

CONTENTS IN DETAIL

PRAISE FOR JAVASCRIPT CRASH COURSE

TITLE PAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHOR AND TECHNICAL REVIEWER

ACKNOWLEDGMENTS

INTRODUCTION
Who Is This Book For?
Why JavaScript?
What Can You Expect to Learn?
Online Resources

PART I: THE LANGUAGE
1
GETTING STARTED
Using the JavaScript Console
Using a Text Editor
Summary

2
THE BASICS
Expressions and Statements
Numbers and Operators

Order of Operations
Floating Point

Bindings

Variables
Constants
Naming Conventions

Incrementing and Decrementing
Addition and Subtraction Assignment
Multiplication and Division Assignment

Strings
Joining Strings
Finding the Length of a String
Getting a Character from a String
Getting Multiple Characters from a String
Trimming Whitespace from a String
Other Useful String Methods

Escape Sequences
Template Literals
Undefined and Null
Booleans

Logical Operators
Comparison Operators

Type Coercion
Equality with Coercion
Truthiness
Uses for Truthiness

Summary

3
COMPOUND DATA TYPES
Arrays

Creation and Indexing
Arrays of Arrays
Array Methods

Objects
Creating Objects
Accessing Object Values
Setting Object Values
Working with Objects

Nesting Objects and Arrays
Nesting with Literals
Nesting with Variables
Exploring Nested Objects in the Console
Printing Nested Objects with JSON.stringify

Summary

4
CONDITIONALS AND LOOPS
Making Decisions with Conditionals

if Statements
if…else Statements
More Complex Conditions
Chained if…else Statements

Repeating Code with Loops
while Loops
for Loops
for…of Loops
for…in Loops

Summary

5
FUNCTIONS
Declaring and Calling Functions

Return Values
Parameter Types
Side Effects

Passing a Function as an Argument
Other Function Syntaxes

Function Expressions
Arrow Functions

Rest Parameters
Higher-Order Functions

Array Methods That Take Callbacks
Custom Functions That Take Callbacks
Functions That Return Functions

Summary

6
CLASSES
Creating Classes and Instances
Inheritance
Prototype-Based Inheritance

Using Constructors and Prototypes
Comparing Constructors and Classes
Exploring Object.prototype
Walking the Prototype Chain
Overriding a Method

Summary

PART II: INTERACTIVE JAVASCRIPT
7
HTML, THE DOM, AND CSS

HTML
Creating an HTML Document
Understanding Nested Relationships

The Document Object Model
The DOM API
Element Identifiers

script Elements
CSS

link Elements
Rulesets
Selectors

Using CSS Selectors in JavaScript
Summary

8
EVENT-BASED PROGRAMMING
Event Handlers

Event Bubbling
Event Delegation

Mouse Movement Events
Keyboard Events
Summary

9
THE CANVAS ELEMENT
Creating a Canvas
Making Static Drawings

Drawing Outlined Rectangles
Drawing Other Shapes Using Paths

Interacting with the Canvas
Animating the Canvas
Summary

PART III: PROJECTS

PROJECT 1: CREATING A GAME
10
PONG
The Game
Setup
The Ball
Refactoring

The Game Loop
Bouncing
The Paddles

Moving the Paddles with Player Input
Detecting Paddle Collisions
Bouncing Near the Paddle Ends

Scoring Points
Computer Control
Game Over
The Complete Code
Summary

11
OBJECT-ORIENTED PONG
Object-Oriented Design
The File Structure
The GameView Class
The Game Elements

The Paddles
The Ball

The Scores and Computer Classes
The Game Class
Starting the Game
Summary

PROJECT 2: MAKING MUSIC
12
GENERATING SOUNDS
The Web Audio API

Setting Up
Generating a Tone with the Web Audio API

The Tone.js Library
Generating a Tone with Tone.js
Understanding the Tone.Synth Options
Playing More Notes in Sequence
Playing Multiple Notes at Once

The Tone.js Transport
Tone.Loop
Tone.Sequence
Tone.Part

Making Drum Sounds
Hi-Hat Synthesis
Snare Synthesis
Kick Synthesis

Reverb
A Drum Loop

Working with Samples
Summary

13
WRITING A SONG
Getting Organized
Event Handling
Making the Drumbeat
Adding the Bass Lines
Adding Chords
Playing a Tune
The Complete Code
Summary

PROJECT 3: VISUALIZING DATA
14
INTRODUCING THE D3 LIBRARY
The SVG Graphics Format

Grouping Elements
Drawing Circles
Defining Paths
Styling Elements with CSS
Adding Interactivity with JavaScript

The D3 Library
Setup
Selections
Data Binding
Data Joins
Real-Time Updates
Transitions and Key Functions
Advanced Joins

Creating a Bar Graph
Setting Up
Calculating Character Frequencies
Drawing the Bar Graph
Styling with CSS and Regular Expressions
Cleaning the Data
Animating the Changes

Summary

15
VISUALIZING DATA FROM THE GITHUB SEARCH API

Setting Up
Fetching Data
The Basic Visualization

Creating the Elements
Drawing the Axes
Drawing the Bars

Improving the Visualization
Showing Repository Info
Color-Coding the Bars
Labeling the Left Axis

Adding Interactivity
Filtering the Data by License
Animating the Changes

The Complete Code
Summary

AFTERWORD

INDEX

PRAISE FOR JAVASCRIPT CRASH COURSE

<JavaScript Crash Course is the perfect no-nonsense guide for folks who
just want to roll their sleeves up and pick up the basics from scratch. It
skips the distractions that often complicate a mastery of web programming,
like UI frameworks, build tools, and server tech, using real projects to give
aspiring web engineers a solid foundation.=

—JED SCHMIDT, FOUNDER OF BROOKLYNJS

<JavaScript Crash Course is a fun, practical, hands-on introduction that I
wish I had when I was learning JavaScript. Readers can learn from the
very basics all the way through making real games and applications that
are relevant to 8real-world’ development practices.=

—CASSIDY WILLIAMS (@CASSIDOO), STARTUP ADVISOR AND
CTO AT CONTENDA

<JavaScript Crash Course offers practical, pragmatic, and project-based
education on how to think about and work with JavaScript. Nick Morgan
has the experience to introduce you to the language with examples that
build on each other, and he quickly dives into creating real projects. As
you delve deeper into the book, you’ll realize that your building blocks are
the internet itself. You’ll find yourself using audio and sound generation
techniques, painting with the Canvas API, and pulling in third-party
JavaScript libraries. By the time you complete the crash course, you’ll be
ready to start your own projects. Nick is providing a wonderful service
with his hands-on teaching, both here and in JavaScript for Kids. I hope
you enjoy the book as much as I did.=

—SCOTT HANSELMAN (@SHANSELMAN), VP OF DEVELOPER
COMMUNITY AT MICROSOFT

<Nick has managed to condense the foundational concepts of JavaScript
into concise, approachable descriptions that are easily accessible to
beginners. Throw in some fun lessons in graphics and sound to create a

game, and you’ve got an excellent and engaging JavaScript book that’s
well worth your time.=

—NICHOLAS C. ZAKAS (@SLICKNET), CREATOR OF ESLINT AND
VETERAN JAVASCRIPT BOOK AUTHOR

JAVASCRIPT CRASH COURSE

A Hands-On, Project-Based
Introduction to Programming

by Nick Morgan

San Francisco

JAVASCRIPT CRASH COURSE. Copyright © 2024 by Nick Morgan.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

First printing

ISBN-13: 978-1-7185-0226-0 (print)
ISBN-13: 978-1-7185-0227-7 (ebook)

Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Miles Bond
Developmental Editor: Nathan Heidelberger
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Angus Croll
Copyeditor: Rachel Head
Proofreader: Scout Festa
Indexer: BIM Creatives, LLC

Library of Congress Control Number: 2023030044

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this
work: rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The information in this book is distributed on an <As Is= basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

http://www.nostarch.com/

To Lyra and Hazel

About the Author
Nick Morgan is the author of JavaScript for Kids (No Starch Press, 2014).
He’s a software engineer at Airbnb, working on some of the core services
that keep the site running. Prior to that, he worked at Twitter, starting on the
web team and writing JavaScript to help build the main website before
moving to the backend Tweets service, where he helped design the Edit
Tweet feature. Nick grew up in the UK and has a degree in music and sound
recording from the University of Surrey. He lives in Colorado with his wife,
two daughters, three cats, and one dog.

About the Technical Reviewer
Originally from the UK, Angus Croll now lives in the San Francisco Bay
Area, where he currently works on all things performance at Netflix. A
devotee of both literary fiction and JavaScript, he’s the author of If
Hemingway Wrote JavaScript (No Starch Press, 2014), as well as the
official Babel song. He also wrote and maintains the popular Just utility
library.

ACKNOWLEDGMENTS

First of all, thank you to my wife, Philly, and our kids, Lyra and Hazel, for
making this all worth it. I’m sorry so many of my evenings have been taken
up with writing, and I promise I won’t write another book for at least a
year!

Thanks to Bill Pollock for trusting me to write a second JavaScript
book, to my editor Nathan Heidelberger for your excellent work in shaping
my text (and for putting up with my many delays!), and to everyone else at
No Starch for your work in turning this book into reality.

Thank you to my friend and tech reviewer Angus Croll for everything.
Angus referred me to Twitter and later referred me to Bill Pollock—I
wouldn’t be here writing this if it weren’t for him.

Finally, thanks to my parents for giving me the curiosity and optimism
that ultimately led me to write this book.

INTRODUCTION

I vividly remember the first time I
<wrote= JavaScript. I’d been messing

around with web design and copy-pasted some code
from another website to add some weird effects
whenever the mouse hovered over certain parts of the
page. I had no idea what the code was doing, but
through trial and error I managed to get something
working.

JavaScript is a very forgiving language—sometimes to a fault—and
that made it a very gentle introduction to programming for me and
countless others. So many people have chosen JavaScript as a first
programming language because of how easy it is to get started: it’s right
there waiting for you in your web browser!

Who Is This Book For?
The aim of this book is to get you writing real JavaScript code as quickly as
possible, teaching all the essentials without getting bogged down in the
intricacies of the language. I don’t expect you to have any prior
programming experience. If you’re comfortable using a computer for
everyday tasks like browsing the internet and editing documents, you have
everything you need to get started.

JavaScript Crash Course is written for individuals of all ages who
want to learn JavaScript independently through hands-on examples and
projects. Maybe you want to transition into a career in computer
programming, or you want to pursue coding as a hobby. Perhaps you’ve
worked in other programming languages, and you need to get up to speed in
JavaScript. If you’re a teacher and are looking for an easy way to introduce
your students to programming, JavaScript Crash Course is a great option
for you, too.

Why JavaScript?
There are hundreds of programming languages to choose from, but there are
a few things that make JavaScript special. Most important is its relationship
with web browsers, such as Google Chrome, Safari, Microsoft Edge, and
Firefox. Almost every web browser can run JavaScript, which means the
code you write in JavaScript can be run on any computer with a web
browser. There’s no need to install any additional special software. Almost
all smartphone web browsers can run JavaScript, too, so you may have a
JavaScript-enabled browser in your pocket or bag right now.

Because of its relationship to web browsers, JavaScript is an extremely
important part of web development. If a website includes dynamic,
interactive features, it was probably created with JavaScript. For example,
YouTube uses JavaScript to show you previews of videos when you hover
over their thumbnails, Threads uses JavaScript to load more posts as you
scroll down the page, and Amazon uses JavaScript to power its Look Inside
feature.

Beyond its use in web browsers, JavaScript is also heavily used on the
backend of websites, or the part of the website code that runs on a server,
delivering content to users (as opposed to the frontend code that runs

directly on the user’s device). This is possible via a technology called
Node.js. Many top websites have a Node.js backend, letting you use the
same language for the frontend and backend of your website, and even
share code between the two.

Finally, JavaScript has become a very popular scripting language for
various applications, from Photoshop (where you can automate image
processing) to Gmail (where you can add automations that organize your
email). With some JavaScript knowledge, you can bend these applications
to your will!

While the language is useful in all these areas, this book will focus
solely on browser-based JavaScript. There are a few reasons for this. First,
as I’ve already mentioned, one of the great advantages of running
JavaScript in a browser is that you don’t have to install anything special to
get started. I didn’t want to begin the book with a tedious chapter on
installing Node.js on your computer—a chapter that could become outdated
as soon as it was written. Second, while virtually all websites use JavaScript
for the frontend, JavaScript is just one among many possible languages for
writing backend code. The browser is by far the most universally applicable
context for learning JavaScript.

I still highly recommend checking out Node.js and other uses for
JavaScript after you finish this book and have some experience with the
language. You should see the book as a jumping-off point: the beginning,
rather than the end, of your JavaScript education. For more on next steps
once you’ve worked through the book, see the afterword.

What Can You Expect to Learn?
This book will teach you browser-based JavaScript. Beyond learning the
JavaScript language itself, you’ll also learn skills that will help you in any
programming language, such as how to think about problems and how to
structure programs. You’ll build a foundation of programming knowledge
that will stick with you throughout your professional and personal coding
endeavors.

Part I of this book lays out the basics of the language. I’ve been very
intentional about the ordering of language concepts and features, making
sure that every new concept builds on previous ones and never introducing

anything that doesn’t have a solid foundation. Here’s what you’ll find in
this part of the book:

Chapter 1: Getting Started Shows you how to write your first lines
of JavaScript in both a web browser and a text editor.
Chapter 2: The Basics Introduces basic ingredients of JavaScript
programs, like expressions, statements, and variables, and explains how
to use simple data types to represent numbers, text, and true/false
values.
Chapter 3: Compound Data Types Discusses arrays and objects,
which let you combine multiple pieces of data into more meaningful
collections.
Chapter 4: Conditionals and Loops Teaches you to add logic to
your programs with control structures that can make decisions and
repeat segments of code.
Chapter 5: Functions Shows you how to create reusable pieces of
code with functions.
Chapter 6: Classes Helps you add more structure to your code with
classes and object-oriented programming principles.

Part II of the book discusses how to use JavaScript to work with web
browsers. This section explores important techniques for creating
interactive web applications:

Chapter 7: HTML, the DOM, and CSS Explains how to write web
pages in HyperText Markup Language (HTML) and modify their
content with JavaScript using the Document Object Model (DOM).
You’ll also learn how to apply basic styling to web pages using
Cascading Style Sheets (CSS).
Chapter 8: Event-Based Programming Shows how to trigger
JavaScript code in response to user behaviors such as mouse clicks and
key presses.
Chapter 9: The Canvas Element Teaches you to draw graphics and
animations in the browser with JavaScript using the Canvas API.

Finally, Part III of the book lets you put the skills you gained in Parts I
and II to use through a series of projects. There are no dependencies
between the projects, so you can tackle them in any order, or only work on
the projects you find most interesting. I would recommend completing all
of them if possible, as they all introduce some valuable general-purpose
programming concepts. Each project spans two chapters:

Project 1: Creating a Game Guides you through making your own
version of the classic Atari game Pong. This project will put to use
your skills with the Canvas API and tie together all the basics you
learned about data structures, conditionals, and functions. After you’ve
developed the game in Chapter 10, Chapter 11 shows you how to
restructure its code using classes and object-oriented design principles.
Project 2: Making Music Explores how to make music using
JavaScript. Chapter 12 explains how to use the Web Audio API and a
library called Tone.js to generate sounds. Then Chapter 13 puts
together what you’ve learned to create a song. Once you’ve completed
this project, you’ll not only be able to create your own music, but
you’ll also have gained some experience working with complex third-
party libraries.
Project 3: Visualizing Data Introduces you to the world of data
visualization using the popular D3 library. Chapter 14 teaches the
basics of D3 and Scalable Vector Graphics (SVG), an alternative to the
Canvas API for drawing in the browser. Then, in Chapter 15, you’ll
build an application to dynamically visualize data loaded from across
the internet. This project illustrates how to request data through a third-
party API, an important programming skill.

Online Resources
This book features a number of hands-on exercises so you can practice what
you’ve learned. I encourage you to try them all out yourself, but if you get
stuck or you just want to check your answers, solutions are available online
at https://codepen.io/collection/ZMjYLO. There you’ll also find complete,
downloadable code files for the book’s projects.

https://codepen.io/collection/ZMjYLO

For updates and other information about the book, see the No Starch
Press website at https://nostarch.com/javascript-crash-course.

https://nostarch.com/javascript-crash-course

PART I
THE LANGUAGE

This first part of the book introduces the
fundamentals of the JavaScript language. You’ll learn
about the basic building blocks of any JavaScript
program, including many core concepts that are
relevant to any programming language.

First we’ll look at two ways to write and execute JavaScript code: in
the console of a browser or in a text editor (Chapter 1). Then, you’ll learn
how to represent individual pieces of data with variables and constants, and
how to manipulate that data through statements and expressions (Chapter
2). Next, you’ll see how to group individual values into more meaningful
structures using JavaScript’s compound data types, arrays and objects
(Chapter 3).

The later chapters of this first part show you how to add structure to
your code. First, you’ll incorporate logic into your programs with
conditionals and loops, which together allow you to make decisions and
control the flow of code execution (Chapter 4). Then, you’ll learn
techniques for reusing and organizing code with functions (Chapter 5) and
classes (Chapter 6).

1
GETTING STARTED

In this chapter, you’ll get started
writing your first JavaScript code. First,

you’ll learn how to enter code directly into a web
browser, without having to install any specialized
software. This approach is ideal for quickly testing
out simple sequences of code. Next, you’ll see how
to write JavaScript in a separate text editor program,
which is more appropriate as your code becomes
more complex. We’ll use both of these techniques for
writing and executing JavaScript code throughout the
book, so this chapter will prepare you for everything
that’s to come.

Using the JavaScript Console
The quickest way to run JavaScript code is through the JavaScript console.
This is an interface in most web browsers that lets you enter individual lines
of code and immediately see the results. We’ll use the console in Google
Chrome, the most popular browser. If you don’t have Chrome installed, you
can download and install it from https://www.google.com/chrome.

Once you have Chrome installed, follow these steps to access the
JavaScript console:

https://www.google.com/chrome

 1. Open Chrome and enter about:blank in the address bar. This will take
you to a blank web page.

 2. In Windows or Linux, press CTRL-SHIFT-J, or press OPTION-COMMAND-J
if you’re using macOS.

 3. You should now see the JavaScript console, including the > prompt
symbol where you can enter code. Click inside the console to put your
cursor next to the prompt.

The console should look something like Figure 1-1. It may appear
alongside the blank web page, rather than beneath it, depending on your
browser settings.

Figure 1-1: Google Chrome’s JavaScript console

When you’re learning a new programming language, it’s customary to
start by writing some code to display the message <Hello, world!= Let’s try
it out! Type the following into the console:

alert("Hello, world!");

In this book, when I ask you to enter code into the JavaScript console,
I’ll show the code in bold. If the code produces any output in the console,
I’ll show it directly below your input, not in bold.

When you’re ready to run the code you’ve typed in, press ENTER. You
should see a dialog appear in the browser containing the message <Hello,
world!= as shown in Figure 1-2.

Figure 1-2: Hello, world!

You’ve just used JavaScript’s alert function, which makes text pop up
in a dialog. A function is a piece of code for performing a certain task—in
this case, displaying a dialog. Functions can take arguments, which help
specify how the task should be performed. The alert function takes one
argument: a piece of text to display. Here, we’ve provided "Hello,
world!" as the argument. You’ll learn much more about functions in
Chapter 5.

Click OK to dismiss the dialog and get back to the console. Then
congratulate yourself on running your first JavaScript code.

Using a Text Editor
The JavaScript console is good for testing out a few lines of code, but it
isn’t so suitable for the larger projects we’ll be working on later in the book.
For those, it’s more practical to use a text editor, a dedicated program for
writing and editing code files. In this section, we’ll create a similar <Hello,
world!= program in a text editor.

For this book, I recommend using the Visual Studio Code text editor
from Microsoft (VS Code for short). It’s freely available for Windows,
macOS, and Linux. Go to https://code.visualstudio.com and follow the
instructions there to download and install the editor.

Once you’ve installed VS Code, create a new directory on your
computer called javascript_work where you can save the code files you
work on for this book. Then follow these steps to get ready to write your
code:

 1. Open VS Code.
 2. Create a new file by selecting File�New File.

https://code.visualstudio.com/

 3. You should be prompted to name the new file. Enter hello.xhtml.
 4. Next, you should be prompted to choose the new file’s location. Select

the javascript_work directory you just created and click Create File.
 5. You should now be on a screen where you can edit your new file.

The.html extension in the filename indicates that this is an HTML file.
HTML is a markup language used to describe the content of web pages.
One way to run JavaScript code is to include it in an HTML file and then
open the HTML file in a web browser. That’s what we’ll be doing here.
Enter the contents of Listing 1-1 into your new file, exactly as written.

<html><body><script>
alert("Hello from hello.xhtml!");
</script></body></html>

Listing 1-1: Writing JavaScript inside the file hello.xhtml

As you type, you may notice that VS Code tries to predict what you’re
entering. This can be confusing at first, but once you get used to it, you’ll
likely find it helpful. Sometimes these predictions will be inserted
automatically, while for others you’ll have to press TAB to insert them.

The first and last lines of Listing 1-1 are HTML code, the bare
minimum required to embed JavaScript into an HTML file. We’ll explore
HTML in detail in Chapter 7. For now, all you need to know is that it
involves tags that identify different components of a web page. Most
important for our purposes are the opening <script> tag at the end of the
first line and the closing </script> tag at the beginning of the third line.
When you load this file in a browser, everything between these tags (the
second line in Listing 1-1) will be interpreted as JavaScript.

The JavaScript portion of the file is:

alert("Hello from hello.xhtml!");

Here we’re using the alert function, just as we did earlier in the console.
This time we provide a different message, "Hello from hello.xhtml!", to
display in the dialog.

When you’re finished entering the code, save the file. Now you’re
ready to open the file in Chrome and see the JavaScript code in action.
Follow these steps:

 1. Open a new tab in Chrome.
 2. Press CTRL-O in Windows or Linux, or COMMAND-O in macOS, to bring

up the Open File dialog.
 3. Locate your hello.xhtml file, select it, and click Open.

You should now see a dialog pop up containing the "Hello from
hello.xhtml!" message, as shown in Figure 1-3.

Figure 1-3: Hello from hello.xhtml!

The browser recognized the code in the HTML file between the
<script> and </script> tags as JavaScript and executed that code, causing
the dialog to appear. If you don’t see the dialog pop up, double-check the
code in your hello.xhtml file to make sure it matches Listing 1-1 exactly.

Summary
In this chapter, you learned two different ways to write and execute
JavaScript code. First, you entered code into the JavaScript console in the
Chrome web browser. You’ll use this technique in the coming chapters to
test out short snippets of code as you learn the basics of the language. Next,
you embedded JavaScript in an HTML file using a text editor, then opened
that file in Chrome to run the code. You’ll use this technique in later
chapters to develop more sophisticated projects.

2
THE BASICS

In this chapter, I’ll introduce some of
the basic ingredients that make up any

JavaScript program. You’ll learn about the
fundamental units of JavaScript code that allow you
to represent values and give instructions to the
computer. You’ll also learn how to assign a name to a
value so you can refer to it later in your code.

This chapter also shows how JavaScript categorizes values into
different data types based on the kind of information a value can represent.
We’ll focus on primitive data types that represent individual values, such as
a single number or a single piece of text. You’ll practice working with
different primitive data types in the JavaScript console and explore some of
the operations you can apply to them.

Expressions and Statements
The most basic building block in JavaScript is the expression, a fragment of
code that represents a single value. The act of determining the value of an
expression is known as evaluation. For example, 100 + 200 is an
expression that evaluates to the number 300.

Another important JavaScript building block is the statement, which is
a complete thought, like a sentence in English, instructing the computer to
do something. Every JavaScript program consists of a series of statements.
In Chapter 1, for example, we used the statement alert("Hello,

world!"); to instruct the computer to display a dialog with the text Hello,
world! in it. Whereas a sentence ends with a period, JavaScript statements
end with a semicolon.

You can turn an expression into a statement simply by adding a
semicolon to the end of it. For example, 100 + 200; is a statement
instructing the computer to add two numbers together. Open up the
JavaScript console and enter this statement. When you do this, it will
evaluate the expression in the statement and print the result:

100 + 200;
300

The main expression in this statement, 100 + 200, is known as a
compound expression, since it actually contains two smaller expressions,
100 and 200. These are examples of the simplest form of JavaScript
expression, the literal, which is a direct representation of a fixed value in
code. Specifically, 100 and 200 are number literals, since they directly
correspond to the numeric values they represent, 100 and 200. By contrast,
the compound expression 100 + 200 isn’t a literal, since it doesn’t directly
correspond to its value of 300. The + in this compound expression doesn’t
represent a value at all. Rather, it’s an operator, a symbol used to combine
or manipulate expressions.

It’s important to distinguish between values, which are the underlying
pieces of data in a program, and expressions, which are the notations in
code that tell JavaScript what the values should be. Both 300 and 100 +
200 have a value of 300, but they’re two different expressions—one literal,
one compound—that provide different ways of representing that value.

JavaScript expressions and statements complement each other.
Expressions have values, but an expression by itself doesn’t actually do
anything. Conversely, statements do work by telling the computer to
perform tasks, but statements themselves don’t have values; they’re just
instructions. The power of programming comes from writing statements
that use and manipulate the values of expressions to achieve the desired
outcomes.

Numbers and Operators
JavaScript uses the number data type to store numeric values. You already
started working with numbers in the previous section, where you also met
the + operator, which adds two numbers together. JavaScript has operators
for other common mathematical calculations, too, including subtraction (-),
multiplication (*), and division (/). Try them out in the JavaScript console:

100 + 200;
300
10000 - 999;
9001
999 * 111;
110889
997002 / 999;
998

In cases like this, where the expression involves an operator (such as +
or *), we often say the operator returns a value (rather than saying an
expression is being evaluated). For instance, the * operator takes in the
numbers 999 and 111 and returns their product, 110889.

Order of Operations
You can combine multiple numbers and operators in a single expression, in
which case you need to think about the order in which the operations will
be performed. Consider this example:

5 + 10 / 10 - 5;
1

When you have multiple operators like this, JavaScript uses the
standard mathematical PEMDAS (parentheses, exponents, multiplication,
division, addition, subtraction) rule to determine the order of calculations.
The division operation in this expression takes place first, followed by the
addition and subtraction, yielding a value of 1.

To force the addition and subtraction to happen first, use parentheses:

(5 + 10) / (10 – 5);
3

This time, the expression produces a different value, since the parentheses
changed the order of operations.

Floating Point
So far we’ve limited ourselves to whole numbers, but JavaScript’s number
data type also accommodates fractional numbers, called floating-point
numbers in programming terms. Here’s an expression that produces a
floating-point number:

10 / 4;
2.5

Floating-point numbers have limited precision, so the decimal
component can’t go on forever. Instead, they’re truncated, as in the
following example:

10 / 3;
3.3333333333333335

You may notice some weird quirks of floating-point math, where the
answer isn’t quite what you’d expect. For example, 0.1 + 0.2 doesn’t
work out to exactly 0.3. Instead, we get several extra decimal places:

0.1 + 0.2;
0.30000000000000004

This is due to the underlying mathematics of how computers represent
numbers (search the web for <floating-point arithmetic= to learn more). In
general, these quirks shouldn’t affect you, but they could in certain
circumstances. For example, if you’re writing an application that works
with monetary values, it could be a problem if $0.10 and $0.20 didn’t sum
to exactly $0.30. In this case, the usual solution is to convert your monetary

values to cents (or the equivalent smallest denomination) before doing any
math on them. For example, the number 0.10, representing an amount of
dollars, would become 10, representing an amount of cents.

TRY IT YOURSELF

 2-1. Use the JavaScript console to calculate the number of seconds in a day.

Bindings
In JavaScript, you can associate a name with a value so you can easily
reference that value later in your code. This association is called a binding.
Bindings are powerful tools because they provide a place to store the values
your expressions generate. Without them, your programs would have no
way of remembering the work they’ve already done.

One type of binding is a variable, which allows you to update the value
associated with a particular name as needed. They’re called variables
because their values can change, or vary. Another type of binding is a
constant, where you can’t update the value associated with the name once
it’s been assigned. The value remains fixed, or constant.

Think of a variable or constant as a box with a label (the name) that
holds a single item (the value). You put a value in the box, then look it up
by name when you need it again. A variable allows you to put a new value
in the box, while a constant will always contain the same value.

The name of a binding is also called its identifier, and creating an
identifier is known as declaration: the binding’s name is being declared. In
JavaScript, a declaration is a special kind of statement that generates a new
identifier. Let’s look at how to declare and work with variables and
constants.

Variables
JavaScript has two keywords for declaring variables: var and let. A
keyword is a word built into the JavaScript language that’s reserved for a
particular purpose. Originally, the var keyword was the only option
available, but let was later added to fix some of the shortcomings of var.

Today, let is the preferred keyword for declaring variables, so that’s what
we’ll use in this book, but don’t be surprised if you encounter var while
looking at older code.

Here’s an example of using let to declare a variable:

let age;
undefined

This let declaration creates a new variable called age. A let declaration
doesn’t have a value, so the JavaScript console prints out the special value
undefined.

Now that we’ve created a variable, let’s write an expression to give it a
value:

age = 35;
35

Giving a variable a value is called assignment, and you use the assignment
operator (=) to do it. On the right side of the operator, you enter an
expression (in this case, the number literal 35), and on the left, you enter the
name of the variable that should be assigned the value of that expression (in
this case, age).

An assignment using the = operator is a compound expression, just like
expressions using + and other mathematical operators. The value of an
assignment expression is the new value of the variable. In this case, we’ve
set age to 35, so the console prints 35.

Assigning a value to a variable for the first time is called initialization.
Programmers usually combine the declaration and initialization of a
variable into a single line of code. For example, here we create a new
variable called cats and assign it the value 2, all in the same statement:

let cats = 2;
undefined

Even though we’re assigning the variable a value here, the prevailing rule is
that the let declaration itself has no value, so the JavaScript console prints
undefined.

To confirm the assignment worked, enter just the variable name into
the console, followed by a semicolon:

cats;
2

Here, cats is an expression that evaluates to the current value of the cats
variable, so the console prints that value.

Because cats is a variable, we’re free to change its value using new
assignment expressions. Here, for example, we update its value to 3:

cats = 3;
3

The nice thing about variables is that you can change their values whenever
you need—for example, when you get another cat.

Constants
To declare a constant in JavaScript, we use the const keyword:

const PI = 3.141592653589793;
undefined

This creates a new constant called PI and assigns it the value
3.141592653589793, which is the approximate value of the number π.

Now we can use that constant to determine the circumference of a
circle based on its diameter:

let diameter = 3;
undefined
let circumference = diameter * PI;
undefined

circumference;
9.42477796076938

Here we create a variable called diameter and assign it the value 3. Then
we create another variable, circumference, and assign it a value of
diameter * PI. Notice that we’re using a compound expression consisting
of a variable (diameter), a constant (PI), and a math operation (*) to set the
value of a variable. A lot of programming boils down to creating constants
and variables, and then manipulating them to create other constants and
variables.

NOTE
Going forward, to keep the book’s code listings from getting too cluttered,
I’ll stop showing the undefined that the console prints after a variable or
constant is declared.

Unlike with variables, you can’t change the value of a constant once
it’s been created. For example, if you try to update the value of PI,
JavaScript gives an error:

PI = 5.378;
Uncaught TypeError: Assignment to constant variable.
 at <anonymous>:1:4

Errors are how JavaScript tells you there’s something wrong with your
code. The important part of this error message is Assignment to constant
variable. This indicates that we mistakenly tried to assign a new value to a
constant.

Also unlike with variables, where you can separate the declaration
from the initialization, you have to give a constant its value in its
declaration. As a result, this won’t work:

const TAU;
Uncaught SyntaxError: Missing initializer in const declarati
on

This error message tells us that the constant declaration is missing its
initializer, meaning the constant should have been given a value.

Naming Conventions
You should give variables and constants descriptive names, so when you or
somebody else is reading your code, it’s clear what your variables and
constants represent. For example, if you’re writing code to control a car,
you might want a variable that stores the speed of the car in miles per hour.
The name speedInMilesPerHour is a bit too long, but given that MPH is a
commonly understood abbreviation for miles per hour, a good variable
name would be speedInMPH. A shorter name like speed might be okay, but
only if it’s obvious to everyone reading your code that speed is always in
miles per hour. (Imagine if someone from Germany were reading your code
and thought you were talking about kilometers per hour.) A bad name for
this variable would be s, which tells the reader nothing.

JavaScript is case sensitive, which means it distinguishes between the
variables age, Age, and AGE. Also, identifiers can’t contain spaces. To work
around that, a common convention for variable names is to use camelCase,
where the first word in the name starts with a lowercase letter and each
subsequent word starts with a capital letter, as in speedInMilesPerHour.
(It’s called camelCase because the capital letter in the middle looks like the
hump of a camel.)

An alternative naming convention for variables is snake_case, where
everything is lowercase and each word is separated by an underscore. (I
guess this looks a bit like a snake if you squint.) In snake_case, we would
write speed_in_miles_per_hour or speed_in_MPH.

Using snake_case can make variable names slightly clearer than
camelCase, but it also makes them longer and harder to type quickly.
JavaScript programmers tend to prefer camelCase, so that’s what I’ll use in
this book.

Constants follow a separate naming convention from variables. There
are two types of constants: true constants, which have values that will never
change whenever you run the program (such as pi or the number of hours in
a day), and values you’ve made constants because you don’t want to
accidentally change them in your code (such as the current user’s name).

For true constants, it’s customary to use all-caps snake_case, like
HOURS_IN_A_DAY. For constants you’ve created to avoid accidentally
changing a value, use the same convention as for variables. In that case, the
only difference is that the binding has been created using const rather than
let.

CHOOSING BETWEEN LET AND CONST

It’s not always obvious whether to use let or const when you’re creating a binding. If
you’ll need to update the binding’s value, use let to make it a variable. In other cases,
it’s up to you. Some programmers prefer to use let most of the time and reserve const
only for true constants. Others use const wherever possible and switch to let only if
they realize they need to update the value of a binding. The advantage of defaulting to
let is that you don’t need to stop and consider whether every binding could validly be
changed. The advantage of defaulting to const is that you gain some safety from
accidentally changing a value that shouldn’t have been changed. Ultimately, the choice
between the two approaches is a matter of style and personal preference.

Incrementing and Decrementing
When you’re writing software, you’ll often have to increment (increase) or
decrement (decrease) the value of a variable by 1 or some other number. For
example, you might use a variable to count the occurrences of a word in a
document. Every time you see that word, you would increase the value of
the variable by 1. Likewise, you might use a variable to keep track of how
much money a player has in a game, increasing or decreasing it whenever
the player earns or spends some.

One way to increment a variable is to initialize it, then change its value
to itself plus 1:

let money = 100;
money = money + 1;
101

Here we declare a new variable called money and initialize it with the value
100. We then assign a new value to money by adding 1 to its existing value.
It may seem paradoxical to see an expression like money = money + 1;, but
this is actually quite a normal programming pattern. When JavaScript

encounters an assignment expression like this, it first calculates the value of
the expression on the right of the assignment operator, which in this case is
money + 1. Because money is currently 100, money + 1 has a value of 101.
JavaScript then updates the value of the variable on the left side of the
assignment operator, which in this case is the same variable, money.

The key here is that JavaScript waits to change the value of the variable
on the left of the operator until after it’s calculated the value of the
expression on the right of the operator. This is how the same variable can
appear on both sides of the operator. In the end, money = money + 1 means
<add 1 to money.=

Because adding 1 to a variable is a very common task, JavaScript
makes it easier with the increment operator (++). When you attach this
operator to a variable, it increases the value of that variable by 1, without
you having to write out a full assignment expression. Similarly, JavaScript’s
decrement operator (--) decreases the value of a variable by 1. Here, we use
++ and -- to change the value of a temperature variable:

let temperature = 70;
++temperature;
71
++temperature;
72
--temperature;
71

In this example, we’ve placed the increment and decrement operators
before the variable we want to change. With the operators in this position,
the output of the increment or decrement operation is the variable’s updated
value. For example, when temperature has a value of 70, ++temperature
outputs a value of 71. This is called prefix incrementing and decrementing.

JavaScript also allows for postfix incrementing and decrementing,
where the operator goes after the variable. In this case, the variable still
increases or decreases by 1, but the value shown in the output is the
variable’s value before it was changed. Here’s an example:

let books = 2;
books++;

❶ 2
books;

x 3
books--;
3
books;
2

We initialize the books variable with the value 2. Then books++ increments
that value, but it returns the value of books from before it was incremented
❶. When we then ask for the value of books on its own, we can see that it
has the new value x, confirming that the increment operation took place.

Whether you use prefix or postfix incrementing and decrementing, the
effect on the variable is the same: its value increases or decreases by 1. The
only difference is how the incrementing or decrementing expression itself
evaluates. Luckily, most of the time when you use one of these operators,
you won’t actually need the value of the incrementing or decrementing
expression itself—you’ll just be modifying the value saved in the variable.
Therefore, you can usually use the prefix and postfix versions
interchangeably.

Addition and Subtraction Assignment
The increment operator increases a variable’s value by 1, but sometimes
you’ll want to increase it by a different amount. For that, JavaScript has the
addition assignment operator (+=). It increases the value of the variable on
the left side of the operator by whatever value you place to the right of the
operator, as shown here:

let price = 20;
price += 5;
25

Here we use += to increase the value of price by 5. Essentially, price += 5
is shorthand for price = price + 5. The += operator combines addition

and assignment into one symbol.
Similarly, the subtraction assignment operator (-=) is a convenient way

to subtract any value from a variable:

let cookies = 12;
cookies -= 5;
7

In this case, cookies -= 5 is shorthand for cookies = cookies - 5.

Multiplication and Division Assignment
The multiplication and division assignment operators, *= and /=, update a
variable’s value by multiplying or dividing it by the specified number. For
example:

let tribbles = 6;
tribbles *= 2;
12
tribbles /= 3;
4

Similarly to the other shorthand assignment operators, these
assignment operators translate to tribbles = tribbles * 2 and tribbles
= tribbles / 3, respectively.

TRY IT YOURSELF

 2-2. Use the *= operator to see the power of compound interest. If you have $100
and you gain 8 percent interest every year, how many years will it take to double
your money? To find out, create a variable called savings and initialize it with the
value 100. Then repeatedly use the *= operator to multiply this value by 1.08.
(Tip: press the up arrow to reuse the previous input, instead of having to retype it
over and over.)

Strings

JavaScript uses the string data type to represent text. It’s called a string
because the text is treated as a sequence, or string, of characters. For
example, the string Hello! consists of six characters: H, e, l, l, o, and !.

A string literal is a direct representation of a string value. To create a
string literal, simply surround some text with double quotation marks.
Every character between the quotes is part of the string. For example, here
we assign the string literal "Hello!" as the value of the variable greeting.
Then we check the value of the variable:

let greeting = "Hello!";
greeting;
'Hello!'

You can also write string literals inside single quotation marks rather
than double quotation marks. In fact, as shown in this example, when
Chrome’s JavaScript console outputs a string, it encloses the string in single
quotes (even if you wrote it with double quotes). For consistency, I’ll stick
with double quotes when I’m writing strings throughout this book, although
I’ll also use single quotes to accurately reflect the output of the console.

Typically, strings mostly consist of letters, but as our "Hello!"
example indicated, they can also include punctuation. Strings can contain
spaces, too, as well as numerals, as in this example:

let price = "5 dollars";
price;
'5 dollars'

It’s even possible to have a string that just contains numerals, such as
"123", but it’s important to distinguish this string from an actual number.
The string literal "123" is a sequence of three characters, 1, 2, and 3, while
the number literal 123 has a numerical value of 123.

JavaScript provides a lot of ways to manipulate strings. We’ll look at
some of these string operations next.

Joining Strings

When applied to strings rather than numbers, the + operator joins the strings
together. This way, you can build up a longer message by combining
various strings. Here’s an example:

let first = "First string";
let second = "Second string";
let joined = first + second;
joined;
'First stringSecond string'

Here we assign two strings to the variables first and second. Then we
use + to join the strings, storing the result in the variable joined. Notice that
JavaScript doesn’t add a space between the strings being joined—it just
tacks the second string directly onto the end of the first. If you want a space
in between, you have to add it explicitly by treating the space as its own
string:

first + " " + second;
'First string Second string'

In this example, we join three string literals:

 1. "First string"
 2. " " (a string consisting of a single space)
 3. "Second string"

As a result, we get a space between string and Second.

Finding the Length of a String
You’ll often need to check the length of a string. For example, if you’re
making a reviews website, you might want to limit review length to
something like 1,000 characters. To find out how many characters are in a
string, add .length after the string to access its length property. (A
property is a piece of information about something in your code; we’ll
discuss properties in more detail in Chapter 3.) Here we use .length to
confirm that the string "abc" has three characters:

"abc".length;
3

In this case, we used .length on a string literal, but you can also use it
on variables or constants that contain strings, as shown here:

let longString = "This is my very long string";
longString.length;
27

This code counts all the characters, including the spaces, in the string bound
to the variable name longString.

Getting a Character from a String
To get a single character from a string, use that character’s index. This is a
number representing the character’s position within the string. JavaScript
always counts from zero, so index 0 refers to the first character in the string,
index 1 to the second character, and so on. This is known as zero-based
indexing.

Place the desired index in square brackets to access the character at that
index, like so:

let alphabet = "ABCDEFG";
alphabet[0];
'A'
alphabet[1];
'B'

Here, alphabet[0] retrieves the first character of the string stored in the
variable alphabet, and alphabet[1] retrieves the second character.

If you use an index beyond the length of the string, the expression
evaluates to undefined:

alphabet[10];
undefined

The string in alphabet has only seven characters, at indices 0 through 6, so
alphabet[10] is out of range.

Getting Multiple Characters from a String
To get a sequence of multiple characters (also called a slice) from a string,
rather than just a single character, use the slice method. A method is a
specific kind of function that’s attached to a particular value or data type.
(As we discussed in Chapter 1, a function is a named piece of code that
carries out a task.) Methods are generally used to make a calculation about
the thing they’re attached to, or to update something about it. In this case,
slice is one of many methods associated with the string data type that you
can use to manipulate a given string.

The syntax for using, or calling, a method is to follow the value or
variable you want to apply the method to with a period, then the name of
the method, and then a set of parentheses. Inside the parentheses, you write
any values that the method needs to do its job, separated by commas. As
with other functions, these values are known as arguments. Methods can
also produce a value, known as the method’s return value.

The slice method takes two arguments, the start index (inclusive) and
end index (exclusive) of the slice you want to extract, and returns the
substring containing the specified range of characters. Here’s an example:

let sentence = "My name is Nick.";
sentence.slice(3, 7);
'name'

Here, we store a string in the variable sentence and then call the slice
method on that string by writing sentence.slice(3, 7). The first
argument in the parentheses means we want the slice to start at index 3 of
the string (the fourth character, the n in name). The second argument means
we want the slice to go up to, but not include, index 7 of the string (the
space after name). The net result is that the slice method returns the
characters at indices 3, 4, 5, and 6, giving us the string "name".

NOTE

We’ll talk more about functions generally in Chapter 5, and about methods
specifically in Chapter 6.

Trimming Whitespace from a String
Whitespace refers to characters that wouldn’t require any ink to print, such
as spaces or tabs. The trim method removes any whitespace from the
beginning or end of a string and returns a new string with that whitespace
removed. This can be helpful, for example, if you’re taking input from a
user and they accidentally add a few spaces at the beginning and/or end, as
shown here:

let inputText = " Here is my input ";
inputText.trim();
'Here is my input'
inputText;

❶ ' Here is my input '

The string stored in the variable inputText starts with a space before the
word Here and ends with three extra spaces after the word input. When we
call the trim method by writing inputText.trim(), we get a new string
with those spaces removed. Notice, however, that the spaces between the
words aren’t affected; only the whitespace at the beginning and end of the
string is trimmed. The trim method doesn’t require any arguments, so we
simply write an empty set of parentheses after the method name.

Because the trim method returns a new string, the original string stored
in inputText is left unchanged. We can see this when we ask for the value
of inputText at the end of the code listing: the output still has the spaces at
the start and end of the string ❶.

Other Useful String Methods
JavaScript has many more string methods available besides slice and trim.
I won’t go into the details of all of them, but here are some useful ones:

str.toLowerCase() Returns a new string with all the uppercase
characters in str converted to lowercase.

str.includes(otherStr) Returns true if str includes the string
given as the otherStr argument.
str.padStart(num, char) Returns a new string that has at least num
characters, and adds the char character as many times as needed to the
start of the string if it isn’t already num in length.
str.repeat(count) Returns a new string with str repeated count
times.

TRY IT YOURSELF

 2-3. Try out each of the methods listed in the <Other Useful String Methods= section.
Make sure you test some edge cases, or situations where you call them with
unusual input values. For example, what happens if you give the repeat method
a count of 0? What about -1?

Escape Sequences
Sometimes you’ll want to put special characters into your strings, like
newline characters to create a line break in the middle of the string, or tab
characters to create wider horizontal spacing. JavaScript lets you include
these using escape sequences. An escape sequence is a series of characters,
always starting with a backslash (\), that gets converted to another
character. For example, to insert a newline character into a string, use the \n
escape sequence:

"Hello\nWorld";
'Hello\nWorld'

For better or worse, when Chrome’s JavaScript console evaluates a
string with a special character and outputs the result, the special character
remains in its escaped form. To see how the string appears with the escape
sequence interpreted correctly, pass the string as an argument to the
console.log method. This method prints data to the console, including any
necessary formatting. For example:

console.log("Hello\nWorld");
Hello
World

The output of this method shows how the \n escape sequence is interpreted
as a line break between the two words in the string.

Table 2-1 lists some of the escape sequences you’ll use most often.

Table 2-1: Common Escape Sequences

Escape sequence Output

\' Single quote

\" Double quote

\\ Backslash

\n Newline

\t Tab

As the table indicates, if you want to include an actual backslash
character in your string, you’ll need to use \\. Similarly, if you want to
include a double quote character in your double-quoted string, you’ll need
to use \". For example:

console.log("This string has \"double quotes\" and a \\ back
slash character");
This string has "double quotes" and a \ backslash character

When you write a string inside double quotes, there’s no need to use
the \' escape sequence when you want a single quote, for example, as an
apostrophe in a contraction. You can just write the single quote directly, as
shown here:

console.log("You don't need to escape single quotes");
You don't need to escape single quotes

Similarly, when you write a string inside single quotes, there’s no need to
escape double quotes.

TRY IT YOURSELF

 2-4. Create a string using all the escape sequences from Table 2-1.

Template Literals
A template literal is a special kind of string that can evaluate any
expressions embedded within it. This gives you the flexibility to
dynamically populate a string with the values of variables, the results of
calculations, or other code, instead of having to type out every character of
the string exactly or combine several variables into a string with the +
operator.

Template literals are enclosed in backticks (`) instead of quotation
marks. You incorporate code using placeholder syntax, which looks like
this: ${}. The text inside the braces of the placeholder is treated as an
expression and is evaluated before the final string is evaluated, as shown
here:

let name = "Nick";
`Hello, ${name}!`;
'Hello, Nick!'

Here, the value of the name variable gets inserted into the string instead of
the ${name} placeholder, resulting in the string "Hello Nick!" If we
change the value of name, the same template literal will produce a different
string:

name = "Dolly";
`Hello, ${name}!`;
'Hello, Dolly!'

You can place any expression in the placeholder braces, not just a
simple variable. The expression will be evaluated, and the result will be

inserted into the string. For example:

`There are ${60 * 60 * 24} seconds in a day`;
'There are 86400 seconds in a day'

In this case, JavaScript calculates the value of 60 * 60 * 24, converts it to
a string, and incorporates it into the evaluated string.

Template literals have many applications, such as taking text input
from a user and inserting it into a new string. They’re especially useful
when you need to make a string based on several variables. For example,
say you’re building a Mad Libs–type web application that takes in words of
different parts of speech and combines them into sentences. The user has
input the following three words, which you’ve stored in separate variables:

let noun = "moon";
let adverb = "strangely";
let adjective = "red";

Without template literals, you’d have to combine the variables into a
string by repeatedly using the + operator:

"The " + noun + " was " + adverb + " " + adjective + ".";
'The moon was strangely red.'

This code is pretty tedious to write, especially as you want to include a
space between each word and a period at the end of the sentence. It’s much
simpler to use a template literal:

`The ${noun} was ${adverb} ${adjective}.`;
'The moon was strangely red.'

In addition to making code easier to write, template literals also make it
easier to read. It’s much more apparent that this code is inserting a custom
noun, adverb, and adjective into a sentence.

Undefined and Null

In JavaScript, the values undefined and null have a special meaning: they
represent nothing. When JavaScript doesn’t have a value for something, it
returns undefined by default. For example, as you saw earlier in this
chapter, if you create a variable without giving it a value, JavaScript
automatically assigns that variable a value of undefined:

let nothing;
nothing;
undefined

You also get undefined when you execute a function that has no useful
value to return in the console, such as the alert function we used in
Chapter 1 to pop up a dialog in the browser:

alert("I have no value.");
undefined

Whereas JavaScript automatically uses undefined when something has
no value, programmers generally use null to explicitly mark something as
empty. For example, if you’re writing some code that takes an address as
user input, and the user doesn’t supply their address, you can set the
address variable to null instead:

let address = null;
address;
null

Functionally speaking, setting address to null isn’t really any
different from leaving the variable undefined, but it makes your intentions
clearer. Someone else reading your code will see that you’re deliberately
marking address as an empty value, as opposed to it just not having been
defined yet.

Booleans

The last primitive data type we’ll consider is the Boolean type, which
represents true/false values. There are only two Boolean literals: true and
false. Here we create a Boolean variable using a literal and confirm its
value:

let playing = true;
playing;
true

In this example, we’re declaring a new variable called playing and
initializing it with the Boolean literal true. You can imagine that this is
some code in a game, and that the playing variable tells us if the game is
currently active (true) or paused (false).

Booleans are an essential part of programming because they give us a
way to talk about logic. If you want your program to behave differently for
a particular condition, you need to be able to say whether or not that
condition holds—that is, whether it’s true or false. For example, if you’re
working on a video streaming website, you might need to know if the
current user is under 18. If they are, you might hide certain content. You’d
use a Boolean in this case to decide whether or not to hide the content.

Booleans have various operators associated with them. They fall into
two groups: logical operators, which take Boolean values and return
Boolean values, and comparison operators, which can take values of other
types, such as numbers and strings, and return Boolean values.

Logical Operators
There are three Boolean logical operators: and, or, and not. The and
operator (&&) takes two values, known as operands, and returns true only if
both operands are true. This is useful for any case where you need two
conditions to be true for something to happen. Let’s continue the game
example, and pretend we’re writing the logic for a platform game. In this
game, you can shoot fireballs, but only if you have a powerup and you’re
jumping. Here’s how to express that in code:

let powerup = true;
let jumping = true;

powerup && jumping;
true

In this case, powerup is true and jumping is true, so powerup &&
jumping is also true. If you set either (or both) of those variables to false,
however, powerup && jumping will also be false:

jumping = false;
powerup && jumping;
false

The or operator (||) returns true if either of its operands is true. This
is useful if only one of several conditions needs to be true for something to
happen. In our game, for example, let’s say you die if a fireball hits you or
if you touch a monster:

let hitByFireball = false;
let touchedMonster = true;
hitByFireball || touchedMonster;
true

Because one of the two operands is true, the expression
hitByFireball || touchedMonster is true. The || operator will also
return true if both operands are true.

The not operator (!) takes only one operand and returns the inverse of
its value, so !true is false and !false is true. This is particularly useful if
you want something to happen when a condition is not true. In our game,
for example, we might have a variable called alive that tells us if the player
is currently alive. The game should end when the player is dead—that is,
when !alive is true (meaning alive itself is false):

let alive = false;
!alive;
true

Different logical operators are often combined to form more
sophisticated logical expressions. For example, let’s say you can jump in
our game only when you’re not carrying a box and you’re not swimming. In
that case, we’d use two Boolean variables to represent carrying a box and
swimming, use ! to invert each of those variables, and use && to check the
two inverted variables together, like so:

let carryingBox = true;
let swimming = false;
!carryingBox && !swimming;
false

You aren’t swimming, but you are carrying a box, so the && operator returns
false, meaning you can’t jump.

It can sometimes be hard to read more complex logical expressions, so
let’s go through the steps JavaScript takes when evaluating the
!carryingBox && !swimming expression. First, to simplify things, replace
the variable names with the Boolean values they’re currently set to:

!true && !false

Next, replace the expressions !true and !false with their equivalent
values, removing the ! operators:

false && true

Now we just have to remember that && returns true only if both its
operands are true. In this case, one of the operands is false, so we know
that this expression evaluates to false.

There’s a useful trick for working with Boolean expressions like this.
The expression !a && !b can be rewritten as !(a || b). Think of this as
rewording the original description from <not carrying a box and not
swimming= to <not (carrying a box or swimming).= This trick is called De
Morgan’s law (no relation!). It can also be used to convert !a || !b to !(a
&& b).

Comparison Operators
JavaScript’s comparison operators compare values and return a Boolean
value based on the result of the comparison. For example, the === or <triple
equals= operator checks if two values are equal. It returns true if they are,
or false if they aren’t. Here are some examples of the === operator in
action:

5 === 5;
true
6 === 7;
false
2 + 2 === 4;
true
"hello" === "goodbye";
false
"hello" === "hel" + "lo";
true
false === false;
true
true === false;
false

Notice that === isn’t just for comparing number literals; it can also
work with numerical expressions like 2 + 2, string literals ("hello"), string
expressions ("hel" + "lo"), and Booleans. It can compare values stored in
variables as well:

let answer = 2 + 2;
answer === 5;
false

Here answer is set to 4, the value of 2 + 2, so the comparison with 5 is
false.

The opposite of the === operator is !== (the first = is replaced by a !).
This operator checks if two values are not equal. For example:

8 !== 8;
false
"apples" !== "oranges";
true

Using the !== operator is the same as using the === operator, then
applying the ! operator to the result:

!(8 === 8);
false
!("apples" === "oranges");
true

JavaScript’s other comparison operators check if one value is greater
than or less than another. These include the standard mathematical
operations of greater than (>), less than (<), greater than or equal to (>=),
and less than or equal to (<=). Consider these examples:

1 > -1;
true
10 > 10;
false
10 >= 10;
true
-1 < 1;
true
10 < 10;
false
10 <= 10;
true

Notice in particular that comparing identical values with > or < returns
false, but comparing them with >= or <= returns true.

These comparison operators can also be used with strings. One string is
considered <greater than= another string if it would appear later in a
dictionary. For example:

"cat" < "dog";
true
"abc" > "abbcdef";
true

The first comparison evaluates to true because the first letter of cat comes
before the first letter of dog in the alphabet. In the second comparison, the
first two characters of the strings are the same, but looking at the third
character, c is later in the alphabet than b, so the first string is considered
greater. It doesn’t matter that the second string is longer; JavaScript
compares the strings character by character and stops the comparison as
soon as it’s found a difference.

Type Coercion
Coercion is the act of automatically converting a value of one data type into
a value of a different data type. JavaScript uses coercion in certain
circumstances where values of different data types appear in the same
expression. For example, if you use the + operator with a string on one side
and a number on the other, JavaScript coerces the number to a string, then
joins the two strings together:

"Current score: " + 10;
"Current score: 10"

Notice that 10 appears inside the quotes in the output, meaning it’s become
a string rather than a number. This kind of coercion makes it quite easy to
incorporate numbers into strings for display to a user.

In some contexts, Boolean values are coerced into numbers, with false
becoming 0 and true becoming 1. For example:

100 + true;
101

Here we’ve used the Boolean literal true with a number in a mathematical
expression, so JavaScript coerces it to a 1, then adds 100 and 1 to produce

101.

Equality with Coercion
Earlier we used the triple equals operator (===) to check for equality.
There’s another operator, double equals (==), that applies coercion to its
operands before checking for equality. For example, if you compare a
number to a Boolean using ==, the Boolean will first be coerced into a
number:

0 == false;
true

This comparison is true because the Boolean false is first coerced to a 0.
If you make the same comparison using the triple equals operator, however,
it will be false, since === doesn’t permit type coercion:

0 === false;
false

It can be hard to guess what will be coerced to what when you use the
== operator. Here are some other examples:

"1" == 1;
true
undefined == null;
true
undefined == false;
false
"" == 0;
true
"" == false;
true

When you compare a number with a string consisting of all numerals,
such as "1", the string is coerced to the equivalent number, so "1" == 1
becomes 1 == 1, which evaluates to true. The == operator also returns

true when undefined and null are compared to each other, but it returns
false if undefined or null is compared to anything else. Meanwhile, an
empty string—that is, a string that contains no characters, represented by a
set of quotation marks with nothing in between ("")—is considered
equivalent to the number 0 and the Boolean false.

The opposite of == is the != operator. It determines if two operands are
not equal, after any appropriate type coercion. Some inequalities that are
true using the strict !== operator become false with the coercive !=
operator. For example:

0 !== false;
true
0 != false;
false

Without coercion, 0 is not equal to false, so 0 !== false is true. With
coercion, however, false becomes 0, so 0 != false is false.

It’s important to be aware of the == and != operators, but because of the
complicated rules governing type coercion, I’d recommend sticking to the
strict === and !== operators as much as possible. You’ll be less likely to
encounter unexpected behavior in your code.

Truthiness
Truthiness is a special type of coercion that defines how non-Boolean
values are treated as Booleans. This allows logical operators like && and !
to be used on any type of value. The way the operators work depends on
whether JavaScript considers the value to be truthy (equivalent to true) or
falsy (equivalent to false). The falsy values include undefined, null, the
number 0, and an empty string (""). All nonzero numbers and nonempty
strings are truthy.

The easiest way to check if a value is truthy or falsy is to apply two not
operations to it using !!, meaning <not not,= a double negative. This works
because the ! operator always returns a Boolean, regardless of the data type
of the value it’s applied to. For example, say you want to verify that the

number 0 is falsy. A single ! operation coerces the number to a Boolean,
then inverts that Boolean, so !0 evaluates to true:

!0;
true

Adding a second ! reverses the Boolean again, giving the Boolean
equivalent of the original value:

!!0;
false

This confirms that 0 is equivalent to false, or falsy.
You can use the same !! trick to check the other truthiness rules I

mentioned earlier:

!!1;
true
!!"hi";
true
!!"";
false
!!undefined
false
!!null;
false

The output confirms that nonzero numbers and nonempty strings are truthy,
while an empty string, undefined, and null are falsy.

When the && and || operators are applied to non-Booleans, they don’t
return a true or false value. Instead, they return one of the original
operands. In the case of the && operator, if the first operand is truthy, the
second operand is returned. If the first operand is falsy, the first operand is
returned. Here are some examples:

15 && 17;
17
0 && 20;
0
undefined && null;
undefined

In the first case, 15 is truthy, so 17 is returned. In the other two cases, the
first operand is falsy, so 0 and undefined are returned, respectively.

The || operator works the opposite way. If the first operand is falsy, it
returns the second operand, and if the first operand is truthy, it returns the
first operand, as shown here:

"" || "hello";
'hello'
"hello" || "goodbye";
'hello'

In the first case, the first operand is an empty string, which is falsy, so the
second operand is returned. In the second case, the first operand is a
nonempty string, which is truthy, so the first operand is returned.

Uses for Truthiness
You can leverage the behavior of & & and || with truthy and falsy values in
a number of ways. For example, the || operator can be used to give a
variable a default value if one isn’t provided. This could be helpful in a
scenario where a user neglects to enter their name on a form:

let name;
name = name || "No name provided";
name;
'No name provided'

At the start of this example, name is created without being given a
value, so it’s undefined. Then we assign it a value using the Boolean
expression name || "No name provided". Since the first operand is falsy,

the second operand is returned. As a result, name is given the default value
"No name provided". If, on the other hand, a name had been provided,
name would be considered truthy, and so it would retain its value:

let name = "Nick";
name = name || "No name provided";
name;
'Nick'

Similarly, you can use && or || to short-circuit, or skip, an expression.
With &&, if the first operand is falsy, that’s the operand that will be
evaluated and returned, so JavaScript doesn’t even bother evaluating the
second operand. When the operands are just simple values, we don’t really
care if they’re evaluated or not; all we care about is which value is returned.
For example, in the expression 1 || 2 + 2, it doesn’t especially matter
whether JavaScript calculates the result of 2 + 2, because we know the first
operand, 1, is going to be returned. It does matter if an expression is
evaluated when that expression has some kind of side effect, however,
meaning that evaluating it does something other than just returning a value.
For example, the alert function returns the value undefined, but more
importantly has the side effect of displaying a dialog. But what if we want
to only display a dialog in some circumstances?

For instance, say we want to use alert to display a player’s score in a
game, but only when the score isn’t zero. We can make the score variable
and the alert function the operands in an && expression:

let score = 0;
score && alert(`Your score is ${score}!`);
0

Here score is 0, so the first operand in the && expression is falsy. The &&
operator therefore returns this value and ignores the second operand,
meaning alert is never called. We’ve short-circuited the function call.

Now consider what happens if score increases:

++score;
1
score && alert(`Your score is ${score}!`);
undefined

Here we use ++ to increment score, changing its value to 1. This makes
score truthy, so the second operand in the && expression is evaluated,
executing the alert function. The function returns undefined, but also has
the (desired) side effect of displaying a dialog with the player’s score (see
Figure 2-1).

Figure 2-1: The alert function’s side effect is displaying a message in a dialog.

Essentially, we’re using the && operator to decide whether or not to run
some code (the alert function) based on a condition (whether or not score
is 0). In Chapter 4, we’ll look at control structures like if statements, which
give a more explicit way of controlling whether and how our code is run.

Summary
This chapter introduced you to some of the fundamental building blocks of
JavaScript programming. You learned that a statement is a complete thought
in JavaScript, ending with a semicolon, that instructs the computer to do
something, and that a statement can consist of one or more expressions
(units of code that represent a value). You saw how to use bindings to give a
value a name for later use, either as a variable, in which case the value can
be updated later, or as a constant, in which case the value remains fixed.

You also learned about three primitive data types in JavaScript:
numbers, strings, and Booleans. You applied math operations to numbers,

including using shorthand like ++ and -- to increment or decrement them,
and you practiced manipulating strings using various methods, including
slicing and trimming whitespace. With Booleans, you learned how to use
logical operators like and (&&), or (||), and not (!), and you saw how to
generate Boolean values using comparison operators like === and !==.
Finally, you learned how JavaScript sometimes coerces values from one
data type to another, including how non-Booleans are treated as truthy or
falsy, and you explored situations where this can come in handy, such as to
short-circuit an expression.

3
COMPOUND DATA TYPES

In the previous chapter we discussed
JavaScript’s primitive data types, which

represent a single piece of data, like a number or a
string. Now we’ll look at JavaScript’s compound data
types, arrays and objects, which combine multiple
pieces of data into a single unit. Compound data
types are an essential part of programming because
they allow us to organize and work with collections
of data of any size. You’ll learn how to create and
manipulate arrays and objects, and how to combine
them into more complex data structures.

Arrays
A JavaScript array is a compound data type that holds an ordered list of
values. The elements of an array can be of any data type. They don’t all
have to be the same type, although they typically are. For instance, an array
might function as a to-do list by holding a series of strings describing tasks
that need to be performed, or it might hold a collection of numbers
representing temperature readings taken at regular intervals from a
particular location.

Arrays are perfect for these sorts of structures because they collect the
related values together in one place, and they have the flexibility to grow
and shrink as values are added or removed. If you had a fixed number of to-
do items—say, four—then you might use separate variables to hold them,
but using an array enables you to hold an unbounded, changing number of
items and keep them in a fixed order. Also, once you have your elements
together in a single array, you can write code to efficiently operate on each
item in the array in turn, as you’ll see in Chapter 4.

Creation and Indexing
To create an array, list its elements separated by commas inside a pair of
square brackets:

let primes = [2, 3, 5, 7, 11, 13, 17, 19];
primes;

�(8) [2, 3, 5, 7, 11, 13, 17, 19]

This array contains the first eight prime numbers and is stored in the primes
variable. When you enter primes; the Chrome console should print the
length of the array (8) followed by its elements.

Every element in an array has an index number associated with it. Like
strings, arrays are zero-indexed, so the first element is found at index 0, the
second at index 1, and so on. To access an individual element of an array,
place its index number in square brackets after the name of the array. Here,
for example, we access the first element of the primes array:

primes[0];
2

Because arrays are zero-indexed, the index of the last element of the
array is one less than the array’s length. So, the last element of our eight-
element primes array is at index 7:

primes[7];
19

If you don’t know how long an array is and you want to get its last
element, you can first use dot notation to access its length property and
look up the array’s length, as we did with strings in Chapter 2:

primes.length;
8
primes[7];
19

Or, to do this in a single statement, you can simply subtract 1 from the
length to get the element at the last index, like so:

primes[primes.length - 1];
19

If you use an index outside the range of the array, JavaScript returns
undefined:

primes[10];
undefined

To replace an element in an array, assign the element a new value using
indexing syntax:

primes[2] = 1;
primes;

�(8) [2, 3, 1, 7, 11, 13, 17, 19]

Here we add a 1 in the third position (index 2) of primes, replacing the
value that was previously at that index. The console output confirms that 1
is the new third element in the array.

Arrays of Arrays
Arrays can contain other arrays. These multidimensional arrays are often
used to represent two-dimensional grids of points, or tables. To illustrate
this, let’s make a simple tic-tac-toe game. We’ll create an array (we’ll call

this the outer array) containing three elements, each of which is another
array (we’ll call these the inner arrays) representing one of the rows of the
tic-tac-toe board. Each inner array will contain three empty strings to
represent the squares within that row:

let ticTacToe = [
 ["", "", ""],
 ["", "", ""],
 ["", "", ""]
];

In order to make the code easier to read, I’ve put each inner array on a
new line. Usually when you press ENTER (commonly to start a new line), the
JavaScript console will run the line of code you just entered, but in this
case, it’s clever enough to realize that the first line isn’t finished, because
there’s no closing square bracket to match the opening bracket. It will
interpret everything up to the final closing bracket and semicolon as a
single statement, even if you include additional brackets and carriage
returns.

NOTE
The Chrome console automatically applies indentation to the inner arrays,
to indicate that they’re nested inside the outer array. Chrome and VS Code
by default use four spaces for each level of indentation, but this is a matter
of personal preference. Throughout this book I’ll be using two spaces for
indentation, both because this is more common in modern JavaScript code
and because it helps some of the bigger listings fit on the page.

I could have written this array on one line, as shown here, but this way
it’s harder to see its two-dimensionality:

let ticTacToeOneLine = [["", "", ""], ["", "", ""], ["", "",
""]];

Now let’s see what happens when we ask the console for the value of
the ticTacToe variable:

ticTacToe;

�(3) [Array(3), Array(3), Array(3)]

In this case, the length of the outer array is shown as (3), indicating that it’s
an array with three elements. Each element of the array is Array(3), which
means each inner array is another three-element array.

To expand the view and see what’s in those inner arrays, click the
arrow on the left:

�(3) [Array(3), Array(3), Array(3)]
 �0: (3) ['', '', '']
 �1: (3) ['', '', '']
 �2: (3) ['', '', '']
 length: 3

 �[[Prototype]]: Array(0)

The first three lines show the values of the inner arrays at indexes 0, 1, and
2. After these, the outer array’s length property is shown, with its value of
3. The final property, [[Prototype]], is where the array’s built-in methods
come from (more on this in Chapter 6).

We’ve created our tic-tac-toe board, but it’s empty. Let’s set an X in the
top-right corner. The first inner array represents the top row; we access it
with ticTacToe[0]. The top-right corner is the third element of that row, or
index 2 of the inner array. Because ticTacToe[0] returns an array, we can
just add [2] on the end to access the element we want: ticTacToe[0][2].
Knowing this, we can set this element to "X" as follows:

ticTacToe[0][2] = "X";

Now let’s look at the value of ticTacToe again, clicking the arrow to
expand the outer array:

ticTacToe;

�(3) [Array(3), Array(3), Array(3)]

 �0: (3) ['', '', 'X']
 �1: (3) ['', '', '']
 �2: (3) ['', '', '']
 length: 3

 �[[Prototype]]: Array(0)

The top-right corner of the tic-tac-toe board now contains an X.
Next, let’s set an O in the bottom-left corner. The bottom row is index 2

of the outer array, and the leftmost square of that row is index 0 of the inner
array, so we enter the following:

ticTacToe[2][0] = "O";
ticTacToe;

�(3) [Array(3), Array(3), Array(3)]
 �0: (3) ['', '', 'X']
 �1: (3) ['', '', '']
 �2: (3) ['O', '', '']
 length: 3

 �[[Prototype]]: Array(0)

Now there’s an O in the bottom-left corner of the board.
To summarize, if you want to access an element in a nested array, use

one set of square brackets to select the element in the outer array (which
returns one of the inner arrays), then a second set to select the element in
the inner array.

TRY IT YOURSELF

 3-1. Play a game of tic-tac-toe against yourself, using the ticTacToe array.
Remember, the first index number should be the row of the board, and the
second index number should be the column.

Array Methods
JavaScript has several useful methods for working with arrays. We’ll look
at a few important ones in this section. Some of these methods modify the

array in question, which is known as mutation. Example mutations include
adding or deleting array elements, or changing the elements’ order. Other
methods create and return a new array while leaving the original array
unchanged, which is useful if you still need the original array for other
purposes.

It’s important to be aware of whether or not the method you’re using
will mutate the array. For example, say you have an array containing the
months of the year listed chronologically, but one part of your program
needs them in alphabetical order. You’d want to be sure that alphabetizing
the months doesn’t inadvertently change the original, chronological array,
or other parts of your program might start thinking April is the first month
of the year. On the other hand, if you have an array representing a to-do list,
you’d probably want the original array itself to be updated when a task is
added or removed, rather than creating a new array.

Adding an Element to an Array
The push method mutates an array by adding a supplied element to the end
of the array. The return value of the push method is the new length of the
array. As an example, let’s use push to build up an array of programming
languages:

let languages = [];
languages.push("Python");
1
languages.push("Haskell");
2
languages.push("JavaScript");
3
languages.push("Rust");
4
languages;

�(4) ['Python', 'Haskell', 'JavaScript', 'Rust']

First we create a new array called languages and initialize it with [],
an empty array. The first time we call the push method, we pass the value
"Python". The method returns 1, which means there’s now one element in
the array. We do this three more times, and finally ask for the value of

languages by entering languages;. This returns the four languages we
added to the array, in the order we added them.

To add an element to the beginning of the array rather than the end, use
the unshift method, like so:

languages.unshift("Erlang");
5
languages.unshift("C");
6
languages.unshift("Fortran");
7
languages;

�(7) ['Fortran', 'C', 'Erlang', 'Python', 'Haskell', 'JavaScript', 'Rust']

Here we’ve added three more languages to the front of the languages
array. Because each element is added to the beginning of the array, they end
up in the opposite order to how they were added. Like push, calling
unshift returns the new length of the array.

Removing Elements from an Array
To mutate an array by removing its last element, use the pop method. Here
we call the pop method on the languages array, deleting its last element:

languages.pop();
'Rust'
languages;

�(6) ['Fortran', 'C', 'Erlang', 'Python', 'Haskell', 'JavaScript']

The method returns the value of the element being removed, in this case
"Rust". When we then check the array, it contains only six elements.

Because the pop method returns the array element being removed, it’s
particularly useful if you want to do something with that element as you’re
removing it. For example, here we delete another element from the
languages array and use it in a message:

let bestLanguage = languages.pop();
let message = `My favorite language is ${bestLanguage}.`;
message;
'My favorite language is JavaScript.'
languages;

�(5) ['Fortran', 'C', 'Erlang', 'Python', 'Haskell']

This time when we call languages.pop() we store the method’s return
value in the bestLanguage variable, which we incorporate into a string
using a template literal. When we print the resulting message, it includes
the word JavaScript. This was the element removed from the array, which
is now down to five languages.

To remove the first element from an array, rather than the last, use the
shift method. Like pop, the shift method returns the removed element:

let worstLanguage = languages.shift();
message = `My least favorite language is ${worstLanguage}.`;
message;
'My least favorite language is Fortran.'
languages;

�(4) ['C', 'Erlang', 'Python', 'Haskell']

As with the previous example, we save the result of calling shift in a
variable, this time called worstLanguage, and use it in a template literal.
This variable contains the string "Fortran", and languages is left with four
elements.

The four methods we’ve looked at so far, pop, unshift, push, and
shift, are commonly used to implement more specialized data structures,
like queues. A queue is a data structure that resembles a line of people,
where new items are added to the end and items are removed and processed
from the beginning. This is useful when you want to process data in the
order it arrives. For example, imagine a Q and A app, where many users can
ask questions. You could use an array to store the list of questions, with the
push method adding each new question to the end of the array. When the
answerer is ready to answer a question, they would use shift to get the first
element in the array and remove it from the array. This ensures that only

unanswered questions are in the array, and that they’re answered in the
order they were received.

TRY IT YOURSELF

 3-2. Create a new empty array and save it in a variable called rainbow (see the
section <Adding an Element to an Array= on page 42 to see how to create a new
empty array). Your task is to add the colors of the rainbow ("Red", "Orange",
"Yellow", "Green", "Blue", "Indigo", "Violet") to this array, but with a twist: you
must start by adding "Green", and use push and unshift to add the rest. If you
make a mistake, you can use pop or shift to remove the color you just added.

Combining Arrays
The concat method (short for concatenate) adds two arrays together. Here,
for example, we start with two arrays, fish and mammals, and combine them
into a new array, saving that into the animals variable:

let fish = ["Salmon", "Cod", "Trout"];
let mammals = ["Sheep", "Cat", "Tiger"];
let animals = fish.concat(mammals);
animals;

�(6) ['Salmon', 'Cod', 'Trout', 'Sheep', 'Cat', 'Tiger']

When you call concat on an array, a new array is created with all the
elements from the first array (the array on which you called concat)
followed by all the elements from the second array (the array passed as an
argument to concat). The original arrays remain unchanged because, unlike
the other methods we’ve looked at so far, concat isn’t a mutating method.
This is useful here, because we wouldn’t want our fish array to suddenly
contain the elements from mammals!

To combine three or more arrays, pass multiple arrays as arguments to
concat, as in this example:

let originals = ["Hope", "Empire", "Jedi"];
let prequels = ["Phantom", "Clones", "Sith"];
let sequels = ["Awakens", "Last", "Rise"];

let starWars = prequels.concat(originals, sequels);
starWars;

�(9) ['Phantom', 'Clones', 'Sith', 'Hope', 'Empire', 'Jedi', 'Awakens', 'Last',
 'Rise']

Here we create three separate arrays, originals, prequels, and sequels,
representing the three sets of Star Wars movies. Then we use concat to
combine them into a single nine-element starWars array. Notice that the
elements in the combined array appear in the order in which the arrays were
passed as arguments.

Finding the Index of an Element in an Array
To find out where a particular element is in an array, use the indexOf
method. This method returns the index of the first occurrence of the
specified element. If the element isn’t found in the array, indexOf returns
-1:

let sizes = ["Small", "Medium", "Large"];
sizes.indexOf("Medium");
1
sizes.indexOf("Huge");
-1

In this example, we want to check the position of "Medium" in the sizes
array, and we get back the answer 1. Then, because "Huge" isn’t in the
array, we get the answer -1.

If the array contains multiple instances of the given value, indexOf
returns the index of the first matching element only. For example, here’s an
array with the colors of the flag of Argentina:

let flagOfArgentina = ["Blue", "White", "Blue"];
flagOfArgentina.indexOf("Blue");
0

Even though "Blue" is found twice in the array, indexOf returns only the
index of the first occurrence.

Turning an Array into a String
The join method converts an array into a single string, joining all the
elements together, as shown here:

let beatles = ["John", "Paul", "George", "Ringo"];
beatles.join();
'John,Paul,George,Ringo'

Notice how the separate strings in the beatles array are combined into
one string. By default, join places a comma between each element to form
the returned string. To change this, you can give your own separator as an
argument to join. For example, if you want nothing in between each
element, pass an empty string as an argument:

beatles.join("");
'JohnPaulGeorgeRingo'

You can pass any valid string as a separator. In the next example, we
pass a space, an ampersand, and a newline escape character to set each
element on its own line. As you learned in Chapter 2, we have to use
console.log for the newlines to display correctly in Chrome:

console.log(beatles.join("&\n"));
John&
Paul&
George&
Ringo

Keep in mind that the separator appears only between array elements,
not after each one. This is why there isn’t an extra ampersand and newline
after Ringo.

If you use join on an array containing non-string values, those values
will be converted to strings, as in this example:

[100, true, false, "hi"].join(" - ");
'100 - true - false - hi'

As with the previous joins, the result is one long string, joined together
by the separator (in this case, " - "). The difference is that the non-string
values (the number 100 and the Booleans true and false) had to be
automatically converted to strings before the join. This example also shows
how you can call array methods directly on array literals, rather than having
to save the array into a variable first.

TRY IT YOURSELF

 3-3. Use the join method to convert the array ["X", "X", "X"] into the string "XoXoX".

Other Useful Array Methods
Here are some other useful array methods you might want to try out:

arr.includes(elem) Returns true or false depending on whether a
given elem is in the arr array.
arr.reverse() Reverses the order of elements in the array. This is a
mutating method, so it modifies the original array.
arr.sort() Sorts the array elements, modifying the original array. If
the elements are strings, they’re sorted in alphabetical order. Otherwise,
the sorting happens as if the elements were converted to strings.
arr.slice(start, end) Creates a new array by extracting elements
from the original array starting at index start, up to but not including
index end. This method is equivalent to the slice method on strings,
introduced in the previous chapter. If you call slice() without any
arguments, the entire array is copied into a new array. This is useful if
you need to use a mutating method like sort but you don’t want to
mutate the original array.
arr.splice(index, count) Removes count elements from the array,
starting at index.

Objects

Objects are another compound data type in JavaScript. They’re similar to
arrays in that they hold a collection of values, but they differ in that objects
use strings called keys instead of numeric indices to access the values. Each
key is associated with a specific value, forming a key-value pair.

Whereas arrays are commonly used to store ordered lists of elements of
the same data type, objects are usually used to store multiple pieces of
information about a single entity. These pieces of information often are not
all of the same data type. For example, an object representing a person
might hold information like the person’s name (a string), their age (a
number), whether or not they’re married (a Boolean), and so on. Objects are
better suited for this purpose than arrays because each piece of information
is given a meaningful name—its key—rather than a generic index number.
It’s much clearer what the values 35 and true mean if they’re stored in a
person object under the keys "age" and "married" than it would be if they
were stored in a person array under the indices 1 and 2.

Creating Objects
One way to create an object is with an object literal, which consists of a
pair of braces ({ and }) enclosing a series of key-value pairs, separated by
commas. Each key-value pair must have a colon between the key and the
value. For example, here’s an object literal called casablanca containing
some information about that movie:

let casablanca = {
 "title": "Casablanca",
 "released": 1942,
 "director": "Michael Curtiz"
};
casablanca;

�{title: 'Casablanca', released: 1942, director: 'Michael Curtiz'}

Here we create a new object with three keys: "title", "released",
and "director". Each key has a value associated with it. I’ve written each
key-value pair on its own line to make the object literal easier to read, but
this isn’t strictly necessary. As you’ll see in later examples, the key-value
pairs can also all be written on the same line.

All object keys are strings, but if your key is a valid identifier, it’s
common practice to omit the quotes. A valid identifier is any series of
characters that can be used as a JavaScript variable name. An identifier can
consist of letters, numbers, and the characters _ and $, but it can’t start with
a number. It also can’t contain other symbols, like *, (, or #, nor can it
include whitespace characters like spaces and newlines. These other
characters are allowed in object keys, but only if the key is enclosed in
quotes. For example:

let obj = { key1: 1, key_2: 2, "key 3": 3, "key#4": 4 };
obj;

�{key1: 1, key_2: 2, key 3: 3, key#4: 4}

Here key1 and key_2 are valid identifiers, so they don’t need quotes.
However, key 3 contains a space and key#4 contains a hash mark, making
them invalid identifiers. They must be enclosed in quotes to be used as
object keys.

Accessing Object Values
To get the value associated with a key, call the name of the object with the
string key in square brackets:

obj["key 3"];
3
casablanca["title"];
'Casablanca'

This is just like the syntax for accessing an element from an array, but
instead of using the numeric index, you use the string key.

For keys that are valid identifiers, you can use dot notation instead of
square brackets, with the key name coming after the dot:

obj.key_2;
2

This doesn’t work for keys that aren’t valid identifiers. For example, you
can’t write obj.key 3 because to JavaScript that looks like obj.key
followed after the space by the number literal 3.

Notice that this dot notation looks like the syntax we used for accessing
the length property of strings (in Chapter 2) and arrays (earlier in this
chapter). That’s because it’s the same thing! A property is just another name
for a key-value pair. Behind the scenes, JavaScript treats strings like
objects, and arrays, too, are actually a special kind of object. When we write
something like [1, 2, 3].length, we say we’re accessing the array’s
length property, but we could also say we’re getting the value associated
with the array’s length key. Likewise, when we write something like
casablanca.title, we often say we’re accessing the object’s title
property instead of the value associated with its title key.

Setting Object Values
To add a new key-value pair to an object, use the same bracket or dot
notation used to look up a value. Here, for example, we set up an empty
dictionary object, then add two definitions:

let dictionary = {};
dictionary.mouse = "A small rodent";
dictionary["computer mouse"] = "A pointing device for comput
ers";
dictionary;

�{mouse: 'A small rodent', computer mouse: 'A pointing device for computers'}

We first create a new, empty object using a pair of empty braces. We
then set two new keys, "mouse" and "computer mouse", giving each a
definition as a value. As before, we can use dot notation with the valid
identifier mouse, but we need bracket notation for "computer mouse"
because it contains a space.

Changing the value associated with a key that already exists follows
the same syntax:

dictionary.mouse = "A furry rodent";
dictionary;

�{mouse: 'A furry rodent', computer mouse: 'A pointing device for computers'}

The output confirms that the definition for mouse has been updated.

Working with Objects
JavaScript has plenty of methods for working with objects; we’ll examine a
few of the most common ones here. Unlike with arrays, where the methods
are called directly on the array you want to operate on, object methods are
called as static methods by entering Object.methodName() and passing the
object you want to operate on as an argument inside the parentheses. Here,
Object is a constructor, a type of function used to create objects, and static
methods are methods defined directly on the constructor instead of on a
particular object. We’ll discuss constructors in more detail in Chapter 6.

Getting an Object’s Keys
To get an array of all the keys of an object, use the static method
Object.keys. For example, here’s how you could retrieve the names of my
cats:

let cats = { "Kiki": "black and white", "Mei": "tabby", "Moo
na": "gray" };
Object.keys(cats);

�(3) ['Kiki', 'Mei', 'Moona']

The cats object has three key-value pairs, where each key represents a cat
name and each value represents that cat’s color. Object.keys returns just
the keys, as an array of strings.

Object.keys can be helpful in cases like this where the only pieces of
information you need from an object are the names of its keys. For
example, you might have an object tracking how much money you owe
your friends, where the keys are your friends’ names and the values are the
amounts owed. With Object.keys you can list just the names of the friends
that you’re tracking, giving you a general sense of whom you owe money
to.

You might be wondering why keys is a static method—that is, why we
need to call it with Object.keys(cats) rather than with cats.keys(). To
understand why this is the case, consider this piano object:

let piano = {
 make: "Steinway",
 color: "black",
 keys: 88
};

The object has a property named "keys" that represents the number of
keys on the piano. If methods like keys could be called directly on the
piano object itself, the property name and method name would conflict,
which isn’t allowed. JavaScript has many more built-in object methods
besides keys, and it would be tedious to have to remember all of their
names to make sure they don’t conflict with any of your objects’ property
names. To avoid this issue, the designers of the language made these object
methods static. They’re attached to the overall Object constructor instead
of to individual objects like cat or piano, so there’s no possibility of a
naming conflict.

NOTE
None of this is an issue with arrays. Method names must be valid
identifiers, meaning they can’t start with a number. Therefore, there’s no
way an array method could conflict with the array’s numerical indices.

Getting an Object’s Keys and Values
To get an array of the keys and values of an object, use Object.entries.
This static method returns an array of two-element arrays, where the first
element of each inner array is a key and the second is its value. Here’s how
it works:

let chromosomes = {
 koala: 16,
 snail: 24,
 giraffe: 30,

 cat: 38
};
Object.entries(chromosomes);

�(4) [Array(2), Array(2), Array(2), Array(2)]

We create an object with four key-value pairs, showing how many
chromosomes various animals have. Object.entries(chromosomes)
returns an array containing four elements, each of which is a two-element
array. To expand the outer array and view its full contents, click the arrow:

�(4) [Array(2), Array(2), Array(2), Array(2)]
 �0: (2) ['koala', 16]
 �1: (2) ['snail', 24]
 �2: (2) ['giraffe', 30]
 �3: (2) ['cat', 38]
 length: 4

 �[[Prototype]]: Array(0)

This shows that each inner array contains a key from the original object as
its first element, and the associated value as its second element.

Converting an object into an array with Object.entries makes it
easier to cycle through all of the object’s key-value pairs and do something
with each one in turn. We’ll see how to do this with loops in Chapter 4.

Combining Objects
The Object.assign method lets you combine multiple objects into one. For
example, say you have two objects, one giving the physical attributes of a
book and the other describing its contents:

let physical = { pages: 208, binding: "Hardcover" };
let contents = { genre: "Fiction", subgenre: "Mystery" };

With Object.assign, you can consolidate these separate objects into
one overall book object:

let book = {};
Object.assign(book, physical, contents);
book;

�{pages: 208, binding: 'Hardcover', genre: 'Fiction', subgenre: 'Mystery'}

The first argument to Object.assign is the target, the object that the
keys from the other objects are assigned to. In this case, we use an empty
object called book as the target. The remaining arguments are the sources,
the objects whose key-value pairs are to be copied into the target. You can
pass as many source objects after the initial target argument as you want—
we’re just doing two here. The method mutates and returns the target object
with the key-value pairs copied from the source objects. The source objects
themselves are untouched.

You don’t have to create a new, empty object to use as the target for
Object.assign, but if you don’t, you’ll end up modifying one of your
source objects. For example, we could remove the first argument, book,
from the previous call and still get an object with the same four key-value
pairs:

Object.assign(physical, contents);
physical;

�{pages: 208, binding: 'Hardcover', genre: 'Fiction', subgenre: 'Mystery'}

The problem here is that physical is now the target object, so it gets
mutated, gaining all the key-value pairs from contents. This usually isn’t
what you want, as the original, separate objects are often still important to
other parts of your application. For this reason, it’s common practice to use
an empty object as the first argument to Object.assign.

Nesting Objects and Arrays
As with arrays, we can nest objects in other objects. We can also nest
objects in arrays, and arrays in objects, to create more sophisticated data
structures. For example, you might want to make an object representing a
person that contained a children property containing an array of objects
representing that person’s children. We build these nested structures in two

ways: by creating an object or array literal with nested object or array
literals inside, or by creating the inner elements, saving them to variables,
and then building up the composite structures using the variables. We’ll
examine both of these techniques here.

Nesting with Literals
First, let’s build a nested structure using literals. We’ll create an array of
objects representing different book trilogies:

let trilogies = [

❶ {
 title: "His Dark Materials",
 author: "Philip Pullman",
 books: ["Northern Lights", "The Subtle Knife", "The Ambe
r Spyglass"]
 },

x {
 title: "Broken Earth",
 author: "N. K. Jemisin",
 books: ["The Fifth Season", "The Obelisk Gate", "The Sto
ne Sky"]
 }
];

The variable trilogies contains an array of two elements, ❶ and x,
each of which is an object with information about a particular trilogy.
Notice that each object has the same keys, since we want to store the same
pieces of information about each trilogy. One of those keys, books, itself
contains an array of strings representing the book titles within the trilogy.
We thus have an array within an object within an array.

Accessing an element from one of these inner arrays requires a
combination of array indexing and object dot notation:

trilogies[1].books[0];
'The Fifth Season'

Here, trilogies[1] means we want the second object in the outer array,
.books means we want the value of that object’s books key (which is an
array), and [0] means we want the first element from that array. Putting it
together, we get the first book from the second trilogy in the outer array.

Nesting with Variables
An alternative technique for making nested structures is to create objects
containing the inner elements, assign those objects to variables, and then
build the outer structure out of these variables. For example, say we want to
create a data structure modeling the change in our pocket. We create four
objects representing a penny, nickel, dime, and quarter, assigning each to its
own variable:

let penny = { name: "Penny", value: 1, weight: 2.5 };
let nickel = { name: "Nickel", value: 5, weight: 5 };
let dime = { name: "Dime", value: 10, weight: 2.268 };
let quarter = { name: "Quarter", value: 25, weight: 5.67 };

Next, we use these variables to create an array representing the specific
combination of coins in our pocket. For example:

let change = [quarter, quarter, dime, penny, penny, penny];

Notice that some of the coin objects appear in the array multiple times.
This is one advantage of assigning the inner objects to variables before we
create the outer array: an object can be repeated within the array without
having to manually write out the object literal each time.

Accessing a value from one of the inner objects again requires a
combination of array indexing and object dot notation:

change[0].value;
25

Here, change[0] gives us the first element of the change array (a quarter
object) and .value gives us its value key.

An interesting consequence of building the array from object variables
like this is that the repeated elements share a common identity. For
example, change[3] and change[4] refer to the same penny object. If the
US government decided to update the weight of a penny, we could update
the weight property of the underlying penny object, and that update would
be reflected in all the penny elements of the change array:

penny.weight = 2.49;
change[3].weight;
2.49
change[4].weight;
2.49
change[5].weight;
2.49

Here we change the weight property of penny from 2.5 to 2.49. Then we
check the weight of each penny in the array, confirming that the update has
carried over to each one.

TRY IT YOURSELF

 3-4. Try changing the value property of quarter and check to see if that change is
reflected in the change array. Now, change the weight of change[0]. Do you see
that change reflected in quarter as well?

Exploring Nested Objects in the Console
The Chrome console makes it easy to explore nested objects, like we did
earlier in this chapter with the nested ticTacToe array. To illustrate, we’ll
create a deeply nested object and try to look inside:

let nested = {
 name: "Outer",
 content: {
 name: "Middle",
 content: {
 name: "Inner",

 content: "Whoa…"
 }
 }
};

Our nested object contains three layers of objects, each with a name
and content property. The value of content for the outer and middle layers
is another object. Getting the value of the innermost object’s content
property requires a long chain of dot notation:

nested.content.content.content;
'Whoa…'

This is equivalent to asking for the content property of the content
property of the content property of the outermost object.

Now try viewing the value of nested as a whole:

nested;

�{name: 'Outer', content: {…}}

The console just gives an abbreviated version with the value of the outer
object’s content property shown as {…} to imply that there’s an object here
but there isn’t room to display it. Click the arrow to expand the view of the
outer object. Now the next nested object (with name: "Middle") is shown
in abbreviated form. Click the arrow to expand this object, too, and then
one more time to expand the object with name: "Inner". You should now
see the entire content of the object in the console:

�{name: 'Outer', content: {…}}
 �content:
 �content:
 content: "Whoa…"
 name: "Inner"

 �[[Prototype]]: Object
 name: "Middle"

 �[[Prototype]]: Object

 name: "Outer"

 �[[Prototype]]: Object

The [[Prototype]] properties refer to the Object constructor, which
we’ve previously used to call object methods like Object.keys and
Object.assign. We’ll discuss prototypes in detail in Chapter 6.

Using the console like this to view complex objects is a very helpful
debugging tool. You’ll often be working with objects that come from
different JavaScript libraries, or that contain data you fetch from a server,
and you won’t necessarily know the <shape= of the data—what properties
the objects contain, how many levels of nesting they have, and the like.
With the console, you can interactively explore the objects and see their
contents.

Printing Nested Objects with JSON.stringify
Another way to view a nested object is to turn it into a JSON string. JSON,
or JavaScript Object Notation, is a textual data format based on JavaScript
object and array literals that’s heavily used across the web and beyond to
store and exchange information. The JSON.stringify method converts a
JavaScript object into a JSON string. Let’s pass it the nested object as an
example:

JSON.stringify(nested);
'{"name":"Outer","content":{"name":"Middle","content":{"nam
e":"Inner","content":"Whoa…"}}}'

The result is a string (it’s enclosed in single quotes) containing a JSON
representation of the nested object. Essentially, it’s the equivalent of the
original object literal we used to create nested. Just like JavaScript, JSON
uses braces to enclose objects, colons to separate keys from values, and
commas to separate different key-value pairs. All that’s missing from this
representation are the original line breaks and indentations we used to
clarify the object literal’s nested structure. To re-create those, we can pass
JSON.stringify another argument representing the number of spaces to
indent each new nested object:

nestedJSON = JSON.stringify(nested, null, 2);
console.log(nestedJSON);
{
 "name": "Outer",
 "content": {
 "name": "Middle",
 "content": {
 "name": "Inner",
 "content": "Whoa…"
 }
 }
}

The second argument to JSON.stringify lets you define a replacer
function that can modify the output by replacing key-value pairs, but we
don’t have a need for that here, so we pass null. Passing 2 for the third
argument modifies the behavior of JSON.stringify to add newlines after
each property and after opening braces and brackets, and then two extra
spaces of indentation for each additional level of nesting. If we viewed the
result in the console directly, we’d see a bunch of \n escape characters for
all the newlines. Instead, we store the result in a variable and pass it to
console.log, giving us a well-formatted view of the object’s nested
hierarchy.

Calling JSON.stringify in this way is helpful for getting a quick
visual representation of an object without having to repeatedly click the
arrows in the console to expand each nested level. The method works on
non-nested objects, too, but in that case the regular view of the object in the
console is usually sufficient.

Summary
This chapter introduced you to JavaScript’s compound data types, which
allow you to combine multiple values into a single unit. By organizing data
in this way, you can manipulate unbounded amounts of information more
efficiently. You learned about arrays, which are ordered collections of
values identified by numerical indices, usually all of the same data type,
and about objects, which are collections of key-value pairs where each key

is a string and the values are often of different data types. You’ve seen how
arrays are useful for storing lists of similar values, such as a list of prime
numbers or a list of programming languages. Meanwhile, objects are useful
for collecting multiple pieces of information about a single entity, such as
information about a particular book or movie.

4
CONDITIONALS AND LOOPS

Conditionals and loops are essential
elements in programming. They add

logic and structure to your programs by allowing
your code to make decisions based on specific
conditions. Together, conditionals and loops are
known as control structures because they give you
control over when and how often parts of your code
should run. With conditionals, you can run a
particular piece of code only if a certain condition is
true. Meanwhile, loops enable you to repeatedly run a
piece of code for as long as a condition remains true.

In this chapter you’ll learn how to conditionally execute code with if
statements and how to loop code with while and for statements. You’ll also
learn techniques for looping over the elements within a compound data
type. This is especially useful if you need to perform an operation on every
element of an array or object.

As we start to work with control structures, we’ll begin writing more
elaborate scripts that are less practical to enter directly into the console,
where each statement executes as soon as you enter it. For this reason, we’ll
switch in this chapter to embedding JavaScript code in HTML files and
then opening those files in the browser. This enables you to run an entire

program at once, and lets you easily make changes and re-run the whole
thing. To review how to do this, see <Using a Text Editor= in Chapter 1.

Making Decisions with Conditionals
Conditionals let you run a block of code when some condition you set is
found to be true. For example, you might want to display a warning
message only when your bank balance is below a certain threshold, or make
the player in a game lose a life when they get hit by an enemy. You
typically create these conditions using the comparison operators, like ===
and >, that we discussed in Chapter 2. You can also combine multiple
conditions with logical operators like && and ||. The key is that the overall
condition should evaluate to true or false.

There are two main kinds of conditional statement: if statements and
if…else statements. We’ll consider each type in turn.

if Statements
An if statement runs code if some condition is true, or skips that code if the
condition is false. For example, let’s create a program that logs a message to
the console if a value is greater than a certain threshold. Open VS Code,
create a new file called if.xhtml, and enter the contents of Listing 4-1.

<html><body><script>
let speed = 30;
console.log(`Your current speed is ${speed} mph.`);

❶ if (speed > 25) {
 console.log("Slow down!");
}
</script></body></html>

Listing 4-1: An if statement

This code begins and ends with the same tags we used in Chapter 1 to
embed JavaScript code in an HTML file. The JavaScript itself first
initializes the speed variable to 30 and prints that value to the console using
console.log. Then we use an if statement ❶ to check the value of speed
and print another message if the value is greater than 25.

The if statement begins with the if keyword and has two main parts:
the condition, which is written inside parentheses, and the code to run if the
condition is true, called the body, which is written between a set of braces.
Here, the condition is speed > 25 and the code to run if that’s true is
console.log("Slow down!"). Because we’ve set speed to be greater than
25, the condition is true, so the code in the body will run. Therefore, if you
open if.xhtml in your browser, you should see the following output in the
JavaScript console:

Your current speed is 30 mph.
Slow down!

Our condition passed, so the Slow down! message was logged to the
console. If the condition had been false, however, the code in the body of
the if statement wouldn’t have run. To see this for yourself, try updating
if.xhtml by initializing speed to 20 rather than 30. Then resave the file and
reload the page. This time, you should just see the following output:

Your current speed is 20 mph.

Because speed > 25 now evaluates to false, the code inside the
braces doesn’t run. The code outside the if statement body does still run,
however, so we still see the value of speed printed out thanks to the first
console .log call.

if…else Statements
Often you’ll want to run one piece of code when a condition is true, or
another piece of code when that condition is false. For this, we use an if…
else statement. To try it out, create a new file called ifElse.xhtml and enter
the contents of Listing 4-2.

<html><body><script>
let speed = 20;
console.log(`Your current speed is ${speed} mph.`);
if (speed > 25) {

❶ console.log("Slow down!");
} else {

x console.log("You're obeying the speed limit.");
}
</script></body></html>

Listing 4-2: An if…else statement

This code uses an if…else statement to check if speed is greater than
25. As in Listing 4-1, the conditional begins with the if keyword followed
by the condition in parentheses. Unlike in Listing 4-1, however, the if…
else statement has two bodies instead of just one, with the else keyword
between them. The first body ❶ runs if the condition is true, and the second
body x runs if the condition is false. Each body is enclosed in its own set
of braces. In this case, because speed is 20, the condition evaluates to
false, so the second body runs. When you open the file in Chrome, you
should see the following output:

Your current speed is 20 mph.
You're obeying the speed limit.

The message from the else body has been logged to the console.
However, if you try setting speed to a higher value, like 30, the message
from the if body will be logged instead.

TRY IT YOURSELF

 4-1. Create a new file called cointoss.xhtml with the usual HTML setup code, then
add some JavaScript to simulate a coin toss. Generate a random number
between 0 and 1 with Math.random(), and write an if…else statement that will log
"heads" if the number is less than 0.5 or "tails" otherwise. Every time you
reload this file, you’ll get a new random heads or tails value.

More Complex Conditions
It’s possible to use more complex Boolean expressions as conditions by
incorporating logical operators. For example, say you only wanted to check

a driver’s speed during school hours. Assuming you have an hour variable
that contains the current hour (using 24-hour time), you could do something
like this:

if (speed > 25 && hour > 7 && hour < 16) {

The body of this if statement will run only if speed is greater than 25 and
hour is greater than 7 but less than 16. In other words, a speed above 25
won’t cause the body of the if statement to execute if it’s outside school
hours.

If your conditions get too complex, it can become hard to read your if
statements. In that case, it’s often best to write the Boolean expression
separately and assign it to a new variable. Then you can use this variable as
the condition for the if statement. For example, the previous conditional
could be rewritten as:

let tooFastForSchool = speed > 25 && hour > 7 && hour < 16;
if (tooFastForSchool) {

Here we’ve assigned the same complex Boolean expression to the
tooFastFor School variable, then provided that variable to the if
statement. Thanks to the meaningful variable name, the conditional now
almost reads like a sentence: <If too fast for school, [do something].=

If it seems odd to lump the speed and hour tests into a single Boolean
variable, a middle ground could be to put just the hour checks into a
variable, like so:

let schoolHours = hour > 7 && hour < 16;
if (speed > 25 && schoolHours) {

Now the schoolHours variable holds true or false based on whether or
not it’s during school hours, and the if statement combines this variable
with the speed test. In the end, the approach you choose comes down to the
subjective question of how easy you find the code to read.

Chained if…else Statements
If you need your code to decide between three or more possible branches,
you can chain together multiple if…else statements. For example, you can
use this technique to log one of three possible messages depending on the
value of the speed variable. Create a new file called ifElseIf.xhtml with the
code shown in Listing 4-3.

<html><body><script>
let speed = 20;
console.log(`Your current speed is ${speed} mph.`);
if (speed > 25) {
 console.log("Slow down!");
} else if (speed > 15) {
 console.log("You're driving at a good speed.");
} else {
 console.log("You're driving too slowly.");
}
</script></body></html>

Listing 4-3: A chained if…else statement with three bodies

This script is very similar to the if…else statement in Listing 4-2,
except now there are three sections, each with its own body: if, else if,
and else. Only one of the bodies—the first body whose condition is true—
will run. Here’s how it works:

 1. First, we use if to check if speed is greater than 25. If it is, the first
body runs, logging "Slow down!" to the console, and the remaining
conditions are skipped.

 2. Next, we use else if to add a second condition, testing if speed is
greater than 15 and logging a different message if it is. If the code gets
to this point, it’ll be because speed > 25 was already found to be false,
so essentially speed > 15 is testing if speed is between 15 and 25. We
could make this explicit by writing else if (speed > 15 && speed
<= 25), but since we already know speed can’t be greater than 25, we
don’t need to specify the && speed <= 25 part.

 3. Finally, we use else to log a third possible message if neither of the
previous conditions was true.

In this case, we’ve set speed to 20, so only the else if branch should
run, producing the following output:

Your current speed is 20 mph.
You're driving at a good speed.

Try experimenting with different values of speed to trigger the if and else
branches instead.

You can chain as many else if clauses as you want between the initial
if and the final else, as shown in Listing 4-4, to create any number of
possible branches in your conditional structure.

if (speed > 25) {
 console.log("Slow down!");
} else if (speed > 20) {
 console.log("You're driving at a good speed.");
} else if (speed > 15) {
 console.log("You're driving a little bit too slowly.");
} else if (speed > 10) {
 console.log("You're driving too slowly.");
} else {
 console.log("You're driving far too slowly!");
}

Listing 4-4: A chained if…else statement with five bodies

This chained if…else statement has five possible bodies, depending on
whether speed is greater than 25, 20, 15, 10, or none of these. As with the
previous example, the order of conditions matters here. Making the
comparisons in order from greatest to least allows us to define five ranges
of possible values for speed, without having to explicitly define the upper
bounds of the ranges. For example, we can write else if (speed > 15)
rather than else if (speed > 15 && speed <= 20) for the third branch,
since we’ve already confirmed by then that speed isn’t greater than 20.
Table 4-1 shows the full conditions for each branch in Listing 4-4.

Table 4-1: Full Conditions and Outputs for Listing 4-4

Condition Output

speed > 25 Slow down!

speed > 20 && speed <= 25 You're driving at a good speed.

speed > 15 && speed <= 20 You're driving a little bit too slowly.

speed > 10 && speed <= 15 You're driving too slowly.

speed <= 10 You're driving far too slowly!

Note that we could reverse the order of the conditions and bodies and
end up with the same effect. Reversed, the conditions would be speed <=
10, speed <= 15, speed <= 20, and speed <= 25. The speed > 25 case
would be handled in the else block. The important thing to recognize is
that the conditions are checked one by one, in sequence, so checking the
second condition implies that the first condition was false. Also, notice that
the opposite of > is <= (think which case would be hit if speed were exactly
10).

DO YOU NEED BRACES?

It’s possible to write if and if…else statements without braces, as long as the body
consists of a single statement. For example:

if (speed > 25)
 console.log("Slow down!");
else
 console.log("You're driving under the speed limit.");

Omitting the braces from the if and else bodies is valid here, since each body
contains only one statement. We’ve still put each body on a separate line and indented
it for clarity, but this, too, isn’t strictly necessary. The bodies can go on the same lines
as the if and else keywords, as shown here:

if (speed > 25) console.log("Slow down!");
else console.log("You're driving under the speed limi
t.");

These examples work fine, but if you have more than one line in the body, you
need to include the braces to specify where the body of the conditional ends and the
code after the conditional begins. It’s also good coding style to indent the body. In this
book, we’ll always use braces and indentation, for consistency.

Repeating Code with Loops
Loops are another form of control structure in JavaScript that let you
repeatedly run the same code as many times as necessary. For example, you
could use a loop to print out each item on a shopping list. Without a loop,
this wouldn’t be possible because you don’t necessarily know ahead of time
how many items there are on the list. Loops are also useful when you want
to keep running the same piece of code until some condition becomes true;
for example, repeatedly asking a user to enter their date of birth until they
provide a valid date.

You’ll learn about four kinds of loops in this chapter: while loops, for
loops, for…in loops, and for…of loops. Let’s start with while loops.

while Loops
Similar to an if statement, a while loop depends on a conditional test. Just
like an if statement, a while loop will skip executing its code altogether if
the condition is initially found to be false. Unlike an if statement, however,
a while loop will keep running the code in its body as long as the condition
is true, rechecking the condition before each new repetition. In other words,
it repeatedly runs a block of code while some condition is true. This is
useful when you need to execute a piece of code multiple times, allowing
your program to keep running as long as it’s needed, instead of just running
through once and stopping.

To see how a while loop works, create a new file called while.xhtml
and enter the contents of Listing 4-5.

<html><body><script>
let speed = 30;

❶ while (speed > 25) {
 console.log(`Your current speed is ${speed} mph.`);
 speed--;
}

x console.log(`Now your speed is ${speed} mph.`);
</script></body></html>

Listing 4-5: A while loop

This script sets speed to 30, then uses a while loop ❶ to bring that
speed within the limit. We write the while loop using the while keyword,
followed by a condition in parentheses and a body in braces, much like an
if statement. Here, our condition checks if speed is greater than 25. Our
body logs the value of speed to the console, then uses the decrement
operator (--) to decrease speed by one. This gives us a new value of speed
to test the next time through the loop. The while loop will keep repeating
the body until the condition is false, producing the following output:

Your current speed is 30 mph.
Your current speed is 29 mph.
Your current speed is 28 mph.
Your current speed is 27 mph.
Your current speed is 26 mph.
Now your speed is 25 mph.

Let’s think about what happens when this code runs. The first time we
hit the while loop, speed is 30, so the condition (speed > 25) is true. This
means the body of the while loop runs once, outputting Your current
speed is 30 mph. and decrementing speed from 30 to 29. At the end of
the loop body, we go back to the start and check the condition again. Since
speed is now 29, the condition is still true, so we run the body again,
printing Your current speed is 29 mph. and decrementing speed to 28.
Then we go back to the start and check the condition yet again, and so on.
Finally, the fifth time through the loop, speed decrements from 26 to 25.
When we then check the condition for a sixth time, it evaluates to false (25
isn’t greater than 25). This causes JavaScript to stop looping and jump to
the first line of code following the while loop x, which outputs the final
line of text.

BEWARE OF INFINITE LOOPS!

It’s very easy to accidentally end up in an infinite loop, where the looping condition will
always be true. In this case, your loop will never stop repeating until you close the
browser tab. If you’re unlucky, you might even cause your browser to crash!

For example, if you changed Listing 4-5 to use speed++ instead of speed-- at the
end of the body, you’d end up in an infinite loop. The output would look something like
this:

Your current speed is 30 mph.
Your current speed is 31 mph.
Your current speed is 32 mph.
Your current speed is 33 mph.
Your current speed is 34 mph.
Your current speed is 35 mph.
Your current speed is 36 mph.
--snip--

The value of speed would keep increasing until you closed the browser tab,
because the condition would never not be met; speed would always be greater than 25.
If you ever end up in a situation like this, read your code through carefully and make
sure that the condition will eventually become false.

for Loops
A for loop is another, more structured style of JavaScript loop. Like a
while loop, a for loop keeps repeating as long as some condition is true.
But unlike in a while loop, in a for loop the code for managing the
repetitions appears at the start of the loop, separate from the loop body.

Often, loops have a particular looping variable that keeps track of the
state of the loop. A common pattern is to set the looping variable to a
starting value, update it somehow, and check some condition based on the
looping variable to decide whether the repetition should stop. For example,
our while loop in Listing 4-5 follows this pattern, with speed serving as the
looping variable. We set speed to 30 before entering the loop, decrement
speed each time through the loop, and keep looping until speed is no longer
greater than 25.

A for loop is just a more convenient way to write this pattern. With
for loops, we move the code to set up and update the looping variable into
the first line of the loop, within the same set of parentheses where we write

the loop condition. To illustrate, let’s rewrite the previous example to use a
for loop instead of a while loop. Save the contents of Listing 4-6 in
for.xhtml.

<html><body><script>
for (let speed = 30; speed > 25; speed--) {
 console.log(`Your current speed is ${speed} mph.`);
}
</script></body></html>

Listing 4-6: A for loop

We declare the for loop with the for keyword, followed by a set of
parentheses containing three components, each with its own loop
management task:

 1. Initialize the looping variable (let speed = 30).
 2. Set the looping condition (speed > 25).
 3. Update the looping variable (speed--). The update will occur after

each repetition of the loop.

These three components are separated by semicolons.
Inside the loop body, we have a single statement logging the value of

speed to the console. Notice that we no longer have to decrement speed as
part of the loop body, as we did in the while loop; this is covered by the
third part of the loop management code in parentheses. Likewise, we no
longer have to initialize speed before declaring the loop; that, too, is
handled inside the parentheses.

Running this script will produce mostly the same output as the while
loop from Listing 4-5:

Your current speed is 30 mph.
Your current speed is 29 mph.
Your current speed is 28 mph.
Your current speed is 27 mph.
Your current speed is 26 mph.

The only difference is that we can’t log the final speed after the loop
ends, as we did with the while loop. This is because the speed variable is
declared as part of the code for the loop itself, rather than before the loop.
As such, speed is confined to the scope of the loop, meaning code outside
the loop doesn’t have access to it. This is actually one of the advantages of
for loops: the looping variable exists just for the loop and can’t be
accidentally used or changed in other parts of the code.

There’s nothing you can do with a for loop that you can’t do with a
while loop, but most programmers find for loops easier to read than the
equivalent while loops, because all the looping logic is gathered in one
place.

WHAT IS SCOPE?

All bindings in JavaScript have scope, which is the area of code in which they’re
accessible. For example, if you declare a variable with let inside a while loop, that
variable can’t be used outside of the while loop. If, however, you declare the variable
outside of the loop, it can be used inside the loop. The same goes for variables
declared in the body of an if statement. Each nesting of control structure (or function
definition, as you’ll see in Chapter 5) adds a new layer of scope. Bindings defined in
the outer layers can be accessed by the inner layers, but not vice versa. Consider this
example:

let name = "Philadelphia";

if (name.length > 10) {
 let message = `Hi ${name}, you have a really long name!
`;
}

console.log(message);

The body of this if statement can access name and incorporate it into a template
literal to generate a message, since name was declared outside the if statement.
However, trying to access message outside the conditional won’t work, since message
doesn’t have scope beyond the if statement in which it’s declared. If you run this code,
it’ll produce an Uncaught ReferenceError when it gets to the console.log call, saying
that the variable message hasn’t been defined. To successfully print the message, we’d
need to move the console.log call to within the body of the if statement, where
message has scope.

Similarly, variables defined in the initialization segment of a for loop have scope
only within the loop. In this example, we can access and log the looping variable i
within the body of the for loop:

for (let i = 0; i < 10; i++) {
 console.log(`This is repetition ${i}`);
}
console.log(i);

However, calling console.log(i) after the loop ends will trigger another Uncaught
ReferenceError, since i is no longer in scope.

for…of Loops
A for…of loop cycles through the items in an array. Whereas a while loop
or for loop keeps looping as long as some condition is true, a for…of loop
goes over each item in an array, one at a time, and stops when it runs out of
items. This is quite useful, as it’s common to have to apply the same action
to each member of an array. For example, if you had an array of numbers,
you could create a bar chart by looping over those numbers and drawing a
rectangle to the screen for each one, using the number to set the rectangle’s
height in pixels. Similarly, if you had an array of objects about movies, you
could loop over the movies and print their titles.

Let’s have a look at a for…of loop in action. Create a new file called
forOf.xhtml containing the contents of Listing 4-7.

<html><body><script>
let colors = ["Red", "Green", "Blue"];

for (let color of colors) {
 console.log(`${color} is a color.`);
}
</script></body></html>

Listing 4-7: Looping over an array with a for…of loop

This code logs a sentence for each color in the array colors, then stops.
We first create the array, containing the strings "Red", "Green", and "Blue".

We then use the statement for (let color of colors) to set the looping
variable color to each element in colors, one at a time. The first time
through the loop, color will be set to "Red". The second time, it will be set
to "Green". Finally, the third time around, it will be set to "Blue". When the
array runs out of items, the loop ends. This script should output the
following:

Red is a color.
Green is a color.
Blue is a color.

It’s also possible to use a regular for loop to loop over the items in an
array, as in Listing 4-8.

for (let index = 0; index < colors.length; index++) {
 console.log(`${colors[index]} is a color.`);
}

Listing 4-8: Using a for loop instead of a for…of loop to loop over an array

Here, the looping variable index represents the index of each item in
the array. Our loop setup code initializes index to 0 and increments it until
it’s no longer less than the length of the colors array (remember that the
highest index in an array of length N will be N – 1). Within the body of the
loop, we access the current color using colors[index].

For a long time, this for loop style was the only way to loop over an
array in JavaScript. It’s worth being able to recognize it, as you may see it
in a lot of older code. These days, the for…of style is more common.
However, one benefit of the old for loop technique is that it gives you
access to the array indices. This is helpful because it’s sometimes important
to know which element of the array you’re currently working with. For
example, you might want to do something different with even and odd
elements, or you might just want to print out the indices along with the
elements’ values to make a numbered list. You can do that with a for…of
loop, too, by using the entries method on the array. To see how it works,
create a new forOfEntries.xhtml file and enter the contents of Listing 4-9.

<html><body><script>
let colors = ["Red", "Green", "Blue"];
for (let [index, item] of colors.entries()) {
 console.log(`${index}: ${item} is a color.`);
}
</script></body></html>

Listing 4-9: Using a for…of loop with entries to access the indices in an array

In the previous chapter you saw how applying the Object.entries
method to an object gives you an array of arrays, where each inner array
contains one of the object’s keys and its associated value. Here, calling
entries on the colors array does a similar thing, giving the array [[0,
"Red"], [1, "Green"], [2, "Blue"]]. The syntax let [index, item]
is called destructuring assignment. It splits each two-element array from
colors.entries (for example, [0, "Red"]) into two separate variables,
index for the index number and item for the corresponding value. This way
we can incorporate the indices into the logged messages, creating the
following output:

0: Red is a color.
1: Green is a color.
2: Blue is a color.

Note that it’s also possible to use destructuring assignment in regular
assignment statements, outside for…of loops, to break up an array into
separate variables. For example, you could turn an array of three numbers
representing RGB color values into individual r, g, and b variables like this:

let rgbcolor = [125, 100, 0];
let [r, g, b] = rgbcolor;

Thanks to the destructuring assignment, r now has the value 125, g has the
value 100, and b has the value 0. We won’t be using this syntax much in this
book, but it’s good to be able to recognize it.

TRY IT YOURSELF

 4-2. Much like looping over the elements in an array, it’s also possible to use for…of
to loop over the letters in a string. Write a for…of loop that will loop over your
name, printing each letter on a separate line, like this:

N
i
c
k

 4-3. Use the entries method with a for…of loop to print something like the following
based on a string of your name:

N 0
i 1
c 2
k 3

Hint: to use the entries technique, you’ll first have to convert the string to an
array. To do that, use the split method: name.split(" ").entries().

 4-4. Rewrite the code from the previous problem using a standard for loop. Which
version do you prefer? Think about efficiency and readability.

for…in Loops
A for…in loop cycles through the keys in an object. It works similarly to a
for…of loop, picking out each key in turn and stopping when there are no
more keys. The difference is that for…in loops apply to objects instead of
arrays, looping over the keys, not the values. Save the contents of Listing 4-
10 as forIn.xhtml to try it out.

<html><body><script>
let me = {
 "first name": "Nick",
 "last name": "Morgan",
 "age": 39
};

for (let key in me) {
 console.log(`My ${key} is ${me[key]}.`);
}
</script></body></html>

Listing 4-10: Looping over the keys in an object with a for…in loop

Here we create a me object with three key-value pairs (feel free to fill in
your own name and age). Then we use a for…in loop to loop over the keys.
Similar to for…of loop syntax, writing for (let key in me) creates a
looping variable key and sets it to each key from the me object, one at a
time. The first time through the loop key is set to "first name", the second
time through it’s set to "last name", and so on. Within the loop body, we
use the notation me[key] to access the value associated with the current key,
incorporating it into a message, along with the key itself. The output should
look something like this:

My first name is Nick.
My last name is Morgan.
My age is 39.

We could have achieved the same result using Object.entries(me) to
get an array of pairs of keys and values, and a for…of loop to loop over
those. As usual, the choice is mostly a personal one.

Summary
This chapter showed you how to add logic and structure to your code using
conditionals and loops. These control structures let you determine when and
how often your code should run. Conditionals like if and if…else
statements run code based on whether or not a certain condition is true.
Some loops, like while and for, repeat the same code multiple times until a
certain condition is met. Other loops, like for…of and for…in, are for
cycling through the elements of an array or object.

5
FUNCTIONS

As you learned in Chapter 1, a function
is a self-contained block of code for

performing a certain task. We’ve already used some
of JavaScript’s built-in functions, such as alert and
console.log, but you can also create your own
custom functions to perform the tasks particular to
your application. Then you can call these functions to
run the associated code. Packaging code into
functions in this way makes your programming more
effective, as you don’t have to repeat the code every
time you want to use it.

In this chapter, you’ll learn different techniques for writing your own
functions. You’ll see how to provide input to functions and receive output
from them. You’ll also see how functions can be treated as ordinary values,
just like a number or a string. In particular, we’ll explore how functions can
serve as input or output for other, higher-order functions.

Declaring and Calling Functions
Before you can use a custom function, you have to establish what the
function is called and what it does. One way is to use a function
declaration, a block of code that defines a function. To illustrate, we’ll

declare a simple function called sayHello that takes in someone’s name and
logs a custom greeting for that person to the console. Open the JavaScript
console in Chrome and enter the following:

function sayHello(name) {
 console.log(`Hello, ${name}!`);
}

A function declaration has four parts. First, we use the function
keyword to tell JavaScript we’re creating a function. Next, we give the
function a name—in this case, sayHello. After that, we provide a comma-
separated list of the function’s parameters, surrounded by parentheses.
Parameters are pieces of information that the function needs to do its job.
In this case, our function has one parameter, name, indicating that the
function needs to be supplied with someone’s name in order to create a
greeting. (If a function has no parameters, we simply write an empty set of
parentheses.) Finally, we write the function’s body, surrounded by braces.
This is the code that should be executed when the function is called. In our
example, the body consists of a call to console.log to print out a greeting,
with the value of the name parameter inserted via a template literal.

Now that we’ve declared our sayHello function, we can call it
whenever we want to greet someone. Each time we call the function, we’ll
need to provide a value for the name parameter. That value is called an
argument, and it’s specified in parentheses when the function is called. By
passing the function different arguments, we can create different custom
greetings. For example:

sayHello("Nick");
Hello, Nick!
undefined
sayHello("Mei");
Hello, Mei!
undefined

The first time we call our sayHello function, we pass "Nick" as an
argument in the parentheses after the function name. As a result, the

message Hello, Nick! is logged to the console. The second time we call
the function, we pass "Mei" as an argument, so the message Hello, Mei! is
logged. In each case, the value of the argument is bound to the function’s
name parameter, and the function body runs with the name parameter set to
that value. Essentially, you can think of name as a variable within the
function that takes on the value of the corresponding argument (such as
"Nick" or "Mei") when the function is called.

The distinction between parameters and arguments is subtle but
important. Parameters are generic names for a function’s inputs, whereas
arguments are the actual input values passed to the function when you call
it. Each function has only one set of parameters, but every time you call the
function it can have a new set of arguments. In this way, parameters make
your functions highly customizable. The sayHello function, for example,
has one parameter, name, but it can be called with a different argument each
time. We’ve seen it called with sayHello("Nick") and sayHello("Mei"),
but the possibilities are endless: sayHello("Kitty"), sayHello("Dolly"),
sayHello("world"), and so on.

Notice that each call to sayHello outputs undefined as well as the
custom greeting. This extra line of output is the function’s return value.
sayHello returns undefined because we didn’t explicitly give it a return
value; we’ll look at how to do that next.

Return Values
A return value is a value that a function produces for use elsewhere in your
code. In many cases, you’ll want a function to take in some inputs using
parameters, process those inputs in some way, and output the result. That
output is the return value. For example, let’s declare a function that takes in
two numbers and returns their sum:

function add(x, y) {
 return x + y;
}

This add function has two parameters, x and y. The function body
consists of the return keyword followed by the expression x + y. When

the function is called, JavaScript will evaluate this expression, adding x and
y together, and return the result, as shown here:

add(1, 2);
3

We call add with the arguments 1 and 2, which become the values for
parameters x and y, respectively. (The arguments are matched with the
parameters in the order in which they’re given.) The function sums the two
arguments and returns the resulting value, 3.

When we call a function in the Chrome console, its return value is
automatically printed out—but it’s important to distinguish between a
function explicitly logging text to the console, as we saw sayHello do
earlier, and a function returning a value, as add is doing here. When a
function logs a value using console.log, the only place that value exists is
in the log; we can’t make further use of it later. By contrast, when a
function returns a value, we can then use that value later in our code. The
fact that the return value is also displayed in the console is largely
irrelevant. It helps us see what the function is doing, but logging to the
console isn’t the add function’s main purpose, unlike the sayHello
function.

One way to make use of a function’s return value is to call the function
as part of an assignment expression, so the return value will be stored in a
variable. Then we can work with that variable later in the code. For
example:

let sum = add(500, 500);
undefined
`I walked ${sum} miles`;
'I walked 1000 miles'

Here we declare the variable sum and initialize it to the return value of the
add function, which we call with the arguments 500 and 500. The console
shows undefined even though add has a return value because, as discussed
in Chapter 2, declaring a variable always prints undefined. We then use the

function’s return value by incorporating sum into a template literal to create
the string "I walked 1000 miles".

Notice that it wouldn’t be possible to do something similar with our
sayHello function as it’s currently written. For example, we can’t use it to
generate the greeting "Hello, Nick!" and then write some code to
incorporate that greeting into a longer string. The sayHello function returns
undefined, because we didn’t use the return keyword to explicitly give it a
return value. It merely logs the greeting to the console, and there’s no way
to access the greeting once it’s been logged.

It’s not necessary to store a function’s return value in a variable to use
it. A function call that returns a value can be used anywhere a value can be
used, just as you can use variables and literal values interchangeably. For
instance, the previous example could be rewritten like so:

`I walked ${add(500, 500)} miles`;
'I walked 1000 miles'

Here, instead of calling add separately and storing the result in a variable,
we call the function from within the template literal. Its return value is
inserted directly into the resulting string, producing the same message as
before. It’s often more readable to store the return value in a variable, but
both approaches are equally valid.

TRY IT YOURSELF

 5-1. Rewrite the sayHello function so it returns the `Hello, ${name}!` greeting
instead of logging it. Then write some code to use the returned greeting. For
example, apply the toUpperCase string method to convert the greeting to all caps.

Parameter Types
The data types of function parameters in JavaScript are not fixed. This is
because JavaScript is a dynamically typed programming language, in which
the types of variables and parameters can change while the program is
running, as opposed to a statically typed language, in which the types of
variables and parameters are determined before the program is run.

To illustrate, so far we’ve been using the add function to add numbers
together, but there’s nothing stopping us from using it to concatenate two
strings:

add("Hello, ", "world!");
'Hello, world!'

Here we pass the function two strings as arguments, so the + operator in the
function body is interpreted to mean string concatenation rather than
numerical addition. The function therefore combines the strings and returns
the result.

By extension, we could also pass arguments of other types, or even mix
data types within the same function call:

add(true, false);
1
add(1, '1');
'11'

In these cases, JavaScript’s rules around type coercion, discussed in Chapter
2, come into play. When we try to add two Booleans with add(true,
false), JavaScript converts the Booleans to the numbers 1 and 0 before the
addition, producing the number 1. When we try to add a number and a
string with add(1, "1"), JavaScript converts both of the operands to strings
and concatenates them, producing the string "11".

Dynamic typing brings a lot of flexibility to JavaScript, but if you
aren’t careful, it can also open the way for some confusing bugs. It’s
essential to have a good idea of the types you’re using, to make sure you’re
not passing a string to a function that expects a number, for example.

Side Effects
A side effect is anything a function does that makes a difference outside of
the function itself, apart from returning a value. Side effects can be intended
or unintended, and include updating the value of a variable declared outside
the function, modifying an array or object declared outside the function, or
outputting a string to the console.

Some functions, like our add function, have no side effects and are
called only for their return value. Other functions, like sayHello, have no
return value and are called only for their side effects. It’s also possible to
write functions that return a value and have side effects. For example, we
can redefine add to log some information to the console and update a
variable, in addition to returning the sum of its arguments:

let addCalls = 0;

function add(x, y) {
 addCalls++;
 console.log(`x was ${x} and y was ${y}`);
 return x + y;
}

Here we declare the variable addCalls, which we’ll use to keep track of
how often the add function is called. Then we write our updated add
function declaration. The function now increments addCalls and logs the
values of its parameters to the console, before returning the sum of the
parameters, as before.

Let’s try calling the revised function:

let sum = add(Math.PI, Math.E);
x was 3.141592653589793 and y was 2.718281828459045
addCalls;
1
sum;
5.859874482048838

The function call has the side effect of logging the two values to the console
before adding them together. It also has the side effect of updating the
addCalls variable, changing its value from 0 to 1. Additionally, the
function has the (non–side effect) result of returning the sum of its
arguments, which we’ve stored in the sum variable.

If we made further calls to add, the variable addCalls would keep
incrementing each time, giving us a running count of the number of times

the function is called. You don’t typically need to keep track of the number
of times a function is called like this, although you could use such a
mechanism to restrict how often a program is allowed to call some function
that requires a lot of processing power (a technique known as rate limiting).
You could achieve this by periodically resetting the counter—perhaps every
minute—and skipping the function call if the counter goes over some
threshold.

Passing a Function as an Argument
In JavaScript, functions are first-class citizens, which means they can be
used like any other value, such as a number or a string. For example, you
can store a function in a variable or pass a function as an argument to
another function. The latter is especially common, as there are many
functions that delegate work to other functions. When a function is passed
as an argument, it’s often referred to as a callback because the function it’s
passed to is said to <call it back= by executing it.

We’ll illustrate this with JavaScript’s built-in setTimeout function,
which allows you to delay the calling of another function. It takes two
arguments: a function to call, and a time in milliseconds (ms) to wait before
calling that function. Here’s how it works:

function sayHi() {
 console.log("Hi!");
}
setTimeout(sayHi, 2000);
1
Hi!

First we create a simple function with no arguments, sayHi, which just
calls console.log. We then call setTimeout, passing the sayHi function
and the number 2000 (indicating 2,000 ms, or 2 seconds) as arguments.
Once you press ENTER, setTimeout should immediately return a timeout ID
—in this case, 1—which is a unique identifier you could use to cancel the
delayed function call if desired. Then, after two seconds, the sayHi function
is called, and the string "Hi!" is logged to the console.

NOTE
To cancel a function call delayed with setTimeout, call the clearTimeout
function, passing the timeout ID as an argument.

Notice that when we pass a function as an argument, we write its name
without parentheses: in this case, sayHi rather than sayHi(). A function
name without parentheses simply refers to the function, while a function
name with parentheses actually calls the function. We can see this
distinction in the JavaScript console:

❶ sayHi;

f sayHi() {
 console.log("Hi!");
}

x sayHi();
Hi!
undefined

Executing just plain sayHi; without parentheses ❶ prints the
function’s definition but doesn’t call it. However, executing sayHi(); with
parentheses x calls the sayHi function, printing the string "Hi!" and
returning undefined.

Other Function Syntaxes
So far in this chapter we’ve focused on creating functions using function
declarations, but JavaScript also supports other ways to create functions.
Function declarations follow a straightforward format and use a similar
syntax to how functions are defined in many other languages, like C++ and
Python. They’re perfectly fine when you’re writing functions that you
intend to call directly, like the sayHello and add functions that we’ve
discussed. However, once you start treating functions as values by passing
them as arguments and the like, the other styles of creating functions
become more useful. We’ll turn to those now, starting with function
expressions.

Function Expressions
A function expression, also known as a function literal, is a code literal
whose value is a function, just as 123 is a literal whose value is the number
123. Whereas a function declaration creates a function and binds it to a
name, a function expression is an expression that evaluates to (returns) a
function, for you to do with what you will.

Syntactically, a function expression looks very similar to a function
declaration, with two main differences. First, a function expression doesn’t
have to include a name, although you can include one if you want. Function
expressions without names are also called anonymous functions. Second, a
function expression can’t be written at the start of a line of code, or
JavaScript will think it’s a function declaration; there has to be some code
before the function keyword. This is why function expressions are often
used in contexts where functions need to be treated as values.

For example, you can define a function expression and assign it as the
value of a variable, all in one statement, as shown here:

let addExpression = function (x, y) {
 return x + y;
};

The function keyword appears on the right side of an assignment
statement, rather than at the start of a line, so JavaScript treats this as a
function expression. In this case, we’re assigning the function expression to
the addExpression variable. The function itself is anonymous, since we
don’t provide a name after the function keyword (you’ll see an example
where we do this in the <Named Function Expressions= box on the
following page). It has two parameters, x and y, specified in parentheses,
just like our original add function. The body returns the sum of the
parameters and is enclosed in braces, much like the body of a function
declaration, but notice that we need to put a semicolon after the closing
brace to signify the end of the statement assigning the function to a
variable.

Although the function itself is technically anonymous, it’s now bound
to the addExpression variable. We can therefore call the function by

putting a pair of parentheses containing the necessary arguments after the
variable name, just like calling any named function:

addExpression(1, 2);
3

Entering addExpression(1, 2) calls the function, returning the sum of the
two arguments.

NAMED FUNCTION EXPRESSIONS

You can optionally include a name in a function expression after the function keyword.
For instance:

let addExpressionNamed = function add(x, y) {
 return x + y;
};

Here we give the function expression a name, add, although notice that we’re still
assigning the function to a separately named variable, addExpressionNamed. In fact, the
add name isn’t in scope outside of the function body itself. This means that we can’t call
the function by name, for example, with add(1, 2). We have to call it using the variable
name the function was assigned to: addExpressionNamed(1, 2).

Naming function expressions isn’t as common as leaving them anonymous, but
this syntax can be useful for debugging purposes, to help distinguish one function
expression from another. You can see this if you use console.log to log the values of
addExpression and addExpressionNamed. The former will just show the anonymous
function expression, while the latter will include the add name in the output, which is
useful if you don’t know which function you’re logging to the console.

In many respects, function expressions and function declarations are
interchangeable, so choosing between the two approaches is often just a
matter of style. For example, defining our function for adding two numbers
as a function expression and assigning it to a variable is largely equivalent
to defining it using a function declaration, as we did originally. When it
comes to passing functions as arguments, however, function expressions
offer certain advantages. Earlier, for example, we declared the sayHi
function, then passed its name to setTimeout as an argument. A more

common way to do this is to write an equivalent function expression
directly in the setTimeout function’s arguments list, without first assigning
it to a variable:

setTimeout(function () {
 console.log("Hi!");
}, 2000);
2
Hi!

Previously we called setTimeout(sayHi, 2000), passing the name of
a function as the first argument, but this time we’re passing a function
expression instead. The function expression defines an anonymous function
for logging "Hi!" to the console (the equivalent of the sayHi function we
declared earlier). Notice that the function keyword isn’t the first thing in
the line of code, a requirement for function expressions, and that the closing
brace is followed by a comma, since the function expression is part of a list
of arguments.

As before, calling setTimeout returns a timeout ID, this time 2. Then,
when our anonymous function is called two seconds later, Hi! appears in
the console. Using a function expression in this case is more concise, since
we don’t have to separately define the delayed function before passing it to
setTimeout.

Arrow Functions
JavaScript has yet another syntax for defining functions, called arrow
function expressions, or arrow functions for short. An arrow function is a
more compact version of a function expression, and in most cases the
choice between the two is purely stylistic. You can use an arrow function
anywhere a normal function expression would work, and save yourself a bit
of typing in the process. For example, here’s how to make a function that
adds two numbers using arrow function syntax:

let addArrow = (x, y) => {
 return x + y;
};

An arrow function doesn’t use the function keyword. Instead, it
begins with the arguments list—in this case, (x, y)—followed by an arrow
(=>) and the function body. Here we’re assigning the arrow function to the
addArrow variable, which lets us call it just like other functions:

addArrow(2, 2);
4

We defined addArrow using block body syntax, where the body is
placed between braces and each statement within the body is written on its
own indented line. If the body consists of just a single statement, however,
there’s an even simpler syntax, called concise body:

let addArrowConcise = (x, y) => x + y;

Here the body is written on the same line as the rest of the statement, and it
isn’t surrounded by braces. Also, the return keyword is implied, meaning
the expression in the body (in this case, x + y) is automatically understood
to be the function’s return value. This concise body syntax is great for
writing simple functions, but if your function body involves multiple
statements, you’ll have to use the block body syntax (and include the
return keyword if the function has an explicit return value).

If the arrow function has exactly one parameter, you can further
simplify the syntax by omitting the parentheses around the parameter name:

let squared = x => x * x;
squared(3);
9

This arrow function takes in a number, x, and returns its square (x * x).
Since x is the function’s only parameter, we don’t need to put it in
parentheses. This works for both block body and concise body syntax.

Like function expressions, arrow functions provide an efficient way to
define functions that are passed as arguments. To illustrate, we’ll consider
JavaScript’s built-in setInterval function. Like setTimeout, it takes

another function and a time in milliseconds as arguments, but unlike
setTimeout, it repeatedly calls the provided function, waiting the specified
amount of time between each call. Here, for example, we pass setInterval
an arrow function that logs the string "Beep" to the console:

setInterval(() => {
 console.log("Beep");
}, 1000);
3
Beep

Our arrow function takes no arguments, so it begins with an empty set
of parentheses for the parameter list. The closing brace at the end of the
body is followed by a comma to separate the arrow function from the next
argument to setInterval, which specifies a one-second pause (1,000 ms)
between repetitions.

When we execute this code, it first returns an interval ID for canceling
the repetition—in this case, 3. Then, after a one-second delay, the first
"Beep" is logged. After that, a number should appear on the left of the
console output and increment every second to show how many times
console.log("Beep") has been called. Chrome uses this trick to keep the
console from filling up with duplicate lines of output. When you’re ready
for the code to stop Beep-ing, refresh the browser page, or call the
clearInterval function, passing the interval ID. In our example, that
would be clearInterval(3).

TRY IT YOURSELF

 5-2. You’ve now seen three different ways of creating functions: function declarations,
function expressions, and arrow functions. Write each of the following in all three
styles:

A function that takes a number from 0 to 5 and returns the English word
for that number. For example, 1 should return "one". Hint: use an array to
define the mapping from numbers to strings.
A function with no parameters that prints how many times it’s been called.
Hint: define a variable outside of the function to keep track of the number
of calls, like we did in the <Side Effects= section on page 77.

A function that prints the current date and time. Hint: you can get the
current date and time with new Date().

Rest Parameters
Sometimes you want your function to accept a variable number of
arguments. For example, say you want to make a function that takes
someone’s name and their favorite colors, and prints them out in a sentence.
You don’t know ahead of time how many favorite colors the user will enter,
so you want to make your function flexible enough to handle however
many colors are passed in. In JavaScript, you can do this with a rest
parameter, a special type of parameter that collects a variable number of
arguments into an array.

Rest parameters work with any style of function definition. Here we
use one to create an arrow function that lists the user’s favorite colors:

let myColors = (name, …favoriteColors) => {
 let colorString = favoriteColors.join(", ");
 console.log(`My name is ${name} and my favorite colors are
${colorString}.`);
};
myColors("Nick", "blue", "green", "orange");
My name is Nick and my favorite colors are blue, green, oran
ge.

A rest parameter looks like an ordinary parameter preceded by three
periods, and it always has to be the last parameter listed in the function
definition. When the function is called, any regular parameters, listed first,
are matched to the first provided arguments, in order. Then, the rest
parameter bundles the remaining arguments into an array. In our example,
name is a regular parameter, and favoriteColors is the rest parameter.
When we call the function, the argument "Nick" is assigned to the name
parameter. The remaining arguments, "blue", "green", and "orange", are
gathered into a single array and assigned to the favoriteColors parameter.
Because favoriteColors is an array, we can use the join method to
convert it into a string, separating each color by a comma and a space. Then

we incorporate the color string into a larger string using a template literal
and use console .log to print it.

Since favoriteColors is a rest parameter, we can use the function with
as few or as many colors as we want:

myColors("Boring", "gray");
My name is Boring and my favorite colors are gray.
myColors("Indecisive", "red", "orange", "yellow", "green",
 "blue", "indigo", "violet");
My name is Indecisive and my favorite colors are red, orang
e, yellow, green, blue, indigo, violet.

No matter how many arguments we provide, the function still works.
Here’s another example of using a rest parameter, this time to sum all

the numbers provided as arguments:

function sum(…numbers) {
 let total = 0;
 for (let number of numbers) {
 total += number;
 }
 return total;
}
sum(1, 2, 3, 4, 5);
15
sum(6, 7, 8, 9, 10, 11, 12, 13);
76

This time we’ve used a function declaration instead of an arrow function,
and the function’s only parameter is the rest parameter. Because there are no
other parameters, all the arguments are collected into an array and assigned
to the numbers rest parameter. Then we use a for…of loop to add the
numbers together.

Higher-Order Functions
A higher-order function is a function that takes another function as an
argument, or that outputs another function as its return value. You’ve

already seen two higher-order functions in this chapter: setTimeout and
setInterval, which both take a callback function to execute later as an
argument. JavaScript has many other built-in higher-order functions as well.
We’ll consider some here, and discuss how to write your own higher-order
functions.

Array Methods That Take Callbacks
There are a number of built-in methods for working with arrays that take a
callback function. Remember, a method is a type of function that operates
on an object, such as an array. In most cases, the callback passed to these
higher-order array methods is called once for each item in the array. Let’s
take a look at a few examples.

Finding an Array Element
The find array method finds the first element in an array that matches some
criterion. You specify the criterion with a callback function that returns a
Boolean true/false value. For example, if we wanted to find the first item
in our shopping list with more than six characters, we could do the
following:

let shoppingList = ["Milk", "Sugar", "Bananas", "Ice Crea
m"];
shoppingList.find(item => item.length > 6);
'Bananas'

The callback function we pass to find is item => item.length > 6.
This callback takes advantage of two useful syntactic features of arrow
functions. First, because our function has only one parameter, item, we can
leave off the parentheses around the parameter list. Second, because the
function body involves only one statement, item.length > 6, we can use
concise body syntax, leaving off the return keyword and the braces around
the body. These features let us define the logic for finding the element as
compactly as possible, making arrow functions ideal for writing simple
callbacks.

The find method runs the callback for each element in the array in
turn. The callback takes in the element and returns true or false based on

whether the element has more than six characters. If the callback returns
true for a given element, the find method returns that element and halts
the search. In this case, the method returns "Bananas" rather than "Ice
Cream" since "Bananas" comes earlier in the array.

If no item is found that meets the criterion, the find method returns
undefined:

shoppingList.find(item => item[0] === "A");
undefined

This time we pass find a callback that checks if an element starts with the
letter A. None of the shopping list items do, so the method returns
undefined.

Filtering the Elements of an Array
The filter method returns a new array containing all the elements from
the original array that satisfy some criterion. As with the find method, the
criterion is specified using a callback. To illustrate, we’ll update our
original find example by changing the method name to filter. This will
give us a list of all items with more than six characters, rather than just the
first item that passes this test:

let shoppingList = ["Milk", "Sugar", "Bananas", "Ice Crea
m"];
shoppingList.filter(item => item.length > 6);

�(2) ['Bananas', 'Ice Cream']

This filters out the array elements whose character lengths are too short,
while leaving both "Bananas" and "Ice Cream" in the resulting array.

Transforming Each Element of an Array
Sometimes you’ll want to transform each element in an array and store the
results in a new array. For instance, you might have an array of numbers
that all need to be operated on in the same way. You could do this using a
for…of loop, as we discussed in Chapter 4, but a more concise technique is
to use the map array method. It applies the same callback to each element of

an array and returns a new array containing the results. Here, for example,
we use map to take in an array of numbers and produce an array of those
numbers’ cubes:

let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
let cubes = numbers.map(x => x * x * x);
cubes;

�(10) [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

Our callback function, x => x * x * x, takes an array element and
cubes it. The map method applies this callback to each element in the
numbers array, returning a new array of the first 10 perfect cubes while
leaving the original array unchanged. Compare the concise syntax of
passing map an arrow function with the equivalent code using a for…of
loop:

let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
let cubes = [];
for (let x of numbers) {
 cubes.push(x * x * x);
}
cubes;

�(10) [1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

The result is the same, but with map we’re able to declare and populate
the cubes array in a single line of code, instead of first declaring cubes as
an empty array and then filling it up within the body of the for…of loop.

The map method is also useful if you have an array of similar objects
and you want to extract the same piece of information from each one. For
example, say you have an array of objects that represent items in a store,
each with a name and a price property, and you want to get an array of just
the prices. You can pass map a callback function accessing each object’s
price property, like so:

let stockList = [
 {name: "Cheese", price: 3},

 {name: "Bread", price: 1},
 {name: "Butter", price: 2}
];
let prices = stockList.map(item => item.price);
prices;

�(3) [3, 1, 2]

Here, the callback function is item => item.price, which takes an item
and returns the value of that item’s price property. The map function applies
the callback to each object in the original array in turn, and creates a new
array with all the prices.

In general, it’s preferable to use map rather than the equivalent loop
whenever possible, both for the map method’s conciseness and for the
code’s self-documenting nature (the method name map implies that you’re
making a new array that copies and modifies elements from another array,
without the need for further comment). A loop would be more appropriate
when your needs are more custom, for example, if the number of elements
in the output array doesn’t match the number in the original array.

Custom Functions That Take Callbacks
To create your own higher-order function that takes a callback as an
argument, simply include a name for the callback in the function’s list of
parameters, just as you’d name any other parameter. Then, when you want
to call the callback within the function body, add parentheses after the
parameter name, just like calling any other function. Let’s illustrate this by
declaring a doubler function that takes in a callback and calls it twice:

function doubler(callback) {
 callback();
 callback();
}
doubler(() => console.log("Hi there!"));
Hi there!
Hi there!

When we define the doubler function, we give it a callback
parameter. Then, in the function body, we write callback() twice to make
two calls to the function passed to this parameter. When we call doubler,
we pass it a function that logs "Hi there!" to the console, so this message
gets logged twice. Notice that this callback function doesn’t require any
arguments, so we’ve written an empty set of parentheses before the arrow
symbol.

As we’ve discussed, JavaScript has no conception of set data types for
function parameters, so there’s nothing stopping us from trying to pass a
value that isn’t a function as an argument to doubler. If we do, though,
we’ll get an error when JavaScript tries to call the non-function:

doubler("hello");

�Uncaught TypeError: callback is not a function
 at doubler (<anonymous>:2:5)
 at <anonymous>:1:1

Here we pass doubler a string instead of a function, so we get a TypeError.
The callback we passed to doubler didn’t require any arguments, but

you can also set up a higher-order function so its callback takes arguments.
Here, for example, we create a function that calls another function some
number of times, passing the current number of times into the callback:

function callMultipleTimes(times, callback) {
 for (let i = 0; i < times; i++) {
 callback(i);
 }
}

We declare the callMultipleTimes function to have two parameters: a
function to call (callback) and a number of times to call it (times). (Note
that unlike setTimeout and setInterval, where the callback is the first
parameter, our function here follows the more common JavaScript
convention of having the callback be the last parameter.) The function body
consists of a for loop in which we call callback(i), passing the looping
variable i as an argument to the callback.

Because the callback function is passed a single argument, we know
that the callback function we pass to callMultipleTimes should have a
single parameter. For example:

callMultipleTimes(3, time => console.log(`This was time: ${t
ime}`));
This was time: 0
This was time: 1
This was time: 2

Here we pass an arrow function as a callback. It has a single time
parameter. The function incorporates time into a message that gets logged
to the console. Each time this callback is executed, time takes on the
current value of looping variable i, inserting the numbers 0, 1, and 2 into
the logged message, respectively.

Functions That Return Functions
So far we’ve focused on higher-order functions that take in functions as
arguments, but a higher-order function can also output a function as its
return value. For example, say you want to create various functions that add
a suffix to the end of a string, such as adding "!!!" at the end to make the
string seem more exciting, or "???" to make it seem more puzzling. Rather
than manually defining a separate function for adding each possible suffix,
or making a function with text and suffix parameters and having to
supply the suffix every time you call it, you can define a higher-order
function that takes in a suffix and returns a function that will append that
suffix to a string:

function makeAppender(suffix) {

❶ return function (text) {

 x return text + suffix;
 };
}

There are two return keywords here. The first ❶ is used by the higher-
order makeAppender function to return an anonymous function. It’s

followed by the function keyword, indicating that we’re defining a
function to be returned. The second return keyword x is inside the
anonymous function itself. When that function is called, it returns the value
of the anonymous function’s text parameter concatenated with the
makeAppender function’s suffix parameter.

To be able to call the inner function, we first have to get access to it by
calling the outer function:

let exciting = makeAppender("!!!");
exciting("Hello");
'Hello!!!'

Calling makeAppender("!!!") returns a new function, which we assign to
the exciting variable. This variable now contains the function expression
that was returned from makeAppender, which takes a string as an argument.
When we call exciting("Hello"), we get the string "Hello!!!", the result
of concatenating the "Hello" and "!!!" strings together.

The benefit of our higher-order makeAppender function is that we can
use it to generate additional functions for appending other suffixes besides
"!!!". For example:

let puzzling = makeAppender("???");
puzzling("Hello");
'Hello???'
let winking = makeAppender(" ;-)");
winking("Hello");
'Hello ;-)'

Here makeAppender returns two more functions, which we assign as values
to the puzzling and winking variables. We had to define only a single
higher-order function, but we now have three different suffix-appending
functions to choose from, and we can reuse them as much as we like:

winking("Goodbye");
'Goodbye ;-)'
puzzling("Goodbye");

'Goodbye???'
exciting("Goodbye");
'Goodbye!!!'

Notice that each function we returned from makeAppender remembers
the value of suffix that we passed in, which is how it can keep appending
the same suffix. Each of these functions was defined within the scope of
makeAppender, so even though the call to makeAppender has completed, the
inner function it returned is able to hold onto other values from that same
scope, including suffix.

We discussed scope in Chapter 4, noting, for example, how variables
defined within a while or for loop can’t be accessed outside of the loop.
Similarly, variables defined inside a function have scope only within that
function, so they typically disappear once the function call ends. Scope gets
more interesting with nested functions, however, as in the example at hand.
You might expect the scope of the outer makeAppender function to
<disappear= after we call it, but the inner function retains access to the
variables and arguments from that scope, as long as we keep a reference to
the inner function (which we do through the variables exciting, puzzling,
and winking). Functions that hold onto variables and parameters from their
enclosing scopes are known as closures because they <close over= their
environments. (Imagine that the inner function has a dome over it that
preserves all the variables in its scope.)

TRY IT YOURSELF

 5-3. Write a function called makeWrapper that takes a prefix and a suffix, and returns a
new function that adds the prefix and suffix to a provided string. For example,
you could enter let bracketWrapper = makeWrapper("[", "]"); and then call
bracketWrapper("Bracket me!"); to get the string "[Bracket me!]". Likewise, you
could enter let bracesWrapper = makeWrapper("{", "}"); and then call
bracesWrapper("Brace Me!"); to get the string "{Brace me!}".

Summary
In this chapter, you learned how to make your code more readable and
concise by creating and working with your own custom functions. You saw

the three main styles of defining functions—function declarations, function
expressions, and arrow functions—and experimented with block body and
concise body syntax. You learned how to provide input to a function by
passing values to its parameters as arguments, and you learned how to take
advantage of a function’s work, either through its return value, its side
effects, or both. You also saw how functions can be assigned as values to
variables, and how they can be passed to or returned from higher-order
functions.

6
CLASSES

Classes are a powerful programming
tool for generating multiple objects

with shared characteristics and behaviors. They’re a
core part of object-oriented programming, a style of
coding that revolves around creating objects that
contain both data and functions for manipulating that
data. In an object-oriented multiplayer game, for
example, you might represent each player as an
object of a Player class, and each enemy as an object
of an Enemy class. The classes would establish what
kind of data a player or enemy should have and
would include functions to make the player or enemy
do things, like move around or attack.

In this chapter, you’ll learn how to create JavaScript classes, and how
to use those classes to create individual objects. You’ll also learn how to
leverage inheritance to share behavior between different classes. Using
classes and object-oriented programming in this way gives your code
structure and can make it easier to read, write, and understand, especially if
your program involves lots of entities with common behaviors.

Creating Classes and Instances

A class is like template for making standardized objects. In Chapter 3 we
discussed how an object is a compound data type consisting of key-value
pairs, and you saw how to create objects by manually writing out object
literals. Classes automate that process, allowing you to instead create
objects using a syntax similar to calling a function.

A class lays out two main things:

 1. What properties each object of that class should have. (Remember that
property is another term for a key-value pair in an object.)

 2. What functions the object should have access to. (When they’re defined
and called as part of a class, functions are called methods.)

The Player class in a game, for example, might include properties such
as the player’s name, health level, position in the environment, and so on. It
might have methods for moving, firing a weapon, picking up an item, and
more. The class could be used to create multiple different players.

FUNCTIONS VS. METHODS

It’s easy to confuse functions with methods, since they’re both pieces of code that
accomplish a task. The difference is that a method is always associated with an object,
whereas a function stands alone. In Chapter 5, we practiced writing custom,
standalone functions that weren’t associated with particular objects. Meanwhile, we’ve
already looked at some methods in Chapters 2 and 3—for example, the slice method
associated with strings and the push method associated with arrays. For our purposes,
you can think of strings and arrays as specialized types of objects.

Methods are defined on objects, but more importantly, they’re called on objects
using dot notation. The object on the left of the dot is sometimes called the receiver,
because it receives the method call. For example, when you call myArray.push(2), the
receiver is myArray. Internally, methods are able to access and modify their receiver
using the this keyword, as you’ll see later in this chapter. By contrast, functions aren’t
called using dot notation, so they don’t have a receiver object.

Objects created from a class are known as instances of that class. Each
player’s character in the game would be an instance of the Player class, for
example. Each instance fills in the generic template of the class with its
own details. A specific Player instance would have its own name, health
level, and position, distinct from those of other Player instances. All
instances can use the class’s methods, however.

To see how this works, we’ll create a simple Player class for a
hypothetical 2D game. For now, we’ll just give the player a position,
defined by a set of x- and y-coordinates, and a method for moving that
changes those coordinates. Enter the following in the JavaScript console to
declare the class:

class Player {

❶ constructor(startX, startY) {
 this.x = startX;
 this.y = startY;
 }

x move(dx, dy) {
 this.x += dx;
 this.y += dy;
 }
}

We start with the class keyword to indicate we’re declaring a new
class, followed by the class’s name, Player. It’s customary for class names
to start with an uppercase letter. Next comes the class body, enclosed in
braces, just like a function body. Inside the body we define two methods,
constructor ❶ and move x. Declaring a class method is like declaring a
function, but we don’t use the function keyword.

If a class has a method called constructor, as our Player class does,
that method will be called automatically anytime you create an instance of
the class. The constructor performs any necessary setup for the object being
created, including receiving any parameters that define the instance and
laying out what properties the object should have. In this case, our Player
class’s constructor takes in two parameters, startX and startY, and assigns
them to the new instance’s x and y properties, which together keep track of
the player’s position in the 2D game. The this keyword refers to the
current instance being created, so this.x = startX means <take the value
of startX and assign it to the new Player object’s x property.= Notice that
we’re using the same dot notation we’ve used elsewhere to access the

properties of an object; the only difference here is that this serves as a
placeholder for the new object’s name.

The move method updates the player’s position by changing the x and y
properties based on the provided dx and dy parameters. The d in dx and dy
is short for the Greek letter delta, which often refers to the amount
something changes, as in <change in the x value= and <change in the y
value.=

Now that we’ve declared the Player class, we can make instances of it.
For example:

let player1 = new Player(0, 0);

We create a new instance of the Player class using the new keyword
followed by the class name. After the class name, we write a set of
parentheses, much as we would when calling a function. The parentheses
contain any arguments that need to be passed to the class’s constructor
method.

When you create a new instance of a class with new, some magic
happens. First, a new, empty object is created. Then a hidden link from this
object to the class is created, which is how JavaScript is able to tell which
class created the object and what methods the object should therefore have
access to. Next, the class’s constructor method is called automatically.
Inside the constructor, the new object being created is available via the
keyword this, allowing you to set properties on the object. Any arguments
you provide in the parentheses after the class name are passed to the
constructor method’s parameters. After the constructor method has been
called, the new object is returned.

In our example, when we enter let player1 = new Player(0, 0);,
JavaScript creates a new object and gives it a hidden link to the Player
class. It then calls the class’s constructor method, passing the arguments 0
and 0 to the constructor’s startX and startY parameters. The constructor
takes these parameters and uses this.x and this.y to set the new object’s x
and y properties to 0. Finally, the new object is returned and assigned to the
player1 variable.

We can now interact with the new object. Here, for example, we look
up its position, tell it to move, then look up its position again to confirm the
move method worked:

player1.x;
0
player1.y;
0
player1.move(3, 4);
player1.x;
3
player1.y;
4

We access the object’s x and y properties using player1.x and
player1.y, respectively. They both show the value 0, since that’s what we
passed to the constructor. Next, we call the move method, which we defined
in the Player class. Because instances have a hidden link to the class that
created them, they’re able to call methods defined on that class. We use dot
notation to call the method, just like calling the built-in methods associated
with strings or arrays.

When you call a method on an object, the this keyword inside the
method definition is set to the current object (the receiver). When we call
player1.move(3, 4), for example, this inside the body of the move
method is bound to the player1 object. That’s how one method is able to be
shared by multiple objects: this becomes whatever object is receiving the
method call at any given time.

The move method updates the object’s x and y properties by adding dx
and dy to their current values. For example, when we call player1.move(3,
4) we’re setting x to 0 + 3 and y to 0 + 4. When we again look up the
object’s x and y properties, we can see that this worked: player1.x has
become 3 and player1.y has become 4. If we then made another call to
move, for example, player1.move(2, 2), x would become 5 and y would
become 6.

TRY IT YOURSELF

 6-1. Create a new instance of Player called player2. Try calling move with different
values on player1 and player2. You’ll see that each object has its own x and y
properties, but that both objects have access to the move method.

Inheritance
Inheritance is a mechanism in object-oriented programming for defining
relationships between different classes. Just as a child inherits genes from
its parents, a <child= class inherits properties and methods from a <parent=
class, taking on the parent’s properties and methods. This is useful when
you have multiple classes that should share a general set of behaviors, in
addition to each class having some unique behaviors of its own. You can
define the general behaviors as part of a parent class, also called a
superclass. Then you can define the child classes, also called subclasses, to
inherit these behaviors and augment them with other, specialized behaviors.
This saves you from having to repeat the general code when you define
each subclass.

To illustrate, in our 2D game, human-controlled players and computer-
controlled enemies probably have a lot in common. They both need x and y
properties representing their position, for example, and they both need a
move method to change their position. However, they also have some
differences. Perhaps enemies have the ability to attack a player if the player
comes too close, but not the other way around—the goal of the game is for
players to avoid, not kill, the enemies.

We can use inheritance to realize this scheme with minimal code. We’ll
create a new class called Actor representing any participant in the game. It
will hold the general code both players and enemies should have, such as
the move method. We’ll then define Player and Enemy as subclasses of
Actor. They’ll each inherit the general code from the Actor superclass,
while also adding their own code particular to just players or enemies.

First, here’s the definition of the Actor class. It’s mostly a copy of our
previous Player class, but with a new name. We’re also adding another
method, called distanceTo, that calculates the distance between two
participants in the game:

class Actor {
 constructor(startX, startY) {
 this.x = startX;
 this.y = startY;
 }

 move(dx, dy) {
 this.x += dx;
 this.y += dy;
 }

 distanceTo(otherActor) {
 let dx = otherActor.x - this.x;
 let dy = otherActor.y - this.y;
 return Math.hypot(dx, dy);
 }
}

The distanceTo method takes another Actor (or any object with an x-
and y-coordinate) as a parameter and returns the distance to that object. It’s
quite common for objects to be passed to other objects’ methods in this
way. The distance is determined by calculating the horizontal distance
(otherActor.x - this.x) and the vertical distance (otherActor.y -
this.y), and then using the built-in Math.hypot method to find the length
of the hypotenuse of the triangle formed by the two distances. This is the
standard mathematical technique, based on the Pythagorean theorem, for
finding the distance between two points on a 2D plane.

Although it’s technically possible to create an instance of the Actor
class, it’s not really meant to be instantiated. Classes like Actor that are just
meant to be extended by subclasses are sometimes known as abstract
classes, because they represent an abstract concept, like a generic entity in a
game. Meanwhile, classes that are meant to be instantiated, such as the
Player and Enemy classes we’ll define momentarily, are sometimes known
as concrete classes, because they represent something solid, such as actual
players or enemies.

Next, we’ll redefine the Player class to inherit from Actor. We’ll add a
new property specific to players called hp (for hit points), representing the

player’s health level—the Enemy class doesn’t need this property, since only
players, not enemies, can be attacked:

class Player extends Actor {
 constructor(startX, startY) {
 super(startX, startY);

 ❶ this.hp = 100;
 }
}

This time we declare the class with the extends keyword to establish
Player as a subclass of Actor. We have to write only the class’s
constructor method, since it inherits the move and distanceTo methods
from Actor. The constructor takes startX and startY parameters, just as
before.

The first thing we do in the constructor is call super(startX,
startY). Inside a subclass’s constructor method, the super keyword refers
to the constructor from the superclass—in this case, the Actor class’s
constructor. As a result, when we create a new instance of Player, the
Player constructor is called automatically, which in turn calls the Actor
constructor (via super). We pass startX and startY to the Actor
constructor, which uses these values to set the Player object’s x and y
properties. Then, back in the Player class’s constructor, we set the new
Player instance’s hp property to 100 ❶. This way each new player will start
with 100 hit points (full health).

Next, we’ll create our Enemy class. It, too, will inherit from the Actor
class, extending it with an attack method for attacking players (the Player
class doesn’t need this method, since only enemies can attack):

class Enemy extends Actor {
 attack(player) {
 if (this.distanceTo(player) < 4) {
 player.hp -= 10;
 return true;
 } else {
 return false;

 }
 }
}

We declare the Enemy class to extend Actor, just like the Player class.
Unlike with Player, however, the Enemy class doesn’t have any extra
properties (such as hp) that need to be set in the constructor. As such, the
class doesn’t have its own constructor method. When a subclass doesn’t
define a constructor, its parent class’s constructor is called automatically
when a new instance of the subclass is created. Thus, new Enemy instances
will still be given an initial position thanks to the Actor superclass’s
constructor method, but we don’t need to show this explicitly in the Enemy
class declaration.

Without a constructor, the Enemy class’s only unique method is attack.
It takes in a Player object as a parameter and checks the distance to that
object, using the distanceTo method inherited from the Actor class.
(Notice that we call the method using this.distanceTo, again using the
this keyword to reference the current instance of the Enemy class.) If the
distance is less than 4, the enemy can attack, reducing the player’s hp value
by 10. We return true to indicate that this was a successful attack. If the
attack fails because the player is too far away, we return false instead.

Now that we have our Player and Enemy classes, we can see how they
interact. Let’s create an instance of each class, move them around, and have
the enemy attack the player:

let player = new Player(1, 2);
let enemy = new Enemy(3, 4);
player.hp;
100
enemy.distanceTo(player);
2.8284271247461903
enemy.attack(player);
true
player.hp;
90
player.move(5, 5);
enemy.attack(player);

false
player.hp;
90

First we create an instance of each class, at the positions (1, 2) and (3,
4). The Player object starts out at full health, as player.hp demonstrates.
The two objects are about 2.8 units apart, which we confirm by calling
enemy .distanceTo(player). At this point, the enemy is close enough to
successfully attack the player, so we call its attack method using
enemy.attack(player). The method returns true, indicating a hit, and
checking player.hp shows the attack has reduced the player’s health to 90.
Next, we move the player by 5 units in the x and y directions. The move
puts the player out of range of the enemy, so the enemy’s second attack is
unsuccessful, returning false. A last check of player.hp shows the
player’s health remains at 90.

Notice in this code that we’ve called the distanceTo method on an
Enemy object and the move method on a Player object. These were both
methods defined on the Actor class, but they’re available on the Enemy and
Player classes as well, proving the subclasses successfully inherited from
their superclass. We can also verify this using the instanceof keyword,
which tests whether an object is an instance of a particular class. Here, for
example, we try it out with the player object:

player instanceof Player;
true
player instanceof Actor;
true
player instanceof Enemy;
false

As you may expect, player is an instance of Player. What might be
surprising is that player is also an instance of Actor. When a subclass like
Player inherits from a superclass like Actor, instances of the subclass are
also considered to be instances of the superclass. On the other hand, player
is not an instance of Enemy, even though the Player and Enemy classes share
a common superclass.

In this example, we’ve used a single level of inheritance: an Actor
superclass with Player and Enemy subclasses. A more sophisticated game
might use multiple levels of inheritance to create different subtypes of
players and enemies. For example, there might be Witch, Elf, and Centaur
classes, all subclasses of Player (which in turn is a subclass of Actor).
These subclasses would share some common abilities, defined on the
Player superclass (as well as any methods defined on Actor), while also
having their own specialized abilities defined on the individual subclasses.
Likewise, Enemy might have subclasses such as Troll, Demon, and Harpy.

TRY IT YOURSELF

 6-2. Create a new class called Follower that extends from Actor and takes three
constructor parameters: startX, startY, and player. Pass the startX and startY
parameters to the superclass’s constructor, as we did in the Player class, and
save the player parameter as a property on the object, as we did with the Player
class’s hp property. Assume that in this game, a follower can’t be attacked, so it
doesn’t need hit points, and it also can’t attack. What it can do is follow the
player assigned to its player property. To do this, create a follow method that
updates the follower’s x- and y-coordinates to match those of its player property.

 6-3. Create instances of Player and Follower. Try moving the player, then calling the
follower’s follow method to confirm it works.

Prototype-Based Inheritance
When JavaScript was first created, there were no classes, but it was still
possible to share behaviors between objects using prototype-based
inheritance. This older system, which still works today alongside the class
system, relies on two mechanisms:

 1. A constructor function that creates and returns new objects. In this
context, a constructor is just a regular, standalone function (not a
function defined within a class), but it’s called using the new keyword.

 2. A prototype, an example object that the constructor uses as a model for
the objects it creates. The newly created objects inherit methods and
properties from the prototype object.

JavaScript was one of the only mainstream languages to use prototype-
based inheritance rather than classes. Recognizing this, the committee that
develops the language eventually decided to add support for classes, in
order to make JavaScript more palatable to newcomers with a background
in other modern programming languages. When they added classes,
however, they built the new feature on top of the existing support for
prototype-based inheritance. In other words, JavaScript’s class-based
inheritance is essentially an alternative syntax for prototype-based
inheritance. (This is sometimes known as syntactic sugar, because it makes
the syntax more palatable.)

If you’re comfortable using classes, it isn’t essential that you learn
about prototype-based inheritance. However, since classes are a relatively
new JavaScript feature, it’s still common to encounter prototype-based
inheritance in older code, so it’s worth being able to recognize how it
works. Exploring prototype-based inheritance also illuminates some of
JavaScript’s inner workings, including the significance of the mysterious
[[Prototype]] property you’ve been seeing in the Chrome console. Even
if you don’t end up programming with prototype-based inheritance,
understanding some of these underlying details can make it easier to use
classes.

Using Constructors and Prototypes
As I mentioned, prototype-based inheritance involves a constructor function
that creates instances of objects, and a prototype object that the instances
inherit methods and properties from. This works because JavaScript creates
links between the constructor, the prototype, and the new instance being
created. Let’s take a look at this in action. We’ll create a new constructor
function called Cat, and add a method called sayHello to its prototype.
This will allow us to create Cat objects that have access to the sayHello
method:

function Cat(name) {
 this.name = name;
}
Cat.prototype.sayHello = function () {

 console.log(`Miaow! My name is ${this.name}.`);
};

We first create a constructor function called Cat with a name parameter.
Constructor functions, like class names, usually start with a capital letter.
The constructor’s body uses this.name = name to set the new object’s name
property to the value of the provided name parameter. As with classes, the
this keyword in a constructor refers to the object being produced.

When the Cat constructor function is created, it’s automatically given a
property called prototype. It might sound weird that functions can have
properties, but a JavaScript function is actually a kind of object; the Cat
function can have a prototype property just like a person object can have
name and age properties. This property is accessible as Cat.prototype,
using the same dot notation we’d use to access a property of any other
object.

The value of Cat.prototype is itself an object, the prototype that Cat
instances should be modeled after. By adding methods to this prototype
object, we can control what methods any Cat instances will inherit. In this
case, we use Cat.prototype.sayHello to add a sayHello method to the
prototype. The method logs a greeting that includes the value of this.name
to the console. When sayHello is called as a method on a particular
instance, this in the method definition refers to that instance—just as it
would in a method defined on a class—so this.name refers to the value of
the instance’s name property.

NOTE
Notice that Cat.prototype.sayHello chains multiple dot notations together:
Cat .prototype refers to the object stored in the Cat function’s prototype
property, and .sayHello refers to the sayHello property of that object. That
property doesn’t exist yet, so here we’re adding it to the object and setting
its value to a function expression.

We’ve created a Cat constructor and added a method to its prototype.
Now let’s use the constructor to create a new instance that will inherit from
the prototype:

let kiki = new Cat("Kiki");
kiki.sayHello();
Miaow! My name is Kiki.
undefined

Here we create a new object from the Cat constructor by calling it with the
new keyword, passing "Kiki" as an argument for the constructor’s name
parameter. We store the resulting object in the kiki variable. Notice that if
we’d declared Cat as a class rather than a constructor function, the syntax
for creating an object would be exactly the same: new Cat("Kiki"). The
only difference is whether we’re thinking of Cat as the name of a function
or the name of a class.

Next, we call the sayHello method on the new instance. Because kiki
was created using the Cat constructor, it has a hidden link to
Cat.prototype, which JavaScript uses to locate the sayHello definition.
Since sayHello was called as a method on the kiki object, the this
keyword in sayHello is set to kiki.

Although I’m calling the link between instance and prototype <hidden,=
the Chrome console lets you inspect it via the special [[Prototype]]
property. Let’s see what we can find out about kiki. Enter kiki; into the
console and click the arrow at the side to inspect it:

kiki;

�Cat {name: 'Kiki'}
 name: "Kiki"

 �[[Prototype]]: Object

The first line of the output tells us that kiki was created with the Cat
constructor. Next, we see that kiki has a name property with a value of
"Kiki" (this was assigned when the constructor was called). We also see
that kiki has a [[Prototype]] property whose value is an object. This is
the <hidden= link I’ve been talking about to the prototype that this instance
inherited from. It’s the same object referenced by Cat.prototype (the
prototype property of the Cat constructor function). Click the arrow to
expand [[Prototype]] and see what’s inside:

�Cat {name: 'Kiki'}
 name: "Kiki"

 �[[Prototype]]: Object
 �sayHello: f ()
 �constructor: f Cat(name)
 ❶ �[[Prototype]]: Object

We can see that the prototype object has three properties. The first,
sayHello, has a value that’s a function, as the f () indicates. This is the
sayHello method we added to the prototype. The second, constructor,
refers to the Cat constructor function. This cements the link between the
constructor function and the prototype the constructor uses to create new
instances. Finally, the prototype itself has its own [[Prototype]] property
❶, which we’ll explore shortly.

Comparing Constructors and Classes
In prototype-based inheritance, the chain of references from an instance to
its prototype and a prototype to its constructor is how JavaScript knows
where to find the methods and properties for that instance. It turns out
classes use these same techniques. To demonstrate, let’s create a Dog class
that mirrors the functionality of our Cat constructor:

class Dog {
 constructor(name) {
 this.name = name;
 }

 sayHello() {
 console.log(`Woof! My name is ${this.name}.`);
 }
}

The constructor method here is equivalent to the Cat constructor
function, and the sayHello method is equivalent to

Cat.prototype.sayHello. Now let’s make a Dog instance and compare it to
the kiki instance by expanding the [[Prototype]] properties:

let felix = new Dog("Felix");
felix;

�Dog {name: 'Felix'}
 name: "Felix"

 �[[Prototype]]: Object
 �constructor: class Dog
 �sayHello: f sayHello()
 �[[Prototype]]: Object
kiki;

�Cat {name: 'Kiki'}
 name: "Kiki"

 �[[Prototype]]: Object
 �sayHello: f ()
 �constructor: f Cat(name)
 �[[Prototype]]: Object

As you can see, in both cases the sayHello method is found via the
[[Prototype]] link. There are just some minor differences. For example,
with kiki the constructor points at a function, whereas for felix it points at
a class. Also, the sayHello method on felix has a name, whereas for kiki
it doesn’t (because we defined sayHello using an anonymous function).

Note that if you want to access an object’s [[Prototype]] property
directly in code, it’s available through the name __proto__:

kiki.__proto__;

�{sayHello: f, constructor: f}

Even though the property is technically called __proto__, we’ll continue to
call it the [[Prototype]] property, as that’s how it shows up in the Chrome
console.

Exploring Object.prototype

Any object that isn’t created with an explicit constructor function is instead
implicitly created with JavaScript’s built-in Object constructor function.
The prototype this constructor references, available as Object.prototype,
contains basic methods that all objects should inherit. This prototype object
marks the end of the line in the chain of prototype references. All objects
eventually trace their origin back to Object.prototype.

For example, while our kiki object was created with the Cat
constructor, its prototype, Cat.prototype, was never explicitly created with
a constructor. Instead, JavaScript implicitly created this object using the
Object constructor, so its prototype is Object.prototype. This is what the
inner [[Prototype]] property within our view of kiki in the previous code
listing is telling us. We can expand that inner [[Prototype]] property to
examine Object.prototype:

�Cat {name: 'Kiki'}
 name: "Kiki"

 �[[Prototype]]: Object
 �sayHello: f ()
 �constructor: f Cat(name)
 �[[Prototype]]: Object
 ❶ �constructor: f Object()
 �hasOwnProperty: f hasOwnProperty()
 �isPrototypeOf: f isPrototypeOf()
 �propertyIsEnumerable: f propertyIsEnumerable()
 �toLocaleString: f toLocaleString()
 �toString: f toString()
 --snip--

Notably, this inner prototype object has a constructor property whose
value is the Object function ❶, showing that it’s the prototype property of
JavaScript’s built-in Object constructor. The remaining properties
correspond to the many default methods that all objects inherit. For
example, hasOwnProperty is a method that checks if an object has a

property defined on itself, rather than on its prototype, and toString is a
method that returns a string representation of the object.

When you create an object with an object literal, you aren’t creating it
with an explicit constructor function, so it, too, is created implicitly with the
Object constructor and gets Object.prototype for its prototype. When we
were inspecting objects in the console in Chapter 3 and saw they had a
[[Prototype]] property, that’s what we were seeing. Let’s take another
look at one now:

let person = {name: "Nick", age: 39};
person;

�{name: 'Nick', age: 39}
 age: 39
 name: "Nick"

 �[[Prototype]]: Object
 �constructor: f Object()
 �hasOwnProperty: f hasOwnProperty()
 �isPrototypeOf: f isPrototypeOf()
 �propertyIsEnumerable: f propertyIsEnumerable()
 �toLocaleString: f toLocaleString()
 �toString: f toString()
 --snip--

Here we declare a basic person object using an object literal, meaning
it’s created behind the scenes with the default Object constructor.
Inspecting the object in the console, we can see that the contents of its
[[Prototype]] property are exactly the same as the innermost
[[Prototype]] of the kiki object. Both objects trace their roots to
Object.prototype, kiki indirectly through its own prototype
(Cat.prototype) and person directly.

Walking the Prototype Chain
When you ask for a property or method from an object, JavaScript first
looks on the object itself. If it can’t find the property there, it looks on the
object’s prototype. If JavaScript still can’t find the property, it then checks

the prototype’s prototype, and so on, until it hits Object.prototype. This
process is known as walking the prototype chain. Let’s look up some
properties and methods that will walk the prototype chain of our kiki
object:

kiki.name;
'Kiki'
kiki.sayHello();
Miaow! My name is Kiki.
undefined
kiki.hasOwnProperty("name");
true
kiki.madeUpMethodName();

�Uncaught TypeError: kiki.madeUpMethodName is not a function
 at <anonymous>:1:6

First, we access the name property, which is set directly on kiki itself.
Second, we call the sayHello method, which is found on the kiki object’s
prototype. To call this method, JavaScript first checks on kiki and then, not
finding it, checks on its prototype. Third, we call hasOwnProperty, a
method from Object.prototype, which is the kiki object’s prototype’s
prototype. (The method returns true, since the name property is set directly
on kiki.) Finally, we call madeUpMethodName, a nonexistent method. After
walking the entire prototype chain, from kiki to Cat.prototype to
Object.prototype, JavaScript determines that the method can’t be found
and throws an error.

Figure 6-1 shows a visual representation of the kiki object’s prototype
chain and the associated constructor functions, Cat and Object.

Figure 6-1: The prototype chain for kiki

Each box in the diagram represents an object, with the object’s name as
a heading. The left column of each box shows the names of the object’s
properties, and the right column shows the values of those properties. For

example, the kiki object’s name property has a value of "Kiki", and the Cat
.prototype object’s sayHello property is a function, denoted by f ()
(remember that a method is just a function that’s a property of an object).

Some of the property values point at, or refer to, other objects. For
example, all constructor functions have a prototype field that points to the
object that will be used as the prototype for instances created with that
constructor. Thus, the Cat constructor’s prototype field points to
Cat.prototype. Likewise, objects have a link to their prototype through
their [[Prototype]] property. For example, the [[Prototype]] property of
kiki links to Cat.prototype, since kiki was created with the Cat
constructor. All prototype objects have a constructor field that links back
to the constructor they belong to. As you can see, the constructor field for
Cat.prototype connects back to Cat, and the constructor field for
Object.prototype connects to Object. Instances like kiki don’t have a
constructor field defined directly on them. Instead, the constructor is
looked up on the instance’s prototype by walking the prototype chain.

As we saw in the Dog example, classes use the same prototype
mechanism under the hood, so this technique of walking the prototype
chain is also how properties and methods are looked up on instances of
classes.

Overriding a Method
Understanding how JavaScript walks the prototype chain to locate an
object’s methods is important because it allows us to override the definition
of a method that an object would otherwise inherit from its prototype. This
technique is useful when we want an object to inherit most of its behavior
from a prototype, but we want to give it some unique behavior as well.
When you call a method, JavaScript uses the first definition it finds for that
method as it walks the prototype chain, so if we define a method directly on
an object, and that method has the same name as a method defined on the
object’s prototype, the method on the object itself takes precedence.

For example, say you want a new Cat object that says hello in a
different way from the method defined on Cat.prototype. You could set a
separate sayHello method directly on that new cat, like so:

let moona = new Cat("Moona");
moona.sayHello = function () {
 console.log(`HELLO!!! I'M ${this.name.toUpperCase()}!`);
};
moona.sayHello();

❶ HELLO!!! I'M MOONA!
kiki.sayHello();

x Miaow! My name is Kiki.

Here, we define a new instance with the Cat constructor and name it moona.
Then we define a sayHello method on moona itself that logs a greeting in
all caps. When we then call moona.sayHello(), we can see in the output
that the sayHello definition set directly on moona takes precedence over the
sayHello definition on Cat.prototype ❶. This is also known as
shadowing, because the local method casts a kind of shadow over the
prototype’s method. Notice, however, that the original sayHello method on
Cat.prototype remains intact, as you can see from the output when we call
it on kiki x.

TRY IT YOURSELF

 6-4. You can override a method on an instance of a class, just as you can on an
instance created through prototype-based inheritance. Try creating a new
instance of Dog called yappy, and modify its sayHello method to make it sound
more yappy than other Dog instances.

 6-5. Inspect the moona and yappy instances in the console. You should see that their
sayHello methods are defined directly on the instances, whereas the kiki and
felix instances have it defined on their respective prototypes.

Summary
In this chapter you learned about classes, which help you organize your
code by sharing functionality between multiple objects. You learned how to
create classes, how to use them to create instances, and how to extend
classes by creating a hierarchy of subclasses and superclasses. You also
learned about prototype-based inheritance, JavaScript’s original system for
allowing objects to inherit properties and methods. You explored how

prototype-based inheritance compares to the newer class system, and you
saw how to trace an object’s chain of inheritance through the
[[Prototype]] property in the console.

PART II
INTERACTIVE JAVASCRIPT

Now that you’ve learned the basics of the language,
this second part of the book will show you how to
use JavaScript to interface with a web browser. This
will greatly open up the possibilities of the language,
allowing you to write interactive, graphical web
applications, such as games, an online shop, or even
something like Facebook.

First you’ll explore HTML and CSS, the two other pillars of web
development besides JavaScript, and you’ll see how to dynamically modify
the contents and appearance of web pages using the DOM and JavaScript
(Chapter 7). Next, you’ll practice writing JavaScript code that responds to
user-driven events in the browser, such as key presses and mouse clicks
(Chapter 8). Finally, you’ll learn how to use JavaScript and the Canvas API
to generate static and animated graphics (Chapter 9).

7
HTML, THE DOM, AND CSS

To develop your own interactive web
applications you’ll need to learn some

basic HTML and CSS, the languages used for
creating web pages and changing how they look. A
comprehensive introduction to these two languages
would be beyond the scope of this book, but this
chapter will teach you enough to get started. We’ll
also discuss the Document Object Model (DOM) and
its application programming interface (API), which
give us a way to modify web pages using JavaScript.

HTML
HTML stands for HyperText Markup Language. Hypertext is text that links
to other text or documents, and markup is a system for annotating text in
documents. Thus, HTML is a language for annotating text in documents
that link to each other. In Chapter 1, I briefly introduced it as a language for
describing web pages. From this perspective, the web pages are the
documents that link to each other, and the annotations are instructions that
tell a web browser how to display the pages.

HTML annotations take the form of tags. At its simplest, an HTML tag
is a name enclosed in angle brackets. For example, the tag defining the body
of the document, which identifies all the visible content of a web page,

looks like this: <body>. Most tags come in pairs, with an opening tag and a
closing tag: for example, <body> and </body>. A closing tag looks just like
an opening tag but with a forward slash after the opening angle bracket.

Every pair of tags defines an element. Each HTML element represents
some aspect of a web page, such as a heading, an image, or a paragraph. An
HTML document contains a nested set of elements describing the document
structure. In this context, nesting means that there are elements contained
within other elements, which may in turn be contained within other
elements, like matryoshka dolls.

Everything in between the opening and closing tags of an element is
known as the content of that element. For example, Figure 7-1 shows a
basic p element, short for paragraph, which represents a standard paragraph
of text on a web page.

Figure 7-1: The anatomy of an HTML element

The content of the p element, located between the opening <p> tag and
the closing </p> tag, is the actual text that will appear in the paragraph—in
this case, Hello, World!

Creating an HTML Document
Let’s create our first real HTML document. It will be a simple web page
with a heading and a short paragraph of text. Open your text editor and
create a new file called helloworld.xhtml (refer to Chapter 1 if you need a
refresher on creating new files). Enter the contents of Listing 7-1.

❶ <!DOCTYPE html>

x <html>

� <head>
 <title>Hello, World!</title>
 </head>

� <body>
 <h1>Hello!</h1>
 <p>Welcome to my document.</p>
 </body>
</html>

Listing 7-1: A basic HTML document

The first line, the doctype ❶, specifies that this is an HTML document.
This line is required for browsers to properly display these documents (even
though we skipped it for our bare-bones HTML skeleton in Chapter 1).
After this comes the opening <html> tag x. Everything else in this file is
enclosed between this tag and the closing </html> tag. Every HTML
document should have a single set of <html> and </html> tags defining one
overarching html element. All other elements are nested within the html
element.

Inside our html element are a head element � and a body element �.
Notice that our document follows the common convention of using
indentation to indicate the nesting of elements within other elements. Since
head and body are nested within the html element, their tags are indented.
VS Code and many other text editors will apply this indentation
automatically; as in JavaScript, it isn’t required, but it helps with
readability.

The head element contains metadata, or information about the page. In
this case it contains a single element, title. Since it’s nested inside head,
by convention it receives a further level of indentation. The text content of
the title element, Hello, World!, is the name of the web page. The name
won’t be displayed on the page itself, but it will appear as the tab title at the
top of your browser when you load the page.

NOTE
A head element can also contain links to scripts that will run on the page
and stylesheets for modifying the look of the page, both of which we’ll

discuss later in this chapter.

As mentioned earlier, the body element contains the visible content of
the page, such as headings, images, text, and so on. Our body element
contains two elements. The first, h1, is a top-level heading (HTML defines
six heading levels, h1 through h6). Web browsers know to display the text
content of an h1 element (in our case, Hello!) in large, bold text. As we’ve
discussed, the second body element, p, will display as a standard paragraph
of text. Our paragraph contains one sentence: Welcome to my document.

Open your web browser and load helloworld.xhtml. You should see
something like Figure 7-2.

Figure 7-2: Our helloworld.xhtml document viewed in the browser

As you can see, the text content of the title element is displayed as
the title of the tab in the web browser. The h1 element is displayed as a
heading on the page, with the text <Hello!= The p element is displayed as a
standard paragraph below the heading, with the text <Welcome to my
document.=

Understanding Nested Relationships
An element that is directly nested within another element is called a child,
while the element that contains the child is called a parent. For example, in
helloworld.xhtml, title is nested within head. We therefore say that title
is a child of head, and head is the parent of title. An element that is either
directly or indirectly contained within another element (by analogy, a child,
grandchild, great-grandchild, or similar) is called a descendant. For
example, h1 is a descendant of html, even though it isn’t contained directly

within html; instead, it’s contained within body, which is itself contained
within html. Conversely, the html element can be called an ancestor of the
h1 element. Elements that have the same parent are called siblings. In our
document, h1 and p are siblings because they both have body as a parent;
similarly head and body are siblings.

The Document Object Model
When your web browser loads an HTML file, it creates an internal model of
the elements known as the Document Object Model, or DOM. (Remember,
document is just another word for a web page.) Unlike the HTML file itself,
which is a static text file, the DOM is a dynamic model of the page, and you
can modify it using JavaScript. To view the DOM for the helloworld.xhtml
document, open the JavaScript console and switch to the Elements tab. You
should see something very similar to the HTML file, but with arrows to
expand and collapse some of the elements. Expand them all and you should
see the whole document, as in Listing 7-2.

<!DOCTYPE html>
<html>

 �<head>
 <title>Hello, World!</title>
 </head>

 �<body>
 <h1>Hello!</h1>
 <p>Welcome to my document.</p>
 </body>
</html>

Listing 7-2: The DOM of helloworld.xhtml

To illustrate the dynamic nature of the DOM, try double-clicking the
Hello! text in the h1 element within the Elements tab. Type in some new
text and press ENTER. The web page’s heading should change accordingly.
Note, however, that you’re not modifying the HTML file itself; rather,
you’re modifying the browser’s model of the page.

Thanks to the DOM, you can update elements of a web page directly
from the browser, and the results will be immediately displayed. Right now
we’re manually updating the DOM just to see how it works, but later in this
chapter you’ll learn how to use JavaScript to update the DOM
programmatically. This allows you to write code that modifies what the
viewer sees on the page. Ultimately, this is the key to creating dynamic web
applications: JavaScript code that manipulates the DOM to change a web
page’s appearance as the user views and interacts with it.

The Elements tab in the browser provides one way to visualize the
DOM. Figure 7-3 shows another way: we can think of the elements of our
basic web page as a set of nested boxes.

Figure 7-3: The DOM as nested boxes

The DOM doesn’t really care about opening and closing tags, which
are just how HTML describes the structure of the document in a textual
format. From the browser’s point of view, the important details are the
elements and their parent, child, and sibling relationships. Figure 7-3
illustrates this more abstract view of the document structure. You can see
right away that the h1 and p elements are nested within the body element,
which is nested within the html element.

The DOM API
Web browsers allow you to modify the DOM using JavaScript with the
DOM API. As mentioned at the start of this chapter, API stands for
application programming interface, which is a way of interacting with a
system or object via code. As you saw when you updated the h1 element,
modifying the DOM modifies the web page, and any changes you make
will, in general, be instantly visible. This means that the DOM API gives us
a way to write code that will provide instant visual feedback to a viewer of
our page.

The API provides a set of methods and properties for interacting with
the DOM. A lot of these methods and properties are found on the document
object, an object provided by the DOM API that represents the current
document (that is, the web page). For example, document.title allows you
to get and set the title of the current tab. Let’s try that out now. Run the
following code in the JavaScript console for helloworld.xhtml:

document.title;
'Hello, World!'
document.title = "Hello, JavaScript!";
'Hello, JavaScript!'

When you run this, you should see the title change from Hello,
World! to Hello, JavaScript! in the browser tab.

Element Identifiers
We can use the DOM API to modify any element in our page, and even to
add new elements. To modify an element, we need a way of accessing it

from our code. JavaScript offers many ways of accessing HTML elements.
The simplest is to refer to an element by its id attribute.

HTML attributes, such as id, are key-value pairs we can add to HTML
elements. The id attribute gives a unique identifier to an element. In an
HTML document, attributes are always attached to the opening tag of an
element; that is, they appear after the element name and before the closing
angle bracket. Let’s go back to the text editor and add an id attribute to the
h1 element in our helloworld.xhtml document. This will make the element
easy to access with the DOM API. Update the document as shown in
Listing 7-3. The unchanged code is grayed out.

<!DOCTYPE html>
<html>
 <head>
 <title>Hello, World!</title>
 </head>
 <body>
 <h1 id="main-heading">Hello!</h1>
 <p>Welcome to my document.</p>
 </body>
</html>

Listing 7-3: Adding an id attribute

We place the attribute after the opening tag name, h1. The attribute
name and attribute value are separated by an equal sign, and the value
should be wrapped in quotes. In this case, we’re setting the id attribute to
the value "main-heading".

If you reload the page, you should see no difference; the id attribute by
default has no effect on the display of the element. To confirm that the page
has been updated, right-click the <Hello!= heading and select Inspect from
the menu. This will highlight the h1 element, including its new id attribute,
in the Elements tab, as shown in Figure 7-4.

Figure 7-4: Chrome highlighting the h1 element in the Elements tab

Now that the h1 element has an ID, we can easily refer to it using
JavaScript. In your web browser, switch to the Console tab for
helloworld.xhtml and enter the following:

let heading = document.getElementById("main-heading");

The method getElementById takes a string that corresponds to an
HTML element’s id attribute. It returns a representation of the HTML
element with the specified ID. Here we store that element in the variable
heading. Since identifiers are supposed to be unique, getElementById
returns only one element. If the ID isn’t found, the method returns null. If
you break the rules and have more than one element with the same ID,
browsers will usually return the first element with that ID, but this is an
undefined behavior, meaning the behavior isn’t specified and may change
in the future.

Now let’s ask the console for the value of heading:

heading;
 <h1 id="main-heading">Hello!</h1>

The console shows the HTML representation of the h1 element. In addition,
if you hover over the output with your mouse, the browser highlights the
element on the page, as you can see in Figure 7-5.

Now that we have the heading element bound to a variable, we can
operate on it. For example, we can get and set the element’s text as follows:

heading.innerText;
'Hello!'
heading.innerText = "Hi there…";
'Hi there…'

The innerText property represents the text of the element. As you can
see in this example, it can be used both to get the text and to change it.
When you update the value of innerText, the text of the heading element
on the page updates as well. Again, though, keep in mind that this is just a
change to the DOM—the browser’s model of the web page—not the
underlying HTML file itself. If you refresh the page, the browser will
reload the original HTML file and your change will disappear.

Figure 7-5: Chrome highlighting the h1 element on the page

Writing code in the JavaScript console lets you instantly see the results
in your browser when you update the DOM, but what if you want to update
the DOM as someone else views a web page? You can’t type code into the
JavaScript console on other people’s computers without physically being
there, but you can embed JavaScript code directly into an HTML document,
so anyone viewing your web page can see the results of that code. That’s
what we’ll do next.

TRY IT YOURSELF

 7-1. Give the p element of helloworld.xhtml an ID and use it to update the text of that
element from the console.

script Elements
If you want to include JavaScript in an HTML document, you have to use
the script HTML element. There are two techniques for using script
elements: either you include the JavaScript code as content between the
opening and closing <script> tags, or you save the code in a separate
JavaScript file and include the name of that file as a property of the script
element. The advantage of including the JavaScript directly in the HTML
file is that it keeps everything in one place. On the other hand, having the
JavaScript in a separate file means you can use the same JavaScript file on
multiple pages. Maintaining separate files can also be more manageable
when your project has a lot of HTML and a lot of JavaScript.

You’ve already seen a script element with JavaScript content: I
introduced this in Chapter 1 as a way to write JavaScript in an HTML file.
Now let’s look at the second technique. We’ll create a page with an HTML
file that includes a script element, and have that element point to a
separate JavaScript file. In the JavaScript file, we’ll write code to log a
message to the console in order to prove that the script has been included in
the web page.

Because our HTML and JavaScript are going to be in separate files, it
will be easier to keep track of the two files if we put them in a new
directory (or folder, in Windows jargon). Create a new directory called

chapter7 and make a new HTML file in that directory called index.xhtml.
This is the customary name for the main HTML file in a directory.

Enter the code shown in Listing 7-4 into index.xhtml.

<!DOCTYPE html>
<html>
 <head>
 <title>Hello, JavaScript!</title>

 ❶ <script src="script.js"></script>
 </head>
 <body>
 <h1 id="main-heading">Hello, JavaScript!</h1>
 </body>
</html>

Listing 7-4: An HTML file with a script element pointing to a JavaScript file

We include a script element inside the head element ❶. We place it
there by convention since the script won’t be contributing to the visual
content of the page, although it would technically be possible to put it in the
body instead. The script element has a src attribute (short for source),
which tells the browser the name of a JavaScript file to load. The browser
looks in the same directory as the HTML file when a simple filename is
given. You could also give a path to the JavaScript file, such as
"/scripts/myscript.js", but as long as the HTML and JavaScript files
are in the same directory, just the filename is enough.

Our HTML file won’t work yet because we haven’t created the
referenced script file. Create a new file called script.js in your chapter7
directory and enter the code shown in Listing 7-5.

console.log("Hello, HTML!");

Listing 7-5: A simple script.js file

Now open index.xhtml in Chrome. When you open the JavaScript
console, you should see the string Hello, HTML! printed to the console. If
not, check the code carefully, and make sure that the filenames match
exactly.

CSS
Modern web pages are made with three languages: HTML, JavaScript, and
CSS. At a basic level, HTML defines the content of the page, JavaScript
defines the behavior of the page, and CSS, short for Cascading Style Sheets,
defines the appearance of the page. As we’ve seen, web browsers have
default ways of displaying various HTML elements, such as headers and
paragraphs. CSS gives us more control over the look of those elements,
allowing us to override the default appearance of elements, like their size,
color, and typeface.

Because this is a JavaScript book, we won’t look at CSS in depth.
However, knowing the basics of CSS will be helpful when we start making
dynamic web pages. Additionally, some of the DOM API methods we’ll be
using rely on the CSS selector syntax, which we’ll discuss shortly.
Understanding where that syntax comes from will help you use those
methods effectively.

link Elements
In this section we’ll create a CSS file to include in our page and use that file
to override some element styles. Including a CSS file is similar to including
a JavaScript file, but you need to use a different HTML element, called
link. The link element is a generic way of including an external resource
on a page. To create a link to the CSS file we’re about to write, open
index.xhtml in your text editor and add the line highlighted in Listing 7-6.

<!DOCTYPE html>
<html>
 <head>
 <title>Hello, JavaScript!</title>
 <script src="script.js"></script>
 <link href="style.css" rel="stylesheet">
 </head>
 <body>
 <h1 id="main-heading">Hello, JavaScript!</h1>
 </body>
</html>

Listing 7-6: Adding a CSS file with a link element

We set two attributes on the link element: href, short for hypertext
reference, and rel, short for relationship. The href attribute works in the
same way as the src attribute on script elements: you specify the linked
file as the attribute’s value. The rel attribute specifies the type of file
you’re linking to and how it relates to the document. Here we provide the
string "stylesheet", which means the linked file should be interpreted as a
stylesheet for the page, with information on how elements should appear.

Notice that unlike the HTML elements we’ve seen so far, the link
element doesn’t need a closing </link> tag. This is because while other
elements may contain content, a link element never will. As such, there’s
no need for a closing tag to mark the end of the content.

Rulesets
A CSS file consists of one or more rulesets establishing how elements in a
document should be styled. We’ll write a basic ruleset now. Create a file
called style.css in the chapter7 directory and enter the contents of Listing 7-
7.

h1 {
 color: red;
 font-style: italic;
}

Listing 7-7: Styling h1 elements in a style.css file

This piece of CSS says that h1 elements should be styled red and italic.
Refresh index.xhtml in your browser and you should see the style of the
heading change.

A CSS ruleset such as this has two parts: a selector (h1 in this case) and
a series of declarations between braces. The selector tells the browser
which elements to operate on, and the declarations say what to do to those
elements. Selectors match elements. That is, a selector is a pattern, and the
browser checks to see which elements on the page match that pattern. In
this case, h1 is a selector that matches all h1 elements. Our ruleset has two
declarations for this selector, one for making the text red, and one for

making the text italic. Each declaration consists of a property name
followed by a colon, followed by a property value and a semicolon. For
example, color is a property name, and red is that property’s value.

Selectors
Our selector in Listing 7-7 targets all elements of a given type, but CSS also
lets you create more specific selectors. To take advantage of them, we’ll
first have to add some more code to our HTML file. Update index.xhtml as
shown in Listing 7-8.

<!DOCTYPE html>
<html>
 <head>
 <title>Hello, JavaScript!</title>
 <script src="script.js"></script>
 <link href="style.css" rel="stylesheet">
 </head>
 <body>
 <h1 id="main-heading">Hello, JavaScript
!</h1>
 <p class="highlight">This is my first paragraph
.</p>
 <p>This is my second paragraph.</p>
 <h1>Here's another heading.</h1>
 <p class="highlight">This is my third paragraph
.</p>
 </body>
</html>

Listing 7-8: Making our HTML more interesting

There are two new concepts in this expanded HTML. First, we
wrapped some of the text in strong elements. This element marks its
contents as being important somehow. By default, browsers make the
content of strong elements bold. Second, we added a class attribute to two
of the p elements. The class attribute is similar to the id attribute, but
whereas IDs should be unique, you can apply the same class name to

multiple elements. We use class when we want to treat a set of elements in
the same way—for example, highlighting the text of certain paragraphs.

NOTE
The strong element is known as an inline element because you can apply it
to part of a line rather than it defining a separate line.

Refresh the page, and you should see the new text. The word
JavaScript in the heading won’t appear any different, because the h1
element is already styled bold by default, but the three instances of the word
paragraph will all be bold thanks to the strong elements.

Our addition of the class attributes hasn’t made a difference yet, but it
will once we add some CSS targeting the highlight class. Let’s do that
now. Add the new code shown in Listing 7-9 to style.css, specifying some
new CSS rulesets to target the new HTML with different kinds of selectors.

h1 {
 color: red;
 font-style: italic;
}

#main-heading {
 font-size: 48px;
}

strong {
 color: blue;
}

p strong {
 font-size: 24px;
}

.highlight {
 background-color: yellow;
}

.highlight strong {

 background-color: orange;
}

Listing 7-9: Adding more rulesets to style.css

This CSS code uses a few different kinds of selectors. The first new
selector, #main-heading, is an ID selector. An ID selector picks out the
HTML element with a specific id attribute. It uses a hash mark followed by
the ID you want to match, so #main-heading matches the element with
id="main -heading". Here we use the selector to make our main heading
larger than the default size for h1 elements. Note that numeric sizes in CSS
require a unit; in this case we’re using px, which means pixels.

The ruleset with the strong selector matches any strong element and
sets its text to blue. The p strong selector is a bit more interesting. It’s a
descendant selector, which only matches the specified element if it’s a
descendant of some other specified element. In our example, p strong
means <match any strong element that’s a descendant of a p element.=
Thus, the selector will resize the text of the strong elements that are inside
p elements, but ignore the strong text inside the h1 element.

If you want, you can chain multiple descendant selectors together. For
example, html body p strong is a valid descendant selector (though a bit
redundant, since all page content will be a descendant of html and body).
This would match any strong element that’s a descendant of a p element
which in turn is a descendant of a body element which is itself a descendant
of an html element.

Next comes a ruleset for .highlight, which is a class selector. This
kind of selector matches all elements with a given class attribute. The class
name is given after a period, so .highlight will match any element with
class="highlight". Here we use the class selector to set a background
color of yellow, creating a highlighting effect. Finally, .highlight strong
combines a class selector with a descendant selector. It means <match any
strong element that’s a descendant of an element with the highlight
class.=

Anytime you have a class or ID selector, you can optionally include an
element name before it, without a space. For example, p.highlight means

<select any p elements with the highlight class,= while .highlight means
<select any elements with the highlight class.= Likewise, h1#main-
heading matches the h1 element with the id of main-heading. In this case,
the element name is redundant because the id is unique, but you might want
to include it to remind the reader that #main-heading is an h1 element. You
also could apply your CSS file to two separate HTML files, where one has
an h2 element with the id of main -heading, in which case h1#main-
heading would only match on one of the pages.

Refresh the page in your web browser and you should see a hideous
mix of styles, similar to Figure 7-6.

Figure 7-6: The result of our CSS styling experiments

We aren’t going to win any design awards for this page, but it helps us
see how the various CSS selectors work. Notice, for example, how all
strong elements (selected with strong) have been colored blue, but only
strong elements inside p elements (selected with p strong) are sized to 24
pixels. If this sizing had applied to all strong elements, the word
JavaScript in the top heading would be smaller. Meanwhile, the first and
third paragraphs, which were assigned to the highlight class, have a
yellow background (selected with .highlight), except for the word
paragraph, which has an orange background (selected with .highlight

strong). The second paragraph, which isn’t part of the highlight class, has
no added background color.

TRY IT YOURSELF

 7-2. Update the CSS to make it a bit more attractive. You can change the font with
the font-family property; for example, font-family: Arial;. You can find other
permissible color names by searching the web for <CSS colors.=

Using CSS Selectors in JavaScript
As I mentioned earlier, some DOM API methods rely on CSS selector
syntax to select elements from the DOM for manipulation. For example, the
document.querySelectorAll method takes a string containing a CSS
selector and returns an array-like object containing all the elements that
match that selector. To get all the elements in our web page with the
highlight class, you’d use
document.querySelectorAll(".highlight");.

With index.xhtml open in your browser, open the console and enter the
following:

document.querySelectorAll(".highlight");

�NodeList(2) [p.highlight, p.highlight]

As you can see, the querySelectorAll method returns a NodeList
with two elements. A NodeList is a kind of specialized array. For our
purposes, we can just treat it like a regular array. If you click the arrow to
expand the NodeList, you’ll see the two p.highlight elements (the p
elements with the class highlight) listed. Hover over each one in turn and
you should see the corresponding element highlighted on the page.

Next, select the strong element in the main heading:

let strong = document.querySelectorAll("#main-heading stron
g");
strong;

�NodeList [strong]

Only one element matches the selector #main-heading strong. It’s the
strong element that’s a descendant of the element with the main-heading
ID. You therefore get a NodeList with a single element. Again, if you
expand the list you can hover over the element to see it highlighted on the
page. To get the text content of that element, you have to get element 0
from the NodeList using [0] and ask for its textContent property, as
shown here:

strong[0].textContent;
'JavaScript'

In situations like this where you expect your selector to match only a
single element, you can also use document.querySelector, which returns
only the first element matching the selector, or null if no elements match.

TRY IT YOURSELF

 7-3. Use document.querySelector to get the strong element in the main heading and
change its text content.

 7-4. We previously used document.getElementById("main-heading"), but you can also
use querySelector to select a single element by its id. Do the two calls return the
exact same result? Hint: you can use === to check equality.

 7-5. Use document.querySelectorAll to select all the strong elements on the page.
Next, try selecting just the strong elements that are contained within a p element
with the highlight class.

 7-6. Add some more elements with different class names and IDs and experiment
with selecting them. For example, the em element is used for emphasizing text,
and the pre element can be used for displaying code.

Summary
In this chapter you learned the basics of HTML and CSS, which define the
content and appearance of a web page, respectively. HTML and CSS are
both topics worthy of their own books, but we’ve covered enough ground
for you to start building your own web pages. You can use the fundamentals
from this chapter as a starting point for your own independent study of
these two languages.

This chapter also introduced you to the DOM, the web browser’s
internal model of a web page. You’ve seen how to manipulate the DOM
with JavaScript using the DOM API, and gotten a first look at how you can
use JavaScript to create interactive web pages.

8
EVENT-BASED PROGRAMMING

When a user clicks a button, scrolls, or
simply moves the mouse within a web

page, that action creates an event. An event is the
browser’s way of signaling that an action happened
in the DOM. Events allow us to create interactive
web applications that respond to the user’s actions.
We do this by writing handlers for specific events:
functions that are called when an event occurs. Using
event handlers, we can change the color of an
element when the user clicks it, move an element
around the screen when the user presses a certain key,
and much more.

In this chapter you’ll learn how to write event handlers to respond to
some common DOM events. In this way, you’ll add interactivity to your
web pages.

Event Handlers
Events are how the browser tells JavaScript that something has occurred in
the DOM. It’s almost as if every time the mouse moves over the window, or
a key is pressed, the browser is shouting, <Hey, the mouse moved! A key
was pressed!= These shouts happen all the time, but your JavaScript code

can respond to them only if you explicitly tell it to listen for them. You do
this by writing a JavaScript event handler that will perform some action
when a certain type of event occurs.

An event handler is a function triggered by a specific event type on a
specific element. For example, you could attach a handler to a particular h1
element that handles clicks on that element. Let’s try that out now. We’ll
create a simple web page with a heading and use an event handler to log a
message to the console when the heading is clicked.

First, you’ll need an HTML file. Create a new directory called
chapter8 and make a new file in that directory called index.xhtml. Enter the
content shown in Listing 8-1.

<!DOCTYPE html>
<html>
 <head>
 <title>Event Handlers</title>
 </head>
 <body>
 <h1 id="main-heading">Hello World!</h1>
 <script src="script.js"></script>
 </body>
</html>

Listing 8-1: An index.xhtml file for exploring event handlers

As usual, our HTML file has a single html element containing a head
with some metadata and a body with some content. Specifically, the body
contains an h1 element with an ID of main-heading, and part of the heading
text is wrapped in an em element (short for emphasis), which by default
italicizes that portion of the text. It also contains a script element with a
link to the file script.js. In a moment, that’s where we’ll write the code for
our event handler.

Overall, this file is very similar to the index.xhtml file we created in
Chapter 7, with one important difference: the script element is inside the
body element, not the head element. This is a bit of a cheat to get around a
problem with how web browsers read web pages. As described in the
previous chapter, the browser builds a model of the page called the DOM. It

builds the DOM incrementally by reading through the HTML file from top
to bottom. Anytime the browser reaches a script element, it executes the
whole script before continuing. That means that if we had our script
element in the head, and we looked up the h1 element in that script, the h1
element wouldn’t be in the DOM yet! By placing the script element at the
end of the body, we can be sure that all the page content has been loaded
into the DOM before we run our JavaScript.

Now create a file called script.js in the same directory as the HTML
code, and enter the script shown in Listing 8-2. This script adds an event
handler for when the user clicks the h1 element.

let heading = document.querySelector("#main-heading");

heading.addEventListener("click", () => {
 console.log("You clicked the heading!");
});

Listing 8-2: Creating an event handler in script.js

Using the DOM API’s querySelector method, we get the element
with the ID main-heading and save it as the variable heading. You may
recall from Chapter 7 that this method returns the first element to match the
selector. In our case, there’s only one main-heading element, so we know
this method will select the element we want. We then use the
addEventListener method on the heading element to attach an event
handler to that element. addEventListener tells JavaScript to watch for a
particular event happening on the element, and to execute some function
when it does.

NOTE
Although the DOM API uses the term listener, the term handler is more
commonly used to describe a function that reacts to an event.

The addEventListener method has two required arguments. The first
is the event type. This is a string representing the type of event to respond
to, such as "click" (for mouse clicks), "keydown" (for keyboard key

presses), or "scroll" (for window scrolling). We’ve specified "click".
The second argument is the function to execute when the specified event
happens. This function is the event handler. It will be called anytime the
event happens on the element addEventListener was called on. In this
case, the function, which logs a message to the console, will be called
anytime someone clicks the heading element.

NOTE
As explained in Chapter 5, when a function is passed as an argument to
another function, it’s known as a callback function, or simply a callback. All
event handlers are callback functions, since they’re passed as arguments to
the addEventListener method.

Open index.xhtml in your browser and open the console. When you
click the heading, you should see the message "You clicked the
heading!" printed to the console. Congratulations: you’ve made your first
interactive web page!

TRY IT YOURSELF

 8-1. Add a p element to the page and attach a click event handler to it.

Event Bubbling
When an event is triggered on an element, it also gets triggered on all the
element’s ancestors (that is, the parent of the element, the parent’s parent,
and so on). For instance, when you clicked the h1 element in the previous
example, you were also technically clicking the body element that contains
the h1 element. This makes sense intuitively; if you click some text in a
box, you’re also clicking the box. Therefore, if you had a separate handler
attached to the body element, it would also receive the click event. This
progression of events from children to ancestors is known as event
bubbling.

Let’s harness bubbling by adding event handlers to the em and body
elements in our web page. Like our h1 event handler, these new handlers

will log a message to the console when their elements are clicked. Since em
is a child of h1 and h1 is a child of body, a single click on em should trigger
the handlers attached to all three elements.

Add the code in Listing 8-3 to the end of script.js.

--snip--
document.querySelector("em").addEventListener("click", () =>
{
 console.log("You clicked the em element!");
});

document.querySelector("body").addEventListener("click", ()
 => {
 console.log("You clicked the body element!");
});

Listing 8-3: Adding more handlers to script.js

This snippet adds two handlers, one to the em element and one to the
body element, but we do it slightly differently from how we created the
main-heading handler in Listing 8-2. Instead of saving each element to a
variable, we just call addEventListener directly on the result of the
document.querySelector method. This technique of calling a method
directly on the return value of another method is known as method
chaining: we chain multiple method calls together, so that the result of the
first link in the chain is used as the object for the next method call. I used
the longer technique for Listing 8-2 because it makes it more explicit that
addEventListener is being called on an element, but the chaining
technique is often preferred because of its terseness.

Reload index.xhtml and open the console. When you click the word
World! you should see the following output:

You clicked the em element!
You clicked the heading!
You clicked the body element!

When you click the em element, the handler function on that element is
the first to get called. After that, the handler function on the h1 element is
called, followed by the one on the body element. This is because the event
<bubbles up= through the DOM, from the innermost element to the
outermost element. If you click the non-italic part of the heading, you’ll see
just the main-heading and body handlers triggered.

Event Delegation
One of the more common uses for event bubbling is event delegation, a
technique where you use a single handler to respond to events on multiple
child or other descendant elements. For example, imagine you have a list of
words, where each list item is a separate HTML element, and you want to
handle clicks on each item in the same way. By adding a single handler to
the list items’ parent element, you can catch events on each item with only a
few lines of code.

To illustrate event delegation, we’ll write a simple application that
builds up and displays a sentence based on words that you click in a list.
First, we’ll update our HTML file to include a list of words and an empty p
element that we’ll populate dynamically with the words of your choice.
Then, we’ll write the necessary event handler with JavaScript to take
clicked words and add them to the p element for display. Finally, we’ll add
some CSS rules to make the application easier to interact with.

There are two types of lists in HTML: ordered (numbered) lists and
unordered (bulleted) lists. We’ll use an unordered list, which is created with
the ul (unordered list) element. Each individual item in the list is wrapped
in an li (list item) element. Therefore, the event resulting from a click on
any li element will bubble up to the parent ul element.

Update index.xhtml as shown in Listing 8-4.

<!DOCTYPE html>
<html>
 <head>
 <title>Event Handlers</title>
 </head>
 <body>
 <h1 id="main-heading">Hello World!</h1>

 <ul id="word-list">
 The
 Dog
 Cat
 Is
 Was
 And
 Hungry
 Green

 <p id="sentence"></p>

 <script src="script.js"></script>
 </body>
</html>

Listing 8-4: Adding a list to index.xhtml

This adds an unordered list of words to the document, as well as an
empty p element, which we’ll be modifying with JavaScript.

Next, we’ll write an event handler for the ul element to handle clicks
on any of the list items. The handler will take the word that was clicked and
add it to the p element, allowing you to build up a sentence one word at a
time. Delete all the code in script.js and replace it with Listing 8-5.

let wordList = document.querySelector("#word-list");
let sentence = document.querySelector("#sentence");

wordList.addEventListener("click", ❶ event => {

x let word = event.target.textContent;
 sentence.textContent += word;
 sentence.textContent += " ";
});

Listing 8-5: Delegating events

First we look up the two elements we care about using
document.query Selector: the ul with the word list, and the empty p

element. Next, we add a click handler to the ul element. This example is a
little different from our previous handlers because the callback function has
a parameter, which we’re calling event ❶. If we give a handler function a
single parameter (in this case, event, but the exact name isn’t important),
the parameter represents an object through which the DOM API passes
information about the event that just happened. That information, which
includes the element that was clicked, the element’s text content, and so on,
then becomes available for use within the callback function.

In our example, we use the event object to determine what word was
clicked and store it in the variable word x. We find out which specific
element was clicked with the event object’s target property. When you
click one of the li elements, event.target will be the li element you
clicked, not the ul (the ul element is available with the currentTarget
property). Then we use the textContent property, which returns the text of
that element. Putting it together, if you were to click on the first li element,
then event.target.textContent would return the string "The", and that
string would become the value of the variable word.

Now that we have the word the user clicked, we can add it to the
sentence. We use the += operator to append the word to the text content of
the sentence element. You may recall that sentence.textContent +=
word; essentially converts to sentence.textContent =
sentence.textContent + word;. In other words, we’re taking the
sentence element’s existing text content, adding the string stored in word to
the end, and reassigning that text to the element’s text content. Then, after
adding the word to the sentence, we use the same += trick to append a space
to the end of the sentence in preparation for the next word that gets added.

Open index.xhtml again in your browser. You should see the list of
words. You won’t see the empty p element because it doesn’t have any
content yet. As you click words from the list, you should see them being
added to the p element.

To finish off our application, we need to add a small amount of CSS.
JavaScript and CSS often go hand in hand because the styling can give
helpful tips to the user that certain elements are interactive. In this case
we’ll add two hints via CSS: we’ll modify the list items to change the
mouse pointer to a finger when it hovers over them, so they look more

<clickable,= and we’ll give the element that’s currently under the mouse
pointer an underline so it’s easier to tell which word you’re about to click
(which isn’t always obvious when the mouse is in the vertical space
between words).

Create a new CSS file called style.css and add the two CSS
declarations shown in Listing 8-6.

li {
 cursor: pointer;
}

li:hover {
 text-decoration: underline;
}

Listing 8-6: Adding styling in style.css

To change the cursor for li elements, we use cursor: pointer. This
changes the cursor from the default arrow to a hand with a finger when it is
over an li element, as happens when you hover over a link on a web page.
The li:hover selector uses the :hover pseudo-class. A pseudo-class is a
kind of selector that applies only when an element is in a certain state:
li:hover matches any li element that the mouse is currently hovering
over. When the pointer is over an li element, we use text-decoration:
underline to underline the text of that element.

To include this CSS on the page, add a link element to the head of the
index.xhtml file, as shown in Listing 8-7.

<!DOCTYPE html>
<html>
 <head>
 <title>Event Handlers</title>
 <link rel="stylesheet" href="style.css">
 </head>
--snip--

Listing 8-7: Including style.css in index.xhtml

Now when you hover over one of the list items, the cursor will change,
and the currently hovered word will be underlined, as shown in Figure 8-1.

Figure 8-1: Using CSS to give hints to users

With that styling, our sentence-building application is complete! Event
delegation simplified the JavaScript we wrote by letting us attach a single
event handler, rather than using a separate handler for each list item.

Mouse Movement Events
The DOM produces events when the mouse moves, with the event name
mousemove. These mousemove events are triggered on an element while the
mouse moves over that element, and we can listen for them with the
addEventListener method, just as we did for mouse clicks. Let’s set up a
simple mousemove handler to see it in action. The handler will log the
mouse’s position to the console as the mouse moves around the web page.

Still working within your chapter8 project folder, add the code in
Listing 8-8 to the end of script.js.

--snip--
document.querySelector("html").addEventListener("mousemove",
e => {
 console.log(`mousemove x: ${e.clientX}, y: ${e.clientY}`);
});

Listing 8-8: A mousemove event handler

In this listing, we add a mousemove event handler to the html element.
Since the html element encompasses the entire web page, this handler will
respond to movements of the mouse anywhere in the browser window. The
handler logs a message to the console including the clientX and clientY
properties of the event, which tell us the x- and y-coordinates of the mouse
relative to the browser window. In this example I’m using the shorter name
e for the event parameter, rather than event, as in Listing 8-5. Remember,
the name of the parameter doesn’t matter; if the event handler callback
function has a single parameter, that parameter will carry information about
the event.

Refresh index.xhtml in your browser and move the mouse pointer over
the page. You should see messages similar to the following logged to the
console:

mousemove x: 434, y: 47
mousemove x: 429, y: 47
mousemove x: 425, y: 48
mousemove x: 421, y: 51
mousemove x: 416, y: 51
mousemove x: 413, y: 54
mousemove x: 408, y: 55

There are two important things to note as you watch the console. First,
the coordinates start at 0 in the top-left corner of the browser window,
increasing as you go across and down. The x-coordinate increases as you
move right, and the y-coordinate increases as you move down. This follows
the standard convention for computer graphics.

Second, there are <gaps,= or locations that the mouse appears to jump
over. This is because mousemove events aren’t triggered continuously, but

some limited number of times per second. The exact number depends on the
mouse, the browser, and the computer, but it tends to be in the low
hundreds. Therefore, if you move the mouse fast enough, there will be
locations on the screen that the mouse seems to skip over, because the
events weren’t triggering fast enough.

Now that you’ve seen mousemove events in action, we can try to do
something slightly more interesting with them. In this next example, we’ll
make a box move around the page, following your cursor. To do that we’ll
need to modify our HTML, CSS, and JavaScript files. The HTML change is
simple. Add the new line in Listing 8-9 to index.xhtml.

--snip--

 <p id="sentence"></p>

 <div id="box"></div>

 <script src="script.js"></script>
 </body>
</html>

Listing 8-9: Adding a div to index.xhtml

Here we’re using a new HTML element called div, short for content
division. It will become the movable box on our page. The div element is
HTML’s generic container element. This means that it’s an element that can
contain other elements, but by default has no appearance and no specific
meaning (unlike ul, which means a list, or h1, which means a heading).
We’ll use CSS to give the div element an appearance next. Add the
contents of Listing 8-10 to the end of style.css.

--snip--
#box {
 position: fixed;
 left: 0px;
 top: 0px;
 width: 10px;
 height: 10px;

 background-color: hotpink;
}

Listing 8-10: Styling the div with CSS

Here we’re using #box to select the element with the ID box. There are
a number of declarations within this ruleset. The first, position: fixed,
tells the browser to put this element at the position specified next, by the
left and top declarations. We indicate 0px for both, which tells the
browser to put the element at the very top-left corner of the browser
viewport, the part of the browser that shows the content. We specify the
width and height of the element to be 10 pixels each. Finally, we give our
10×10 box a background color that’s sure to jump out: hot pink.

Refresh the page now, and you’ll see a small pink square appear in the
top-left corner. Now it’s time to write an event handler so you can move the
square with your mouse. Modify script.js as shown in Listing 8-11.

let wordList = document.querySelector("#word-list");
let sentence = document.querySelector("#sentence");

wordList.addEventListener("click", event => {
 let word = event.target.textContent;
 sentence.textContent += word;
 sentence.textContent += " ";
});

let box = document.querySelector("#box");

document.querySelector("html").addEventListener("mousemove",
e => {
 box.style.left = e.clientX + "px";
 box.style.top = e.clientY + "px";
});

Listing 8-11: Moving the div with JavaScript

The first addition here is to find the box using
document.querySelector and save a reference to the element in the
variable box. Next, we modify the mousemove event handler we wrote

earlier. In order to move the box around, we’re modifying its style
property, which is an object representing the CSS applied to the element.
For example, setting a value for box.style.left has the same effect as
updating the value of left in the CSS file. In our handler, we set both the
left and top values using the current position of the mouse.

As mentioned in Chapter 7, numeric values in CSS require a unit. We
can’t just assign a number, like box.style.left = 10. Instead, we have to
provide a string including the units, like box.style.left = "10px". This is
why we include + "px" at the end of each statement in our event handler. If
e.clientX is 50, then e.clientX + "px" will give the string "50px", which
gets assigned to the box.style.left property, updating the left position of
the box. As the mouse moves, this handler will be called with e.clientX
and e.clientY set to the current position of the mouse, and so the pink box
will move around as your mouse moves. Refresh the page and give it a try!

TRY IT YOURSELF

 8-2. What happens if you modify the values that set the box’s position? For example,
what would happen if you multiplied e.clientX by 2, or added 50 to e.clientY?

Keyboard Events
Keyboard events are triggered when keys are pressed on the keyboard.
We’ll focus on one keyboard event, called keydown, which is triggered
when a key is pressed down. (As you might expect, there’s a corresponding
event called keyup that is triggered when a key is released.)

We’ll add a handler to our web page that simply logs keydown events to
the console as they happen. Add the code in Listing 8-12 to the end of
script.js.

--snip--
document.querySelector("html").addEventListener("keydown", e
=> {
 console.log(e);
});

Listing 8-12: Logging keydown events

As in Listing 8-11, we’re adding an event handler to the html element,
meaning it will apply to the entire web page, but this time we’re handling
the keydown event. This event will be triggered whenever you press down a
key on your keyboard. Our handler logs e to the console, meaning the entire
event object will be logged when a key is pressed.

Try reloading the page to see the handler in action. You’ll need to open
the console, then click inside the document to give it focus. This just means
that the key presses will get sent to your web page, instead of to the
console’s text input. As long as everything’s set up correctly, you should see
events being logged to the console as you type, as shown here:

�KeyboardEvent {isTrusted: true, key: "h", code: "KeyH", loc
ation: 0, ctrlKey: false, …}

�KeyboardEvent {isTrusted: true, key: "e", code: "KeyE", loc
ation: 0, ctrlKey: false, …}

�KeyboardEvent {isTrusted: true, key: "l", code: "KeyL", loc
ation: 0, ctrlKey: false, …}

�KeyboardEvent {isTrusted: true, key: "l", code: "KeyL", loc
ation: 0, ctrlKey: false, …}

�KeyboardEvent {isTrusted: true, key: "o", code: "KeyO", loc
ation: 0, ctrlKey: false, …}

Click the arrow next to one of the events to see the properties each
event has. As you’ll see, there are a lot, but we mostly care about which key
was pressed, which we can find with the key property. We’ll use this
information next to move the pink box around using the keyboard.

In order to move the box around, we’ll create two new variables to
keep track of its x- and y-positions. Then we’ll update those variables with
an event handler when specific keys are pressed. Update script.js as shown
in Listing 8-13. (Note that the mousemove handler has been removed in this
listing.)

let wordList = document.querySelector("#word-list");
let sentence = document.querySelector("#sentence");

wordList.addEventListener("click", event => {
 let word = event.target.textContent;
 sentence.textContent += word;
 sentence.textContent += " ";
});

let box = document.querySelector("#box");

let currentX = 0
let currentY = 0

document.querySelector("html").addEventListener("keydown", e
=> {
 if (e.key == "w") {
 currentY -= 5;
 } else if (e.key == "a") {
 currentX -= 5;
 } else if (e.key == "s") {
 currentY += 5;
 } else if (e.key == "d") {
 currentX += 5;
 }

 box.style.left = currentX + "px";
 box.style.top = currentY + "px";
});

Listing 8-13: Using keydown events to move the box

We create two variables called currentX and currentY to store the
location of the box. Then we modify our keydown handler to include an if…
else statement that checks to see if the event’s key property matches any of
"w", "a", "s", or "d". If so, that indicates one of those four keys has been
pressed (I’m using these keys as they’re typically used for movement in
games). Depending on which key has been pressed, we add or subtract 5 to
or from currentX or currentY, corresponding to the box moving 5 pixels
up, down, left, or right. After we update the appropriate variable, we update
the style of the box with box.style.left and box.style.top, as we did in

Listing 8-11. This time, however, we use the values of currentX and
currentY to change the CSS.

When you reload the page, try pressing and holding down S or D to
make the box move down or to the right. You should notice that holding the
key down results in the box continuing to move, as the keyboard sends
repeated keydown events. This is the normal behavior of a computer
keyboard when you hold down a key. The exact repeat speed is controlled
by your operating system.

TRY IT YOURSELF

 8-3. The event object for a keydown event has a Boolean property called repeat that
tells you if the current keydown was generated as a repeat from holding down the
key. How could you modify the keydown handler to respond only to actual key
presses, and not automatic repeats? Hint: one approach is to use the return
keyword to return early from the handler function.

Summary
In this chapter you learned the basics of DOM events and event handling.
DOM events are how the browser tells your code that something happened
on your page. You can respond to these events with event handlers,
JavaScript functions that are executed when a certain event happens to a
certain DOM element. Event handlers allow you to create web pages that
respond interactively to the user’s actions. In particular, you saw how to
write event handlers triggered by clicks, mouse movements, and key
presses.

9
THE CANVAS ELEMENT

One of the more interactive elements in
HTML is the canvas element. This

element acts like a painter’s canvas: it provides space
for you to draw images within the browser window
using JavaScript. What’s more, by repeatedly erasing
old images and drawing new ones, you can create
animations on the canvas. In this sense, the canvas
element is more like the screen at a movie theater,
where the image is updated many times every second
to create the appearance of motion.

In this chapter you’ll learn how to create canvas elements and how to
use the Canvas API, which gives you a way to manipulate the canvas via
JavaScript. You’ll write JavaScript to draw static images to the canvas.
Then you’ll build a simple interactive drawing application. Finally, you’ll
learn the basics of creating 2D animations on the canvas.

Creating a Canvas
To include a canvas element on a web page, you add it to the body element
in the page’s index.xhtml file. All you need are the opening and closing
HTML tags, <canvas></canvas>, as the canvas element doesn’t have any
required attributes. However, it’s a good idea to give the canvas an id, so

you can easily access it using JavaScript. It’s also common to set the
element’s width and height attributes so you can establish the size of the
canvas.

Images that appear in the canvas are generated using JavaScript, not
HTML. Any HTML between the opening and closing tags will appear only
if the browser doesn’t support the canvas element, so this can be used as a
fallback for older or text-only browsers.

Let’s create an HTML file that includes a canvas element. We’ll also
include a script element linking to a JavaScript file, where we’ll write
code to generate images on the canvas. We’ll use the same HTML file
throughout the chapter to draw different kinds of images. Create a new
directory called chapter9, and make a new file in that directory called
index.xhtml. Enter the content shown in Listing 9-1.

<!DOCTYPE html>
<html>
 <head>
 <title>Canvas</title>
 </head>
 <body>
 <canvas id="canvas" width="300" height="300"></canvas>
 <script src="script.js"></script>
 </body>
</html>

Listing 9-1: An index.xhtml file with a canvas element

This is our familiar HTML template, similar to the index.xhtml files
we’ve created in previous chapters, but with a canvas element instead of an
h1 element. The width and height attributes specify the size of the canvas
in pixels. By default, the canvas is transparent, so you won’t actually see
anything yet if you load the page.

Making Static Drawings
Now that we have a canvas element, we’re ready to draw on it using
JavaScript and the Canvas API. We’ll start by drawing a solid rectangle.
Then we’ll look at how to create other static drawings. Create a new file

called script.js in the chapter9 directory, and enter the code shown in
Listing 9-2.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
ctx.fillStyle = "blue";
ctx.fillRect(10, 10, 200, 100);

Listing 9-2: Drawing a rectangle in script.js

First, we get a reference to the canvas element using the document
.querySelector method. The canvas element has a method called
getContext, which we use to get the canvas’s drawing context. The
drawing context is an object that provides the entire Canvas API as a set of
methods and properties (like fillRect and fillStyle, respectively, both
used in Listing 9-2). These methods and properties are what we’ll use to
draw images on the canvas. In this case, we pass the string "2d" to the
getContext method to request the two-dimensional drawing context.

NOTE
You can draw 3D graphics on the canvas by passing the string "webgl" or
"webgpu" to the getContext method instead of "2d", but both of those are
much more complicated than 2D graphics and are outside the scope of this
book.

Next, we tell the drawing context that we want the fill color for new
elements to be blue, using the fillStyle property. Finally, we draw a filled
rectangle using the current fill color with the fillRect method. This
method takes four arguments: the x- and y-coordinates of the top-left corner
of the rectangle, and the width and height of the rectangle in pixels. The
coordinates work the same way as the coordinates for the whole browser
window: x values increase as you move from left to right across the canvas,
and y values increase from top to bottom, with (0, 0) representing the top-
left corner of the canvas.

Open index.xhtml in your browser. You should see a solid blue
rectangle, as shown in Figure 9-1.

Figure 9-1: The blue rectangle

Any subsequent calls to fillRect will use the same fillStyle, so
they’ll also produce blue rectangles (until you set a new fillStyle, that is).
You can confirm this by drawing some more rectangles to the canvas.

TRY IT YOURSELF

 9-1. Draw a 100-pixel square starting at (0, 0).
 9-2. We set the canvas to be 300 pixels wide by 300 pixels tall. What happens if you

draw a rectangle that’s bigger than the canvas?

Drawing Outlined Rectangles
As well as fillRect for making a rectangle filled with a color, the Canvas
API provides the strokeRect method for outlining (stroking) a rectangle.
To try it out, modify script.js as shown in Listing 9-3.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
ctx.lineWidth = 2;
ctx.strokeStyle = "red";
ctx.strokeRect(10, 10, 200, 100);

Listing 9-3: Using strokeRect to outline a rectangle

First we specify the width of the outline with the lineWidth property,
setting it to 2 pixels wide. Then we use strokeStyle and strokeRect,

rather than fillStyle and fillRect, to create an outlined rectangle with no
fill color. The strokeRect method takes the same arguments as fillRect:
the x- and y-coordinates of the top-left corner, and the width and height of
the rectangle.

When you reload index.xhtml, you should see the rectangle is now
outlined in red, with no fill, as shown in Figure 9-2.

Figure 9-2: A red-outlined rectangle

When you set styles on the drawing context, such as the line width or
line color, those settings apply only to subsequent additions to the canvas.
That is, they don’t retroactively affect anything that’s already been drawn.
In this sense, the canvas really is very much like a physical canvas, where
the current style is determined by the color of paint and type of brush
you’re using at the moment. To demonstrate, we’ll draw several rectangles
with different colors. Add the code in Listing 9-4 to the end of script.js,
after the code for drawing the red rectangle.

--snip--
ctx.strokeStyle = "orange";
ctx.strokeRect(20, 20, 180, 80);

ctx.strokeStyle = "yellow";
ctx.strokeRect(30, 30, 160, 60);

ctx.strokeStyle = "green";
ctx.strokeRect(40, 40, 140, 40);

ctx.strokeStyle = "blue";
ctx.strokeRect(50, 50, 120, 20);

Listing 9-4: Drawing more rectangles

This code draws a series of nested rectangles, each offset by 10 pixels
from the previous one and each 20 pixels smaller than the previous one.
Before we draw each successive rectangle, we change the color of the
outline by updating the strokeStyle property.

Refresh index.xhtml, and you should see something like the image in
Figure 9-3.

Figure 9-3: Concentric rectangles

Each rectangle is a different color, indicating that the style changes
didn’t impact anything that had already been drawn.

TRY IT YOURSELF

 9-3. Rewrite the code to create the nested rectangles using a loop, so you only need
to write the calls to ctx.strokeStyle and ctx.strokeRect once. Hint: think about
how to manipulate the looping variable to (a) retrieve a stroke color from an array
and (b) set the strokeRect arguments appropriately.

Drawing Other Shapes Using Paths

All other shapes besides rectangles are drawn on the canvas as paths. A
path is a series of points connected by straight or curved lines, and then
either stroked with an outline or filled in with a color. As an example, we’ll
draw a path between three different points and then fill it in to make a red
triangle. Replace the contents of script.js with the code in Listing 9-5.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
ctx.fillStyle = "red";
ctx.beginPath();
ctx.moveTo(100, 100);
ctx.lineTo(150, 15);
ctx.lineTo(200, 100);
ctx.lineTo(100, 100);
ctx.fill();

Listing 9-5: Drawing a triangle with path methods

Drawing a path takes three steps. First, you declare that you want to
start drawing a new path with beginPath. Then, you use various methods to
define where the path will be. Finally, you use fill or stroke to fill or
stroke the path.

In this case, we use two different methods to define the path: moveTo
and lineTo. The moveTo method moves an imaginary pen to a particular
point on the canvas defined by x- and y-coordinates, without drawing a line.
We use this method to define the starting point of our path, (100, 100),
which will be the bottom-left corner of the triangle. The lineTo method
does the same as moveTo, but it draws a line as it moves. Thus, lineTo(150,
15) draws a line from (100, 100) to (150, 15), and so on. Finally, we fill the
shape with the fill method. When you refresh the page, you should see a
red triangle, as shown in Figure 9-4.

Figure 9-4: Drawing a filled triangle

Drawing circles follows a similar pattern, but uses a method called arc
instead of moveTo and lineTo. The arc method draws an arc, a section of
the circumference of a circle. You can produce any length of arc with the
arc method, but here we’ll use it to produce an entire circle.

Update script.js with the code in Listing 9-6. The first and third steps
of the path drawing code are the same, but we replace the second step with
the code for drawing a circle rather than a triangle.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
ctx.fillStyle = "red";
ctx.beginPath();
ctx.arc(150, 100, 50, 0, Math.PI * 2, false);
ctx.fill();

Listing 9-6: Drawing a circle with path methods

The arc method takes a whopping six arguments. The first two are the
x- and y-coordinates of the center of the circle. In this case we’re centering
the circle at the coordinates (150, 100). The third argument is the circle’s
radius in pixels, which we set to 50. The next two arguments give the
starting and ending angles of the arc in radians: we provide 0 for the starting
angle and Math.PI * 2 for the ending angle to produce a full circle. The
final argument specifies whether the arc should be drawn clockwise (false)
or counterclockwise (true) from the starting angle to the ending angle. In

this case, we pick clockwise, but since we’re drawing a full circle, the
direction is irrelevant.

NOTE
Radians are a way of measuring angles. In degrees, a full revolution of a
circle goes from 0 to 360. In radians, a revolution goes from 0 to 2π.

When you refresh the page now, you should see a red circle, as shown
in Figure 9-5.

Figure 9-5: Drawing a filled circle

You can use the same technique to draw a stroked circle instead by
using the stroke method rather than the fill method. What’s more, you
can make compound shapes like rounded rectangles by combining calls to
the lineTo and arc methods. The Canvas API also allows for drawing more
complex curves with the quadraticCurveTo and bezierCurveTo methods.
Search the Mozilla Developer Network (MDN) Web Docs (https://
developer.mozilla.org) for more details about these other methods.

Interacting with the Canvas
The canvas gets a lot more interesting when the user can interact with it.
The canvas element itself doesn’t have any notion of interactivity built in.
However, we can add that interactivity with JavaScript by writing event

https://developer.mozilla.org/

handlers that listen for certain user actions and trigger Canvas API methods
that update the canvas in response.

In this section, we’ll build a very basic drawing application using a
canvas element with a click handler. The handler will listen for clicks on
the canvas, and call a method that draws a circle at the position where the
click happened. We’ll also create a slider so the user can set the opacity of
the circles, and a button to clear the canvas.

First, let’s add the necessary HTML elements to create a slider and a
button. Make the modifications shown in Listing 9-7 to index.xhtml.

<!DOCTYPE html>
<html>
 <head>
 <title>Canvas</title>
 </head>
 <body>
 <canvas id="canvas" width="300" height="300"></canvas>
 <div>
 <button id="clear">Clear</button>
 <input id="opacity" type="range" min="0" max="1" value
="1" step="0.1">
 <label for="opacity">Opacity</label>
 </div>
 <script src="script.js"></script>
 </body>
</html>

Listing 9-7: Adding some additional elements to index.xhtml

Here we add a new div element containing three other HTML
elements. The div element is there to group the elements inside it together
and to position them below the canvas (without the div they’d appear to the
right of the canvas).

The first element inside the div is a button element. It creates a
clickable button. Any content between the opening and closing tags will
appear as text on the button, so our button will have the text Clear. Later,
we’ll write a JavaScript function that clears any circles on the canvas when
the user clicks the button.

Next inside the div is an input element, which is used for taking
values from the user. The input element doesn’t allow any child elements,
so it doesn’t need a closing tag. In this case the input is of type range,
which means it will display as a slider. This slider will be used to set the
opacity of new circles drawn on the canvas. It has several attributes
defining its functionality: min defines the minimum value the slider will
produce, max defines the maximum value, value defines the initial value the
slider is set to, and step is the size of each movement (enabling you to
control the number of allowed values). This slider is set to range from 0 to 1
in steps of 0.1, and it starts at 1, which corresponds to full opacity.

The last element in the div is a label element, which applies a label to
another element. The for attribute of the label determines which element
the label should be applied to; its value has to match the id of another
element. In this case, we assign the label to the slider by specifying opacity
as the target id. This will cause the slider to be labeled Opacity, which is
the text content of the label element. Thanks to the label element’s for
attribute, the browser understands that the label and input elements are
related, and certain actions performed on the label will apply to the input.
For example, if you hover over the label, the input will display as
hovered, and if you click the label, the input will get keyboard focus (in
this case, pressing the left or right arrow key will decrease or increase the
value of the slider, respectively).

Load index.xhtml in your browser, and you should see something
similar to Figure 9-6 (the exact appearance of these elements may vary
depending on your browser and operating system).

Figure 9-6: The new button and input elements

Now that we have the HTML elements, we can write the JavaScript
that will make this application interactive. First, we’ll add some general

declarations and the code for drawing circles when the user clicks on the
canvas. Update script.js with the code shown in Listing 9-8.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");

let width = canvas.width;
let height = canvas.height;

let opacity = 1;

function drawCircle(x, y) {

❶ ctx.fillStyle = `rgba(0, 255, 0, ${opacity})`;
 ctx.beginPath();
 ctx.arc(x, y, 10, 0, Math.PI * 2, false);
 ctx.fill();
}

canvas.addEventListener("click", e => {
 drawCircle(e.offsetX, e.offsetY);
});

Listing 9-8: Drawing a circle on click

First we store the width and height of the canvas element in two
variables, width and height. We’ll need these variables later, in our
function for clearing the canvas. The width and height properties of the
JavaScript canvas object come straight from the HTML canvas element’s
width and height properties (which are both set to 300 in index.xhtml). We
also initialize the variable opacity to 1.

Next, we create a helper function called drawCircle. This function
takes an x- and a y-coordinate and draws a filled circle at that location. We
use the same path drawing methods demonstrated in Listing 9-6 to draw the
circle. The x and y parameters determine the circle’s center, and we set its
radius to 10 pixels.

One key difference from the previous drawing examples is that we’re
setting fillStyle to an RGBA color instead of a named color like "red" or
"blue" ❶. RGBA is a way of defining colors using four numbers

corresponding to the red, green, blue, and alpha channels. The first three
indicate the amount of each primary color of light. Their values can range
from 0 to 255, and they can be combined to produce any color you might
want. Setting all three to 0 produces black, and setting all three to 255
produces white. Alpha is another word for opacity, and it defines how
opaque or transparent the color should be, ranging from 0 (completely
transparent) to 1 (completely opaque).

In the Canvas API, you set RGBA colors using the string "rgba(…)"
with the four values in the parentheses, separated by commas. For example,
setting fillStyle to the string "rgba(0, 255, 0, 0.9)" would make
bright green circles that are slightly transparent. In our case, we wrap the
RGBA string in backticks so we can use a placeholder for the alpha value to
allow the user to change the opacity with the slider.

Lastly, we add a click event handler to the canvas element using add
EventListener. The handler calls the drawCircle function we just created,
passing the offsetX and offsetY properties of the click event as the
function’s parameters. The offsetX and offsetY properties give the
distance of the click event from the top-left corner of the clicked element
itself (rather than from the top-left corner of the whole browser window), so
they’re ideal for determining exactly where on the canvas the click
happened.

Reload index.xhtml in your browser and try clicking on the canvas.
Wherever you click, a small green circle should appear, as shown in Figure
9-7.

Figure 9-7: Drawing green circles with mouse clicks

To complete the drawing application, we need to wire up the Clear
button and the Opacity slider. Add the code in Listing 9-9 to the end of
script.js.

--snip--
document.querySelector("#clear").addEventListener("click",

 () => {
 ctx.clearRect(0, 0, width, height);
});

document.querySelector("#opacity").addEventListener("chang
e", e => {
 opacity = e.target.value;
});

Listing 9-9: Wiring up the Clear and Opacity controls

First we add a click event handler to the Clear button. This calls a
Canvas API method called clearRect, which clears a rectangular section of
the canvas. Just like when drawing a rectangle, you define the rectangle to
be cleared using the x- and y-coordinates of its top-left corner, followed by
its width and height. Here we use (0, 0, width, height) to specify that
we want to clear a rectangle that starts at the top-left corner of the canvas
and is as wide and high as the canvas itself. Thus, ctx.clearRect(0, 0,
width, height); clears the entire canvas.

Next, we add a change event handler to the Opacity slider. The change
event is triggered on input elements when their value changes, so this
handler will be called whenever the slider is set to a new position. We get
the input element with e.target and get the element’s current value with
.value. Then we update the opacity variable with this value. Because the
drawCircle function uses the value of opacity as the alpha component of
the RGBA color, any new circles will use the latest value set with the
Opacity slider.

Now when you reload index.xhtml in your browser, you should have a
fully functioning (if basic) drawing application! You can use the Opacity
slider to change the opacity of new circles and the Clear button to clear the
canvas and start drawing again. Try drawing overlapping circles with the
Opacity slider set halfway to see how they overlay.

TRY IT YOURSELF

 9-4. Add sliders for controlling the R, G, and B components of the color. These will
need to range from 0 to 255. You could also add a Radius slider that controls the
radius of the circle drawn in the drawCircle function.

 9-5. Make a new function called drawSquare that draws a square centered on a point,
and call that function from the click handler instead of drawCircle.

Animating the Canvas
As noted at the beginning of this chapter, you can animate the canvas by
drawing on it and updating the image multiple times per second. In this
section, we’ll code a very simple animation to show the basics of how this
works.

Animating the canvas generally follows this basic pattern:

 1. Update state
 2. Clear canvas
 3. Draw image
 4. Wait a short time
 5. Repeat

State here means some variable(s) storing information about the current
frame of the animation. This could be the current location of an object in
motion, the direction the object is moving in, and so on. In our example, the
state will be the x- and y-coordinates of a circle. When it’s time to update
the state, we’ll increment the x- and y-coordinates by 1, meaning that the
circle’s position will gradually move diagonally down and to the right.
Drawing the image will entail drawing a small circle centered at the
updated x- and y-coordinates. We clear the canvas before drawing the circle
to ensure that the image from the previous cycle is removed. We’ll tackle
the last two steps (waiting and repeating) by using the setInterval
function to call our code every 100 ms, or 10 times a second.

We can continue to work with the same HTML and JavaScript files.
The only change to make to index.xhtml is to remove the div and its nested
elements that we added in Listing 9-7, as they’re not needed anymore. After
removing those elements, update script.js based on the code in Listing 9-10.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");

let width = canvas.width;
let height = canvas.height;

let x = 0;
let y = 0;

function drawCircle(x, y) {
 ctx.fillStyle = "rgb(0, 128, 255)";
 ctx.beginPath();
 ctx.arc(x, y, 10, 0, Math.PI * 2, false);
 ctx.fill();
}

function update() {
 x += 1;
 y += 1;
}

function draw() {
 ctx.clearRect(0, 0, width, height);
 drawCircle(x, y);
}

setInterval(() => {
 update();
 draw();
}, 100);

Listing 9-10: Creating an animation

We create two new variables, x and y, representing the location of the
circle that we’ll animate. These variables store the current state of the
animation and will be updated at regular intervals. The drawCircle
function itself is mostly unchanged, although the fillStyle is different.
Now that we’re not setting an opacity, we can use the simpler rgb(…)-
format string for setting the red, green, and blue values. With "rgb(…)", the
opacity of the color is always 100 percent.

After drawCircle we declare the update function, where we update the
x and y variables, incrementing each by 1. Next we declare the draw

function, which clears the canvas and then calls drawCircle to draw a
circle at the current x- and y-coordinates. Finally, we call setInterval to
orchestrate the animation. You may recall from Chapter 5 that setInterval
takes a function and a time interval in milliseconds, and repeatedly calls
that function once every time interval. Here we’re calling an anonymous
function every 100 ms. The anonymous function itself calls update and
draw to create each frame of the animation.

Reload index.xhtml in your browser, and you should see a small circle
gradually move across the canvas from the top-left to the bottom-right
corner. Even after the circle leaves the canvas, the x- and y-coordinates will
keep increasing, but the canvas ignores anything drawn outside of its
bounds.

TRY IT YOURSELF

 9-6. Update the animation so the circle reappears at the top-left corner when it
reaches the bottom-right corner. There are a few ways to do this. One option is
to use the remainder operator (%), which evenly divides the first operand by the
second and returns the remainder. For example, 325 % 100 gives 25. By passing
x % width and y % height to the drawCircle function, you can ensure that the
circle will always be drawn within the canvas. You can also use the %= operator to
keep the x and y values within bounds in the update function, using x %= width
and y %= height after incrementing their values. Try out both options.

 9-7. How could you make the circle start out at the left side of the canvas, move to
the right, then move back, and so on? Hint: you’ll need to declare another state
variable to keep track of the direction, for example, let forwards = true, and
use that variable to decide whether to increment or decrement x. You’ll then need
to update the new variable to be false when the x value gets past a certain point.

 9-8. Try changing the time interval in the setInterval function. For example, what
does the animation look like with an interval of 1,000 ms, or 10 ms, or 1 ms?
Note that at a certain point, the browser won’t be able to update as fast as you’re
asking it to, so it’s unlikely that a 1 ms interval will run 10 times faster than a 10
ms interval.

Summary
In this chapter, you learned the basics of drawing on the canvas element, as
well as some techniques for creating interactive applications and animations

using the canvas. We’ll build on some of these techniques later in this book
as we learn how to make a canvas-based game.

PART III
PROJECTS

You’ve learned the basics of JavaScript and some
powerful techniques for using JavaScript within web
pages to create interactive applications. Now it’s time
to put these techniques to use by building some real
projects!

This part of the book features three substantial projects that will help
you practice what you’ve learned, show you how to develop and organize
more sophisticated programs, and give you a taste of some of the many
exciting things JavaScript can do. There are no dependencies between the
projects, so you can work on them in any order you wish. Here’s a little
preview of each:
Project 1: Creating a Game

In this project, you’ll extend your knowledge of data structures,
conditionals, functions, and the Canvas API by making your own
version of the classic game Pong. You’ll develop two implementations
of the game: one with standalone functions (Chapter 10) and one that
uses classes and object-oriented design principles (Chapter 11). This
will illustrate different ways of organizing your code.

Project 2: Making Music
This project introduces basic audio programming and sound synthesis
techniques (Chapter 12), then harnesses those techniques to write a
song using JavaScript (Chapter 13). You’ll learn about the Web Audio
API and the Tone.js library, which simplifies the process of generating

sounds. This will give you practice incorporating third-party JavaScript
libraries into your applications.

Project 3: Visualizing Data
This project guides you through the process of developing interactive
data visualizations with the popular D3 JavaScript library. You’ll
explore how to draw with Scalable Vector Graphics (SVG) and use D3
to organize SVG shapes into bar charts (Chapter 14). Then you’ll build
a dynamic visualization using data retrieved over the internet through
the GitHub Search API (Chapter 15). Incorporating API requests into
your applications is a very common programming task, so the project
will prepare you to write code that interfaces with real-world data.
You can find the complete downloadable code for all of these projects,

along with solutions to the Try It Yourself exercises, at https://codepen.io
/collection/ZMjYLO.

https://codepen.io/collection/ZMjYLO

PROJECT 1
CREATING A GAME

10
PONG

In this first project, you’ll use
JavaScript to re-create one of the first

arcade video games: the classic Pong from Atari.
Pong is a simple game, but it will teach you some
important aspects of game design: a game loop,
player input, collision detection, and score keeping.
We’ll even use some basic artificial intelligence to
program the computer opponent.

The Game
Pong was developed in 1972 and was released that year as a hugely
successful arcade machine. It’s a very basic game, like table tennis,
consisting of a ball and two paddles positioned on the left and right sides of
the screen, which the players can move up and down. If the ball hits the top
or bottom edge of the screen, it bounces off, but if it hits the left or right
edge the player on the opposite side scores a point. The ball bounces off the
paddles normally, unless it hits near the top or bottom edge of the paddle, in
which case the angle of return changes.

In this chapter we’ll make our own version of Pong, which we’ll call
Tennjs (like Tennis but with JS, get it?). In our game, the left paddle will be
controlled by the computer and the right paddle will be controlled by a
human player. In the original game, the paddles were controlled with

rotating dial controllers, but in our version we’ll use the mouse. The
computer, rather than trying to anticipate where the ball will bounce, will
just attempt to always match the vertical position of the ball. In order to
give the human player a chance, we’ll set an upper limit on how fast the
computer can move the paddle.

Setup
We’ll begin by setting up the project’s file structure and creating a canvas
for displaying the game. As usual, the project will require an HTML file
and a JavaScript file. We’ll start with the HTML file. Create a directory
called tennjs and a file in that directory called index.xhtml. Then enter the
content shown in Listing 10-1.

<!DOCTYPE html>
<html>
 <head>
 <title>Tennjs</title>
 </head>
 <body>
 <canvas id="canvas" width="300" height="300"></canvas>
 <script src="script.js"></script>
 </body>
</html>

Listing 10-1: The index.xhtml file for our game

This is almost exactly the same as the HTML file we created in
Chapter 9, so there should be no surprises. The body element includes a
canvas element, where we’ll draw the game, and a script element
referencing the file script.js, where our game code will live.

Next, we’ll write some JavaScript to set up the canvas. Create the file
script.js, and enter the code shown in Listing 10-2.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
let width = canvas.width;
let height = canvas.height;

ctx.fillStyle = "black";
ctx.fillRect(0, 0, width, height);

Listing 10-2: Setting up the canvas in script.js

This code should also be familiar. We first get a reference to the canvas
with document.querySelector and get the canvas’s drawing context. Then
we save the width and height of the canvas to variables called width and
height for easy access within the code. Finally, we set the fill style to black
and draw a black square the size of the canvas. This way the canvas appears
to have a black background.

Open index.xhtml in your browser, and you should see something like
Figure 10-1.

Figure 10-1: Our black square

We now have a blank, black canvas where we can create our game.

The Ball

Next, we’ll draw the ball. Add the code in Listing 10-3 to the end of
script.js.

--snip--

ctx.fillStyle = "black";
ctx.fillRect(0, 0, width, height);

const BALL_SIZE = 5;

❶ let ballPosition = {x: 20, y: 30};

ctx.fillStyle = "white";
ctx.fillRect(ballPosition.x, ballPosition.y, BALL_SIZE, BALL
_SIZE);

Listing 10-3: Drawing the ball

This code uses the fillRect method to draw the ball as a small white
square near the top-left corner of the canvas. As in the original Pong game,
the ball is a square rather than a circle. This gives the game a retro feel, and
it will also simplify the task of detecting when the ball has collided with the
walls or with a paddle. The size of the ball is stored in a constant called
BALL_SIZE. We use the <true constant= all-caps style for the identifier name
because the ball size won’t change during the course of the program. We
could just use the value 5 instead of the constant BALL_SIZE when we call
the fillRect method to draw the ball, but we’re going to end up needing to
refer to the ball’s size a lot more throughout the program. Giving the size a
name will make it much easier to understand code that needs to know the
size of the ball. The other good thing about this approach is that if we
change our mind later and decide the ball should be bigger or smaller, we
have to update the code in only place: the declaration of the BALL_SIZE
constant.

We keep track of the ball’s position with an object containing its x- and
y-coordinates, created using an object literal ❶. In Chapter 9 we used
separate variables for the x- and y-coordinates of the circle that was being
drawn, but it’s a bit tidier to store the two variables together as one object,
especially since this program is going to be longer and more complex.

Refresh index.xhtml and you should see the white ball sitting in the top-
left corner of the canvas, as shown in Figure 10-2.

Figure 10-2: The ball

The ball is stationary for now, but soon enough we’ll write code to
make it move.

Refactoring
Next we’re going to do a simple refactor. Refactoring is a software
development term for modifying some code without changing its behavior,
usually to make the code easier to understand or update. As the code for a
project grows more complex, refactoring can help keep it organized.

In this case, I know that we’re going to want to draw to the canvas
multiple times, not just once. In fact, we’ll eventually want to redraw the
canvas once every 30 ms to give our game the appearance of motion. To
make that easier to accomplish, we’ll refactor so all the current drawing
code becomes part of a function called draw. That way we can simply call
the draw function anytime we want to redraw the canvas.

Update script.js with the changes shown in Listing 10-4.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
let width = canvas.width;
let height = canvas.height;

const BALL_SIZE = 5;
let ballPosition = {x: 20, y: 30};

❶ function draw() {
 ctx.fillStyle = "black";
 ctx.fillRect(0, 0, width, height);

 ctx.fillStyle = "white";
 ctx.fillRect(ballPosition.x, ballPosition.y, BALL_SIZE, BA
LL_SIZE);
}

x draw();

Listing 10-4: Refactoring the drawing code

The only change here is to group all the drawing code into a single
function called draw ❶, which we then immediately call x. Because it’s a
refactoring, nothing actually changes in the behavior of the program. You
can refresh index.xhtml to confirm that everything still looks as before.

The Game Loop
Almost all games contain a game loop that orchestrates everything that has
to happen for each frame of the game. Game loops are similar to animation
loops, like the one we looked at in Chapter 9, but with some additional
logic. Here’s the general shape of the game loop in most games:

 1. Clear canvas
 2. Draw image
 3. Get player input

 4. Update state
 5. Check collisions
 6. Wait a short time
 7. Repeat

Getting and acting on input from a player (or players) is the main thing
that distinguishes a game from an animation. Collision detection is another
important aspect of most games: checking for when two objects in the game
meet and responding accordingly. Collision detection is what stops you
from walking through walls or driving through another car—and in this
case, it’s what will make the ball bounce off the walls and paddles. Apart
from the player input and collision detection elements, the steps in the game
loop are more or less the same as in an animation loop: we clear the canvas,
draw the image, update the state of the game to move objects to their new
positions, pause, and repeat.

Rather than trying to write the whole game loop at once, we’ll build it
up gradually. Update script.js with the content in Listing 10-5, which will
be the beginnings of the game loop in our game. This code moves the ball
(that is, updates the ball’s state), redraws the canvas, pauses, and repeats.

--snip--

const BALL_SIZE = 5;
let ballPosition = {x: 20, y: 30};

❶ let xSpeed = 4;
let ySpeed = 2;

function draw() {
 ctx.fillStyle = "black";
 ctx.fillRect(0, 0, width, height);

 ctx.fillStyle = "white";
 ctx.fillRect(ballPosition.x, ballPosition.y, BALL_SIZE, BA
LL_SIZE);
}

x function update() {

 ballPosition.x += xSpeed;
 ballPosition.y += ySpeed;
}

� function gameLoop() {
 draw();
 update();

 // Call this function again after a timeout
 setTimeout(gameLoop, 30);
}

� gameLoop();

Listing 10-5: The game loop

The first change here is to initialize two new variables ❶, xSpeed and
ySpeed. We’ll use these to control the horizontal and vertical speed of the
ball. The new update function x uses these two variables to update the
position of the ball. For every frame, the ball will move xSpeed pixels along
the x-axis and ySpeed pixels along the y-axis. The two variables start out at
4 and 2, so every frame the ball will move 4 pixels to the right and 2 pixels
down.

The gameLoop function � calls the draw function followed by the
update function. Then it calls setTimeout(gameLoop, 30), which will call
the gameLoop function again after 30 ms. This is almost exactly the same as
the setInterval technique we used in Chapter 9. You may recall that
setTimeout calls its function only once after the timeout, while
setInterval calls its function repeatedly. We’re using setTimeout here so
we have more control over whether or not to keep looping; later on we’ll
add some conditional logic to either call setTimeout or end the game.

Notice the line above the setTimeout call beginning with two slashes
(//). This is an example of a comment, a note for yourself (or other people
reading your code) embedded in the program file. When a JavaScript
program executes, any text on a line following a // is ignored (anything on
the line before the // is still evaluated as JavaScript code). Thus, you can
use comments like this to explain how the code works, highlight important

features, or make note of something you still need to do, without affecting
the functionality of the program.

At the end of the script, we call the gameLoop function � to set the
game in motion. Since gameLoop currently ends with setTimeout, the result
is that gameLoop will be repeatedly called once every 30 ms. Reload your
page and you should see the ball move down and to the right, much like the
animation from Chapter 9.

Bouncing
In the previous section you got the ball moving, but it just flew off the edge
of the canvas. Next you’ll learn how to make it bounce off the edge of the
canvas at the appropriate angle—our first collision detection code. Update
script.js with the code in Listing 10-6, which adds a checkCollision
function to our game.

--snip--

function update() {
 ballPosition.x += xSpeed;
 ballPosition.y += ySpeed;
}

function checkCollision() {

❶ let ball = {
 left: ballPosition.x,
 right: ballPosition.x + BALL_SIZE,
 top: ballPosition.y,
 bottom: ballPosition.y + BALL_SIZE
 }

x if (ball.left < 0 || ball.right > width) {
 xSpeed = -xSpeed;
 }

� if (ball.top < 0 || ball.bottom > height) {
 ySpeed = -ySpeed;
 }
}

function gameLoop() {
 draw();
 update();

� checkCollision();

 // Call this function again after a timeout
 setTimeout(gameLoop, 30);
}

gameLoop();

Listing 10-6: Wall collision detection

The new function, checkCollision, checks to see if the ball has
collided with one of the four walls of the canvas. If it has, it updates xSpeed
or ySpeed as appropriate to make the ball bounce off the wall. First, we
calculate values for the edges of the ball. We need to know where the left,
right, top, and bottom edges are to determine if these edges have exceeded
the bounds of the playing area. We group the values in an object called ball
❶ that has left, right, top, and bottom properties. Identifying the left and
top ball edges is easy: they’re ballPosition.x and ballPosition.y,
respectively. To get the right and bottom edges, we add BALL_SIZE to
ballPosition.x and ballPosition.y. This is one of those cases noted
earlier where having access to the ball’s size as a constant is helpful.

Next, we perform the actual collision detection. If the left edge of the
ball is less than 0 or the right edge of the ball is greater than the width of the
canvas x, we know that the ball has hit the left or right wall. In both cases,
the math is the same: the new value of xSpeed should be the negative of the
current value (that is, the value is negated). For example, the first time the
ball hits the right edge, xSpeed will go from 4 to -4. Meanwhile, ySpeed
remains unchanged. As a result, the ball continues moving down the screen
at the same rate, but now it’s moving to the left instead of to the right.

The same kind of check happens for the top of the ball colliding with
the top wall or the bottom of the ball colliding with the bottom wall �. In
either of these cases, we negate ySpeed, changing it from 2 to -2 when the
ball hits the top edge, or from -2 to 2 when the ball hits the bottom edge.

The only other change to the code is to add a call to checkCollision to
the list of things that happen in the gameLoop function �. Now when you
refresh index.xhtml, you should see the ball continuously bounce around the
play area.

If you’ve been paying attention, you might have noticed that the ball
isn’t supposed to bounce off the left and right walls. Once we have moving
paddles, we’ll modify the collision detection code to only bounce off the
paddles or the top and bottom walls, and to score a point for a side wall
collision.

The Paddles
Our next task is to draw the two paddles. To do that we’ll first introduce
some new constants that establish the paddle dimensions and their
horizontal position relative to the sides of the canvas, as well as some
variables defining their vertical positions. (The paddles can only move up
and down, not from side to side, so only their vertical positions need to be
variables.) Update script.js with the changes in Listing 10-7.

--snip--

let xSpeed = 4;
let ySpeed = 2;

const PADDLE_WIDTH = 5;
const PADDLE_HEIGHT = 20;
const PADDLE_OFFSET = 10;

let leftPaddleTop = 10;
let rightPaddleTop = 30;

function draw() {
--snip--

Listing 10-7: Defining the paddles

First we set up the constants that define the paddles. PADDLE_WIDTH and
PADDLE_HEIGHT define both paddles to be 5 pixels wide and 20 pixels tall.

PADDLE_OFFSET refers to the distance of the paddle from the left or right
edge of the playing area.

The variables leftPaddleTop and rightPaddleTop define the current
vertical position of the top of each paddle. Eventually, leftPaddleTop will
be controlled by the computer through a function we’ll write to follow the
ball, and rightPaddleTop will be updated when the player moves the
mouse. For now, we’re simply setting these values to 10 and 30,
respectively.

Next, we update the draw function to display the paddles using the
information we just defined. I’ve also added comments to the code to
clarify what’s happening at each step of the draw function. Modify the code
as shown in Listing 10-8.

--snip--

function draw() {
 // Fill the canvas with black
 ctx.fillStyle = "black";
 ctx.fillRect(0, 0, width, height);

 // Everything else will be white
 ctx.fillStyle = "white";

 // Draw the ball
 ctx.fillRect(ballPosition.x, ballPosition.y, BALL_SIZE, BA
LL_SIZE);

 // Draw the paddles

❶ ctx.fillRect(
 PADDLE_OFFSET,
 leftPaddleTop,
 PADDLE_WIDTH,
 PADDLE_HEIGHT
);

x ctx.fillRect(
 width - PADDLE_WIDTH - PADDLE_OFFSET,
 rightPaddleTop,
 PADDLE_WIDTH,
 PADDLE_HEIGHT

);
}

function update() {
--snip--

Listing 10-8: Drawing the paddles

In addition to some extra comments to help document the program, the
new code features two calls to fillRect, one for drawing the left paddle ❶
and one for the right x. I’ve split the arguments over multiple lines because
the identifiers are so long. Remember that the parameters to fillRect are x,
y, width, and height, where x and y are the coordinates of the top-left
corner of the rectangle. The x-coordinate of the left paddle is
PADDLE_OFFSET because we’re using that to mean the paddle’s distance
from the left edge of the canvas, while the y-coordinate of the left paddle is
just leftPaddleTop. The width and height arguments are the
PADDLE_WIDTH and PADDLE_HEIGHT constants.

The right paddle is a bit more complicated to draw: to get the x-
coordinate of the paddle’s top-left corner, we need to take the width of the
canvas and subtract the width of the paddle and the offset of the paddle
from the right edge. Given that the width of the canvas is 500, and the
paddle width and offset are both 10, that means the x-coordinate of the right
paddle is 480.

When you refresh index.xhtml, you should see the two paddles in
addition to the bouncing ball, as shown in Figure 10-3.

Figure 10-3: The paddles and ball

Note that the ball currently passes straight through the paddles, because
we haven’t set up collision detection for the paddles yet. We’ll get to that
later in this section.

Moving the Paddles with Player Input
The paddles are drawn at the vertical positions given by the variables
leftPaddleTop and rightPaddleTop, so to make the paddles move up and
down, we just have to update the values of these variables. Right now we’re
concerned only with the right paddle, which will be controlled by the
human player.

To let the player control the right paddle, we’ll add an event handler to
script.js that listens for mousemove events. Listing 10-9 shows how it’s
done.

--snip--

let leftPaddleTop = 10;
let rightPaddleTop = 30;

document.addEventListener("mousemove", e => {

 rightPaddleTop = e.y - canvas.offsetTop;
});

function draw() {
--snip--

Listing 10-9: Adding an event handler to move the right paddle

This code follows the same pattern for event handling that you first saw
in Chapter 8. We use document.addEventListener to check for mouse
movements. When one is detected, the event handler function updates the
value of rightPaddleTop based on the y-coordinate of the mousemove event
(e.y). The y-coordinate is relative to the top of the page, not the top of the
canvas, so we subtract canvas.offsetTop (the distance from the top of the
canvas to the top of the page) from the y-coordinate. This way the assigned
rightPaddleTop value will be based on the distance of the mouse from the
top of the canvas, and the paddle will follow the mouse accurately.

Refresh index.xhtml, and you should see the right paddle move
vertically as the mouse moves up and down. Figure 10-4 shows how it
should look.

Figure 10-4: The right paddle moving with the mouse

Our game has now officially become interactive! The player has full
control of the position of the right paddle.

Detecting Paddle Collisions
The next step is to add collision detection for the paddles. We need to know
if the ball has hit a paddle and, if so, make the ball bounce off the paddle
appropriately. This requires a lot of code, so I’ll break it up over a few
listings.

The first thing we have to do is create objects defining the four edges
of the two paddles, as we did for the ball in Listing 10-6. These changes are
shown in Listing 10-10.

--snip--

function checkCollision() {
 let ball = {
 left: ballPosition.x,
 right: ballPosition.x + BALL_SIZE,
 top: ballPosition.y,
 bottom: ballPosition.y + BALL_SIZE
 }

 let leftPaddle = {
 left: PADDLE_OFFSET,
 right: PADDLE_OFFSET + PADDLE_WIDTH,
 top: leftPaddleTop,
 bottom: leftPaddleTop + PADDLE_HEIGHT
 };

 let rightPaddle = {
 left: width - PADDLE_WIDTH - PADDLE_OFFSET,
 right: width - PADDLE_OFFSET,
 top: rightPaddleTop,
 bottom: rightPaddleTop + PADDLE_HEIGHT
 };

 if (ball.left < 0 || ball.right > width) {
--snip--

Listing 10-10: Defining the edges of the paddles

The leftPaddle and rightPaddle objects contain the edges of their
respective paddles as four properties, left, right, top, and bottom. As in
Listing 10-8, determining where the edges of the right paddle are requires a
bit more math because we have to take into account the width of the canvas,
the offset of the paddle, and the width of the paddle.

Next we need a function, which we’ll call checkPaddleCollision, that
takes the ball object and one of the paddle objects and returns true if the
ball is intersecting with that paddle. The function definition is shown in
Listing 10-11.

--snip--

function update() {
 ballPosition.x += xSpeed;
 ballPosition.y += ySpeed;
}

function checkPaddleCollision(ball, paddle) {
 // Check if the paddle and ball overlap vertically and hor
izontally
 return (
 ball.left < paddle.right &&
 ball.right > paddle.left &&
 ball.top < paddle.bottom &&
 ball.bottom > paddle.top
);
}

function checkCollision() {
--snip--

Listing 10-11: The checkPaddleCollision function

This function will be called with the ball and each of the paddle objects
defined earlier. It uses a long Boolean expression made up of four
subexpressions that are all &&’d together, so it returns true only if all four
subexpressions are true. (I added spacing to each subexpression so the
operands line up vertically; this is just to make the code easier to read.) In
English, the subexpressions say:

 1. The left edge of the ball must be to the left of the right edge of the
paddle.

 2. The right edge of the ball must be to the right of the left edge of the
paddle.

 3. The top edge of the ball must be above the bottom edge of the paddle.
 4. The bottom edge of the ball must be below the top edge of the paddle.

If the first two conditions are true, the ball is intersecting horizontally,
and if the last two conditions are true, the ball is intersecting vertically. The

ball is truly intersecting with the paddle only if all four conditions are true.
To illustrate this, see Figure 10-5.

The figure shows four possible scenarios we might check. In all the
scenarios, the paddle has the following bounds: {left: 10, right: 15,
top: 5, bottom: 25}.

In Figure 10-5(a), ball has the bounds {left: 20, right: 25, top:
30, bottom: 35}. In this case, ball.left < paddle.right is false (the
left side of the ball is not to the left of the right side of the paddle), but
ball.right > paddle.left is true. Likewise, ball.top <
paddle.bottom is false and ball.bottom > paddle.top is true. The ball
is neither vertically nor horizontally intersecting with the paddle.

In Figure 10-5(b), ball has the bounds {left: 20, right: 25, top:
22, bottom: 27}. This time, ball.top < paddle.bottom and
ball.bottom > paddle.top are both true, which means that the ball is
vertically intersecting with the paddle, but not horizontally intersecting.

In Figure 10-5(c), ball has the bounds {left: 13, right: 18, top:
30, bottom: 35}. In this case, the ball is horizontally intersecting with the
paddle, but not vertically intersecting.

Finally, in Figure 10-5(d), ball has the bounds {left: 13, right:
18, top: 22, bottom: 27}. Now the ball is both horizontally and
vertically intersecting with the paddle. All four subexpressions are true, so
check PaddleCollision returns true.

Figure 10-5: Collision detection conditions

Now it’s time to actually call the checkPaddleCollision function from
within the checkCollision function, once for each paddle, and handle the
case where the function returns true. You can find this code in Listing 10-
12.

--snip--

 let rightPaddle = {
 left: width - PADDLE_WIDTH - PADDLE_OFFSET,

 right: width - PADDLE_OFFSET,
 top: rightPaddleTop,
 bottom: rightPaddleTop + PADDLE_HEIGHT
 };

 if (checkPaddleCollision(ball, leftPaddle)) {
 // Left paddle collision happened

 ❶ xSpeed = Math.abs(xSpeed);
 }

 if (checkPaddleCollision(ball, rightPaddle)) {
 // Right paddle collision happened

 x xSpeed = -Math.abs(xSpeed);
 }

 if (ball.left < 0 || ball.right > width) {
 xSpeed = -xSpeed;
 }
 if (ball.top < 0 || ball.bottom > height) {
 ySpeed = -ySpeed;
 }
}
--snip--

Listing 10-12: Checking for paddle collisions

Remember that checkPaddleCollision takes an object representing
the ball and an object representing a paddle and returns true if the two are
intersecting. If checkPaddleCollision(ball, leftPaddle) returns true,
we set xSpeed to Math.abs(xSpeed) ❶, which has the effect of setting it to
4 because in our game xSpeed is only ever 4 (when moving to the right) or
-4 (when moving to the left).

You might be wondering why we didn’t just negate xSpeed, as we did
with the vertical wall collision code earlier. Using the absolute value is a
little trick to avoid multiple collisions that could send the ball bouncing
back and forth <inside= the paddle. It’s possible that if the ball hits at just
the right point at the end of the paddle it will get bounced back, but the next
frame will also result in a collision with the same paddle. If we were

negating the xSpeed, then it would just keep bouncing. By forcing the
updated xSpeed to be positive, we can ensure that a collision with the left
paddle will always result in the ball bouncing to the right.

Following this, we do the same thing with the right paddle. In this case,
if there’s a collision we update xSpeed to -Math.abs(xSpeed) x, which in
effect is -4, meaning that the ball will bounce to the left.

Refresh index.xhtml again, and try to move the right paddle with your
mouse so the ball hits it. You should now have ball-paddle bounces
happening! At this point the ball can still safely bounce off the side walls,
but we’ll fix that soon.

Bouncing Near the Paddle Ends
I mentioned at the beginning of this chapter that in Pong you can change
the angle of the ball’s bounce by hitting it near the top or bottom of the
paddle. We’ll implement that functionality now. First we’ll add a new
function called adjustAngle immediately before checkCollision. It
checks if the ball is near the top or bottom of the paddle, and updates
ySpeed if it is. See Listing 10-13 for the code.

--snip--
function adjustAngle(distanceFromTop, distanceFromBottom) {

❶ if (distanceFromTop < 0) {
 // If ball hit near top of paddle, reduce ySpeed
 ySpeed -= 0.5;

x } else if (distanceFromBottom < 0) {
 // If ball hit near bottom of paddle, increase ySpeed
 ySpeed += 0.5;
 }
}

function checkCollision() {
--snip--

Listing 10-13: Adjusting the bounce angle

The adjustAngle function has two parameters, distanceFromTop and
distanceFromBottom. These represent the distance from the top of the ball

to the top of the paddle and from the bottom of the paddle to the bottom of
the ball, respectively. The function first checks if distanceFromTop is less
than 0 ❶. If so, that means the top edge of the ball is above the top edge of
the paddle at collision time, which is how we’ll define being near the top of
the paddle. In this case, we subtract 0.5 from ySpeed. If the ball is moving
down the screen when it hits near the top of the paddle, then ySpeed is
positive, so subtracting 0.5 reduces the vertical speed. For example, at the
start of the game, ySpeed is 2. If you align the paddle so the ball hits the
top, ySpeed will become 1.5 after the bounce, effectively reducing the
angle of bounce. However, if the ball is moving up the screen, then ySpeed
is negative. In this case, subtracting 0.5 after a hit near the top of the paddle
will increase the ball’s vertical speed. For example, a ySpeed of -2 will
become -2.5.

If the ball hits near the bottom of the paddle x, the opposite happens.
In this case, we add 0.5 to ySpeed, increasing the vertical speed if the ball
is moving down the screen or decreasing the speed if the ball is moving up
the screen.

Next, we need to update the checkCollision function to call the new
adjustAngle function as part of the collision detection logic for the two
paddles. Listing 10-14 shows the changes.

--snip--

 let rightPaddle = {
 left: width - PADDLE_WIDTH - PADDLE_OFFSET,
 right: width - PADDLE_OFFSET,
 top: rightPaddleTop,
 bottom: rightPaddleTop + PADDLE_HEIGHT
 };

 if (checkPaddleCollision(ball, leftPaddle)) {
 // Left paddle collision happened
 let distanceFromTop = ball.top - leftPaddle.top;
 let distanceFromBottom = leftPaddle.bottom - ball.botto
m;
 adjustAngle(distanceFromTop, distanceFromBottom);
 xSpeed = Math.abs(xSpeed);
 }

 if (checkPaddleCollision(ball, rightPaddle)) {
 // Right paddle collision happened
 let distanceFromTop = ball.top - rightPaddle.top;
 let distanceFromBottom = rightPaddle.bottom - ball.botto
m;
 adjustAngle(distanceFromTop, distanceFromBottom);
 xSpeed = -Math.abs(xSpeed);
 }
--snip--

Listing 10-14: Calling adjustAngle

Within the if statement for each paddle, we declare distanceFromTop
and distanceFromBottom, the arguments needed for the adjustAngle
function. Then we call adjustAngle before updating xSpeed as before.

Now try out the game and see if you can hit the ball near the edge of
the paddle!

TRY IT YOURSELF

10-1. Hitting the edge of the paddle can be tricky. To make it easier, try reducing the
speed of the game by increasing the setTimeout interval—for example, from 30
ms to 60 ms. Another option is to expand what counts as <near the top= and
<near the bottom= of the paddle. Instead of distanceFromTop < 0 you could use
distanceFromTop < 5, for example, which would check that the top of the ball is
less than 5 pixels below the top of the paddle.

10-2. It isn’t always obvious when a top or bottom hit has occurred, since the change
to ySpeed is pretty small. To get some more feedback about what’s actually
happening when the ball hits the paddle, you can add logging to the adjustAngle
function. For example, you could add the following line to the start of the
function:

console.log(`top: ${distanceFromTop}, bottom: ${distanceF
romBottom}`);

This way the console will show the ball’s distance from the top and bottom of the
paddle every time the ball hits a paddle. Another thing that might help is adding
logging to the two conditionals within the adjustAngle function, like so:

if (distanceFromTop < 0) {
 // If ball hit near top of paddle, reduce ySpeed
 console.log("Top hit!");
 ySpeed -= 0.5;
} else if (distanceFromBottom < 0) {
 // If ball hit near bottom of paddle, increase ySpeed
 console.log("Bottom hit!");
 ySpeed += 0.5;
}

Now you’ll get additional feedback indicating that the ball has hit the top or
bottom of the paddle and that ySpeed is being adjusted.

Don’t get carried away with logging, though. You should be careful about
where you add logging in games, as it can quickly get very noisy and hard to
read, and can also lead to performance problems. If you add logging in the
checkCollision function, for example, then every frame of the game will produce
a new log line! It’s best to limit the logging to certain conditions that won’t be true
all the time: for example, logging only when a collision occurs, as we did here.

Scoring Points
Games are usually more fun when you can win or lose. In Pong, you score a
point if you hit the wall behind the opposing player’s paddle. When this
happens, the ball gets reset to its starting position and speed for the next
round of play. We’ll deal with that part in this section too, but first, to keep
track of the scores, we’ll need to create some new variables. Update
script.js with the code in Listing 10-15.

--snip--

let leftPaddleTop = 10;
let rightPaddleTop = 30;

let leftScore = 0;
let rightScore = 0;

document.addEventListener("mousemove", e => {
 rightPaddleTop = e.y - canvas.offsetTop;
});
--snip--

Listing 10-15: Variables to keep track of the scores

Here we declare two new variables, leftScore and rightScore, and
set them both to 0. Later we’ll add logic to increment these variables when
points are scored.

Next, we’ll add code for displaying the scores to the end of the draw
function. Update the function as shown in Listing 10-16.

--snip--

 ctx.fillRect(
 width - PADDLE_WIDTH - PADDLE_OFFSET,
 rightPaddleTop,
 PADDLE_WIDTH,
 PADDLE_HEIGHT
);

 // Draw scores
 ctx.font = "30px monospace";
 ctx.textAlign = "left";
 ctx.fillText(leftScore.toString(), 50, 50);
 ctx.textAlign = "right";
 ctx.fillText(rightScore.toString(), width - 50, 50);
}

function update() {
--snip--

Listing 10-16: Drawing the scores

This code uses some new canvas properties and methods we haven’t
seen yet. First, we use ctx.font to set the font of the text we’re about to
draw. This is similar to a CSS font declaration. In this case, we’re setting
the font to be 30 pixels tall and monospace style. Monospace means that
each character takes up the same width, and is usually used for code, as in
this book’s code listings. It looks like this. There are many monospace
fonts, but because operating systems can come with different fonts installed,
we give only a generic font style (monospace), meaning the operating
system should use the default font for that font style. In most operating
systems, Courier or Courier New is the default monospace font.

Next, we use ctx.textAlign to set the alignment for the text. We
choose "left" alignment, but because we want this to apply only to the left
score, before drawing the right score we change the alignment to "right".
This way if the scores get into double digits the numbers will extend toward
the middle of the screen, keeping things visually balanced.

To display the left score, we use the ctx.fillText method. This
method has three parameters: the text to be drawn, and the x- and y-
coordinates at which to draw it. The first parameter must be a string, so we
call the toString method on leftScore to convert it from a number to a
string. We use 50 for the x- and y-coordinates to place the text near the top-
left corner of the canvas.

NOTE
The meaning of the x-coordinate parameter for fillText depends on the text’s
alignment. For left-aligned text, the x-coordinate specifies the left edge of
the text, whereas for right-aligned text it specifies the right edge.

The right score is handled similarly to the left score: we set the text
alignment, then call fillText to display the score. This time we set the x-
coordinate to width - 50, so it appears as far from the right as the left
score appears from the left.

When you refresh index.xhtml, you should see the initial scores
rendered, as illustrated in Figure 10-6.

Figure 10-6: Displaying the scores

Now we have to handle the case where the ball hits the side walls.
Instead of bouncing, the appropriate score should be incremented and the
ball should be reset to its original speed and position. First we’ll do another
refactor and write a function that resets the ball. This also requires some
changes to how the ball’s speed and position variables are handled. Listing
10-17 shows the changes.

--snip--

const BALL_SIZE = 5;

❶ let ballPosition;

let xSpeed;
let ySpeed;

function initBall() {

x ballPosition = {x: 20, y: 30};
 xSpeed = 4;
 ySpeed = 2;
}

const PADDLE_WIDTH = 5;
--snip--

Listing 10-17: The initBall function

Here we’ve separated the declaration of the ball state variables (ball
Position, xSpeed, and ySpeed) from the initialization of those variables.
For example, ballPosition is declared at the top level of the program ❶
but initialized in the new initBall function x (short for <initialize ball=).
The same goes for xSpeed and ySpeed. This is so we can reset the ball to its
initial position and speed whenever we want simply by calling initBall,
rather than by copy-pasting the values of the ball state variables all over the
program. In particular, we can now call initBall at the start of the program
to set up the ball for the first time, and we can also call it anytime the ball
hits the left or right wall, to reset the ball to its original state.

Note that we can’t both declare and initialize the ball state variables
inside the initBall function—for example, by placing let ballPosition
= {x: 20, y: 30}; within the function—because the let keyword defines
a new variable in the current scope, which in that case would be the body of
initBall. Thus, the variables would be available only within initBall. We
want the variables to be available throughout the program, so we declare
them with let at the top level of the program, outside the body of any
functions. However, because we want to initialize the variables multiple

times, we assign them their value in the initBall function, which can be
called repeatedly.

Next we have to modify the collision detection code in the
checkCollision function to increment the score and reset the ball when the
left or right wall is hit. Listing 10-18 shows how.

--snip--

 if (checkPaddleCollision(ball, rightPaddle)) {
 // Right paddle collision happened
 let distanceFromTop = ball.top - rightPaddle.top;
 let distanceFromBottom = rightPaddle.bottom - ball.botto
m;
 adjustAngle(distanceFromTop, distanceFromBottom);
 xSpeed = -Math.abs(xSpeed);
 }

❶ if (ball.left < 0) {
 rightScore++;
 initBall();
 }

x if (ball.right > width) {
 leftScore++;
 initBall();
 }

 if (ball.top < 0 || ball.bottom > height) {
 ySpeed = -ySpeed;
 }
}
--snip--

Listing 10-18: Scoring points on wall collisions

Previously, we checked for left and right wall collisions in a single if
statement that made the ball bounce, but we have to handle the left and right
walls individually, since a different player scores depending on which wall
is hit. Therefore, we’ve split the if statement into two. If the ball hits the
left wall ❶, rightScore is incremented and the ball is reset with a call to
our new initBall function. If the ball hits the right wall x, leftScore is

incremented and the ball is reset. The logic for collisions with the top and
bottom walls remains the same.

Finally, since we’ve moved the initialization of the ball state variables
to the initBall function, we need to call that function before the game loop
starts in order to set the ball up for the first time. Scroll down to the bottom
of script.js and update the code as shown in Listing 10-19, adding a call to
initBall before the call to gameLoop.

--snip--

function gameLoop() {
 draw();
 update();
 checkCollision();

 // Call this function again after a timeout
 setTimeout(gameLoop, 30);
}

initBall();
gameLoop();

Listing 10-19: Calling initBall for the first time

Now when you refresh index.xhtml, you should see the scores
increment when the ball hits a side wall, and the ball should reset to its
original speed and position after a side wall hit. Of course, it’s pretty easy to
beat the computer right now because it doesn’t move its paddle yet!

Computer Control
Now let’s add some challenge to this game! We want the computer-
controlled opponent to move the left paddle and try to hit the ball. There are
various ways to do this, but in our simple approach, we’ll have the
computer always try to match the current position of the ball. The logic for
the computer will be very simple:

If the top of the ball is above the top of the paddle, move the paddle up.
If the bottom of the ball is below the bottom of the paddle, move the
paddle down.

Otherwise, do nothing.
With this approach, if the computer could move at any speed, then it

would never miss. Since this would be no fun for us humans, we’ll set a
speed limit for the computer. Listing 10-20 shows how.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
let width = canvas.width;
let height = canvas.height;

const MAX_COMPUTER_SPEED = 2;

const BALL_SIZE = 5;
--snip--

Listing 10-20: Limiting the computer’s speed

We declare the computer’s speed limit as a constant,
MAX_COMPUTER_SPEED. By setting it to 2, we’re saying that the computer
isn’t allowed to move the paddle more than 2 pixels per frame of the game.

Next, we’ll define a function called followBall that applies some very
rudimentary artificial intelligence to move the computer’s paddle. The new
function is shown in Listing 10-21. Add it to your code between the draw
function and the update function.

--snip--
function followBall() {

❶ let ball = {
 top: ballPosition.y,
 bottom: ballPosition.y + BALL_SIZE
 };

x let leftPaddle = {
 top: leftPaddleTop,
 bottom: leftPaddleTop + PADDLE_HEIGHT
 };

� if (ball.top < leftPaddle.top) {
 leftPaddleTop -= MAX_COMPUTER_SPEED;

� } else if (ball.bottom > leftPaddle.bottom) {
 leftPaddleTop += MAX_COMPUTER_SPEED;
 }
}

function update() {
 ballPosition.x += xSpeed;
 ballPosition.y += ySpeed;

� followBall();
}

--snip--

Listing 10-21: Computer-controlled paddle

Within the followBall function, we define objects representing the
ball ❶ and the left paddle x, each with top and bottom properties
representing their upper and lower bounds. Then we implement the paddle
movement logic with two if statements. If the top of the ball is above the
top of the paddle �, we move the paddle up by subtracting
MAX_COMPUTER_SPEED from leftPaddleTop. Likewise, if the bottom of the
ball is below the bottom of the paddle �, we move the paddle down by
adding MAX_COMPUTER_SPEED to leftPaddleTop.

We call our new followBall function within the update function �.
This way, moving the left paddle becomes part of the process of updating
the state of the game that happens with each iteration of the game loop.

Reload the page and see if you can score a point against the computer!

Game Over
The final step in creating our game is to make it winnable (or losable). To
do that, we have to add some kind of game over condition, and stop the
game loop at that point. In this case, we’ll stop the game loop once one of
the players reaches 10 points, then display the text <GAME OVER.=

First, we need to declare a variable for keeping track of whether or not
the game is over. We’ll use this variable to decide whether to continue
repeating the gameLoop function. Listing 10-22 shows the changes to make.

--snip--

let leftScore = 0;
let rightScore = 0;

❶ let gameOver = false;

document.addEventListener("mousemove", e => {

--snip--

function checkCollision() {

--snip--
 if (ball.right > width) {
 leftScore++;
 initBall();
 }

x if (leftScore > 9 || rightScore > 9) {
 gameOver = true;
 }
 if (ball.top < 0 || ball.bottom > height) {
 ySpeed = -ySpeed;
 }
}
--snip--

Listing 10-22: Adding the gameOver variable

Near the top of script.js, we declare a variable called gameOver for
recording whether the game is over ❶. We initialize it to false so the game
doesn’t end before it begins. Then, within the checkCollision function, we
check to see if either of the scores has exceeded 9 x. If so, we set gameOver
to true. This check could happen anywhere, but we do it in
checkCollision to keep the logic that increments the scores and the logic
that checks the scores together.

Next, we’ll add a function for writing the text <GAME OVER,= and
we’ll modify the game loop so it ends when gameOver is true. Listing 10-
23 shows how.

--snip--

 if (ball.top < 0 || ball.bottom > height) {

 ySpeed = -ySpeed;
 }
}

❶ function drawGameOver() {
 ctx.fillStyle = "white";
 ctx.font = "30px monospace";
 ctx.textAlign = "center";
 ctx.fillText("GAME OVER", width / 2, height / 2);
}

function gameLoop() {
 draw();
 update();
 checkCollision();

x if (gameOver) {
 draw();
 drawGameOver();

�} else {
 // Call this function again after a timeout
 setTimeout(gameLoop, 30);
 }
}

Listing 10-23: Ending the game

We define the drawGameOver function after the checkCollision
function ❶. It draws the text <GAME OVER= to the middle of the canvas
in large, white text. To position the text in the middle of the canvas, we set
the text alignment to "center" and use half the canvas width and height as
the text’s x- and y-coordinates. (With center alignment, the x-coordinate
refers to the horizontal midpoint of the text.)

Within the gameLoop function, we’ve wrapped the call to setTimeout
in a conditional statement that checks the value of the gameOver variable. If
it’s true x, the game is over, so we call the draw and drawGameOver
functions. (The draw function is needed to display the final score;
otherwise, the winning player would still be stuck with nine points.) If

gameOver is false �, the game can continue: we keep looping as before by
using setTimeout to call gameLoop again after 30 ms.

Once gameOver becomes true and the game loop ends, the game
effectively stops. Nothing else will be drawn to the screen after the <GAME
OVER= text—at least, not until the page is refreshed and the program starts
again from the beginning. Go ahead and do that now: refresh index.xhtml
and see if you can beat the computer! Once one of you gets more than nine
points you should see the <GAME OVER= text, as shown in Figure 10-7.

Figure 10-7: Game over

I hope you beat the computer, but don’t worry if you didn’t—the game
is pretty hard. Here are some things you can do to make it easier for
yourself:

Increase the time between frames in gameLoop.
Make the paddles taller.
Reduce the computer’s max speed.
Make it easier to hit the edge of the paddle.
Increase the effect on ySpeed of hitting the edge of the paddle.

Now that you have a working game, you can make any changes you
want. If you’re already a Pong pro, you might want to make it harder
instead; the following exercises provide a few suggestions. You could also
try customizing the appearance, or changing the size of the canvas—it’s
your game now.

TRY IT YOURSELF

10-3. Increase the speed of the game as the scores increase (note that you could do
this either by increasing the xSpeed and ySpeed of the ball, or by reducing the
setTimeout time in gameLoop).

10-4. Slow down the player’s paddle—this will require something similar to the
computer paddle movement, with the right paddle moving by some max amount
each frame to try to reach the current mouse position.

10-5. Add a second, slower ball.

The Complete Code
For your convenience, Listing 10-24 shows the whole script.js file.

let canvas = document.querySelector("#canvas");
let ctx = canvas.getContext("2d");
let width = canvas.width;
let height = canvas.height;

const MAX_COMPUTER_SPEED = 2;

const BALL_SIZE = 5;
let ballPosition;

let xSpeed;
let ySpeed;

function initBall() {
 ballPosition = {x: 20, y: 30};
 xSpeed = 4;
 ySpeed = 2;
}

const PADDLE_WIDTH = 5;
const PADDLE_HEIGHT = 20;
const PADDLE_OFFSET = 10;

let leftPaddleTop = 10;
let rightPaddleTop = 30;

let leftScore = 0;
let rightScore = 0;
let gameOver = false;

document.addEventListener("mousemove", e => {
 rightPaddleTop = e.y - canvas.offsetTop;
});

function draw() {

 // Fill the canvas with black
 ctx.fillStyle = "black";
 ctx.fillRect(0, 0, width, height);

 // Everything else will be white
 ctx.fillStyle = "white";

 // Draw the ball
 ctx.fillRect(ballPosition.x, ballPosition.y, BALL_SIZE, BA
LL_SIZE);

 // Draw the paddles
 ctx.fillRect(
 PADDLE_OFFSET,
 leftPaddleTop,
 PADDLE_WIDTH,
 PADDLE_HEIGHT
);
 ctx.fillRect(
 width - PADDLE_WIDTH - PADDLE_OFFSET,
 rightPaddleTop,
 PADDLE_WIDTH,
 PADDLE_HEIGHT
);

 // Draw scores
 ctx.font = "30px monospace";
 ctx.textAlign = "left";
 ctx.fillText(leftScore.toString(), 50, 50);
 ctx.textAlign = "right";
 ctx.fillText(rightScore.toString(), width - 50, 50);
}

function followBall() {
 let ball = {
 top: ballPosition.y,
 bottom: ballPosition.y + BALL_SIZE
 };
 let leftPaddle = {
 top: leftPaddleTop,
 bottom: leftPaddleTop + PADDLE_HEIGHT

 };

 if (ball.top < leftPaddle.top) {
 leftPaddleTop -= MAX_COMPUTER_SPEED;
 } else if (ball.bottom > leftPaddle.bottom) {
 leftPaddleTop += MAX_COMPUTER_SPEED;
 }
}

function update() {
 ballPosition.x += xSpeed;
 ballPosition.y += ySpeed;
 followBall();
}

function checkPaddleCollision(ball, paddle) {
 // Check if the paddle and ball overlap vertically and hor
izontally
 return (
 ball.left < paddle.right &&
 ball.right > paddle.left &&
 ball.top < paddle.bottom &&
 ball.bottom > paddle.top
);
}

function adjustAngle(distanceFromTop, distanceFromBottom) {
 if (distanceFromTop < 0) {
 // If ball hit near top of paddle, reduce ySpeed
 ySpeed -= 0.5;
 } else if (distanceFromBottom < 0) {
 // If ball hit near bottom of paddle, increase ySpeed
 ySpeed += 0.5;
 }
}

function checkCollision() {
 let ball = {
 left: ballPosition.x,
 right: ballPosition.x + BALL_SIZE,
 top: ballPosition.y,

 bottom: ballPosition.y + BALL_SIZE
 }

 let leftPaddle = {
 left: PADDLE_OFFSET,
 right: PADDLE_OFFSET + PADDLE_WIDTH,
 top: leftPaddleTop,
 bottom: leftPaddleTop + PADDLE_HEIGHT
 };

 let rightPaddle = {
 left: width - PADDLE_WIDTH - PADDLE_OFFSET,
 right: width - PADDLE_OFFSET,
 top: rightPaddleTop,
 bottom: rightPaddleTop + PADDLE_HEIGHT
 };

 if (checkPaddleCollision(ball, leftPaddle)) {
 // Left paddle collision happened
 let distanceFromTop = ball.top - leftPaddle.top;
 let distanceFromBottom = leftPaddle.bottom - ball.botto
m;
 adjustAngle(distanceFromTop, distanceFromBottom);
 xSpeed = Math.abs(xSpeed);
 }

 if (checkPaddleCollision(ball, rightPaddle)) {
 // Right paddle collision happened
 let distanceFromTop = ball.top - rightPaddle.top;
 let distanceFromBottom = rightPaddle.bottom - ball.botto
m;
 adjustAngle(distanceFromTop, distanceFromBottom);
 xSpeed = -Math.abs(xSpeed);
 }

 if (ball.left < 0) {
 rightScore++;
 initBall();
 }
 if (ball.right > width) {
 leftScore++;

 initBall();
 }
 if (leftScore > 9 || rightScore > 9) {
 gameOver = true;
 }
 if (ball.top < 0 || ball.bottom > height) {
 ySpeed = -ySpeed;
 }
}

function drawGameOver() {
 ctx.fillStyle = "white";
 ctx.font = "30px monospace";
 ctx.textAlign = "center";
 ctx.fillText("GAME OVER", width / 2, height / 2);
}

function gameLoop() {
 draw();
 update();
 checkCollision();

 if (gameOver) {
 draw();
 drawGameOver();
 } else {
 // Call this function again after a timeout
 setTimeout(gameLoop, 30);
 }
}

initBall();
gameLoop();

Listing 10-24: The complete code

Summary
In this chapter you created a full game from scratch. The basics of game
loops, collision detection, and rendering are broadly applicable, so with the

knowledge you’ve acquired here you can start creating all kinds of 2D
games. For example, you might try implementing your own version of
Breakout or Snake. If you need some help with the logic, there are lots of
tutorials online that you can follow. Have fun!

11
OBJECT-ORIENTED PONG

In the previous chapter we built our
own version of the game Pong. Earlier,

in Chapter 6, you learned about classes and object-
oriented programming in JavaScript. You might be
wondering why we didn’t use any classes for our
implementation of Pong. The main reason was that I
wanted to keep the game code as simple as possible,
without including any unnecessary concepts, to make
it easier to see what the actual game is doing. As
programs get larger and more complex, however, it
helps to give them more structure, and one common
way to do that is to use object-oriented programming.

To help you get a better understanding of how to design software in an
object-oriented style, in this chapter we’ll walk through an object-oriented
version of Pong. There won’t be any changes to the logic of the game, but
the structure and organization of the code will be different. For example, the
code for handling the ball will all live in a class called Ball. We’ll use this
class to keep track of the ball’s position and to determine how the ball
should bounce when it hits a wall or paddle. Similarly, all the code for
handling the paddles will live in a class called Paddle. We’ll be able to

easily share common code that applies to both balls and paddles by making
the Ball and Paddle classes inherit from a shared superclass.

This chapter will explore the general structure of the object-oriented
Pong program, but we won’t go into every single detail of the code; you
should already have a pretty good idea of how it works from the last
chapter. With that in mind, instead of building up the game incrementally, in
this chapter we’ll step through the full code in order, section by section.
Because of that, the code won’t run correctly or really do anything until
you’ve entered it all. But before we get to the code itself, let’s first look
more broadly at how to approach designing an object-oriented computer
program.

Object-Oriented Design
Writing code in an object-oriented way adds structure to computer
programs by organizing the code into classes representing the various
aspects of the program. This structure makes it easier for other
programmers (and even a later version of you) to understand how your code
works. A complete treatment of object-oriented design techniques would be
beyond the scope of this book, but in this section we’ll look at a few key
principles at the heart of object-oriented programming.

An important first step in object-oriented design is modeling your
domain, or the world of your program. What are the different elements in
the program, what do they need to be able to do, and how do they relate to
and interact with each other? In this case, the domain is the game Pong, and
there are several visible elements in the game: the ball, the paddles, and the
scores. While there are two paddles, they mostly behave in the same way,
so we can create a single Paddle class with two customized instances.
Meanwhile, the ball is distinct enough to deserve its own class. We also
have to model how these elements interact. For example, how do we model
the ball colliding with a paddle? That code has to live somewhere. As you’ll
see, in my design, I decided that the code should live in the Ball class. In
other words, the ball should <know= how to bounce off the paddles and the
walls when it collides with them.

Another important aspect of object-oriented programming is
encapsulation. This means hiding the inner details of a class from the rest

of the program, and providing a simple interface for it to use to interact with
the class. Encapsulating these details makes it easier to change them later
without affecting the rest of the program. For example, the Ball class
doesn’t need to expose its speed or position to the rest of the program. If we
decide to change how the speed is represented (for example, using angle
and speed instead of xSpeed and ySpeed), we shouldn’t have to change how
any other part of the program works.

NOTE
Technically, xSpeed and ySpeed will be accessible outside of the Ball class,
but we won’t be accessing them, so we can treat them as encapsulated
details. JavaScript does have a way to declare properties as private,
meaning they can’t be accessed outside of the class, but at the time of this
writing it’s a new feature and isn’t available in all browsers.

A final key aspect of object-oriented programming is polymorphism,
the idea that if a method expects to receive objects of a certain class, then it
can also receive objects that are instances of subclasses of that class. For
example, in this chapter you’ll see an Entity class that has a draw method
and two subclasses: Paddle and Ball. In keeping with polymorphism, any
code that uses the draw method should be able to receive any kind of
Entity as an argument, without caring about whether we pass it a Ball or a
Paddle.

In the end, object-oriented design is more of an art than a science, and
there are a lot of different ways to do it. You should treat the design in this
chapter as one possible way to approach the problem, rather than <the right
way= to do things. With that in mind, let’s dive into our object-oriented
Pong code.

The File Structure
The HTML for the object-oriented version of Pong is exactly the same as in
the previous chapter, but the JavaScript is completely different. If you want,
you can make a copy of the tennjs directory, remove the script.js file, and
create a new script.js file with the code shown in the following sections.
Alternatively, you can just delete all the code in the script.js file in your

existing tennjs directory and replace it with the new object-oriented code.
Either way, the updated script.js file will consist of a series of class
declarations, followed by some extra code to set the game in motion. We’ll
look at each section of the code in sequence.

The GameView Class
The first class we’ll declare is called GameView. This class is responsible for
the player’s view of the game, or how the game is displayed. Because the
game uses a canvas for rendering, the GameView class is responsible for the
canvas and drawing context. This class is also responsible for drawing
things to the canvas, such as the ball and paddles, and for displaying the
<GAME OVER= text. See Listing 11-1 for the code.

class GameView {

❶ constructor() {
 let canvas = document.querySelector("#canvas");
 this.ctx = canvas.getContext("2d");
 this.width = canvas.width;
 this.height = canvas.height;
 this.offsetTop = canvas.offsetTop;
 }

x draw(…entities) {
 // Fill the canvas with black
 this.ctx.fillStyle = "black";
 this.ctx.fillRect(0, 0, this.width, this.height);

 � entities.forEach(entity => entity.draw(this.ctx));
 }

� drawScores(scores) {
 this.ctx.fillStyle = "white";
 this.ctx.font = "30px monospace";
 this.ctx.textAlign = "left";
 this.ctx.fillText(scores.leftScore.toString(), 50, 50);
 this.ctx.textAlign = "right";
 this.ctx.fillText(scores.rightScore.toString(), this.wid

th - 50, 50);
 }

� drawGameOver() {
 this.ctx.fillStyle = "white";
 this.ctx.font = "30px monospace";
 this.ctx.textAlign = "center";
 this.ctx.fillText("GAME OVER", this.width / 2, this.heig
ht / 2);
 }
}

Listing 11-1: The GameView class

The GameView constructor ❶ gets a reference to the canvas and its
drawing context and saves these as properties called canvas and ctx,
respectively. It also stores some values that will be used for drawing: the
width and height of the canvas, and the offset of the canvas from the top of
the browser viewport.

The draw method x uses rest parameters, introduced in Chapter 5. This
way, you can pass multiple arguments to draw, and all the arguments will be
collected into a single array called entities. Each argument will be an
object representing one of the elements in the game: the ball and the two
paddles. The method first draws a black rectangle to clear the canvas and
then goes through the array of elements, calling each element’s own draw
method in turn � and passing the drawing context as an argument. This
will work only if every object passed to GameView.draw has its own draw
method; we’ll see how that’s implemented in the next section. The draw
method on GameView has the ultimate responsibility for drawing to the
canvas with each repetition of the game loop, but it delegates responsibility
for actually drawing the game elements to the objects representing those
elements. In effect, each element in the game <knows= how to draw itself,
and GameView.draw just orchestrates the calls.

The drawScores method � takes an object containing the two scores
and draws them to the canvas. It’s much the same as the score drawing code
from the previous chapter. The main difference is that instead of relying on

a global variable for the width of the canvas, it’s able to use the width
property from the GameView class by referring to this.width.

The drawGameOver method � is also mostly the same as the equivalent
function in the previous chapter, but again, it gets the width and height from
GameView rather than from global variables.

The Game Elements
Next we’ll implement classes representing the three main game elements:
the two paddles and the ball. We’ll begin with a superclass called Entity
that will be a parent to the subclasses Paddle and Ball. The Entity class
exists to share the general code common to both the paddles and the ball.
This includes code for keeping track of the sizes and positions of the
elements, calculating the boundaries of the elements for collision detection,
and drawing the elements. Since all the game elements are rectangles, all
this code is the same whether we’re dealing with a paddle or the ball. This
shows the beauty of object-oriented programming: we can write all the
common code once in the superclass, and let the subclasses inherit it.

Listing 11-2 contains the code for the Entity class.

class Entity {

❶ constructor(x, y, width, height) {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }

x boundingBox() {
 return {
 left: this.x,
 right: this.x + this.width,
 top: this.y,
 bottom: this.y + this.height
 };
 }

� draw(ctx) {
 ctx.fillStyle = "white";
 ctx.fillRect(this.x, this.y, this.width, this.height);
 }
}

Listing 11-2: The Entity class

The Entity constructor ❶ takes an x- and a y-coordinate for the top-
left corner of the entity, and a width and height for its size. These are saved
as properties.

The boundingBox method x returns an object with the left, right, top,
and bottom bounds of the entity. In the previous chapter, we manually
created these objects for each entity in the checkCollision function. The
Entity superclass gives us a convenient way of generalizing this common
calculation for both the ball and the paddles.

The draw method � takes a drawing context and draws a white
rectangle using the properties defined in the constructor. The objects passed
into the draw method on GameView will all be subclasses of Entity, and it’s
the draw method on Entity that will be called for each item.

The Paddles
The Paddle class extends the Entity class. It’s declared in Listing 11-3.

class Paddle extends Entity {

❶ static WIDTH = 5;
 static HEIGHT = 20
 static OFFSET = 10;

x constructor(x, y) {
 super(x, y, Paddle.WIDTH, Paddle.HEIGHT);
 }
}

Listing 11-3: The Paddle class

This class includes three static properties, which are properties
assigned to the class itself rather than to an individual instance of the class.

A static property’s value will be shared across all instances of the class. In
this case, while each instance of Paddle needs its own x- and y-coordinates,
every Paddle object should have the same width and height, as well as the
same offset from the left or right edge of the canvas. Thus, we define those
values as the static properties WIDTH, HEIGHT, and OFFSET, which correspond
to the PADDLE_WIDTH, PADDLE_HEIGHT, and PADDLE_OFFSET constants from
the previous chapter.

NOTE
There’s no straightforward way to define static constants in classes, which
is why the constants from the previous chapter are now technically
variables. Their names are in all caps to indicate that they should be treated
as constants.

You declare a static property using the static keyword. For example,
we declare the WIDTH static property using static WIDTH = 5 ❶. Static
properties are accessed using dot notation, as with an instance’s properties,
except that you use the class name on the left side of the dot, rather than
this or the name of the instance. For example, Paddle.WIDTH accesses the
WIDTH static property.

The Paddle constructor x has only two parameters: x and y. It uses
super to call the constructor of its superclass (Entity), passing through the
x and y parameters as well as Paddle.WIDTH for the width parameter and
Paddle.HEIGHT for the height parameter.

The Ball
Next comes the Ball class. This is similar to the Paddle class in that it
extends Entity, but Ball has its own logic for updating its position based
on its speed, and for collision detection. Listing 11-4 shows the first part of
the code for this class.

class Ball extends Entity {

❶ static SIZE = 5;

x constructor() {

 super(0, 0, Ball.SIZE, Ball.SIZE);

 � this.init();
 }

� init() {
 this.x = 20;
 this.y = 30;
 this.xSpeed = 4;
 this.ySpeed = 2;
 }

� update() {
 this.x += this.xSpeed;
 this.y += this.ySpeed;
 }

� adjustAngle(distanceFromTop, distanceFromBottom) {
 if (distanceFromTop < 0) {
 // If ball hit near top of paddle, reduce ySpeed
 this.ySpeed -= 0.5;
 } else if (distanceFromBottom < 0) {
 // If ball hit near bottom of paddle, increase ySpeed
 this.ySpeed += 0.5;
 }
 }

Listing 11-4: The beginning of the Ball class

This class has a static property called SIZE that defines the width and
height of the ball ❶. Next comes its constructor method x. Like the Paddle
constructor, the first thing the Ball constructor does is call the constructor
of its superclass, Entity, this time passing 0 for the x and y parameters and
Ball.SIZE for the width and height parameters. The 0s are just
placeholders; in fact, the ball starts each point at the same position, (20, 30).
This positioning is handled by the Ball class’s init method, which is called
for the first time from the constructor �. The init method itself is defined
to set the initial position and speed of the ball �, just like the initBall

function from the previous chapter. This method will be called whenever
the ball needs to be reset to its initial position (after a point is scored).

The next method, update, uses the ball’s current speed to update its x-
and y-position �. It’s followed by the adjustAngle method �, equivalent
to the adjustAngle function described in the previous chapter. It changes
the ball’s vertical speed (the angle of the bounce) depending on where the
ball hits the paddle.

The Ball class definition continues in Listing 11-5 with the methods
for collision detection.

class Ball extends Entity {

--snip--
 checkPaddleCollision(paddle, xSpeedAfterBounce) {

 ❶ let ballBox = this.boundingBox();
 let paddleBox = paddle.boundingBox();

 // Check if the ball and paddle overlap vertically and h
orizontally

 x let collisionOccurred = (
 ballBox.left < paddleBox.right &&
 ballBox.right > paddleBox.left &&
 ballBox.top < paddleBox.bottom &&
 ballBox.bottom > paddleBox.top
);

 if (collisionOccurred) {
 let distanceFromTop = ballBox.top - paddleBox.top;
 let distanceFromBottom = paddleBox.bottom - ballBox.bo
ttom;

 � this.adjustAngle(distanceFromTop, distanceFromBottom);

 � this.xSpeed = xSpeedAfterBounce;
 }
 }

 checkWallCollision(width, height, scores) {
 let ballBox = this.boundingBox();

 // Hit left wall

 � if (ballBox.left < 0) {
 scores.rightScore++;
 this.init();
 }
 // Hit right wall

 � if (ballBox.right > width) {
 scores.leftScore++;
 this.init();
 }
 // Hit top or bottom walls
 if (ballBox.top < 0 || ballBox.bottom > height) {

 � this.ySpeed = -this.ySpeed;
 }
 }
}

Listing 11-5: The rest of the Ball class

The checkPaddleCollision method has some overlap with the check
Collision and checkPaddleCollision functions from the previous
chapter. The method takes two parameters: an object representing one of the
paddles, and xSpeedAfterBounce. The latter represents the new value we
should set xSpeed to if a bounce off one of the paddles occurs, and it lets us
configure whether the ball is expected to always bounce to the right (from
the left paddle) or to the left (from the right paddle). As in the previous
chapter, we enforce that a collision with the left paddle makes the ball
bounce right and vice versa to avoid weirdness where the ball could bounce
around <inside= the paddle.

We use the boundingBox method from the parent Entity class to get
the bounding boxes of the ball and the paddle ❶, storing them as ballBox
and paddleBox. Next, we compare the various bounding box edges to
determine if a collision has taken place between the ball and the paddle,
saving the result in the Boolean variable collisionOccurred x. If
collisionOccurred is true, we call the adjustAngle method with the
appropriate distances as determined from the bounding boxes �, then set
the ball’s xSpeed to xSpeedAfterBounce �.

Finally, the checkWallCollision method checks to see if a collision
has occurred between the ball and a wall. It takes the width and height of
the playing area and an object representing the scores as parameters. If the
ball hits the left wall � or right wall �, the appropriate score is
incremented, and the ball is reset with a call to the init method. If it hits
the top or bottom wall, it bounces �.

The Scores and Computer Classes
The Scores class is a simple container for keeping track of the current
scores. The Computer class contains the logic for following the ball. The
code for these two classes is in Listing 11-6.

class Scores {

❶ constructor() {
 this.leftScore = 0;
 this.rightScore = 0;
 }
}

class Computer {

x static followBall(paddle, ball) {
 const MAX_SPEED = 2;
 let ballBox = ball.boundingBox();
 let paddleBox = paddle.boundingBox();

 if (ballBox.top < paddleBox.top) {
 paddle.y -= MAX_SPEED;
 } else if (ballBox.bottom > paddleBox.bottom) {
 paddle.y += MAX_SPEED;
 }
 }
}

Listing 11-6: The Scores and Computer classes

The Scores constructor ❶ sets the scores for the left and right players
to 0. We could just use a plain object for the scores, but using a class keeps

the structure of the code more consistent.
The Computer class has a single method called followBall, which

updates the left paddle’s position based on the ball’s position. It’s a static
method, meaning it doesn’t need an instance of the class to be called. We
declare it as static using the static keyword x, similar to declaring a static
property. Static methods are called using the class name rather than the
instance name, like this: Computer.followBall(leftPaddle, ball).

NOTE
We create instances of a class when there are properties specific to that
instance that need to be stored. The Computer class doesn’t have any
properties, so we don’t need to create an instance of it. Since the Computer
class is never instantiated, it also doesn’t need a constructor.

We could just as easily have created a standalone function to move the
left paddle, but as with the Scores class, keeping the code as part of a
Computer class maintains consistency.

The Game Class
We finally come to the Game class, which is where all the other classes get
instantiated (where applicable) and are stitched together and orchestrated.
See Listing 11-7 for the first part of the code.

class Game {
 constructor() {
 this.gameView = new GameView();
 this.ball = new Ball();

 ❶ this.leftPaddle = new Paddle(Paddle.OFFSET, 10);

 x this.rightPaddle = new Paddle(
 this.gameView.width - Paddle.OFFSET - Paddle.WIDTH,
 30
);

 � this.scores = new Scores();
 this.gameOver = false;

 � document.addEventListener("mousemove", e => {
 this.rightPaddle.y = e.y - this.gameView.offsetTop;
 });
 }

 draw() {

 � this.gameView.draw(
 this.ball,
 this.leftPaddle,
 this.rightPaddle
);

 � this.gameView.drawScores(this.scores);
 }

Listing 11-7: The first part of the Game class

The Game constructor first instantiates the GameView, Ball, and Paddle
classes. The leftPaddle instance is created with Paddle.OFFSET for its x-
coordinate ❶. The right one uses Paddle.OFFSET, Paddle.WIDTH, and this
.gameView.width to determine its x-coordinate x, similar to how we
calculated the position of the right paddle in the previous chapter.

Instantiating other classes inside a class is a common feature of object-
oriented code. This technique is called composition, because we’re
composing instances inside other instances

COMPOSITION AND INHERITANCE

Composition and inheritance both add structure to object-oriented programs.
Composition is a way of modeling a <has a= relationship, as in the sentence <Game has a
Ball.= Inheritance, meanwhile, models an <is a= relationship, as in <Ball is an Entity.=

For these two examples, it’s pretty intuitive whether to use composition or
inheritance—we know that the game has a ball, and that the ball is an entity—but the
choice isn’t always so clear. For example, you could argue that the methods in
GameView are core to the Game class, and make Game inherit from GameView. It’s a bit of a
stretch to say that <Game is a GameView,= but if you renamed GameView to ViewableGame it
might make more sense.

When faced with a choice between composition and inheritance, a commonly
followed design principle says to favor composition. This leads to greater flexibility and
greater encapsulation. For example, if Game extended GameView, then all of the
properties of GameView, like ctx, would also be present in Game. With the code as it’s

written now, these properties are confined to the GameView class itself, which
encapsulates the logic better and increases flexibility: it’s easier to make internal
changes to the GameView class without having to worry about breaking the Game class.

Next, the Game constructor instantiates Scores � and sets the gameOver
Boolean to false. Finally, it sets up a mousemove event listener � to update
the right paddle’s position when the user moves the mouse. An event
listener set up in a class constructor works just like the other event listeners
we’ve seen in the book: it will be available as long as the application is
running, and it triggers its handler function whenever the event is detected.

After the constructor is the Game class’s draw method, which has the
top-level responsibility for drawing all the visual aspects of the game. First
the method calls this.gameView.draw �, passing the three main game
elements, this.ball, this.leftPaddle, and this.rightPaddle. This is a
call to the draw method of the GameView class we saw in Listing 11-1, which
took a variable number of objects as arguments and called the draw method
on each one. The net result is that game.draw calls gameView.draw, which
calls ball.draw, leftPaddle.draw, and rightPaddle.draw. It may seem a
bit roundabout, but you’ll often find cases like this in object-oriented code,
where keeping the code in its logical place requires jumping through some
hoops. In this case, game.draw is responsible for knowing which objects get
drawn (because the Game class keeps track of all the game elements);
gameView.draw is responsible for the drawing context, clearing the canvas,
and calling the draw methods on the elements; and the draw method on each
game element is responsible for knowing how to draw itself.

After it has drawn all the entities, the draw method calls
this.gameView .drawScores, passing the this.scores object �.

The Game class continues with the rest of its methods in Listing 11-8.

class Game {

--snip--
 checkCollision() {
 this.ball.checkPaddleCollision(this.leftPaddle,

 ❶ Math.abs(this.ball.xSpee
d));

 this.ball.checkPaddleCollision(this.rightPaddle,

 x -Math.abs(this.ball.xSpee
d));

 � this.ball.checkWallCollision(
 this.gameView.width,
 this.gameView.height,
 this.scores
);

 � if (this.scores.leftScore > 9 || this.scores.rightScore
 > 9) {
 this.gameOver = true;
 }
 }

� update() {
 this.ball.update();
 Computer.followBall(this.leftPaddle, this.ball);
 }

� loop() {
 this.draw();
 this.update();
 this.checkCollision();

 � if (this.gameOver) {
 this.draw();
 this.gameView.drawGameOver();
 } else {
 // Call this method again after a timeout

 � setTimeout(() => this.loop(), 30);
 }
 }
}

Listing 11-8: The rest of the Game class

The Game class’s checkCollision method coordinates all the collision
detection logic. First it calls the ball’s checkPaddleCollision method

twice, to check for collisions between the ball and each of the paddles.
Recall from Listing 11-5 that this method takes two arguments: a Paddle
object and a new, post-bounce value for xSpeed. For the left paddle, we
know that we want the ball to bounce right, so we make the new xSpeed
positive by taking the Math.abs of the current xSpeed ❶. For the right
paddle we want the ball to bounce left, so we make the new xSpeed
negative by negating the result of Math.abs(xSpeed) x.

Next, the checkCollision method calls ball.checkWallCollision to
handle wall collisions �. This method takes the width and height (because
the Ball object doesn’t know how big the playing area is) and the scores (so
they can be incremented if a side wall is hit). Finally, the method checks to
see if either score has exceeded the threshold � and, if so, sets
this.gameOver to true.

The Game object’s update method � controls the changes of state
between each repetition of the game loop. It calls the ball’s update method
to move the ball, then tells the computer to move the left paddle based on
the ball’s new position using the Computer.followBall static method.

The last method of the Game class, loop, defines the game loop �. We
call this.draw, this.update, and this.checkCollision in sequence.
Then we check to see if this.gameOver is true. If so �, we call draw again
to render the final score, and we call gameView.drawGameOver to render the
<GAME OVER= text. Otherwise, we use setTimeout to call the loop
method again after 30 ms �, continuing the game.

Starting the Game
The very last thing we have to do is start the game by instantiating the Game
class and kicking off the game loop, as shown in Listing 11-9.

let game = new Game();
game.loop();

Listing 11-9: Starting the game

We must create the instance of the Game class at the top level of the
program, outside any of the class definitions. All the other required objects

are instantiated by the Game class’s constructor, so creating a Game object
automatically creates all the other objects as well. We could also have had
the Game constructor call the loop method to set the game in motion as part
of the Game class instantiation. However, placing the first call to game.loop
at the top level of the program makes it easier to see exactly where the
game gets going.

With this final listing, we now have all the code for the object-oriented
version of our game! As long as you’ve entered all the code in order, it
should now work, and gameplay should be exactly the same as in the
version from the previous chapter.

TRY IT YOURSELF

11-1. If you made any of the changes suggested in the previous chapter, such as
altering the speed of the game loop or of the opponent, resizing the paddles, or
adding a second ball, try making them again in this version of the code. Which
version is easier to modify?

Summary
In this chapter you created an object-oriented version of your Pong
program, learning some strategies for object-oriented software design in the
process. None of the game’s logic from the previous chapter changed; only
the code’s organization differs. You may find one or the other of these two
versions easier to read and understand, depending on your preferences and
experience with object-oriented code.

Object-oriented design is a complex field, and it can take a lot of
practice to decompose programs into individual objects that make sense on
their own. Even in this simple game, there are many ways you could split
up the game’s components into objects and methods. For example, you
might decide that the GameView class is unnecessary and that Game can keep
track of the canvas, avoiding the need for the complex dance where draw
calls draw calls draw. The main thing is to arrange your code in a way that
makes sense and is easy for you and other programmers to understand and
modify.

PROJECT 2
MAKING MUSIC

12
GENERATING SOUNDS

Now it’s time for something completely
different! In this next project, you’ll

create a song using JavaScript and the Web Audio
API. You’ll also learn some general tips about sound
synthesis and how electronic music is made.

This chapter will introduce the Web Audio API and Tone.js, a
JavaScript library built on top of it. This will be your first taste of the wide
world of third-party JavaScript libraries, which are collections of prewritten
code that you can harness to simplify complex tasks. Tone.js raises the level
of abstraction compared with the Web Audio API, allowing you to think
about and implement musical concepts in a more natural way. Once you’re
familiar with how it works, in Chapter 13 you’ll put everything you’ve
learned to use to make a song that you can customize or even rewrite.

The Web Audio API
This section covers the basics of the Web Audio API, which provides a way
to create and manipulate sounds in the browser using JavaScript. Google
Chrome introduced the Web Audio API in 2011, and soon after that it was
released as a W3C standard (the W3C, or World Wide Web Consortium, is
an organization that develops standards for the web). To use it, you create
nodes and then connect them together. Each node represents some aspect of
a sound—one node might generate a basic tone, a second node might set its
volume, a third might apply an effect such as reverb or distortion to the

tone, and so on. With this scheme, you can produce almost any kind of
sound you might want.

Setting Up
As always, we’ll start with a simple HTML file. The file will give the user
the ability to play a sound generated by the Web Audio API. Create a new
directory called music and enter the content in Listing 12-1 into a new file
called index.xhtml.

<!DOCTYPE html>
<html>
 <head>
 <title>Music</title>
 </head>
 <body>

 ❶ <button id="play">Play</button>

 x <p id="playing" style="display: none">Playing</p>
 <script src="script.js"></script>
 </body>
</html>

Listing 12-1: An index.xhtml file for exploring the Web Audio API

This listing creates two visual elements: a Play button ❶ and a
paragraph containing the text <Playing= x. The paragraph uses an inline
style attribute, which allows us to add CSS declarations directly to the
element from the HTML file. In this case, we’re setting display to none,
which hides the element. Later, we’ll use JavaScript to remove the style and
show the element when the audio is playing.

Next, we’ll start writing the JavaScript. In many browsers, including
Google Chrome, the Web Audio API won’t play any sound until the user
interacts with the page. We’re using the Play button as our interactive
element, which will trigger our audio code. Because we only need the
button to be clicked once, we’ll hide it after it’s been clicked.

Create script.js in the same directory as the HTML file and add the
content shown in Listing 12-2. This code hides the Play button and shows

the <Playing= text when the user clicks the button. Note that we’re not
doing any Web Audio API code yet—this is just setting up the button.

❶ let play = document.querySelector("#play");
let playing = document.querySelector("#playing");

x play.addEventListener("click", () => {
 // Hide this button
 play.style = "display: none";
 playing.style = " ";
});

Listing 12-2: Switching the visibility of the elements on a mouse click

First, we get references to the two elements using the
document.querySelector method ❶. Then we add a click event listener
to the Play button x. When the user clicks it, our event listener adds an
inline style attribute of display: none to the button and sets the inline
style of the paragraph to an empty string, effectively removing the inline
style set as an attribute in the HTML file. The net effect of this code is that
clicking the Play button will hide the button and show the paragraph. This
has two purposes: it lets the user know that music should now be playing,
and it removes the Play button so it can’t be clicked a second time.

Generating a Tone with the Web Audio API
With our setup out of the way, we can now write some Web Audio API
code. To get started, we’ll just generate a single tone, the audio equivalent
of <Hello, world!= The code to generate the tone is shown in Listing 12-3.
As I mentioned earlier, the audio won’t play unless it’s triggered by a user
event, such as a mouse click, so all the audio code lives inside the click
handler.

--snip--

play.addEventListener("click", () => {
 // Hide this button
 play.style = "display: none";
 playing.style = " ";

❶ let audioCtx = new AudioContext();

x let oscNode = audioCtx.createOscillator();
 oscNode.frequency.value = 440;

� let gainNode = audioCtx.createGain();
 gainNode.gain.value = 0.5;

� oscNode.connect(gainNode);
 gainNode.connect(audioCtx.destination);

� oscNode.start(audioCtx.currentTime);
 oscNode.stop(audioCtx.currentTime + 2);
});

Listing 12-3: Playing a single tone with the Web Audio API

The first thing we do is create the audio context ❶. This is the object
through which we interact with the Web Audio API, similar to the drawing
context for the canvas element. Next, we create our first node, an oscillator
x. In electronics and signal processing terms, an oscillator is a device that
creates a signal that repeatedly goes up and down in a regular pattern. The
default waveform a Web Audio API oscillator outputs is a sine wave,
shown in Figure 12-1. When the wave oscillates fast enough, and is
connected to a speaker, it creates an audible tone. In this example, we’re
setting the frequency to 440 Hertz (Hz), or 440 cycles per second. In other
words, the oscillator is outputting a signal that transitions from 0 to 1 to –1
and back to 0 a total of 440 times every second. This means that one cycle
of the wave lasts 1/440 of a second, or 2.27 ms. I used 440 Hz here because
it’s the standard reference pitch for tuning musical instruments. The
frequency corresponds to the note A above middle C.

Figure 12-1: One cycle of a sine wave

Next, we create a gain node � and set its value to 0.5. In signal
processing, gain refers to an increase or decrease in a signal’s amplitude, or
its range of values. In practical terms, gain acts as a volume control. A gain
of 2 doubles the amplitude, making the sound louder, a gain of 0.5 halves
the amplitude, making the sound softer, and a gain of 1 (the default value of
a gain node) has no effect on the amplitude. Applying a gain of 0.5 to the
sine wave from Figure 12-1 would produce a sine wave with a maximum
value of 0.5 and a minimum value of –0.5, as shown in Figure 12-2.

Figure 12-2: The sine wave from Figure 12-1, with a gain of 0.5 applied

So far we have two nodes: an oscillator node and a gain node. To
actually apply the gain to the oscillator’s signal, we need to connect the
nodes together. We link the output of the oscillator node to the input of the
gain node using the oscillator node’s connect method �. Then, to be able
to hear the result, we connect the output of the gain node to the main output,

which is available to us through the audio context as ctx.destination.
These connections mean that the oscillator signal is passed through the gain
node and then passed to the output, which will ultimately go to your
headphones or speakers, if the sound is turned on. Figure 12-3 illustrates
these connections.

Figure 12-3: The graph of nodes

The oscillator node doesn’t actually create a signal until we tell it to. To
do that, we call the start method on the oscillator, passing audioCtx
.currentTime as an argument �. The currentTime property corresponds to
the amount of time in seconds that the audio context has been active. By
passing audioCtx.currentTime to the start method, we’re telling the
oscillator to start playing immediately. Then we call the stop method,
passing audioCtx .currentTime + 2. This tells the oscillator to stop two
seconds after it started.

The effect of all of this code is that when you load the index.xhtml page
in your browser and click the Play button, a tone of 440 Hz should play for
two seconds. If you don’t hear anything, make sure sound is enabled on
your computer and browser—for example, by playing a YouTube video. If
it still doesn’t work, check the console to make sure there aren’t any errors.

TRY IT YOURSELF

12-1. Change the frequency, or pitch, of the tone by changing
oscNode.frequency.value. Halving the frequency will lower the tone’s musical
pitch by an octave, and doubling it will raise its pitch by an octave.

12-2. Change the value of the gain node to alter the volume of the tone. For example,
setting it to 0.25 will make it half as loud.

12-3. Change the duration of the tone by modifying the argument to the stop method.
You can also add a delay between when the user clicks the Play button and
when the tone starts by modifying the argument to the start method. For

example, oscNode.start(audioCtx.currentTime + 0.5) would start playing the
tone half a second after the button click.

You might be thinking that you just had to write a lot of code for a very
simple example, and you’d be right! The Web Audio API is quite powerful,
but you have to work at a very low level with extremely basic building
blocks. To simplify things, next we’re going to shift our focus to a popular,
higher-level audio library called Tone.js.

The Tone.js Library
The Tone.js library is built on top of the Web Audio API. It’s designed to
make it easier to create music using the API. For example, instead of having
to fiddle with oscillators and gain nodes, Tone.js lets you use electronic
instruments with volume controls. Instead of using frequencies, you can use
the names of musical notes. And instead of using seconds for controlling
when events happen, you can use bars and beats.

The Tone.js website, https://tonejs.github.io, provides details on
installing and using the library. The easiest option is to use a prebuilt file
hosted on a content delivery network (CDN) like https://unpkg.com, which
is what we’ll do here. This way all you have to do to access the library is
reference a URL directly from a script element in your HTML file.
There’s no need to download a copy of the library, as long as you have
access to the internet while you’re working.

Generating a Tone with Tone.js
Let’s re-create our Web Audio API <Hello, world!= example using the
Tone.js library instead. We can keep all the HTML the same, except for
adding a new script tag for the library, as shown in Listing 12-4.

--snip--

 <p id="playing" style="display: none">Playing</p>
 <script src="https://unpkg.com/tone@14.7.77/build/Tone.j
s"></script>
 <script src="script.js"></script>

https://tonejs.github.io/
https://unpkg.com/

 </body>
</html>

Listing 12-4: Including Tone.js in the index.xhtml file

We set the src of the new script element to an unpkg.com file
containing the full Tone.js library as a single JavaScript file.

Next, we’ll write the JavaScript. Since Tone.js uses the Web Audio API
underneath, we still have the limitation that user input is required to start
playing the audio. We therefore still need the click event handler, but
everything else in script.js will change. Listing 12-5 shows the updated
JavaScript file.

--snip--

play.addEventListener("click", () => {
 // Hide this button
 play.style = "display: none";
 playing.style = " ";

 Tone.start();

 let synth = new Tone.Synth({
 oscillator: {type: "sine"},
 envelope: {attack: 0, decay: 0, sustain: 1, release: 0},
 volume: -6
 }).toDestination();

 synth.triggerAttackRelease("A4", 2, 0);
});

Listing 12-5: Playing a single tone with Tone.js

The first thing we need to do is call Tone.start. This triggers the
Tone.js library to start inside the click handler, ensuring that the browser
will allow it to play audio. Next, we create a new Tone.Synth object. Synth
is short for synthesizer, an electronic instrument, usually with a keyboard,
that can generate (synthesize) all kinds of sounds. A Tone.Synth is a simple
code version of such an instrument.

The Tone.Synth constructor takes an object as its argument that allows
us to configure various aspects of the synthesizer. In this case, we’re telling
the synth to use an oscillator that generates sine waves. We’re also giving
the synth a simple amplitude envelope and a volume of -6. I’ll explain what
these settings mean in the following section, but for now, this is what we
need to match the Web Audio API oscillator from Listing 12-3. After the
constructor we chain the toDestination method, which connects the output
of the synth to the audio context’s output.

Finally, we tell the synth to play a single note using its
triggerAttackRelease method. This method takes the note’s name, the
duration, and the time at which to play the note. We’re passing "A4" for the
note name, which is equivalent to 440 Hz, and telling it to play for two
seconds, starting immediately. When you reload your browser and click the
Play button, you should hear the same sound as when you ran Listing 12-3.

As you can hopefully see, using the Tone.js library simplifies the
process of making music with the Web Audio API. Instead of having to
create separate nodes for different aspects of a sound (pitch, gain, and so
on), everything is unified under one Synth object. If you have any musical
knowledge, you’ll also find that the library uses concepts much closer to
your understanding than the API does, for example, by using note names
instead of frequencies. As you learn more about Tone.js, you’ll see more
examples of this.

Understanding the Tone.Synth Options
Let’s take a closer look at the object we passed to the Tone.Synth
constructor in Listing 12-5. The first property, oscillator, defines the
options for the oscillator generating the signal. In this case, we’re just
setting the type of the oscillator to be a sine wave, using the type property.

The next property defines the options for the amplitude envelope,
which determines how the volume of a note changes over the course of its
duration. Most synthesizers, hardware and software, allow you to configure
amplitude envelopes. The most common type of envelope is an ADSR
envelope, short for attack, decay, sustain, release. The attack is the amount
of time between the note being triggered (for example, when you press a
key on a synthesizer) and the note reaching its maximum volume. The

decay is the amount of time between the end of the attack and the sustain
portion of the note. The sustain is a gain value that defines the volume the
note will remain at after the attack and decay, for as long as the key is held
down. Typically this is some fraction of the full volume achieved by the
attack portion of the envelope. The release defines how long it will take for
the note’s amplitude to get back down to zero after the key is released.
Figure 12-4 shows these different values graphically.

Figure 12-4: The parts of an ADSR envelope

ADSR envelopes are an approximation of how many real-world
musical instruments work. For example, when you bow a violin, it takes
some time for the note to get up to its full volume—that is, it has a long
attack. By contrast, when you press a key on a piano, the attack is very
short. Similarly, when you stop bowing a note on a violin it takes a little
time for the string to stop vibrating, whereas the release of a piano note is
more immediate. Synthetic ADSR envelopes are still pretty simplistic—
they aren’t a perfect simulation of real-life instruments—but they add a lot
of expressivity to what would otherwise just be a boring tone.

That said, the ADSR envelope we’ve used for our synth is as boring as
they come. We’ve set the attack, decay, and release values to 0 and the
sustain to 1, meaning the tone is at full volume for its entire duration. This

matches what we did with the simple Web Audio API oscillator from
Listing 12-3, and it’s part of why the resulting tone sounds so synthetic.

The final property of the synth options object, volume, sets the overall
volume of the synthesizer in decibels (dB). Decibels are an alternative way
to talk about gain, and in some ways they match the way we think about
gain better. A setting of 0 decibels is equivalent to a gain of 1 (no change to
the volume), –6 decibels is equivalent to a gain of 0.5, or half the volume, –
12 decibels corresponds to a gain of 0.25, or a quarter of the volume, and so
on; every +6 decibels doubles the volume, and every –6 decibels halves it.
Our ears are attuned to the relative volume between sounds, so every time
the level is halved or doubled, it sounds to us like it’s going down or up by
a fixed amount. This <fixed amount= is a fixed number of decibels that are
added or subtracted, which is why decibels can be easier to use for setting
volume. In this case, we’re passing –6 dB to match the gain of 0.5 from
Listing 12-3.

Now that you know what the options are, let’s try playing with them!
First, we’ll modify the type of the oscillator. Currently the oscillator is set to
generate a sine wave, but we’re going to switch to a square wave instead.
Figure 12-5 shows the waveform of a single cycle of a square wave.

Figure 12-5: A square wave

Notice that a square wave has abrupt transitions between amplitude
values, instead of the smooth curves of a sine wave. The code change to
switch to a square wave oscillator is shown in Listing 12-6.

--snip--

 let synth = new Tone.Synth({
 oscillator: {type: "square"},
 envelope: {attack: 0, decay: 0, sustain: 1, release: 0},
 volume: -6
 }).toDestination();
--snip--

Listing 12-6: Changing the oscillator type to a square wave

When you reload the code in your browser, you should hear a very
different tone. The square wave is louder and brighter than the sine wave.
Some other values you can try out for the oscillator type are "triangle"
and "sawtooth". Figure 12-6 shows the waveforms of these two.

Figure 12-6: Sawtooth and triangle waves

Think about how these other oscillator types differ from "sine" and
"square". The distinctive sound of each oscillator is known as its color, or
timbre.

WHY DO DIFFERENT OSCILLATORS SOUND SO DIFFERENT?

Did you know that when you play a note on an instrument like a violin or piano, the
resulting sound doesn’t just contain the frequency of the note you’re playing? It actually
contains many frequencies at once. That’s what the different oscillator types, like
square, sawtooth, and triangle, are trying to simulate.

A sine wave is the simplest waveform—it contains only a single frequency. Other
oscillator waveforms are in effect made up of a combination of many individual sine
waves of various frequencies, where each frequency is a whole-number multiple of the
original frequency. These multiples of the base frequency are known as harmonics, or
overtones, while the base frequency is known as the fundamental. For example, a tone

with a fundamental of 200 Hz has possible harmonics at 400 Hz (200 × 2), 600 Hz (200
× 3), 800 Hz (200 × 4), and so on. A sawtooth wave contains every harmonic (200,
400, 600, 800, …), while a square wave only contains every other harmonic (200, 600,
1000, …). However many harmonics a note has, the fundamental frequency is what we
perceive as the note’s pitch. The other harmonics simply add color to the sound.

With both square and sawtooth waveforms, the amplitude of the harmonics
reduces the higher in frequency they get. A triangle wave has only every other
harmonic, like a square wave, but the amplitude reduces more rapidly as the
harmonics increase.

The presence of different harmonics, and their relative amplitude levels, is what
causes the difference in sound between different oscillator types. Along with variations
in amplitude envelope, they’re also why a violin sounds different from a piano, for
example. The triangle wave contains the same harmonics as the square wave, but the
higher harmonics are quieter, which gives it a less harsh, more rounded sound.
Because both of these waveforms contain only every other harmonic, they can sound a
little hollow. By contrast, the sawtooth wave has all the harmonics, so it has a fuller
sound.

Next, let’s try changing the envelope. We intentionally used a very
basic envelope in Listing 12-5 to match the Web Audio API example from
Listing 12-3, which had no envelope. Now we’ll set those values to
something that sounds a little more musical, as shown in Listing 12-7.

--snip--

 let synth = new Tone.Synth({
 oscillator: { type: "square" },
 envelope: {attack: 0.8, decay: 0.3, sustain: 0.8, releas
e: 1},
 volume: -6
 }).toDestination();
--snip--

Listing 12-7: Changing the oscillator type to a square wave

The values of attack, decay, and release are all given in seconds,
while sustain is a number between 0 and 1 representing the amplitude
level to be sustained at. Here we’re setting attack to 0.8 seconds, decay to
0.3 seconds, sustain to 0.8, and release to a whole second. When you
reload the page and play the sound, you should hear the note slowly fade in
to its max volume, then slightly reduce. After two seconds, the note is
released and fades out over a second.

The final parameter to play with is the volume. As I explained earlier,
every time you subtract 6 dB, the level is halved, and when you add 6 dB,
it’s doubled. Try out some different values here, for example, –12, –18, or –
24. You can also go the other way, up to 0 dB.

Playing More Notes in Sequence
Our synthesizer is currently playing only a single note, but we can easily
play more notes. Note frequencies in Tone.js can be given in Hz or with
note names, like A4, as we did in Listing 12-5. These note names
correspond to keys on a keyboard, as shown in Figure 12-7.

Figure 12-7: Note names on a keyboard

C4 is known as middle C and is located near the middle of most piano
keyboards. Each octave on the keyboard from each C to the B above is
given a number. For example, the leftmost key in Figure 12-7 is C3, and an
octave above that is C4. As mentioned previously, 440 Hz corresponds to
A4, which is the A above C4. The black notes are known as accidentals and
are a semitone higher than the key to their left, or a semitone lower than the
key to their right. For example, the black key to the right of C4 can be
called C♯4 or D♭4 (♯ is the symbol for sharp, meaning a semitone higher,
while ♭ is the symbol for flat, meaning a semitone lower). When writing
note names in Tone.js, we use a hash mark (#) for sharp and the letter b for
flat.

NOTE
There are no black keys between B and C or E and F because these notes
are only a semitone apart.

We’re going to play a major scale from A3 to A4, which consists of the
notes A3, B3, C♯4, D4, E4, F♯4, G♯4, and A4. Update your script.js to
include the code in Listing 12-8 to implement this scale.

--snip--

 let synth = new Tone.Synth({
 oscillator: {type: "square"},

 ❶ envelope: { attack: 0.1, decay: 0.3, sustain: 0.8, relea
se: 0.1 },
 volume: -6
 }).toDestination();

 synth.triggerAttackRelease("A3", 0.9, 0);
 synth.triggerAttackRelease("B3", 0.9, 1);
 synth.triggerAttackRelease("C#4", 0.9, 2);
 synth.triggerAttackRelease("D4", 0.9, 3);
 synth.triggerAttackRelease("E4", 0.9, 4);
 synth.triggerAttackRelease("F#4", 0.9, 5);
 synth.triggerAttackRelease("G#4", 0.9, 6);
 synth.triggerAttackRelease("A4", 0.9, 7);
});

Listing 12-8: Playing a scale

This is very similar to Listing 12-5, except that we’re triggering
multiple notes, one after the other. Notice we’ve updated the envelope to
have a shorter attack and release ❶. The release, in particular, needs to be
shorter so the end of each note doesn’t overlap with the start of the next.

As I mentioned earlier, the second argument to triggerAttackRelease
is the duration of the note in seconds, and the third argument is the time at
which to play the note, also in seconds. The first note, A3, is played for 0.9
seconds, starting at time zero (that is, immediately). The 0.1-second release
happens after the 0.9-second duration, so each note will play for 1 second in
total. The next note, B3, has the same duration, but the third argument of 1
means it will start a second later than the first note. The third note is
programmed to start two seconds later than the first note, and so on for the
rest of the notes. Play this in your browser, and you should hear a single
octave of an A major scale.

Playing Multiple Notes at Once
The synthesizer we’ve been using so far is a monophonic synth, meaning it
can play only a single note at a time. To play multiple notes at once, we’ll
need to create a polyphonic synth instead. In Listing 12-9, we update the
code to create a new polyphonic synth and play two or three notes at a time.

--snip--

 Tone.start();

 let synth = new Tone.PolySynth(
 Tone.Synth,
 {
 oscillator: { type: "square" },
 envelope: { attack: 0.1, decay: 0.3, sustain: 0.8, rel
ease: 0.1 },
 volume: -6
 }
).toDestination();

 synth.triggerAttackRelease(["A3", "C#4"], 0.9, 0);
 synth.triggerAttackRelease(["B3", "D4"], 0.9, 1);
 synth.triggerAttackRelease(["C#4", "E4"], 0.9, 2);
 synth.triggerAttackRelease(["D4", "F#4"], 0.9, 3);
 synth.triggerAttackRelease(["E4", "G#4"], 0.9, 4);
 synth.triggerAttackRelease(["F#4", "A4"], 0.9, 5);
 synth.triggerAttackRelease(["G#4", "B4"], 0.9, 6);
 synth.triggerAttackRelease(["E4", "A4", "C#5"], 1.9, 7);
});

Listing 12-9: Creating and playing a polyphonic synth

Here we call new Tone.PolySynth instead of new Tone.Synth to
create a polyphonic synth object. The Tone.PolySynth constructor takes
two arguments: a monophonic synth (in this case, Tone.Synth) and an
object with the options that would normally be passed to that monophonic
synth’s constructor (in this case, the same synth options we passed to the
Tone .Synth constructor in Listing 12-8). The polysynth then creates

multiple monophonic synths with the specified settings, effectively
allowing it to play multiple notes at once.

Next, we play the same scale, but with additional simultaneous notes.
This is achieved by passing an array of note names to the
triggerAttackRelease method instead of a single note name—for
example, we pass the array ["A3", "C#4"] to play A3 and C♯4 at the same
time. By default, you can play a maximum of 32 notes with a polysynth.

When you play this example, you should hear a harmonized scale with
a nice major chord at the end.

The Tone.js Transport
Now that you’ve learned how to play notes, let’s look at how to make
songs. Although you could program a whole song by specifying the timing
of every single note, as you did to play a scale in the last few examples, this
technique quickly gets tedious. Fortunately, Tone.js has a concept called the
transport that makes writing songs much easier. The transport keeps track
of the current position in the song, as measured in bars and beats. This lets
you schedule notes to play at certain points in the song in a musically
intuitive way. The transport also allows you to have looped sequences of
notes that start playing at a certain point along the transport and repeat over
and over until you tell them to stop.

Western music tends to be structured around bars and beats, and it’s
most common to have four beats in a bar. The speed of the music is given in
beats per minute (BPM), and in our examples we’ll be using the default
Tone.js BPM of 120, which means a beat every 0.5 seconds. Beats are also
known as quarter notes (because when there are four beats in a bar, one
beat is a quarter of a bar). Eighth notes are half the duration of a quarter
note, and sixteenth notes are half the duration of an eighth note, so there are
four sixteenth notes per quarter note.

Positions along the transport are given as strings of three numbers
separated by colons, like "0:0:0". The three numbers correspond to the
current bar number, the current beat within that bar, and the current
sixteenth note within that beat, respectively. Everything is zero-indexed.
This means, for example, that "0:0:0" represents the beginning of the first
bar, "1:1:0" represents the second beat of the second bar, and "6:3:2"

refers to the third sixteenth note of the fourth beat in the seventh bar. We
refer to these strings as bars:quarters:sixteenths notation.

Tone.Loop
The Tone.js transport gives us an easy way to define musical loops,
including when they start and when they finish. The simplest of these,
Tone.Loop, defines a way to constantly produce new notes. Let’s try that
out by playing a single note repeatedly every quarter note for four bars.
Modify script.js with the code in Listing 12-10.

--snip--

 Tone.start();

❶ let synth = new Tone.Synth().toDestination();

x let loop = new Tone.Loop(time => {

 � synth.triggerAttackRelease("C4", "16n", time);
 }, "4n");

� loop.start("0:0:0");
 loop.stop("4:0:0");

 Tone.Transport.start();
});

Listing 12-10: Looping

We start by creating a simple synth ❶. Notice we aren’t passing an
object to define the oscillator, envelope, or volume options, so the synth
will be created using the library’s default settings. Next, we create a new
instance of Tone.Loop x, which has a constructor with two arguments. The
first argument is some function that requires a time value, and the second
argument is a duration indicating how often to call the function in the first
argument. In this case, we pass the string "4n" as the second argument,
which is Tone.js’s notation for a quarter note (<4n= is short for <1/4 note=).
This means the loop will repeat every beat.

NOTE
In our earlier listings we were passing numbers for durations, which give
the duration in seconds. The advantage of using note length durations like
"4n" for a quarter note or "16n" for a sixteenth note is that they will scale
automatically if we change the BPM. For example, doubling the BPM will
halve the duration of each quarter note.

The body of the callback function we pass to Tone.Loop calls the
triggerAttackRelease method on the synth to play the note C4 with a
sixteenth note duration �. The third argument of the
triggerAttackRelease method, time, represents the time to play a note.
The Tone.Loop object will provide a new time value whenever it calls the
callback function, filling it in with the appropriate location on the transport.

Finally, we call the start and stop methods on the loop returned by
the Tone.Loop constructor �, passing the time when we want this loop to
start and when we want it to stop, followed by a call to
Tone.Transport.start, which starts the transport playing from the
beginning. We start at "0:0:0", the beginning of the first bar, and stop at
"4:0:0", the beginning of the fifth bar, meaning that this snippet will last
four full bars with four beats each. Our loop repeats at every beat, playing
one note each time, so we’ll play a total of 16 notes. Try reloading the page
and see! You can use the musician’s trick of counting bars and beats like
this: <one two three four, two two three four, three two three four, four two
three four.= Notice that Tone.js doesn’t play a seventeenth note at time
location "4:0:0" because the end of the loop isn’t inclusive.

Listing 12-11 shows an alternative way of creating the same loop we
wrote in Listing 12-10. This time we chain the start and stop methods
directly to the Tone.Loop constructor.

--snip--

 let synth = new Tone.Synth().toDestination();

 new Tone.Loop(time => {
 synth.triggerAttackRelease("C4", "16n", time);
 }, "4n").start("0:0:0").stop("4:0:0");

 Tone.Transport.start();
});

Listing 12-11: Looping with fewer lines of code

With this notation, we don’t need to create a variable to hold the Tone
.Loop object, and we save a few lines of code by chaining the start and
stop methods. We’ll be using this pattern in the rest of this section.

Tone.Loop is basic, but it’s also quite versatile. You can run any
arbitrary code in the callback, so you can do more than play the same note
over and over. For example, you could choose to play a new random note
each time. Listing 12-12 shows how you could generate a short piece of
music by randomly playing notes from a pentatonic, or five-note, scale (I
chose a pentatonic scale here because any combination of notes in a
pentatonic scale tends to sound pleasing).

--snip--

 Tone.start();

❶ let synth = new Tone.PolySynth(
 Tone.Synth,
 {
 oscillator: { type: "triangle" },
 volume: -9
 }
).toDestination();

x let notes = ["C4", "D4", "E4", "G4", "A4", "C5"];

 new Tone.Loop(time => {
 for (let i = 0; i < 3; i++) {

 � if (Math.random() < 0.5) {

 � let note = notes[Math.floor(Math.random() * notes.le
ngth)];
 synth.triggerAttackRelease(note, "32n", time);
 }
 }
 }, "8n").start("0:0:0").stop("8:0:0");

 Tone.Transport.start();
});

Listing 12-12: Using Tone.Loop to generate random music

For this example, we’re switching to a polysynth ❶ so we can play
multiple notes at once. The notes array contains one octave of a C major
pentatonic scale, including the C from the next octave x. Inside the Tone
.Loop callback, we use a for loop to run some code three times. Each time
around, we call Math.random() �, which returns a random number
between 0 and 1, to determine whether to play a note or not. If the value is
less than 0.5, we play a note. Otherwise, that note is skipped. The note
name is determined by picking a random index into the notes array, using
the code Math .floor(Math.random() * notes.length) �.

The Tone.Loop object calls this code every eighth note ("8n") for eight
bars ("0:0:0" to "8:0:0"). The effect of all this is that every eighth note, up
to three notes from the array will be played (there’s no guarantee of
uniqueness, so the same note could be played two or three times at once,
causing that note to be louder). For each of the three notes, there’s a one in
two chance it will be played, so overall there’s a one in eight chance that no
notes will be played on any given eighth note.

WEB AUDIO API TIME

Time in the Web Audio API, and by extension in Tone.js, can be tricky, because we’re
working with two independent clocks: the JavaScript clock and the Web Audio API
clock. The JavaScript clock is what we use when we call a function like setTimeout and
tell it to execute another function some number of milliseconds in the future.
Unfortunately, this clock isn’t very accurate: if you call setTimeout with a 100 ms
timeout, the function may actually be called after 95 ms or 105 ms, and it may be
delayed if the browser is busy doing something else. The Web Audio API, by contrast,
has its own precise internal clock that keeps track of the number of seconds since the
audio context was created. The current value of this clock is accessible through the
currentTime property.

Using the Web Audio API’s clock, you can schedule a sound to play at exactly 8
seconds (from the time when the context was created) and to stop playing at 10
seconds, and you know that it will be played for exactly 2 seconds. Instead of trying to
execute a JavaScript callback at a specific time, we’re using JavaScript to schedule
future audio events, such as <start playing this oscillator at 8 seconds= and <stop
playing this oscillator at 10 seconds.= Once these events have been scheduled, there’s

no straightforward way to deschedule them. (Technically it’s possible, but it would entail
keeping a list of all the notes that have not been played yet and telling them not to
play.)

Now, imagine that you’re writing a song using Tone.js and it’s made up of hundreds
of notes all starting and stopping at different times. If you scheduled all these notes up
front, there’d be no way to pause the song, jump to a specific point in time, or modify
the song’s BPM. To fix this, Tone.js aims to schedule notes just in time. For example, if
you wanted to play a note at 12 seconds, Tone.js might aim to run the code that
schedules the note when ctx.currentTime is 11.8 seconds. Running the code for
scheduling a note at an arbitrary time requires using the JavaScript clock, because the
Web Audio API clock can’t be used to schedule code, just audio events.

The target amount of time between when something is scheduled and when it’s
executed is called the lookahead. In our example, we have a lookahead of 0.2
seconds. If the lookahead time is too short, then delays to the scheduling code could
mean that the scheduled time is already in the past by the time the library is ready to
schedule the notes. If the lookahead time is too long, then jumping around in the song
or changing the BPM will be laggy. For a more detailed description of this problem, see
Chris Wilson’s <A Tale of Two Clocks= at https://web.dev/audio-scheduling/.

Tone.Sequence
In this section we’ll look at another Tone.js helper, called Tone.Sequence.
This lets you provide a list of note names to be scheduled to play at regular
intervals. You can repeat the whole sequence as many times as you want.
As an example, we’ll create a repeating pattern of four notes: a G4 followed
by three C4s. Update script.js with the code in Listing 12-13.

--snip--

 Tone.start();

 let synth = new Tone.Synth().toDestination();

 new Tone.Sequence(❶ (time, note) => {
 synth.triggerAttackRelease(note, "16n", time);

 }, x ["G4", "C4", "C4", "C4"], � "4n").start("0:0:0").sto
p("4:0:0");

 Tone.Transport.start();
});

Listing 12-13: Creating a repeating sequence with Tone.Sequence

https://web.dev/audio-scheduling/

This is very similar to our first Tone.Loop example (Listing 12-10), but
with two important changes. First, the callback function takes two
arguments, time and note ❶, instead of a single time argument. Second,
there’s an extra argument after the callback, which contains a list of notes
x. Each time the callback is called, the next note in this list is passed as the
note argument. It will keep cycling through the notes in the list over and
over until it’s time to stop. The third argument to Tone.Sequence gives the
duration between each callback �. In this case we’ve used "4n", which
means that a new note will be played every quarter note.

When you run this example, you should hear a pattern play for 4 bars,
with 4 beats per bar, making 16 notes in total. If we wrote out all the calls to
synth.triggerAttackRelease manually, instead of relying on
Tone.Sequence to automate them, they would look like this:

synth.triggerAttackRelease("G4", "16n", "0:0:0");
synth.triggerAttackRelease("C4", "16n", "0:1:0");
synth.triggerAttackRelease("C4", "16n", "0:2:0");
synth.triggerAttackRelease("C4", "16n", "0:3:0");
synth.triggerAttackRelease("G4", "16n", "1:0:0");
synth.triggerAttackRelease("C4", "16n", "1:1:0");
--snip--

Here, I’ve just replaced the note and time arguments with what they
would actually be for the first six calls of the callback. Notice how the
second number is incrementing in the bars:quarters:sixteenths notation
because of the "4n" we used as the duration between callbacks. (In practice,
however, Tone.Sequence passes time as a number of seconds rather than
using bars:quarters:sixteenths notation.)

If you want a sequence with some silent gaps (rests in musical terms),
you can use null in place of a note name in the array of note names.
Modify script.js with the code in Listing 12-14 to see this in action.

--snip--

 new Tone.Sequence((time, note) => {
 synth.triggerAttackRelease(note, "16n", time);
 }, ["C4", null, "B3", "C4", "G3", "A3", null, "B3"], "8n")

 .start("0:0:0")
 .stop("4:0:0");

 Tone.Transport.start();
});

Listing 12-14: Adding rests with null

Now we have a longer sequence of notes, with some nulls interspersed
to insert pauses into the sequence. We’ve also changed the duration from
"4n" to "8n", which means the notes will play twice as fast as before. When
you play this updated example, you should hear a more interesting sequence
of notes, including some rests.

TRY IT YOURSELF

12-4. Try writing a melody by modifying Listing 12-14 with your own notes. For
example, you can write the beginning of <Twinkle, Twinkle, Little Star= using the
notes C4, G4, and A4.

Tone.Part
The last of the transport helpers we’ll be looking at is Tone.Part. This is
the most flexible of the helpers, as it allows us to specify the exact timing of
every note played. With Tone.Part, instead of passing an array of note
names, we pass an array of time/note pairs. For example, [["0:0:0",
"C4"], ["0:1:0", "D4"], ["0:1:2", "E4"]] would play the three notes
C4, D4, and E4 at the three times specified. This way, unlike with
Tone.Loop and Tone.Sequence, the notes don’t have to be played at equal
time intervals. Also, by default Tone.Part doesn’t loop, so the sequence of
notes in the array is played only once. See the code in Listing 12-15 for an
example.

--snip--

 Tone.start();

❶ let synth = new Tone.PolySynth(Tone.Synth).toDestination
();

 new Tone.Part((time, note) => {
 synth.triggerAttackRelease(note, "16n", time);
 }, [

 ["0:0:0", x ["C3", "E4"]],
 ["0:0:3", "D4"],
 ["0:1:0", "C4"],
 ["0:1:2", "D4"],
 ["0:2:0", ["E3", "E4"]],
 ["0:2:2", "E4"],
 ["0:3:0", "E4"],
 ["1:0:0", ["G3", "D4"]],
 ["1:0:2", "D4"],
 ["1:1:0", "D4"],
 ["1:2:0", ["E3", "E4"]],
 ["1:2:2", "G4"],
 ["1:3:0", "G4"]

�]).start("0:0:0");

 Tone.Transport.start();
});

Listing 12-15: Playing a melody with Tone.Part

The first change we’re making here is to the synth ❶. This time we’re
back to using a polyphonic synth, so we can play multiple notes at the same
time. Other than the synth being different, the body of the callback function
is the same. We’re still calling synth.triggerAttackRelease and passing
the note and time parameters, which Tone.Part will fill in automatically.
Next comes the array of time/note pairs. You may notice that some of the
notes are arrays themselves; for example, the first <note= in the list is
["C3", "E4"] x. This pair of notes will be passed to the
triggerAttackRelease method unchanged and will have the effect of
playing two notes at once, just like our other polyphonic synth examples.

Finally, we call .start("0:0:0") �, which has the effect of playing
this part immediately. If we used .start("1:0:0") instead, for example,
then the melody would start after a bar’s pause. The times given for each
time/note pair are relative to the time passed to the start method.

When you play this example, you should hear the beginning of <Mary
Had a Little Lamb.=

TRY IT YOURSELF

12-5. See if you can extend the Tone.Part code to finish the <Mary Had a Little Lamb=
melody. Hint: the next seven notes are the same as the first seven notes, but two
bars later, so you can copy them and change the bar number in the time from a 0
to a 2. Just be sure to add a comma after the last time/note pair in Listing 12-15
before adding more notes.

Making Drum Sounds
Most electronic music has some kind of drum beat. The drum sounds used
to make the beat can come from audio files, or they can be synthesized.
We’re going to be using the latter technique here. The core of a drum beat is
built around three components: the kick drum (a <boom= sound), the snare
drum (a <bah= sound), and the hi-hat (a <ti= sound). In this section, you’ll
learn techniques for synthesizing those sounds.

Hi-Hat Synthesis
A real-world hi-hat is made up of two cymbals facing each other. The top
cymbal is connected to a pedal so the drummer can make the cymbals touch
or move apart. We’re going for a closed (cymbals touching) sound here.
When you hit closed hi-hats with a drum stick, they make a high-pitched
noise that quickly fades away.

We’ll approximate this by using a different kind of synth, a
NoiseSynth, to generate white noise instead of notes with pitches. In signal
processing, white noise is a random signal that has equal-level components
at all frequencies. We’ll give the NoiseSynth an amplitude envelope that
simulates the abrupt attacks of hitting the hi-hat with a stick. Finally, we’ll
pass the noise through a filter—a device that allows through some
frequencies while reducing the level of others—to remove the low
frequencies and make it sound higher and more cymbal-like.

First, we’ll set up the NoiseSynth and envelope, and play the hi-hat
sound in a loop. Update your script.js with the code in Listing 12-16.

--snip--

 Tone.start();

❶ let hiHat = new Tone.NoiseSynth({
 envelope: {
 attack: 0.001, decay: 0.1, sustain: 0, release: 0
 },
 volume: -6
 }).toDestination();

x new Tone.Loop(time => {
 hiHat.triggerAttackRelease("16n", time);
 }, "8n").start("0:0:0").stop("4:0:0");

 Tone.Transport.start();
});

Listing 12-16: The beginnings of a hi-hat sound

We create a new NoiseSynth ❶, passing an amplitude envelope and a
volume of –6 dB. The envelope has a very short attack (1/1000 of a second)
and a longer decay (1/10 of a second), which is supposed to mimic the
amplitude envelope of a hi-hat being struck. Because sustain and release
are both set to 0, the sound will be over immediately after the initial attack
and decay periods (0.001 + 0.1 s). In particular, the sustain of 0 means the
sound will sustain at 0 percent of its full volume, so even if the duration of
the note is longer, you won’t hear anything after the attack and decay.

Next, we use Tone.Loop to play a continuous stream of eighth-note hi-
hats for four bars x. Note that the triggerAttackRelease method on
NoiseSynth doesn’t take a note name, because noise doesn’t have any
particular pitch. You have to specify only the duration and the time when
the note should be played.

When you play this example, you should hear a stream of hi-hat
sounds. It doesn’t sound great yet, because we haven’t added the filter.
We’ll do that in Listing 12-17.

--snip--

 Tone.start();

❶ let hiHatFilter = new Tone.Filter(15000, "bandpass").toDes
tination();

 let hiHat = new Tone.NoiseSynth({
 envelope: {
 attack: 0.001, decay: 0.1, sustain: 0, release: 0
 },
 volume: -6

x}).connect(hiHatFilter);

 new Tone.Loop(time => {
--snip--

Listing 12-17: Applying a filter to the hi-hat sound

First, we use Tone.Filter to create a bandpass filter ❶. This kind of
filter lets through (<passes=) only the frequencies at or around a frequency
of your choice. In this case, we tell the filter to pass the band of frequencies
around 15,000 Hz, or 15 kHz, while eliminating all others. The human
range of hearing is roughly 20 Hz to 20 kHz, so our filter lets through only
parts of the noise that are very high in pitch.

In Listing 12-16, we used toDestination() on the NoiseSynth to
connect it directly to the output. In Listing 12-17, we’re instead connecting
the filter to the output ❶, and then connecting the synth to the filter x. This
means that the synth’s sound is run through the filter before being output
through your speakers or headphones. As a result, when you play this
example you should hear the same hi-hat sounds, but limited to high
frequencies only, which sounds a bit more like a real hi-hat.

Snare Synthesis
In this section we’ll synthesize a snare drum. A snare drum has a series of
wires (known as the snare) resting against the bottom drumhead that rattle
against the drumhead when the drum is hit. This gives it a relatively
complex sound, composed of some noise and some more pitched sound. To

mimic this, we’ll use two separate sound sources: a noise synth and a
regular synth with a fixed frequency. Both will have a short amplitude
envelope to create a percussive feel, and we’ll also pass the noise
component of the sound through a bandpass filter to make the snare lower
than the hi-hat. We’ll create a new Snare class to encapsulate these details,
as shown in Listing 12-18.

--snip--

 new Tone.Loop(time => {
 hiHat.triggerAttackRelease("16n", time);
 }, "8n").start("0:0:0").stop("4:0:0");

 class Snare {
 constructor() {

 ❶ this.noiseFilter = new Tone.Filter(5000, "bandpass").t
oDestination();

 x this.noiseSynth = new Tone.NoiseSynth({
 envelope: {
 attack: 0.001, decay: 0.1, sustain: 0, release: 0
 },
 volume: -12
 }).connect(this.noiseFilter);

 � this.synth = new Tone.Synth({
 envelope: {
 attack: 0.0001, decay: 0.1, sustain: 0, release: 0
 },
 oscillator: {type: "sine"},
 volume: -12
 }).toDestination();
 }

 � triggerAttackRelease(duration, when) {
 this.noiseSynth.triggerAttackRelease(duration, when);
 this.synth.triggerAttackRelease("G3", duration, when);
 }
 }

� let snare = new Snare();

� new Tone.Loop(time => {
 snare.triggerAttackRelease("16n", time);
 }, "2n").start("0:1:0").stop("4:0:0");

 Tone.Transport.start();
});

Listing 12-18: Synthesizing a snare drum

At a high level, the Snare class has two methods, constructor and
trigger AttackRelease. The constructor creates a filter and two synths.
The trigger AttackRelease method calls the triggerAttackRelease
methods on the two synths to play them simultaneously.

In the constructor, we start by creating the filter ❶ and noise synth x.
This is very similar to how we created the hi-hat, except we use a frequency
of 5,000 Hz for the bandpass filter, to reflect the lower sound of a snare
drum. Next, we create the pitched synth �, which uses a similar amplitude
envelope to the noise synth but with an even shorter attack to simulate the
sound of a snare drum (in a real snare drum, the snares are triggered by the
vibration of the drum skin, so they lag behind the sound of the drum
slightly). The synth is configured with a sine wave oscillator. Since we’ll be
playing the two synths simultaneously, we give each one a volume of –12,
which results in an overall volume similar to the hi-hat.

The triggerAttackRelease method � takes just a duration and a
when parameter. These are passed to the underlying synths’
triggerAttackRelease methods. When we trigger the pitched synth, we
give it a note name of "G3", which is the pitch I decided to tune the snare to.
The inclusion of the pitched synth is subtle but makes the drum sound a bit
more realistic.

Next, we instantiate the class �, and finally we create a new
Tone.Loop object �. This loop is four times as long as the hi-hat loop ("2n"
instead of "8n", or a half note instead of an eighth note) and starts after one
quarter note. This means there will be a snare hit on the second and fourth
beats of every bar. When you play this example, you should hear the hi-hat
every eighth note and the snare every two quarter notes.

Kick Synthesis
The last drum sound to synthesize is the kick drum. A kick drum is much
larger than a snare drum, and it doesn’t have the rattling snare to make it
sound noisy. The sound of a kick drum is fairly complex, but luckily Tone.js
has a synth called a MembraneSynth that mimics it quite well. This synth
takes a regular oscillator and lowers its frequency over a short period of
time, which ends up sounding a lot like a kick drum when set up correctly.
Listing 12-19 shows how this is done.

--snip--

 new Tone.Loop(time => {
 snare.triggerAttackRelease("16n", time);
 }, "2n").start("0:1:0").stop("4:0:0");

 let kick = new Tone.MembraneSynth({

 ❶ pitchDecay: 0.02,
 octaves: 6,
 volume: -9
 }).toDestination();

x new Tone.Loop(time => {
 kick.triggerAttackRelease(50, "16n", time);
 }, "2n").start("0:0:0").stop("4:0:0");

 Tone.Transport.start();
});

Listing 12-19: Synthesizing a kick drum

The options for the MembraneSynth include pitchDecay ❶, which
specifies in seconds how quickly the frequency should change, and
octaves, which specifies how many octaves to drop the frequency in that
time. In our loop x, we trigger the synth with a frequency of 50 Hz. This
loop has the same "2n" duration as the snare loop, but starting at time zero,
which means that the kick and snare sounds will alternate every quarter
note, giving a classic rock drum beat. When you play this example, you
might recognize it as the basic drum pattern of a lot of songs.

Reverb
Reverb (short for reverberation) is an effect that makes music sound like
it’s being played in a room or larger enclosed space. The random echoes
that real-world sounds make as they bounce around the walls of a room are
what give this reverb effect. Reverb makes each sound take a little time to
die away, and it will make our drums sound a bit more realistic. We can add
reverb with Tone.Reverb, as you’ll see in Listing 12-20.

--snip--

 Tone.start();

 let reverb = new Tone.Reverb({
 decay: 1,
 wet: 0.3
 }).toDestination();

 let hiHatFilter = new Tone.Filter(15000, "bandpass").conne
ct(reverb);

 let hiHat = new Tone.NoiseSynth({
 envelope: {
 attack: 0.001, decay: 0.1, sustain: 0, release: 0
 },
 volume: -6
 }).connect(hiHatFilter);

 new Tone.Loop(time => {
 hiHat.triggerAttackRelease("16n", time);
 }, "8n").start("0:0:0").stop("4:0:0");

 class Snare {
 constructor() {

 this.noiseFilter = new Tone.Filter(5000, "bandpass").c
onnect(reverb);
 this.noiseSynth = new Tone.NoiseSynth({
 envelope: {
 attack: 0.001, decay: 0.1, sustain: 0, release: 0
 },
 volume: -12

 }).connect(this.noiseFilter);

 this.synth = new Tone.Synth({
 envelope: {
 attack: 0.0001, decay: 0.1, sustain: 0, release: 0
 },
 oscillator: {type: "sine"},
 volume: -12
 }).connect(reverb);
 }

 triggerAttackRelease(duration, when) {
 this.noiseSynth.triggerAttackRelease(duration, when);
 this.synth.triggerAttackRelease("G3", duration, when);
 }
 }

 let snare = new Snare();

 new Tone.Loop(time => {
 snare.triggerAttackRelease("16n", time);
 }, "2n").start("0:1:0").stop("4:0:0");

 let kick = new Tone.MembraneSynth({
 pitchDecay: 0.02,
 octaves: 6,
 volume: -9
 }).connect(reverb);

 new Tone.Loop(time => {
 kick.triggerAttackRelease(50, "16n", time);
 }, "2n").start("0:0:0").stop("4:0:0");

 Tone.Transport.start();
});

Listing 12-20: Adding reverb

First we create our Reverb effect. The decay setting describes how long
(in seconds) the reverberation will continue after the sound stops. The
higher this number, the more echoey the effect. The wet setting specifies

how much of the reverb sound is passed through compared with the original
sound. In this case, 0.3 means that the output of this effect will be 30
percent reverb and 70 percent the original sound. The higher the wet
setting, the more prominent the reverb effect will be.

The rest of the changes in Listing 12-20 replace any instances of
toDestination() with connect(reverb). This way all the drum sounds are
passed through the reverb effect before the reverb effect is sent to the
output. When you play this example, the drums should sound more like
they’re being played in a room. You can make the effect more pronounced
by increasing the value of wet (to 0.6, say) or by increasing the decay in
the Tone.Reverb settings.

A Drum Loop
Now that we have our drum sounds set up, it would be nice to have an
easier way to trigger them. Ideally, we would want to create a drum pattern
by writing something like this:

kick: x…x…
snare: ..x…x.
hiHat: xxxxxxxx

Then we can let JavaScript do the work of converting that notation into
code that Tone.js can understand. Here, each x represents a note, each dot
(.) represents a silence, and each column represents an eighth note. For
example, in the first eighth note the kick and hi-hat play, in the second only
the hi-hat plays, in the third the snare and hi-hat play, and so on. The pattern
shown here matches the drum beat we built up in the previous sections.

To accomplish this, we’ll make a helper function that will convert a
string of x’s and dots into an array of values that the Tone.Sequence
transport helper can use. Recall that Tone.Sequence takes an array of note
names and plays them repeatedly in sequence, with null being used for
rests. Our function should convert dots to nulls, while leaving x’s the same.

NOTE

Since drum sounds don’t have note names, any string can actually represent
a drum hit to Tone.Sequence (we’re just using x’s for convenience). All that
matters is that it isn’t null.

Listing 12-21 shows the definition of this function. Add it to your
script.js file, before the current drum code.

--snip--

 Tone.start();

 // Converts a string to an array of notes or null.
 // Dots in the string become nulls in the array and are si
lent.
 function mkSequence(pattern) {
 return pattern.split(" ").map(value => {
 if (value == ".") {
 return null;
 } else {
 return value;
 }
 });
 }

 let reverb = new Tone.Reverb({
--snip--

Listing 12-21: The mkSequence helper function

The mkSequence function takes a string like "x…x…" and converts it to
an array of strings and nulls, like ["x", null, null, null, "x", null,
null, null], which is the format we need for Tone.Sequence. It splits the
string into an array of individual characters using the split method and
uses the array map method to create a new array by calling a function for
each character. If the character is ".", then it replaces it with a null in the
new array. Otherwise, it passes the character through unchanged.

Next, we’ll create the strings that will be passed into this function, as
shown in Listing 12-22. Add this code after the mkSequence function
definition.

--snip--
 }

 let drumPattern = {
 kick: "x…x…",
 snare: "..x…x.",
 hiHat: "xxxxxxxx",
 };

 let reverb = new Tone.Reverb({
--snip--

Listing 12-22: Defining drumPattern

We’re storing the three strings in an object called drumPattern to keep
them organized. I’ve added spaces to line up the strings so it’s easier to see
the pattern.

Finally, we’ll use the helper and Tone.Sequence in place of our three
existing calls to Tone.Loop, as shown in Listing 12-23.

--snip--
 }).connect(hiHatFilter);

 new Tone.Sequence(time => {
 hiHat.triggerAttackRelease("16n", time);
 }, mkSequence(drumPattern.hiHat), "8n").start("0:0:0").sto
p("4:0:0");

 class Snare {

--snip--
 let snare = new Snare();

 new Tone.Sequence(time => {
 snare.triggerAttackRelease("16n", time);
 }, mkSequence(drumPattern.snare), "8n").start("0:0:0").sto
p("4:0:0");

 let kick = new Tone.MembraneSynth({
 pitchDecay: 0.02,

 octaves: 6,
 volume: -9
 }).connect(reverb);

 new Tone.Sequence(time => {
 kick.triggerAttackRelease(50, "16n", time);
 }, mkSequence(drumPattern.kick), "8n").start("0:0:0").stop
("4:0:0");

 Tone.Transport.start();
});

Listing 12-23: Using mkSequence with Tone.Sequence in place of Tone.Loop

Here, we replace each of the Tone.Loop calls with the new
Tone.Sequence calls. In each case we call mkSequence, passing one of the
strings from our drumPattern object, which will create an array of x’s and
nulls. The result of this call is passed to the Tone.Sequence helper, which
we use to trigger the appropriate drum sounds. Again, Tone.Sequence will
interpret any string, such as "x", as an appropriate note name for a drum hit,
while the nulls represent silences. The last argument to Tone.Sequence,
"8n", means that each dot or x in the drum pattern string represents an
eighth note.

If you now reload the page, you should hear the same drum beat as
before. This might seem like a lot of work to get the same output, but now
we have a lot more flexibility to write different drum patterns, and we can
easily modify them as we see fit. Try adding some extra snare or kick notes
to the strings in drumPattern to see how it sounds.

Working with Samples
An important part of electronic music is sampling: using snippets of
existing audio to build up a new piece of music. One common technique is
to modify the playback speed of the samples to change their pitch, so a
single sample can be used for multiple notes. If you’ve ever sped up a
recording of someone’s voice to make them sound high-pitched like a
chipmunk, or slowed it down to make them sound low-pitched like a giant,
it’s the same principle.

Tone.js makes it easy to work with samples with the Tone.Sampler
instrument. This instrument acts a lot like the synths we’ve seen so far, in
that it has a triggerAttackRelease method that lets you play a certain note
at a certain time. The difference is that instead of using an oscillator or
noise generator as a source, it plays a snippet of an audio file, possibly
pitch-shifted to the requested pitch.

To avoid any issues of copyright, I’ve sourced some samples from a
free online sample database, https://freesound.org. I’ve reuploaded them to
Amazon S3 (Simple Storage Service) in such a way that you can access
them directly from your code without having to download them (if you
want to know the technical details, the files are in a public S3 bucket with
CORS headers enabling access from any origin). The samples are of three
different trumpet notes, and are found at the following URLs:

https://skilldrick-jscc.s3.us-west-2.amazonaws.com/trumpet-c5.mp3
https://skilldrick-jscc.s3.us-west-2.amazonaws.com/trumpet-d5.mp3
https://skilldrick-jscc.s3.us-west-2.amazonaws.com/trumpet-f5.mp3

If you enter any of these URLs into your web browser, the sample should
play automatically.

Let’s see how to load these samples into a new Tone.Sampler object.
Tone.js lets you load all your samples from external URLs, such as our
three S3 URLs, which we do in Listing 12-24. Insert the new sampler code
at the end of script.js.

--snip--

 new Tone.Sequence(time => {
 kick.triggerAttackRelease(50, "16n", time);
 }, mkSequence(drumPattern.kick), "8n").start("0:0:0").stop
("4:0:0");

 // Samples from freesound.org:
 // https://freesound.org/people/MTG/sounds/357432/
 // https://freesound.org/people/MTG/sounds/357336/
 // https://freesound.org/people/MTG/sounds/357546/
 const sampler = new Tone.Sampler({
 urls: {
 "C5": "trumpet-c5.mp3",

https://freesound.org/
https://skilldrick-jscc.s3.us-west-2.amazonaws.com/trumpet-c5.mp3
https://skilldrick-jscc.s3.us-west-2.amazonaws.com/trumpet-d5.mp3
https://skilldrick-jscc.s3.us-west-2.amazonaws.com/trumpet-f5.mp3

 "D5": "trumpet-d5.mp3",
 "F5": "trumpet-f5.mp3"
 },
 baseUrl: "https://skilldrick-jscc.s3.us-west-2.amazonaw
s.com/",
 attack: 0,
 release: 1,
 volume: -24,
 onload: () => {
 sampler.triggerAttackRelease(["C5", "E5", "G5"], "1n",
0);
 }
 }).toDestination();

 Tone.Transport.start();
});

Listing 12-24: Creating a sampler

We create the sampler by passing a configuration object to the
Tone.Sampler constructor. In this example, the configuration object
contains five properties. The first property, urls, contains an object
mapping note names to filenames. For example, we’re saying that the note
name C5 corresponds to the filename trumpet-c5.mp3. Next, baseUrl
defines the shared prefix of all the URLs, which saves us from having to
write out the full URL for each sample. All the URLs are in the same S3
bucket, so we can use that as the base URL and then just provide the
filenames in urls.

The sampler instrument doesn’t apply a full ADSR envelope when it
plays samples, but it does allow you to set the attack (fade-in speed) and
release (fade-out speed). We use an instant attack (because the sample
already has its own attack), and a long release of one second. We also set
volume to –24 dB so the sampler isn’t too loud. Finally, the onload property
allows us to specify what happens once all the samples have been
downloaded. In this example, we call triggerAttackRelease to play a
three-note chord. Note that Tone.Sampler is by default polyphonic, so it
can play multiple samples at once.

When you play this example, you’ll still hear the drums. Once the
samples load, you should also hear a C major chord played by the trumpet
sampler. One interesting thing to note here is that although we provided a
sample for the note C5, we didn’t provide one for E5 or G5, the other
pitches in the C major chord. When we tell the sampler to play these notes,
it picks the closest provided sample and shifts its pitch by changing the
playback speed. For instance, the closest sample to G5 has a pitch of F5, so
this sample will be sped up slightly to sound like G5 instead. As long as the
note we’re trying to play isn’t too far away from one of the provided
samples, it will sound fine. If we push it too far, however, the result won’t
sound as realistic. For example, try raising the notes an octave by setting
them to C6, E6, and G6 instead. They’ll start to sound a bit silly now. Also,
because the samples are being played back twice as fast, they’re half the
duration, so they won’t last the full bar they’re supposed to (the higher
notes will finish earlier because they’re played back faster). You can also go
the other way and set the notes to C4, E4, and G4. This time the duration
won’t be a problem, since the samples are being played slower in order to
shift them down in pitch, but the notes still won’t sound as realistic.

Summary
In this chapter you learned about making sounds and music using the Web
Audio API, and you saw how using a library like Tone.js can make your life
much easier by hiding a lot of the lower-level details. You also learned a lot
of tricks for sound synthesis and sampling using the Tone.js library. If some
of the musical details went over your head, don’t worry. The most important
thing here was getting used to working with a new JavaScript API and
library. We’ll be putting all this to use in the next chapter, where we’ll write
an actual song using the instruments created in this chapter!

13
WRITING A SONG

You’ve now learned enough about the
basics of Tone.js and sound synthesis to

write a simple song. Our song is going to be made up
of a few instruments: the drums we developed in the
previous chapter, the trumpet sampler, two different
synth bass parts, and some chords played on another
synth.

Getting Organized
Our song will reuse a lot of the code from the previous chapter, but we’ll
reorganize it to make it easier to follow how the song is built. The
index.xhtml file will be exactly the same as in Chapter 12, but we’ll start
from scratch with a new script.js file, which we’ll organize into four logical
sections:

Instruments For instantiating and setting up the instruments
Sequencing For creating the looping sequences of notes to be played
Song For scheduling the start and end of each sequence
Event Handling The code that handles the click event that starts
playing the song

We’ll set off each of these four sections with a multiline comment to
make the script.js file easier to navigate. Listing 13-1 shows what these

comments look like. You can add them to the file now, in this order.

/////////////////
// Instruments //
/////////////////

////////////////
// Sequencing //
////////////////

//////////
// Song //
//////////

////////////////////
// Event Handling //
////////////////////

Listing 13-1: The comments delineating the main sections of script.js

Throughout the chapter, as we build up the song, I’ll tell you to add
each new piece of code to the end of a particular section. These comments
will enable you to quickly find exactly where the new code should go.

Event Handling
Let’s start by writing the Event Handling section of script.js. This code is
almost identical to the code we wrote at the beginning of the previous
chapter: it creates a click event listener that toggles the style of the Play
button and <Playing= paragraph when the user clicks the button, and makes
the Tone.js calls necessary to start playing the song. Enter the contents of
Listing 13-2 in the Event Handling section of the code.

--snip--

////////////////////
// Event Handling //
////////////////////

let play = document.querySelector("#play");

let playing = document.querySelector("#playing");

play.addEventListener("click", () => {
 // Hide this button
 play.style = "display: none";
 playing.style = " ";

 Tone.start();

 // Modify this to start playback at a different part of th
e song

❶ Tone.Transport.position = "0:0:0";
 Tone.Transport.start();
});

Listing 13-2: The event handling code

One important difference in this code compared to Listing 12-2 is that
we use Tone.Transport.position to set the starting position of the
transport before we call Tone.Transport.start ❶. Here we’ve set the
starting position to "0:0:0", which is the default, so this call isn’t strictly
necessary. However, including this line of code makes it easy to modify the
starting position if you don’t want to have to listen to the whole song every
time you add a new element to it. For example, if you wanted to skip the
first 20 bars, you could change the value of Tone.Transport.position to
"20:0:0".

Unlike in the previous chapter, all the code to create the instruments
and sequences will live outside of the event handler. That code can all be
executed before the user presses Play. Only the Tone.start call has to be
inside the handler for the song to work correctly. We could even move the
Tone.Transport lines outside of the handler if we wanted, but it feels more
natural to have those come after Tone.start.

Making the Drumbeat
Now let’s create the drumbeat to underlay the song. We’ll use the same hi-
hat, snare, and kick sounds we created in the last chapter. First we’ll declare

those instruments, as shown in Listing 13-3. Add this code to the
Instruments section of script.js.

/////////////////
// Instruments //
/////////////////

❶ function mkDrums() {
 let reverb = new Tone.Reverb({
 decay: 1,
 wet: 0.3
 }).toDestination();

 let hiHatFilter = new Tone.Filter(15000, "bandpass").conne
ct(reverb);

 let hiHat = new Tone.NoiseSynth({
 envelope: {
 attack: 0.001, decay: 0.1, sustain: 0, release: 0
 },
 volume: -6
 }).connect(hiHatFilter);

 class Snare {
 constructor() {
 this.noiseFilter = new Tone.Filter(5000, "bandpass").c
onnect(reverb);
 this.noiseSynth = new Tone.NoiseSynth({
 envelope: {
 attack: 0.001, decay: 0.1, sustain: 0, release: 0
 },
 volume: -12
 }).connect(this.noiseFilter);

 this.synth = new Tone.Synth({
 envelope: {
 attack: 0.0001, decay: 0.1, sustain: 0, release: 0
 },
 oscillator: {type: "sine"},
 volume: -12

 }).connect(reverb);
 }

 triggerAttackRelease(duration, when) {
 this.noiseSynth.triggerAttackRelease(duration, when);
 this.synth.triggerAttackRelease("G3", duration, when);
 }
 }

 let snare = new Snare();

 let kick = new Tone.MembraneSynth({
 pitchDecay: 0.02,
 octaves: 6,
 volume: -9
 }).connect(reverb);

x return {hiHat, snare, kick};
}

let drums = mkDrums();
--snip--

Listing 13-3: Declaring the drums

This code is identical to the code we wrote in the previous chapter, but
to keep it a little more organized I’ve moved all of the drum setup code,
including the reverb effect, into a single function called mkDrums (for <make
drums=) ❶. This function returns an object with the three drums x. We’re
using a new form of syntax for creating this object called object literal
shorthand syntax. With this shorthand syntax, instead of typing out {hiHat:
hiHat, snare: snare, kick: kick}, we just type {hiHat, snare,
kick}. This works only if the property names are the same as the variable
names.

Now that we’ve declared the drums, we’ll create the actual drumbeat
pattern. We’ll use the same one-bar pattern that we developed in the
previous chapter, with hi-hats on every eighth note and kick and snare
sounds alternating every quarter note. Add Listing 13-4 to the Sequencing
section of the code.

--snip--

////////////////
// Sequencing //
////////////////

// Converts a string to an array of notes or nulls.
// Dots in the string become nulls in the array and are sile
nt.

❶ function mkSequence(pattern) {
 return pattern.split(" ").map(value => {
 if (value == ".") {
 return null;
 } else {
 return value;
 }
 });
}

x let drumPattern = {
 kick: "x…x…",
 snare: "..x…x.",
 hiHat: "xxxxxxxx",
};

let hiHatSequence = new Tone.Sequence(time => {
 drums.hiHat.triggerAttackRelease("16n", time);
}, mkSequence(drumPattern.hiHat), "8n");

let snareSequence = new Tone.Sequence(time => {
 drums.snare.triggerAttackRelease("16n", time);
}, mkSequence(drumPattern.snare), "8n");

let kickSequence = new Tone.Sequence(time => {
 drums.kick.triggerAttackRelease(50, "16n", time);
}, mkSequence(drumPattern.kick), "8n");
--snip--

Listing 13-4: The drumbeat sequences

Again, this is identical to code we wrote in Chapter 12. We start with a
helper function, mkSequence ❶, that takes in a pattern of x’s and dots and
turns it into note information that Tone.Sequence can use. Then we store
the patterns we want in a drumPattern object x and generate the sequences
for each instrument with Tone.Sequence.

All that’s left to do to create the drumbeat is to schedule the sequences
to play on loop for most of the duration of the song, as shown in Listing 13-
5. Add this code to the Song section of the script.js file.

--snip--

//////////
// Song //
//////////

hiHatSequence.start("0:0:0").stop("44:0:0");
snareSequence.start("0:0:0").stop("44:0:0");
kickSequence.start("0:0:0").stop("44:0:0");
--snip--

Listing 13-5: Scheduling the drumbeat sequences

Here we tell the drums to start at the beginning of the song and keep
playing for 44 bars. Load the page and click Play, and you should hear the
same drums as before, but for much longer. When you get tired of listening,
reload the page to stop the drums playing.

Adding the Bass Lines
Next we’re going to add a couple of bass synths and have them play two
separate bass lines. First we’ll create the synths, by adding the code in
Listing 13-6 to the end of the Instruments section (just before the
Sequencing section).

--snip--
let lowBass = new Tone.FMSynth({
 oscillator: {

 ❶ type: "triangle"
 },

 envelope: {
 attack: 0.0001, decay: 0.5, sustain: 0.3, release: 0.1
 },
 volume: -3
}).toDestination();

let highBass = new Tone.FMSynth({
 oscillator: {

 x type: "square"
 },
 envelope: {
 attack: 0.0001, decay: 0.1, sustain: 0.3, release: 0.1
 },
 volume: -9
}).toDestination();
--snip--

Listing 13-6: Creating the bass instruments

Here we declare two bass instruments called lowBass and highBass.
Both use a synth we haven’t seen yet, called an FMSynth. FM is short for
frequency modulation, and FM synthesis involves using one oscillator to
modulate, or modify, the frequency of another oscillator. This kind of
synthesis yields a richer sound than a plain oscillator, and it makes a good
bass synth. There are a lot of parameters that can be modified in
Tone.FMSynth (for example, the amount of modulation applied, the
relationship between the frequencies of the two oscillators, the waveforms
of the two oscillators, and so on), but we’ll mostly stick to the default
values. All we’ll do is set the oscillator type ("triangle" for "lowBass" ❶
and "square" for highBass x), as well as the envelope and volume.

For generating the bass sequences, we’re going to use a slightly
different technique from our current mkSequence helper function. That
helper is great for things like drums, where you need only a single character
to determine whether a note is played or not, but it doesn’t work for a bass
line where we want to provide note names, which have at least two
characters (like C3 or F#4). One notation we might choose for writing out a
sequence could be something like:

"C3| | |C3| | |G2|B2"

The vertical pipe characters are used as divisions, and between each pair of
pipes is either a note we want to play or a blank space, which represents a
silence. (The sequence written out here is the start of the bass line for Ben
E. King’s <Stand by Me.=)

Listing 13-7 gives the definition of mkPipeSequence, which we’ll use
for sequencing our bass lines. It takes a string like the one for <Stand by
Me= and converts it into an array of note names and nulls. Insert this
function into the Sequencing section of script.js, just after the definition of
mkSequence.

--snip--
// Converts a string to an array of notes or nulls.
// Spaces between pipes in the string become nulls in the ar
ray and are silent.
function mkPipeSequence(pattern) {
 return pattern.split("|").map(value => {

 ❶ if (value.trim() == " ") {
 return null;
 } else {
 return value;
 }
 });
}
--snip--

Listing 13-7: The mkPipeSequence function

This function uses split("|") to split the string by the pipe character.
Using the <Stand by Me= example, this would give the array ["C3", " ",
" ", "C3", " ", " ", "G2", "B2"]. We then map over each of these
values. The trim method ❶ removes any whitespace from the start or end
of a string, so " ".trim() results in " ", an empty string. We replace any
empty strings with nulls in the returned array and pass the note names
through unchanged, resulting in a return value of ["C3", null, null,
"C3", null, null, "G2", "B2"].

Next we want to create the actual sequences for the two bass lines (we
won’t be borrowing from <Stand by Me= here). Add the code in Listing 13-
8 to the end of the Sequencing section.

--snip--
let lowBassSequence = new Tone.Sequence((time, note) => {
 lowBass.triggerAttackRelease(note, "16n", time, 0.6);
}, mkPipeSequence("G2| | |G2|G2| | | "), "8n");

let highBassSequence = new Tone.Sequence((time, note) => {
 highBass.triggerAttackRelease(note, "16n", time, 0.3);
}, mkPipeSequence("G3|F3|E3|D3|G2|D3|G3|D3"), "8n");
--snip--

Listing 13-8: The bass sequences

There are two bass parts here: the low one just plays three eighth notes
per bar, while the high one plays eighth notes continuously.

Finally, we need to schedule these sequences against the transport, as
shown in Listing 13-9. This code should be added to the end of the Song
section.

--snip--
lowBassSequence.start("0:0:0").stop("47:3:0");
highBassSequence.start("4:0:0").stop("47:3:0");
--snip--

Listing 13-9: Scheduling the bass sequences

The low sequence starts at the beginning, and the high sequence starts
after four bars. Both continue looping until partway through the 48th bar.
This way, the bass parts will continue for a few bars after the drums stop.

If you now refresh the page and hit Play, you’ll hear the beginnings of a
song! Not only do we have drums and bass, but we have some very basic
structure, with the second bass line coming in after four bars and the drums
ending before the bass. That bass solo at the end is by far the most dramatic
part of the song as it currently stands. To hear just that part, you can modify
the value of Tone.Transport.Position in the Event Handling section of

the code. If you set it to "40:0:0" and reload, you’ll skip to the last eight
bars of the song.

Adding Chords
Next we’ll fill out the song with some chords. This song will have two
separate chord sequences, which we’ll schedule for different times in the
song to give it some more structure and variety.

First we need to create the instrument that will play the chords. The
code for this is in Listing 13-10; insert this at the end of the Instruments
section.

--snip--
let chordSynth = new Tone.PolySynth(Tone.Synth, {
 oscillator: {
 type: "triangle"
 },
 volume: -12
}).toDestination();
--snip--

Listing 13-10: The chord synth

We need a PolySynth because the instrument will be playing more than
one note at a time (that’s what a chord is). The PolySynth is based on a
regular Synth, using the default amplitude envelope and a triangle wave
oscillator.

Next we’ll create the sequencing code for the chords. Rather than
writing a chord out manually each time we want to play it in a sequence,
we’ll create some named chords, and then create sequences using those
chord names. Insert the code in Listing 13-11 at the end of the Sequencing
section.

--snip--

❶ let chords = {
 1: ["D4", "G4"],
 2: ["E4", "G4"],
 3: ["C4", "E4", "G4"],

 4: ["B3", "F4", "G4"],
};

x function playChord(time, chordName) {

� let notes = chords[chordName];
 chordSynth.triggerAttackRelease(notes, "16n", time, 0.6);
}

� let chordSequence1 = new Tone.Sequence((time, chordName) =>
 {
 playChord(time, chordName);
}, mkSequence("1…2…3..4…31…2…3..4.343"), "8n");

� let chordSequence2 = new Tone.Sequence((time, chordName) =>
 {
 playChord(time, chordName);
}, mkSequence("3…2…4..1.213"), "8n");
--snip--

Listing 13-11: Sequencing the chords

The first thing we do is create an object called chords with the four
chords that we’ll be sequencing ❶. We could call them anything, but for
simplicity I’m using the numbers 1, 2, 3, and 4 to refer to the chords
(though note that because these are object keys, the numbers are interpreted
as strings). Each chord number corresponds to an array of note names,
which is the format our PolySynth requires. The two chord sequences will
just be various orderings of these four chords.

Next comes a helper function for playing the chords x. This
playChord function takes the time to play the chord and the name of the
chord as a string (one of the numbers 1 through 4). Then it looks in the
chords object and retrieves the array of notes keyed by the given chord
name �. The function ends by calling triggerAttackRelease on the
chordSynth, passing the array of note names. Because it’s a PolySynth, our
chordSynth instrument is able to play all the notes in the chord at once.

Finally, we make the two sequences, called chordSequence1 � and
chordSequence2 �. The callback for both of these sequences is our

playChord function. We’re also using the same mkSequence helper we used
for sequencing the drums earlier, but in this case the values in the string are
either dots (silence) or chord names. Unlike with our bass lines,
mkSequence works here because each chord name is a single character, and
we have our playChord function to reinterpret the chord names as pitches.
As with the drums, we’re passing "8n" as the last argument to
Tone.Sequence, meaning that each dot or chord name is an eighth note. The
first sequence is 32 eighth notes long, or 4 bars. The second sequence is 16
eighth notes long, or 2 bars.

Now we’ll actually schedule the sequences against the transport. Add
the code in Listing 13-12 to the end of the Song section.

--snip--
chordSequence1.start("8:0:0").stop("24:0:0");
chordSequence2.start("24:0:0").stop("32:0:0");
chordSequence1.start("32:0:0").stop("40:0:0");
--snip--

Listing 13-12: Scheduling the chord sequences

The first sequence starts playing after 8 bars and repeats through the
end of bar 24, which is 16 bars, or four complete loops of the first sequence.
Then the second sequence takes over and runs through bar 32; this is 8 bars,
or four complete loops of the second sequence. Finally, the first sequence
returns, playing through bar 40; this is also 8 bars, or two complete loops of
the first sequence.

Try refreshing your browser and listening to the song again. Make sure
to set Tone.Transport.position to "0:0:0" in the event handler to play
from the beginning. If you don’t want to wait eight bars for the chords to
come in, set it to "8:0:0" to start playing where the chords start.

Playing a Tune
Now that we have drums, bass, and chords, the only thing our song is
missing is a tune. We’re going to use the trumpet sampler we created in the
last chapter, and we’ll sequence the notes using Tone.Part, which lets us
easily schedule the timing of each note in the tune separately.

First we’ll create the sampler, like we did in Chapter 12. Add the code
in Listing 13-13 to the end of the Instruments section.

--snip--
// Samples from freesound.org:
// https://freesound.org/people/MTG/sounds/357432/
// https://freesound.org/people/MTG/sounds/357336/
// https://freesound.org/people/MTG/sounds/357546/
let sampler = new Tone.Sampler({
 urls: {
 "C5": "trumpet-c5.mp3",
 "D5": "trumpet-d5.mp3",
 "F5": "trumpet-f5.mp3"
 },
 baseUrl: "https://skilldrick-jscc.s3.us-west-2.amazonaws.c
om/",
 attack: 0,
 release: 1,
 volume: -24
}).toDestination();
--snip--

Listing 13-13: Declaring the trumpet sampler

Here we’re creating a Tone.Sampler instrument with the same three
samples as in the previous chapter. Note, however, that we’re no longer
using the sampler’s onload property to tell it what to do once the samples
have been downloaded. This is a bit of a cheat, but I know that the trumpets
aren’t going to play at the beginning of the song, and I’m banking on the
fact that by the time they come in, the samples will have downloaded. The
proper thing to do would be to hide the Play button until the samples have
finished downloading, but that would add extra complexity to this project.

Listing 13-14 shows the code for sequencing the notes of the tune. Add
this code to the end of the Sequencing section.

--snip--
let trumpetPart = new Tone.Part((time, note) => {
 sampler.triggerAttackRelease(note, "1n", time);
}, [

 ["0:0:0", "G5"],
 ["0:2:0", "C5"],
 ["1:0:0", "G5"],

 ["2:0:0", "D5"],
 ["2:2:0", "C5"],
 ["3:0:0", "B4"],

 ["4:0:0", "G5"],
 ["4:2:0", "C5"],
 ["5:0:0", "G5"],

 ["6:0:0", "D5"],
 ["6:2:0", "C5"],
 ["7:0:0", "B4"],
 ["7:2:0", "D5"],

 ["8:0:0", "C5"],
 ["8:2:0", "E5"],
 ["9:0:0", "F5"],
 ["9:2:0", "D5"],

 ["10:0:0", "C5"],
 ["10:2:0", "E5"],
 ["11:0:0", "D5"],

 ["12:0:0", "C5"],
 ["12:2:0", "E5"],
 ["13:0:0", "F5"],
 ["13:2:0", "D5"],

 ["14:0:0", "C5"],
 ["14:2:0", "E5"],
 ["15:0:0", ["B4", "G5"]]
]);
--snip--

Listing 13-14: Sequencing the tune

As a reminder, the Tone.Part constructor takes two arguments: a
callback to play for each time/note pair, and a list of time/note pairs. Here,

the callback plays a long note ("1n", or a whole bar) on the trumpet sampler
for every time/note pair. The first note is played at "0:0:0" and the second
is played two beats later, at "0:2:0". Because the notes are about four beats
long, they will overlap—I did this intentionally to add some interest to the
tune.

The tune won’t play yet because we haven’t said when to play it. Even
though each note has a time, these times are relative to when the part is
scheduled to begin. To schedule the part, we just have to add some code to
the end of the Song section, as shown in Listing 13-15.

--snip--
trumpetPart.start("16:0:0");
--snip--

Listing 13-15: Scheduling the trumpet part

Unlike the sequences we scheduled so far, the part doesn’t loop, so it
doesn’t need a stop time. We’re telling Tone.js to start the trumpet part after
16 bars, which means that all the times given in the part are relative to
"16:0:0". We can add the two times together to get the actual time when
each note is scheduled (for example, "4:2:0" + "16:0:0" is "20:2:0").

Now you can listen to the complete song! Don’t forget to reset Tone
.Transport.position to "0:0:0" before you refresh the page.

TRY IT YOURSELF

13-1. Now that you’ve finished coding the song, try making it your own. Here are some
ways you could modify it:

Change the tempo (BPM) of the song by setting Tone.Transport.bpm
.value to something other than 120.
Change the drum pattern.
Modify the Song section and update when the sequences are scheduled.
Change the chords without changing the chord pattern.
Change the chord pattern without changing the chords.

13-2. It’s a little awkward that you have to reload the page to stop the song. Try adding
a Pause button that calls Tone.Transport.pause and a Stop button that calls
Tone.Transport.stop. You could also show the current position by displaying
Tone.Transport.position on the page, using setInterval to update it regularly.

The Complete Code
We’ve been adding code all over the file, so just in case you got something
mixed up, or if you just want to see how it should all look, Listing 13-16
gives the entire contents of script.js.

/////////////////
// Instruments //
/////////////////

function mkDrums() {
 let reverb = new Tone.Reverb({
 decay: 1,
 wet: 0.3
 }).toDestination();

 let hiHatFilter = new Tone.Filter(15000, "bandpass").conne
ct(reverb);

 let hiHat = new Tone.NoiseSynth({
 envelope: {
 attack: 0.001, decay: 0.1, sustain: 0, release: 0
 },
 volume: -6
 }).connect(hiHatFilter);

 class Snare {
 constructor() {
 this.noiseFilter = new Tone.Filter(5000, "bandpass").c
onnect(reverb);
 this.noiseSynth = new Tone.NoiseSynth({
 envelope: {
 attack: 0.001, decay: 0.1, sustain: 0, release: 0
 },
 volume: -12
 }).connect(this.noiseFilter);

 this.synth = new Tone.Synth({
 envelope: {

 attack: 0.0001, decay: 0.1, sustain: 0, release: 0
 },
 oscillator: {type: "sine"},
 volume: -12
 }).connect(reverb);
 }

 triggerAttackRelease(duration, when) {
 this.noiseSynth.triggerAttackRelease(duration, when);
 this.synth.triggerAttackRelease("G3", duration, when);
 }
 }

 let snare = new Snare();

 let kick = new Tone.MembraneSynth({
 pitchDecay: 0.02,
 octaves: 6,
 volume: -9
 }).connect(reverb);

 return {hiHat, snare, kick};
}

let drums = mkDrums();

let lowBass = new Tone.FMSynth({
 oscillator: {
 type: "triangle"
 },
 envelope: {
 attack: 0.0001, decay: 0.5, sustain: 0.3, release: 0.1
 },
 volume: -3
}).toDestination();

let highBass = new Tone.FMSynth({
 oscillator: {
 type: "square"
 },
 envelope: {

 attack: 0.0001, decay: 0.1, sustain: 0.3, release: 0.1
 },
 volume: -9
}).toDestination();

let chordSynth = new Tone.PolySynth(Tone.Synth, {
 oscillator: {
 type: "triangle"
 },
 volume: -12
}).toDestination();

// Samples from freesound.org:
// https://freesound.org/people/MTG/sounds/357432/
// https://freesound.org/people/MTG/sounds/357336/
// https://freesound.org/people/MTG/sounds/357546/
let sampler = new Tone.Sampler({
 urls: {
 "C5": "trumpet-c5.mp3",
 "D5": "trumpet-d5.mp3",
 "F5": "trumpet-f5.mp3"
 },
 baseUrl: "https://skilldrick-jscc.s3.us-west-2.amazonaws.c
om/",
 attack: 0,
 release: 1,
 volume: -24
}).toDestination();

////////////////
// Sequencing //
////////////////

// Converts a string to an array of notes or nulls.
// Dots in the string become nulls in the array and are sile
nt.
function mkSequence(pattern) {
 return pattern.split(" ").map(value => {
 if (value == ".") {
 return null;
 } else {

 return value;
 }
 });
}

// Converts a string to an array of notes or nulls.
// Spaces between pipes in the string become nulls in the ar
ray and are silent.
function mkPipeSequence(pattern) {
 return pattern.split("|").map(value => {
 if (value.trim() == " ") {
 return null;
 } else {
 return value;
 }
 });
}

let drumPattern = {
 kick: "x…x…",
 snare: "..x…x.",
 hiHat: "xxxxxxxx",
};

let hiHatSequence = new Tone.Sequence(time => {
 drums.hiHat.triggerAttackRelease("16n", time);
}, mkSequence(drumPattern.hiHat), "8n");

let snareSequence = new Tone.Sequence(time => {
 drums.snare.triggerAttackRelease("16n", time);
}, mkSequence(drumPattern.snare), "8n");

let kickSequence = new Tone.Sequence(time => {
 drums.kick.triggerAttackRelease(50, "16n", time);
}, mkSequence(drumPattern.kick), "8n");

let lowBassSequence = new Tone.Sequence((time, note) => {
 lowBass.triggerAttackRelease(note, "16n", time, 0.6);
}, mkPipeSequence("G2| | |G2|G2| | | "), "8n");

let highBassSequence = new Tone.Sequence((time, note) => {

 highBass.triggerAttackRelease(note, "16n", time, 0.3);
}, mkPipeSequence("G3|F3|E3|D3|G2|D3|G3|D3"), "8n");

let chords = {
 1: ["D4", "G4"],
 2: ["E4", "G4"],
 3: ["C4", "E4", "G4"],
 4: ["B3", "F4", "G4"],
};

function playChord(time, chordName) {
 let notes = chords[chordName];
 chordSynth.triggerAttackRelease(notes, "16n", time, 0.6);
}

let chordSequence1 = new Tone.Sequence((time, chordName) =>
 {
 playChord(time, chordName);
}, mkSequence("1…2…3..4…31…2…3..4.343"), "8n");

let chordSequence2 = new Tone.Sequence((time, chordName) =>
 {
 playChord(time, chordName);
}, mkSequence("3…2…4..1.213"), "8n");

let trumpetPart = new Tone.Part((time, note) => {
 sampler.triggerAttackRelease(note, "1n", time);
}, [
 ["0:0:0", "G5"],
 ["0:2:0", "C5"],
 ["1:0:0", "G5"],

 ["2:0:0", "D5"],
 ["2:2:0", "C5"],
 ["3:0:0", "B4"],

 ["4:0:0", "G5"],
 ["4:2:0", "C5"],
 ["5:0:0", "G5"],

 ["6:0:0", "D5"],

 ["6:2:0", "C5"],
 ["7:0:0", "B4"],
 ["7:2:0", "D5"],

 ["8:0:0", "C5"],
 ["8:2:0", "E5"],
 ["9:0:0", "F5"],
 ["9:2:0", "D5"],

 ["10:0:0", "C5"],
 ["10:2:0", "E5"],
 ["11:0:0", "D5"],

 ["12:0:0", "C5"],
 ["12:2:0", "E5"],
 ["13:0:0", "F5"],
 ["13:2:0", "D5"],

 ["14:0:0", "C5"],
 ["14:2:0", "E5"],
 ["15:0:0", ["B4", "G5"]]
]);

//////////
// Song //
//////////

hiHatSequence.start("0:0:0").stop("44:0:0");
snareSequence.start("0:0:0").stop("44:0:0");
kickSequence.start("0:0:0").stop("44:0:0");

lowBassSequence.start("0:0:0").stop("47:3:0");
highBassSequence.start("4:0:0").stop("47:3:0");

chordSequence1.start("8:0:0").stop("24:0:0");
chordSequence2.start("24:0:0").stop("32:0:0");
chordSequence1.start("32:0:0").stop("40:0:0");

trumpetPart.start("16:0:0");

////////////////////

// Event Handling //
////////////////////

let play = document.querySelector("#play");
let playing = document.querySelector("#playing");

play.addEventListener("click", () => {
 // Hide this button
 play.style = "display: none";
 playing.style = " ";

 Tone.start();

 // Modify this to start playback at a different part of th
e song
 Tone.Transport.position = "0:0:0";
 Tone.Transport.start();
});

Listing 13-16: The complete code

Summary
In this chapter, you coded a song in JavaScript! Now that you’re used to
working with Tone.js, you can use it to make your own song. Another fun
thing to try is algorithmic music, where instead of writing out a fixed song,
you write code that semirandomly produces new music each time it runs.
One simple way to try this out is to come up with a list of nice-sounding
chords, and then randomly choose which one to play on any given beat (you
could use Tone.Loop to accomplish this, as we did in Listing 12-12 in the
previous chapter).

PROJECT 3
VISUALIZING DATA

14
INTRODUCING THE D3 LIBRARY

Today’s world is full of data, but raw
data is basically impossible to

understand without visualizing it in some way. Data
visualizations can be incredibly simple, such as a
chart on Wikipedia showing the average temperature
each month in a particular city, or highly intricate,
such as an animated infographic from a news
organization illustrating the income mobility of tens
of thousands of Americans. No matter the level of
complexity, however, data visualizations always have
the potential to give us more insight into the data
we’re exploring.

In this project you’ll learn to use a powerful JavaScript library called
D3.js (or D3 for short), which will enable you to create a whole range of
data visualizations in the browser. The great thing about using JavaScript to
make data visualizations is that they can be dynamic and interactive.
Dynamic means the visualization can change over time; for example, they
can be updated as new data comes in. Interactive means the user can
manipulate the visualization, for example, by clicking to reveal more detail
about a particular aspect. Also, because you’re coding up the visualizations
yourself, you’re free to customize them in any way you want.

This chapter introduces you to the basics of working with D3, to
prepare you for the next chapter, where you’ll create an interactive
visualization by loading data from an external API. D3 primarily uses a web
graphics technology called Scalable Vector Graphics (SVG), so we’ll start
with a crash course in SVG before we dive into D3 itself.

The SVG Graphics Format
SVG is a way of defining images using points, lines, and curves, rather than
pixels. These images are known as vector graphics. Because you’re
defining the shape of the image rather than the individual pixels
themselves, you can resize or zoom in on an SVG image without it
becoming pixelated (hence the scalable part of the name).

SVG is based on Extensible Markup Language (XML), a language for
storing data that, like HTML, relies on a structure of nested elements with
start and end tags. SVG XML looks similar to HTML, but it has its own set
of tags that correspond directly to visual elements (in HTML, by contrast,
the tags are used to define structure and content). SVG files can be
standalone XML files, but SVG can also be embedded in an HTML file
using the HTML svg element, making it easy to add SVG graphics to a web
page.

One advantage of SVG over the Canvas API for rendering interactive
graphics on the web is that each element of an SVG drawing is represented
by a DOM element on the web page, which means you can style it with
CSS and use JavaScript to add event handlers to respond to mouse events
like clicks or hovers. On the other hand, Canvas-based graphics are faster to
render, so applications like games that need a high frame rate tend to use the
Canvas API rather than SVG.

Let’s write our first SVG. Make a new directory called svg and create
an index.xhtml file in that directory containing the content of Listing 14-1.
We’ll embed our SVG in this HTML file. Also create two empty files in the
same directory, called style.css and script.js—we’ll fill those in later when
we’re ready to style the SVG and make it interactive.

<!DOCTYPE html>
<html>

 <head>
 <title>SVG</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>

 ❶ <svg width="600" height="600"></svg>

 <script src="script.js"></script>
 </body>
</html>

Listing 14-1: An index.xhtml file for exploring SVG

The code in Listing 14-1 follows our standard HTML template, with an
empty svg element added ❶. The svg element is given a width and height
of 600 pixels. When you load the page in your browser, it should be blank,
because we haven’t added content to our SVG yet.

Now let’s add some graphics. We’ll add a rectangle and some text to
the svg element, as shown in Listing 14-2.

--snip--

 <body>
 <svg width="600" height="600">

 ❶ <rect width="95" height="20" x="5" y="5"
 stroke="red" fill="none"></rect>

 x <text x="10" y="20" font-family="sans-serif">Hello, SV
G!</text>
 </svg>

 <script src="script.js"></script>
--snip--

Listing 14-2: Adding graphics to the svg element

Everything inside the <svg> and </svg> tags is SVG XML, which has
its own set of tag names. In this example, we use the rect ❶ and text x
elements. The rect element draws a rectangle, according to the
specifications set through the element’s attributes. We set the width and
height to 95 pixels and 20 pixels, respectively, and its x- and y-coordinates

(the location of the top-left corner of the rectangle) to (5, 5). We set the
outline to red using the stroke attribute and give it no fill color (the default
fill color is black). The rect element doesn’t contain any content, so the
opening tag is immediately followed by the closing tag.

Similarly, we use the text element to insert text into the drawing. The
text element also uses x and y attributes to set its position, but in this case
they refer to the start of the baseline of the text. In typography, the baseline
is the invisible line that runs along the bottom of most letters, excluding
those with descenders like p or g. By default, the x attribute gives the
horizontal position of the start of the text. We set the font of the text to the
default sans-serif font using the font-family attribute. The content of the
text element is the actual text that will be drawn, in this case <Hello,
SVG!=

When you reload the page, you should see this text surrounded by a
red-outlined rectangle, as shown in Figure 14-1.

Figure 14-1: Our first SVG drawing

Try zooming in on the page (using CTRL-+ on Windows or Linux, or
COMMAND-+ on macOS). The rectangle and text should remain sharp, even
as you scale the image.

Grouping Elements
You can group multiple SVG elements together by nesting them inside a g
(for group) element. This is useful because any attributes set on the g
element itself will apply to all its child elements. To demonstrate, update the
contents of your svg element as shown in Listing 14-3.

--snip--

<svg width="600" height="600">

❶ <g font-family="sans-serif" fill="blue">
 <text x="0" y="20">Always</text>
 <text x="0" y="40">Be</text>
 <text x="0" y="60">Coding</text>
 </g>
</svg>
--snip--

Listing 14-3: Grouping elements with the g element

In this example, we create a group with three child text elements, each
containing a single word. The text elements have the same x-coordinate
but different y-coordinates, so the words will be vertically stacked and left-
aligned. The attributes of the parent g element (font-family and fill ❶)
apply to all the child elements in the group. Reload the page and you should
see that all three words are blue and in a sans-serif font.

Creating groupings with g elements also lets you apply transformations
to all the child elements in a group. SVG supports several kinds of
transformations, including translation, rotation, scaling, and skewing. We’ll
use translate to move all the elements by a fixed amount. Update
index.xhtml with the following change to the opening g element tag:

--snip--

 <g transform="translate(100, 50)" font-family="sans-serif"
fill="blue">
--snip--

The transform attribute takes a list of transformations, separated by
spaces. Here we’re passing a single transformation: translate(100, 50).
This says to move all the elements in the group 100 pixels along the x-axis
and 50 pixels down the y-axis.

We can also resize the group by adding a scale transformation after the
translate transformation:

--snip--
 <g transform="translate(100, 50) scale(2, 3) "font-family
="sans-serif" fill="blue">
--snip--

After the translation, the elements are now scaled horizontally by a factor of
2 and vertically by a factor of 3, as shown in Figure 14-2.

Figure 14-2: Transforming grouped elements

All the transformations are relative to the origin (0, 0), unless an earlier
translation has moved the origin. This means the scaling affects the
placement of elements, as well as their size. For example, when you scale a
square with a top-left corner of (10, 10) and a bottom-right corner of (30,
30) by 2, the new corners will be at (20, 20) and (60, 60). The x- and y-
coordinates relative to the origin are all doubled.

TRY IT YOURSELF

14-1. Try out some of the other transformations:

rotate(deg) rotates around the origin by deg degrees.
rotate(deg, x, y) rotates around the point (x, y) by deg degrees.
skewX(deg) skews by deg degrees along the x-axis.

skewY(deg) skews by deg degrees along the y-axis.

Drawing Circles
You can draw an SVG circle using the circle element. The attributes cx
and cy set the coordinates for the center of the circle, and r sets the radius.
To try it out, replace the content of the svg element with the code in Listing
14-4.

--snip--

<svg width="600" height="600">

❶ <circle fill="#faa0a0" r="100" cx="124" cy="130"></circle>

x <g stroke="#944e30" stroke-width="3">
 <rect width="8" height="100" x="120" y="90" fill="#e1704
d"></rect>
 <circle fill="#acd270" r="18" cx="124" cy="150"></circle
>
 <circle fill="#fdfce2" r="18" cx="124" cy="120"></circle
>
 <circle fill="#f8c9dc" r="18" cx="124" cy="90"></circle>
 </g>
</svg>
--snip--

Listing 14-4: Drawing circles

In this example we’re using the new circle element, as well as the g
and rect elements. The first circle ❶ has a fill color of #faa0a0, or salmon
pink, a radius of 100 pixels, and center coordinates (124, 130). Note that
we’re using hex colors here—see the <Hex Colors= box on the following
page to learn more. Next, we use a group x to apply a standard stroke color
(chestnut brown) and width (3 pixels) to a rectangle and three smaller
circles, with fill colors green, yellow, and rose. The effect of all this is a
cute illustration of some Japanese hanami dango (a sweet treat popular in
Japan during cherry blossom season), as shown in Figure 14-3.

Figure 14-3: An illustration of hanami dango using SVG circles

Notice that the order in which elements are declared defines the order
in which they’re drawn. The three small circles are declared from bottom to
top, so in places where they overlap, the upper circle appears on top.
Likewise, since the large circle is declared first, it’s treated as a background
for the rest of the illustration.

HEX COLORS

Hexadecimal color syntax, or hex colors for short, is a way of specifying RGB color
values in CSS and other web graphics technologies like SVG and the Canvas API. Hex
colors are written using the base-16 hexadecimal number system, in which digits range
from 0 to f (a through f correspond to the decimal numbers 10 to 15). In decimal
numbers, the rightmost digit represents units, the second-rightmost digit represents
10s, the third represents 100s, and so on. In hexadecimal numbers, the rightmost digit
represents units, the second represents 16s, the third 256s, and so on. One hex digit
can convey 16 different values, and two hex digits can convey 256 different values.
Hexadecimal is often used in programming because 1 byte can contain 256 different
values, so using the hex digits 00 through ff gives us a convenient way to encode
bytes in text.

Hex colors generally use three pairs of hex digits to represent an RGB color,
preceded by a hash mark. For example, in the hex color #944e30, red has a value of 94,
green has a value of 4e, and blue has a value of 30. These three values correspond to
the decimal values 148, 78, and 48, which together form a chestnut brown color. (To
demonstrate how the conversion works, 94 in hexadecimal is nine 16s and four units,
so 9 × 16 + 4 = 148 in decimal.) If both digits of each color component are the same,

you can also use a shorthand three-digit form, combining the duplicate digits into one.
For example, #000000 (black) can also be written as #000.

Defining Paths
The path element is the most powerful SVG element of all, allowing you to
create custom shapes by drawing straight or curved lines (<paths=) between
different points. The d attribute of a path element (short for data) is a string
containing the path definition, which is a list of path commands. The syntax
of this string is optimized to be as compact as possible, so complex paths
can be represented using relatively short strings. This is good for
computers, but not good for humans; don’t expect these strings to be easily
readable.

In the next example we’re going to re-create the HTML5 logo with
path elements, starting with the outer shield shape. Replace the content of
the svg element in index.xhtml with the code in Listing 14-5.

--snip--

<svg width="600" height="600">
 <path fill="#e44d26" d="M 0 0 H 182 L 165 185 L 90 206 L 1
7 185 Z"/>
 <path fill="#f16529" d="M 91 15 H 165 L 151 173 L 91 190
 Z"/>
</svg>
--snip--

Listing 14-5: Drawing the HTML5 logo shield

Before we dive deep into the path definition, it’ll help to know what the
result is supposed to look like. Reload the page, and you should see the
shield design shown in Figure 14-4.

Figure 14-4: The HTML5 logo shield

This design is made of two paths, one for the darker main shield shape,
and one for the lighter highlight on the right half of the shield shape. Let’s
look at the path definition for the darker part:

M 0 0 H 182 L 165 185 L 90 206 L 17 185 Z

There are six instructions here:
M 0 0

H 182

L 165 185

L 90 206

L 17 185

Z

Think of these commands as moving an imaginary pen around the
screen to draw lines. The M command takes a position as an (x, y)
coordinate pair and moves the pen to that position without drawing
anything. The H command takes an x-coordinate and draws a horizontal line
from the current pen position to that value of x. The L command takes an (x,
y) coordinate pair and draws a line from the current position to that
position. Finally, the Z command closes the path, drawing a line from the

current position back to the start of the path. In English, the commands in
the path say, <Move to (0, 0), draw a horizontal line to (182, 0), draw a line
to (165, 185), draw a line to (90, 206), draw a line to (17, 185), then draw a
line back to (0, 0) to close the path.= The second path uses the same
technique to draw the inner highlight on the shield, using a different fill
color.

These commands define the points to move to using absolute positions,
exact x- and y-coordinates. However, there’s an alternative version of each
command that takes a relative position instead, meaning the next point is
defined in relation to the current position of the pen. The absolute
commands all use uppercase letters, and the relative ones use the same
letters but lowercase. For example, the path definition we just looked at
could be rewritten using relative path commands like this:

m 0 0 h 182 l -17 185 l -75 21 l -73 -21 z

In this case, the move command is the same because there’s no
previous position to be relative to. The command h 182 says to draw a
horizontal line 182 units to the right of the current position. The command l
-17 185 says to draw a line 17 units to the left and 185 down from the
current position, and so on. The Z and z commands do the same thing and
are just included in the SVG spec for completeness.

In fact, this relative path definition can be written even more
compactly:

m0 0h182l-17 185-75 21-73-21z

Spaces are needed only to avoid ambiguity between two numbers, but are
otherwise optional in SVG paths. Thanks to all the negative numbers, we’re
able to remove almost all the spaces here. Also, if the same command is
used multiple times in a row, you can include it once and then just keep
providing numbers. For example, l-17 185-75 21-73-21 is the compact
version of l -17 185 l -75 21 l -73 -21.

NOTE

The SvgPathEditor (https://yqnn.github.io/svg-path-editor/) is a very helpful
tool for experimenting with and manipulating paths, and for converting
between absolute and relative commands (it’s what I used here to convert
between the two forms). SVG has several additional path commands, mostly
for drawing various types of curves. We won’t go into those here, but you
can find a full list on MDN at https://developer.mozilla.org/SVG.

Now that you understand how path definitions work, we can add more
paths to fill in the rest of the HTML5 logo. Update the content of the svg
element as shown in Listing 14-6 (though I won’t think any less of you if
you decide this is too much typing!).

--snip--

<svg width="600" height="600">
 <path fill="#e44d26" d="M 0 0 H 182 L 165 185 L 90 206 L 1
7 185 Z"/>
 <path fill="#f16529" d="M 91 15 H 165 L 151 173 L 91 190
 Z"/>
 <path fill="#ebebeb" d="m 34 38 h 57 v 23 h -32 l 2 24 h 3
0 v 23 h -51 z"/>
 <path fill="#ebebeb" d="m 41 118 h 23 l 2 18 l 25 7 v 24 l
-47 -13 z"/>
 <path fill="#fff" d="m 148 38 h -57 v 23 h 55 z"/>
 <path fill="#fff" d="m 143 85 h -52 v 23 h 28 l -3 30 l -2
5 5 v 24 l 47 -13 z"/>
</svg>
--snip--

Listing 14-6: Completing the HTML5 logo

I used relative path commands here partly for variety, and partly
because the relative numbers were smaller and made for shorter lines.
When you reload the page, you should see the complete HTML5 logo, as
shown in Figure 14-5. The two paths with the fill color #ebebeb (light gray)
draw the two parts of the left side of the 5, and the two paths with the fill
color #fff (white) draw the two parts of the right side of the 5.

https://yqnn.github.io/svg-path-editor/
https://developer.mozilla.org/SVG

Figure 14-5: The complete HTML5 logo

In general, you won’t have to manually type out your own path
definitions when you’re creating data visualizations. D3 will create them for
you. Still, it’s helpful to understand the syntax so you can tell what’s going
on when you’re debugging.

Styling Elements with CSS
When you embed SVG in your HTML file, each SVG element becomes
part of the DOM, so it can be styled with CSS. To see how this works, we’ll
draw some SVG shapes and give them all class names. Replace the content
of the svg element with the code in Listing 14-7.

--snip--

<svg width="600" height="600">
 <circle class="boring" r="40" cx="50" cy="50"></circle>
 <rect class="boring" x="120" y="10" width="80" height="8
0"></rect>
 <path class="boring" d="M 230 90 l 40 -80 l 40 80 z"></pat
h>"

 <circle class="fun" r="40" cx="50" cy="180"></circle>
 <rect class="fun" x="120" y="140" width="80" height="80">
</rect>
 <path class="fun" d="M 230 220 l 40 -80 l 40 80 z"></path

>"
</svg>
--snip--

Listing 14-7: Some SVG elements with class names

Here we’re drawing a circle, a square, and a triangle, and then another
circle, square, and triangle. Notice that the triangles are drawn as paths—
there’s no dedicated triangle element like rect or circle. The first three
shapes have the class name boring, and the second three have the class
name fun. When you reload the page you should see two rows of three
shapes, all with the same default black fill, as shown in Figure 14-6.

Figure 14-6: SVG shapes, without style

Now we’ll style the shapes. Because they all have class names, we can
select them in CSS, just like we’d select HTML elements. Add the code in
Listing 14-8 to your style.css file.

.boring {
 fill: none;
 stroke: black;
 stroke-width: 3px;
}

.fun {
 fill: hotpink;

 stroke: greenyellow;
 stroke-width: 5px;
 stroke-dasharray: 10,5;
 stroke-linejoin: round;
}

Listing 14-8: Styles for the shapes

In this listing, we’re giving different styles to the two classes: .boring
gets a simple black outline, and .fun gets a pink fill and a thick dashed
green-yellow outline. Note that the property names for styling SVG
elements aren’t the same as for HTML elements. For example, HTML
elements use background-color and border-color, while SVG elements
use fill and stroke.

It’s worth noting that you could also apply these styles directly to the
SVG elements as attributes in the index.xhtml file. The advantage of using
CSS is twofold: first, it means that all your styling information is in one
place, so it’s easily updatable, and second, to style several elements the
same way you only need to add a class name to each element, as opposed to
copying all the attributes from one element to another.

When you reload the page, you should notice that your shapes now
have some style, as shown in Figure 14-7.

Figure 14-7: SVG shapes, with style

It’s also possible to use pseudo-classes like :hover on SVG elements.
Add the code in Listing 14-9 to the end of style.css to try this out.

--snip--
.fun:hover {
 fill: greenyellow;
 stroke: hotpink;
}

Listing 14-9: Adding a hover effect

Here we’re swapping the fill and stroke color when the mouse hovers
over one of the .fun elements. Reload the page and see for yourself!

This is one of the great advantages of SVG over the Canvas API: the
browser knows about the SVG elements, and it knows, for example, when
the mouse is hovering over them. Compare this with the canvas, where the
browser just knows that some colored pixels have been drawn, and any
mouse hover effects have to be explicitly coded in JavaScript.

Adding Interactivity with JavaScript
We can use JavaScript to add interactivity to our SVG elements, just as we
can use CSS to style them. Again, this is possible because each SVG
element embedded in the HTML becomes part of the DOM. To start with,
we’ll just write a script that selects the elements and logs them to the
console, as a refresher on JavaScript DOM methods. Add the code in
Listing 14-10 to the currently empty script.js.

document.querySelectorAll(".fun").forEach(element => {
 console.log(element);
});

Listing 14-10: Selecting the .fun elements

In this listing, we’re using the querySelectorAll method to select all
the elements with the class name fun. We then use the forEach method to
iterate over the selected elements and log them to the console. When you
run this code, you should see the three elements logged to the console on
separate lines. If you hover over each element in the console, that element
should also be highlighted on the web page.

Now we can add some interactivity. The changes to script.js in Listing
14-11 will make it so when you click one of the elements, that element will
move to the right, and when you hold down SHIFT and click, the element
will move to the left.

document.querySelectorAll(".fun").forEach(element => {

❶ element.setAttribute("data-offset", 0);

x element.addEventListener("click", event => {

 � let offset = Number(event.target.getAttribute("data-offs
et"));

 if (event.shiftKey) {
 offset -=5;
 } else {
 offset +=5;
 }

 � event.target.setAttribute("data-offset", offset);

 � event.target.setAttribute("transform", `translate(${offs
et}, 0)`);
 });
});

Listing 14-11: Moving SVG elements on click

Inside the forEach method call, we’re doing two things to each
element. First, we set something called a data attribute on each element.
Data attributes are HTML or SVG attributes that are just used for storing
data in the DOM; their names all start with the string "data-". Specifically,
we create the data-offset data attribute, which we’ll use to keep track of
how to position each element, and set its value to 0 ❶. Note that DOM
attributes are always stored as strings, so the number 0 will be converted to
the string "0".

Next, we attach a click event handler to each element x. The first
thing the handler does is extract the data-offset attribute from the clicked
element, using getAttribute, and store its value in the variable offset �.

The clicked element is available as the target property on the event object.
Note that we use the Number function here to convert the string into a
number. The first time this handler is called, the variable offset will be set
to 0, as that is the initial value we stored in the data-offset attribute ❶.

We use the shiftKey property on the event to determine if the SHIFT

key was pressed when the mouse was clicked. If it was, we subtract 5 from
offset. Otherwise, we add 5 to offset. We then assign the updated value
to the data-offset attribute using setAttribute �. Finally, we use the
setAttribute method again, but this time to set the transform SVG
attribute �. As you saw earlier in this chapter, we can use transform to
translate an element by some distance, with the string translate(x, y).
Here we’re setting the x value of the translation to the value of offset and
the y value of the translation to 0. This means that if offset is a positive
value the element will move to the right, and if it’s a negative value the
element will move to the left.

When you reload the page, the colorful SVG elements should now
move when you click them. If you right-click one of the elements and select
Inspect, you’ll see that element in the Elements panel. As you click
different elements in the browser viewport, you should see the data-offset
and transform attributes update in the Elements panel.

The D3 Library
Now that you have an understanding of the basics of SVG, you can start to
learn about the D3 library, which leverages SVG and JavaScript to create
data visualizations. D3, short for Data-Driven Documents, gives you the
ability to create documents whose contents are driven by data. It does this
through a technique called data binding, where individual parts of the
underlying data you want to visualize are linked to individual elements on
the page. This way, if the data changes, the elements change as well. You’ll
see how that works later in this section.

Setup
We’ll create a new set of files to explore D3. Make a new directory called
data, containing an empty script.js file and an index.xhtml file with the

content in Listing 14-12.

<!DOCTYPE html>
<html>
 <head>
 <title>Data</title>
 </head>
 <body>

 ❶ <svg width="600" height="600">
 <circle cx="50" cy="50" r="10"></circle>
 <circle cx="100" cy="50" r="10"></circle>
 <circle cx="150" cy="50" r="10"></circle>
 </svg>

 x <script src="https://unpkg.com/d3@7.4.4/dist/d3.js"></sc
ript>
 <script src="script.js"></script>
 </body>
</html>

Listing 14-12: A new index.xhtml for working with D3

First we create an svg element ❶ and draw three circles. Then we use a
script element to link to a copy of the D3 library hosted on https://unpkg
.com x, much like we did with Tone.js for the music project. Now you’ll be
able to use code from D3 in your script.js file. When you load the page, you
should see three black circles. Soon we’ll manipulate those circles with D3.

Selections
One of D3’s basic building blocks is the selection, a way to pick out a group
of elements so you can apply certain operations to those elements. Let’s use
D3 to select the three SVG circles and change their fill color to hot pink.
Add the code in Listing 14-13 to script.js.

d3.selectAll("circle").attr("fill", "hotpink");

Listing 14-13: Selecting the circles

https://unpkg.com/

The d3.selectAll method takes a CSS selector, in this case the
element name circle, and returns a D3 selection, on which you can chain
more method calls. Those chained method calls will apply to all the
elements matching the selector. Here we’re setting the "fill" attribute of
every element in the selection to "hotpink". When you reload the page, you
should see that the black circles are now pink.

It’s also possible to use a function instead of a value when updating
elements in a selection. When you do this, the function is called and its
return value is used as the value for updating these elements. This gives you
the ability to modify elements dynamically. Update the script.js code with
the changes in Listing 14-14 to see how it works.

d3
 .selectAll("circle")
 .attr("fill", "hotpink")

❶ .attr("r", (d, i) => 10 + i * 5);

Listing 14-14: Computing values with functions

With long method chains like this, it’s common to split the code across
multiple lines for readability. As before, we’re selecting all the circles and
setting their fill color to hot pink, but this time we’re also updating each
circle’s radius ❶. The function used for generating the value here has two
parameters, d and i. We’ll cover the d parameter, short for datum, in the
next section. i, short for index, is the index of the element in the selection
(the first circle will have an index of 0, the second 1, and so on). We’re
using the code 10 + i * 5 to give each circle a different radius, based on
their index numbers. Specifically, the circles will have radii of 10, 15, and
20. When you reload the page, you should see the three circles are now all
different sizes.

NOTE
D3 selection modification methods like .attr return the selection itself.
This lets us keep chaining modification methods, as we do with the two
.attr calls in Listing 14-14.

If you want to select a single element rather than a group, use the
d3.select method instead of d3.selectAll. For example, to insert an h1
element into the body element of your HTML, you could add the code in
Listing 14-15 to the end of your script.js file.

--snip--
d3
 .select("body")
 .insert("h1", "svg")
 .text("Hello, D3!");

Listing 14-15: Using select to select a single element

In this example, we first select the body element. We then call insert
on this selection, passing two arguments, "h1" and "svg". The first
argument is the type of element to insert, and the second is the element
before which to insert it. The insert method returns a new selection
containing the inserted element, and the text method adds text content to
elements in that selection (in this case, the single h1 element). When you
reload the page, you should see a heading above the SVG element with the
text <Hello, D3!= This example also illustrates the fact that D3 selections
can apply to both HTML and SVG elements.

Data Binding
Perhaps the most important feature of D3 is its concept of data binding. In a
D3-based application, you’ll have some data that you’re attempting to
visualize. Each individual piece of the data, called a datum, will be bound
to an individual element on the page (usually an SVG element). You use the
datum to set some attribute of the element it’s bound to, so the element
visually reflects the datum.

To start with, we’ll look at how to bind data to preexisting SVG
elements. Keep the circles in index.xhtml, but replace the content of script.js
with the code in Listing 14-16.

let numbers = [3, 2, 1];

d3

 .selectAll("circle")

❶ .data(numbers)
 .attr("r", (d, i) => d * 5);

Listing 14-16: Binding data to our circles

We first create an array of numbers to use as data. Then we create a
selection of all the circle elements. The data method ❶ binds the array of
numbers to the selection of circles, one by one, so the first circle element
has the value 3 bound to it, the second 2, and the third 1. Finally, we use the
attr method to set the radius of each circle to a computed value based on
the bound data. As you saw in the previous section, if you use a function
instead of a value to set an attribute, that function will be called to compute
the value for each element in the selection. The d parameter of the function
corresponds to the datum bound to the current element.

When you reload the page, you should see three black circles that get
smaller from left to right. To confirm that everything is working as
expected, right-click the first circle and select Inspect to show the element
in the Elements panel. You should see its r attribute set to 15, which is what
we’d expect from d * 5 where d is 3.

It’s also possible to directly see the datum set on an element using the
Inspect tool, which can be very helpful for debugging, especially when your
data is more complex than simple numbers. All you need is a reference to
the element, which is easy to get through the Chrome console. Again, right-
click the first circle and select Inspect. You should see something like
Figure 14-8.

Figure 14-8: Selecting a circle element in the Elements panel

At the end of the selected line you should see the text == $0. This is an
indication that a reference to the circle element is stored under the global

variable named $0. To verify that this is the case, open the JavaScript
console and enter $0:

$0
<circle cx="50" cy="50" r="15"></circle>

The console prints the circle element you selected, indicating that $0
is indeed a reference to that element. Now that you have that reference, you
can see the datum bound to it using the __data__ property:

$0.__data__
3

This tells you the circle is bound to the value 3, the first number from
our array, just as we’d expect. $0 always references the currently selected
element, so if you right-click and inspect a different circle, entering
$0.__data__ in the console again will give you the datum bound to that
other circle.

Data Joins
You don’t always know exactly how long your data is going to be, so it
would be difficult to always have exactly the right number of SVG elements
ready to bind to your data. D3 solves this problem with the concept of joins.
In D3, you use a join to add or remove the necessary elements to match the
data being bound.

We can extend our example from Listing 14-16 with a join so that SVG
circle elements will be added or removed as needed, depending on the
length of the numbers array. Update the script.js file as shown in Listing 14-
17.

❶ let numbers = [3, 2, 1, 2, 3];

d3

x .select("svg")
 .selectAll("circle")
 .data(numbers)

� .join("circle")
 .attr("r", (d, i) => d * 5);

Listing 14-17: Joining in extra elements

Here we’ve create a longer array of numbers ❶. We’ve also added a
line to select the svg element x before selecting the circle elements
within it. This is necessary because D3 will need to add new circle
elements, and it needs to know which containing element to add them to.
Finally, we’ve added a call to the join method �. This method takes the
name of the element from the selection to add or remove to match the data.
In this case, we’re saying that if there aren’t enough circle elements in the
svg element for all the items in data, then D3 should add more (or
conversely, if there are too many, D3 should remove some).

If you reload the page, you’ll see this doesn’t quite work as you
probably expected. The new circles all end up in the top-left corner of the
drawing area. That’s because these new circles don’t have their cx or cy
attributes set, unlike the initial three circles that were defined in
index.xhtml. To fix this, we need to set these two attributes using D3, as
shown in Listing 14-18.

let numbers = [3, 2, 1, 2, 3];

d3
 .select("svg")
 .selectAll("circle")
 .data(numbers)
 .join("circle")
 .attr("cx", (d, i) => (i + 1) * 50)
 .attr("cy", 50)
 .attr("r", (d, i) => d * 5);

Listing 14-18: Setting the cx and cy attributes

The cx attribute is based on the index of the data. The first element
should be at 50, the second at 100, and so on. The calculation (i + 1) *
50 gives us the right values. Because the circles are all in a line, the cy

attribute is just a constant value. Now when you reload the page you should
see five circles in a line.

NOTE
As mentioned previously, you can use the same join technique to remove
elements when you have too many. If you change the array of numbers to
contain only two elements and reload the page, you’ll see only two circles.

Now that we’re using D3’s join method to create new SVG elements
as needed to suit the data, there’s no reason to create them in the HTML
file. Modify index.xhtml as shown in Listing 14-19, removing all the
circle elements, then reload the page.

--snip--

 <body>
 <svg width="600" height="600"></svg>

 <script src="https://unpkg.com/d3@7.4.4/dist/d3.js"></sc
ript>
 <script src="script.js"></script>
 </body>
</html>

Listing 14-19: Removing the circle elements

Everything should still work, because the join method adds in all the
circle elements it needs. Note that the .selectAll("circle") line is still
needed in script.js for the join to work correctly, even though the first time
this is called there will be no circles to select.

Real-Time Updates
If the underlying data changes, we’ll need to perform the join again to
update the visualization. To do this, we’ll move all the data binding and
joining code into its own function, which we can call as needed. We can test
this out by adding some buttons to the page that allow us to add random
values to the start or end of our numbers array, or drop numbers from the
array. Update index.xhtml with the changes shown in Listing 14-20.

--snip--

 <body>
 <div>
 <button id="prepend">Prepend</button>
 <button id="append">Append</button>
 <button id="drop">Drop</button>
 </div>

 <svg width="600" height="600"></svg>
--snip--

Listing 14-20: Adding buttons to index.xhtml

Reload the page and you should see the three new buttons at the top.
Next, we’ll move the code that updates the visualization into its own
function. Replace the code in script.js with the content of Listing 14-21.

let numbers = [3, 2, 1];

❶ function update(data) {
 d3
 .select("svg")
 .selectAll("circle")

 x .data(data)
 .join("circle")
 .attr("cx", (d, i) => (i + 1) * 50)
 .attr("cy", 50)
 .attr("r", (d, i) => d * 5);
}

� update(numbers);

Listing 14-21: Moving the update code into its own function

There’s no functional change here—we’re just creating an update
function to do the SVG updating for us ❶, and then calling it �. Notice
that we’re passing data, the function’s parameter, to the .data method x,
rather than passing the numbers array directly.

Next we’ll add the code for handling button clicks, which will insert a
random floating-point number between 1 and 5 into the numbers array at the
start or end, or drop the last element in the array. Add the code in Listing
14-22 to the end of script.js.

--snip--

update(numbers);

❶ function getRandomNumber() {
 return 1 + Math.random() * 4;
}

x d3.select("#append").on("click", () => {
 numbers.push(getRandomNumber());
 update(numbers);
});

� d3.select("#prepend").on("click", () => {
 numbers.unshift(getRandomNumber());
 update(numbers);
});

� d3.select("#drop").on("click", () => {
 numbers.pop();
 update(numbers);
});

Listing 14-22: Updating on button clicks

First we declare a helper function for generating a random number ❶,
since there are two places where we need to do this. Then we declare the
handlers for the three buttons. Notice that instead of using the regular DOM
API methods for adding click handlers, as we’ve done previously in this
book, we’re using d3.select to select the buttons and the on method to add
an event handler. The regular DOM API methods would work as well, but
using D3 methods is more concise and more consistent with the other D3
code in this file.

The first handler is triggered by a click on the Append button x: it
pushes a random number onto the end of the numbers array, then we call the
update function to redraw the visualization with an extra circle. The second
handler, triggered by a click on the Prepend button, causes a random
number to be unshifted onto the front of the numbers array �. The third is
triggered by a click on the Drop button; it pops the last number from the
array �. After each of these actions we also call the update function.

Reload the page and try out the different buttons. You should see the
elements being added and removed as needed.

Transitions and Key Functions
Instead of updating a D3 visualization abruptly with each change in the
data, you can use transitions to allow elements to animate their attributes as
they change. Transitions are a useful feature in D3 because, if done right,
they allow you to see how data evolves. Let’s add a transition to our update
function to see how this works. Make the changes shown in Listing 14-23.

--snip--

function update(data) {
 d3
 .select("svg")
 .selectAll("circle")
 .data(data)
 .join("circle")
 .transition()
 .duration(500)
 .attr("cx", (d, i) => (i + 1) * 50)
 .attr("cy", 50)
 .attr("r", (d, i) => d * 5);
}
--snip--

Listing 14-23: Adding transitions

The transition method in a chain like this means that every following
attribute change will animate from its current value to the new value. The
duration method sets the length of the animation in milliseconds. This

means that the position and radius of each circle will take half a second
(500 ms) to animate from its current value to the new value. New circles
start off with default values of 0 for each attribute, so they will transition in
from the top-left corner of the SVG.

Unfortunately, the way we’ve coded our update function, the
animation won’t be quite as satisfying as you might want. Reload the page
and click Prepend a few times. You should see some odd behavior. You
might have expected the existing circles to move over to the right, making
room for a new circle being added on the left. Instead, the existing circles
all appear to resize in place, while a new circle flies in from the top-left
corner and takes its place to the right of the existing circles. With this
animation, it’s actually very hard to see that an element is being prepended
on the left. Rather, the animations suggest that an element is being
appended on the right, and that all the elements are being resized. Clicking
the Append button, on the other hand, does the correct thing: a new element
animates in and appears at the end of the row, while the existing elements
don’t change.

The problem here is that when D3 updates an existing selection with a
new array of data, it uses a default mode called join-by-index. This means
that the first item in the array is joined with the first element in the selection
(in this case, the leftmost circle), the second item in the array with the
second element in the selection, and so on. If there are more items in the
array than existing SVG elements, new elements are added at the end. Thus,
when you click Prepend and add a new number to the start of the data array,
every circle in the line is re-bound to a new datum. The first circle in the
line is bound to the new number that’s been added to the start of the array,
so it appears to resize. The second circle is bound to what used to be the
first number in the array, so it appears to resize as well, and so on. Finally,
since there’s now one more data item than there are SVG elements, a new
circle is created and added at the end of the line.

The solution to making the animation more intuitive is to help D3
understand the identity of each element in the array of data. Instead of
assuming that every index in the array will always map to the same index in
the selection, we provide what D3 calls a key function. The key function
allows us to specify something about each datum that identifies it uniquely.

This way, each existing datum stays bound to the same SVG element even
as new data is added, regardless of the ordering of the data.

The key function is passed as an optional second argument to the data
method. Listing 14-24 shows the necessary change to the update function.

--snip--

 .selectAll("circle")
 .data(data, d => d)
 .join("circle")
--snip--

Listing 14-24: Adding a key function

The key function d => d here says that given a datum, the datum itself
is the unique identifier. In this case, we’re just using raw numbers, so the
value of the number is as good as we can get for a <unique= identifier.
Usually you’ll be working with more complex data, and you can use the
key function to expose an identifier that is actually unique. For example, if
each datum were an object representing an employee with a unique
employeeId property, then you could use a key function like d =>
d.employeeId.

Reload the page and click Prepend. You should now see all the circles
slide to the right to accommodate the newly prepended element. This is
because D3 now knows which item in the new array should map to which
element in the selection when the array changes.

Advanced Joins
D3’s join method has extra options that give you more control over how
the visualization responds to changes in the data. When D3 joins new data
to an existing selection, some elements may be updated, some may be
added (for the case of a new datum with no existing element), and some
elements may be removed. In our case, we’ve seen how clicking Prepend
both adds a new element and updates all the other elements by shifting them
to the right. Meanwhile, clicking Drop removes the last element. In D3
parlance, adding a new element is called an enter, removing an existing
element is called an exit, and modifying an existing element is called an
update.

You can customize the join method by passing it three functions that
will be called for each of these three possible element changes. This way
you’re able to specify three different behaviors: one for entering elements,
one for elements that are being updated, and one for exiting elements. To
test this functionality, modify your update function as shown in Listing 14-
25. To start, these changes result in the same behavior we got from the
simple join method in the previous listing.

--snip--

 .data(data, d => d)
 .join(
 enter => enter.append("circle"),
 update => update,
 exit => exit.remove()
)
 .transition()
--snip--

Listing 14-25: The join method with enter, update, and exit functions

This more advanced version of the join method takes three functions.
The first function has a single parameter called enter, which is a selection
of temporary placeholders for each of the entering elements. To get the
same behavior as the simple .join("circle") version, we just use the
append method to add a circle to each enter placeholder. Note that the
enter placeholders themselves aren’t elements in the DOM. They’re just a
handle for D3 to give you a place to append your new entering elements,
before they get added to the DOM. For example, if there were five new
elements needing to be entered, then enter.append("circle") would
create five new circle elements and place them inside the svg element.

The second function has a single parameter called update, which is a
selection containing all the existing elements that are already bound to a
datum. To get the same behavior as before, we just return the selection
unchanged.

The third function has a single parameter called exit, which is a
selection containing all the elements that should be removed because they
no longer have a corresponding datum. To get the same behavior as before,

we call the remove method on the selection, which removes each exiting
element from the DOM.

When you reload the page, you should see the same behavior as before;
so far, this change doesn’t have any functional impact. Now that we have it
working, though, we can rework our animations to add some finesse. The
current shift-right animation for elements in the updating selection is fine,
but entering elements currently fly in from the top-left corner, and exiting
elements just disappear. Let’s instead make it so entering elements grow
into place from their correct position, and exiting elements shrink away to
nothing at their current position. The changes to implement that behavior
are shown in Listing 14-26.

--snip--

function update(data) {
 d3
 .select("svg")
 .selectAll("circle")
 .data(data, d => d)
 .join(
 enter => enter

 ❶ .append("circle")
 .attr("cx", (d, i) => (i + 1) * 50)
 .attr("cy", 50)
 .transition()
 .duration(500)

 x .attr("r", (d, i) => d * 5),
 update => update
 .transition()
 .duration(500)

 � .attr("cx", (d, i) => (i + 1) * 50),
 exit => exit
 .transition()
 .duration(500)

 � .attr("r", 0)

 � .remove()
);
}

update(numbers);
--snip--

Listing 14-26: Finessing the animations

In this updated code, we’ve moved all the transitions into the individual
enter, update, and exit functions, instead of having a single transition
call for all the elements. The enter function appends a circle element ❶
and then immediately sets its position (the cx and cy attributes), but not its
radius. Once the position is set, we use the transition method to animate
the radius from zero (the default value) to the value calculated from the
datum x. The order here is important: anything that comes in the chain
before the call to transition will happen immediately, and anything after
the call to transition will be animated. This means that any new circles
will appear in the right position immediately, and the change in size (from
zero to the desired radius) will animate. This will arguably look more
natural than the previous version, where all three attributes animated in
from zero, leading to the circles flying in from the corner.

The update function has to animate only the cx attribute of the circle
� to slide it to its updated position. All other attributes should be
unchanged for existing elements. Finally, the exit function animates the
radius of the circle back to zero � before removing it �. If remove is called
after a call to transition, as it is here, the actual element removal won’t
take place until after the animations have completed.

When you reload the page, you should see the new and improved
animations: new elements expand in at the appropriate position and
removed elements shrink away.

TRY IT YOURSELF

14-2. Try modifying the animations for entering elements. For example, right now the
radius expands from the default value of 0, but what if you wanted the radius to
start out big (say, 50) and then shrink to its correct value? Hint: you’ll need to set
the starting radius before the call to transition.

14-3. You can also animate color. For example, try starting the elements with a fill
attribute of purple, and then animating them to red.

14-4. What if you wanted to animate the circles in from the top of the screen, with a
fixed radius? Hint: move the setting of the radius to before transition, move the

setting of cy to after transition, and add a starting cy value of something like
-50.

Creating a Bar Graph
Now that you’ve learned the basics of D3, let’s put them to use in a small
project: creating a bar graph that visualizes the frequency of characters in a
text box. The bar graph will update as new text is typed or pasted into the
box. Creating this visualization will let you practice data joins, teach you
some new techniques like drawing axes to contextualize the data, and
prepare you for the more substantial project in the next chapter.

Setting Up
To get started, make a new directory called frequency and add empty
script.js and style.css files. Then create an index.xhtml file and add the code
in Listing 14-27.

<!DOCTYPE html>
<html>
 <head>
 <title>Character Frequency</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <div>

 ❶ <textarea rows="5" cols="70"></textarea>
 </div>
 <script src="https://unpkg.com/d3@7.4.4/dist/d3.js"></sc
ript>
 <script src="script.js"></script>
 </body>
</html>

Listing 14-27: The index.xhtml file for the character frequency project

This HTML document follows the same pattern we’ve been using
throughout the book. The only new addition is the textarea element ❶,

which creates a multiline text input. The rows and cols attributes set the
number of lines and the width (in fixed-width characters) of the text area.

Notice that the document doesn’t contain an svg element. We’re going
to create it using JavaScript. This is because we’ll need to refer to the svg
element’s width and height multiple times to determine the placement of
elements in the visualization, so it makes sense to define those parameters
in the JavaScript rather than in the HTML file. And since we’ll be defining
the width and height in the JavaScript, we may as well create the svg
element itself in the JavaScript, too. We’ll do that right now. Add the code
in Listing 14-28 to script.js.

const width = 600;
const height = 600;

// Add an svg element to the page
let svg = d3
 .select("body")
 .append("svg")
 .attr("width", width)
 .attr("height", height);

Listing 14-28: Creating the svg element using JavaScript

We first declare constants for the width and height of the svg element.
Then we use D3 to select the body element and append an svg element to it,
setting the width and height attributes in the process. We save the result of
creating the element into the variable svg because we’re going to need it
later.

Calculating Character Frequencies
Next, we’ll add the code for reading the text from the text area and counting
the number of occurrences of each character. This generates the underlying
data for the visualization. Anytime the text changes, we’ll need to update
the data and redraw the chart. For now, though, we’ll just read the text,
figure out the character frequencies, and log the output to the console. Add
the code in Listing 14-29 to the end of script.js.

--snip--

d3.select("textarea").on(❶ "input", e => {

x let frequencies = {};

� e.target.value.split(" ").forEach(char => {
 let currentCount = frequencies[char] || 0;
 frequencies[char] = currentCount + 1;
 });

 console.log(frequencies);
});

Listing 14-29: Calculating character frequencies

The input event ❶ is triggered anytime the content of the text area
changes, whether from typing, deleting, pasting, or some other action. The
first thing we do in the event’s handler function is initialize a new object for
keeping track of the character frequencies x. This frequencies object will
use characters for its keys and the number of appearances of that character
for its values. We then get the target of the event (the text area), get its
value (the text), and split it into its individual characters �. For each
character, we determine the current count for that character, defaulting to 0
if it hasn’t been seen yet. Then we add 1 to that count and store the new
count back in the object. Once all the characters have been counted, we log
the frequencies object to the console so we can check everything is
working as expected. Note that we recalculate the frequencies object
every time the text changes, rather than just trying to track added or deleted
characters. This makes it much easier to handle cases where multiple
characters are added or removed at once, for example, when text is pasted
into the box.

Load the page, and you should see the text area (the svg element is
invisible, but you can see it in the Elements panel if you want to check it’s
there). When you type text into the text area, you should see objects being
logged to the console on every keystroke, each time containing the
frequencies of the characters in the text area. For example, if you type in the
word hello, you’ll get this object after typing the final o:

{"h": 1, "e": 1, "l": 2, "o": 1}

A single object containing all the characters and their frequencies
works well for logging to the console, but what we’re going to want for
rendering with D3 is an array of objects, each describing a single character
and its associated frequency. This way, each entry in the array will be a
datum bound to a bar in our bar chart. To make the chart easier to read, the
array should be sorted alphabetically by character. Continuing with the
word hello, instead of the object shown previously, we need something like
this:

[
 {"char": "e", "count": 1},
 {"char": "h", "count": 1},
 {"char": "l", "count": 2},
 {"char": "o", "count": 1}
]

To put the data in this array format, change the end of script.js as
shown in Listing 14-30.

--snip--

 frequencies[char] = currentCount + 1;
 });

❶ let data = Object.entries(frequencies).map(pair => {
 return {char: pair[0], count: pair[1]};
 });

x data.sort((a, b) => d3.ascending(a.char, b.char));

 console.log(data);
});

Listing 14-30: Converting the frequency data to an array

First, we use Object.entries to convert the frequencies object into
an array of two-element arrays ❶, where the first element is the key and the

second element is the value. We map this array into an array of objects,
where the key is stored under the property char and the value is stored
under the property count. Next, we want to sort the data by character. The
sort method x orders the elements in an array by applying a comparison
function to every pair of elements a and b, to determine whether a should be
sorted after b or vice versa. Here we use the d3.ascending comparison
function, passing a.char and b.char, which means the array will be sorted
into ascending alphabetical order based on the char property of each object.

Reload the page, and you should now see this new data array being
logged as text changes in the text area.

Drawing the Bar Graph
Now that we have the data in the format we need, we can render it as a bar
graph. We’re going to start out with a basic, naive rendering for now, where
we simply create SVG rect elements with widths proportional to the
character frequencies. We’ll gradually build from there to create a more
informative visualization. Make the changes to script.js shown in Listing
14-31.

--snip--

// Add an svg element to the page
let svg = d3
 .select("body")
 .append("svg")
 .attr("width", width)
 .attr("height", height);

❶ function update(data) {
 svg
 .selectAll("rect")
 .data(data)

 x .join("rect")
 .attr("width", (d, i) => d.count * 5)
 .attr("height", 10)
 .attr("x", 20)
 .attr("y", (d, i) => i * 20);
}

d3.select("textarea").on("input", e => {

--snip--

 data.sort((a, b) => d3.ascending(a.char, b.char));

� update(data);
});

Listing 14-31: Defining the update function

Here we declare an update function ❶, which gets called every time
the text changes �. The function creates, updates, or deletes the SVG
elements needed to render the data, according to the same pattern we
learned earlier for binding data to a selection (using the data method) and
joining in the necessary elements with the simple version of the join
method.

The join method returns a selection containing all the current rect
elements x, including any that were just added. Each rect is now bound to
a single datum, which represents a single character and the number of
occurrences of that character. We set the width, height, x, and y attributes
as appropriate to create a horizontally oriented bar chart. The width
attribute is set to 5 times the character count, so every new instance of a
character makes the bar 5 pixels wider. The height attribute is a constant
value of 10 (all bars are the same height), and the x attribute is a constant
value of 20 (all bars start 20 pixels from the left of the SVG element). The y
attribute is set to 20 times the index of the datum, meaning that there will be
a bar every 20 pixels, giving 10 pixels of space between each bar.

Reload the page and type the word hello into the text area. As you type
each letter, you should see bars appear or update in the SVG element,
ending with something like Figure 14-9.

Figure 14-9: A basic bar chart

So far so good, but we still have a ways to go. There are two major
issues here. First, there are no axes or labels, so we don’t know what
character each bar represents or what the width of the bar corresponds to.
Second, there’s no autoscaling of the bar widths and heights, meaning that
we currently have a limit of 30 distinct characters and a count of 116 per
character before the bars don’t fit in the 600×600-pixel SVG element.
Luckily, both of these problems are easy to fix using D3.

Scaling the Bars
A scale in D3 is a way of converting from some data value to a visual
value. For example, earlier we set the width of the bars in our character
frequency graph to be five times the data value, which is a simple form of
scaling. In that case, we set the scale factor manually, but D3 can also
determine the scaling automatically based on the minimum and maximum
data values, known as the domain, and the minimum and maximum display
values, known as the range.

For example, say you’re plotting a graph of people’s ages. Your data
values range from 0 to 105, and the space for rendering those values ranges
from 30 to 330 pixels from the left side of the SVG. Your domain is thus [0,
105], and your range is [30, 330]. A value of 0 in the data domain maps to
30 in the visual range, and a value of 105 maps to 330. See Figure 14-10 for
a visual representation of this mapping.

Figure 14-10: Scaling values from a domain of [0, 105] to a range of [30, 330]

The beauty of D3 scaling is that the scale factor can change
dynamically based on changes in the domain. This way, the current
maximum data value can always map to the full visual range, even as the
maximum data value changes. To implement this dynamic scaling for our
bar graph, we need to keep track of the maximum count value among all
the data, and use that as the upper value of the domain. As a result, if the
maximum count increases, the bars that aren’t at the maximum count will
all scale down accordingly, while the bar at the maximum count will
continue to occupy the full horizontal range. For example, say that our
visual range for the bars is [0, 500], and we have the following data:

[
 {"char": "a", "count": 1},
 {"char": "b", "count": 1},
 {"char": "c", "count": 2}
]

The domain of our data would be [0, 2]. The "c" bar would be 500
units wide, and the "a" and "b" bars would each be 250 units wide. If we
then added another two c’s, the "c" bar would still be 500 units wide, but
now the "a" and "b" bars would each be 125 units wide.

Let’s implement that dynamic horizontal scaling now. Modify your
script with the code shown in Listing 14-32.

--snip--

// Add an svg element to the page
let svg = d3

 .select("body")
 .append("svg")
 .attr("width", width)
 .attr("height", height);

let margin = {top: 20, right: 10, bottom: 20, left: 50};

function update(data) {

❶ let xScale = d3.scaleLinear()
 .domain([0, d3.max(data, d => d.count)])
 .range([margin.left, width - margin.right]);

 svg
 .selectAll("rect")
 .data(data)
 .join("rect")

 x .attr("width", (d, i) => xScale(d.count) - xScale(0))
 .attr("height", 10)

 � .attr("x", xScale(0))
 .attr("y", (d, i) => i * 20);
}
--snip--

Listing 14-32: Creating a scale for the bar widths

First, immediately before the update function definition, we create an
object describing the margins of our bar chart diagram. These values
indicate how far from the edges of the SVG element the main body of the
diagram will be. As Figure 14-11 shows, when the time comes we’ll use
these margins to determine where to draw the bars and the axes.

Figure 14-11: How margins can be used to position a diagram in an SVG element (the
dotted line)

Inside the update function, we use the d3.scaleLinear method to
create a scale ❶. This means that input values map linearly to output values
(as opposed to logarithmically, for example). We set the domain from zero
to the max count, using the D3 max helper. This helper takes an array of data
and a function that returns a value from the datum, and returns the
maximum value. In this case, it’s returning the maximum count value. The
range is set from margin.left to width - margin.right and gives us the
position of the right side of the longest bar.

The scaleLinear helper gives us a function that maps from the data
domain to the visual range, which we assign to the variable xScale. (As
discussed in Chapter 5, it’s possible for a higher-order function to return
another function, as scaleLinear is doing here.) We modify our width
attribute setting to call that xScale function, passing the count from each
datum x. Here, xScale(0) gives the horizontal position of the left side of
the bar, which corresponds to the domain value 0, and xScale(d.count)
gives the horizontal position of the right side of the bar. To get the width of
the bar, we need to subtract xScale(0) from xScale(d.count), because the
width is just the distance between the left side of the bar and the right side
of the bar. This will give an appropriately scaled bar width based on the

count of each datum and the maximum count. We set the x attribute of the
bar to xScale(0) to enforce the left margin �.

Reload the page and start typing into the text area. The first time you
enter a character, a single bar will appear, at the maximum width. Try
typing abccc into the text area; you’ll see that as you add more c’s, the first
two bars (for a and b) get smaller.

Now let’s create a scale for the height of the bars, to make full use of
the vertical space of the svg element. The bars will start out tall but get
shorter to accommodate more bars as new characters are added to the text
field. Make the changes shown in Listing 14-33.

--snip--

function update(data) {
 let xScale = d3.scaleLinear()
 .domain([0, d3.max(data, d => d.count)])
 .range([margin.left, width - margin.right]);

❶ let yScale = d3.scaleBand()
 .domain(data.map(d => d.char))
 .range([margin.top, height - margin.bottom])
 .padding(0.5);

 svg
 .selectAll("rect")
 .data(data)
 .join("rect")
 .attr("width", (d, i) => xScale(d.count) - xScale(0))

 x .attr("height", yScale.bandwidth())
 .attr("x", xScale(0))

 � .attr("y", (d, i) => yScale(d.char));
}
--snip--

Listing 14-33: Scaling the bar heights

To create a scale for the heights of the bars, we use the d3.scaleBand
helper ❶. This lets us create a set of evenly spaced bands. The domain here
is slightly different, because instead of an array giving the minimum and

maximum values, it contains the full set of values. For example, if the
content of the text area were the word hello, the domain of the y scale
would be ["e", "h", "l", "o"] (remember that we sort the data
alphabetically). This would map to four evenly spaced bars.

The range here is from margin.top to height - margin.bottom,
which gives the range of y values the bars will exist in (the first bar will be
at the top and the last at the bottom). The padding value defines how much
space there is between bars based on the space available: 0 means that they
are as tall as possible and will be touching, while 0.5 means that the bars
will take up half of the space available.

Scales created using scaleBand also have a bandwidth method that
returns the scaled size of the bands, which we can use to set the height of
the bars x. (The method is called bandwidth on the assumption that the
bars are oriented vertically, whereas ours are oriented horizontally.) To get
the y attribute of the bar, we pass d.char to the yScale function �, because
the domain of this scale is all the characters present in the data.

Reload the page and type some text into the text area. The first
character you enter will cause a single tall black bar to appear, but for every
unique character you type a new bar will be added, and the heights of the
existing bars will decrease to make space. Figure 14-12 shows how the
visualization should look.

Figure 14-12: Our bar graph scaled in both dimensions

Try typing in different text to get a feel for how the bars update as the
data changes. Next we’ll add axes with labels, which will update along with
the scaling to show the actual range of data. This will make it much easier
to understand the graph.

Adding Labeled Axes
The D3 axis helpers allow you to draw axes along the sides of your
diagrams. An axis in D3 includes a horizontal or vertical line, with small
tick marks drawn perpendicular to this line and the value for each tick, as

shown in Figure 14-13. The axis allows you to see the values in the data
domain.

Figure 14-13: An axis for the numbers 0 to 8

Axes are closely linked to scales, and indeed you need a scale to create
an axis. For example, the axis in Figure 14-13 is 540 pixels wide and
contains the numbers from 0 to 8. This axis was created using a scale with a
domain of [0, 8] and a range of [0, 540].

To draw an axis, you first have to define a g element that will contain
the axis elements. You then create an axis generator object using one of the
D3 axis helpers, and finally use the generator object to draw the axis
elements into the g element.

Our diagram is going to have two axes: a top axis for showing the
count values, and a left axis for showing the character values. First, we’ll
add the g elements, as shown in Listing 14-34.

--snip--

let margin = {top: 20, right: 10, bottom: 20, left: 50};

// Top axis container

❶ let topContainer = svg
 .append("g")
 .attr("id", "top")

 .attr("transform", x `translate(0, ${margin.top})`);

// Left axis container

� let leftContainer = svg
 .append("g")
 .attr("id", "left")

 .attr("transform", � `translate(${margin.left}, 0)`);

function update(data) {
--snip--

Listing 14-34: Adding g elements for containing the top and left axes

We create the top axis container ❶ by appending a g element to the svg
element and giving it an id of "top". Because we defined the range for
xScale to be [margin.left, width - margin.right], that will also
define the visual range of the axis. xScale doesn’t have any knowledge of
vertical positioning, however, which is why we have to translate it down by
margin.top x. We store the element selection in a variable called
topContainer so we have a reference to it for later when drawing the axis
into the container. The left axis container is created similarly �, but this
time we have to translate it to the right by margin.left �, since yScale
has no knowledge of horizontal positioning.

Now that we have the containers, we can draw the axes. Make the
changes shown in Listing 14-35 to the update function.

--snip--

 let yScale = d3.scaleBand()
 .domain(data.map(d => d.char))
 .range([margin.top, height - margin.bottom])
 .padding(0.5);

 let topAxis = d3.axisTop(xScale);

 let leftAxis = d3.axisLeft(yScale);

 topContainer
 .call(topAxis);

 leftContainer
 .call(leftAxis);

 svg
 .selectAll("rect")
 .data(data)
 .join("rect")
--snip--

Listing 14-35: Drawing the axes

Here we call d3.axisTop, passing xScale, and d3.axisLeft, passing
yScale. This gives us two axis generators, topAxis and leftAxis. Axis
generators take a selection of an element and draw an axis into that element.
Instead of passing a selection to the axis generators, however, we instead
pass the generators themselves to a D3 method called call. This method,
when chained to a selection (such as topContainer or leftContainer, in
this case), calls the provided function on the current selection. Thus, writing
topContainer .call(topAxis); is equivalent to writing
topAxis(topContainer);, with either statement drawing the top axis of the
bar graph. It’s considered more idiomatic to use call, and this makes it
easier to chain other methods to the statement.

Reload the page and type some text in the text area. You’ll see the axes,
as shown in Figure 14-14.

Figure 14-14: Our bar chart, now with axes

If you inspect the axes in the web inspector, you’ll see that they’re
made up of g, path, text, and line elements. A line element is like a path,
but it just defines the start and end points with the x1, x2, y1, and y2
attributes. These attributes default to 0 in the SVG specification, which

often works just fine for the purposes of drawing these axes, so you’ll
notice in the inspector that many of the line attributes aren’t set explicitly.

There are two things that are a bit off about the top axis right now.
First, as you can see in Figure 14-14, the labels include numbers with
decimal points, like 2.5, but we care only about whole numbers (you can’t
have half a character). So, we need to find a way to render only whole
numbers, also known as integers. Second, if you enter a string of 15 of the
same character (for example, aaaaaaaaaaaaaaa), then the labels will show
only even numbers from 0 to 14, and there won’t be a label for 15, as shown
in Figure 14-15. You’ll continue to see this problem as the maximum count
increases, especially beyond 30, where the ticks switch to multiples of 5.

Figure 14-15: The top axis when the maximum count is 15

What we’d prefer here is for the domain to extend to 16, to give a
nicer-looking axis. Luckily, this second problem is easy to fix. D3 scales
have a nice method that extends their domain to the next <round= number,
which in this case means the next number for which a tick would be drawn.
Listing 14-36 shows how to incorporate this method.

--snip--

 let xScale = d3.scaleLinear()
 .domain([0, d3.max(data, d => d.count)])
 .range([margin.left, width - margin.right])
 .nice();
--snip--

Listing 14-36: Making our x scale <nice=

When you reload the page and again type in 15 of the same character,
you’ll see that the axis now extends to 16. Rendering only integers requires
a little more effort. The basic approach here is to get the tick values, filter
them to only integers, and then set those tick values on the axis.
Additionally, we want to change the number rendering to exclude the
decimal point, so we render 1 and not 1.0. These changes are shown in
Listing 14-37.

--snip--

 let yScale = d3.scaleBand()
 .domain(data.map(d => d.char))
 .range([margin.top, height - margin.bottom])
 .padding(0.5);

❶ let topAxisTicks = xScale.ticks()
 .filter(tick => Number.isInteger(tick));

 let topAxis = d3.axisTop(xScale)

 x .tickValues(topAxisTicks)

 � .tickFormat(d3.format("d"));

 let leftAxis = d3.axisLeft(yScale);
--snip--

Listing 14-37: Rendering integer ticks on the top axis

First we have to get the ticks, which are available using the ticks
method on the xScale generator ❶. We then filter the ticks to integer values
using Number.isInteger. This will convert an array like [0, 0.5, 1,
1.5, 2, 2.5, 3, 3.5, 4] to [0, 1, 2, 3, 4]. Next, we set the filtered
tick values on the top axis using the tickValues method x. Finally, we use
the tickFormat method to set a rendering format for the numbers �. This
method takes a formatting function that will be used to format each tick
value. In this case, d3.format("d") returns a function that formats numbers
without the decimal point.

Reload the page and enter some text again; you should see whole
numbers rendered without the decimal point.

Styling with CSS and Regular Expressions
Next we’re going to improve the appearance of our graph with some CSS
styles. In order to better differentiate the types of characters, we’ll give
different colors to the bars depending on whether they’re lowercase letters,
uppercase letters, numbers, or any other character. To do this, we’ll need a
function that can distinguish between these types of characters. The
function will use regular expressions, which are a way of specifying
patterns in strings of text and then determining if other strings match those
patterns.

NOTE
JavaScript’s regular expression capabilities are very powerful, but we’ll be
considering only the features we need for this project. To learn more, check
out the website https://www.regular-expressions.info, or search MDN for
<regular expressions.=

JavaScript has a regular expression literal syntax that is delimited by
forward slashes. For example, /hi/ is a regular expression literal that
matches any string containing the sequence of characters hi. The hi can
occur anywhere in the string. For example, the regular expression /hi/
would match the words hither, Chicken, and sushi. You can more narrowly
define a regular expression’s pattern by adding special characters. For
example, a caret (^) at the start of an expression indicates the character
sequence should occur at the start of a string, so /^hi/ matches any string
that starts with hi. Similarly, a dollar sign ($) at the end of an expression
indicates the character sequence should occur at the end of a string, so
/hi$/ matches any string that ends with hi.

You can use the test method on a regular expression to see if a
particular string matches it. Here are some examples in the JavaScript
console:

/^hi/.test("hi there");
true
/^hi/.test("Chicken");
false

https://www.regular-expressions.info/

The string "hi there" passes the test, because hi appears at the beginning
of the string, whereas "Chicken" fails.

You can use ^ and $ together to create a regular expression where the
full string must match. For example, /^hi$/ will match only the string "hi"
and nothing else, as you can see here:

/^hi$/.test("hi");
true
/^hi$/.test("him");
false

To match a range of characters instead of a single character, use square
brackets and a hyphen to describe the range. For example, /[a-z]/ matches
any lowercase character from a to z. The regular expression /^[A-Z][a-
z]$/ matches a string containing an uppercase letter followed by a
lowercase letter, and no other characters. Try it out in your console:

/^[A-Z][a-z]$/.test("Hi");
true
/^[A-Z][a-z]$/.test("iH");
false
/^[A-Z][a-z]$/.test("Hip");
false

For this project, we need three regular expressions: /^[a-z]$/
(matching a single lowercase letter), /^[A-Z]$/ (matching a single
uppercase letter), and /^[0-9]$/ (matching a single digit). If a character
doesn’t match any of those expressions, we’ll know it’s some other kind of
character, like a space or a punctuation mark. See Listing 14-38 for the new
getClass function, which uses those regular expressions to choose a CSS
class name for a given character’s bar. Add this function to script.js
immediately before the update function.

--snip--

// Left axis container
let leftContainer = svg

 .append("g")
 .attr("id", "left")
 .attr("transform", `translate(${margin.left}, 0)`);

function getClass(char) {
 if (/^[a-z]$/.test(char)) {
 return "lower";
 } else if (/^[A-Z]$/.test(char)) {
 return "upper";
 } else if (/^[0-9]$/.test(char)) {
 return "number";
 } else {
 return "other";
 }
}

function update(data) {
--snip--

Listing 14-38: The getClass function

This function tests a character against the provided regular expressions
and returns the appropriate class name: "lower", "upper", "number", or
"other". Next, we’ll update the rendering code to use this function to set a
class name on each rect element, as shown in Listing 14-39.

--snip--

 svg
 .selectAll("rect")
 .data(data)
 .join("rect")
 .attr("width", (d, i) => xScale(d.count) – xScale(0))
 .attr("height", yScale.bandwidth())
 .attr("x", xScale(0))
 .attr("y", (d, i) => yScale(d.char))
 .attr("class", (d, i) => getClass(d.char));
}
--snip--

Listing 14-39: Applying the class name based on the character

Now every rect element will have a class name based on the character
from that element’s datum. The last step is to write the CSS that will give
each class name a different fill color. Add the CSS code in Listing 14-40 to
style.css.

.lower {
 fill: purple;
}

.upper {
 fill: orangered;
}

.number {
 fill: green;
}

.other {
 fill: #555;
}

Listing 14-40: Defining styles for the different classes

Now when you reload the page and type in some different characters,
you should see something like Figure 14-16.

Figure 14-16: Color-coded bars

The bars should be assigned different colors based on the kind of
character entered.

Cleaning the Data
Often it’s necessary to clean a dataset by fixing any mistakes or
irregularities it contains before visualizing it. For example, one problem
with the current approach to our bar graph is that different whitespace
characters show up as different bars, each with an invisible label (because
the text of the label is just whitespace). These whitespace characters include
spaces, newlines, tabs, and various other kinds of spaces that you can type
with different key combinations (for example, a non-breaking space, which
you can enter with OPTION-spacebar on macOS or CTRL-SHIFT-spacebar on
Windows). To fix this, we’ll convert all whitespace characters to the same "
<space>" string before the character counting, so all whitespace will be
visualized by a single bar with a readable label. Update your script.js file as
shown in Listing 14-41. These updates come near the end of the file.

--snip--
function standardizeSpace(char) {

❶ if (char.trim() == " ") {
 return "<space>";
 } else {
 return char;
 }
}

d3.select("textarea").on("input", e => {
 let frequencies = {};

 e.target.value.split(" ").forEach(char => {

 x let standardized = standardizeSpace(char);
 let currentCount = frequencies[standardized] || 0;
 frequencies[standardized] = currentCount + 1;
 });
--snip--

Listing 14-41: Standardizing whitespace characters

We first declare a standardizeSpace function that takes a character
and calls the trim method on it ❶. The trim method removes whitespace at
the start or end of a string, so if it returns an empty string, we know the
character is whitespace. In this case, we return the string "<space>".
Otherwise, we return the character unchanged. We then have to modify the
text processing code to call our function and standardize the whitespace
characters x before using them as keys in the frequencies object.

Now when you enter various kinds of whitespace characters in the text
area, you should see a single bar labeled <space> instead of multiple bars
with empty labels.

Animating the Changes
Our final task is to add animations to the axes and bars. This will make it
easier to see when new elements are added and when the counts for existing
elements change. To animate the axes, all we need to do is add a call to
transition to the topContainer and leftContainer selections inside the
update function, as shown in Listing 14-42.

--snip--

let leftAxis = d3.axisLeft(yScale);

topContainer
 .transition()
 .call(topAxis);

leftContainer
 .transition()
 .call(leftAxis);
--snip--

Listing 14-42: Adding animations to the axes

Now when the domains for the axes update to accommodate new data,
the existing ticks will animate to their updated positions, and new ticks will
fade in.

We have two options for adding transitions to the bars: we could keep
the existing join code and just add a single call to transition, or we could
use the advanced join technique described earlier, which would let us
customize the transitions depending on whether the elements are entering,
updating, or exiting. As you might guess, we’re going to go with the
advanced version! You can find the updated update code in Listing 14-43.

--snip--

 leftContainer
 .transition()
 .call(leftAxis);

 svg
 .selectAll("rect")

 ❶ .data(data, d => d.char)
 .join(

 x enter => enter
 .append("rect")
 .attr("x", xScale(0))
 .attr("y", (d, i) => yScale(d.char))
 .attr("class", d => getClass(d.char))
 .transition()

 .attr("width", d => xScale(d.count) - xScale(0))
 .attr("height", yScale.bandwidth()),

 � update => update
 .transition()
 .attr("width", d => xScale(d.count) - xScale(0))
 .attr("height", yScale.bandwidth())
 .attr("y", (d, i) => yScale(d.char)),

 � exit => exit
 .transition()
 .attr("width", 0)
 .attr("height", 0)
 .remove()
);
}
--snip--

Listing 14-43: Animating the bars

The first thing we have to do is set a key function ❶ to tell D3 that the
datum’s char property should be used as its identifier. Next, we switch to
the advanced join technique, similar to Listing 14-25. The enter function
x first adds the rect element and sets its x, y, and class attributes before
the call to transition, meaning that these attributes won’t be animated.
The width and height attributes come after the call to transition, so these
attributes will be animated. This way, new elements will grow in place from
the left axis.

The update function � animates the width and height again, but also
animates the y attribute. This means that existing elements will slide up or
down to their new position when new elements are added.

Finally, the exit function � animates the width and height to 0 before
the element is removed, causing elements to shrink away to nothing at their
previous position.

Reload the page and try adding and removing characters in the text
area. Enjoy watching how the elements animate in, out, or update.

Summary

In this chapter you learned the basics of SVG, and how to use D3 to create,
update, and remove SVG elements based on real-time changes in a dataset.
By now, you should have a pretty good understanding of how to build a
data-based application in D3. In the next chapter, we’ll put this knowledge
to work by building an application that reads data from an API and renders
it into an interactive diagram.

15
VISUALIZING DATA FROM THE GITHUB

SEARCH API

In this final project, you’ll build an
application that reads data from a

public API and uses D3 to build an interactive bar
chart based on that data. We’ll be reading data from
the GitHub Search API. This API allows you to
search for data on GitHub, a service that hosts Git
repositories (Git is a popular version control system
for keeping track of software project source code).
The API uses the HTTPS protocol and returns JSON-
formatted data based on a search query you encode
into a URL.

If you haven’t used GitHub before, go to https://github.com to see what
it looks like. At the top of the page, you’ll see a search box that you can use
to search for public, open source repositories (that is, repositories whose
source code is available to anyone to read and use). Instead of using that
search box manually, the GitHub Search API lets us perform searches
programmatically—for example, with JavaScript. The API can search for
various items on GitHub, such as repositories, users, and issues. We’ll be
using the repository search feature to find top JavaScript repositories. Then
we’ll draw a D3 bar chart ranking the repositories by popularity. The viewer

https://github.com/

will be able to learn more about each repository by hovering over its bar.
We’ll also add some interactivity by allowing the viewer to hide or show
repositories based on their software license.

This project will give you experience working with real-world data
from a JSON API. A huge amount of programming boils down to making
requests to third-party APIs and then doing some work with the returned
data, as you’ll practice here. You’ll also put everything you learned about
D3 in Chapter 14 to work, building up a more interesting, interactive chart,
and you’ll learn some techniques for creating richer visualizations.

Setting Up
To get started, create a new directory called github, and add empty style.css
and script.js files. Then make an index.xhtml file and add the code in
Listing 15-1.

<!DOCTYPE html>
<html>
 <head>
 <title>GitHub</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <script src="https://unpkg.com/d3@7.4.4/dist/d3.js"></sc
ript>
 <script src="script.js"></script>
 </body>
</html>

Listing 15-1: An index.xhtml file for our GitHub Search API visualization

This is the same basic HTML file we used in Chapter 14. It gives us
access to D3 through a script element linking to a copy of the library on
https://unpkg.com.

Fetching Data
Now let’s try getting some data from the GitHub Search API. To do this, we
need to format our request for data as part of a URL. Visiting that URL

https://unpkg.com/

retrieves the data. The whole URL, including the search query we’ll be
using, looks like this (note that it’s been broken onto two lines here to fit the
page):

https://api.github.com/search/repositories?q=language%3Ajava
script%20stars%3A
%3E10000&per_page=20&sort=stars

Rather than type out the URL manually, however, we’ll build it up using
JavaScript, which will make it easier to understand and modify.

The URL has two parts: a base URL, which gives us access to the API,
and a query string, where we specify what data we want. These two parts
are separated by a question mark (?). The query string contains pairs of
keys and values that are used to send information to the API about the
query we’re making. Each key and value is joined by an equal sign (=), and
each key-value pair is separated by an ampersand (&). In this URL, the keys
are q (search query), per_page (number of results per page), and sort (how
to sort the results). The keys and values in query strings are allowed to
contain only a limited set of characters: a–z, A–Z, 0–9, hyphen (-), period
(.), underscore (_), tilde (~), and a limited set of other special characters.
All other characters must be represented using the URL encoding system,
which is where all the percent (%) characters in the URL come from. For
example, a colon (:) is encoded as %3A and a space is encoded as %20.

To simplify things, we’ll write a function that takes an object with the
unencoded query string parameters and converts it to a properly formatted
and encoded URL. Add the code in Listing 15-2 to script.js.

function getUrl() {

❶ let baseUrl = "https://api.github.com/search/repositorie
s";

x let params = {
 q: "language:javascript stars:>10000",
 per_page: 20,
 sort: "stars"
 };

� let queryString = Object.entries(params).map(pair => {
 return `${pair[0]}=${encodeURIComponent(pair[1])}`;
 }).join("&");

� return `${baseUrl}?${queryString}`;
}

let url = getUrl();

console.log(url);

Listing 15-2: Creating the URL

The code to create the URL lives in the getUrl function. This function
first sets the base URL (the part of the URL before the query string) ❶.
Then, to build the query string, we start by creating a params object x, with
the search query q using GitHub’s search query format. Specifically, we’re
searching for repositories whose language is JavaScript that have over
10,000 stars (users on GitHub can <star= repositories to save them for later,
so the number of stars is a rough measure of popularity). You can try out
this query in the search box on https://github.com if you want.

Next, we map over the key-value pairs in params, creating a string for
each pair with the format "key=value" �. The keys don’t need to be URL-
encoded—unquoted object keys don’t contain any special characters, so
they’re already valid in URLs—but we encode the values using the built-in
function encodeURIComponent, which replaces any disallowed characters
with their percent-encoded versions. We then join the strings together,
separating them with the & character, and build and return the final URL by
combining the base URL, the ? character, and the query string �. We end
the script by calling our getUrl function and logging the result to the
console.

When you load the page and open the console, you should see the URL
shown earlier printed there. If you copy that URL and paste it into your
browser’s address bar, you should see a bunch of JSON data. If not, make
sure the URL matches the URL on the previous page, and check your code
if it doesn’t. If the URL looks correct and you’re not getting data, or you’re

https://github.com/

getting an error message, it’s possible that GitHub has changed the way its
API works. See the upcoming box <Authenticated vs. Unauthenticated
APIs= for guidance on what to do in this case.

To bring the JSON data into your application you can use D3’s json
helper method, which fetches JSON from a given URL. Update the end of
script.js as shown in Listing 15-3.

--snip--

let url = getUrl();

d3.json(url).then(data => {
 console.log(data);
});

Listing 15-3: Fetching JSON data

Fetching a bunch of data from an API may take a little time, so the
d3.json method returns a Promise, a type of object that represents
something that will be available in the future. The then method takes a
function that will be called when the data is ready. D3 converts the JSON
response string into a JavaScript object, so data will be an object. Here, we
just log it to the console.

AUTHENTICATED VS. UNAUTHENTICATED APIS

The GitHub Search API is an HTTP API, meaning it exchanges data using HTTP over
the HTTPS protocol. This kind of API can be either authenticated or unauthenticated.
An authenticated API requires you to somehow prove your identity to the API owner,
for example, by providing a secret key with your request, whereas unauthenticated
APIs have no such requirements.

Unfortunately, with browser-based JavaScript applications like the one we’re
writing here, there’s no easy way to use an authenticated API without exposing some
secret information. For that reason, when you need to work with an authenticated API,
it’s most common to break the application into two pieces: backend code running on a
server that communicates securely with the authenticated API, and frontend code
running in the browser that communicates with the backend. This way, the browser
code and the API don’t need to interact directly.

It’s perfectly possible to write backend code in JavaScript using a framework called
Node.js, but that’s outside of the scope of this book. Instead, we’ll keep all the
application code in the browser, and stick to unauthenticated APIs like the GitHub
Search API we’re using here. On the off chance that GitHub is no longer supporting

this unauthenticated API at the time you read this book, however, this arrangement will
no longer work, and you’ll have problems running Listings 15-2 and 15-3. In case that
happens, I’ve provided a snapshot of the GitHub Search API data we’ll be using for this
project, which you can access through the URL https://skilldrick-jscc.s3.us-west-
2.amazonaws.com/gh-js-repos.json. To use this snapshot of the data, replace the
content of your script.js file with the following code:

let backupUrl =
 "https://skilldrick-jscc.s3.us-west-2.amazonaws.com/gh-
js-repos.json";

d3.json(backupUrl).then(data => {
 console.log(data);
});

You’ll now be able to continue with the rest of the project code as written, starting
from Listing 15-4.

When you reload the page, after waiting a few seconds you should see
the data in the console. Take a moment to inspect it. You should see three
top-level properties: incomplete_results, items, and total_count. The
incomplete _results property will be true if the query took too long and
the API was able to return only partial results; otherwise, it will be false.
The total_count property gives the total number of results for this search
query (this is the total number of results the search found, of which only the
first 20 are returned). The items array contains the results of the current
call; it should contain 20 items. Each item is an object with some
information about a particular repository, including its name, description,
and various other details. Several of the fields are themselves GitHub API
URLs that can be called to get additional information about the repository.
For example, languages_url is an API URL that tells you what
programming languages are used in the repository, broken down by the
number of lines of code per language.

In this project, we’ll be using several fields from each item: full_name,
stargazers_count, html_url, and license. The full_name field holds the
name of the repository owner and the name of the repository joined with a
forward slash: for example, "facebook/react". The stargazers_count

https://skilldrick-jscc.s3.us-west-2.amazonaws.com/gh-js-repos.json

field gives the number of times the repository has been starred by users.
The html_url field holds the repository’s URL on GitHub. Finally, license
has data about which software license the repository uses.

NOTE
Open source code owners use software licenses to tell other users what they
can and can’t do with their code. For example, some licenses are very
restrictive, stating that the code can’t be used in an application whose code
isn’t itself open source. Others are much more permissive, allowing you to
do whatever you want with the code.

The Basic Visualization
Now that we have the data, we’ll create a basic bar chart showing how
many stars each repository in the dataset has received. To do this, we’ll
create the required SVG elements, draw the axes, and draw the bars
themselves. Later we’ll improve on this basic chart, making it more
informative, stylish, and interactive.

Creating the Elements
To create our chart, we first have to create the svg element that will hold it
and the two g elements for the axes. In this case, the axes will be on the
bottom and left sides. Add the code in Listing 15-4 to the start of script.js,
before the getUrl function.

const width = 600;
const height = 400;

let svg = d3
 .select("body")

❶ .append("svg")
 .attr("width", width)
 .attr("height", height);

x let margin = {top: 20, right: 10, bottom: 20, left: 50};

// Bottom axis container

let bottomContainer = svg

� .append("g")
 .attr("id", "bottom")
 .attr("transform", `translate(0, ${height - margin.botto
m})`);

// Left axis container
let leftContainer = svg

� .append("g")
 .attr("id", "left")
 .attr("transform", `translate(${margin.left}, 0)`);

function getUrl() {
--snip--

Listing 15-4: Setting up the elements

Much like we did for the character frequency chart in Chapter 14, we
append an svg element to the page ❶ and set its width and height. We then
create a margin object x and append the g elements for containing the
bottom � and left � axes, which we position based on the margins.

Drawing the Axes
With the elements created, we can make a start on the update function,
which will draw the visualization. First, we’ll create the scales based on the
data and draw the axes. Make the changes to script.js shown in Listing 15-
5.

--snip--

// Left axis container
let leftContainer = svg
 .append("g")
 .attr("id", "left")
 .attr("transform", `translate(${margin.left}, 0)`);

function update(items) {

❶ let xScale = d3.scaleBand()
 .domain(items.map(d => d.full_name))
 .range([margin.left, width - margin.right])

 .padding(0.3);

 let yScale = d3.scaleLinear()

 x .domain([0, d3.max(items, d => d.stargazers_count)])
 .range([height - margin.bottom, margin.top])
 .nice();

� let bottomAxis = d3.axisBottom(xScale);
 let leftAxis = d3.axisLeft(yScale);

� bottomContainer.call(bottomAxis);
 leftContainer.call(leftAxis);
}

function getUrl() {

--snip--

d3.json(url).then(data => {

� update(data.items);
});

Listing 15-5: Drawing the axes

The update function takes the items array from the API response. Our
bar chart will have a vertical bar for each repository, so we create the
horizontal xScale using the scaleBand helper to evenly space the bars ❶.
The domain is the full_name from each repository. Each repository’s full
name is unique, so this will result in 20 bands. The vertical yScale is used
to visualize the number of stars that each repository has, so its domain goes
from zero to the max stargazers_count x. We use nice here to round the
top of the scale to the next tick value. After creating the scales, we create
the axis generators � and then use those generators to draw the axes to the
containers �, as we did for the character frequencies project.

The last thing to do here is call our update function from inside the
d3.json callback, passing the items array �. We’re able to go straight
from fetching the data to calling update because the GitHub Search API
conveniently returns the data in the format we need for rendering. There’s

no need to do any processing of the data like we did in the character
frequencies example, where the source data was just a string and we needed
a sorted array of objects describing each character and its count.

When you reload index.xhtml you should now see the axes, as shown in
Figure 15-1. We’ll fix the bottom axis labels shortly; they’re a mess right
now because D3 is trying to render the full name of each repository. Also,
your left axis scale may go higher than the 200,000 shown in the figure,
depending on how many stars the most popular JavaScript project has when
you run this code. At the time of this writing, facebook/react had the most
stars of any JavaScript project on GitHub, at around 196,000.

Figure 15-1: The axes

Given that we’re working with such large numbers here (and getting
larger every day), we can increase readability by using SI prefixes like k for
1,000. This is easy to do in D3 with the right number format. While we

make that change, we’ll also remove the ticks from the bottom axis. See
Listing 15-6 for these changes.

--snip--

 let yScale = d3.scaleLinear()
 .domain([0, d3.max(items, d => d.stargazers_count)])
 .range([height - margin.bottom, margin.top])
 .nice();

 let bottomAxis = d3
 .axisBottom(xScale)

 ❶ .tickValues([]);

 let leftAxis = d3
 .axisLeft(yScale)

 x .tickFormat(d3.format("~s"));

 bottomContainer.call(bottomAxis);
 leftContainer.call(leftAxis);
--snip--

Listing 15-6: Cleaning up the scales

For the bottom axis, we’re updating the tick values to be an empty list
❶, which effectively removes the ticks. For the left axis, we’re adding a
tick format using the format specifier "~s" x, which will, for example,
render the number 200,000 as 200k and 1,000,000 as 1M. Figure 15-2 shows
how the updated axes should now look.

Figure 15-2: The axes after some cleanup

The numbers in the left axis are now easier to read at a glance, and the
bottom axis is no longer a jumble of text.

Drawing the Bars
Now that the axes are drawn, we need to draw the bars themselves. Add the
code in Listing 15-7 to the end of the update function.

--snip--

 bottomContainer.call(bottomAxis);
 leftContainer.call(leftAxis);

 svg
 .selectAll("rect")

 .data(items, ❶ d => d.full_name)
 .join("rect")
 .attr("x", d => xScale(d.full_name))

 x .attr("y", d => yScale(d.stargazers_count))

 .attr("width", xScale.bandwidth())

 � .attr("height", d => yScale(0) - yScale(d.stargazers_cou
nt));
}

function getUrl() {
--snip--

Listing 15-7: Drawing the bars

As in the character frequencies project, we’re drawing a bunch of rect
elements. The key function ❶ extracts the full_name property, which we’re
using here as the unique identifier for each repository. For now, we’re using
the simple join technique, without separate handling for entering, updating,
and exiting elements (that will come later).

The x attribute is set based on looking up the full_name in xScale, and
the width is based on the bandwidth method on xScale. The y and height
attributes are a bit trickier this time and require some explanation. If you
look back at the definition of yScale in Listing 15-5, you’ll see that the
domain is [0, d3.max(items, d => d.stargazers_count)] and the range
is [height - margin .bottom, margin.top]. With the values we’ve set,
that range expands to [380, 20]. The range goes from high to low,
meaning that high values in the domain map to lower values in the range,
and vice versa. This is because y values in computer graphics count down
from the top of the screen, but in our graph we want y values to count up
from the bottom of the graph. The other thing that makes this tricky is that
SVG rectangles are drawn from the top-left corner, which will likely be
different for each bar, so we need to set a variable height that makes all the
bars hit the bottom axis.

Because of all this, we set the y attribute of the bar to
yScale(d.stargazers _count) x, which gives the vertical position of the
top of the bar. To calculate the height of the bar, we use yScale(0) -
yScale(d.stargazers_count) �. Calling yScale(0) gives the vertical
position of the bottom of the bar (all the bars should have their base at 0 in
the domain), so subtracting the position of the top of the bar from the
position of the bottom of the bar gives the height of the bar. We need to end

up with a positive height, so we have to subtract the smaller number from
the larger number. The top of the bar is a smaller number in the display
range, even though it’s a larger number in the domain. Figure 15-3 shows
how the bars should look, though keep in mind that your bar heights may be
different based on how the data evolves.

Figure 15-3: Drawing the bars as rect elements

As you look at the bars, remember that each bar is drawn from its top-
left corner, and that the heights are calculated such that the bottoms of all
the bars align.

TRY IT YOURSELF

15-1. Try modifying the width of the bars by changing the padding on the xScale
object.

15-2. For more of a challenge, try modifying the domain of the data along the left axis
so the minimum value is based on the minimum number of stars rather than

starting at zero. Hint: this makes calculating the bar heights a little more
complex, as you can’t subtract from yScale(0) now. To get the appropriate
height, you’ll need to replace yScale(0) with yScale.range()[0]. yScale.range()
gives you the two-element array of the minimum and maximum range values
after applying the nice rounding.

Improving the Visualization
We now have a basic visualization up and running, but it isn’t terribly
informative. In this section, we’ll implement some improvements to make
the visualization more meaningful. We’ll create a way to see more
information about each repository. We’ll also color-code the bars to show
each repository’s license type, and make sure the axes are properly labeled.

Showing Repository Info
The current graph doesn’t give any way of identifying which repository
each bar represents. There are various ways to solve this (for example,
vertically or diagonally oriented tick labels, or some kind of tooltip, a text
field that pops up when a bar is hovered), but for this project we’ll add a
permanent sidebar that shows more information about a bar when you hover
over it. First, we’ll add the HTML for the sidebar to index.xhtml, as shown
in Listing 15-8.

--snip--

 <body>
 <div id="sidebar">
 <div id="info" class="box">
 <p class="repo">
 Repository

 ❶
 </p>
 <p class="license">
 License

 </p>
 <p class="stars">
 Stars

 </p>
 </div>
 </div>

 <script src="https://unpkg.com/d3@7.4.4/dist/d3.js"></sc
ript>
 <script src="script.js"></script>
 </body>
--snip--

Listing 15-8: Adding the sidebar HTML to index.xhtml

Here we set up a div called info with the elements that we’ll need to
display the repository information. It’s nested inside another div called
sidebar. This outer div may seem superfluous now, but later we’ll add
another div element to the sidebar, so we’ll need the parent div element to
contain the two sidebar div elements.

The info div will show the repository name, its license type, and its
number of stars. We use span elements to wrap parts of the text. A span is a
container element like a div, but unlike div elements, which create a new
block, span is an inline element, so it can enclose part of a line of text
without making a new line. Later, we’ll update the content of the value
spans when you hover over a bar to show the relevant information about
that bar.

One of the span elements contains an a element ❶, which creates a
hyperlink to another page or website. The URL of the link is specified with
an href attribute, which we’ll set dynamically later. The target="_blank"
attribute instructs the browser to open the link in a new tab or window.

The sidebar looks a bit ugly at this stage, so let’s add some CSS. Add
the code in Listing 15-9 to style.css.

body {

❶ display: flex;
 align-items: flex-start;
 font-family: Arial, Helvetica, sans-serif;
}

.box {
 padding: 0px 15px 0px 15px;
 border: 1px solid #888;
 margin-bottom: 15px;
}

#info .label {
 font-weight: bold;
 display: block;
}

#info a {
 text-decoration: none;
}

#info a:hover {
 text-decoration: underline;
}

Listing 15-9: Styling the sidebar

For this project we’re using a CSS technique called flexbox ❶, which is
a relatively recent addition to the CSS specification. Flexbox makes it much
easier to define layouts, especially those that will work flexibly across a
variety of screen and viewport sizes. Flexbox layouts have two main
components: the flex container and the flex items. The flex container is a
parent element that defines how its child flex items (the direct children of
the container) are sized and how they flow. In our case, the flex container is
the body element, and the flex items are the svg element and the #sidebar
element. By default, the items are arranged left to right (meaning that the
#sidebar element will appear on the left of the screen, followed by the svg
element to its right). The declaration align-items: flex-start; means
that the items will be aligned to the top of the parent container.

NOTE
If you want to learn more about flexbox, check out https://css-
tricks.com/snippets/css/a-guide-to-flexbox/.

https://css-tricks.com/snippets/css/a-guide-to-flexbox/

TRY IT YOURSELF

15-3. Chrome makes it very easy to experiment with flexbox changes. If you open up
the element inspector, you’ll see a small flex icon next to the body element. Click
that and the browser will add highlighting to show the flex container and flex
items. In the Styles pane, you can click the icon next to display: flex; to open a
dialog that will let you interactively modify the flex container properties.

Currently the svg element is being appended to the body element,
meaning that it comes after the sidebar, but for layout reasons we want it to
come before. To do that, we’ll need to switch from the append method to
the insert method when we create the svg element, since the latter allows
us to specify an element to insert before. The script.js change for this is
shown in Listing 15-10.

--snip--

let svg = d3
 .select("body")
 .insert("svg", "#sidebar")
 .attr("width", width)
 .attr("height", height);
--snip--

Listing 15-10: Inserting the svg element before the sidebar

Now the sidebar will appear to the right of the graph, as the svg
element now appears before the sidebar in the flex container.

Before we write the code for displaying the details about a repository in
the sidebar, we need a function for getting the name of the repository’s
license. Accessing the other pieces of information will be straightforward,
but not all repositories have a license, so our function has to handle the case
where no license data is available. Listing 15-11 shows the new getLicense
function, which you can insert into script.js just before the update function.

--snip--

// Left axis container
let leftContainer = svg
 .append("g")

 .attr("id", "left")
 .attr("transform", `translate(${margin.left}, 0)`);

function getLicense(d) {

❶ let license = d.license?.name;

x if (!license) {
 return "No License";
 } else {
 return license;
 }
}

function update(items) {
--snip--

Listing 15-11: The getLicense function

If a repository has a license, the license name will be available as
d.license.name, but if it doesn’t have a license, d.license will be
undefined. We test for this situation using the ?. operator, called the
optional chaining operator ❶. Like the regular . operator, ?. attempts to
take the object specified to the left of the operator and access the method or
property specified to the right of the operator. Unlike the regular . operator,
however, ?. will return undefined if the object to the left of the operator is
null or undefined. Thus, if d.license is undefined (meaning the
repository doesn’t have a license), our license variable will be set to
undefined, but if d.license is an object (meaning the repository has a
license), then license will be set to d.license.name. If license ends up
undefined x, our getLicense function returns the string "No License".
Otherwise, the value of license is returned.

Now we can add the code that will update the sidebar when the bars are
hovered over. We’ll do this by adding a mouseover event handler to the
rect elements. Update script.js with the code in Listing 15-12. This code
goes at the end of the update function.

--snip--
 .attr("width", xScale.bandwidth())
 .attr("height", d => yScale(0) - yScale(d.stargazers_cou
nt))
 .on("mouseover", (e, d) => {
 let info = d3.select("#info");
 info.select(".repo .value a").text(d.full_name).attr

("href", d.xhtml_url); 1
 info.select(".license .value").text(getLicense(d));
 info.select(".stars .value").text(d.stargazers_count);
 });
}

function getUrl() {
--snip--

Listing 15-12: Updating the sidebar on hover

D3 event handlers are called with two arguments: the event object (e)
and the datum bound to the element that the event was triggered on (d). The
first thing we do in the handler is select the #info element, because all the
elements we want to modify are children of that element. We then update
the a element inside the .value element inside the .repo element ❶ (refer
back to Listing 15-8 or look at index.xhtml to remind yourself of the HTML
structure). We’re setting both the text content of this element and the href
attribute. This has the effect of making a link to the repository, with the full
name of the repository as the link text. We similarly set the text of the
.value .license element to whatever getLicense returns for this datum
and the text of the .stars .value element to the number of stars.

Reload the page and try hovering over some of the bars. You should see
something like Figure 15-4.

Figure 15-4: The sidebar showing details about one of the repositories

For each bar you hover over, the details for that repository should show
up in the new sidebar. If you click the repository name, your browser should
open up a new tab and take you to the repository’s GitHub page.

Color-Coding the Bars
In order to convey some additional information visually, we’re going to
color-code the bars based on the license types. D3 lets you create scales
whose inputs (the domain) are values and whose outputs (the range) are
colors. You’ll see how to do that in Listing 15-13.

--snip--

function update(items) {

❶ let licenses = new Set(items.map(d => getLicense(d)));

x let colorScale = d3.scaleOrdinal()
 .domain(licenses)
 .range(d3.schemeCategory10);

 let xScale = d3.scaleBand()
--snip--

Listing 15-13: Creating a color scale for the licenses

First, we need to collect all the unique license names. To do this, we
map over the items, calling our getLicense function for each one ❶. This
gives an array of the license names. In the same line, we pass the resulting
array to the Set constructor. In programming terms, a set is a collection of
unique items, so the Set constructor can take an array of items and filter out
any duplicates. In JavaScript, sets maintain their order, like arrays.

The d3.scaleOrdinal helper x creates a scale with discrete inputs and
discrete outputs. Here, the inputs are the unique license names and the
outputs are color names. For the scale’s range, we’re using
d3.schemeCategory10, which is an array of 10 hex color strings. You can
check it out in the console:

d3.schemeCategory10;

�(10) ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b',
 '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']

Each license in the set will map to one of these colors, index-wise. If
there are more than 10 licenses, the colors will wrap around to the
beginning again (the eleventh and twelfth licenses will use the same colors
as the first and second ones).

Next we have to set the color of the bar based on its license and the
color scale. Listing 15-14 shows how to make that change near the end of
the update function.

--snip--

 svg
 .selectAll("rect")
 .data(items, d => d.full_name)
 .join("rect")
 .attr("x", d => xScale(d.full_name))
 .attr("y", d => yScale(d.stargazers_count))
 .attr("fill", d => colorScale(getLicense(d)))
 .attr("width", xScale.bandwidth())
 .attr("height", d => yScale(0) - yScale(d.stargazers_cou

nt))
--snip--

Listing 15-14: Setting the fill color of the rect

We have to call our getLicense function on d to get the license name
(because it could be "No License"), before passing the license name to the
colorScale. This gives us the color value for setting the fill attribute of
the rect.

With color-coding like this, you really need a key so users know what
each color means. We’ll create that key as another box in the sidebar,
beneath the repository info box. It will include squares of color alongside
the corresponding license names. First, we’ll need some more HTML.
Update index.xhtml with the changes in Listing 15-15.

--snip--

 <p class="stars">
 Stars

 </p>
 </div>

 <div id="key" class="box">
 <h1>Key</h1>
 </div>
 </div>
--snip--

Listing 15-15: Adding the div and heading for the license key

Here we’re creating another div called key inside the sidebar div and
giving it a heading. We’ll create the other elements for the key using
JavaScript.

Next comes the CSS for styling these new elements and the children
we’ll be adding with JavaScript. Add the code in Listing 15-16 to the end of
style.css.

--snip--

#info a:hover {

 text-decoration: underline;
}

#key h1 {
 font-size: 1.5em;
}

#key .color {
 display: inline-block;
 width: 10px;
 height: 10px;
 margin: 0px 10px 0px 10px;
}

Listing 15-16: Styling the key

The font size for the h1 element here is set to 1.5em, which means 1.5
times the font size of the parent element. This ensures that this heading will
be 1.5 times bigger than the rest of the text. The #key .color ruleset is
used to style the squares of color that will appear as part of the key. These
will be div elements, but display: inline-block means that they’ll act
like a cross between an inline element (like a span), in that they won’t force
a new line, and a block element (like a div), in that they’ll be able to have
fixed dimensions and margins. (Inline elements are unable to have a width
and height because they’re sized based on their content, and in this case the
squares have no content.)

Now we can add the JavaScript that will generate the key. This will
entail a new data join at the end of the update function, to join the licenses
to the elements used to render them. Update script.js with the changes in
Listing 15-17.

--snip--

 .on("mouseover", (e, d) => {
 let info = d3.select("#info");
 info.select(".repo .value a").text(d.full_name).attr
("href", d.xhtml_url);
 info.select(".license .value").text(getLicense(d));
 info.select(".stars .value").text(d.stargazers_count);
 });

 d3.select("#key")
 .selectAll("p")
 .data(licenses)
 .join(
 enter => {

 ❶ let p = enter.append("p");

 x p.append("div")
 .attr("class", "color")

 � .style("background-color", d => colorScale(d));

 � p.append("span")
 .text(d => d)

 return p;
 }
);
}

function getUrl() {
--snip--

Listing 15-17: Generating the key

Here we’re using the #key element as the container for our new join,
and we’re joining in a bunch of p elements to bind to each license datum.
We’re using the advanced join technique, but just with an enter function;
we don’t need custom behavior for updating or exiting items. (We can’t use
the regular join technique here because then the element appends would
happen every time update is called.) First we create the p element for each
new datum ❶, then we append a div element where we’ll display the
square of color to the p element x. Adding the color class to the div
means that it will have the styling from Listing 15-16. To give it the right
color, we use the style method �, which sets an inline CSS style on the
element. We set the color to the appropriate value for the datum using
colorScale. Finally, we add a span element to the p element for holding
the actual name of the license �.

Reload the page and you should see something like Figure 15-5.

Figure 15-5: Color-coded bars with a key

Our visualization now has a full key showing the license that each
color maps to, making the colors much more meaningful.

Labeling the Left Axis
It’s implied that our graph’s left axis shows the number of stars each
repository has, but that isn’t explicitly stated in the chart. To fix this, we’ll
add a text element to label the left axis. The code for this is in Listing 15-
18. Add this code right before the getLicense function.

--snip--

// Left axis container
let leftContainer = svg
 .append("g")
 .attr("id", "left")
 .attr("transform", `translate(${margin.left}, 0)`);

let chartHeight = (height - margin.bottom) - margin.top;
let midPoint = margin.top + chartHeight / 2;

svg
 .append("text")

 .text("Stars")
 .style("font-size", "14px")

❶ .attr("text-anchor", "middle")

x .attr("transform", `translate(12, ${midPoint}) rotate(270)
`);

function getLicense(d) {
--snip--

Listing 15-18: Adding a left axis label

First, we need to calculate where to draw the label. Its vertical position
should be in the middle of the chart. We calculate the height of the chart
based on the total height and the two margins, then calculate the midpoint
based on adding the top margin and half the height of the chart.

Next, we append a text element with the word Stars to the svg
element. We set the font earlier in style.css by applying a font-family to
the body element. Setting the text-anchor attribute to middle ❶ causes the
text to be centered around its calculated position. We also specify two
transformations x: a translate followed by a rotate. The translate
moves the center of the label to the correct position, and the rotate turns it
90 degrees counterclockwise (or 270 degrees clockwise).

Adding Interactivity
Our visualization is already somewhat interactive in the sense that hovering
over a bar shows details about that repository in the sidebar. It would be fun
to add another interactive element that allows the user to filter the data. For
example, now that we have a key listing the different license types, we
could use it to selectively show or hide repositories with those licenses.
We’ll implement this interactive feature now, while also adding animation
to smooth out the changes to the graph.

Filtering the Data by License
To let the user filter the data by license type, we’re going to add a checkbox
to each of the items in the key. We’ll then use those checkboxes to
determine which repositories to (temporarily) exclude from the graph. This

will require keeping track of the licenses we want to hide and removing any
repositories that use those licenses before rendering.

First we’ll add the checkboxes. Change script.js as shown in Listing
15-19 to do this.

--snip--

 d3.select("#key")
 .selectAll("p")
 .data(licenses)
 .join(
 enter => {
 let p = enter.append("p");

 p.append("input")
 .attr("type", "checkbox")
 .attr("checked", true)
 .attr("title", "Include in chart");

 p.append("div")
 .attr("class", "color")
 .style("background-color", d => colorScale(d));
--snip--

Listing 15-19: Adding checkboxes

In HTML, a checkbox is an input element with a type attribute value
of checkbox. In the code, we add one of these at the start of each p element
in the key. The checked attribute determines whether the checkbox is
checked or not; we set them to be checked by default, so all the repositories
will be shown when the visualization first loads. The title attribute gives a
tooltip with helper text if you hover over the element.

Next, we need to create a mechanism for keeping track of which
licenses should be hidden. The code for this is in Listing 15-20.

--snip--

function getLicense(d) {
 let license = d.license?.name;

 if (!license) {

 return "No License";
 } else {
 return license;
 }
}

❶ let hiddenLicenses = new Set();

function update(items) {
 let licenses = new Set(items.map(d => getLicense(d)));

--snip--

 p.append("span")
 .text(d => d)

 return p;
 }
);

x d3.selectAll("#key input").on("change", (e, d) => {
 if (e.target.checked) {

 � hiddenLicenses.delete(d);
 } else {

 � hiddenLicenses.add(d);
 }

 console.log(hiddenLicenses);

 � update(items);
 });
}

function getUrl() {
--snip--

Listing 15-20: Keeping track of the hidden licenses

First, we create a new empty Set called hiddenLicenses, just before
the update function ❶. We’re using Set here to make it easier to add or
remove licenses—with an array it’s trickier to remove a specific element.

Then, after the code that renders the key, we create a change event handler
for the checkboxes x. Whenever a checkbox changes from checked to
unchecked or vice versa, this handler will run. In the handler, e is the
change event and d is the bound datum (even though the license is bound to
the p element, the children, like this checkbox, also inherit the datum). We
use e.target.checked to determine whether, after the change, the
checkbox is checked or not. If it is, then we know the datum should be
removed from the hiddenLicenses set, using the delete method on the set
�. Conversely, if the checkbox is now unchecked we add that datum to
hiddenLicenses, using the add method on the set �.

Finally, with the hiddenLicenses set modified, we log the set to the
console and call the update function again �, with the same items it was
called with originally. When you reload the page, you won’t see any new
behavior because we’re not actually updating the graph yet, but if you open
the console you’ll see how the hiddenLicenses set changes as you check
and uncheck the various checkboxes. The hiddenLicenses set should
always correspond to the unchecked licenses in the key.

Now we need to determine which repositories to show when there are
hidden licenses. To do that, we’ll create a new array called filtered at the
top of the update method. It will be a version of the items array with the
repositories with hidden licenses removed. The code for this change is in
Listing 15-21.

--snip--

let hiddenLicenses = new Set();

function update(items) {
 // Items with the hidden licenses removed
 let filtered = items.filter(d => !hiddenLicenses.has(getLi
cense(d)));

 let licenses = new Set(items.map(d => getLicense(d)));
--snip--

Listing 15-21: Determining the repositories with hidden licenses

To filter the list of items, for each item we check to see if its license
name is in the hiddenLicenses set, using the set’s has method. If the name
isn’t included the set, then it will be in the filtered list. Otherwise, it’s
filtered out.

Finally, we need to switch to using the filtered array rather than the
items array for rendering. The new graph will be rendering only the filtered
data, so we need to change the scales and the bar drawing code to work
with filtered. On the other hand, we shouldn’t filter the licenses set
because it’s needed to maintain a consistent color scheme and to render the
key, regardless of whether certain licenses are currently hidden in the bar
chart. Listing 15-22 shows all the places in the update function that need to
be changed to use filtered instead of items.

--snip--

 let xScale = d3.scaleBand()

 ❶ .domain(filtered.map(d => d.full_name))
 .range([margin.left, width - margin.right])
 .padding(0.3);

 let yScale = d3.scaleLinear()

 x .domain([0, d3.max(filtered, d => d.stargazers_count)])
 .range([height - margin.bottom, margin.top])
 .nice();

--snip--

 svg
 .selectAll("rect")

 � .data(filtered, d => d.full_name)
 .join("rect")
 .attr("x", d => xScale(d.full_name))
 .attr("y", d => yScale(d.stargazers_count))
--snip--

Listing 15-22: Replacing items with filtered for rendering the bar chart

We update the code for creating the bottom ❶ and left axis x scales, as
well as the code for drawing the bars �, changing items to filtered in

each case. Refresh the page and deselect some of the licenses in the key.
You should now see the corresponding bars disappear from the bar chart.
The changes are rendered because, as you saw in Listing 15-20, we’re
calling update from the change event handler for the checkboxes.

Animating the Changes
For the icing on the cake, let’s add some animations. These will make it
easier to see changes to the bars as licenses are shown or hidden, and also
just make the visualization look cooler. We’re going to animate two parts of
the graph: the left axis and the bars. To do this, make the changes shown in
Listing 15-23.

--snip--

 let leftAxis = d3
 .axisLeft(yScale)
 .tickFormat(d3.format("~s"));

 bottomContainer.call(bottomAxis);

 leftContainer

 ❶ .transition()
 .call(leftAxis);

 svg
 .selectAll("rect")
 .data(filtered, d => d.full_name)
 .join(
 enter => enter
 .append("rect")
 .attr("x", d => xScale(d.full_name))
 .attr("y", d => yScale(d.stargazers_count))
 .attr("fill", d => colorScale(getLicense(d)))
 .attr("width", xScale.bandwidth())
 .attr("height", d => yScale(0) - yScale(d.stargazers
_count))

 x .style("opacity", 0)
 .transition()

 � .style("opacity", 1),

 update => update
 .transition()

 � .attr("x", d => xScale(d.full_name))
 .attr("y", d => yScale(d.stargazers_count))
 .attr("width", xScale.bandwidth())
 .attr("height", d => yScale(0) - yScale(d.stargazers
_count)),
 exit => exit
 .transition()

 � .style("opacity", 0)

 � .remove()
)
 .on("mouseover", (e, d) => {
 let info = d3.select("#info");
 info.select(".repo .value a").text(d.full_name).attr
("href", d.xhtml_url);
 info.select(".license .value").text(getLicense(d));
 info.select(".stars .value").text(d.stargazers_count);
 });
--snip--

Listing 15-23: Adding animations

Animating the left axis is straightforward: we just call transition on
the axis’s container before the axis is drawn to it ❶, and the left axis will
transition anytime the scale changes (which will happen only if the biggest
bar is hidden or unhidden, which changes the upper bound of the domain).

To animate the bars, we follow the standard practice of switching to the
advanced join technique and adding transitions for entering, updating, and
exiting elements. Entering elements start out with all their attributes set and
an opacity of 0 (meaning that they are 100 percent transparent) x. We then
call transition and animate up to 100 percent opaque �, which has the
effect of fading in entering elements. Updating elements remain the same
color and opacity, but their position and dimensions can change, so we
animate all of these �. This has the effect of stretching and sliding these
updated elements to their new size and position. Exiting elements do the
opposite of entering elements and fade out, which we achieve by

transitioning their opacity back to 0 �. Remember that we also have to call
remove on any exiting elements after the transition is complete �.

Reload the page and try hiding and unhiding various licenses. The first
license in the key should always correspond to the repository with the most
stars (because the repositories are ordered that way and we extract the
license names from the repositories in order), so if you want to see the left
axis resize, you’ll need to turn off that license. You should see the
repositories with that license fade out and the other repositories expand to
fill the space and the recomputed scale. Figure 15-6(a) shows the chart with
all the licenses shown, and Figure 15-6(b) shows the chart with the MIT
license (at the time of writing, the most popular license in the dataset)
hidden.

Figure 15-6: The final chart showing all licenses (a) and with the top license hidden (b)

Try showing and hiding different licenses to get a feel for how the
animations work. Is there anything you would change about them? How
else might you make the visualization more interesting?

TRY IT YOURSELF

15-4. Add an input element that lets you change the page of search results, so you
can see the 20 repositories on the next page, or any other page. Hint: you’ll need
to listen for change events on the input element and use the new value to set the
page parameter in the request to the GitHub Search API.

15-5. Add a button element called <Load More= that loads the next page of search
results into the chart, combining them with the existing data (so you’d have 40

bars after one click, and 60 after two clicks).
15-6. Instead of color-coding based on the license, try using a different dimension,

such as d.owner.login (which gives the name of the account that owns the
repository).

The Complete Code
If you’d like to see what the full script.js file should look like, you can find
the complete code in Listing 15-24.

const width = 600;
const height = 400;

let svg = d3
 .select("body")
 .insert("svg", "#sidebar")
 .attr("width", width)
 .attr("height", height);

let margin = {top: 20, right: 10, bottom: 20, left: 50};

// Bottom axis container
let bottomContainer = svg
 .append("g")
 .attr("id", "bottom")
 .attr("transform", `translate(0, ${height - margin.botto
m})`);

// Left axis container
let leftContainer = svg
 .append("g")
 .attr("id", "left")
 .attr("transform", `translate(${margin.left}, 0)`);

let chartHeight = (height - margin.bottom) - margin.top;
let midPoint = margin.top + chartHeight / 2;

svg
 .append("text")
 .text("Stars")

 .style("font-size", "14px")
 .attr("text-anchor", "middle")
 .attr("transform", `translate(12, ${midPoint}) rotate(270)
`);

function getLicense(d) {
 let license = d.license?.name;

 if (!license) {
 return "No License";
 } else {
 return license;
 }
}

let hiddenLicenses = new Set();

function update(items) {
 // Items with the hidden licenses removed
 let filtered = items.filter(d => !hiddenLicenses.has(getLi
cense(d)));

 let licenses = new Set(items.map(d => getLicense(d)));
 let colorScale = d3.scaleOrdinal()
 .domain(licenses)
 .range(d3.schemeCategory10);

 let xScale = d3.scaleBand()
 .domain(filtered.map(d => d.full_name))
 .range([margin.left, width - margin.right])
 .padding(0.3);

 let yScale = d3.scaleLinear()
 .domain([0, d3.max(filtered, d => d.stargazers_count)])
 .range([height - margin.bottom, margin.top])
 .nice();

 let bottomAxis = d3
 .axisBottom(xScale)
 .tickValues([]);

 let leftAxis = d3
 .axisLeft(yScale)
 .tickFormat(d3.format("~s"));

 bottomContainer.call(bottomAxis);

 leftContainer
 .transition()
 .call(leftAxis);

 svg
 .selectAll("rect")
 .data(filtered, d => d.full_name)
 .join(
 enter => enter
 .append("rect")
 .attr("x", d => xScale(d.full_name))
 .attr("y", d => yScale(d.stargazers_count))
 .attr("fill", d => colorScale(getLicense(d)))
 .attr("width", xScale.bandwidth())
 .attr("height", d => yScale(0) - yScale(d.stargazers
_count))
 .style("opacity", 0)
 .transition()
 .style("opacity", 1),
 update => update
 .transition()
 .attr("x", d => xScale(d.full_name))
 .attr("y", d => yScale(d.stargazers_count))
 .attr("width", xScale.bandwidth())
 .attr("height", d => yScale(0) - yScale(d.stargazers
_count)),
 exit => exit
 .transition()
 .style("opacity", 0)
 .remove()
)
 .on("mouseover", (e, d) => {
 let info = d3.select("#info");
 info.select(".repo .value a").text(d.full_name).attr
("href", d.xhtml_url);

 info.select(".license .value").text(getLicense(d));
 info.select(".stars .value").text(d.stargazers_count);
 });

 d3.select("#key")
 .selectAll("p")
 .data(licenses)
 .join(
 enter => {
 let p = enter.append("p");

 p.append("input")
 .attr("type", "checkbox")
 .attr("checked", true)
 .attr("title", "Include in chart");

 p.append("div")
 .attr("class", "color")
 .style("background-color", d => colorScale(d));

 p.append("span")
 .text(d => d)

 return p;
 }
);

 d3.selectAll("#key input").on("change", (e, d) => {
 if (e.target.checked) {
 hiddenLicenses.delete(d);
 } else {
 hiddenLicenses.add(d);
 }

 console.log(hiddenLicenses);
 update(items);
 });
}

function getUrl() {
 let baseUrl = "https://api.github.com/search/repositorie

s";

 let params = {
 q: "language:javascript stars:>10000",
 per_page: 20,
 sort: "stars"
 };

 let queryString = Object.entries(params).map(pair => {
 return `${pair[0]}=${encodeURIComponent(pair[1])}`;
 }).join("&");

 return `${baseUrl}?${queryString}`;
}

let url = getUrl();
let backupUrl = "https://skilldrick-jscc.s3.us-west-2.amazon
aws.com/gh-js-repos.json";

// Replace url with backupUrl in following line if needed
d3.json(url).then(data => {
 update(data.items);
});

Listing 15-24: The full script.js file for this project

Summary
In this final project, you created a pretty complex interactive chart using
live data fetched from the GitHub Search API. You now have the tools you
need to create your own custom charts using D3. We’ve touched on only a
small part of what this library offers, however; it has support for many
different kinds of visualizations, like trees, cartographic maps, and other
more esoteric layouts. Each of these visualization types has the same basis
in SVG, data binding, joins, scales, and transitions, so what you’ve learned
here will set you up well if you decide to explore data visualization with
JavaScript further. The D3 website, https://d3js.org, is an excellent starting
point for further research.

https://d3js.org/

AFTERWORD

You’ve learned the core of the
JavaScript language, you’ve worked

through the book’s three projects, and you’re
wondering what to do now. The good news (or the
bad news, depending on your outlook) is that the
learning never stops. There are many different
directions in which you can take your programming
career. Here are some suggestions about possible next
steps and tools and resources to explore.

Projects
You should have a fairly good understanding of how to set up a new
JavaScript project at this point, so why not try building something new?
One option would be to make your own game, using the techniques you
learned in this book. Some relatively simple arcade games in a similar vein
to Pong include Snake, Space Invaders, Tetris, and Breakout. Or you could
try something completely different and make a word game, like Wordle or
Hangman.

You could also try to build on what you learned in the book’s other
projects by making your own musical creation or data visualization. On the
music side, you might want to experiment with making a drum machine, or
perhaps an endless music generator. You could also use your knowledge to
add sound effects to one of your games. On the data visualization side, there
are countless other APIs you can try out for fetching data from other

services. As discussed in Chapter 15, many APIs require some sort of
authentication, which isn’t feasible for browser-based applications; with
Node.js, however, you can experiment with building your own backend
applications as well.

Of course, you shouldn’t feel limited to the sorts of projects you
worked through in this book. If there’s something that interests you, try to
build it! If you’re not sure where to start, use Google to get some ideas.
JavaScript is one of the most popular languages in the world, so chances are
somebody has written up instructions on doing whatever it is you want to
do.

Node.js
This book only explains how to write JavaScript for running in web
browsers, but with Node.js you can also run JavaScript on backend web
servers. Check out https://nodejs.dev/en/learn/ for a great guide to getting
started with Node.js. Once you have a backend for your app, you can start
to do more interesting things, such as storing data on the user’s behalf,
accessing third-party authenticated HTTP APIs with a secret key, and much
more.

Tools
There are many tools of various kinds that will help you as you continue
your programming journey. This section introduces a few of them, but it’s
in no way comprehensive.

Git
Git is a popular version control system that allows you to keep track of
changes to your code and go back to earlier versions. When I first started
programming, I would often find myself making changes to my code and
breaking something, then not understanding how I had broken it and not
being able to get back to the previous state. To avoid that, I started making
backups of my code so I could go back to an earlier version. Git is a much
better way to achieve the same goal. With Git, you make commits that store
the state of your code at a particular point in time. Each commit builds on
previous ones, while keeping track of what’s changed.

https://nodejs.dev/en/learn/

There are a lot of online resources for learning Git. Many of them can
be found at https://git-scm.com/doc.

GitHub
Once you have Git installed on your computer, using GitHub (the service
from which we drew our data in Chapter 15) is a great next step. GitHub
provides a way to upload and share your local Git repositories so they can
be accessed anywhere.

GitHub also gives you access to millions of open source repositories
that you can fork (make your own copy of) and modify to your heart’s
content. For example, to see all my public repositories, go to https://github
.com/skilldrick.

CodePen
To share your projects with others, you’ll need a way to make them
accessible via the web. You could set up your own web hosting, but a much
easier option is using CodePen (https://codepen.io). This is also the tool
used for hosting the companion resources for this book, available at https://
codepen.io/collection/ZMjYLO.

With CodePen, you can create and share projects built using HTML,
CSS, and JavaScript. The code is all viewable on the page in separate
panels. For example, Figure A-1 shows a sample Pen I put together that
adds an extra exclamation mark every time you click the text. Check out the
Pen online at https://codepen.io/skilldrick/pen/abKaQpo.

https://git-scm.com/doc
https://github.com/skilldrick
https://codepen.io/
https://codepen.io/collection/ZMjYLO
https://codepen.io/skilldrick/pen/abKaQpo

Figure A-1: A sample Pen on CodePen

In the HTML panel, only the contents of the body element are needed.
CodePen supplies the rest of the HTML structure automatically. You can
also easily include external JavaScript libraries through the Settings dialog.

Glitch
Like CodePen, Glitch is a service that hosts your code for you and lets you
share it with the world. What sets Glitch apart is its ability to run frontend
and backend code. Instead of just providing panels for HTML, CSS, and
JavaScript, Glitch allows you to define a full directory structure with all the
files you need. You can even add a SQLite database to store data. Go to
https://glitch.com to learn more, or check out https://glitch.new to choose
from a list of starter apps.

Web Development
Although this book’s focus is on JavaScript, along the way you also learned
some general web development skills. If this has whetted your appetite, you
may want to spend some more time learning about other aspects of web
development.

https://glitch.com/
https://glitch.new/

HTML and CSS
HTML is the language that the vast majority of web pages are written in, so
it’s valuable to have a deeper understanding of its intricacies. To learn more,
check out the MDN docs at https://developer.mozilla.org/HTML. CSS is
used for styling web pages, so if you want your pages to look nice, it’s
essential to understand how it works. Learn more on MDN at https://
developer.mozilla.org/CSS.

JavaScript Frameworks and Libraries
Web development today is very complex, with web apps regularly
containing thousands of lines of HTML, CSS, and JavaScript. To greatly
reduce the amount of code needed to write a fully functional modern web
app, many developers use JavaScript frameworks and libraries. Two of the
most popular at the time of this writing are React and Vue.js. Knowledge of
such tools isn’t necessary, but it can dramatically simplify the process of
building complex websites and frontend applications. You can try out React
and Vue.js in CodePen, or check out their websites:

React: https://reactjs.org
Vue.js: https://vuejs.org
React on CodePen: https://codepen.io/topic/react/templates
Vue.js on CodePen: https://codepen.io/topic/vue/templates

Testing
One essential tool for programmers is an automated testing framework.
Automated tests are designed to run against your code regularly, to confirm
it does what you expect it to do. A common problem when writing code is
adding a new feature without realizing that the change breaks some other
aspect of your program. By writing good tests and running them regularly,
you can identify the moment something breaks, and fix it. You can also
work on large refactors of your code with confidence, knowing that as long
as the tests pass, it’s unlikely that you’ve broken anything.

There are a huge number of testing libraries and frameworks for
JavaScript. One of the most popular at the time of this writing is Jest: check
it out at https://jestjs.io.

https://developer.mozilla.org/HTML
https://developer.mozilla.org/CSS
https://reactjs.org/
https://vuejs.org/
https://codepen.io/topic/react/templates
https://codepen.io/topic/vue/templates
https://jestjs.io/

More JavaScript!
If you want to deepen your JavaScript knowledge, there are many resources
available to you. Here are a few recommendations of where to get started:

MDN JavaScript Portal: https://developer.mozilla.org/JavaScript
Eloquent JavaScript, 3rd edition, by Marijn Haverbeke (No Starch
Press, 2018)
JavaScript: The Definitive Guide, 7th edition, by David Flanagan
(O’Reilly Media, 2020)

Other Languages
You might decide at this point that you want to broaden your programming
knowledge rather than dig deeper into JavaScript. Go for it! Every language
you learn gives you valuable insights into programming in general, so this
is actually a great way to get better at JavaScript.

TypeScript
One of the problems that people have with JavaScript is its weak, dynamic
typing, which allows values to be implicitly coerced to different data types
depending on the surrounding code. For example, the + operator will
convert a number operand to a string if the other operand is a string, while
the - operator will convert a string operand to a number if the other operand
is a number.

The TypeScript language is an attempt to add static typing to
JavaScript. Static typing means that a variable of a certain type can only
contain values of that type, and conversions between types must be explicit.
TypeScript is syntactically a superset of JavaScript, which means that a
valid JavaScript program is also a valid TypeScript program. TypeScript
code can be converted to JavaScript using the TypeScript compiler.

Using static types makes it impossible to write code with certain bugs.
For example, in JavaScript you might take a value from a text box, assume
that it’s a number, and add it to another number. Unfortunately, any value
from a text box is treated as a string, so the other number will be implicitly
converted to a string as well, and you’ll end up with the two strings
concatenated. TypeScript doesn’t allow this. It knows that the value from

https://developer.mozilla.org/JavaScript

the text box is a string, and it forces you to decide whether you want to
convert both operands to strings for concatenation or convert both operands
to numbers for addition.

The downside of TypeScript is that it can sometimes be more difficult
to write code that otherwise seems like it should work. This is sometimes
known as fighting the compiler.

If you’d like to learn more, here are some books and other resources
that can help you get started with TypeScript:

The TypeScript Handbook: https://www.typescriptlang.org/docs
/handbook/intro.xhtml
Effective TypeScript by Dan Vanderkam (O’Reilly Media, 2019)
Learning TypeScript by Josh Goldberg (O’Reilly Media, 2022)

Python
Python is a scripting language, like JavaScript, but it has a different
philosophy. The language takes a <batteries included= approach, meaning
that its standard library comes fully featured with a wide array of
functionality (JavaScript’s standard library, by comparison, is very limited).
Like JavaScript, Python is dynamically typed, so the same variable can hold
values of different data types. But whereas JavaScript is weakly typed,
Python is strongly typed, meaning that there are no implicit coercions.
Syntactically, Python looks very different, using indentation (which is
required, not optional) rather than braces to define nested blocks of code.

Python is a popular language of choice for web servers, as well as for
scientific and numeric programming. If you’re looking to broaden your
skills, it’s a good choice. The following book (in the same series as
JavaScript Crash Course) is a great introduction to the language, and its
projects highlight some of the areas in which Python shines:

Python Crash Course, 3rd edition, by Eric Matthes (No Starch Press,
2023)

Rust
One of the languages I’m most excited about today is Rust. Like
TypeScript, it’s a statically typed language, but it has a much more powerful

https://www.typescriptlang.org/docs/handbook/intro.xhtml

type system than most languages in use today. Rust aims to replace the
older languages C and C++ for developing high-performance code.

C and C++ are both languages without garbage collection, the process
that tells the computer which values and objects are no longer used, in order
to free up the computer’s memory. Instead, C/C++ programmers must
manually free data that is no longer in use—a process that’s error prone and
can often lead to bugs. These languages are commonly used in
performance-critical environments, and they don’t use garbage collection
because it can reduce the performance of software. Rust avoids this
problem with a compile-time borrow checker, which keeps track of which
objects are in use at any given time, and by which parts of the program.

Rust is also used heavily as a source language for compiling to
WebAssembly, which is an exciting new technology for running extremely
efficient and performant code in the browser. Here are some resources for
learning more:

The Rust Programming Language, 2nd edition, by Steve Klabnik and
Carol Nichols (No Starch Press, 2023)
Rust and WebAssembly: https://rustwasm.github.io/docs/book/

https://rustwasm.github.io/docs/book/

INDEX

SYMBOLS
+= (addition assignment operator), 18, 132
+ (addition operator), 10, 20, 77
&& (and operator), 27, 33–34
= (assignment operator), 13
\ (backslash), 23
` (backtick), 24
^ (caret), 292
-- (decrement operator), 17, 64
/= (division assignment operator), 18
/ (division operator), 11
$ (dollar sign), 292
== (double equals operator), 31
" (double quotation mark), 19
// (forward slashes), 165, 292
> (greater than), 30
>= (greater than or equal to), 30
(hash mark), 122–123, 215
++ (increment operator), 17
< (less than), 30
<= (less than or equal to), 30
*= (multiplication assignment operator), 18
* (multiplication operator), 11
! (not operator), 28
|| (or operator), 27–28, 33–34
() (parentheses), 79
% (percent character), 301
. (period), 123
| (pipe character), 241–242
${} (placeholder syntax), 24–25
? (question mark), 301
; (semicolon), 10
' (single quotation mark), 19
[] (square brackets), 21, 48–49
!== (strict inequality operator), 32

-= (subtraction assignment operator), 18
- (subtraction operator), 11
=== (triple equals operator), 29

A
absolute positions, 262–263
abstract classes, 98
accidentals, 215
addEventListener method, 129
add function, 75–76
addition assignment operator (+=), 18, 132
addition (+) operator, 20, 77
adjustAngle function, 174
ADSR envelope, 211–212
AI (artificial intelligence), 181
alert function, 5
Amazon S3 (Simple Storage Service), 233
ancestors, 114
and operator (&&), 27, 33–34
animating

bar graphs, 296–297, 322–324
canvas elements, 152–153

anonymous functions, 80, 153
APIs (application programming interfaces), 115

authenticated APIs, 302–303
Canvas API, 144, 256
DOM API, 115–116, 129
GitHub Search API, 299–328
JSON API, 300
Web Audio API, 206–209

appended elements, 275
arc method, 146–147
arguments, 21

defined, 5
parameters vs., 75
passing functions as, 74, 78–79

arrays, 38–47
arrays of arrays, 39–41
creation and indexing, 38–39
methods, 41–47

adding element to array, 42
combining arrays, 44–45
finding index of element in array, 45
removing element from array, 43–44
turning array into string, 45–46

nesting
exploring nested objects in console, 54–55

with literals, 52–53
printing nested objects with JSON.stringify, 55–56
with variables, 53–54

taking callback functions, 85–87
arr.includes(elem) method, 46
arrow functions, 82–83
arr.reverse() method, 46
arr.slice(start, end) method, 46–47
arr.sort() method, 46
arr.splice(index, count) method, 47
artificial intelligence (AI), 181
assignment operator (=), 13
attack, ADSR, 211–212, 234
attributes, 116–118
attr method, 269
audio context, 207–208
authenticated APIs, 302–303
axes

drawing, 305–307
labeling, 288–291
labeling left, 318–319

B
backend code, 303
backslash (\), 23
backticks (`), 24
ball, Pong, 161–162, 195–197
bandpass filter, 226
bandwidth method, 287
bar graphs, 279–297, 304–319

animating changes, 296–297
calculating character frequencies, 280–282
cleaning data, 295
color-coding bars, 314–318
creating elements, 304–305
drawing, 282–291

axes, 305–307
bars, 308–309
labeled axes, 288–291
scaling bars, 284–288

labeling left axis, 318–319
setting up, 279–280
showing repository info, 310–314
styling with CSS and regular expressions, 292–295

baseline, 257
base URL, 301
bass lines, 240–242

beats per minute (BPM), 217
bezierCurveTo method, 147
bindings, 12–16

constants, 14–15
naming conventions, 15–16
variables, 13–14

block body syntax, 82–83
body

of control structure, 59
function, 74

body element, 113
Booleans, 26–30

comparison operators, 29–30
as conditions, 60–61
logical operators, 27–28
using subexpressions in, 171

bouncing
near paddle ends, 174–175
overview, 165–166

BPM (beats per minute), 217
braces, 63
bubbling events, 130

C
callbacks

array methods taking, 85–87
custom functions taking, 88–89
defined, 78
event handlers and, 129

calling functions, 74–78
parameter types, 77
return values, 75–76
side effects, 77–78

calling methods, 21
call method, 289
camelCase, 15
C and C++, 334
Canvas API, 144, 256
canvas elements, 141–154

animating, 152–153
creating, 142
drawing Pong game on, 160–161
interacting with, 147–151
making static drawings, 142–147

drawing other shapes using paths, 145–147
drawing outlined rectangles, 144–145

caret (^), 292

Cascading Style Sheets. See CSS
case sensitivity, 15
CDN (content delivery network), 210
chained if…else statement, 61–63
chaining methods, 130, 269
change event handler, 151
characters

frequencies of, 280–282
from strings, 21–22

checkCollision function, 165–166
child elements, 114
chords, 242–244
Chrome

accessing JavaScript console, 4
calling functions in, 75–76
exploring nested objects in, 54–55
indentation in, 40
Web Audio API, 206

circle element, 260–261
advanced joins, 276–279
data binding, 270–271
data joins, 271–273

class attribute, 122
classes, 93–108

creating instances and, 94–97
inheritance, 97–101
prototype-based inheritance, 101–108

comparing constructors and classes, 104–105
exploring Object.prototype, 105–106
overriding method, 107–108
using constructors and prototypes, 102–104
walking the prototype chain, 106–107

class selectors, 123
cleaning data, 295
clearInterval function, 83
clearRect method, 151
click handler, 148
clock, JavaScript, 220–221
closures, 90
CodePen, 331
coercion, 30–35, 77

equality with, 31–32
truthiness, 32–35

collision detection
bouncing, 165–166
defined, 163–164
in object-oriented Pong, 195–197
for paddles, 170–173

color
color-coding bars, 314–318
RGBA color, 150
RGB color, 261
sound of oscillator as, 213

combining arrays, 44–45
combining objects, 51–52
comments, 165
comparison operators, 29–30
complete code

GitHub Search API, 325–328
Pong, 185–188
song writing, 247–252

composition, 199
compound data types, 37–56

arrays, 38–47
arrays of arrays, 39–41
creation and indexing, 38–39
methods, 41–47

nesting objects and arrays, 52–56
exploring nested objects in the console, 54–55
with literals, 52–53
printing nested objects with JSON.stringify, 55–56
with variables, 53–54

objects, 47–52
accessing values in, 48
creating, 47–48
setting values to, 49
working with, 49–52

compound expression, 10
Computer class, 197–198
computer control, 180–182
concat method, 44
concise body syntax, 82–83
concrete classes, 98
condition, of control structure, 58
conditionals, 57–63

chained if…else statement, 61–63
complex conditions, 60–61
if…else statement, 59–60
if statement, 58–59

console.log method, 23
constants

naming conventions, 15–16
overview, 14–15
static, 194

const keyword, 13, 16
constructors, 49, 95, 102–104

comparing classes and, 104–105
defined, 101

content, element, 112
content delivery network (CDN), 210
control structures

conditionals, 57–63
chained if…else statement, 61–63
complex conditions, 60–61
if…else statement, 59–60
if statement, 58–59

loops, 63–71
for…in loop, 70–71
for loop, 65–66
for…of loop, 67–69
while loop, 63–64

CSS (Cascading Style Sheets), 120–124
flexbox layouts, 311–312
link element, 120
rulesets, 121
selectors

overview, 121–124
using in JavaScript, 124–125

styling bar graphs with, 292–295
styling SVG elements with, 264–266

D
D3 (D3.js) library, 255–297

advanced joins, 276–279
bar graphs, 279–297

animating changes, 296–297
calculating character frequencies, 280–282
cleaning data, 295
drawing, 282–291
setting up, 279–280
styling with CSS and regular expressions, 292–295

data binding, 270–271
data joins, 271–273
real-time updates, 273–275
selections, 269–270
setup, 268
SVG graphics format, 256–268

adding interactivity with JavaScript, 266–268
defining paths, 261–264
drawing circles, 260–261
grouping elements, 258–259
styling elements with CSS, 264–266

transitions and key functions, 275–276

data attributes, 267
data binding, 268, 270–271
Data-Driven Documents. See D3 library
data visualizations

D3 library, 255–297
advanced joins, 276–279
bar graphs, 279–297
data binding, 270–271
data joins, 271–273
real-time updates, 273–275
selections, 269–270
setup, 268
SVG graphics format, 256–268
transitions and key functions, 275–276

GitHub Search API, 299–328
adding interactivity, 319–324
basic visualization, 304–309
complete code, 325–328
fetching data, 300–304
improving visualization, 310–319
setting up, 300

decay, ADSR, 211–212
decibels (dB), 212
declarations

defined, 13
in rulesets, 121
separating from initialization, 178–179

declaring functions, 74–78
parameter types, 77
return values, 75–76
side effects, 77–78

decrementing, 16–19
addition and subtraction assignment, 18
multiplication and division assignment, 18

decrement operator (--), 17, 64
delegating events, 131–134
De Morgan’s law, 28
descendants, 114
descendant selectors, 123
destructuring assignment, 69
distanceTo method, 98–100
div element, 135, 148
division assignment operator (/=), 18
doctype, 113
document object, 115
Document Object Model (DOM), 114–118

DOM API, 115–116
element identifiers, 116–118

document.querySelectorAll method, 124
document.querySelector method, 160–161
dollar sign ($), 292
domain, 284
DOM API, 115–116, 129
dot notation, 48–49
double equals (==) operator, 31
double quotation marks ("), 19
doubler function, 88
drawCircle function, 149–150
draw function, 163
drawing context, 143
draw method, 192
drum sounds, 224–232

drum loop, 230–232
hi-hat synthesis, 224–226
kick synthesis, 228
making drumbeat, 237–240
reverb, 228–230
snare synthesis, 226–227

dynamically typed programming language, 77
dynamic visualizations, 256

E
eighth notes, 217
elements

for basic visualization, 304–305
defined, 112
game, 193–197

ball, 195–197
paddles, 194

else if clause, 61–62
em element, 128
empty strings, 31–32
encapsulation, 190–191
enter, element, 277
Entity superclass, 194
equality, with coercion, 31–32
error messages, 14–15
escape sequences, 23–24
evaluation, 10
event-based programming, 127–139

event handlers, 128–134
event bubbling, 130
event delegation, 131–134

keyboard events, 137–138
mouse movement events, 134–136

exit, element, 277
expressions, 10
Extensible Markup Language (XML), 256

F
false value, 32–33
fetching data, 300–304
fillRect method, 143, 161–162
fillStyle property, 143
filtering data by license, 319–322
filter method, 86
find array method, 85–86
first-class citizens, 78
flat, 215
flexbox layouts, 311–312
floating-point numbers, 11–12
FM (frequency modulation), 240
FM synthesis, 240–241
focus, 137
for…in loop, 70–71
for loop, 65–66
for…of loop, 67–69
forward slashes (//), 165, 292
frequencies, character, 280–282
frequency modulation (FM), 240
frontend code, 303
function declarations, 74, 79–80
function expressions (function literal), 80–82
function keyword, 74, 80
functions, 73–91

arrow functions, 82–83
declaring and calling, 74–78

parameter types, 77
return values, 75–76
side effects, 77–78

defined, 5
function expressions, 80–82
higher-order functions, 85–90

array methods taking callbacks, 85–87
custom functions taking callbacks, 88–89
functions returning functions, 89–90

methods vs., 94
passing as arguments, 78–79
rest parameters, 84–85

fundamental, tone, 214

G

gain nodes, 208
Game class, 198–201
game creation projects

object-oriented Pong, 189–202
design, 190–191
file structure, 191
Game class, 198–201
game elements, 193–197
GameView class, 191–193
Scores and Computer classes, 197–198
starting game, 201

Pong, 159–202
bouncing, 165–166
complete code, 185–188
computer control, 180–182
drawing ball, 161–162
game loop, 163–165
game over, 182–184
overview, 159–160
paddles, 166–175
refactoring, 162–163
scoring points, 176–180
setup, 160–161

game loop, 163–165
game over, 182–184
GameView class, 191–193
g element, 258–259
getContext method, 143
getElementById method, 117
Git, 330
GitHub, 331
GitHub Search API, 299–328

adding interactivity, 319–324
animating changes, 322–324
filtering data by license, 319–322

basic visualization, 304–309
creating elements, 304–305
drawing axes, 305–307
drawing bars, 308–309

complete code, 325–328
fetching data, 300–304
improving visualization, 310–319

color-coding bars, 314–318
labeling left axis, 318–319
showing repository info, 310–314

setting up, 300
Glitch, 331
Google Chrome. See Chrome

greater than (>), 30
greater than or equal to (>=), 30
grouping elements, 258–259

H
handlers, event, 128–134

event bubbling, 130
event delegation, 131–134
song writing, 236–237

harmonics, 214
hash mark (#), 122–123, 215
hasOwnProperty method, 105
head element, 113, 119
hex colors (hexadecimal color syntax), 260–261
hidden licenses, 319–322
higher-order functions, 85–90

array methods taking callbacks, 85–87
custom functions taking callbacks, 88–89
functions returning functions, 89–90

hi-hat synthesis, 224–226
:hover pseudo-class, 133
href attribute, 119
HTML (HyperText Markup Language), 111–125, 332

creating HTML document, 112–113
CSS, 120–124

link element, 120
rulesets, 121
selectors, 121–124

defined, 5–6
DOM, 114–118

DOM API, 115–116
element identifiers, 116–118

nested relationships, 114
script elements, 118–119
using CSS selectors in JavaScript, 124–125

I
id attribute, 116
identifiers, 13
ID selector, 122
if…else statement

chained, 61–63
keydown handler including, 138
overview, 59–60

if statement, 58–59, 179–180
incrementing, 16–19

addition and subtraction assignment, 18

multiplication and division assignment, 18
increment operator (++), 17
indentation, 40, 113
indexes

in arrays, 38–39
finding index of element in array, 45
in strings, 21–22

indexOf method, 45
infinite loops, 65
inheritance, 97–101
initialization, 13, 178–179
inline element, 122
innerText property, 117
input element, 148
instanceof keyword, 100
instances, creating, 94–97
interactivity, 319–324

animating changes, 322–324
with canvas elements, 147–151
filtering data by license, 319–322
visualizations, 256

J
JavaScript

adding interactivity to SVG graphics format, 266–268
bindings, 12–16

constants, 14–15
naming conventions, 15–16
variables, 13–14

Booleans, 26–30
comparison operators, 29–30
logical operators, 27–28

classes, 93–108
creating instances and, 94–97
inheritance, 97–101
prototype-based inheritance, 101–108

coercion, 30–35
equality with, 31–32
truthiness, 32–35

compound data types, 37–56
arrays, 38–47
nesting objects and arrays, 52–56
objects, 47–52

conditionals, 57–63
escape sequences, 23–24
expressions and statements, 10
frameworks and libraries, 332

functions, 73–91
arrow functions, 82–83
declaring and calling, 74–78
function expressions, 80–82
higher-order functions, 85–90
passing as arguments, 78–79
rest parameters, 84–85

incrementing and decrementing, 16–19
addition and subtraction assignment, 18
multiplication and division assignment, 18

loops, 63–71
numbers and operators, 10–12

floating point, 11–12
order of operations, 11

strings, 19–23
finding length of, 20–21
getting character from, 21
getting multiple characters from, 21–22
joining, 20
trimming whitespace from, 22

template literals, 24–26
undefined and null, 26
using CSS selectors in, 124–125
writing code, 3–7

using JavaScript Console, 4–5
using text editor, 5–6

JavaScript clock, 220–221
JavaScript Console, 4–5
Jest, 333
join-by-index mode, 276
joining strings, 20
join method, 45–46, 271–273, 276–279
JSON (JavaScript Object Notation), 55
JSON API, 300
JSON.stringify method, 55–56

K
keyboard events, 137–138
keydown events, 137–138
key function, 275–276
keys, object

defined, 47
getting, 49–50
getting values and, 50–51

key-value pair, 47
keywords, 13
kick synthesis, 228

L
labeled axes, 288–291
label element, 148–149
left-aligned text, 177
length property, 20–21
less than (<), 30
less than or equal to (<=), 30
let keyword, 13, 16
licenses

filtering data by, 319–322
names, 315–318

li element, 131
lineTo method, 146
link element, 120
listener, event, 129
literals

defined, 10
nesting with, 52–53

logical operators, 27–28
lookahead time, 221
looping variable, 65–66
loops, 63–71

for…in loop, 70–71
for loop, 65–66
for…of loop, 67–69
while loop, 63–64

M
makeAppender function, 90
map array method, 86–87
matching elements, 121
Math.hypot method, 98
MDN (Mozilla Developer Network) Web Docs, 147, 263, 292
metadata, 113
methods

for arrays, 41–47
adding element to array, 42
combining arrays, 44–45
finding index of element in array, 45
removing element from array, 43–44
turning array into string, 45–46

chaining, 130, 269
defined, 21
functions vs., 94
overriding, 107–108

middle C, 215
monophonic synth, 216

monospace, 177
mouse movement events, 134–136, 169
move method, 95–97
moveTo method, 146
Mozilla Developer Network (MDN) Web Docs, 147, 263, 292
multidimensional arrays, 39
multiplication assignment operator (*=), 18
music projects, 205–252

making drum sounds, 224–232
drum loop, 230–232
hi-hat synthesis, 224–226
kick synthesis, 228
reverb, 228–230
snare synthesis, 226–227

sampling, 232–234
song writing, 235–252

adding bass lines, 240–242
adding chords, 242–244
complete code, 247–252
event handling, 236–237
getting organized, 235–236
making drumbeat, 237–240
playing tunes, 244–246

Tone.js library, 210–217
generating tone with, 210–211
playing more notes in sequence, 215–216
playing multiple notes at once, 216–217
Tone.Synth options, 211–215

Tone.js transport, 217–224
Tone.Loop, 218–220
Tone.Part, 223–224
Tone.Sequence, 221–222

Web Audio API, 206–209
generating tone with, 207–209
setting up, 206–207

mutations, 41

N
named function expressions, 81
naming conventions, 15–16

classes, 95
constructors, 102

nested relationships, 114
nesting, 52–56

elements, 112
exploring nested objects in console, 54–55
with literals, 52–53

printing nested objects with JSON.stringify, 55–56
with variables, 53–54

new keyword, 96
nice method, 291
Node.js, 303, 330
NodeList, 124–125
nodes, 206
notes

playing in sequence, 215–216
playing multiple notes at once, 216–217

not operator (!), 28
null value, 26
number literals, 10
numbers, 10–12

floating point, 11–12
order of operations, 11

O
Object.assign method, 51–52
Object constructor, 105
Object.entries method, 71
Object.keys method, 49–50
object literal, 47
object literal shorthand syntax, 238
object-oriented Pong, 189–202

design, 190–191
file structure, 191
Game class, 198–201
game elements, 193–197

ball, 195–197
paddles, 194

GameView class, 191–193
Scores and Computer classes, 197–198
starting game, 201

object-oriented programming, 93
Object.prototype, 105–106
objects, 47–52

accessing values in, 48
creating, 47–48
nesting

exploring nested objects in console, 54–55
with literals, 52–53
printing nested objects with JSON.stringify, 55–56
with variables, 53–54

setting values to, 49
working with, 49–52

combining objects, 51–52

getting object’s keys, 49–50
getting object’s keys and values, 50–51

offsetX and offsetY properties, 150
open source code owners, 304
open source repositories, 299
operands, 27
operators, 10–12

defined, 10
floating-point numbers, 11–12
order of operations, 11

optional chaining operator, 313
order of operations, 11
or operator (||), 27–28, 33–34
oscillators, 208
outlined rectangles, drawing, 144–145
overriding methods, 107–108
overtones, 214

P
paddles, Pong, 166–175

bouncing near ends of, 174–175
detecting collisions, 170–173
elements, 194
moving with player input, 169–170

parameters, 74
arguments vs., 75
functions, 77
rest parameters, 84–85

parent elements, 114
parentheses (), 79
path element, 261–264
paths, drawing shapes using, 145–147
p element, 112
PEMDAS rule, 11
pentatonic scale, 219
percent (%) characters, 301
period (.), 123
pipe character (|), 241–242
placeholder syntax (${}), 24–25
player input, moving paddles with, 169–170
polymorphism, 191
polyphonic synth, 216–217
Pong, 159–202

bouncing, 165–166
complete code, 185–188
computer control, 180–182
drawing ball, 161–162

game loop, 163–165
game over, 182–184
object-oriented Pong, 189–202

design, 190–191
file structure, 191
Game class, 198–201
game elements, 193–197
GameView class, 191–193
Scores and Computer classes, 197–198
starting game, 201

overview, 159–160
paddles, 166–175

bouncing near ends of, 174–175
detecting collisions, 170–173
moving with player input, 169–170

refactoring, 162–163
scoring points, 176–180
setup, 160–161

pop method, 43
postfix incrementing and decrementing, 17
prefix incrementing and decrementing, 17
prepended elements, 275
printing nested objects, 55–56
projects

data visualizations
D3 library, 255–297
GitHub Search API, 299–328

game creation
object-oriented Pong, 189–202
Pong, 159–188

making music
generating sound, 205–252
song writing, 235–252

properties, defined, 20
prototype-based inheritance, 101–108

comparing constructors and classes, 104–105
exploring Object.prototype, 105–106
overriding method, 107–108
using constructors and prototypes, 102–104
walking the prototype chain, 106–107

[[Prototype]] property, 55, 103
prototypes, 101–104
pseudo-classes, 133, 266
push method, 42
Python, 334

Q

quadraticCurveTo method, 147
querySelectorAll method, 124
question mark (?), 301
queues, 43

R
range, 284
rate limiting, 78
React, 332
real-time updates, 273–275
receivers, 94
rectangles, drawing outlined, 144–145
refactoring, 162–163
regular expressions, 292–295
relationships, 97
relative position, 262–263
rel attribute, 119
release, ADSR, 211–212
repository info, 310–314
rest parameters, 84–85
rests, 222
return keyword, 89
return values

functions, 75–76
methods, 21
with side effects, 77–78

reverb, 228–230
RGBA color, 150
RGB color, 261
right-aligned text, 177
rotation, 258
rulesets, 121
Rust, 334–335

S
sampling, 232–234
Scalable Vector Graphics. See SVG
scaling

bars in D3, 284–288
SVG supporting, 258

scope, 67, 179
Scores class, 197–198
scoring points, 176–180
script elements, 6, 118–119
selections, 269–270
selectors

overview, 121–124

using in JavaScript, 124–125
self-documenting, 87
semicolon (;), 10
Set constructor, 315
setInterval function, 83
setTimeout function, 79, 81–82, 220
shadowing, 108
shapes, drawing using paths, 145–147
sharp, 215
shiftKey property, 267
shift method, 43–44
short-circuiting, 34
siblings, 114
sidebars, 310–314
side effects, 77–78
Simple Storage Service (Amazon S3), 233
sine wave, 208
single quotation mark ('), 19
sixteenth notes, 217
skewing, 258
slice method, 21–22
slider, 148
snake_case, 15
snare synthesis, 226–227
song writing, 235–252

adding bass lines, 240–242
adding chords, 242–244
complete code, 247–252
event handling, 236–237
getting organized, 235–236
making drumbeat, 237–240
playing tunes, 244–246

span elements, 310–311
square brackets ([]), 21, 48–49
src attribute, 119
starting game, 201
state, 152
statements, 10
statically typed language, 77
static drawings, 142–147

outlined rectangles, 144–145
using paths, 145–147

static methods, 49, 198
static properties, 194
strict inequality (!==) operator, 32
str.includes(otherStr) method, 23
string literal, 19
strings, 19–23

finding length of, 20–21
getting character from, 21
getting multiple characters from, 21–22
joining, 20
trimming whitespace from, 22
turning array into, 45–46

strokeRect method, 144
strong elements, 122–123
str.padStart(num, char) method, 23
str.repeat(count) method, 23
str.toLowerCase() method, 23
subclasses, 97
subexpressions, 171
subtraction assignment operator (-=), 18
superclass, 97
super keyword, 99
sustain, ADSR, 211–212
SVG (Scalable Vector Graphics) graphics format, 256–268

adding interactivity with JavaScript, 266–268
defining paths, 261–264
drawing circles, 260–261
grouping elements, 258–259
styling elements with CSS, 264–266

SvgPathEditor, 263
syntactic sugar, 101
synthesizer, 211

T
tags, 6, 112
template literals, 24–26
testing, 332–333
text editors, 5–6
this keyword, 95–97
3D graphics, 143
tic-tac-toe game, 39–41
timbre, 213
time, Web Audio API, 220–221
tone generation

with Tone.js library, 210–211
with Web Audio API, 207–209

Tone.js library, 210–217
generating tone with, 210–211
playing more notes in sequence, 215–216
playing multiple notes at once, 216–217
Tone.Synth options, 211–215

Tone.js transport, 217–224
Tone.Loop, 218–220

Tone.Part, 223–224
Tone.Sequence, 221–222

Tone.Loop, 218–220
Tone.Part, 223–224
Tone.Sequence, 221–222
Tone.Synth options, 211–215
tooltips, 310
transformations, 258
transitions, 275–276, 296–297
translation, 258–259
transport, Tone.js. See Tone.js transport
trim method, 22
triple equals (===) operator, 29
true constants, 15–16
true value, 32–33
trumpet notes, 233
truthiness, coercion, 32–35
tune playing, 244–246
TypeScript language, 333–334

U
ul element, 131
unauthenticated APIs, 302–303
undefined behavior, 117
undefined value, 26
unshift method, 43
update, element, 277
update function, 153, 164
URL encoding system, 301
URLs, 300–301

V
valid identifiers, 48
values, object

accessing, 48
setting, 49

variables
naming conventions, 15–16
nesting with, 53–54
overview, 13–14

var keyword, 13
vector graphics, 256
visualizing data

D3 library, 255–297
advanced joins, 276–279
bar graphs, 279–297
data binding, 270–271

data joins, 271–273
real-time updates, 273–275
selections, 269–270
setup, 268
SVG graphics format, 256–268
transitions and key functions, 275–276

GitHub Search API, 299–328
adding interactivity, 319–324
basic visualization, 304–309
complete code, 325–328
fetching data, 300–304
improving visualization, 310–319
setting up, 300

VS Code (Visual Studio Code)
if statement in, 58–59
indentation in, 40
overview, 5–6

Vue.js, 332

W
W3C (World Wide Web Consortium), 206
walking the prototype chain, 106–107
Web Audio API, 206–209

generating tone with, 207–209
setting up, 206–207

web development, 332
while loop, 63–64
white noise, 224
whitespace, 22, 295
World Wide Web Consortium (W3C), 206

X
XML (Extensible Markup Language), 256

Z
zero-based indexing, 21, 38, 218

	Praise for Javascript Crash Course
	Title Page
	Copyright
	Dedication
	About the Author and Technical Reviewer
	Acknowledgments
	Introduction
	Who Is This Book For?
	Why JavaScript?
	What Can You Expect to Learn?
	Online Resources
	Part I: The Language
	1. Getting Started
	Using the JavaScript Console
	Using a Text Editor
	Summary
	2. The Basics
	Expressions and Statements
	Numbers and Operators
	Order of Operations
	Floating Point
	Bindings
	Variables
	Constants
	Naming Conventions
	Incrementing and Decrementing
	Addition and Subtraction Assignment
	Multiplication and Division Assignment
	Strings
	Joining Strings
	Finding the Length of a String
	Getting a Character from a String
	Getting Multiple Characters from a String
	Trimming Whitespace from a String
	Other Useful String Methods
	Escape Sequences
	Template Literals
	Undefined and Null
	Booleans
	Logical Operators
	Comparison Operators
	Type Coercion
	Equality with Coercion
	Truthiness
	Uses for Truthiness
	Summary
	3. Compound Data Types
	Arrays
	Creation and Indexing
	Arrays of Arrays
	Array Methods
	Objects
	Creating Objects
	Accessing Object Values
	Setting Object Values
	Working with Objects
	Nesting Objects and Arrays
	Nesting with Literals
	Nesting with Variables
	Exploring Nested Objects in the Console
	Printing Nested Objects with JSON.stringify
	Summary
	4. Conditionals and Loops
	Making Decisions with Conditionals
	if Statements
	if…else Statements
	More Complex Conditions
	Chained if…else Statements
	Repeating Code with Loops
	while Loops
	for Loops
	for…of Loops
	for…in Loops
	Summary
	5. Functions
	Declaring and Calling Functions
	Return Values
	Parameter Types
	Side Effects
	Passing a Function as an Argument
	Other Function Syntaxes
	Function Expressions
	Arrow Functions
	Rest Parameters
	Higher-Order Functions
	Array Methods That Take Callbacks
	Custom Functions That Take Callbacks
	Functions That Return Functions
	Summary
	6. Classes
	Creating Classes and Instances
	Inheritance
	Prototype-Based Inheritance
	Using Constructors and Prototypes
	Comparing Constructors and Classes
	Exploring Object.prototype
	Walking the Prototype Chain
	Overriding a Method
	Summary
	Part II: Interactive Javascript
	7. HTML, the DOM, and CSS
	HTML
	Creating an HTML Document
	Understanding Nested Relationships
	The Document Object Model
	The DOM API
	Element Identifiers
	script Elements
	CSS
	link Elements
	Rulesets
	Selectors
	Using CSS Selectors in JavaScript
	Summary
	8. Event-based Programming
	Event Handlers
	Event Bubbling
	Event Delegation
	Mouse Movement Events
	Keyboard Events
	Summary
	9. The Canvas Element
	Creating a Canvas
	Making Static Drawings
	Drawing Outlined Rectangles
	Drawing Other Shapes Using Paths
	Interacting with the Canvas
	Animating the Canvas
	Summary
	Part III: Projects
	Project 1: Creating a Game
	10. Pong
	The Game
	Setup
	The Ball
	Refactoring
	The Game Loop
	Bouncing
	The Paddles
	Moving the Paddles with Player Input
	Detecting Paddle Collisions
	Bouncing Near the Paddle Ends
	Scoring Points
	Computer Control
	Game Over
	The Complete Code
	Summary
	11. Object-Oriented Pong
	Object-Oriented Design
	The File Structure
	The GameView Class
	The Game Elements
	The Paddles
	The Ball
	The Scores and Computer Classes
	The Game Class
	Starting the Game
	Summary
	Project 2: Making Music
	12. Generating Sounds
	The Web Audio API
	Setting Up
	Generating a Tone with the Web Audio API
	The Tone.js Library
	Generating a Tone with Tone.js
	Understanding the Tone.Synth Options
	Playing More Notes in Sequence
	Playing Multiple Notes at Once
	The Tone.js Transport
	Tone.Loop
	Tone.Sequence
	Tone.Part
	Making Drum Sounds
	Hi-Hat Synthesis
	Snare Synthesis
	Kick Synthesis
	Reverb
	A Drum Loop
	Working with Samples
	Summary
	13. Writing a Song
	Getting Organized
	Event Handling
	Making the Drumbeat
	Adding the Bass Lines
	Adding Chords
	Playing a Tune
	The Complete Code
	Summary
	Project 3: Visualizing Data
	14. Introducing the D3 Library
	The SVG Graphics Format
	Grouping Elements
	Drawing Circles
	Defining Paths
	Styling Elements with CSS
	Adding Interactivity with JavaScript
	The D3 Library
	Setup
	Selections
	Data Binding
	Data Joins
	Real-Time Updates
	Transitions and Key Functions
	Advanced Joins
	Creating a Bar Graph
	Setting Up
	Calculating Character Frequencies
	Drawing the Bar Graph
	Styling with CSS and Regular Expressions
	Cleaning the Data
	Animating the Changes
	Summary
	15. Visualizing Data from the Github Search API
	Setting Up
	Fetching Data
	The Basic Visualization
	Creating the Elements
	Drawing the Axes
	Drawing the Bars
	Improving the Visualization
	Showing Repository Info
	Color-Coding the Bars
	Labeling the Left Axis
	Adding Interactivity
	Filtering the Data by License
	Animating the Changes
	The Complete Code
	Summary
	Afterword
	Index

