on the history of Git gave us an extensive

background on what went into the creation of the VCS, as

well as the circumstances that triggered creator Torvalds

to go on a working vacation and come back with the code

of this new VCS modeled a�er Larry McVoy’s BitKeeper,

some of the goals that the developers had in mind, like

speed, the role of distribution, an ability to handle mas-

sive projects like the Linux kernel with a fair degree of

e�ciency and agility, a simple design, a healthy space for

non-linear development, etc.

In Chapter 2, we transitioned toward understanding the

practical uses of Git, particularly how it is to be installed,

set up, as well as the tips and troubleshooting techniques

bound to come in handy while making use of the VCS

in our workspaces. We understood how we could install

Git on Linux through a binary installer, how the “o�cial

Git website is also the go-to place for installing Git on

Windows,” how we need to go about setting up our user-

names and passwords, the commands to be used in order

to create a new repo, for cloning, use of git push, autocor-

rection, counting of commits, data-backup, use of tags, and

many, many more. Remember Tags?

From Chapter 3 onward, we started going into details

regarding each and every aspect of Git. Here, we learnt that

Appraisal ◾ 227

“Repositories in Git refer to a collection of �les that contain

the di�erent versions of the same project” and that “�ese

�les are imported from the repository to the node, i.e. the

local system of the developers for further changes and

developments to the contents of the �le.” We learnt that

a “working tree refers to a set of �les that have originated

from a particular version of a repository” as well as about

the di�erent stages a �le tends to go through in the work-

ing tree of a Git repository. We learnt about how we could

record changes in our repositories, as well as some remote

management tips like showing remotes, adding remote

repositories, pushing to the remotes, inspecting remotes,

removing as well as renaming them, etc.

�e next section focused on Git Aliases. We learned

about how aliases were basically the short forms for a pleth-

ora of commands that we were bound to use while work-

ing on Git, how they saved time and improved e�ciency,

preserving our keystroke power, how the new commands

created were supplements and could not replace the origi-

nal form of commands, as it was. We also learned aspects

of the topic like how we could create aliases for a range

of commands, how aliases should ideally be used for the

most used commands, inter alia. Next section involved the

practice of Tagging and “how it involves the use of the git

tag command.” �e central concern at hand was de�ned

succinctly “Tagging is utilized to capture a particular point

in history, and made use of for a marked version release. A

tag, then, is a branch that is immune to any kind of change.

Tags, unlike branches, will not have a history of commits

a�er being created” and we learnt about the commands to

go for in order to be able to list our tags, along with how to

228 ◾ Appraisal

check out, share, delete them, etc. Further, we also learned

about the kind of tags that are at our disposal in Git, the

lightweight tags as well as the annotated tags.

In Chapter 4, our focus shi�ed to Branches. We learned

that “A branch is supposed to be a copy of a code line, which

is to be managed by the Version Control System (VCS)” as

well as how “Branches allow for parallel work, along with a

well-demarcated separation of work-in-progress code with

the stable as well as tried-and-tested code.” We were told

about the set of instructions and commands we were sup-

posed to employ while working with/on branches, whether

it is the creation of branches or remote branches, delet-

ing them, conducting merges, etc. While learning about

concepts like Git Branching, we understood that there

was nothing exceptional about the main branch as com-

pared to the other branches, it was simply an initializing

mechanism, a trunk that is supposed to give birth to sev-

eral other branches. We also went in-depth attempting to

amplify our de�nition as well as understanding of version

control. We learned that every new branch was simply the

announcement of a new pointer, and that Git as a so�ware

was keeping track of these successive pointers, one a�er

the other, thus managing to keep a record of all the ver-

sions of the �le that were now being made. We learned how

branches o�en were called feature branches since a devel-

oper would work on a node (local system) in order to make

changes to the code of a particular feature of a product, like

a bug �x, a new development to be launched in the market,

etc. It is also of incredible importance that the changes we

make in our branch get pushed toward the central reposi-

tory at regular intervals so that the trunk code is regularly

Appraisal ◾ 229

updated, and there is less possibility of merge con�icts

later on. With a proper example, we were able to demon-

strate how branches facilitate independent work in tandem

with a spirit of collaboration vis-à-vis the �eld of so�ware

development.

Chapter 5 was all about servers. We learned about the

steps as well as the processes and complications involved

in getting Git on server, putting the bare repository on a

server, as well as how Git makes e�ective use of SSH access.

Basically, an SSH key is supposed to be a kind of an access

credential for the secure shell network protocol. �e secure

shell protocol is an authenticated as well as encrypted

secure network protocol meant to be used on an unsecure

open network in order to make remote communication

possible. Various functions and facilities that SSH can help

with regard to are network management, remote �le trans-

fer, as well as remote operating system access. �e chapter

then informed us about the di�erent kinds of work�ows

that were possible on Git, like the Distributed Work�ow,

the Centralized Work�ow, Integrator-Manager Work�ow,

and the Dictator and Lieutenants Work�ow. �e salient

features of all of these systems were provided.

Chapters 6–8 focused on the important so�ware com-

panies/hosts spawned by the rip-roaring success of Git,

namely GitHub, GitLab, as well as Bitbucket. For all of the

three, we learned what their chief features were, the his-

tory associated with their so�wares as well as the compa-

nies controlling and maintaining the codes, how we can

go about operating the tools they o�er, with a number of

step-by-step processes for di�erent functions, as well as the

di�erent kinds of accounts they o�er to their users.

230 ◾ Appraisal

�e invention of Git was nothing less than a miracle, a

remarkable innovation that resolved a variety of issues that

the coders had been struggling with for a really long period

of time. While this books acts as a good primer to learn

about the central concepts involved in this juggernaut, you

are also recommended to continue on your journey as a

learner as well as a developer, and master this beast well

and proper. Good Luck!

231

Index

A

Accounts, 149

enterprise, 151–152

organization, 150–151

personal user, 149–150

Advantages of Git, 15

for budget management, 19

for customer support, 19

for designing, 18

for development, 16–17

for HR, 19

for marketing, 17

for product management,

17–18

Aliases, Git, 72–80

Alibaba Group, 158

Andreessen Horowitz, 137, 138,

139

Annotated tags, 81, 82

Apache Maven, 213

Apache Netbeans, 43

Append-only object database, 13

Apple, 37

Atlassian Corporation Plc., 197

August Capital, 158

Autocorrection, 47–48

B

Bare and cloned repositories, 46

Bare Git, 7

Bare repos, 8

Bare Repositories, 46, 58

Bash Command Piping, 49

Benevolent dictator, 123

Bitbucket, 16, 31, 101, 140, 197

branch permissions,

204–205

changing your plan, 218–219

deleted branch, restoring,

212–213

granting repository access

to users and groups,

201–203

history, 214–215

overage protection, 217–218

Premium Merge Checks, 205

pricing plan, 216

premium, 217–222

standard, 216–217

pull requests, 210

authors, 210–211

process, 210

reviewers, 211–212

232 ◾ Index

seeing the users on your plan,

220–222

services, 199–201

suggesting/requiring checks

before a merge takes

place, 205–209

updated credit card details,

219–220

User/Group Access, updating,

203–204

Bitbucket Cloud, 199–201, 216,

221

Bitbucket Data Center, 221

Bitbucket Server, 213–214, 221

BitKeeper, 26, 27

Blob, 13

Blue badge, 43

Branches, 87, 88

common commands, 91

creation of, 91–92

deleting, 92–93

Git branching, de�nition of,

93–95

naming, 95–99

remote branches, 106

creation of, 92

deleting, 111–112

pulling, 111

pushing, 108–109

tracking branches,

109–111

work�ows, 99

feedback, resolving, 102

how it works, 100

main branch, beginning

with, 101

merge your pull request,

102

new branch, creating, 101

pull requests, 102–106

push feature branch to

remote, 101–102

subsequent tasks, 101

working, 90–91

Branching capabilities of Git, 16

Budget management, Git for, 19

Built-in GUI tools, 39

Built-in Templates, 186

C

Centralized VCSs, 5, 121

Centralized work�ow, 103,

120–121

Chacon, Scott, 137, 138

Changes

merging, 51

reverting, 46–47

Chocolatey packages, 37

CI, see Continuous Integration

CLI, see Command-line interface

Client-Server VCSs, 27

Clone command, 44

CNET, 142

Code branching, 88

CollabNet, 6

Color coding, 43

Color settings, 42–43

Command-line interface (CLI),

72–73, 79, 143

Commit access, 125

Commit object, 13

Commits, 65

editing, 54

removing, 52–53

Committed, 14

Concurrent Versions Systems

(CVSs), 11, 29

Index ◾ 233

Context switching, 18

Continuous Integration

(CI), 156

Counting commits, 48

Create branch, 178

Credential cache, 109

Cryptographic hash, 28

Customer support, Git

for, 19

Custom Project Templates,

186–187, 188–190

CVSs, see Concurrent Versions

Systems

Cygwin, 169

D

Data backup, 49

DDoS, see Distributed denial-of-

service attack

Debian-based distribution, 38

Default branch name, 42

Deleting tags, 83–84

Designing, Git for, 18

“Detached head” state, 84

Development, Git for, 16–17

DevOps, 3, 154, 161, 223

Dictator and lieutenants

work�ow, 123–124

Directory, 14–15

Disadvantages of Git, 19–26

Disposable experimentation, 18

Distributed denial-of-service

attack (DDoS), 139

Distributed version control

system (DVCS), 2, 5, 6,

27, 30

Distributed work�ow, 120

DNS, see Domain Name System

Domain Name System (DNS),

118

DVCS, see Distributed version

control system

E

Eclipse, EGit on, 169

Editing, 41

EGit on Eclipse, 169

Elementary Git work�ow, 15

Email addresses, 135–136

Embedding, 54

Enterprise accounts, 151–152

Enterprise Package, 133

Enterprise templates, 187–188

F

Feature branch work�ow, 175

File tree, 3

Forks, creating, 175–176

G

Getopt package, 39

git branch, 91

Git clone, 44–45

Git commit, 77

Git con�g, 40, 74

git con�g list, 78

Git conventions, formalizing,

50–51

git di� command, 64, 78

Git directory, 14–15

Git extensions, 38

Git Feature Branch Work�ow,

99–100, 106

.git folder, 49

234 ◾ Index

GitHub, 3, 11, 23, 30, 31, 33, 39,

63, 122, 129, 130

accounts, 149

enterprise accounts,

151–152

organization accounts,

150–151

personal user accounts,

149–150

account set up and

con�guration, 131–134

email addresses, 135–136

history of, 137

acquired by Microso�,

139–141

mascot, 141–143

how to use GitHub, 144

cloning and forking

GitHub repository,

148–149

create branches, 145–146

creating a repository on

GitHub, 144–145

making commits, 146–147

merge command, 148

pull command, 147

replacing avatar, 135

Secure Shell (SSH) access,

134–135

Two-Factor Authentication

(2FA), 136–137

GitHub Desktop, 36

GitHub Octodex, 141

GitLab, 31, 122, 140, 153

creating a group, 172–173

creating a project, 172

feature branch work�ow, 175

forks, creating, 175–176

history of, 155–161

how to create a branch,

174–178

merge requests, creating, 177

adding attachments when

creating merge request

by email, 183–184

from an issue, 178–179

by sending an email,

182–183

setting the default target

project, 184

when you create a branch,

180

when you have to add,

edit, or upload a �le,

179–180

when you have to work in

a fork, 181–182

when you use git

commands locally,

180–181

new issue, creating, 177

pricing plan, 195–196

projects, working with, 184

custom project templates,

188–190

enterprise templates,

187–188

group push rules, 194

IP restriction, 194–195

project templates, 186–187

star a project, 190–193

repository, adding �les to,

176–177

reserved project and group

names, 173–174

and SSH keys, 161

adding SSH key to GitLab

account, 166

Index ◾ 235

con�gure the SSH to point

to a di�erent directory,

164–165

generating the SSH keys,

163–164

Microso� Windows, using

SSH on, 169

overriding SSH settings on

GitLab server, 170

prerequisites, 162

supported SSH key types,

162–163

troubleshooting SSH

connections, 170–172

two-factor authentication

(2FA), con�guring, 168

updating the SSH key

passphrase, 165

upgrade the RSA pair to

a more secure format,

165

using di�erent accounts

on a single GitLab

instance, 167–168

using di�erent keys for

di�erent repositories,

167

using EGit on Eclipse, 169

verifying that you can

connect, 166–167

GitLab EE, 157

Git last commit, 77

Gitorious, 157

Git Push, 45–46

Git Rebase, 21

Git remote, 78

Git Repositories, 118–119

Git Source Control Provider, 38

Gitter, 159

GKE, see Google Kubernetes

Engine

Glob patterns, 63

GNOME, 159

Google Code, 33, 138, 142

Google Kubernetes Engine

(GKE), 159

Google Ventures (GV), 159

Graphical User Interface (GUI),

20, 36, 72, 104, 105, 225

Gravatar service, 135

Grit, 143

Group push rules, 194

GUI, see Graphical User

Interface

GV, see Google Ventures

H

Hamano, Junio, 8–9, 29

Harvard Business Review, 140

HEAD pointer, 95, 96

HIPAA Audit Protocol Template,

187

History of Git, 26–33

Homebrew, installing Git on, 37

HR, Git for, 19

Hyett, P.J., 137, 138

I

IBM, see International Businesses

Machine Corporation

IDEs, see Integrated

Development

Environments

Index, 14, 46

Install-info package, 38

Installing Git, 35–39

236 ◾ Index

Institutional Venture Partners

(IVP), 139

Integrated Development

Environments (IDEs),

39, 72

Integration-Manager Work�ow,

121–123

International Businesses

Machine Corporation

(IBM), 158

IVP, see Institutional Venture

Partners

K

Kernel pages, 39

Khosla Ventures, 158

King, Je�, 30

L

Laguna, Rafael, 140

LDAP server, see Lightweight

Directory Access

Protocol server

Lieutenants, 123

Lightweight Directory Access

Protocol (LDAP)

server, 117

Lightweight tag, 81, 82

Linux, 8

installing Git on, 35, 36, 37

Linux Kernel, 26, 64

Local VCS, 5

M

Mac, installing Git on, 35–36, 37

Marketing, Git for, 17

Mascot, 141–143

McVoy, Larry, 26

Mercurial, 6, 27, 32

Merge requests, creating, 177

add attachments when

creating merge request

by email, 183–184

from an issue, 178–179

by sending an email, 182–183

setting the default target

project, 184

when you create a branch, 180

when you have to add, edit, or

upload a �le, 179–180

when you have to work in a

fork, 181–182

when you use git commands

locally, 180–181

Merging changes, 51

Microso�, 31

acquiring GitHub, 139–141

Microso� Windows, using SSH

on, 169

Modi�ed, 14

Monotone, 27

Multiple branches, 21

Mutable index, 13

N

Nadella, Satya, 140

New repo, creating, 44

Non-Bare Repositories, 58

Nøhr, Jesper, 214

O

Octopuss, 141

OpenID Foundation, 198

Organization accounts, 150–151

Index ◾ 237

P

Packard, Keith, 32–33

Pack�le, 13

Pearce, Shawn, 30

Personal user accounts, 149–150

Pre-push cleaning, 54–55

Preseten-Werner, Tom, 137, 138

Product management, Git for,

17–18

Project templates, 186–187

Pull command, 224

Pull requests, 102–106, 210

authors, 210–211

merging, 102

process, 210

reviewers, 211–212

Push and Pull features, 12

PuTTY, 38

PuttyGen, 169

R

RCS, see Revision Control

System

README �le, 145

ReadWriteWeb, 138

Rebasing, 51–52

Redoing changes, 12

Remote branches, 106

creation of, 92

deleting, 111–112

pulling, 111

pushing, 108–109

tracking branches,

109–111

Remotes, 67

adding remote repositories,

68–70

inspecting, 71

pushing to, 70

removing, 72

renaming, 72

showing, 68

Repo optimization, 48

Repositories in Git, 57, 58–60

aliases, 72–80

recording changes to repos,

60–66

remotes, 67

adding remote

repositories, 68–70

inspecting, 71

pushing to, 70

removing, 72

renaming, 72

showing, 68

tags, 80

annotated, 82

check out, 84–85

creating, 81

deleting, 83–84

lightweight, 82

listing, 80–81

retagging/replacing old

tags, 85–86

sharing, 83

tagging later, 82–83

Representational State Transfer

(REST) Application

Programming Interface

(APIs), 200

Reverting changes, 46–47

Revision Control System (RCS),

4, 94

Role-based code, 18

Ruby, 138

238 ◾ Index

S

SAML, see Security Assertion

Markup Language

Saving changes, 45

Schindelin, Johannes, 30

SCM, see Source code

management;

Source control management tool

Searches, conducting, 50

Secure Shell (SSH) access, 38,

114–119, 134–135

Security Assertion Markup

Language

(SAML), 133

Sequoia Capital, 138

Servers, 113

distributed Git and projects,

119

centralized work�ow,

120–121

commit guidelines,

126–128

contributing to projects,

124–126

dictator and lieutenants

work�ow, 123–124

distributed work�ow, 120

integrator-manager

work�ow, 121–123

getting Git on, 114

putting the bare repository

on server, 114–115

Secure Shell (SSH) Access,

116–117

small setups, 115–116

setup, 117–119

Settings, 39

checking, 42

bare and cloned

repositories, 46

creating a new repo, 44

Git clone, 44–45

Git Push, 45–46

reverting changes, 46–47

saving changes, 45

default branch name, 42

editing, 41

establishing your identity, 41

SHA-1 hash, 11, 13, 16, 85,

94, 97

Sharing tags, 83

Sijbrandij, Sytse “Sid,” 155, 156

Simpson, Kyle, 140

Sizov, Valery, 154, 155

Smart Mirror, 222

Source code, 3

Source code management (SCM),

130, 154

Source control management

(SCM) tool, 4, 22

SourceForge, 33, 138, 140, 142

SourcePuller, 26

SpaceX, 158

SSH access, see Secure Shell

access

Staged, 14

Staging area, 14

Stash, 198, 213, 215

Subversion (SVN), 2, 6, 11, 45,

60, 90

SVN, see Subversion

T

Tags, 13, 80

annotated, 82

check out, 84–85

Index ◾ 239

creating, 81

deleting, 83–84

lightweight, 82

listing, 80–81

retagging/replacing old tags,

85–86

sharing, 83

tagging later, 82–83

using, 53

Text editor, 41

�ird-party tools, 39

�rive Capital, 138

TortoiseGit, 37

Torvalds, Linus, 8, 26, 29, 33

Tracking branches, 109–111

Tree object, 13

Tridgell, Andrew, 26

Two-Factor Authentication

(2FA), 136–137, 168

U

Undoing changes, 12

V

VCSs, see Version control

systems

Version control, 2–9

Version control systems (VCSs),

1, 2, 3–4, 39, 58, 60, 80,

88, 89, 161, 223, 226

advantages of, 4

centralized VCSs, 5

distributed version control

system (DVCS), 5

local VCS, 5

types of, 4

Viewing the �le of another

branch, 49–50

VPN client, 11

W

Wanstrath, Chris, 137,

138, 140

Windows, installing Git on, 36,

37, 38

Working directories, 8

Working tree, 14, 58

X

Xcode Command Line

Tools, 37

Y

Y Combinator, 157–158

Z

Zaporozhets, Dmitriy,

154, 155

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	About the Editor
	CHAPTER 1: Getting Started
	VERSION CONTROL BASICS
	WHAT IS GIT?
	ADVANTAGES OF GIT
	For Development
	Git for Marketing
	Git for Product Management
	Git for Designing
	Git for Customer Support
	Git for HR
	Git for Budget Management

	DISADVANTAGES OF GIT
	HISTORY OF GIT
	REFERENCES

	CHAPTER 2: The Basics
	INSTALLING GIT
	FIRST TIME GIT SET UP
	Establishing Your Identity
	Editing
	Default Branch Name
	Check the Settings
	Creating a New Repo
	Git Clone
	Saving Changes
	Git Push
	Bare and Cloned Repositories
	Reverting Changes

	TIPS AND TROUBLESHOOTING

	CHAPTER 3: Working with Repositories
	WHAT ARE GIT REPOSITORIES?
	RECORDING CHANGES TO REPOS
	WORKING WITH REMOTES
	GIT ALIASES
	TAGGING
	How to List Your Tags?
	Creating Tags
	Annotated Tags
	Lightweight Tags
	Tagging Later
	Sharing Tags
	Deleting Tags
	Check Out the Tags
	Retagging or Replacing Old Tags

	CHAPTER 4: Working with Branches
	WHAT ARE BRANCHES?
	Working
	Common Commands
	Creation of Branches
	Creation of Remote Branches
	Deleting Branches

	BRANCHING AND MERGING
	Definition of Git Branching
	Branch Naming

	BRANCH WORKFLOWS
	How It Works
	Beginning with the Main Branch
	Creating a New Branch
	Subsequent Tasks
	Push Feature Branch to Remote
	Resolve Feedback
	Merge Your Pull Request
	Pull Requests

	REMOTE BRANCHES
	Pushing
	Tracking Branches
	Pulling
	Deleting the Remote Branches

	CHAPTER 5: Working with Servers
	GETTING GIT ON SERVER
	Putting the Bare Repository on a Server
	Small Setups
	SSH Access

	SERVER SETUP
	DISTRIBUTED GIT AND PROJECTS
	Distributed Workflow
	Centralized Workflow
	Integrator-Manager Workflow
	Dictator and Lieutenants Workflow
	Contributing to Projects
	Commit Guidelines

	CHAPTER 6: GitHub
	WHAT IS GITHUB?
	Account Set Up and Configuration
	SSH Access
	Your Avatar
	Email Addresses
	Two-Factor Authentication

	HISTORY OF GITHUB
	Acquired by Microsoft
	Mascot

	HOW TO USE GITHUB
	How to Create a Repository on GitHub?
	Create Branches
	Making Commits
	Pull Command
	Merge Command
	Cloning and Forking GitHub Repository

	DIFFERENT TYPES OF ACCOUNTS
	Personal User Accounts
	Organization Accounts
	Enterprise Accounts

	CHAPTER 7: GitLab
	WHAT IS GITLAB
	HISTORY OF GITLAB
	HOW TO USE GITLAB
	GitLab and SSH Keys
	Prerequisites
	Supported SSH Key Types
	Generating the SSH Keys
	Configure Your SSH to Point to a Different Directory
	Updating Your SSH Key Passphrase
	Upgrade Your RSA Pair to a More Secure Format
	Adding an SSH Key to Your GitLab Account
	Verifying That You Can Connect
	Using Different Keys for Different Repositories
	Using Different Accounts on a Single GitLab Instance
	Configure Two-Factor Authentication (2FA)
	Using EGit on Eclipse
	Use SSH on Microsoft Windows
	Overriding SSH Settings on GitLab Server
	Troubleshooting SSH Connections

	Creating a Project
	Creating a Group
	Reserved Project and Group Names
	How to Create a Branch
	Feature Branch Workflow
	Creating Forks
	Adding a File to a Repository
	Create a New Issue
	Creating Merge Requests
	From an Issue
	When You Have to Add, Edit, or Upload a File
	When You Create a Branch
	When You Use Git Commands Locally
	When You Have to Work in a Fork
	By Sending an Email
	Add Attachments When Creating Merge Request by Email
	Set the Default Target Project

	Working with Projects
	Project Templates
	Enterprise Templates
	Custom Project Templates
	Star a Project
	Group Push Rules
	Checking If Access Was Blocked Due to IP Restriction

	FREE AND ENTERPRISE ACCOUNTS

	CHAPTER 8: Bitbucket
	WHAT IS BITBUCKET
	Services
	Bitbucket Cloud

	Granting Repository Access to Users and Groups
	Update User/Group Access
	Branch Permissions
	Suggesting or Requiring Checks before a Merge Takes Place
	Using Pull Requests for Code Review
	Pull Request Process
	Pull Request Authors
	Pull Request Reviewers

	How to Restore a Deleted Branch
	Bitbucket Server

	HISTORY
	FREE AND ENTERPRISE ACCOUNTS
	Free
	Standard
	Premium
	Overage Protection
	Changing Your Plan
	Updated Credit Card Details

	See the Users on Your Plan

	APPRAISAL
	INDEX

