
Tom Marrs

JSON  
at Work
PRACTICAL DATA INTEGRATION FOR THE WEB





Tom Marrs

JSON at Work
Practical Data Integration for the Web

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing



978-1-449-35832-7

[LSI]

JSON at Work
by Tom Marrs

Copyright © 2017 Vertical Slice, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley

Production Editor: Nicholas Adams

Copyeditor: Sharon Wilkey

Proofreader: Charles Roumeliotis

Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato

Cover Designer: Randy Comer

Illustrator: Rebecca Demarest

July 2017:  First Edition

Revision History for the First Edition

2017-06-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449358327 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. JSON at Work, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781449358327


To everyone who produces or consumes JSON data with web/mobile applications, REST
APIs, and messaging systems—I hope this makes your job easier.

To the unsung JSON community that produces JSON-based tools and libraries for the
rest of us—thank you for all your hard work to make JSON useful and meaningful.





Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii

Part I. JSON Overview and Platforms

1. JSON Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
JSON Is a Standard                                                                                                          3
A Brief Sample                                                                                                                  4
Why JSON?                                                                                                                       6
Core JSON                                                                                                                        8

JSON Data Types                                                                                                          8
JSON Value Types                                                                                                      11
JSON Versions                                                                                                            14
JSON Comments                                                                                                        14
JSON File and MIME Type                                                                                       14
JSON Style Guidelines                                                                                               15

Our Example—MyConference                                                                                    17
Our Technical Stack                                                                                                   17
Our Architectural Style—noBackEnd                                                                     17
Model JSON Data with JSON Editor Online                                                         18
Generate Sample JSON Data with JSON Generator                                             20
Create and Deploy a Stub API                                                                                  20

What We Covered?                                                                                                        24
What’s Next?                                                                                                                   24

2. JSON in JavaScript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
Node.js Setup                                                                                                                  25
JSON Serialization/Deserialization with JSON.stringify() and JSON.parse()      26

v



The JSON Stringifier/Parser Object                                                                        26
JSON Serialization with Simple JavaScript Data Types                                        26
JSON Serialization with an Object and toJSON()                                                 29
JSON Deserialization Using eval()                                                                           30
JSON Deserialization with an Object and JSON.parse()                                      31

JavaScript Objects and JSON                                                                                       32
Node REPL                                                                                                                  33
Where to Learn More About JavaScript Objects                                                   35

Unit Testing with a Stub API                                                                                        35
Unit Test Style—TDD and BDD                                                                              35
Just Enough Unit Testing with Mocha and Chai                                                   36
Setting Up the Unit Test                                                                                            36
Unirest                                                                                                                         36
Test Data                                                                                                                      37
Speakers Unit Test                                                                                                      37

Building a Small Web Application                                                                               39
Yeoman                                                                                                                        39
Iteration 1—Generate a Web Application with Yeoman                                      41
Iteration 2—Make an HTTP Call with jQuery                                                      45
Iteration 3—Consume Speaker Data from a Stub API and Use a Template      49

How to Go Deeper with JavaScript                                                                             54
What We Covered                                                                                                          55
What’s Next?                                                                                                                   55

3. JSON in Ruby on Rails. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57
Ruby on Rails Setup                                                                                                       57
Ruby JSON Gems                                                                                                           58
JSON Serialization/Deserialization with MultiJson                                                  58

The MultiJson Object                                                                                                58
JSON Serialization/Deserialization with Simple Ruby Data Types                     59
JSON Deserialization with Objects and MultiJson                                                61
A Word on Camel Casing and JSON                                                                      63
JSON Serialization with Objects and ActiveSupport                                            64
JSON Deserialization with Objects and ActiveSupport                                       65

Unit Testing with a Stub API                                                                                        66
Just Enough Unit Testing with Minitest                                                                 66
Setting Up the Unit Test                                                                                            67
Test Data                                                                                                                      68
JSON and Minitest Testing with APIs                                                                     68
Speakers Unit Test                                                                                                      68
Further Reading on Ruby and Minitest                                                                  72
What Is Missing in the Unit Tests?                                                                          72

vi | Table of Contents



Build a Small Web API with Ruby on Rails                                                               73
Choose a JSON Serializer                                                                                          73
speakers-api-1—Create an API with Camel-Cased JSON                                   75
speakers-api-2—Create an API that Customizes the JSON Representation     82
Further Reading on Rails and Rails-based APIs                                                    84

What We Covered                                                                                                          84
What’s Next?                                                                                                                   84

4. JSON in Java. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85
Java and Gradle Setup                                                                                                   85
Gradle Overview                                                                                                            85
Just Enough Unit Testing with JUnit                                                                           87
Java-Based JSON Libraries                                                                                           87
JSON Serialization/Deserialization with Jackson                                                      88

Serialization/Deserialization with Simple Java Data Types                                  88
Serialization/Deserialization with Java Objects                                                     91

Unit Testing with a Stub API                                                                                        96
Test Data                                                                                                                      96
JSON and JUnit Testing with APIs                                                                          96

Build a Small Web API with Spring Boot                                                                 100
Create the Model                                                                                                      101
Create the Controller                                                                                               103
Register the Application                                                                                          104
Write the Build Script                                                                                              105
Deploy the API                                                                                                         107
Test the API with Postman                                                                                     107

What We Covered                                                                                                        108
What’s Next?                                                                                                                 109

Part II. The JSON Ecosystem

5. JSON Schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
JSON Schema Overview                                                                                             113

What Is JSON Schema?                                                                                           113
Syntactic Versus Semantic Validation                                                                   114
A Simple Example                                                                                                    114
JSON Schema on the Web                                                                                      115
Why JSON Schema?                                                                                                116
My Journey with JSON Schema                                                                             117
The Current State of the JSON Schema Standard                                               117
JSON Schema and XML Schema                                                                           117

Table of Contents | vii



Core JSON Schema—Basics and Tooling                                                                118
JSON Schema Workflow and Tooling                                                                   118
Core Keywords                                                                                                         120
Basic Types                                                                                                                121
Numbers                                                                                                                    125
Arrays                                                                                                                         126
Enumerated Values                                                                                                  128
Objects                                                                                                                       129
Pattern Properties                                                                                                    131
Regular Expressions                                                                                                 133
Dependent Properties                                                                                              135
Internal References                                                                                                  136
External References                                                                                                 138
Choosing Validation Rules                                                                                      141

How to Design and Test an API with JSON Schema                                              146
Our Scenario                                                                                                             146
Model a JSON Document                                                                                       146
Generate a JSON Schema                                                                                        148
Validate the JSON Document                                                                                 151
Generate Sample Data                                                                                             152
Deploy a Stub API with json-server                                                                      155
Final Thoughts on API Design and Testing with JSON Schema                      157

Validation Using a JSON Schema Library                                                                157
Where to Go Deeper with JSON Schema                                                                 158
What We Covered                                                                                                        158
What’s Next?                                                                                                                 158

6. JSON Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159
Why JSON Search?                                                                                                      159
JSON Search Libraries and Tools                                                                              160

Honorable Mention                                                                                                 160
What to Look For                                                                                                     160

Test Data                                                                                                                        161
Setting Up Unit Tests                                                                                                   162
Comparing JSON Search Libraries and Tools                                                         163

JSONPath                                                                                                                  163
JSON Pointer                                                                                                            170
jq                                                                                                                                 173

JSON Search Library and Tool Evaluations—The Bottom Line                           184
What We Covered                                                                                                        185
What’s Next?                                                                                                                 185

viii | Table of Contents



7. JSON Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187
Types of JSON Transformation                                                                                 187
What to Look For in a JSON Transform Library                                                    188
Test Input Data                                                                                                             189
JSON-to-HTML Transformation                                                                              191

Target HTML Document                                                                                        191
Mustache                                                                                                                   192
Handlebars                                                                                                                198
JSON-to-HTML Transformation Evaluations—The Bottom Line                   204

JSON-to-JSON Transform                                                                                         204
The Issues                                                                                                                  205
JSON-to-JSON Transform Libraries                                                                     205
Honorable Mention                                                                                                 205
Target JSON Output                                                                                                206
JSON Patch                                                                                                                207
JSON-T                                                                                                                      213
Mustache                                                                                                                   217
Handlebars                                                                                                                219
JSON-to-JSON Transformation Evaluations—The Bottom Line                     221

JSON-XML Transformation                                                                                      222
JSON-XML Transformation Conventions                                                           222
The Issues with JSON-XML Transformation Conventions                               231
XML-JSON Transform—The Bottom Line                                                          231
JSON-XML Transformation Unit Test                                                                  233

What We Covered                                                                                                        235
What’s Next?                                                                                                                 235

Part III. JSON in the Enterprise

8. JSON and Hypermedia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239
Comparing Hypermedia Formats                                                                             240

Defining Key Terms                                                                                                 241
My Opinion on Hypermedia                                                                                  241
Siren                                                                                                                           242
JSON-LD                                                                                                                   244
Collection+JSON                                                                                                     249
json:api                                                                                                                       250
HAL                                                                                                                            254

Conclusions on Hypermedia                                                                                     259
Recommendations for Working with Hypermedia                                                260
Practical Issues with Hypermedia                                                                             260

Table of Contents | ix



Testing with HAL in the Speakers API                                                                     261
Test Data                                                                                                                    261
HAL Unit Test                                                                                                           263

Server-Side HAL                                                                                                          267
Going Deeper with Hypermedia                                                                               268
What We Covered                                                                                                        268
What’s Next?                                                                                                                 268

9. JSON and MongoDB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269
What About BSON?                                                                                                    269
MongoDB Setup                                                                                                          270
MongoDB Server and Tools                                                                                       270
MongoDB Server                                                                                                         270
Importing JSON into MongoDB                                                                               271
MongoDB Command Shell                                                                                        273

Basic CRUD with mongo                                                                                        274
Exporting from MongoDB to a JSON Document                                                  277
What About Schema?                                                                                                  280
RESTful API Testing with MongoDB                                                                       281

Test Input Data                                                                                                         282
Providing a RESTful Wrapper for MongoDB                                                      282

What We Covered                                                                                                        285
What’s Next?                                                                                                                 285

10. JSON Messaging with Kafka. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287
Kafka Use Cases                                                                                                           288
Kafka Concepts and Terminology                                                                             288
The Kafka Ecosystem—Related Projects                                                                  289
Kafka Environment Setup                                                                                          290

Why Do I Need ZooKeeper?                                                                                  290
Kafka Command-Line Interface (CLI)                                                                     291

How to Publish a JSON Message with the CLI                                                    291
Start ZooKeeper                                                                                                        291
Start Kafka                                                                                                                 292
Create a Topic                                                                                                           292
List Topics                                                                                                                 293
Start a Consumer                                                                                                     293
Publish a JSON Message                                                                                         294
Consume a JSON Message                                                                                      295
Clean Up and Shut Down Kafka                                                                            295

Kafka Libraries                                                                                                             297
End-to-End Example—Speaker Proposals at MyConference                               297

x | Table of Contents



Test Data                                                                                                                    297
Architecture Components                                                                                      299
Set Up the Kafka Environment                                                                              300
Set Up Fake Email Server and Client—MailCatcher                                          301
Set Up Node.js Project Environment                                                                    302
Speaker Proposal Producer (Send Speaker Proposals)                                       302
Proposal Reviewer (Consumer/Producer)                                                           302
Speaker Notifier (Consumer)                                                                                 308
Review Notification Email Messages with MailCatcher                                     313

What We Covered                                                                                                        315

A. Installation Guides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  317

B. JSON Community. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  335

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  337

Table of Contents | xi





Preface

JavaScript Object Notation (JSON) has become the de facto standard for RESTful
interfaces, but an ecosystem of little-known standards, tools, and technologies is
available that architects and developers can start using today to build well-designed
applications. JSON is more than just a simple replacement for XML when you make
an AJAX call. It is becoming the backbone of any serious data interchange over the
internet. Solid standards and best practices can be used to harness the energy and
enthusiasm around JSON to build truly elegant, useful, and efficient applications.

The only thing missing is a book to pull everything together. This book aims to help
developers leverage JSON so that they can build enterprise-class applications and
services. My goals are to promote the use of JSON tooling and the concept of mes‐
sage/document design as a first-class citizen in the fast-growing API community.

My journey into JSON began in 2007 when I was leading a large web portal project,
and we had to populate a drop-down list with several thousand entries. At that time, I
was reading Head First AJAX by Rebecca Riordan (O’Reilly), so I had a decent archi‐
tectural approach. AJAX would solve overall latency and page load issues, but what
about the data? I had been using XML successfully for several years, but it seemed
like overkill for the task at hand—moving data from the backend of a web application
to the View. Head First AJAX mentioned a new data format called JSON, and it
looked like the way to go. My team began looking into APIs that would convert our
Java objects into JSON, and chose the one that had the simplest and shortest JUnit
tests—the goal was to do the simplest thing that could possibly work. We put the
application under rigorous load testing, and the Java-to-JSON conversion was never a
performance issue. The application scaled up in production, and the users saw their
drop-down list in a timely manner.

Along my journey, I considered the use of JSON with web applications, RESTful APIs,
and messaging. As of 2009, I was still working with XML because XML Schema pro‐
vided the semantic validation needed for meaningful data interchange. So, my posi‐
tion at that time was to use JSON for web user interfaces, or UIs (for speed), and

xiii



XML for Web Services and Messaging (for integration). But then I heard about JSON
Schema in 2010, and found that I had no further need for XML. The JSON Schema
specification is still under development, but it’s sufficiently mature enough now to use
for enterprise-class integration.

At this point, I was hooked on or, more accurately, obsessed with JSON. I began look‐
ing around the internet to see what else JSON could do, and I found copious APIs,
online tools, search capabilities, and more. In short, anything that has been done with
XML can (and should) now be done with JSON.

I then began to look for JSON in books, and was disappointed when I could find only
a chapter or two on the topic in a JavaScript or RESTful Web Services book. I saw a
growing JSON community along with lots of tool support and articles and blogs, but
there was no single place—other than Douglas Crockford’s JSON site—that pulled
everything together.

Audience, Assumptions, and Approach
This book is for architects and developers who design/implement web and mobile
applications, RESTful APIs, and messaging applications. Code examples are in Java‐
Script, Node.js, Ruby on Rails, and Java. If you’re a Groovy, Go, Scala, Perl, Python,
Clojure, or C# developer, you’ll need to follow along with the code examples pro‐
vided. But rest assured that most major/modern languages provide excellent JSON
support. For the architect, I’ve provided guidelines, best practices, and architecture
and design diagrams where appropriate. But in addition to providing visionary lead‐
ership, real architects prove their ideas with working code. While I love working with
JSON and writing code, it’s entirely meaningless without use cases, and a business
and technical context. For developers, this book is packed with code examples, tool‐
ing, and Unit Tests, along with a GitHub repository (see <Code Examples= on page
xvii).

Chapters 5–10 only have code examples only in Node.js to keep things simple and
focused. But it’s not hard to translate these examples into your platform of choice.

What Does “At Work” Mean?
When I wrote JBoss at Work with Scott Davis back in the mid-2000s, our vision was
to write a book that developers could use at work on their daily jobs. In the same
manner, the purpose of JSON at Work is to provide practical examples to developers
based on my real-world integration experience with JSON. To that end, I’ve baked
Unit Testing (wherever feasible) into every chapter. It’s simple: if there’s no test for a
piece of code, then that code doesn’t exist. Period.

xiv | Preface

http://www.json.org


Expect to roll up your sleeves and look at code. Whether you’re an architect or devel‐
oper, you’ll find something here to help you on your job.

What You’ll Learn
By reading and following this book’s examples, you’ll learn how to do the following:

• JSON basics and how to model JSON data

• Use JSON with Node.js, Ruby on Rails, and Java

• Structure JSON documents with JSON Schema to design and test APIs

• Search the contents of JSON documents with JSON Search tools

• Convert JSON documents to other data formats with JSON Transform tools

• Use JSON as part of an enterprise architecture

• Compare JSON-based Hypermedia formats, including HAL and json:api

• Leverage MongoDB to store and access JSON documents

• Use Apache Kafka to exchange JSON-based messages between services

• Use freely available JSON tools and utilities to simplify testing

• Invoke APIs in your favorite programming language with simple utilities and
libraries

What You’ll Work With
Here’s a sample of the JSON tooling you’ll use in this book:

• JSON editors/modelers

• Unit-Testing tools (e.g., Mocha/Chai, Minitest, JUnit)

• JSON Validators

• A JSON Schema Generator

• JSON Search tools

• JSON Transform (templating) tools

Who This Book Is Not For
This book is not for you if your only interest in JSON is to make AJAX calls from
JavaScript. Although I cover this topic, it’s just the tip of the iceberg. Plenty of Java‐
Script books have the chapter you’re looking for.

Preface | xv



Developers looking for a deep reference on REST, Ruby on Rails, Java, JavaScript, etc.
won’t find it here. This book relies on these technologies, but focuses on how to use
JSON with these languages and technologies.

Organization
This book consists of the following parts:

• Part I, JSON Overview and Platforms

• Part II, |e JSON Ecosystem

• Part III, JSON in the Enterprise

• Appendices

Part I, JSON Overview and Platforms

• Chapter 1, JSON Overview, starts with an overview of the JSON data format,
describes best practices in JSON usage, and introduces the tools used throughout
the book.

• Chapter 2, JSON in JavaScript, shows how to use JSON with JavaScript, Node.js,
and Mocha/Chai Unit Tests.

• Chapter 3, JSON in Ruby on Rails, describes how to convert between Ruby objects
and JSON, and integrate with Rails.

• Chapter 4, JSON in Java, tells you how to use JSON with Java and Sprint Boot.

Part II, The JSON Ecosystem

• Chapter 5, JSON Schema, helps you structure JSON documents with JSON
Schema. Along the way, you’ll generate a JSON Schema and design an API with
it.

• Chapter 6, JSON Search, shows how to search JSON documents with jq and
JSONPath.

• Chapter 7, JSON Transform, provides the tools you’ll need transform a poorly
designed JSON document to a better designed/more useful JSON document.
Plus, it shows how to convert between JSON and other formats such as XML and
HTML.

xvi | Preface



Part III, JSON in the Enterprise

• Chapter 8, JSON and Hypermedia, looks at how to use JSON with several well-

known Hypermedia formats (e.g., HAL and jsonapi).

• Chapter 9, JSON and MongoDB, shows how to leverage MongoDB to store and
access JSON documents.

• Chapter 10, JSON Messaging with Kaoa, describes how to use Apache Kafka to
exchange JSON-based messages between services.

Appendices

• Appendix A, Installation Guides, shows how to install the applications you’ll need
to run the code examples in this book.

• Appendix B, JSON Community, provides further information and links to con‐
nect you to the JSON community (e.g., standards and tutorials) and to help you
go further with JSON.

Code Examples
All code examples for this book are freely available from the JSON at Work examples
GitHub repository.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: <JSON at Work by Tom Marrs
(O’Reilly). Copyright 2017 Vertical Slice, Inc., 978-1-449-35832-7.=

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xvii

https://github.com/tmarrs/json-at-work-examples
mailto:permissions@oreilly.com


O’Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/json-at-work.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xviii | Preface

http://oreilly.com/safari
http://oreilly.com/safari
http://bit.ly/json-at-work
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Acknowledgments
First of all, I’d like to acknowledge Douglas Crockford for creating and standardizing
the JSON data format. JSON is the data language of REST and Microservices, and the
overall community is indebted to his vision and efforts.

I appreciate my O’Reilly editor, Megan Foley, and my former editor, Simon St. Lau‐
rent, for believing in this book and for their patience and guidance on the project.
Thanks for sticking with me and helping me throughout the project. I would also like
to thank my O’Reilly copy edit team, Nick Adams and Sharon Wilkey, whose diligent
work improved the quality of this manuscript.

Thanks to Matthew McCullough and Rachel Roumeliotis from the O’Reilly Open
Source Convention (OSCON), Jay Zimmerman from No Fluff Just Stuff (NFJS), and
Dilip Thomas from the Great Indian Developer Summit (GIDS) for giving me the
chance to speak about JSON and REST at your conferences. It’s always fun to speak at
conferences, and I hope to continue doing this well into the future.

I’m grateful to my technical reviewers who provided valuable feedback on this book:
Joe McIntyre, David Bock, Greg Ostravich, and Zettie Chinfong. I would also like to
thank the following people who helped shape and mold my ideas on how to talk
about JSON: Matthew McCullough, Scott Davis, Cristian Vyhmeister, Senthil Kumar,
Sean Pettersen, John Gray, Doug Clark, Will Daniels, Dan Carda, and Peter Piper.

The Colorado Front Range technical community is world class, and I’ve had fun pre‐
senting at the following user groups to help refine my material:

• HTML5 Denver

• Denver Open Source User Group (DOSUG)

• Colorado Springs Open Source User Group (CS OSUG)

• Denver Java User Group (DJUG)

• Boulder Java User Group (BJUG)

• BoulderJS Meetup

Thanks to my friends in the Toastmasters community who encouraged me, believed
in me, and pushed me to finish the book: Darryle Brown, Deborah Frauenfelder, Eli‐
nora Reynolds, Betty Funderburke, Tom Hobbs, Marcy Brock, and many, many oth‐
ers. You have inspired me to communicate clearly, to <Lift as You Climb,= and to
<Travel Beyond.=

There is an amazing JSON community on the internet. Much of this book is based on
the great work that you’ve done and continue to do. You’ve inspired me to tell your
story and to connect the dots.

Preface | xix

http://www.toastmasters.org


To my late parents, Al and Dorene Marrs, who loved me and always believed in me
and supported me—I know you’re in a better place. You inspired me to be adaptable,
to innovate, and to work hard. You always encouraged me to do my very best. Thank
you for everything you did for me.

Finally, to my beautiful wife, Linda, and my daughter, Abby—I love you. Thanks for
your patience with me while I spent my evenings and weekends on the manuscript
and code.

xx | Preface



PART I

JSON Overview and Platforms





CHAPTER 1

JSON Overview

The JavaScript Object Notation (JSON) data format enables applications to communi‐
cate over a network, typically through RESTful APIs. JSON is technology-agnostic,
nonproprietary, and portable. All modern languages (e.g., Java, JavaScript, Ruby, C#,
PHP, Python, and Groovy) and platforms provide excellent support for producing
(serializing) and consuming (deserializing) JSON data. JSON is simple: it consists of
developer-friendly constructs such as Objects, Arrays, and name/value pairs. JSON is
not limited to Representational State Transfer (REST); it also works with the follow‐
ing:

• Node.js (which stores project metadata in package.json)

• NoSQL databases such as MongoDB (see Chapter 9)

• Messaging platforms such as Kafka (see Chapter 10)

JSON Is a Standard
In the early days, REST’s detractors derided RESTful Web Services as being non-
standard, but (just like HTTP) JSON is in fact a standard. Both the Internet Engi‐
neering Task Force (IETF) and Ecma International (formerly the European
Computer Manufacturers Association, or ECMA) have recognized JSON as a stan‐
dard. Douglas Crockford originally created JSON in 2001, and initially standardized
it in 2006 under RFC 4627 through the IETF; see the JSON specification. In the fall of
2013, Ecma International also standardized JSON under ECMA 404; see their JSON
specification. With Ecma recognition (per Douglas Crockford; see his Google+ page),
JSON is now considered a formal international data processing standard.

3

http://tools.ietf.org/html/rfc4627
http://bit.ly/2skDdEV
http://bit.ly/2skDdEV
http://bit.ly/2thZmkj


In March 2014, Tim Bray published an updated version of Douglas Crockford’s origi‐
nal standard as IETF RFC 7158 and RFC 7159 to correct errata with the original IETF
4627 standard (thus rendering it obsolete).

A Brief Sample
Before we go further, let’s look at a small JSON sample. Example 1-1 shows a simple
JSON document.

Example 1-1. orst�alidObject.json

{ "thisIs": "My first JSON document" }

A valid JSON document can be either of the following:

• An Object surrounded by curly braces, { and }

• An Array enclosed by brackets, [ and ]

The preceding example shows an Object that contains a single key/value pair, where

the key, "thisIs", has a value of "My first JSON document".

Just to keep us honest, let’s validate this document by using JSONLint. Just paste the
text into the text area, click the Validate button, and you should see the page in
Figure 1-1.

4 | Chapter 1: JSON Overview

http://tools.ietf.org/html/rfc7158
http://tools.ietf.org/html/rfc7159
https://jsonlint.com/


Figure 1-1. Simple/valid JSON document in JSONLint

Example 1-2 presents a simple JSON Array.

Example 1-2. orst�alidArray.json

[

  "also",

  "a",

  "valid",

  "JSON",

  "doc"

]

In JSONLint, paste the JSON Array into the text area, and click the Validate button,
and you should get the result shown in Figure 1-2.

A Brief Sample | 5



Figure 1-2. Valid Array in JSONLint

But we’re getting ahead of ourselves. We’ll cover JSON syntax more thoroughly in
<Core JSON= on page 8.

Why JSON?
Although standardization through Ecma International and the IETF has helped JSON
gain industry acceptance, other factors have popularized JSON:

• The explosive growth of RESTful APIs based on JSON

• The simplicity of JSON’s basic data structures

• The increasing popularity of JavaScript

JavaScript’s resurgence is boosting JSON’s popularity. Over the past several years, we
have seen the rise of JavaScript as a first-class development language and environ‐
ment. This ecosystem includes platforms such as Node.js, and Mode/View/Controller
(MVC) frameworks such as AngularJS, React, Backbone, and Ember. There has also

6 | Chapter 1: JSON Overview



been a tremendous increase in the number of books and websites showing best prac‐
tices in JavaScript Objects and Patterns. According to Douglas Crockford, JSON is a
subset of JavaScript’s Object Literal notation, and fits seamlessly into JavaScript devel‐
opment.

Thousands of RESTful APIs leverage JSON. A sample list of popular JSON-based
RESTful APIs includes the following:

• LinkedIn

• Twitter

• Facebook

• Salesforce

• GitHub

• DropBox

• Tumblr

• Amazon Web Services (AWS)

To see the thousands of available JSON-based REST APIs available, visit Programma‐
bleWeb, and do a search on REST and JSON. Then, take several weeks to review the
results.

JSON is simple and is gradually replacing XML as the primary data interchange for‐
mat on the internet. JSON is easy to read, and its structures easily translate to con‐
cepts well understood by software developers—Arrays, Objects, and name/value
pairs. We don’t have to scratch our heads or argue anymore about what should be an
Element or an Attribute. Objects and their data members are a much better fit for
Object-Oriented (OO) design and development. A document formatted in JSON is
usually smaller than its XML equivalent, because JSON has less overhead and is more
compact. This is due to the lack of begin and end tags surrounding each data element.
So, at an enterprise level, JSON is more efficient to process than XML, because JSON
documents can be transmitted over a network and processed faster than their XML
counterparts.

Although Douglas Crockford initially intended JSON to be a data interchange format
(typically with REST), JSON is now finding a home in configuration files for widely
used products such as Node.js and Sublime Text. Node.js has a package.json file that it
uses to define its standard npm package structure; we’ll cover this in Chapter 2. Sub‐
lime Text, a popular IDE in the web development community, uses JSON to configure
its appearance along with its package managers.

Why JSON? | 7

http://www.programmableweb.com
http://www.programmableweb.com


Core JSON
The Core JSON data format includes JSON Data and Value Types. We’ll also cover
versions, comments, and File/MIME Types.

JSON Data Types
JSON has the following core Data Types:

Name (or Key)/value pair
Consists of a key (a data attribute) and a value.

Object
An unordered collection of name/value pairs.

Array
A collection of ordered values.

Now that we’ve covered basic definitions, let’s dig deeper into each Data Type.

Name/value pairs

Example 1-3 shows some sample name/value pairs.

Example 1-3. nameValue.json

{

  "conference": "OSCON",

  "speechTitle": "JSON at Work",

  "track": "Web APIs"

}

Name/value pairs have the following characteristics:

• Each name (e.g., "conference")

— Is on the left side of the colon (:)

— Is a String, and must be surrounded by double quotes

• The value (e.g., "OSCON") is to the right of the colon. In the preceding example,
the value type is a String, but there are several other Value Types.

We’ll cover Strings and other valid Value Types further in <JSON Value Types= on
page 11.

8 | Chapter 1: JSON Overview



Objects

Objects consist of name/value pairs. Example 1-4 shows a sample Object that repre‐
sents an address.

Example 1-4. simpleJsonObject.json

{

  "address" : {

    "line1" : "555 Any Street",

    "city" : "Denver",

    "stateOrProvince" : "CO",

    "zipOrPostalCode" : "80202",

    "country" : "USA"

  }

}

Example 1-5 shows an Object with a nested Array.

Example 1-5. jsonObjectNestedArray.json

{

  "speaker" : {

    "firstName": "Larson",

    "lastName": "Richard",

    "topics": [ "JSON", "REST", "SOA" ]

  }

}

Example 1-6 shows an Object that contains another Object.

Example 1-6. jsonObjectNestedObject.json

{

  "speaker" : {

    "firstName": "Larson",

    "lastName": "Richard",

    "topics": [ "JSON", "REST", "SOA" ],

    "address" : {

      "line1" : "555 Any Street",

      "city" : "Denver",

      "stateOrProvince" : "CO",

      "zipOrPostalCode" : "80202",

      "country" : "USA"

    }

  }

}

Core JSON | 9



Objects have the following characteristics:

• Are enclosed within a beginning left curly brace ({) and an ending right curly

brace (})

• Consist of comma-separated, unordered, name/value pairs

• Can be empty, { }

• Can be nested within other Objects or Arrays

Arrays

Example 1-7 shows an Array (containing nested Objects and Arrays) that describes
conference presentations, including title, length, and abstract.

Example 1-7. jsonArray.json

{

  "presentations": [

    {

      "title": "JSON at Work: Overview and Ecosystem",

      "length": "90 minutes",

      "abstract": [ "JSON is more than just a simple replacement for XML when",

                    "you make an AJAX call."

                  ],

      "track": "Web APIs"

    },

    {

      "title": "RESTful Security at Work",

      "length": "90 minutes",

      "abstract": [ "You’ve been working with RESTful Web Services for a few years",

                     "now, and you’d like to know if your services are secure."

                  ],

      "track": "Web APIs"

    }

  ]

}

Arrays have the following characteristics:

• Are enclosed within a beginning left brace ([) and an ending right brace (])

• Consist of comma-separated, ordered values (see the next section)

• Can be empty, [ ]

• Can be nested within other Arrays or Objects

• Have indexing that begins at 0 or 1

10 | Chapter 1: JSON Overview



JSON Value Types
JSON Value Types represent the Data Types that occur on the righthand side of the

colon (:) of a Name/Value Pair. JSON Value Types include the following:

• object

• array

• string

• number

• boolean

• null

We’ve already covered Objects and Arrays; now let’s focus on the remaining Value

Types: string, number, boolean, and null.

String

Example 1-8 shows valid JSON Strings.

Example 1-8. jsonStrings.json

[

  "fred",

  "fred\t",

  "\b",

  "",

  "\t",

  "\u004A"

]

Strings have the following properties:

• Strings consist of zero or more Unicode characters enclosed in quotation marks

(""). Please see the following list for additional valid characters.

• Strings wrapped in single quotes (') are not valid.

Additionally, JSON Strings can contain the following backslash-escaped characters:

\"

Double quote

\\

Backslash

Core JSON | 11



\/

Forward slash

\b

Backspace

\f

Form feed

\n

Newline

\r

Carriage return

\t

Tab

\u

Trailed by four hex digits

Number

Example 1-9 shows valid numbers in JSON.

Example 1-9. jsonNumbers.json

{

  "age": 29,

  "cost": 299.99,

  "temperature": -10.5,

  "unitCost": 0.2,

  "speedOfLight": 1.23e11,

  "speedOfLight2": 1.23e+11,

  "avogadro": 6.023E23,

  "avogadro2": 6.023E+23,

  "oneHundredth": 10e-3,

  "oneTenth": 10E-2

}

Numbers follow JavaScript’s double-precision floating-point format and have the fol‐
lowing properties:

• Numbers are always in base 10 (only digits 0–9 are allowed) with no leading
zeros.

• Numbers can have a fractional part that starts with a decimal pont (.).

12 | Chapter 1: JSON Overview



• Numbers can have an exponent of 10, which is represented with the e or E nota‐
tion with a plus or minus sign to indicate positive or negative exponentiation.

• Octal and hexadecimal formats are not supported.

• Unlike JavaScript, numbers can’t have a value of NaN (not a number for invalid
numbers) or Infinity.

Boolean

Example 1-10 shows a Boolean value in JSON.

Example 1-10. jsonBoolean.json

{

  "isRegistered": true,

  "emailValidated": false

}

Booleans have the following properties:

• Booleans can have a value of only true or false.

• The true or false value on the righthand side of the colon(:) is not surrounded
by quotes.

null

Although technically not a Value Type, null is a special value in JSON. Example 1-11

shows a null value for the line2 key/property.

Example 1-11. jsonNull.json

{

  "address": {

    "line1": "555 Any Street",

    "line2": null,

     "city": "Denver",

        "stateOrProvince": "CO",

        "zipOrPostalCode": "80202",

        "country": "USA"

    }

}

null values have the following characteristics:

• Are not not surrounded by quotes

Core JSON | 13



• Indicate that a key/property has no value

• Act as a placeholder

JSON Versions
According to Douglas Crockford, there will never be another version of the core
JSON standard. This isn’t because JSON is perfect; nothing is perfect. The purpose of
a sole JSON version is to avoid the pitfalls of having to support backward compatibil‐
ity with previous versions. Crockford believes that a new data format should replace
JSON when the need arises within the development community.

But as you’ll see in subsequent chapters, this <no versions= philosophy applies only to
the core JSON data format. For example, in Chapter 5, that specification is currently
at version 0.5 as of this writing. Please note that these JSON-related specifications
were created by others in the JSON community.

JSON Comments
There are no comments in a JSON document. Period.

According to his postings on the Yahoo! JSON group and Google+, Crockford ini‐
tially allowed comments, but removed them early on for the following reasons:

• He believed that comments weren’t useful.

• JSON parsers had difficulties supporting comments.

• People were abusing comments. For example, he noticed that comments were
being used for parsing directives, which would have destroyed interoperability.

• Removing comments simplified and enabled cross-platform JSON support.

JSON File and MIME Type
According to the core JSON specification, .json is the standard JSON file type when
storing JSON data on filesystems. JSON’s Internet Assigned Numbers Authority

(IANA) media (or MIME) type is application/json, which can be found at the
IANA Media Types site. RESTful Web Service Producers and Consumers use a tech‐
nique known as content negotiation (which leverages the JSON MIME type in HTTP
Headers) to indicate that they are exchanging JSON data.

14 | Chapter 1: JSON Overview

https://yhoo.it/2sp7za1
http://bit.ly/2sp83gw
http://bit.ly/1cogNWM


JSON Style Guidelines
JSON is all about interoperability, and it’s important to provide JSON data feeds in a
way that Consumers expect. Google has published a JSON Style Guide to support
maintainability and best practices.

The Google JSON Style Guide is extensive, and here are the most important things
for an API designer and developer:

• Property Names

• Date Property Values

• Enum Values

Property Names

Property Names (in Google parlance) are on the left side of the colon in a name/value
pair (and Property Values are on the righthand side of the hyphen). Two main styles
can be used to format a JSON Property Name:

• lowerCamelCase

• snake_case

With lowerCamelCase, a name is created by joining one or more words to look like a
single word, and the first letter in each word is capitalized (except for the first word).

Both the Java and JavaScript communities use lowerCamelCase in their coding

guides. With snake_case, all letters are lowercase, and words are separated with an

underscore (_). But the Ruby on Rails community prefers snake_case.

Google, along with the majority of RESTful APIs, uses lowerCamelCase for its Prop‐
erty Names, as shown in Example 1-12.

Example 1-12. jsonPropertyName.json

{

  "firstName": "John Smith"

}

Date Property Values

You may think that Date formats aren’t that important, but they are. Imagine
exchanging date information between a Producer and Consumer who come from dif‐
ferent countries or continents. Even within a single enterprise, two development
groups will likely use different date formatting conventions. It is important to con‐
sider the semantics of how to interpret timestamps so that we have consistent date/

Core JSON | 15

https://google.github.io/styleguide/jsoncstyleguide.xml


time processing and interoperability across all time zones. The Google JSON Style
Guide prefers that dates follow the RFC 3339 format, as shown in Example 1-13.

Example 1-13. jsonDateFormat.json

{

  "dateRegistered": "2014-03-01T23:46:11-05:00"

}

The preceding date provides a Coordinated Universal Time (UTC) offset (from

UTC/GMT—Greenwich Mean Time) of -5 hours, which is US Eastern Standard
Time. Note that RFC 3339 is a profile of ISO 8601. The main difference is notably
that the International Standards Organization’s ISO 8601 allows the replacement of

the T (which separates the date and time) with a space, and RFC 3339 does not allow
this.

Latitude/Longitude Values

Geographical APIs (e.g., Google Maps) and APIs related to a geographical informa‐
tion system (GIS) use latitude/longitude data. To support consistency, the Google
JSON Style Guide recommends that latitude/longitude data follows the ISO 6709
standard. According to Google Maps, the coordinates for the Empire State Building
in New York City are 40.748747° N, 73.985547° W, and would be represented in JSON
as shown in Example 1-14.

Example 1-14. jsonLatLon.json

{

  "empireStateBuilding": "40.748747-73.985547"

}

This example follows the ±DD.DDDD±DDD.DDDD format, with the following conventions:

• Latitude comes first.

• North (of the equator) latitude is positive.

• East (of the prime meridian) longitude is positive.

• The latitude/longitude is represented as a String. It can’t be a Number because of
the minus sign.

Indentation

Although the Google JSON Style Guide is silent on this topic, here are a few rules of
thumb:

16 | Chapter 1: JSON Overview

http://www.ietf.org/rfc/rfc3339.txt
http://www.iso.org/iso/home/standards/iso8601.htm
http://en.wikipedia.org/wiki/ISO_6709


• JSON is a serialization format, not a presentation format. So, indentation is
meaningless to an API Producer or Consumer.

• Many JSON Formatters let the user choose between two, three, or four spaces
when beautifying a JSON document.

• JSON originated from JavaScript (as part of the ECMA 262 standard), but
unfortunately there is no single consensus throughout the JavaScript community.
Many people and coding style guides prefer two spaces, so this is the convention
used in this book for consistency. It’s OK if you prefer another style here, but be
consistent.

Our Example—MyConference
Our examples throughout this book cover conference-related data, including the
following:

• Speakers

• Sessions

Our Technical Stack
We’ll start by creating a simple JSON data store for speakers and publishing it to a
Stub RESTful API by taking the following steps:

1. Model JSON data with JSON Editor Online

2. Generate sample JSON data with JSON Generator

3. Create and deploy a Stub API (for future testing)

Our Architectural Style—noBackEnd
Our architectural style is based on the concept of noBackend. With noBackend, the
developer doesn’t have to worry about the nuts and bolts of application servers or
databases at the early stages of application development.

The first seven chapters of this book use noBackEnd architecture to maintain focus
on our application from a business perspective (services and data first) so that we can
support not only UI-based (e.g., mobile, tablet, and web) clients, but APIs and non-
web-based client applications as well. We’ll deploy JSON data with simple tools such

as json-server to emulate a RESTful API.

Our Example—MyConference | 17

http://nobackend.org/


By using this approach, we take an interface-first approach to designing and building
an API, which provides the following:

• More Agile, rapid, iterative frontend development due to the decoupling from
the backend.

• Faster feedback on the API itself. Get the data and URI out there quickly for
rapid review.

• A cleaner interface between the API and its Consumers.

• A separation of concerns between the Resource (e.g., speakers as JSON data)
exposed by the API and its (eventual) internal implementation (e.g., application
server, business logic, and data store). This makes it easier to change implemen‐
tation in the future. If you create and deploy a real API with Node.js/Rails/Java
(or other framework) too early, you’ve already made design decisions at a very
early stage that will make it difficult to change after you start working with API
Consumers.

A Stub API does the following:

• Eliminates the initial need to work with servers and databases

• Allows API Producers (those developers who write the API) to focus on API
Design, how best to present the data to the Consumers, and initial testing

• Enables API Consumers (e.g., UI developers) to work with the API at an early
stage and provide feedback to the API development team

By using the lightweight tools in this book, you’ll see that you can go a long way
before writing code and deploying it on a server. Of course, you’ll eventually need to
implement an API, and we’ll show how to do that when we cover JavaScript, Ruby on
Rails, and Java in Chapters 2–4.

Model JSON Data with JSON Editor Online
Creating a valid JSON document of any real size or complexity is tedious and error-
prone. JSON Editor Online is a great web-based tool that does the following:

• Enables you to model your JSON document as Objects, Arrays, and name/value
pairs

• Makes it easier to rapidly generate the text for a JSON document in an iterative
manner

JSONmate is another solid editor on the web, but we don’t cover it further in this
book.

18 | Chapter 1: JSON Overview

http://www.jsoneditoronline.org
http://jsonmate.com


JSON Editor Online features

In addition to JSON modeling and text generation, JSON Editor Online provides the
following features:

JSON validation
Validation occurs as you type JSON data in the JSON text area on the left side of

the page. If you forget a closing double quote for a value (e.g., "firstName":

"Ester,), an X will show next to the following line of JSON text along with hover
text that explains the validation error.

JSON pretty-printing
Click the Indent button at the upper-left corner of the JSON text area.

Full roundtrip engineering between the model and JSON text
After creating some Objects and key/value pairs (with the Append (+) button) in
the JSON model on the right side of the page, generate JSON text by clicking the
left-arrow button (in the upper-middle portion of the page). You should see the
changes reflected in the JSON text area on the left side of the page.

Modify some data in the JSON text area and click the right-arrow button, and
you should see the changes in the JSON model on the righthand side of the page.

Save JSON document to disk
You can save a JSON document to your local machine by selecting the Save to
Disk option under the Save menu.

Import JSON document
You can import a JSON document from your computer by choosing the Open
from Disk option from the Open menu.

Please remember that JSON Editor Online is publicly available, which means that any
data you paste into this app is visible to others. So don’t use this tool with sensitive
information (personal, proprietary, and so forth).

Speaker data in JSON Editor Online

After you’re finished modeling Speaker data, click the right-arrow button to generate
a pretty-printed (indented) JSON document that represents the model. Figure 1-3
shows JSON Editor Online with our initial Speakers model.

Our Example—MyConference | 19



Figure 1-3. Speaker data model in JSON Editor Online

This is just a rough model, but this initial sketch is a decent starting point. Use the
initial model to visualize JSON data, get early feedback, and iterate quickly on the
design. This approach enables you to refine the JSON data structure throughout the
development life cycle without investing heavily in implementation and infrastruc‐
ture.

Generate Sample JSON Data with JSON Generator
JSON Editor Online provides a decent start, but we want to generate lots of test data
quickly. Test data can be problematic because of the sensitivity of the data, and the
data volume needed to do any meaningful testing. Even with JSON Editor Online, it
will take a great deal of effort to create the volume of test data we’re looking for. We
need another tool to help create the data we need to create our first version of the
API, and that’s where JSON Generator comes in. This excellent tool was used to cre‐
ate our speakers.json test data file. The template used to generate the speakers.json file
is available on GitHub. Chapter 5 covers JSON Generator in more detail.

Create and Deploy a Stub API
To create the Stub API, we’ll use the Speaker data we just created and deploy it as a

RESTful API. We’ll leverage the json-server Node.js module to serve up the

20 | Chapter 1: JSON Overview

http://www.json-generator.com
https://github.com/tmarrs/json-at-work-examples/blob/master/chapter-1/speakers.json
https://github.com/tmarrs/json-at-work-examples/blob/master/chapter-1/jsonGeneratorTemplate.js


speakers.json file as a Web API; this enables us to prototype quickly. You can find

more information on the json-server GitHub page.

Before going further, please set up your development environment. Refer to Appen‐
dix A to do the following:

1. Install Node.js. json-server is a Node.js module, so you need to install Node.js
first. Refer to <Install Node.js= on page 318.

2. Install json-server. See <Install npm Modules= on page 323.

3. Install JSONView and Postman. See <Install JSON Tools in the Browser= on page
317. JSONView pretty-prints JSON in Chrome and Firefox. Postman can also
run as a standalone GUI application on most major operating systems.

Open a terminal session and run json-server on port 5000 from your command
line:

cd chapter-1

json-server -p 5000 ./speakers.json

You should see the following:

Visit http://localhost:5000/speakers in your browser, and (with JSON pretty-printing
provided by JSONView) you should see all the speakers from our Stub API as shown
in Figure 1-4.

Our Example—MyConference | 21

https://github.com/typicode/json-server


Figure 1-4. Speakers on json-server viewed from the browser with JSONView

You can also get a single speaker by adding the id to the URI as follows: http://local‐
host:5000/speakers/0.

This is a good start, but a web browser has limited testing functionality; it can only

send HTTP GET requests. Postman provides the ability to fully test a RESTful API. It

can send HTTP GET, POST, PUT, and DELETE requests and set HTTP Headers.

Let’s use Postman to delete the first speaker in the API as follows:

1. Enter the http://localhost:5000/speakers/0 URL.

2. Choose DELETE as the HTTP verb.

3. Click the Send button.

You should see that the DELETE ran properly in Postman with a 200 (OK) HTTP Sta‐
tus, as shown in Figure 1-5.

22 | Chapter 1: JSON Overview



Figure 1-5. Postman: results from the deleting the orst speaker

Now, ensure that the first speaker has truly been deleted by revisiting http://localhost:
5000/speakers/0 in your browser. You should now see the empty response shown in
Figure 1-6.

Figure 1-6. Verify the results of deleting the orst speaker

You can stop json-server by pressing Ctrl-C at the command line.

With the Stub API in place, we can now invoke it from any HTTP client (e.g., Java‐
Script, Ruby, or Java) to consume the data from an external application. Although

most of our examples in subsequent chapters use an HTTP GET, rest assured that

json-server can handle all the core HTTP verbs (GET, POST, PUT, DELETE). Although
not covered in this book, Mountebank is an alternative server that provides more
robust functionality for stubbing and mocking APIs and protocols.

The main point here is that an API Producer can use JSON-based tools to prototype a
testable RESTful API without having to write any code. This technique is powerful
because it enables the API Consumer to test without having to wait for the API to be
100 percent complete. At the same time, the API development team can iteratively
upgrade the design and prototype.

Our Example—MyConference | 23

http://www.mbtest.org


What We Covered?
We started by covering the basics of JSON. We modeled JSON data with JSON Editor
Online, and deployed it with a Stub API.

What’s Next?
The next three chapters show how to use JSON with the following core platforms:

• JavaScript

• Ruby on Rails

• Java

In Chapter 2, you’ll learn how to use JSON in JavaScript with the Stub API we just

created with json-server.

24 | Chapter 1: JSON Overview



CHAPTER 2

JSON in JavaScript

We’ve covered the basics of the JSON data interchange format, and in this chapter
we’ll begin to develop applications with JSON. JSON began as a subset of the Java‐
Script definition for Objects and Arrays, but rest assured that JSON is now decoupled
from JavaScript. JSON is language-agnostic and works across multiple platforms.
Because JSON has its roots in JavaScript, this is where we begin our journey.

Here’s what we’ll cover:

• Using JavaScript serialization/deserialization with JSON.stringify() and

JSON.parse()

• Working with JavaScript Objects and JSON

• Making RESTful API calls and testing the results with Mocha/Chai Unit Tests

• Building a small JSON-based web application

In our examples, we’ll leverage Node.js, scaffold a web application with Yeoman, and

make RESTful API calls to pull in the data we created on json-server in the previous
chapter. That’s a lot of moving pieces and parts, so we’ll iteratively build on each con‐
cept. But before we develop our web app, we need to start with the basics of Java‐
Script serialization/deserialization and Objects.

Node.js Setup
Before we go any further, let’s start building our development environment by instal‐
ling Node.js. Please go to Appendix A, and follow the instructions in <Install Node.js=
on page 318.

25



JSON Serialization/Deserialization with JSON.stringify()
and JSON.parse()
Applications need to serialize (or flatten) their information into JSON in order to
produce data for other applications in a platform-neutral manner. An application
must also be able to deserialize (or unflatten) JSON data consumed from external
sources into data structures for use by that application.

The JSON �tringioer���rser Object
The JSON stringifier/parser Object was originally developed by Douglas Crockford,
has been part of the JavaScript library as of ECMAScript 5 in 2009, and provides the
following methods:

• JSON.stringify() serializes to JSON

• JSON.parse() deserializes from JSON

Additionally, the JSON Object

• Was originally developed by Crockford

• Can’t be instantiated

• Has no other functionality

JSON Serialization with Simple JavaScript Data Types
We’ll start by serializing some basic JavaScript Data Types:

• Number

• String

• Array

• Boolean

• Object (Literal)

Example 2-1 shows how to use JSON.stringify() to serialize simple Data Types.

Example 2-1. js/basic-data-types-stringify.js

var age = 39; // Integer

console.log('age = ' + JSON.stringify(age) + '\n');

var fullName = 'Larson Richard'; // String

console.log('fullName = ' + JSON.stringify(fullName) + '\n');

26 | Chapter 2: JSON in JavaScript

http://bit.ly/2sIwlyZ


var tags = ['json', 'rest', 'api', 'oauth']; // Array

console.log('tags = ' + JSON.stringify(tags) + '\n');

var reqistered = true; // Boolean

console.log('registered = ' + JSON.stringify(reqistered) + '\n');

var speaker = {

  firstName: 'Larson',

  lastName: 'Richard',

  email: 'larsonrichard@ecratic.com',

  about: 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',

  company: 'Ecratic',

  tags: ['json', 'rest', 'api', 'oauth'],

  registered: true

};

console.log('speaker = ' + JSON.stringify(speaker));

When you run the preceding file with node from the command line, you should get
the following:

JSON.stringify() doesn’t do anything too interesting with the scalar types (Number,

String, Boolean). Things begin to get interesting with the speaker Object Literal

because here JSON.stringify() initially generates a valid, yet unattractive, JSON

String. JSON.stringify() has other parameters that enhance serialization. According
to the Mozilla Developer Network (MDN) JavaScript Guide, here is the method
signature:

JSON.stringify(value[, replacer [, space]])

The parameter list is as follows:

value (required)
The JavaScript value to serialize.

replacer (optional)

Either a function or an array. If a function is provided, the stringify() method

invokes the replacer function for each key/value pair in an Object.

JSON Serialization/Deserialization with JSON.stringify() and JSON.parse() | 27

https://mzl.la/2s8UCRU


space (optional)
Indentation—either a Number or String. If a Number is used, this value specifies
the number of spaces used for each indentation level.

Let’s leverage the replacer and space parameters to pretty-print the speaker Object
and filter out some data elements, as shown in Example 2-2.

Example 2-2. js/obj-literal-stringify-params.js

var speaker = {

  firstName: 'Larson',

  lastName: 'Richard',

  email: 'larsonrichard@ecratic.com',

  about: 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',

  company: 'Ecratic',

  tags: ['json', 'rest', 'api', 'oauth'],

  registered: true

};

function serializeSpeaker(key, value) {

  return (typeof value === 'string' || Array.isArray(value)) ? undefined : value;

}

// Pretty Print.

console.log('Speaker (pretty print):\n' + JSON.stringify(speaker, null, 2) + '\n');

// Pretty print and filter out Strings and Arrays.

console.log('Speaker without Strings and Arrays:\n' +

  JSON.stringify(speaker, serializeSpeaker, 2));

Running the preceding file yields the following:

28 | Chapter 2: JSON in JavaScript



The first JSON.stringify() call pretty-prints the JSON output with an indentation

level of 2. The second call uses the serializeSpeaker() function as a replacer (Java‐

Script functions are treated as expressions and can be passed as parameters). seriali

zeSpeaker() checks the type of each value and returns undefined for Strings and
Arrays. Otherwise, this function returns the value <as is.=

JSON.stringify() does one of the following with an undefined value:

• Omits the value if it’s part of an Object

• Converts the value to null if that value belongs to an Array

JSON Serialization with an Object and toJSON()
As you’ve seen, JSON serialization makes the most sense with Objects. Let’s customize

JSON.stringify()’s output by adding a toJSON() method to our speaker Object, as
shown in Example 2-3.

Example 2-3. js/obj-literal-stringify-tojson.js

var speaker = {

  firstName: 'Larson',

  lastName: 'Richard',

  email: 'larsonrichard@ecratic.com',

  about: 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',

  company: 'Ecratic',

  tags: ['json', 'rest', 'api', 'oauth'],

  registered: true

};

speaker.toJSON = function() {

  return "Hi there!";

}

console.log('speaker.toJSON(): ' + JSON.stringify(speaker, null, 2));

Serialization works as follows:

If an Object has a toJSON() method, JSON.stringify() outputs the value returned

by the Object’s toJSON() method rather than stringifying the Object. Although the

use of toJSON() is legal, it’s probably a bad idea. toJSON() defeats the whole purpose

of JSON.stringify(), because the developer is now responsible for serializing the

JSON Serialization/Deserialization with JSON.stringify() and JSON.parse() | 29



entire Object structure. This could work with simple Objects such as speaker (as cur‐
rently defined), but you’ll end up writing lots of code to serialize more complex
Objects that contain other Objects.

JSON Deserialization Using eval()
Originally, JavaScript developers used the eval() function to parse JSON. eval()
takes a String parameter that could be a JavaScript expression, a statement, or a
sequence of statements. Consider Example 2-4.

Example 2-4. js/eval-parse.js

var x = '{ "sessionDate": "2014-10-06T13:30:00.000Z" }';

console.log('Parse with eval(): ' + eval('(' + x + ')').sessionDate + '\n');

console.log('Parse with JSON.parse(): ' + JSON.parse(x).sessionDate);

Running the preceding file yields the following:

In this case, both eval() and JSON.parse() work the same and parse the date prop‐
erly. So what’s the problem? Let’s look at another example with a JavaScript statement
embedded in the String; see Example 2-5.

Example 2-5. js/eval-parse-2.js

var x = '{ "sessionDate": new Date() }';

console.log('Parse with eval(): ' + eval('(' + x + ')').sessionDate + '\n');

console.log('Parse with JSON.parse(): ' + JSON.parse(x).sessionDate);

When we run this, we now see the following:

30 | Chapter 2: JSON in JavaScript



We passed in text that contains a JavaScript statement, new Date(), and eval() exe‐

cutes that statement. Meanwhile, JSON.parse() correctly rejects the text as invalid

JSON. Although we passed in only a fairly innocuous statement to create a Date,

someone else could pass in malicious code and eval() would still execute it. Even

though eval() can be used to parse JSON, it is considered a bad/unsafe practice
because it opens the door to any valid JavaScript expression, leaving your application

vulnerable to attacks. Because of this security issue, the eval() function has been

deprecated (for parsing JSON) in favor of JSON.parse().

JSON Deserialization with an Object and JSON.parse()
Let’s return to our Speaker example, and use JSON.parse() to deserialize a JSON

String into a speaker Object, as shown in Example 2-6.

Example 2-6. js/obj-literal-parse.js

var json = '{' +  // Multi-line JSON string.

  '"firstName": "Larson",' +

  '"lastName": "Richard",' +

  '"email": "larsonrichard@ecratic.com",' +

  '"about": "Incididunt mollit cupidatat magna excepteur do tempor ex non ...",' +

  '"company": "Ecratic",' +

  '"tags": [' +

    '"json",' +

    '"rest",' +

    '"api",' +

    '"oauth"' +

  '],' +

  '"registered": true' +

'}';

// Deserialize JSON string into speaker object.

JSON Serialization/Deserialization with JSON.stringify() and JSON.parse() | 31



var speaker = JSON.parse(json);

// Print 2nd speaker object.

console.log('speaker.firstName = ' + speaker.firstName);

When we run this file, we get the following:

JSON.parse() takes a JSON String as input and parses it into a fully functional Java‐

Script Object. We’re now able to access the speaker Object’s data members.

JavaScript Objects and JSON
So far, we’ve shown how core JavaScript Data Types and simple Object Literal–style
JavaScript Objects interact with JSON. But we’ve glossed over some details, and now
it’s time to go a bit deeper. There are several ways to create (or instantiate) JavaScript
Objects, and we’ll focus on Object Literal form because this type of Object is the one
that is the closest match to a JSON Object.

We’ve already shown the speaker Object in Object Literal form, but we’ll show it
again in Example 2-7 for reference.

Example 2-7. js/obj-literal.js

var speaker = {

  firstName: 'Larson',

  lastName: 'Richard',

  email: 'larsonrichard@ecratic.com',

  about: 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',

  company: 'Ecratic',

  tags: ['json', 'rest', 'api', 'oauth'],

  registered: true,

  name: function() {

    return (this.firstName + ' ' + this.lastName);

  }

};

With Object Literal syntax, you define an Object’s properties (both data and func‐

tions) inside the curly braces. In the preceding example, the speaker Object is instan‐
tiated and populated with data. If you never need to create another instance of the

speaker Object in your application, Object Literal is a good approach because it pro‐
vides a simple yet modular way to group an Object’s data and functionality. The real

32 | Chapter 2: JSON in JavaScript



drawback to the Object Literal approach is that you can create only one instance of

speaker, and you can’t reuse the name() method.

Node REPL
So far we’ve been using Node.js from the command line to execute JavaScript files.
Let’s change things up a bit and start using Node.js’s interpreter, the Request-Eval-
Print-Loop (REPL), instead. The REPL is really great because it provides instant feed‐
back on your code, and enables you to iteratively debug and improve your
application. You can find in-depth coverage of the REPL in the Node.js documenta‐
tion. But nothing is perfect, and neither is the REPL. One of my pet annoyances is the
following:

For each statement that doesn’t produce output, the interpreter outputs undefined.
Many people find this distracting, and there’s a way to turn it off. See Appendix A
(<Taming the REPL—mynode= on page 319) to configure a command alias I affec‐

tionately call mynode that I find easier to work with than the standard Node.js REPL.

Without further ado, let’s work with our speaker Object by using the mynode REPL:

JavaScript Objects and JSON | 33

http://nodejs.org/api/repl.html
http://nodejs.org/api/repl.html


In this run, you’ll notice that we can interact with the speaker Object by calling its
methods and viewing the results in the interpreter.

Here are some of the commands you’ll need to use the REPL:

.clear

Clear the context of the REPL session.

.break

Go back to the REPL prompt. Use this to break out of a multiline statement.

.exit

Exit the REPL session.

.save

Save the REPL session to a file.

34 | Chapter 2: JSON in JavaScript



Where to Learn More About JavaScript Objects
We’ve glossed over many details of Object-Oriented JavaScript, and there are several
other ways to interact with objects. We’ve shown just enough OO here so that we can
work with JavaScript Objects and JSON in a meaningful way within an application.
Complete, in-depth coverage of JavaScript Objects is far beyond the scope of this
book. To gain a deeper understanding, here are a few excellent resources:

• Learn JavaScript Next by JD Isaacks (Manning).

• |e Principles of Object-Oriented JavaScript by Nicholas K. Zakas (O’Reilly).

• Learning JavaScript Design Patterns by Addy Osmani (O’Reilly).

Unit Testing with a Stub API
Now that you know how to serialize/deserialize JSON to/from a speaker Object,
we’re ready to run a simple server-side Unit Test against a Stub API provided by

json-server. We’ll also use this Stub API when we later create a small web applica‐
tion.

Unit Test Style—TDD and BDD
Test-Driven Development (TDD) is an approach that uses Unit Testing to drive
development. Here’s a typical flow:

1. Write some tests.

2. Run the tests, which fail because there isn’t any code.

3. Write just enough code to make the tests pass.

4. Refactor the code to improve design and flexibility.

5. Rerun tests and fix code until all tests pass.

TDD-style Unit Tests tend to be procedural.

Behavior-Driven Development (BDD) is an approach that tests a User Story based on
acceptance criteria and expected outcomes. BDD-style tests read like English senten‐
ces; for example: <Speakers should receive their payment from the Conference within
30 days.= For more information on BDD, please see Dan North’s excellent article,
<Introducing BDD=. Some people see BDD as a refinement to TDD, and I tend to
agree because a developer would follow the same workflow as TDD.

Both BDD and TDD are solid approaches, and can be combined to form a robust test
suite for an application. The Unit Tests in this chapter use a BDD-style approach for
assertions.

Unit Testing with a Stub API | 35

http://dannorth.net/introducing-bdd


Just Enough Unit Testing with Mocha and Chai
Here are the tools for our server-side Unit Test:

Mocha
Mocha is a JavaScript Unit Test framework that runs in both Node.js and a
browser. We’ll leverage Mocha from the command line within a Node.js project,
and add a few features to support JSON-based API testing. You can find more
details at the Mocha website.

Chai
Chai is an assertion library that complements JavaScript testing frameworks and
adds a richer set of assertions, in this case to Mocha. Chai enables developers to

write TDD or BDD style tests. The tests in this chapter use the expect (BDD)

assertion style, but you’re free to experiment with the should (BDD) or assert
(TDD) assertion styles. Use the approach that makes you comfortable. For more
details on Chai, visit the Chai Asssertion Library website.

Setting Up the Unit Test
Before going further, please be sure to set up your test environment. If you haven’t
installed Node.js yet, see Appendix A, and install Node.js (see <Install Node.js= on
page 318 and <Install npm Modules= on page 323). If you want to follow along with

the Node.js project provided in the code examples, cd to chapter-2/speakers-test and
do the following to install all dependencies for the project:

npm install

If you’d like to set up the Node.js project yourself, follow the instructions in the book’s
GitHub repository.

Unirest
Our Unit Test will invoke an API with HTTP, so we’ll include Unirest in our testing
repertoire. Unirest is an open source cross-platform REST client provided by the
Mashape team. There are implementations in JS, Node.js, Ruby on Rails (RoR) and
Java. Unirest is simple and works well in any client code that makes HTTP calls to
REST APIs, but it’s also great for Unit Testing. Unirest enables cleaner Unit Tests
because you can do a one-time setup (e.g., URI, Headers) and then make multiple
HTTP calls throughout the test suite. For detailed documentation, visit the Unirest
website.

Unirest is great because it’s cross-platform, and the concepts and method signatures
are similar regardless of the language implementation. There are other excellent Java-
based HTTP libraries (e.g., Apache Commons HTTPComponents HttpClient, but as
a polyglot (multilanguage) developer, I prefer Unirest. Please note that Unirest is not

36 | Chapter 2: JSON in JavaScript

https://mochajs.org/
http://chaijs.com
https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-2/Project-Setup.md
http://unirest.io
http://unirest.io
http://hc.apache.org/httpcomponents-client-ga


just for Unit Tests. It’s widely used as an HTTP client wrapper by APIs (which invoke
other APIs), and by web and mobile client applications.

Test Data
We’ll use the Speaker data from Chapter 1 as our test data and deploy it as a RESTful

API. Again, we’ll leverage the json-server Node.js module to serve up the data/

speakers.json file as a Web API. If you need to install json-server, please refer to
<Install npm Modules= on page 323 section of Appendix A.

Here’s how to run json-server on port 5000 from your local machine:

cd chapter-2/data

json-server -p 5000 ./speakers.json

Speakers Unit Test
The Unit Test in Example 2-8 shows how to use Unirest to make an API call to the

Speaker Stub API provided by json-server.

Example 2-8. speakers-test/speakers-spec.js

'use strict';

var expect = require('chai').expect;

var unirest = require('unirest');

var SPEAKERS_ALL_URI = 'http://localhost:5000/speakers';

describe('speakers', function() {

  var req;

  beforeEach(function() {

    req = unirest.get(SPEAKERS_ALL_URI)

      .header('Accept', 'application/json');

  });

  it('should return a 200 response', function(done) {

    req.end(function(res) {

      expect(res.statusCode).to.eql(200);

      expect(res.headers['content-type']).to.eql(

        'application/json; charset=utf-8');

      done();

    });

  });

  it('should return all speakers', function(done) {

Unit Testing with a Stub API | 37



    req.end(function(res) {

      var speakers = res.body;

      var speaker3 = speakers[2];

      expect(speakers.length).to.eql(3);

      expect(speaker3.company).to.eql('Talkola');

      expect(speaker3.firstName).to.eql('Christensen');

      expect(speaker3.lastName).to.eql('Fisher');

      expect(speaker3.tags).to.eql([

        'Java', 'Spring',

        'Maven', 'REST'

      ]);

      done();

    });

  });

});

In this Unit Test, the following occurs:

• The test sets up the URI and Accept Header for unirest by using Mocha’s befor

eEach() method, so that setup occurs in only one place in the code. Mocha exe‐

cutes beforeEach() before running each test (i.e., it) within the context of the

describe.

• The should return all speakers test is the most interesting, and it works as
follows:

— req.end() executes the Unirest GET request asynchronously, and the anony‐

mous (unnamed) function processes the HTTP response (res) from the API
call.

— We populate the speakers object with the HTTP Response Body (res.body).
At this point, the JSON from the API has already been parsed by Unirest and
converted to a corresponding JavaScript Object (in Object Literal form).

— We use Chai’s BDD-style expect assertions to check for expected results:

— We have three speakers.

— The third speaker’s company, firstName, lastName, and tags match the
values in the speakers.json file.

To run this test from the command line (in a second terminal session), do the
following:

cd chapter-2/speakers-test

npm test

You should see the following results:

38 | Chapter 2: JSON in JavaScript



json-at-work => npm test

...

> mocha test

...

  speakers

    ✓ should return a 200 response
    ✓ should return all speakers

  2 passing

Building a Small Web Application
Now that you know how to serialize/deserialize JSON to/from a speaker Object and

how to do a Unit Test with the Speaker Stub API (on json-server), we’re ready to
build a simple web application that leverages the API data and presents it to a user.

We’ll develop the web application in three iterations:

• Iteration 1—generate a basic web application with Yeoman.

• Iteration 2—make an HTTP call with jQuery.

• Iteration 3—consume Speaker data from a Stub API (with json-server) and use
a template.

Yeoman
Yeoman provides an easy way to create (i.e., scaffold) a web application and simplify
developer workflow, and is similar to Gradle and Maven (from the Java community),
and Ruby on Rails. We’ll use Yeoman to set up, develop, and run the example applica‐
tion. To install Yeoman (which depends on Node.js), refer to Appendix A, and follow
the instructions in <Install Yeoman= on page 322.

Yeoman provides the following functionality:

• Creates the development environment

• Runs the application

• Automatically reloads the browser when changes are saved

• Manages package dependencies

• Minifies the application’s code and packages it for deployment

Building a Small Web Application | 39

http://yeoman.io


Yeoman follows the philosophy of convention over configuration:

• Automates setup

• Just works

• Uses standardized directory structures

• Provides Dependency Management

• Assumes reasonable defaults

• Encourages best practices

• Enables tool-based developer workflow (e.g., test, lint, run, and package)

Please review the following Yeoman tutorials for more information:

• Let’s Scaffold a Web App with Yeoman

• Building Apps with the Yeoman Workflow

The Yeoman toolset

Yeoman consists of the following tools:

Scafolding
Yo generates the directory structure and Grunt/Gulp/Bower configuration files
for an application.

Build
You can use either Gulp or Grunt to build, run, test, and package an application.

Package Management
Either Bower or npm can be used to manage and download package dependen‐
cies.

Although Grunt is a solid build tool, and npm is an excellent package manager, we’ll
use Gulp and Bower for our examples because the Yeoman generator for the web
application uses these tools.

Yeoman generators

Yeoman leverages generators to build and scaffold a project. Each generator creates a
default preconfigured boilerplate application. There are over 1,000 generators, and
Yeoman provides a complete official list.

40 | Chapter 2: JSON in JavaScript

http://yeoman.io/codelab/
http://bit.ly/2r9XKNh
https://github.com/yeoman/yo
http://gulpjs.com
http://gruntjs.com
http://bower.io
https://www.npmjs.org
http://yeoman.io/generators


Iteration 1—Generate a Web Application with Yeoman
Let’s start with a simple application that has no real functionality, and hardcode the
Speaker data into a table. We’ll add the speaker functionality in Iterations 2 and 3.

With Yeoman installed, we’ll use the generator-webapp generator to create our appli‐
cation that comes out-of-the-box with web pages, CSS stylesheets, Bootstrap 4,
jQuery, Mocha, and Chai.

If you’d like to set up the Yeoman project yourself, follow the instructions in the
book’s GitHub repository. If you want to follow along with the Yeoman project pro‐

vided in the code examples, cd to chapter-2/speakers-web-1. In either case, do the fol‐
lowing to start the application from the command line:

gulp serve

This command starts a local web server and shows the main page (index.html) in
your default browser. You should see the page in Figure 2-1 at http://localhost:9000.

Figure 2-1. Basic web app with Yeoman generator

Note that if you keep the application running, you can see changes take effect as you
save them because this application automatically refreshes with LiveReload.

The generator-webapp Yeoman generator creates a nice starter application, and it’s
time to customize it. First, let’s change the title, Header, and jumbotron (i.e., remove
the Splendid! button) in index.html as shown in Example 2-9.

Building a Small Web Application | 41

https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-2/Web-Project-Setup.md
https://github.com/intesso/connect-livereload


Example 2-9. speakers-web-1/app/index.html

<!doctype html>

<html lang="">

  <head>

    ...

    <title>JSON at Work - MyConference</title>

    ...

  </head>

  <body>

    ...

    <div class="header">

      ...

      <h3 class="text-muted">JSON at Work - Speakers</h3>

    </div>

    ...

    <div class="jumbotron">

      <h1 class="display-3">Speakers</h1>

      <p class="lead">Your conference lineup.</p>

    </div>

    ...

  </body>

</html>

Let’s add a table with some hardcoded Speaker data in the index.html file, as shown in
Example 2-10.

Example 2-10. speakers-web-1/app/index.html

<!doctype html>

<html lang="">

  ...

  <body>

    ...

    <table class="table table-striped">

      <thead>

        <tr>

42 | Chapter 2: JSON in JavaScript



          <th>Name</th>

          <th>About</th>

          <th>Topics</th>

        </tr>

      </thead>

      <tbody id="speakers-tbody">

        <tr>

          <td>Larson Richard</td>

          <td>Incididunt mollit cupidatat magna excepteur do tempor ...

          </td>

          <td>JavaScript, AngularJS, Yeoman</td>

        </tr>

        <tr>

          <td>Ester Clements</td>

          <td>Labore tempor irure adipisicing consectetur velit. ...

          </td>

          <td>REST, Ruby on Rails, APIs</td>

        </tr>

        <tr>

          <td>Christensen Fisher</td>

          <td>Proident ex Lorem et Lorem ad. Do voluptate officia ...

          </td>

          <td>Java, Spring, Maven, REST</td>

        </tr>

      </tbody>

    </table>

    ...

  </body>

</html>

We now have a web application that displays the sample Speaker data, as shown in
Figure 2-2.

Building a Small Web Application | 43



Figure 2-2. Sample Speaker data in index.html

Here are the key application files and directories generated by generator-webapp:

• app/ contains the application’s code (for example, HTML, JavaScript, and CSS).

— index.html is the application’s main page.

— images/ holds the application’s images.

— scripts/ is a directory that has the application’s JavaScript (and other scripting
language) files.

— main.js is the application’s main JavaScript file. We’ll work with this more
in Iteration 2.

— styles/ is the folder that holds CSS and related styling files.

• bower_components/ contains the project dependencies installed by Bower: Boot‐
strap, jQuery, Mocha, and Chai.

• node_modules/ contains the project dependencies required by Node.js, including
Gulp.

44 | Chapter 2: JSON in JavaScript



• test/ holds test specs used by the chosen testing framework(s). In this case, we’re
using Mocha and Chai.

• gulpole.js is the Gulp build script used to build and run the application.

• package.json is used by Node.js to manage dependencies that Gulp needs to exe‐
cute the project scripts.

• dist/ contains build-related artifacts created by gulp build.

To wrap up our discussion on generator-webapp, here are the other important com‐
mands you’ll need to know:

Ctrl-C
Stop the application (the web server).

gulp lint

Use lint to validate the JavaScript files in the application.

gulp +serve:test

Test the web application. In this case, it runs PhantomJS with Mocha and Chai.

gulp build

Build and package the application for deployment.

gulp clean

Clean the artifacts generated when testing and building the application.

You can get the full list of commands by typing gulp --tasks at the command line.

Please shut down the web application before moving to Iteration 2.

Iteration 2—Make an HTTP Call with jQuery
In Iteration 1, we developed a web application with Speaker data hardcoded in the
main page, and now it’s time to add <live= content and functionality.

We’ll take the following steps:

1. Factor the hardcoded Speaker data out of the main page.

2. Add a separate JSON file to hold the Speaker data.

3. Use jQuery to populate the main page with Speaker data from the JSON file.

If you’d like to set up the Yeoman project for Iteration 2 by yourself, do the following:

• Follow the instructions in the book’s GitHub repository.

• Don’t forget to copy the app/index.html file from Iteration 1.

Building a Small Web Application | 45

https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-2/Web-Project-Setup.md


Or if you want to follow along with the Yeoman project provided in the code exam‐

ples, cd to chapter-2/speakers-web-2. In either case, do the following to start the appli‐
cation from the command line:

gulp serve

This command starts the local web server as shown in Iteration 1. You should see the
page in Figure 2-3 at http://localhost:9000.

Figure 2-3. Sample Speaker data

This has the hardcoded Speaker data table in the main page (in index.html) that you
saw earlier. Please keep the web application running so you can see changes take
effect as you save them.

Now, let’s remove the rows from the table body. The HTML for the speakers table
now looks like Example 2-11.

Example 2-11. speakers-web-2/app/index.html

<!doctype html>

<html lang="">

  ...

46 | Chapter 2: JSON in JavaScript



  <body>

    ...

    <table class="table table-striped">

      <thead>

        <tr>

          <th>Name</th>

          <th>About</th>

          <th>Topics</th>

        </tr>

      </thead>

      <tbody id="speakers-tbody">

      </tbody>

    </table>

    ...

  </body>

</html>

In this example, we now have an empty table that has only a header row. We use

Bootstrap’s table-striped CSS class so that we’ll have zebra-striped rows. Notice the

speakers-tbody ID on the <tbody> element that holds the table’s content. Later,
jQuery will use this ID to populate the table rows.

We now need a separate JSON file to hold the Speaker data. Please see the
new /speakers-web-2/app/data/speakers.json file that has the Speaker data for the
application (this was copied from /chapter-2/data/speakers.json).

To complete Iteration 2, the upgraded app/scripts/main.js file now uses jQuery to
populate the speakers table with the data from the app/data/speakers.json file, as
shown in Example 2-12.

Example 2-12. speakers-web-2/app/scripts/main.js

'use strict';

console.log('Hello JSON at Work!');

$(document).ready(function() {

  function addSpeakersjQuery(speakers) {

    $.each(speakers, function(index, speaker) {

      var tbody = $('#speakers-tbody');

      var tr = $('<tr></tr>');

      var nameCol = $('<td></td>');

      var aboutCol = $('<td></td>');

      var topicsCol = $('<td></td>');

Building a Small Web Application | 47



      nameCol.text(speaker.firstName + ' ' + speaker.lastName);

      aboutCol.text(speaker.about);

      topicsCol.text(speaker.tags.join(', '));

      tr.append(nameCol);

      tr.append(aboutCol);

      tr.append(topicsCol);

      tbody.append(tr);

    });

  }

  $.getJSON('data/speakers.json',

    function(data) {

      addSpeakersjQuery(data.speakers);

    }

  );

});

In this example, we put the code inside jQuery’s $(document).ready() so that the 

entire page (including the DOM) is <ready= (fully loaded). $.getJSON() is a jQuery

method that makes an HTTP GET request on a URL and converts the JSON response
to a JavaScript object. In this case, the app/data/speakers.json file is addressable as a
URL through HTTP because it is deployed as a part of the web application. The

$.getJSON() callback method then delegates the job of populating the speakers table

to the addSpeakersjQuery() function.

The addSpeakersjQuery() method loops through the speakers array by using the

jQuery .each() method. The .each() function does the following:

• Finds the <tbody> element in the speakers table by using the speakers-tbody ID
we showed in the index.html file

• Creates a row and its columns by filling in the <tr> and <td> elements with the

data from the speaker object

• Appends the new row to the <tbody> element

For more information on jQuery’s getJSON() function, see the jQuery Foundation
website.

If you kept the web application running, you should now see the screen in Figure 2-4.

48 | Chapter 2: JSON in JavaScript

http://api.jquery.com/jQuery.getJSON
http://api.jquery.com/jQuery.getJSON


Figure 2-4. Sample Speaker data with JSON ole and jQuery

The main page looks the same, but we were expecting that. We’ve improved the appli‐
cation by factoring out the hardcoded Speaker data from the main page, and we’re
now making an HTTP call. At this point, we have some of the elements of a real web
application that populates its pages dynamically, but here are the drawbacks:

• The JSON data comes from a file within the web application, and we want it to
come from a RESTful API.

• The JavaScript code knows about HTML elements on the main page. We would
like to reduce the amount of HTML and DOM manipulation.

Please shut down the web application before moving to Iteration 3.

Iteration 3—Consume Speaker Data from a Stub API and Use a
Template
In Iteration 2, we made an HTTP call to populate the main page with Speaker data
from a JSON file, and we’re now going to get the data from the Stub API provided by

Building a Small Web Application | 49



json-server that was used in Chapter 1. We’re also going to factor the HTML and
DOM manipulation out of the JavaScript into an external Mustache template.

We’ll take the following steps:

1. Modify the HTTP call to point to the json-server URI.

2. Use a Mustache template to remove the HTML and DOM manipulation from
JavaScript.

If you’d like to set up the Yeoman project for Iteration 2 by yourself, do the following:

• Follow the instructions in the book’s GitHub Repository.

• Don’t forget to copy the following files from Iteration 2:

— app/index.html

— app/scripts/main.js

Or if you want to follow along with the Yeoman project provided in the code exam‐

ples, cd to chapter-2/speakers-web-3.

Next, let’s modify the HTTP call in main.js to point to the Speaker Stub API (pro‐

vided by json-server), as shown in Example 2-13.

Example 2-13. speakers-web-3/app/scripts/main.js

...

  $.getJSON('http://localhost:5000/speakers',

    function(data) {

      addSpeakersjQuery(data);

    }

  );

...

The code now invokes the Speaker Stub API provided by json-server. Note that

data is passed to addSpeakersjQuery() because json-server doesn’t emit the named

speakers Array.

First, open a new terminal session and run json-server on port 5000 from your
command line:

cd chapter-2/data

json-server -p 5000 ./speakers.json

Start the web application (in another terminal session) from the command line:

50 | Chapter 2: JSON in JavaScript

https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-2/Web-Project-Setup.md


gulp serve

This command starts the local web server as shown in Iterations 1 and 2. You should
see the same Speaker data when you visit http://localhost:9000 in your browser. But
the web application is in better shape because it’s using data from an API rather than
a file. Please keep the web application running so you can see changes take effect as
you save them.

To complete Iteration 3, let’s factor out the HTML/DOM manipulation from our
JavaScript code into a Mustache template. Mustache bills itself as providing logic-less

templates, which means that there are no control statements (e.g., for or if) needed
to generate HTML from JavaScript and other languages. Mustache works with multi‐
ple languages.

Example 2-14 is our Mustache template that generates HTML content based on
Speaker data.

Example 2-14. /app/templates/speakers-mustache-template.html

<!--

[speakers-mustache-template.html]

This is the template for items in the speakers array when the app first loads

-->

<script id="speakerTemplate" type="text/html">

  {{#.}}

    <tr>

      <td>{{firstName}} {{lastName}}</td>

      <td>{{about}}</td>

      <td>{{tags}}</td>

    </tr>

  {{/.}}

</script>

Note the following about this example:

• The template is an external file to keep the HTML out of our JavaScript code.

• The template code resides within a <script> element.

• The HTML is structured just as it would be in a regular web page.

• Mustache fills in the data by using variables enclosed in double parentheses.

• The context enables Mustache to loop through the Array of Speaker data. We
have an anonymous (nameless) collection that we received from the HTTP call,

so we enclose all our elements within a beginning {{#.}} and closing {{/.}} to

set the context. Note that if we had a named Array (e.g., speakers), the context

would begin with {{#speakers}} and end with {{/speakers}}.

Building a Small Web Application | 51

http://mustache.github.io


• Each variable represents a field name within the specified context. For example,

the {{firstName}} variable gets data from the firstName field for the current
element in the Speaker data Array.

Please review Wern Ancheta’s excellent article, <Easy Templating with Mustache.js=
for a deeper discussion on Mustache.

Besides Mustache, a couple of other solid templating libraries are frequently used by
the JavaScript community:

Handlebars.js
Handlebars is very similar to Mustache.

Underscore.js
This is a general utility library, but it includes some templating functionality.

In addition, most MVC frameworks (AngularJS, Ember, and Backbone) have some
form of templating. We’ll cover Mustache and Handlebars more thoroughly in Chap‐
ter 7.

Example 2-15 shows our refactored app/scripts/main.js file that now uses Mustache.

Example 2-15. speakers-web-3/app/scripts/main.js

'use strict';

console.log('Hello JSON at Work!');

$(document).ready(function() {

  function addSpeakersMustache(speakers) {

    var tbody = $('#speakers-tbody');

    $.get('templates/speakers-mustache-template.html', function(templatePartial) {

      var template = $(templatePartial).filter('#speakerTemplate').html();

      tbody.append(Mustache.render(template, speakers));

    }).fail(function() {

      alert("Error loading Speakers mustache template");

    });

  }

  $.getJSON('http://localhost:5000/speakers',

    function(data) {

      addSpeakersMustache(data);

    }

  );

});

52 | Chapter 2: JSON in JavaScript

http://wernancheta.wordpress.com/2012/07/23/easy-templating-with-mustache-js
http://handlebarsjs.com
http://underscorejs.org


In this example, the addSpeakerMustache() function converts the Speaker data (that

we received from json-server) into HTML by using our Mustache template. We use

the jQuery’s $.get() method to pull in the external Mustache template. When the

$.get() call completes, we then find the main page’s <tbody> element (just as before)

and then use the append() method to append the HTML content that was created by

Mustache.render() (based on the template and Speaker data).

But we’re not quite done, because we need to add Mustache to the web application:

• Use Bower to install Mustache into the web application. From the command line

in the speakers-web-3 directory, type bower install mustache.

• Add Mustache to app/index.html (right after main.js) as shown in Example 2-16.

Example 2-16. speakers-web-3/app/index.html

<!doctype html>

<html lang="">

  ...

  <body>

    ...

    <script src="bower_components/mustache.js/mustache.js"></script>

    ...

  </body>

</html>

If you kept the web application running, you should now see the screen in Figure 2-5.

Notice that Mustache formats the Speaker data a little differently, but we improved

the web application by making an API call to the Stub API (provided by json-

server) and by templating the HTML with Mustache.

Of course, you can go further by using AngularJS or React, but this is left as an exer‐
cise for you.

Please don’t forget to shut down both the web application and json-server with a
Ctrl-C in each terminal session.

Building a Small Web Application | 53



Figure 2-5. Speaker data using Mustache

How to Go Deeper with JavaScript
A deeper, more thorough knowledge of JavaScript is needed to truly understand
Node.js and other JavaScript frameworks (e.g., Angular, React, Ember, Backbone,
etc.), and package/build management tools such as Yeoman. If JavaScript Objects are
new to you, and all the curly braces, parentheses, and semicolons are a boiling sea of
syntax, then take heart because you are not alone. Every JavaScript developer encoun‐
ters these issues along their path.

Here are a few websites where you can go to deepen and broaden your skills:

• JavaScriptIsSexy provides excellent, freely available tutorials to help you reach an
intermediate or advanced level. The main tutorials include these three:

— How to Learn JavaScript Properly

— Learn Intermediate and Advanced JavaScript

54 | Chapter 2: JSON in JavaScript

http://javascriptissexy.com
http://javascriptissexy.com/how-to-learn-javascript-properly
http://javascriptissexy.com/learn-intermediate-and-advanced-javascript


— JavaScript’s Apply, Call, and Bind Methods Are Essential for JavaScript Profes‐
sionals

As you work through these (and similar) resources, Objects and Functional Expres‐
sions will become commonplace as you reach the intermediate-to-advanced level of
JavaScript. At that point, you will have a much more enjoyable and productive experi‐
ence when developing with current JavaScript tools and frameworks.

What We Covered
We started with simple conversion between JavaScript and JSON and went all the way
to develop a working web application and a Unit Test that makes a RESTful API call

to json-server. For the sake of brevity and clarity, we’ve covered <just enough= of
several technologies for you to understand core concepts and build simple applica‐
tions. But we’ve just scratched the surface of JavaScript, Node.js, and Yeoman.

What’s Next?
Now that we’ve developed a web application with JavaScript and JSON, we’ll move on
to use JSON with Ruby on Rails in Chapter 3.

What We Covered | 55

http://javascriptissexy.com/javascript-apply-call-and-bind-methods-are-essential-for-javascript-professionals
http://javascriptissexy.com/javascript-apply-call-and-bind-methods-are-essential-for-javascript-professionals




CHAPTER 3

JSON in Ruby on Rails

We’ve shown how to use JSON in JavaScript, and in this chapter we’ll show how to
use JSON with our second platform—Ruby on Rails (RoR).

We’ll cover the following:

• Performing Ruby/JSON serialization/deserialization with MultiJson

• Working with Ruby Objects and JSON

• Understanding the importance of JSON camel casing

• Using JSON with Minitest

• Making RESTful API calls and testing the results with Minitest and jq

• Building a simple JSON-based API with Rails 5

In our examples, we’ll make RESTful API calls to work with the data we deployed on

json-server in Chapter 1. We’ll then create a more realistic JSON-based Web API.
But before we develop a RESTful API, let’s start with the fundamentals of converting
between Ruby and JSON.

Ruby on Rails Setup
Before we go any further, let’s start building our development environment by instal‐
ling RoR. Please go to Appendix A, and follow the instructions in <Install Ruby on
Rails= on page 326.

57



Ruby JSON Gems
Several good JSON gems provide Ruby/JSON serialization/deserialization functional‐
ity, including these:

JSON

The default JSON gem provided in Ruby.

oj

Optimized JSON, considered by many to be the fastest Ruby-based JSON pro‐
cessor available.

yajl

Yet Another JSON Library.

There are many other JSON gems in addition to this list, and it’s hard to choose.

Rather than forcing a developer to know how to use each JSON gem, MultiJson
encapsulates this choice by providing a wrapper that invokes the most common JSON
gems on behalf of the caller by choosing the fastest JSON gem that has been loaded in
an application’s environment. Encapsulating JSON gems like this decouples an appli‐

cation from a particular JSON implementation. For further information on how Mul

tiJson chooses a JSON implementation, see its GitHub repository. For detailed

documentation, visit the MultiJson documentation on RubyDoc.

Since MultiJson defaults to the standard JSON gem, let’s install the oj gem to opti‐
mize performance.

gem install multi_json

gem install oj

Now that we’ve installed the oj gem, MultiJson will default to oj rather than the
standard JSON gem.

JSON Serialization/Deserialization with MultiJson
Applications need to convert a Ruby Data Type to JSON (serialize) and vice versa
(deserialize) to exchange JSON data with other applications.

The MultiJson Object
The MultiJson Object provides the following methods:

• MultiJson.dump() serializes Ruby to JSON.

• MultiJson.load() deserializes from JSON to Ruby.

58 | Chapter 3: JSON in Ruby on Rails

https://github.com/flori/json
https://github.com/ohler55/oj
https://github.com/brianmario/yajl-ruby
https://github.com/intridea/multi_json
https://github.com/intridea/multi_json
http://www.rubydoc.info/gems/multi_json/1.3.2/MultiJson


Note that MultiJson.dump() does the following:

• Uses traditional Ruby snake case (first_name) rather than the recommended

cross-platform camel case (firstName) when serializing the speaker Object with

oj.

• Doesn’t generate a JSON String when serializing the speaker Object with the

JSON engine. This is because the JSON gem doesn’t serialize a class unless it imple‐

ments a to_json() method.

• Uses snake case (first_name) rather than camel case (firstName) for key names.

According to the RubyDoc MultiJson documentation, here is the method signature

for MultiJson.dump():

#dump(object, options = {})

The options provided depend on the underlying JSON implementation (in this case

oj) because MultiJson is a wrapper.

JSON Serialization/Deserialization with Simple Ruby Data Types
We’ll start by serializing some basic Ruby Data Types:

• Integer

• String

• Boolean

• Array

• Hash

• Object

Example 3-1 shows how to serialize/deserialize simple Ruby data types with Multi

Json and oj.

Example 3-1. ruby/basic_data_types_serialize.rb

require 'multi_json'

puts "Current JSON Engine = #{MultiJson.current_adapter()}"

puts

age = 39 # Integer

puts "age = #{MultiJson.dump(age)}"

puts

full_name = 'Larson Richard' # String

JSON Serialization/Deserialization with MultiJson | 59



puts "full_name = #{MultiJson.dump(full_name)}"

puts

reqistered = true # Boolean

puts "reqistered = #{MultiJson.dump(reqistered)}"

puts

tags = %w(JavaScript, AngularJS, Yeoman) # Array of Strings

puts "tags = #{MultiJson.dump(tags)}"

puts

email = { email: 'larsonrichard@ecratic.com' } # Hash

puts "email = #{MultiJson.dump(email)}"

puts

class Speaker

  def initialize(first_name, last_name, email, about,

                 company, tags, registered)

    @first_name = first_name

    @last_name = last_name

    @email = email

    @about = about

    @company = company

    @tags = tags

    @registered = registered

  end

end

speaker = Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',

            'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',

            'Ecratic', %w(JavaScript, AngularJS, Yeoman), true)

puts "speaker (using oj gem) = #{MultiJson.dump(speaker)}"

puts

When you run ruby basic_data_types_serialize.rb from the command line, you
should get the following:

60 | Chapter 3: JSON in Ruby on Rails



MultiJson.dump() doesn’t do much with the scalar types (Integer, String, and

Boolean). Things begin to get interesting with the speaker Object because here Multi

Json.dump() initially generates a valid, yet unattractive, JSON String. As you’ll soon

see, MultiJson.dump() has other parameters that enhance serialization.

To make things more readable, we’ll leverage the :pretty ⇒ true option to pretty-

print the JSON output from the speaker Object, as shown in Example 3-2. Although
pretty-printing is more attractive to look at, it is inefficient, and should be used only
for debugging purposes.

Example 3-2. ruby/obj_serialize_pretty.rb

require 'multi_json'

...

speaker = Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',

            'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',

            'Ecratic', %w(JavaScript, AngularJS, Yeoman), true)

puts "speaker (using oj gem) = #{MultiJson.dump(speaker, pretty: true)}"

puts

Running the preceding code yields the following pretty-printed speaker Object:

JSON Deserialization with Objects and MultiJson
MultiJson can also deserialize JSON. Let’s use the MultiJson.load() method to

deserialize JSON into a Ruby Hash. But this causes an impedance mismatch because

the speaker Object’s initialize() method takes Strings (which match the speaker

Object’s attributes) as parameters. We’ll need to convert Hash to a set of attributes to

instantiate a speaker Object. Fortunately, it’s unnecessary to write any code to con‐

JSON Serialization/Deserialization with MultiJson | 61



vert the Hash because the well-known OpenStruct makes the Hash (from decoding
JSON) look like an object.

Example 3-3 shows the use of OpenStruct.

Example 3-3. ruby/ostruct_example.rb

require 'ostruct'

h = { first_name: 'Fred' }

m = OpenStruct.new(h)

puts m             # prints: #<OpenStruct first_name="Fred">

puts m.first_name  # prints: Fred

OpenStruct is a data structure that is similar to a Hash, and it allows you define key/

value pairs of attributes and their values. OpenStruct is part of Ruby Core and pro‐

vides the ability to access keys as attributes. For more information about OpenStruct,
see the Ruby Core documentation.

When we instantiate a new speaker Object, it would be great to print out the new

object in a readable manner for debugging purposes. With puts, you’d normally see
something like this:

puts speaker # #<Speaker:0x007f84412e0e38>

With the awesome_print gem, the output is much more attractive. For more informa‐

tion, see the awesome_print GitHub repository.

Before running the code in Example 3-4, install the awesome_print gem from the
command line:

gem install awesome_print

Example 3-4. ruby/obj_deserialize.rb

require 'multi_json'

require 'ostruct'

require 'awesome_print'

puts "Current JSON Engine = #{MultiJson.current_adapter()}"

puts

class Speaker

  def initialize(first_name, last_name, email, about,

                 company, tags, registered)

    @first_name = first_name

    @last_name = last_name

    @email = email

    @about = about

    @company = company

62 | Chapter 3: JSON in Ruby on Rails

http://ruby-doc.org/stdlib-2.0.0/libdoc/ostruct/rdoc/OpenStruct.html
https://github.com/awesome-print/awesome_print


    @tags = tags

    @registered = registered

  end

end

speaker = Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',

            'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',

            'Ecratic', %w(JavaScript, AngularJS, Yeoman), true)

json_speaker = MultiJson.dump(speaker, pretty: true)

puts "speaker (using oj gem) = #{MultiJson.dump(speaker)}"

puts

ostruct_spkr = OpenStruct.new(MultiJson.load(json_speaker))

speaker2 =  Speaker.new(ostruct_spkr.first_name, ostruct_spkr.last_name,

                     ostruct_spkr.email, ostruct_spkr.about, ostruct_spkr.company,

                     ostruct_spkr.tags, ostruct_spkr.registered)

puts "speaker 2 after MultiJson.load()"

ap speaker2

puts

Run this example, and we’ll see that the preceding code successfully deserialized the

JSON String stored in json_speaker into an OpenStruct Object and finally into

another speaker instance—speaker2. Note the use of awesome_print’s ap method

rather than the built-in puts to pretty-print the Object.

Although multi_json and oj efficiently process JSON, sometimes developers need
more control over the data to be serialized.

A Word on Camel Casing and JSON
If you haven’t noticed, JSON Keys/Property Names are usually in camel case form.
For example, a Key that represents someone’s first name would normally be expressed

as firstName. But up to this point, we’ve seen that Ruby’s JSON libraries natively

express Keys in snake case (first_name). While this may be OK for small code exam‐
ples and Unit Tests that no one else will use, snake case is incompatible with the rest
of the world. Here’s why:

JSON Serialization/Deserialization with MultiJson | 63



• JSON must be interoperable. Although my stance on this will probably offend
many ardent Rubyists, and others may call this bike shedding, the whole point of
JSON and REST is interoperability across heterogeneous applications. There are
other programming languages than Ruby, and the rest of the world is expecting

camel case (firstName). If your API works in a way that is unexpected, people
won’t want to use it.

• The major players use camel-cased JSON:

— Google has standardized on camel case in their Google JSON Style Guide.

— The majority of JSON-based public APIs (e.g., Amazon AWS, Facebook, and
LinkedIn) use camel-cased JSON.

• Avoid platform bleed-through. JSON should look the same regardless of the plat‐
form/programming language that generates or consumes it. The Ruby on Rails
community prefers snake case, which is just fine within that platform, but this
local programming language idiom shouldn’t be reflected in an API.

JSON Serialization with Objects and ActiveSupport
The ActiveSupport gem provides functionality that has been extracted from Rails,
including time zones, internationalization, and JSON encoding/decoding. ActiveSup‐
port’s JSON module provides the ability to do the following:

• Convert between camel case and snake case

• Choose which portions of an Object to serialize

You can install ActiveSupport from the command line as follows:

gem install activesupport

We’ll use ActiveSupport::JSON.encode() to serialize a speaker Object into JSON,
as shown in Example 3-5.

Example 3-5. ruby/obj_serialize_active_support.rb

require 'active_support/json'

require 'active_support/core_ext/string'

...

speaker = Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',

            'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',

            'Ecratic', %w(JavaScript, AngularJS, Yeoman), true)

json = ActiveSupport::JSON.encode(speaker).camelize(first_letter = :lower)

puts "Speaker as camel-cased JSON \n#{json}"

64 | Chapter 3: JSON in Ruby on Rails

http://bit.ly/2raShRe


puts

json = ActiveSupport::JSON.encode(speaker,

                       only: ['first_name', 'last_name'])

                       .camelize(first_letter = :lower)

puts "Speaker as camel-cased JSON with only firstName and lastName \n#{json}"

puts

In the code example, you’ll notice that ActiveSupport::JSON.encode() provides the
following options:

• Camel case (firstName) Key names by chaining with the camelize() method.
Note that the first letter of each Key is capitalized by default, so you’ll need to use

the first_letter = :lower parameter to get lower camel case format.

• Limit the portions of the speaker Object to serialize by using the only: parame‐
ter.

When you run the code, you should see the following:

But if you only want to convert from snake case to camel case, the awrence gem is a

simple alternative. awrence converts snake-cased Hash keys to camel case, which you
can then convert to camel-cased JSON. I haven’t tried this gem yet, so this is left as an
exercise for you.

JSON Deserialization with Objects and ActiveSupport
ActiveSupport also has the ability to deserialize JSON. We’ll now use the decode()

method to deserialize JSON into a Ruby Hash. Just as before, we’ll leverage Open

Struct and awesome_print to help with instantiation and printing, as shown in
Example 3-6.

Example 3-6. ruby/obj_deserialize_active_support.rb

require 'multi_json'

require 'active_support/json'

require 'active_support/core_ext/string'

require 'ostruct'

require 'awesome_print'

...

JSON Serialization/Deserialization with MultiJson | 65

https://github.com/futurechimp/awrence


speaker = Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',

            'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',

            'Ecratic', %w(JavaScript, AngularJS, Yeoman), true)

json_speaker = ActiveSupport::JSON.encode(speaker)

puts "speaker (using oj gem) = #{ActiveSupport::JSON.encode(speaker)}"

puts ostruct_spkr = OpenStruct.new(ActiveSupport::JSON.decode(json_speaker))

speaker2 =  Speaker.new(ostruct_spkr.first_name, ostruct_spkr.last_name,

                        ostruct_spkr.email, ostruct_spkr.about, ostruct_spkr.company,

                        ostruct_spkr.tags, ostruct_spkr.registered)

puts "speaker 2 after ActiveSupport::JSON.decode()"

ap speaker2

puts

You’ll see the following result when you run the preceding code from the command
line:

The plissken gem is an alternative that converts from camel-cased Hash keys (that

originated from JSON) to snake case. We’ll use plissken in our upcoming Unit Tests.

Unit Testing with a Stub API
Now that you know how to serialize/deserialize JSON to/from a speaker Object,
we’re ready to run a simple server-side Unit Test against a Stub API provided by

json-server (which we used in previous chapters).

Just Enough Unit Testing with Minitest
The two most common Ruby testing frameworks are Minitest, which is part of Ruby
Core and RSpec. Both Minitest and RSpec are excellent, but we can use only one of
them in this chapter to keep the focus on JSON.

66 | Chapter 3: JSON in Ruby on Rails

https://github.com/futurechimp/plissken
http://ruby-doc.org/stdlib-2.0.0/libdoc/minitest/rdoc/MiniTest.html
http://ruby-doc.org/stdlib-2.0.0/libdoc/minitest/rdoc/MiniTest.html
http://rspec.info


On one hand, Minitest

• Is part of the Ruby Standard Library, so there’s nothing else to install.

• Is lightweight and simple.

• Has most of the functionality that RSpec provides.

On the other hand, RSpec

• Requires you to install a separate rspec gem, but enjoys wide acceptance in the
Ruby and Rails communities.

• Is large and complex. The RSpec code base is about eight times larger than
Minitest.

• Has a richer set of matchers than Minitest.

For me, it’s really a matter of taste, and you’ll be fine with either framework. I chose
Minitest because it comes standard with Ruby.

Minitest lets you choose between BDD (Minitest::Spec) and TDD (Minit

est::Test) style testing. Let’s go with Minitest::Spec for the following reasons:

• I prefer BDD’s simple English-style sentences that describe each test.

• It looks similar to RSpec, so the tests will look familiar to those developers who
use RSpec.

• It’s consistent with the JavaScript-base Mocha/Chai testing in the rest of this
book.

This chapter covers only the basics of Minitest. To learn more, see Chris Kottom’s
excellent book, |e Minitest Cookbook.

Setting Up the Unit Test
Before going further, be sure to set up your test environment. If you haven’t installed
Ruby on Rails yet, refer to Appendix A, and install Ruby on Rails (see <Install Ruby
on Rails= on page 326 and <Install Ruby Gems= on page 327). If you want to follow

along with the Ruby project provided in the code examples, cd to chapter-3/speakers-
test and do the following to install all dependencies for the project:

bundle install

Bundler provides dependency management for Ruby projects.

If you’d like to set up the speakers-test Ruby project yourself, follow the instruc‐
tions in the book’s GitHub repository.

Unit Testing with a Stub API | 67

https://chriskottom.com/minitestcookbook
http://bundler.io
https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-3/Project-Setup.md


Test Data
We’ll use the Speaker data from earlier chapters as our test data and deploy it as a

RESTful API. Again, we’ll leverage the json-server Node.js module to serve up the

data/speakers.json file as a Web API. If you need to install json-server, refer to
<Install npm Modules= on page 323 in Appendix A.

Here’s how to run json-server on port 5000 from your local machine:

cd chapter-3/data

json-server -p 5000 ./speakers.json

You can also get a single speaker by adding the id to the URI as follows: http://local‐
host:5000/speakers/1. With the Stub API in place, it’s time to write some Unit Tests.

JSON and Minitest Testing with APIs
Our Unit Test will do the following:

• Make HTTP calls to the Stub Speakers API

• Check the values from the HTTP Response Body against expected values

As in previous chapters, we’ll continue to leverage the open source Unirest API wrap‐
per, but this time we’ll use the Ruby implementation. Please note that the Unirest gem

takes the JSON in the HTTP Response Body, parses it into a Ruby Hash, and returns it
to the caller (inside the HTTP Response Body). This means that the Unit Test won’t

be testing directly against JSON data, but rather it will test against the Hash that was
populated by the JSON response from the API.

Speakers Unit Test
The Unit Test in Example 3-7 shows how to use Unirest to invoke the Speaker Stub

API provided by json-server and test the response.

Example 3-7. speakers-test/test/speakers_spec.rb

require 'minitest_helper'

require 'unirest'

require 'awesome_print'

require 'ostruct'

require 'plissken'

require 'jq/extend'

require_relative '../models/speaker'

68 | Chapter 3: JSON in Ruby on Rails

http://unirest.io
http://unirest.io
http://unirest.io/ruby.html


describe 'Speakers API' do

  SPEAKERS_ALL_URI = 'http://localhost:5000/speakers'

  before do

    @res = Unirest.get SPEAKERS_ALL_URI,

                      headers:{ 'Accept' => "application/json" }

  end

  it 'should return a 200 response' do

    expect(@res.code).must_equal 200

    expect(@res.headers[:content_type]).must_equal 'application/json; charset=utf-8'

  end

  it 'should return all speakers' do

    speakers = @res.body

    expect(speakers).wont_be_nil

    expect(speakers).wont_be_empty

    expect(speakers.length).must_equal 3

  end

  it 'should validate the 3rd speaker as an Object' do

    speakers = @res.body

    ostruct_spkr3 = OpenStruct.new(speakers[2].to_snake_keys())

    expect(ostruct_spkr3.company).must_equal 'Talkola'

    expect(ostruct_spkr3.first_name).must_equal 'Christensen'

    expect(ostruct_spkr3.last_name).must_equal 'Fisher'

    expect(ostruct_spkr3.tags).must_equal ['Java', 'Spring', 'Maven', 'REST']

    speaker3 =  Speaker.new(ostruct_spkr3.first_name, ostruct_spkr3.last_name,

                            ostruct_spkr3.email, ostruct_spkr3.about,

                            ostruct_spkr3.company, ostruct_spkr3.tags,

                            ostruct_spkr3.registered)

    expect(speaker3.company).must_equal 'Talkola'

    expect(speaker3.first_name).must_equal 'Christensen'

    expect(speaker3.last_name).must_equal 'Fisher'

    expect(speaker3.tags).must_equal ['Java', 'Spring', 'Maven', 'REST']

  end

  it 'should validate the 3rd speaker with jq' do

    speakers = @res.body

    speaker3 = speakers[2]

    speaker3.jq('.company') {|value| expect(value).must_equal 'Talkola'}

    speaker3.jq('.tags') {|value|

        expect(value).must_equal ['Java', 'Spring', 'Maven', 'REST']}

    speaker3.jq('.email') {|value|

        expect(value).must_equal 'christensenfisher@talkola.com'}

    speaker3.jq('. | "\(.firstName) \(.lastName)"') {|value|

        expect(value).must_equal 'Christensen Fisher'}

Unit Testing with a Stub API | 69



  end

end

Note the following in this Unit Test:

• The minitest_helper consolidates configuration and setup and factors it out of
this test. We’ll cover Minitest Helpers later in this chapter.

• The test executes the Unirest GET request synchronously (and gets a response)

with Minitest’s before method, so that setup occurs in only one place in the code.

Minitest executes before before running each test (i.e., it) within the context of

the describe.

• The should return all speakers test does the following:

— Ensures that the HTTP Response Body is not empty

— Checks whether the Speakers API returns three speakers

• The should validate the 3rd speaker as an Object test works as follows:

— Populate the speakers Hash from the HTTP Response Body (@res.body). At
this point, the JSON from the API has already been parsed by Unirest and

converted to a Ruby Hash.

— Use OpenStruct.new() to convert the Hash for the third speaker into an Open

Struct, an Object-like structure. The to_snake_keys() method (from the

plissken gem) converts the camel-cased (firstName) Hash keys to snake case

(first_name) for compatibility with Ruby.

— Use Minitest BDD-style expect assertions to check for expected results:

— The third speaker’s company, first_name, last_name, and tags match the
values in the speakers.json file.

• The should validate the 3rd speaker with jq test works as follows:

— Use jq queries (e.g., .company) to check the same fields as in the previous test.

jq simplifies Unit Testing by enabling a developer to query the JSON-based

Hashes without the need to convert to an object. jq is a powerful JSON search
tool, and Chapter 6 covers it in greater detail.

— The . | "\(.firstName) \(.lastName)" query does a String interpolation

to combine the firsName and lastName fields into the speaker’s full name for
testing purposes.

— The ruby-jq gem provides a solid Ruby-based jq implementation.

To run this test, use bundle exec rake from the command line, and you should see
the following:

70 | Chapter 3: JSON in Ruby on Rails

https://stedolan.github.io/jq
https://github.com/winebarrel/ruby-jq


rake is a commonly used build utility for Ruby projects. In the bundle exec rake
command, the following occurs:

• rake uses the gems that Bundler listed in this project’s Gemfile.

• rake has been configured to use test as the default task.

The Rakefile defines the build tasks, and looks like Example 3-8.

Example 3-8. speakers-test/Rakeole

require 'rake/testtask'

Rake::TestTask.new(:test) do |t|

  t.libs = %w(lib test)

  t.pattern = 'test/**/*_spec.rb'

  t.warning = false

end

task :default => :test

By default, Minitest is silent and doesn’t indicate that tests are passing. In the preced‐

ing Unit Test run, notice that passing tests show in the output. The speakers-test

project leverages the minitest-reporters gem to make the output more readable.

The Minitest Helper in Example 3-9 configures the minitest and minitest-

reporters gems for use by the speakers_spec.

Example 3-9. speakers-test/test/minitest_helper.rb

require 'minitest/spec'

require 'minitest/autorun'

require "minitest/reporters"

Minitest::Reporters.use! Minitest::Reporters::SpecReporter.new

Unit Testing with a Stub API | 71

http://rake.rubyforge.org
https://github.com/kern/minitest-reporters


For the sake of completeness, Example 3-10 shows the Speaker Plain Old Ruby
Object (PORO) that holds the Speaker data.

Example 3-10. speakers-test/models/speaker.rb

class Speaker

  attr_accessor :first_name, :last_name, :email,

                :about, :company, :tags, :registered

  def initialize(first_name, last_name, email, about,

                 company, tags, registered)

    @first_name = first_name

    @last_name = last_name

    @email = email

    @about = about

    @company = company

    @tags = tags

    @registered = registered

  end

end

The preceding code is plain and simple:

• speaker.rb resides in the models directory to follow commonly accepted Ruby
project conventions.

• attr_accessor defines the Speaker’s data members (e.g., first_name) and acces‐
sor methods (getters/readers and setters/writers) for the data members.

• initialize() initializes the data members when Speaker.new() is called.

Before moving on, you can stop json-server by pressing Ctrl-C at the command
line.

Further Reading on Ruby and Minitest
We’ve covered only the basics of Ruby and Minitest in this chapter. To learn more,
please see the following resources:

• Ruby in Practice, by Jeremy McAnally and Assaf Arkin (Manning)

• |e Well-Grounded Rubyist, 2nd Ed., by David A. Black (Manning)

• Minitest Cookbook, by Chris Kottam

What Is Missing in the Unit Tests?
So far, the Unit Tests have done a decent job of testing JSON data, but something is
missing. The code had to check for the existence of all the expected fields, which is

72 | Chapter 3: JSON in Ruby on Rails

https://www.manning.com/books/ruby-in-practice
https://www.manning.com/books/the-well-grounded-rubyist-second-edition
https://chriskottom.com/minitestcookbook


clumsy and cumbersome. Imagine how arduous this would be for larger, deeper,
more complex JSON documents. There’s a solution for this problem: JSON Schema
(this is covered in Chapter 5).

We’ve shown how to deploy and interact with a Stub API, and now it’s time to build a
small RESTful API with Ruby on Rails.

Build a Small Web API with Ruby on Rails
Now that you know how to serialize/deserialize JSON to/from a speaker Object and

how to do a Unit Test with the Speaker Stub API (from json-server), we’re ready to
build a simple web application that leverages the API data and presents it to a user.

We’ll continue to use the Speaker data to create an API with Rails 5. This version of

Rails includes rails-api, which provides the ability to create an API-only Rails

application. rails-api began as a separate gem, but it has been merged into Rails.

We’ll build two Rails-based API applications to demonstrate some of the features of
AMS:

speakers-api-1

Create an API with camel-cased JSON.

speakers-api-2

Create an API that customizes the JSON representation.

Before we create anything, let’s determine how the APIs will render JSON.

Choose a JSON Serializer
There are several options for rendering JSON in Ruby on Rails. Here’s a list of the
most widely used techniques:

ActiveModel::Serializers (AMS)
AMS provides functionality to objects that need some ActiveRecord features,
such as serialization and validation. AMS is part of the Rails API, and you can
find documentation on GitHub.

Jbuilder
A Domain-Specific Language (DSL) builder that uses a separate template (i.e.,
outside the controller) that controls the output. For further details, please see
Jbuilder on GitHub.

RABL
Ruby API Builder Language (RABL) generates JSON, XML, PList, MessagePack,
and BSON. This gem also uses a template file. The RABL GitHub repository has
details.

Build a Small Web API with Ruby on Rails | 73

https://github.com/rails-api/rails-api
http://api.rubyonrails.org/classes/ActiveModel/Serializers.html
https://github.com/rails-api/active_model_serializers
https://github.com/rails/jbuilder
https://github.com/nesquena/rabl


Evaluation criteria

Here are a few considerations to help choose a JSON serialization approach:

• JSON generation should be done outside application objects because an object
should have no knowledge of external representations. This means that you
shouldn’t have code in your object that renders JSON. According to Uncle Bob
Martin, a class should have only one reason to change; this is known as the Single
Responsibility Principle (the first of the five SOLID principles of OO Design).
For further details, see his The Principles of OOD site. When you introduce
JSON formatting to an Object, that Object now has a second reason to change,
because it has two responsibilities (making it more difficult to change the code in
the future):

— The original functionality of the object

— JSON encoding

• Don’t clutter Controllers or Models with JSON generation. This also violates Sin‐
gle Responsibility and makes the Controller/Model code less flexible. Use exter‐
nal templates to clean up Controllers and Models and factor out messy, complex
formatting logic.

• Control which attributes of an object to serialize and which ones to omit.

Although these guidelines may sound a bit strict, the whole point here is interopera‐
bility and consistency. But there are no silver bullets, and it’s perfectly acceptable to
have different opinions. In which case, do the following:

• Know why you believe what you believe. Back up your position with sound soft‐
ware engineering and architectural principles.

• Work and play well with others. Determine whether your approach fits with the
overall community rather than just a single language, platform, or segment
within a particular technical community.

Now that we’ve established some evaluation criteria, let’s review the options.

AMS, RABL, or Jbuilder?

Based on the preceding considerations and a review of all the options, it’s a tough
decision because AMS, RABL, and Jbuilder each provide most (if not all) of what

we’re looking for. AMS factors out serialization into a Serializer Object, and RABL
and Jbuilder both use external templates. Because RABL can’t emit lower camel case,
it’s out of the running, which reduces our options to AMS and Jbuilder.

Choosing between AMS and Jbuilder is difficult:

• Each provides the same quality of JSON representation.

74 | Chapter 3: JSON in Ruby on Rails

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://github.com/nesquena/rabl/issues/469


• Their performance is similar when you configure Rails to use oj.

It comes down to which approach you prefer:

• Programmatic JSON serialization with Serializer Objects (AMS) or with tem‐
plates (Jbuilder)

• JSON serialization in the Controller (AMS) or in the View (Jbuilder)

There are great arguments on both sides:

Pro AMS
Using AMS is a good approach because everything is Ruby-based. Jbuilder tem‐
plates introduce the need for developers to learn a new DSL.

Pro Jbuilder
Jbuilder forces you to think about the JSON representation first, and pushes you
to decouple from the underlying database.

As many people in the Rails community would say, <it’s a wash.= In other words, it’s a
toss-up between AMS and Jbuilder; either approach produces great JSON responses
for an API. I chose AMS because it’s part of Rails and there’s no need to learn a new
DSL for templating.

speakers-api-1—Create an API with Camel-Cased JSON
We’ll take the following steps to create and deploy the speakers-api-1 API with Rails 5:

1. Set up the project.

2. Write source code:

• Model

• Serializer

• Controller

3. Deploy the API.

4. Test with Postman.

Build a Small Web API with Ruby on Rails | 75



Set up the speakers-api-1 project

The speakers-api-1 project already exists in the Chapter 3 code examples under the
chapter-3/speakers-api-1 directory, so you don’t need to create this project. But for the
sake of completeness, the following sidebar explains how the project was created.

Create speakers-api-1 App with Rails
Use the following command to create the speakers-api-1 Rails API project:

rails new speakers-api-1 -T --api --skip-active-record --skip-action-

mailer --skip-action-cable

We don’t need the frontend normally provided by Rails (ERB, JS, CSS, Asset Pipeline,
and so forth) for our example, nor do we need a database. The preceding command
creates a Rails API application without the following:

• A web-based frontend. The --api option leaves out these:

— The asset pipeline

— Views

• Tests (with the -T option).

• ActiveRecord (with the --skip-active-record option). This means that you
don’t need a database to run the application. While this may seem a bit strange,
it’s fits our purpose because it reduces application dependencies and setup.

• ActionMailer (with the --skip-action-mailer option). The Web API doesn’t
need to send emails.

• ActionCable (with the --skip-action-cable option). The API doesn’t use Web‐
Socket.

The Rails generators will still create controllers, and we’ll cover that in a minute.

The preceding rails new command created the speakers-api-1 directory.

To install and use AMS in the project, the example code adds the following line to the

Gemfile:

gem 'active_model_serializers'

gem 'oj'

As in previous examples in this chapter, we want to continue to use oj for perfor‐
mance reasons, but AMS doesn’t require it.

Even though the project is already set up, you will need to install the gems to run the
project. Do the following:

76 | Chapter 3: JSON in Ruby on Rails

https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-3


cd speakers-api-1

bundle exec spring binstub --all

In this command, Bundler installs the gems specified in the project’s Gemfile.

Create the Model

The Speaker class in Example 3-11 is a PORO that represents the Speaker data that
the API will render as JSON.

Example 3-11. speakers-api-1/app/models/speaker.rb

class Speaker < ActiveModelSerializers::Model

  attr_accessor :first_name, :last_name, :email,

                :about, :company, :tags, :registered

  def initialize(first_name, last_name, email, about,

                 company, tags, registered)

    @first_name = first_name

    @last_name = last_name

    @email = email

    @about = about

    @company = company

    @tags = tags

    @registered = registered

  end

end

This code doesn’t do much; it just provides the data members, constructors, and

accessor methods (getters and setters) for a speaker. This code doesn’t know any‐

thing about JSON formatting. The Speaker class inherits from ActiveModel::Serial

izer so that AMS will convert it to JSON.

Create the Serializer

AMS provides Serializers (separate from Controllers and Models) that serialize

Objects into JSON. The SpeakerSerializer already exists, but the following sidebar
explains how it was created.

Generate SpeakerSerializer
Use the following command to generate a SpeakerSerializer for the existing

speaker Model from the speakers-web-1 directory:

bin/rails generate serializer speaker

This creates an empty shell Serializer with an id field:

Build a Small Web API with Ruby on Rails | 77



class SpeakerSerializer < ActiveModel::Serializer

  attributes :id

end

From here, you have to add in the fields to serialize into JSON.

Example 3-12 shows the SpeakerSerializer that AMS uses to render speaker
Objects as JSON.

Example 3-12. speakers-api-1/app/models/speaker_serializer.rb

class SpeakerSerializer < ActiveModel::Serializer

  attributes :first_name, :last_name, :email,

             :about, :company, :tags, :registered

end

In this code, attributes lists all fields to be serialized into JSON.

Create the Controller

In a Rails application, a Controller handles HTTP Requests and returns HTTP
Responses. In our case, the Speaker JSON data is returned in the Response Body. The

SpeakersController already exists, but the following sidebar explains how it was
created.

Generate SpeakersController
Use the following command to generate a SpeakersController from the speakers-
web-1 directory:

bin/rails generate controller speakers index show

This creates a shell with empty index and show methods and creates the appropriate
HTTP routes in app/conog/routes.rb (more on this later).

Example 3-13 provides the full SpeakersController that implements the index and

show methods.

Example 3-13. speakers-api-1/app/controllers/speakers_controller.rb

require 'speaker'

class SpeakersController < ApplicationController

  before_action :set_speakers, only: [:index, :show]

  # GET /speakers

78 | Chapter 3: JSON in Ruby on Rails



  def index

    render json: @speakers

  end

  # GET /speakers/:id

  def show

    id = params[:id].to_i - 1

    if id >= 0 && id < @speakers.length

      render json: @speakers[id]

    else

      render plain: '404 Not found', status: 404

    end

  end

  private

  def set_speakers

    @speakers = []

    @speakers << Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',

      'Incididunt mollit cupidatat magna ...', 'Ecratic',

      ['JavaScript', 'AngularJS', 'Yeoman'], true)

    @speakers << Speaker.new('Ester', 'Clements', 'esterclements@acusage.com',

      'Labore tempor irure adipisicing consectetur ...', 'Acusage',

      ['REST', 'Ruby on Rails', 'APIs'], true)

    @speakers << Speaker.new('Christensen', 'Fisher',

      'christensenfisher@talkola.com', 'Proident ex Lorem et Lorem ad ...',

      'Talkola',

      ['Java', 'Spring', 'Maven', 'REST'], true)

  end

end

Note the following in this code:

• The speakers Array is hardcoded, but it’s for test purposes only. In a real applica‐

tion, a separate Data Layer would populate the speakers from a database or an
external API call.

• The index method does the following:

— Responds to HTTP GET requests on the /speakers URI.

— Retrieves the entire speakers Array and renders it as a JSON Array in an
HTTP Response Body.

• The show method does the following:

Build a Small Web API with Ruby on Rails | 79



— Responds to HTTP GET requests on the /speakers/{id} URI (where id repre‐
sents a speaker ID).

— Retrieves a speaker (based on the speaker ID) and renders it as a JSON object
in an HTTP Response Body.

— If id in the HTTP Request is out-of-bounds, the Controller renders a 404
(Not Found) HTTP Status Code with a plain-text message in the HTTP

Response with render plain.

• When the Controller invokes the render method, Rails looks for a matching Seri‐

alizer to serialize the speaker Object, and invokes the SpeakerSerializer by
default.

The Controller and Serializer are decoupled and know nothing about each other. The
serialization code exists only in the Serializer and does not reside in the Controller or
the Model. The Controller, Model, and Serializer each do one thing.

In a Rails application, the Routes file maps URLs to Controller methods that execute

when the URL is invoked. The rails generate controller command that was
shown earlier created the routes shown in Example 3-14.

Example 3-14. speakers-api-�/app/conog/routes.rb

Rails.application.routes.draw do

  get 'speakers/index'

  get 'speakers/show'

  # For details on the DSL available within this file,

  # see http://guides.rubyonrails.org/routing.html

end

You can shorten the Routes file with Resource-based routing as shown in
Example 3-15.

Example 3-15. speakers-api-�/app/conog/routes.rb

Rails.application.routes.draw do

  resources :speakers, :only => [:show, :index]

  # For details on the DSL available within this file,

  # see http://guides.rubyonrails.org/routing.html

end

Instead of separate routes for the index and show methods, this resourceful route
defines them with a single line of code.

80 | Chapter 3: JSON in Ruby on Rails



Camel-casing AMS JSON output

By default, AMS renders JSON keys with snake case (first_name and last_name).
Out of the box, the serialized JSON (when the user invokes http://localhost:3000/

speakers/1 with an HTTP GET) looks like this:

{

  "first_name": "Larson",

  "last_name": "Richard",

  "email": "larsonrichard@ecratic.com",

  "about": "Incididunt mollit cupidatat magna ...",

  "company": "Ecratic",

  "tags": [

    "JavaScript",

    "AngularJS",

    "Yeoman"

  ],

  "registered": true

}

To make our JSON output compatible with non-Ruby clients, let’s add camel casing
by adding the global initializer file shown in Example 3-16.

Example 3-16. speakers-api-�/conog/initializers/active�model�serializers.rb

ActiveModelSerializers.config.key_transform = :camel_lower

Deploy the API

In the speakers-api-1 directory, run rails s to deploy the API at http://localhost:
3000/speakers, and you’ll see the following:

Test the API with Postman

Now that the Speakers API is up and running, let’s test with Postman (as we did in

Chapter 1) to get the first speaker. In the Postman GUI, do the following:

• Enter the http://localhost:3000/speakers/1 URL.

• Choose GET as the HTTP verb.

Build a Small Web API with Ruby on Rails | 81



• Click the Send button.

You should see that the GET ran properly in Postman with the speaker JSON data in
the HTTP Response Body text area and a 200 (OK) HTTP Status, as shown in
Figure 3-1.

Figure 3-1. Speaker JSON data with Postman

You can stop speakers-api-1 by pressing Ctrl-C at the command line.

speakers-api-2—Create an API that Customizes the JSON
Representation
AMS’s JSON customization functionality goes beyond camel-casing. The second API
application will show how AMS can customize (alter) the JSON representation of

each speaker. Except for the new SpeakerSerializer, speakers-api-2 has all the same
code as the original speakers-api-1 project, so we’ll just focus on serialization.

Before going further, please install the gems to run the speakers-api-2 project. Do the
following:

cd speakers-api-2

bundle exec spring binstub --all

Change the JSON representation with AMS

This new version of the SpeakerSerializer provides a new name field (which com‐

bines the first_name and last_name) without changing the original speaker Object,
as shown in Example 3-17.

82 | Chapter 3: JSON in Ruby on Rails



Example 3-17. speakers-api-2/app/serializers/speaker_serializer.rb

class SpeakerSerializer < ActiveModel::Serializer

  attributes :name, :email, :about,

             :company, :tags, :registered

  def name

    "#{object.first_name} #{object.last_name}"

  end

end

Note the following in this example:

• attributes references name instead of first_name and last_name.

• In the name method:

— The object refers to the speaker Object being rendered.

— Combine the first_name and last_name fields by using String interpolation

to render a single name field. The original Speaker model knows nothing

about the name attribute created by the Serializer.

The ability to customize the JSON representation with attributes is powerful
because it decouples the Model from the JSON output.

Deploy the API

In the speakers-api-2 directory, run rails s to deploy the API at http://localhost:
3000/speakers.

Test the API with Postman

In the Postman GUI, invoke HTTP GET on http://localhost:3000/speakers/1 and you
should see the screen in Figure 3-2.

Build a Small Web API with Ruby on Rails | 83



Figure 3-2. Customized Speaker JSON data with Postman

Don’t forget to stop the speakers-api-2 application by pressing Ctrl-C at the command
line.

Further Reading on Rails and Rails-based APIs
We’ve shown just enough Rails-based APIs and AMS to get a simple API to work. To
go deeper, please see the following resources:

• Ruby on Rails Tutorial: Learn Web Development with Rails, by Michael Hartl

• Learn Ruby on Rails 5, by Daniel Kehoe

• APIs on Rails: Building REST APIs with Rails, by Abraham Kuri

• Get Up and Running with Rails API, by Chris Kottam

• Active Model Serializers, Rails, and JSON! OH MY!, by Kendra Uzia

What We Covered
We started with simple conversions between Ruby and JSON, discussed the impor‐
tance of JSON camel casing, and then demonstrated how to call a (Stub) JSON-based
Web API (and tested its contents with Minitest). We then finished by creating a
RESTful API with Rails 5 and tested it with Postman.

What’s Next?
Now that we’ve developed a JSON-based application with Ruby on Rails, we’ll move
on to use JSON with Java (and Spring Boot) in Chapter 4.

84 | Chapter 3: JSON in Ruby on Rails

https://www.railstutorial.org/book
http://learn-rails.com/learn-ruby-on-rails.html
http://apionrails.icalialabs.com/book
https://chriskottom.com/blog/2017/02/get-up-and-running-with-rails-api
https://www.sitepoint.com/active-model-serializers-rails-and-json-oh-my/


CHAPTER 4

JSON in Java

We’ve shown how to use JSON with JavaScript and Ruby on Rails, and we’ll now
move to Java, our third and final platform for this book. Here’s what we’ll cover:

• Performing Java/JSON serialization/deserialization with Jackson

• Working with Java Objects and JSON

• Using JSON with JUnit

• Making RESTful API calls and testing the results with JUnit and JsonUnit

• Building a small JSON-based API with Spring Boot

In our examples, we’ll make RESTful API calls to work with the data we deployed on

json-server in the previous chapter. We’ll then move to create a more realistic
JSON-based Web API. Before we develop a RESTful API, we need to start with the
basics of Java serialization/deserialization with JSON, and then add more complexity.

Java and Gradle Setup
This chapter uses Gradle for building source and test code. If you haven’t installed
Java and Gradle, go to Appendix A and see <Install the Java Environment= on page
328 and <Install Gradle= on page 330. After that, you will have a basic environment
that enables you to run the examples.

Gradle Overview
Gradle leverages the concepts from earlier Java-based build systems—Apache Ant
and Maven. Gradle is widely used and provides the following functionality for Java
projects:

85

http://www.gradle.org
http://ant.apache.org
https://maven.apache.org


• Project structure (a common/standard project directory structure)

• Dependency Management (for JAR files)

• A common build process

The gradle init utility initializes a project by creating a core directory structure and
some initial implementations for the build script, along with simple Java source and
test code. Here are the key directories and files in a Gradle project:

• src/main/ contains source code and resources.

— java/ is the Java source code.

— resources/ contains the resources (e.g., properties, data files—JSON in our
case) used by the source code.

• test/main/ contains source code and resources.

— java/ is the Java source code.

— resources/ contains the resources (e.g., properties, data files—JSON in our
case) used by the source code.

• build/ contains the .class files generated by compiling the source and test code.

— libs/ contains the JAR or WAR files that result from building the project.

• gradlew is the Gradle wrapper that enables you to run a project as an executable
JAR. We’ll cover this in more detail in the Spring Boot section later.

• build.gradle is initiated for you by gradle init, but you need to fill it in with
project-specific dependencies. Gradle uses a Groovy-based DSL for its build
scripts (rather than XML).

• build/ contains build-related artifacts created by gradle build or gradle test.

Here are the most important Gradle tasks you’ll need to know in order to work with

Gradle. You can see these tasks when you type gradle tasks on the command line:

gradle build

Build the project.

gradle classes

Compile Java source code.

gradle clean

Delete the build directory.

gradle jar

Compile Java source code and package it (along with Resources) into a JAR.

86 | Chapter 4: JSON in Java



gradle javadoc

Generate JavaDoc documentation from the Java source code.

gradle test

Run Unit Tests (includes Java source and test code compile).

gradle testClasses

Compile Java test code.

Here’s how the example projects were created:

• gradle init --type java-application was used to create the initial speakers-
test and speakers-web applications.

• The generated build.gradle file and the Java application and test files are stubs.
They have been replaced with actual code for the examples in this chapter.

Gradle is well-documented, and here are some tutorials and references to help you go 
deeper:

• Gradle User Guide

• Getting Started with Gradle, by Petri Kainulainen

• Gradle Beyond the Basics, by Tim Berglund (O’Reilly)

Now that we’ve covered the basics of Gradle, it’s time to look at Java-based JSON
libraries, and then move on to coding examples.

Just Enough Unit Testing with JUnit
JUnit is a widely used Unit-Testing framework. The tests in this chapter use JUnit
because of its common acceptance in the Java community. JUnit tests are procedural,
so the Unit Tests are TDD-style. If you’d like to combine JUnit with BDD, Cucumber
is a solid choice. To learn more about BDD and Cucumber in Java, see Micha Kops’
excellent article on <BDD Testing with Cucumber, Java and JUnit=.

Java-Based JSON Libraries
There are several solid JSON libraries for Java/JSON serialization/deserialization,
including these:

Jackson
You can find details about Jackson in the GitHub repository.

Gson
Gson is provided by Google.

Just Enough Unit Testing with JUnit | 87

https://docs.gradle.org/3.4.1/userguide/userguide.html
http://bit.ly/2tiS5kx
http://www.junit.org
http://www.hascode.com/2014/12/bdd-testing-with-cucumber-java-and-junit/
https://github.com/FasterXML/jackson
https://github.com/google/gson


JSON-java
This library is provided by Doug Crockford.

Java SE (Standard Edition)
JSON support was introduced into the Java platform in JavaEE 7 as part of the
Java Specification Request (JSR) 353 initiative. JSR-353 is a standalone imple‐
mentation, and you can integrate it with your Java SE applications as of Java SE 8.
Java SE 9 will provide native JSON support as part of the Java Enhancement Pro‐
posal (JEP) 198 initiative.

All examples in this chapter use Jackson because it

• Is widely used (especially by the Spring community)

• Provides excellent functionality

• Has worked well for a long time

• Is well maintained with an active development community

• Has good documentation

Additionally, we’ll maintain focus by sticking with one Java/JSON library. As men‐
tioned, the other libraries work well, so feel free to try them on your own.

Let’s start with the basics of Java serialization/deserialization.

JSON Serialization/Deserialization with Jackson
Java applications need to convert from Java data structures to JSON (serialize) and
convert from JSON to Java (deserialize).

Serialization/Deserialization with Simple Java Data Types
As in previous chapters, we’ll start by serializing some basic Java data types:

• integer

• string

• array

• boolean

Example 4-1 shows a simple Unit Test that uses Jackson and JUnit 4 to serialize/dese‐
rialize simple Java data types.

88 | Chapter 4: JSON in Java

http://bit.ly/2sprKE6
https://jcp.org/en/jsr/detail?id=353
http://openjdk.java.net/jeps/198
http://openjdk.java.net/jeps/198


Example 4-1. speakers-test/src/test/java/org/jsonatwork/ch4/BasicJsonTypesTest.java

package org.jsonatwork.ch4;

import static org.junit.Assert.*;

import java.io.*;

import java.util.*;

import org.junit.Test;

import com.fasterxml.jackson.core.*;

import com.fasterxml.jackson.core.type.*;

import com.fasterxml.jackson.databind.*;

public class BasicJsonTypesTest {

  private static final String TEST_SPEAKER = "age = 39\n" +

    "fullName = \"Larson Richard\"\n" +

    "tags = [\"JavaScript\",\"AngularJS\",\"Yeoman\"]\n" +

    "registered = true";

  @Test

  public void serializeBasicTypes() {

    try {

      ObjectMapper mapper = new ObjectMapper();

      Writer writer = new StringWriter();

      int age = 39;

      String fullName = new String("Larson Richard");

      List<String> tags = new ArrayList<String>(

          Arrays.asList("JavaScript", "AngularJS", "Yeoman"));

      boolean registered = true;

      String speaker = null;

      writer.write("age = ");

      mapper.writeValue(writer, age);

      writer.write("\nfullName = ");

      mapper.writeValue(writer, fullName);

      writer.write("\ntags = ");

      mapper.writeValue(writer, tags);

      writer.write("\nregistered = ");

      mapper.configure(SerializationFeature.INDENT_OUTPUT, true);

      mapper.writeValue(writer, registered);

      speaker = writer.toString();

      System.out.println(speaker);

      assertTrue(TEST_SPEAKER.equals(speaker));

      assertTrue(true);

    } catch (JsonGenerationException jge) {

      jge.printStackTrace();

      fail(jge.getMessage());

    } catch (JsonMappingException jme) {

      jme.printStackTrace();

JSON Serialization/Deserialization with Jackson | 89



      fail(jme.getMessage());

    } catch (IOException ioe) {

      ioe.printStackTrace();

      fail(ioe.getMessage());

    }

  }

  @Test

  public void deSerializeBasicTypes() {

    try {

      String ageJson = "{ \"age\": 39 }";

      ObjectMapper mapper = new ObjectMapper();

      Map<String, Integer> ageMap = mapper.readValue(ageJson,

          new TypeReference<HashMap<String,Integer>>() {});

      Integer age = ageMap.get("age");

      System.out.println("age = " + age + "\n\n\n");

      assertEquals(39, age.intValue());

      assertTrue(true);

    } catch (JsonMappingException jme) {

      jme.printStackTrace();

      fail(jme.getMessage());

    } catch (IOException ioe) {

      ioe.printStackTrace();

      fail(ioe.getMessage());

    }

  }

}

In this example, the @Test annotation tells JUnit to run the serializeBasicTypes()

and deSerializeBasicTypes() methods as part of the test. These Unit Tests don’t do
many assertions on the JSON data itself. We’ll cover assertions in more detail later
when we test against a Web API.

Here are the most important Jackson classes and methods that serialize/deserialize to/
from JSON:

• ObjectMapper converts between Java and JSON constructs.

• ObjectMapper.writeValue() converts a Java data type to JSON (and in this case,

outputs to a Writer).

• ObjectMapper.readValue() converts JSON to a Java data type.

Run a single Unit Test from the command line as follows:

cd chapter-4/speakers-test

+gradle test --tests org.jsonatwork.ch4.BasicJsonTypesTest+

90 | Chapter 4: JSON in Java



You should see these results:

This example isn’t too exciting right now because it serializes/deserializes only simple
data types to/from JSON. Serialization/deserialization gets more interesting when
Objects are involved.

Serialization/Deserialization with Java Objects
Now that we have a decent grasp of Jackson and how to work with simple Java data
types, let’s wade in deeper with Objects. Example 4-2 shows how to use Jackson to

serialize/deserialize a single speaker Object, and then how to deserialize a JSON file

into multiple speaker Objects.

Example 4-2. speakers-test/src/test/java/org/jsonatwork/ch4/
SpeakerJsonFlatFileTest.java

package org.jsonatwork.ch4;

import static org.junit.Assert.*;

import java.io.*;

import java.net.*;

import java.util.*;

import org.junit.Test;

import com.fasterxml.jackson.core.*;

import com.fasterxml.jackson.databind.*;

JSON Serialization/Deserialization with Jackson | 91



import com.fasterxml.jackson.databind.type.*;

public class SpeakerJsonFlatFileTest {

private static final String SPEAKER_JSON_FILE_NAME = "speaker.json";

private static final String SPEAKERS_JSON_FILE_NAME = "speakers.json";

private static final String TEST_SPEAKER_JSON = "{\n" +

    "  \"id\" : 1,\n" +

    "  \"age\" : 39,\n" +

    "  \"fullName\" : \"Larson Richard\",\n" +

    "  \"tags\" : [ \"JavaScript\", \"AngularJS\", \"Yeoman\" ],\n" +

    "  \"registered\" : true\n" +

  "}";

@Test

public void serializeObject() {

    try {

      ObjectMapper mapper = new ObjectMapper();

      Writer writer = new StringWriter();

      String[] tags = {"JavaScript", "AngularJS", "Yeoman"};

      Speaker speaker = new Speaker(1, 39, "Larson Richard", tags, true);

      String speakerStr = null;

      mapper.configure(SerializationFeature.INDENT_OUTPUT, true);

      speakerStr = mapper.writeValueAsString(speaker);

      System.out.println(speakerStr);

      assertTrue(TEST_SPEAKER_JSON.equals(speakerStr));

      assertTrue(true);

    } catch (JsonGenerationException jge) {

      jge.printStackTrace();

      fail(jge.getMessage());

    } catch (JsonMappingException jme) {

      jme.printStackTrace();

      fail(jme.getMessage());

    } catch (IOException ioe) {

      ioe.printStackTrace();

      fail(ioe.getMessage());

    }

  }

  private File getSpeakerFile(String speakerFileName) throws URISyntaxException {

    ClassLoader classLoader = Thread.currentThread().getContextClassLoader();

    URL fileUrl = classLoader.getResource(speakerFileName);

    URI fileUri = new URI(fileUrl.toString());

    File speakerFile = new File(fileUri);

    return speakerFile;

  }

  @Test

  public void deSerializeObject() {

    try {

92 | Chapter 4: JSON in Java



      ObjectMapper mapper = new ObjectMapper();

      File speakerFile = getSpeakerFile(

          SpeakerJsonFlatFileTest.SPEAKER_JSON_FILE_NAME);

      Speaker speaker = mapper.readValue(speakerFile, Speaker.class);

      System.out.println("\n" + speaker + "\n");

      assertEquals("Larson Richard", speaker.getFullName());

      assertEquals(39, speaker.getAge());

      assertTrue(true);

    } catch (URISyntaxException use) {

      use.printStackTrace();

      fail(use.getMessage());

    } catch (JsonParseException jpe) {

      jpe.printStackTrace();

      fail(jpe.getMessage());

    } catch (JsonMappingException jme) {

      jme.printStackTrace();

      fail(jme.getMessage());

    } catch (IOException ioe) {

      ioe.printStackTrace();

      fail(ioe.getMessage());

    }

  }

  @Test

  public void deSerializeMultipleObjects() {

    try {

      ObjectMapper mapper = new ObjectMapper();

      File speakersFile = getSpeakerFile(

          SpeakerJsonFlatFileTest.SPEAKERS_JSON_FILE_NAME);

      JsonNode arrNode = mapper.readTree(speakersFile).get("speakers");

      List<Speaker> speakers = new ArrayList<Speaker>();

        if (arrNode.isArray()) {

          for (JsonNode objNode : arrNode) {

          System.out.println(objNode);

          speakers.add(mapper.convertValue(objNode, Speaker.class));

        }

      }

      assertEquals(3, speakers.size());

      System.out.println("\n\n\nAll Speakers\n");

      for (Speaker speaker: speakers) {

        System.out.println(speaker);

      }

      System.out.println("\n");

      Speaker speaker3 = speakers.get(2);

      assertEquals("Christensen Fisher", speaker3.getFullName());

      assertEquals(45, speaker3.getAge());

      assertTrue(true);

JSON Serialization/Deserialization with Jackson | 93



    } catch (URISyntaxException use) {

      use.printStackTrace();

      fail(use.getMessage());

    } catch (JsonParseException jpe) {

      jpe.printStackTrace();

      fail(jpe.getMessage());

    } catch (JsonMappingException jme) {

      jme.printStackTrace();

      fail(jme.getMessage());

    } catch (IOException ioe) {

      ioe.printStackTrace();

      fail(ioe.getMessage());

    }

  }

}

Note the following in this JUnit test:

• serializeObject() creates a Speaker Object and serializes it to Standard

Output by using the ObjectMapper.writeValueAsString() method and

System.out.println(). The test sets the SerializationFeature.INDENT_OUT

PUT to true to indent/pretty-print the JSON output.

• deSerializeObject() calls getSpeakerFile() to read a JSON input file (which

contains a single speaker JSON Object), and uses the ObjectMapper.read

Value() method to deserialize it into a Speaker Java Object.

• deSerializeMultipleObjects() does the following:

— Calls getSpeakerFile() to read a JSON input file, which contains an array of

JSON speaker Objects.

— Invokes the ObjectMapper.readTree() method to get a JsonNode Object,
which is a pointer to the root node of the JSON document that was in the file.

— Visits each node in the JSON tree and uses the ObjectMapper.convert

Value() method to deserialize each speaker JSON object into a Speaker Java
Object.

— Prints out each Speaker Object in the list.

• getSpeakerFile() finds a file on the classpath and does the following:

— Gets the ContextClassLoader from the current Thread of execution.

— Uses the ClassLoader.getResource() method to find the filename as a
resource within the current classpath.

— Constructs a File Object based on the URI of the filename.

94 | Chapter 4: JSON in Java



Each of the preceding tests uses JUnit’s assertion methods to test the results of JSON
serialization/deserialization.

You’ll see the following when you run the test from the command line using gradle

test --tests org.jsonatwork.ch4.SpeakerJsonFlatFileTest:

Jackson offers much more functionality than can be shown in this chapter. Refer to
the following resources for some great tutorials:

• Java Jackson Tutorial, by Eugen Paraschiv

• Jackson Tutorial, Tutorials Point

• Jackson JSON Java Parser API Example Tutorial, by Pankaj (JournalDev)

• Java JSON Jackson Introduction, by Mithil Shah

JSON Serialization/Deserialization with Jackson | 95

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
http://www.baeldung.com/jackson
http://www.tutorialspoint.com/jackson
http://www.journaldev.com/2324/jackson-json-processing-api-in-java-example-tutorial
http://www.studytrails.com/java/json/java-jackson-introduction.jsp


Unit Testing with a Stub API
Until now, we’ve been using JUnit to test against the data from JSON flat files. We’ll
now do a more realistic test against an API. But we need an API to test against
without writing a lot of code or creating lots of infrastructure. We’ll show how to cre‐
ate a simple Stub API (which produces a JSON response) without writing a single line
of code.

Test Data
To create the Stub, we’ll use the Speaker data from earlier chapters as our test data,

which is available at GitHub and deploy it as a RESTful API. We’ll leverage the json-

server Node.js module to serve up the speakers.json file as a Web API. If you need to

install json-server, refer to <Install npm Modules= on page 323 in Appendix A.

Here’s how to run json-server on port 5000 from your local machine (using a sec‐
ond terminal session):

cd chapter-4/speakers-test/src/test/resources

json-server -p 5000 ./speakers.json

You can also get a single speaker by adding the id to the URI as follows: http://local
host:5000/speakers/1. With the Stub API in place, it’s time to write some Unit Tests.

JSON and JUnit Testing with APIs
Our Unit Test will do the following:

• Make HTTP calls to the Stub Speakers API

• Check the JSON (from the HTTP Response) against expected values

As in earlier chapters, we’ll continue to leverage the open source Unirest API wrap‐
per, but this time we’ll use the Java version.

In the previous JUnit tests in the chapter, we ensured that only bare minimum func‐
tionality was working (no exceptions were thrown), and it’s now time to make our
tests a bit more sophisticated. The remaining Unit Tests will look at the JSON content
returned from an HTTP Response, and verify that it matches the expected output.
We could search through the data and do a comparison with custom code, or we
could use a library to reduce the amount of work. JsonUnit has many helpful match‐
ers to simplify JSON comparison in JUnit tests. We’ll cover the basics of JsonUnit in
these Unit Tests, but it provides much deeper functionality than we can cover here,
including the following:

• Regular Expressions

96 | Chapter 4: JSON in Java

https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-4/speakers-test/src/test/resources
http://localhost:5000/speakers/1
http://localhost:5000/speakers/1
http://unirest.io/java.html
https://github.com/lukas-krecan/JsonUnit


• More matchers

• The ability to ignore specific fields and values

The Unit Test in Example 4-3 pulls everything together by invoking the Stub API and
comparing the JSON response with expected values.

Example 4-3. speakers-test/src/test/java/org/jsonatwork/ch4/SpeakersJsonApiTest.java

package org.jsonatwork.ch4;

import static org.junit.Assert.*;

import java.io.*;

import java.net.*;

import java.util.*;

import org.apache.http.*;

import org.junit.Test;

import com.fasterxml.jackson.core.*;

import com.fasterxml.jackson.databind.*;

import com.mashape.unirest.http.HttpResponse;

import com.mashape.unirest.http.Unirest;

import com.mashape.unirest.http.exceptions.*;

import com.mashape.unirest.request.*;

import static net.javacrumbs.jsonunit.fluent.JsonFluentAssert.assertThatJson;

public class SpeakersApiJsonTest {

  private static final String SPEAKERS_ALL_URI = "http://localhost:5000/speakers";

  private static final String SPEAKER_3_URI = SPEAKERS_ALL_URI + "/3";

  @Test

  public void testApiAllSpeakersJson() {

    try {

      String json = null;

      HttpResponse <String> resp = Unirest.get(

        SpeakersApiJsonTest.SPEAKERS_ALL_URI).asString();

      assertEquals(HttpStatus.SC_OK, resp.getStatus());

      json = resp.getBody();

      System.out.println(json);

      assertThatJson(json).node("").isArray();

      assertThatJson(json).node("").isArray().ofLength(3);

      assertThatJson(json).node("[0]").isObject();

      assertThatJson(json).node("[0].fullName")

              .isStringEqualTo("Larson Richard");

      assertThatJson(json).node("[0].tags").isArray();

      assertThatJson(json).node("[0].tags").isArray().ofLength(3);

      assertThatJson(json).node("[0].tags[1]").isStringEqualTo("AngularJS");

      assertThatJson(json).node("[0].registered").isEqualTo(true);

Unit Testing with a Stub API | 97



      assertTrue(true);

    } catch (UnirestException ue) {

      ue.printStackTrace();

    }

  }

  @Test

  public void testApiSpeaker3Json() {

    try {

      String json = null;

      HttpResponse <String> resp = Unirest.get(

        SpeakersApiJsonTest.SPEAKER_3_URI).asString();

      assertEquals(HttpStatus.SC_OK, resp.getStatus());

      json = resp.getBody();

      System.out.println(json);

      assertThatJson(json).node("").isObject();

      assertThatJson(json).node("fullName")

              .isStringEqualTo("Christensen Fisher");

      assertThatJson(json).node("tags").isArray();

      assertThatJson(json).node("tags").isArray().ofLength(4);

      assertThatJson(json).node("tags[2]").isStringEqualTo("Maven");

      assertTrue(true);

    } catch (UnirestException ue) {

      ue.printStackTrace();

    }

  }

}

Note the following in this JUnit test:

• testApiAllSpeakersJson():

— Gets a list of all speakers from the Speakers API by calling Unirest.get()
with http://localhost:5000/speakers

— Verifies that the HTTP Status Code is OK (200).

— Gets the JSON document (which contains an array of speaker Objects) from
the HTTP Response Body.

— Makes a series of assertions on the JSON document with JSONUnit’s assert

ThatJson() to verify that

— We have an array of three speaker objects.

— Each field (for example, fullName, tags, and registered) in each

speaker object matches the expected values.

— When you run gradle test, you should see the following as part of the
output:

98 | Chapter 4: JSON in Java



• testApiSpeaker3Json():

— Gets speaker 3 from the Speakers API by calling Unirest.get() with http://
localhost:5000/speakers/3

— Verifies that the HTTP Response Code is OK (200)

— Gets the JSON document (which contains a single speaker Object) from the
HTTP Response Body.

— Makes a series of assertions on the JSON document with JSONUnit’s assert

ThatJson() to verify that

— We have a single speaker Object.

Unit Testing with a Stub API | 99



— Each field in the speaker Object has the expected values.

— When you run gradle test, you should see the following as part of the
output:

This Unit Test only touches upon the basics of the Unirest Java library, which also
provides the following:

• Full HTTP verb coverage (GET, POST, PUT, DELETE, PATCH)

• The ability to do custom mappings from an HTTP Response Body to a Java
Object

• Asynchronous (i.e., nonblocking) requests

• Timeouts

• File uploads

• And much more

Visit the Unirest website for further information on the Unirest Java library.

Before moving on, you can stop json-server by pressing Ctrl-C at the command
line.

We’ve shown how to deploy and interact with a Stub API, and now it’s time to build a
small RESTful API.

Build a Small Web API with Spring Boot
We’ll continue to use the Speaker data to create an API (chapter-4/speakers-api in the
examples) with Spring Boot. The Spring Framework makes it easier to develop and
deploy Java-based Web applications and RESTful APIs. Spring Boot makes it easier to
create Spring-based applications by providing defaults. With Spring Boot:

100 | Chapter 4: JSON in Java

http://unirest.io/java.html
https://spring.io
https://projects.spring.io/spring-boot


• There are no tedious, error-prone XML-based configuration files.

• Tomcat and/or Jetty can be embedded, so there is no need to deploy a WAR (Web
application ARchive) separately. You still could use Spring Boot and Gradle to
build and deploy a WAR file to Tomcat. But as you’ll see, an executable JAR sim‐
plifies a developer’s environment because it reduces the amount of setup and
installations, which enables iterative application development.

We’ll take the following steps to create and deploy the Speakers API with Spring Boot:

1. Write source code:

• Model

• Controller

• Application

2. Create a build script (build.gradle).

3. Deploy an embedded JAR with gradlew.

4. Test with Postman.

Create the Model
The Speaker class in Example 4-4 is a Plain Old Java Object (POJO) that represents
the Speaker data that the API will render as JSON.

Example 4-4. speakers-api/src/main/java/org/jsonatwork/ch4/Speaker.java

package org.jsonatwork.ch4;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

public class Speaker {

  private int id;

  private int age;

  private String fullName;

  private List<String> tags = new ArrayList<String>();

  private boolean registered;

  public Speaker() {

    super();

  }

  public Speaker(int id, int age, String fullName, List<String> tags,

                 boolean registered) {

Build a Small Web API with Spring Boot | 101



    super();

    this.id = id;

    this.age = age;

    this.fullName = fullName;

    this.tags = tags;

    this.registered = registered;

  }

  public Speaker(int id, int age, String fullName, String[] tags,

                 boolean registered) {

    this(id, age, fullName, Arrays.asList(tags), registered);

  }

  public int getId() {

    return id;

  }

  public void setId(int id) {

    this.id = id;

  }

  public int getAge() {

    return age;

  }

  public void setAge(int age) {

    this.age = age;

  }

  public String getFullName() {

    return fullName;

  }

  public void setFullName(String fullName) {

    this.fullName = fullName;

  }

  public List<String> getTags() {

    return tags;

  }

  public void setTags(List<String> tags) {

    this.tags = tags;

  }

  public boolean isRegistered() {

    return registered;

  }

  public void setRegistered(boolean registered) {

    this.registered = registered;

  }

102 | Chapter 4: JSON in Java



  @Override

  public String toString() {

    return String.format(

      "Speaker [id=%s, age=%s, fullName=%s, tags=%s, registered=%s]",

      id, age, fullName, tags, registered);

  }

}

There’s nothing exciting in this code. It just provides the data members, constructors,

and accessor methods (getters and setters) for a speaker. This code doesn’t know
anything about JSON because (as you’ll soon see) Spring automatically converts this
object to JSON.

Create the Controller
In a Spring application, the Controller handles the HTTP Requests and returns

HTTP Responses. In our case, the speaker JSON data is returned in the response

body. Example 4-5 shows the SpeakerController.

Example 4-5. speakers-api/src/main/java/org/jsonatwork/ch4/SpeakerController.java

package org.jsonatwork.ch4;

import java.util.*;

import org.springframework.web.bind.annotation.*;

import org.springframework.http.*;

@RestController

public class SpeakerController {

  private static Speaker speakers[] = {

    new Speaker(1, 39, "Larson Richard",

                new String[] {"JavaScript", "AngularJS", "Yeoman"}, true),

    new Speaker(2, 29, "Ester Clements",

                new String[] {"REST", "Ruby on Rails", "APIs"}, true),

    new Speaker(3, 45, "Christensen Fisher",

                new String[] {"Java", "Spring", "Maven", "REST"}, false)

  };

  @RequestMapping(value = "/speakers", method = RequestMethod.GET)

  public List<Speaker> getAllSpeakers() {

    return Arrays.asList(speakers);

  }

  @RequestMapping(value = "/speakers/{id}", method = RequestMethod.GET)

  public ResponseEntity<?>  getSpeakerById(@PathVariable long id) {

    int tempId = ((new Long(id)).intValue() - 1);

Build a Small Web API with Spring Boot | 103



    if (tempId >= 0 && tempId < speakers.length) {

      return new ResponseEntity<Speaker>(speakers[tempId], HttpStatus.OK);

    } else {

      return new ResponseEntity(HttpStatus.NOT_FOUND);

    }

  }

}

Note the following in this code:

• The @RestController annotation identifies the SpeakerController class as a
Spring MVC Controller that processes HTTP Requests.

• The speakers array is hardcoded, but it’s for test purposes only. In a real applica‐

tion, a separate Data Layer would populate the speakers from a database or an
external API call.

• The getAllSpeakers() method does the following:

— Responds to HTTP GET requests on the /speakers URI.

— Retrieves the entire speakers Array as an ArrayList and returns it as a JSON
Array in an HTTP Response Body.

— The @RequestMapping annotation binds the /speakers URI to the getAllSpeak

ers() method for an HTTP GET Request.

• The getSpeakerById() method does the following:

— Responds to HTTP GET requests on the /speakers/{id} URI (where id repre‐
sents a speaker ID).

— Retrieves a speaker (based on the speaker ID) and returns it as a JSON Object
in an HTTP Response Body.

— The @PathVariable annotation binds the speaker ID from the HTTP Request

path to the id parameter for lookup.

— The ResponseEntity return value type enables you to set the HTTP Status

Code and/or the speakers in the HTTP Response.

In both of the preceding methods, the Speaker Object is automatically converted to
JSON without any extra work. By default, Spring is configured to use Jackson behind
the scenes to do the Java-to-JSON conversion.

Register the Application
As mentioned earlier, we could package the Speakers API as a WAR file and deploy it
on an application server such as Tomcat. But it’s easier to run our API as a standalone
application from the command line. To do this we need to do the following:

104 | Chapter 4: JSON in Java



• Add a Java main() method

• Package the application as an executable JAR

The Application class in Example 4-6 provides the main() method that we need.

Example 4-6. speakers-api/src/main/java/org/jsonatwork/ch4/Application.java

package org.jsonatwork.ch4;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public class Application {

  public static void main(String[] args) {

    SpringApplication.run(Application.class, args);

  }

}

In this example, the @SpringBootApplication annotation registers our application

with Spring and wires up the SpeakerController and Speaker.

That’s all the code that we need. Now, let’s look at the build.gradle script to build the
application.

Write the Build Script
Gradle uses a script called build.gradle to build an application. Example 4-7 shows the
build script for the speakers-api project.

Example 4-7. speakers-api/build.gradle

buildscript {

  repositories {

    mavenCentral()

  }

  dependencies {

    classpath("org.springframework.boot:spring-boot-gradle-plugin:1.5.2.RELEASE")

  }

}

apply plugin: 'java'

apply plugin: 'org.springframework.boot'

ext {

  jdkVersion = "1.8"

}

Build a Small Web API with Spring Boot | 105



sourceCompatibility = jdkVersion

targetCompatibility = jdkVersion

tasks.withType(JavaCompile) {

  options.encoding = 'UTF-8'

}

jar {

  baseName = 'speakers-api'

  version =  '0.0.1'

}

repositories {

  mavenCentral()

}

test {

  testLogging {

    showStandardStreams = true // Show standard output & standard error.

  }

  ignoreFailures = false

}

dependencies {

  compile (

    [group: 'org.springframework.boot', name: 'spring-boot-starter-web']

  )

}

Note the following in this build.gradle script:

• The Spring Boot Gradle plug-in does the following:

— Packages all build artifacts into a single, executable JAR

— Searches for a class in src/main/java that has a main() method (in this case,

Application.java) to deploy our API within the executable JAR

• The jar block defines the name of the application’s JAR file

• repositories tells Gradle to pull application dependencies from the Maven Cen‐
tral Repository.

• testLogging tells Gradle to show Standard Output and Standard Error when
running tests.

• dependencies defines the JARs that the speakers-api depends on.

This is a simple build, but Gradle has far more powerful build functionality. Visit the
<Wiring Gradle Build Scripts= section of the Gradle User Guide to learn more.

We’ve covered the build script, and now it’s time to deploy the Speakers API.

106 | Chapter 4: JSON in Java

https://search.maven.org
https://search.maven.org
http://bit.ly/2tiWYKa


Deploy the API
The gradlew script was generated by the gradle init command that was used to cre‐
ate the speakers-api project. To learn more about how to create a Gradle project, see
<Creating New Gradle Builds= from the Gradle User Guide.

gradlew pulls everything together and simplifies deployment by taking the following
steps:

• Invokes the build.gradle script to build the application and uses the Spring Boot
plug-in to build the executable JAR

• Deploys the Speakers API (as an executable JAR) to http://localhost:8080/speakers
on an embedded (bundled) Tomcat server

In the speakers-api directory, run ./gradlew bootRun to deploy the application, and
you’ll see the following (at the end of all the log messages):

Test the API with Postman
Now that the Speakers API is up and running, let’s test with Postman (as we did in

Chapter 1) to get the first speaker. In the Postman GUI, do the following:

1. Enter the http://localhost:8080/speakers/1 URL.

Build a Small Web API with Spring Boot | 107

https://guides.gradle.org/creating-new-gradle-builds


2. Choose GET as the HTTP verb.

3. Click the Send button.

You should see that the GET ran properly in Postman with the speaker JSON data in
the HTTP Response Body text area and a 200 (OK) HTTP Status, as shown in
Figure 4-1.

Figure 4-1. Speakers API on Postman

You can stop gradlew by pressing Ctrl-C at the command line.

As promised, development and deployment is simpler because we didn’t do any of the
following:

• Create or modify XML-based configuration metadata for Spring or Java EE (i.e.,
web.xml)

• Deploy a WAR file

• Install Tomcat

Note that we took these deployment steps to show how to set up a simple develop‐
ment environment for a Web API. You still need to deploy a WAR file to an applica‐
tion server when you move into shared (e.g., Staging, User Acceptance Testing,
Production) environments so that you have the ability to tune and load-test the
application.

What We Covered
We started with simple conversion between Java and JSON constructs, and then
demonstrated how to call a (Stub) JSON-based Web API and test its contents with

108 | Chapter 4: JSON in Java



JUnit. We then finished by creating a RESTful API with Spring Boot and tested it with
Postman.

What’s Next?
With the basics of JSON usage on several core platforms (JavaScript, Ruby on Rails,
and Java) behind us, we’ll move deeper into the JSON ecosystem in the next three
chapters:

• JSON Schema

• JSON Search

• JSON Transform

In Chapter 5, we’ll show how to structure and validate JSON documents with JSON
Schema.

What’s Next? | 109





PART II

The JSON Ecosystem





CHAPTER 5

JSON Schema

We’ve covered the basics of JSON using our core platforms (JavaScript, Ruby on Rails,
and Java), and now it’s time to wade in deeper. In this chapter, we’ll show how to lev‐
erage JSON Schema to define the structure and format of JSON documents
exchanged between applications:

• JSON Schema overview

• Core JSON Schema—basics and tooling

• How to design and test an API with JSON Schema

In our examples, we’ll design an API with JSON Schema after we progressively walk
through the concepts of JSON Schema. As noted in the preface, from now on we will
write all our examples in Node.js to keep the size of the chapters to a minimum. But
know that the other platforms work well with JSON Schema. If you haven’t installed
Node.js already, now would be a great time. Follow the instructions in Appendix A.

JSON Schema Overview
Many architects and developers are unfamiliar with JSON Schemas. Before going into
details, it’s important to know what a JSON Schema is, how it helps, and why/when to
use it. Along the way, we’ll look at the JSON Schema Specification and show a simple
example.

What Is JSON Schema?
A JSON Schema specifies a JSON document (or message)’s content, structure, and
format. A JSON Schema validates a JSON document, so you may be wondering why
plain JSON validation isn’t enough. Unfortunately, validation is an overloaded term.

113



Syntactic Versus Semantic Validation
The difference is in the type of validation. When you validate a JSON document
without a Schema, you’re validating only the syntax of the document. This type of val‐
idation guarantees only that the document is well-formed (i.e., matching braces, dou‐
ble quotes for keys, and so forth). This type of validation is known as syntactic
validation, and we’ve done this before with tools such as JSONLint, and the JSON
parsers for each platform.

How does a JSON Schema help?

Syntactic validation is a good start, but at times you need to validate at a deeper level
by using semantic validation. What if you have the following situations:

• You (as an API Consumer) need to ensure that a JSON response from an API

contains a valid Speaker, or a list of Orders?

• You (as an API Producer) need to check incoming JSON to make sure that the
Consumer can send you only the fields you’re expecting?

• You need to check the format of a phone number, a date/time, a postal code, an
email address, or a credit card number?

This is where JSON Schema shines, and this type of validation is known as semantic
validation. In this case, you’re validating the meaning of the data, not just the syntax.
JSON Schema is also great for API Design because it helps define the interface, and
we’ll cover that later in this chapter.

A Simple Example
Before talking too much more about JSON Schema, let’s look at Example 5-1 to get a
feel for the syntax.

Example 5-1. ex-1-basic-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "type": "string"

    },

    "firstName": {

      "type": "string"

    },

    "lastName": {

      "type": "string"

    }

114 | Chapter 5: JSON Schema



  }

}

This Schema specifies that a document can have three fields (email, firstName, and

lastName), where each one is a string. We’ll gloss over Schema syntax for now, but
don’t worry—we’ll cover it soon. Example 5-2 shows a sample JSON instance docu‐
ment that corresponds to the preceding Schema.

Example 5-2. ex-1-basic.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard"

}

JSON Schema on the Web
The json-schema.org site, shown in Figure 5-1, is the starting place to go for all things
related to JSON Schema, including copious documentation and examples.

Figure 5-1. json-schema.org site

JSON Schema Overview | 115

http://json-schema.org


From here, you can find example Schemas, great validation libraries for most major
platforms, along with the JSON Schema Standard GitHub repository (where the stan‐
dard is maintained). The GitHub repository is shown in Figure 5-2.

Figure 5-2. json-schema GitHub repository

Here you can track updates, issues, and progress with the JSON Schema standard
(more on that later in <The Current State of the JSON Schema Standard= on page
117).

Why JSON Schema?
JSON Schema provides the ability to validate the content and semantics of a docu‐
ment, and here are some real-world use cases:

Security
The Open Web Application Project (OWASP) Web Service Security Cheat Sheet
recommends that Web Services should validate their payloads by using a Schema.
Granted, they still talk about XML Schema, but their concern is still applicable to
JSON. OWASP calls for validation of field lengths (min/max) and fixed format
fields (e.g., phone number or postal code) to help secure a service.

Message Design
JSON isn’t just for APIs anymore. Many enterprises use JSON as the preferred
format to send payloads over messaging systems such as Apache Kafka (we’ll

116 | Chapter 5: JSON Schema

https://github.com/json-schema-org/json-schema-spec
http://bit.ly/2rXAfpa


cover this in more detail in Chapter 10). The message Producer and Consumer
are completely decoupled in this style of architecture, and JSON Schema can help
ensure that the reader receives messages in a format that it’s expecting.

API Design
JSON is a first-class citizen in API Design. JSON Schema helps define an API’s
contract by specifying the format, content, and structure of a document.

Prototyping
With the structure and rigor of JSON Schema, this may seem counterintuitive.
We’ll show a streamlined prototyping workflow with JSON Schema and related
tooling when we design an API later in this chapter.

My Journey with JSON Schema
As mentioned in the Preface, as of 2009 I wasn’t sure that JSON was ready for the
enterprise. I loved its speed and simplicity, but I didn’t see a way to guarantee the
structure and content of JSON documents between applications. But when I learned
about JSON Schema in 2010, I changed my position and came to accept JSON as a
viable enterprise-class data format.

The Current State of the JSON Schema Standard
The JSON Schema Specification is at implementation draft 4 (v0.4), and the next
implementation draft 6 (v0.6) is on the way. Draft 5 (v0.5) was published late last year
as a working draft to capture work in progress and was not an implementation draft.
But don’t let the 0.x version number concern you. As you’ll see in our examples,
JSON Schema is robust, provides solid validation capabilities today, and there is a
wide variety of working JSON Schema libraries for every major programming plat‐
form. You can find more details in the JSON Schema draft 4 spec.

JSON Schema and XML Schema
JSON Schema fills the same role with JSON as XML Schema did with XML docu‐
ments, but with the following differences:

• A JSON document does not reference a JSON Schema. It’s up to an application to
validate a JSON document against a Schema.

• JSON Schemas have no namespace.

• JSON Schema files have a .json extension.

JSON Schema Overview | 117

https://tools.ietf.org/html/draft-zyp-json-schema-04


Core JSON Schema—Basics and Tooling
Now that you have an overview of JSON Schema, it’s time to go deeper. JSON Schema
is powerful, but it can be tedious, and we’ll show some tools to make it easier. We’ll
then cover basic data types and core keywords that provide a foundation for working
with JSON Schema on real-world projects.

JSON Schema �or�no� and Tooling
JSON Schema syntax can be a bit daunting, but developers don’t have to code every‐
thing by hand. Several excellent tools can make life much easier.

JSON Editor Online

We’ve already covered JSON Editor Online in Chapter 1, but it’s worth another brief
mention. Start modeling a JSON document with this tool to get a feel for the data.
Use this tool to generate the JSON document and avoid all the typing. When you’re
finished, save the JSON document to the clipboard.

JSONSchema.net

Once you have your core concept, the JSONSchema.net application generates a JSON
Schema based on the JSON document that was created earlier with JSON Editor
Online (see Figure 5-3). The JSONSchema.net application alone will save you 80 per‐
cent of the typing required to create a Schema. I always start my Schema work with
this application and then make incremental upgrades.

Here are the steps to generate the initial Schema with JSONSchema.net:

1. Paste in a JSON document on the left side.

2. Start with the default settings, and make the following changes:

• Turn off <Use absolute IDs.=

• Turn off <Allow additional properties.=

• Turn off <Allow additional items.=

3. Click the Generate Schema button.

4. Copy the generated Schema to your clipboard.

118 | Chapter 5: JSON Schema

http://jsonschema.net


Figure 5-3. Speakers Schema on JSONSchema.net

JSON Validate

After you’ve created a JSON Schema, the JSON Validate application validates a JSON
document against that Schema, as shown in Figure 5-4.

Figure 5-4. Valid Speakers Schema on jsonvalidate.com

Core JSON Schema—Basics and Tooling | 119

http://jsonvalidate.com


To validate the JSON document against the Schema, do the following:

1. Paste the JSON document and Schema into the JSON Validate application.

2. Remove all id fields from the Schema because they’re not needed.

3. Click the Validate button to validate the document.

NPM modules on the CLI: validate and jsonlint

But sometimes you don’t have good internet connectivity, so it’s great to have tools
that run locally. Plus, if you have sensitive data, it’s safer to run examples on your

machine from the command-line interface (CLI). The validate module is the
Node.js equivalent of the jsonvalidate.com site. To install and run it, follow the
instructions in Appendix A (see <Install npm Modules= on page 323).

Both jsonvalidate.com and validate are part of the Using JSON Schema site (a great
Schema resource), which can be found on GitHub. You’ve already seen the JSONLint
site in Chapter 1, but you can also use JSONLint from the command line by using the

jsonlint Node.js module. To install and run it, follow the instructions in Appen‐
dix A (see <Install npm Modules= on page 323).

I’ve used jsonlint only for syntactic validation, but if you run jsonlint --help
from the command line, you’ll notice that it can also do semantic validation with a

Schema. For more information, see the jsonlint documentation on GitHub.

We’ll leverage validate from the command line to work through the examples.

Core Keywords
Here are the core keywords in any JSON Schema:

$schema

Specifies the JSON Schema (spec) version. For example, “$schema": "http://

json-schema.org/draft-04/schema#" specifies that the schema conforms to

version 0.4, while http://json-schema.org/schema# tells a JSON Validator to
use the current/latest version of the specification (which is 0.4 as of this writing).
Using the latter of these two options is risky because some JSON Validators
default to a previous version, so an earlier version (and not the current/latest)
version will be used. To play it safe, always specify the version so that you (and
the JSON Validator) are sure about the version you’re using.

type

Specifies the data type for a field. For example: "type": "string".

120 | Chapter 5: JSON Schema

http://usingjsonschema.github.io/
https://github.com/zaach/jsonlint


properties

Specifies the fields for an object. It contains type information.

Basic Types
The document in Example 5-3 contains the basic JSON types (for example, string,

number, boolean) that you’ve seen before.

Example 5-3. ex-2-basic-types.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard",

  "age": 39,

  "postedSlides": true,

  "rating": 4.1

}

JSON Schema uses the same basic data types as the Core JSON data types from Chap‐

ter 1 (string, number, array, object, boolean, null), but adds an integer type that

specifies whole numbers. The number type still allows both whole and floating-point
numbers.

The JSON Schema in Example 5-4 describes the structure of the preceding document.

Example 5-4. ex-2-basic-types-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "type": "string"

    },

    "firstName": {

      "type": "string"

    },

    "lastName": {

      "type": "string"

    },

    "age": {

      "type": "integer"

    },

    "postedSlides": {

      "type": "boolean"

    },

    "rating": {

      "type": "number"

Core JSON Schema—Basics and Tooling | 121



    }

  }

}

In this example, note the following:

• The $schema field indicates that JSON Schema v0.4 rules will be used for validat‐
ing the document.

• The first type field mentioned indicates that there is an Object at the root level of
the JSON document that contains all the fields in the document.

• email, firstName, lastName are of type string

• age is an integer. Although JSON itself has only a number type, JSON Schema

provides the finer-grained integer type. postedSlides is a boolean. rating is a

number, which allows for floating-point values.

Run the preceding example using validate, and you’ll see that the document is valid
for this Schema.

Although the preceding Schema is a decent start, it doesn’t go far enough. Let’s try the
following changes to the JSON document that we want to validate:

• Add an extra field (e.g., company).

• Remove one of the expected fields (e.g., postedSlides).

Example 5-5 shows our modified JSON document.

Example 5-5. ex-2-basic-types-invalid.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard",

  "age": 39,

  "rating": 4.1,

  "company": "None"

}

122 | Chapter 5: JSON Schema



Right now there’s nothing to prevent you from invalidating the document, as you’ll
see in the following run:

Basic types validation

At this point, you might be thinking that JSON Schema isn’t useful because it’s not
validating as expected. But we can make the validation process function as expected
by adding simple constraints. First, to prevent extra fields, use the code in
Example 5-6.

Example 5-6. ex-3-basic-types-no-addl-props-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "type": "string"

    },

    "firstName": {

      "type": "string"

    },

    "lastName": {

      "type": "string"

    },

    "postedSlides": {

      "type": "boolean"

    },

    "rating": {

      "type": "number"

    }

  },

  "additionalProperties": false

}

In this example, setting additionalProperties to false disallows any extra fields in

the document root Object. Copy the previous JSON document (ex-2-basic-types-
invalid.json) to a new version (ex-3-basic-types-no-addl-props-invalid.json) and try
validating against the preceding Schema. You should now see the following:

Core JSON Schema—Basics and Tooling | 123



This is getting better, but it still isn’t what we want because there’s no guarantee that
all the expected fields will be in the document. To reach a core level of semantic vali‐
dation, we need to ensure that all required fields are present, as shown in
Example 5-7.

Example 5-7. ex-4-basic-types-validation-req-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "type": "string"

    },

    "firstName": {

      "type": "string"

    },

    "lastName": {

      "type": "string"

    },

    "postedSlides": {

      "type": "boolean"

    },

    "rating": {

      "type": "number"

    }

  },

  "additionalProperties": false,

  "required": ["email", "firstName", "lastName", "postedSlides", "rating"]

}

In this example, the required Array specifies the fields that are required, so these
fields must be present for a document to be considered valid. Note that a field is con‐

sidered optional if not mentioned in the required Array.

Example 5-8 shows the modified JSON document (without the required rating field,

plus an unexpected age field) to validate.

Example 5-8. ex-4-basic-types-validation-req-invalid.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard",

  "postedSlides": true,

  "age": 39

}

124 | Chapter 5: JSON Schema



When running this example from the command line, the document is now consid‐
ered invalid:

We finally have what we want:

• No extra fields are allowed.

• All fields are required.

Now that we have basic semantic validation in place, let’s move on to validating num‐
ber fields in JSON documents.

Numbers
As you’ll recall, a JSON Schema number type can be a floating-point or whole number.

The Schema in Example 5-9 validates the average rating for a speaker’s conference
presentation, where the range varies from 1.0 (poor) to 5.0 (excellent).

Example 5-9. ex-5-number-min-max-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "rating": {

      "type": "number",

      "minimum": 1.0,

      "maximum": 5.0

    }

  },

  "additionalProperties": false,

  "required": ["rating"]

}

Example 5-10 is a valid JSON document because the rating is within the 1.0–5.0
range.

Example 5-10. ex-5-number-min-max.json

{

  "rating": 4.99

}

Example 5-11 is an invalid document, where the rating is greater than 5.0.

Core JSON Schema—Basics and Tooling | 125



Example 5-11. ex-5-number-min-max-invalid.json

{

  "rating": 6.2

}

Run this from the command line, and you’ll see that the preceding document is inva‐
lid:

Arrays
JSON Schema provides the ability to validate Arrays. Arrays can hold any of the

JSON Schema basic types (string, number, array, object, boolean, null). The

Schema in Example 5-12 validates the tags field, which is an Array of type string.

Example 5-12. ex-6-array-simple-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "tags": {

      "type": "array",

        "items": {

        "type": "string"

      }

    }

  },

  "additionalProperties": false,

  "required": ["tags"]

}

Example 5-13 is a valid JSON document for the preceding Schema.

Example 5-13. ex-6-array-simple.json

{

  "tags": ["fred"]

}

The document in Example 5-14 is not valid because we’ve added an integer to the

tags Array.

126 | Chapter 5: JSON Schema



Example 5-14. ex-6-array-simple-invalid.json

{

  "tags": ["fred", 1]

}

Run the preceding example to verify that the document is invalid:

JSON Schema provides the ability to specify the minimum (minItems) and maximum

(maxItems) number of items in an Array. The Schema in Example 5-15 allows for two

to four items in the tags Array.

Example 5-15. ex-7-array-min-max-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "tags": {

      "type": "array",

      "minItems": 2,

      "maxItems": 4,

      "items": {

        "type": "string"

      }

    }

  },

  "additionalProperties": false,

  "required": ["tags"]

}

The JSON document conforms in Example 5-16 to the preceding Schema.

Example 5-16. ex-7-array-min-max.json

{

  "tags": ["fred", "a"]

}

The document in Example 5-17 is invalid because the tags Array has five items.

Core JSON Schema—Basics and Tooling | 127



Example 5-17. ex-7-array-min-max-invalid.json

{

  "tags": ["fred", "a", "x", "betty", "alpha"]

}

Run the preceding example to verify:

Enumerated Values
The enum keyword constrains a field’s value to a fixed set of unique values, specified
in an Array. The Schema in Example 5-18 limits the set of allowable values in the

tags Array to one of "Open Source", "Java", "JavaScript", "JSON", or "REST".

Example 5-18. ex-8-array-enum-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "tags": {

      "type": "array",

      "minItems": 2,

      "maxItems": 4,

      "items": {

        "enum": [

          "Open Source", "Java", "JavaScript", "JSON", "REST"

        ]

      }

    }

  },

  "additionalProperties": false,

  "required": ["tags"]

}

The document in Example 5-19 is valid based on the preceding Schema.

Example 5-19. ex-8-array-enum.json

{

  "tags": ["Java", "REST"]

}

128 | Chapter 5: JSON Schema



This document in Example 5-20 is not valid because the value "JS" is not one of the

values in the Schema’s enum.

Example 5-20. ex-8-array-enum-invalid.json

{

  "tags": ["Java", "REST", "JS"]

}

Run this example to show that the document is invalid:

Objects
JSON Schema enables you to specify an object. This is the heart of semantic valida‐
tion because it enables you to validate Objects exchanged between applications. With
this capability, both an API’s Consumer and Producer can agree on the structure and

content of important business concepts such as a person or order. The Schema in

Example 5-21 specifies the content of a speaker Object.

Example 5-21. ex-9-named-object-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "speaker": {

      "type": "object",

      "properties": {

        "firstName": {

          "type": "string"

        },

        "lastName": {

          "type": "string"

        },

        "email": {

          "type": "string"

        },

        "postedSlides": {

          "type": "boolean"

        },

        "rating": {

          "type": "number"

        },

        "tags": {

Core JSON Schema—Basics and Tooling | 129



          "type": "array",

          "items": {

            "type": "string"

          }

        }

      },

      "additionalProperties": false,

      "required": ["firstName", "lastName", "email",

        "postedSlides", "rating", "tags"

      ]

    }

  },

  "additionalProperties": false,

  "required": ["speaker"]

}

This Schema is similar to previous examples, with the addition of a top-level speaker

object nested inside the root object.

The JSON document in Example 5-22 is valid against the preceding Schema.

Example 5-22. ex-9-named-object.json

{

  "speaker": {

    "firstName": "Larson",

    "lastName": "Richard",

    "email": "larsonrichard@ecratic.com",

    "postedSlides": true,

    "rating": 4.1,

    "tags": [

      "JavaScript", "AngularJS", "Yeoman"

    ]

  }

}

The document in Example 5-23 is invalid because the speaker Object is missing the

required rating field.

Example 5-23. ex-9-named-object-invalid.json

{

  "speaker": {

    "firstName": "Larson",

    "lastName": "Richard",

    "email": "larsonrichard@ecratic.com",

    "postedSlides": true,

    "tags": [

      "JavaScript", "AngularJS", "Yeoman"

    ]

130 | Chapter 5: JSON Schema



  }

}

Run the example on the command line to ensure that the preceding document is
invalid:

We’ve now covered the most important basic types, and we’ll move on to more-
complex schemas.

Pattern Properties
JSON Schema provides the ability to specify repeating fields (with similar names)

through pattern properties (with the patternProperties keyword) based on Regular
Expressions. Example 5-24 defines the fields in an address.

Example 5-24. ex-10-pattern-properties-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "city": {

      "type": "string"

    },

    "state": {

      "type": "string"

    },

    "zip": {

      "type": "string"

    },

    "country": {

      "type": "string"

    }

  },

  "patternProperties": {

    "^line[1-3]$": {

      "type": "string"

    }

  },

  "additionalProperties": false,

  "required": ["city", "state", "zip", "country", "line1"]

}

Core JSON Schema—Basics and Tooling | 131



In this example, the ^line[1-3]$ Regular Expression allows for the following address

fields in a corresponding JSON document: line1, line2, and line3. Here’s how to
interpret this Regular Expression:

• ^ represents the beginning of the string.

• line translates to the literal string "line".

• [1-3] allows for a single integer between 1 and 3.

• $ indicates the end of the string.

Note that only line1 is required, and the others are optional.

The document in Example 5-25 will validate against the preceding Schema.

Example 5-25. ex-10-pattern-properties.json

{

  "line1": "555 Main Street",

  "line2": "#2",

  "city": "Denver",

  "state": "CO",

  "zip": "80231",

  "country": "USA"

}

Example 5-26 is invalid because it has a line4 field, which is out of range.

Example 5-26. ex-10-pattern-properties-invalid.json

{

  "line1": "555 Main Street",

  "line4": "#2",

  "city": "Denver",

  "state": "CO",

  "zip": "80231",

  "country": "USA"

}

Run this example to see that the preceding document is invalid:

132 | Chapter 5: JSON Schema



Regular Expressions
JSON Schema also uses Regular Expressions to constrain field values. The Schema in

Example 5-27 limits the value of the email field to a standard email address format as
specified in IETF RFC 2822.

Example 5-27. ex-11-regex-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "type": "string",

      "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"

    },

    "firstName": {

      "type": "string"

    },

    "lastName": {

      "type": "string"

    }

  },

  "additionalProperties": false,

  "required": ["email", "firstName", "lastName"]

}

In this example, the Regular Expression specifies a valid email address. Here’s how to
interpret this Regular Expression:

• ^ represents the beginning of the string.

• [\\w|-|.]+ matches one-to-many instances of the following pattern:

— [\\w|-|.] matches a word character (a-zA-Z0-9_), a dash (-), or a dot(.).

• @ indicates the literal <@=.

• [\\w]+ matches one-to-many instances of the following pattern:

— [\\w] matches a word character (a-zA-Z0-9_).

• \\. indicates the literal <.=

• [A-Za-z]{2,4} matches two to four occurrences of the following pattern:

— [A-Za-z] matches an alphabetic character.

• $ indicates the end of the string.

The double backslash (\\) is used by JSON Schema to denote special characters

within regular expressions because the single backslash (\) normally used in standard

Core JSON Schema—Basics and Tooling | 133

http://www.faqs.org/rfcs/rfc2822.html


Regular Expressions won’t work in this context. This is due to that fact the a single
backslash is already used in core JSON document syntax to escape special characters
(e.g., \b for a backspace).

The following document in Example 5-28 is valid because the email address follows
the pattern specified in the Schema.

Example 5-28. ex-11-regex.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard"

}

The document in Example 5-29 is invalid because the email address field is missing

the trailing .com.

Example 5-29. ex-11-regex-invalid.json

{

  "email": "larsonrichard@ecratic",

  "firstName": "Larson",

  "lastName": "Richard"

}

Run the preceding example to prove that it’s invalid:

Going deeper with Regular Expressions

Regular Expressions can be daunting and complex at times. Although a full tutorial
on Regular Expressions is far beyond the scope of this book, here are some resources
to help you master Regular Expressions:

• Introducing Regular Expressions by Michael Fitzgerald (O’Reilly).
• Regular Expressions Cookbook, Second Edition by Jan Goyvaerts and Steven Levi‐

than (O’Reilly).
• Mastering Regular Expressions, |ird Edition by Jeffrey E. F. Friedl (O’Reilly).
• Regular Expressions 101—this is my favorite Regex site.

134 | Chapter 5: JSON Schema

https://regex101.com


• RegExr
• Regular-Expressions.info

Dependent Properties
Dependent Properties introduce dependencies between fields in a Schema: one field

depends on the presence of the other. The dependencies keyword is an object that

specifies the dependent relationship(s), where field x maps to an array of fields that

must be present if y is populated. In Example 5-30 tags must be present if favorite

Topics is provided in the corresponding JSON document (that is, favoriteTopic

depends on tags).

Example 5-30. ex-12-dependent-properties-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "type": "string",

      "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"

    },

    "firstName": {

      "type": "string"

    },

    "lastName": {

      "type": "string"

 },

    "tags": {

      "type": "array",

        "items": {

          "type": "string"

         }

    },

    "favoriteTopic": {

      "type": "string"

    }

  },

  "additionalProperties": false,

  "required": ["email", "firstName", "lastName"],

  "dependencies": {

    "favoriteTopic": ["tags"]

  }

}

The JSON document in Example 5-31 is valid because the favoriteTopic is present,

and the tags Array is populated.

Core JSON Schema—Basics and Tooling | 135

http://regexr.com
http://www.regular-expressions.info


Example 5-31. ex-12-dependent-properties.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard",

  "tags": [

    "JavaScript", "AngularJS", "Yeoman"

  ],

  "favoriteTopic": "JavaScript"

}

The JSON document in Example 5-32 is invalid because the favoriteTopic is

present, but the tags Array is missing.

Example 5-32. ex-12-dependent-properties-invalid.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard",

  "favoriteTopic": "JavaScript"

}

Run the preceding example, and you’ll see that the document is invalid:

Internal References
References provide the ability to reuse definitions/validation rules. Think of refer‐
ences as DRY (Do Not Repeat Yourself) for Schema. References can be either Internal
(inside the same Schema) or External (in a separate/external Schema). We’ll start with
Internal References.

In Example 5-33, you’ll notice that the Regular Expression for the email field has

been replaced by a $ref, a Uniform Resource Identifier (URI) to the actual definition/

validation rule for the email field:

• # indicates that the definition exists locally within the Schema.

• /definitions/ is the path to the definitions object in this Schema. Note that

the definitions keyword indicates the use of a reference.

• emailPattern is the path to the emailPattern specification within the defini

tions object.

136 | Chapter 5: JSON Schema



• JSON Schema leverages JSON Pointer (covered in Chapter 7) to specify URIs

(e.g., #/definitions/emailPattern).

Example 5-33. ex-13-internal-ref-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "$ref": "#/definitions/emailPattern"

    },

    "firstName": {

      "type": "string"

    },

    "lastName": {

      "type": "string"

    }

  },

  "additionalProperties": false,

  "required": ["email", "firstName", "lastName"],

  "definitions": {

    "emailPattern": {

      "type": "string",

      "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"

    }

  }

}

Other than the new definitions object, there’s nothing really that new here. We’ve
just moved the definition for email addresses to a common location that can be used
throughout the Schema by multiple fields.

Example 5-34 shows a JSON document that conforms to the preceding Schema.

Example 5-34. ex-13-internal-ref.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard"

}

Example 5-35 is invalid because email is missing the trailing .com.

Core JSON Schema—Basics and Tooling | 137



Example 5-35. ex-13-internal-ref-invalid.json

{

  "email": "larsonrichard@ecratic",

  "firstName": "Larson",

  "lastName": "Richard"

}

Validate this document from the command line, and you’ll see that it’s invalid:

External References
External References provide a way to specify validation rules in an external Schema
file. In this case, Schema A references Schema B for a particular set of validation
rules. External References enable a development team (or several teams) to reuse
common Schemas and definitions across the enterprise.

Example 5-36 shows our speaker Schema that now references an external (second)
Schema.

Example 5-36. ex-14-exernal-ref-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "$ref":

        "http://localhost:8081/ex-14-my-common-schema.json#/definitions/emailPattern"

      },

      "firstName": {

        "type": "string"

      },

      "lastName": {

        "type": "string"

      }

  },

  "additionalProperties": false,

  "required": ["email", "firstName", "lastName"]

}

Notice the two key differences:

• The definitions Object has been factored out of this schema. Don’t worry; it
comes back really soon.

138 | Chapter 5: JSON Schema



• The email field’s $ref now points to an external Schema (ex-14-my-common-
schema.json) to find the definition/validation rule for this field. We’ll cover the
HTTP address to the external Schema later in this chapter.

Example 5-37 shows the External Schema.

Example 5-37. ex-14-my-common-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "id": "http://localhost:8081/ex-14-my-common-schema.json",

  "definitions": {

    "emailPattern": {

      "type": "string",

      "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"

    }

  }

}

The definitions object that contains the emailPattern validation rule now resides
in the external Schema. But at this point, you may be asking the follow questions:

• How does the reference actually work?

• How does a JSON Schema Validator locate the external Schema?

Here’s how it all connects:

• In ex-14-exernal-ref-schema.json, the URI prefix (http://localhost:8081/

ex-14-my-common-schema.json) before the # in the $ref tells the JSON Schema

processor to look for the emailPattern definition in an external Schema.

• In ex-14-my-common-schema.json (the external Schema), the id field (a JSON
Schema keyword) at the root of the Schema makes the content of the Schema
available to external access.

• The URI in $ref and id should be an exact match to make the reference work
properly.

• The definitions object works the same as it did for internal references.

Example 5-38 shows a JSON document that conforms to the Schema. Notice that this
document has neither changed nor is it aware of the external Schema.

Example 5-38. ex-14-external-ref.json

{

  "email": "larsonrichard@ecratic.com",

Core JSON Schema—Basics and Tooling | 139



  "firstName": "Larson",

  "lastName": "Richard"

}

Example 5-39 shows a document that won’t validate against the Schema because the

email is missing the trailing .com.

Example 5-39. ex-14-external-ref-invalid.json

{

  "email": "larsonrichard@ecratic",

  "firstName": "Larson",

  "lastName": "Richard"

}

There are two ways to validate the preceding document against the Schema:

• The filesystem

• The web

Let’s start by validating on the filesystem by using the validate tool that we’ve been
using all along:

The JSON document (ex-14-external-ref-invalid.json) is invalid as in previous runs,
but notice the inclusion of both the main (ex-14-external-ref-schema.json) and exter‐
nal (ex-14-my-common-schema.json) Schemas on the command line.

Now let’s use the web to validate against the external Schema. In this case, we’ll

deploy this file as static content on a web server so that the URI in the $ref and id

(http://localhost:8081/ex-14-my-common-schema.json#/definitions/emailPat

tern) will work properly. If you haven’t done so before, now would be a great time to

install the http-server Node.js module. To install and run it, follow the instructions
in Appendix A (see <Install npm Modules= on page 323).

Run http-server (on port 8081) in the same directory where the external Schema
resides, and your command line should look like this:

140 | Chapter 5: JSON Schema



When you visit http://localhost:8081/ex-14-my-common-schema.json in your browser,
you should see the screen in Figure 5-5.

Figure 5-5. Web-addressable external Schema

Now that the external Schema is web addressable, we can do the validation, and you’ll
see that the document is invalid:

Choosing Validation Rules
In addition to the requires and dependencies keywords, JSON Schema provides
finer-grained mechanisms to tell the Schema processor which validation rules to use.
These additional keywords are as follows:

oneOf

One, and only one, rule must match successfully.

anyOf

One or more rules must match successfully.

allOf

All rules must match successfully.

oneOf

The oneOf keyword enforces an exclusive choice between validation rules. In the

Schema in Example 5-40, the value of the rating field can either be less than 2.0 or
less than 5.0, but not both.

Core JSON Schema—Basics and Tooling | 141



Example 5-40. ex-15-one-of-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "type": "string",

      "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"

    },

    "firstName": {

      "type": "string"

    },

      "type": "string"

    },

    "postedSlides": {

      "type": "boolean"

    },

    "rating": {

      "type": "number",

      "oneOf": [

        {

          "maximum": 2.0

        },

        {

          "maximum": 5.0

        }

      ]

    }

  },

  "additionalProperties": false,

  "required": [ "email", "firstName", "lastName", "postedSlides", "rating" ]

}

Example 5-41 is valid because the value of the rating field is 4.1, which matches only
one of the validation rules (< 5.0), but not both.

Example 5-41. ex-15-one-of.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard",

  "postedSlides": true,

  "rating": 4.1

}

The JSON document in Example 5-42 is invalid because the value of the rating field
is 1.9, which matches both validation rules (< 2.0 and < 5.0).

142 | Chapter 5: JSON Schema



Example 5-42. ex-15-one-of-invalid.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard",

  "postedSlides": true,

  "rating": 1.9

}

Validate the preceding document from the command line, and you’ll see that it’s
invalid:

anyOf

The anyOf keyword allows for a match against any (one or more) of the validation

rules. In Example 5-43, we’ve expanded the potential values of postedSlides to allow

for [Y|y]es and [N|n]o in addition to a boolean.

Example 5-43. ex-16-any-of-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "type": "string",

      "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"

    },

    "firstName": {

      "type": "string"

    },

    "lastName": {

      "type": "string"

    },

    "postedSlides": {

      "anyOf": [

        {

          "type": "boolean"

        },

        {

          "type": "string",

          "enum": [ "yes", "Yes", "no", "No" ]

        }

      ]

Core JSON Schema—Basics and Tooling | 143



    },

    "rating": {

      "type": "number"

    }

  },

  "additionalProperties": false,

  "required": [ "email", "firstName", "lastName", "postedSlides", "rating" ]

}

Example 5-44 is valid because the value of postedSlides is "yes".

Example 5-44. ex-16-any-of.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard",

  "postedSlides": "yes",

  "rating": 4.1

}

Example 5-45 is invalid because the value of the postedSlides field is "maybe", which
is not in the set of allowed values.

Example 5-45. ex-16-any-of-invalid.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard",

  "postedSlides": "maybe",

  "rating": 4.1

}

Validate this document from the command line, and you’ll see that it’s invalid:

allOf

With the allOf keyword, the data must match all of the validation rules. In the

Schema in Example 5-46, the lastName must be a string with a length < 20.

144 | Chapter 5: JSON Schema



Example 5-46. ex-17-all-of-schema.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "email": {

      "type": "string",

      "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"

    },

    "firstName": {

      "type": "string"

    },

    "lastName": {

      "allOf": [

        { "type": "string" },

        { "maxLength": 20 }

      ]

    },

    "postedSlides": {

      "type": "boolean"

    },

    "rating": {

      "type": "number",

      "maximum": 5.0

    }

  },

  "additionalProperties": false,

  "required": [

    "email",

    "firstName",

    "lastName",

    "postedSlides",

    "rating"

  ]

}

Example 5-47 is valid because the length of the lastName is ≤ 20.

Example 5-47. ex-17-all-of.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "Richard",

  "postedSlides": true,

  "rating": 4.1

}

Example 5-48 is invalid because the length of the lastName exceeds 20 characters.

Core JSON Schema—Basics and Tooling | 145



Example 5-48. ex-17-all-of-invalid.json

{

  "email": "larsonrichard@ecratic.com",

  "firstName": "Larson",

  "lastName": "ThisLastNameIsWayTooLong",

  "postedSlides": true,

  "rating": 4.1

}

Validate the preceding document, and you’ll see that it’s invalid:

We’ve covered the basics of JSON Schema and syntax, and now it’s time to design an
API with JSON Schema.

How to Design and Test an API with JSON Schema
JSON Schema is all about the semantics (the meaning) and structure of the data
exchanged by applications and APIs. In the context of API Design, think of a JSON
Schema as part of the contract (interface). In this last portion of the chapter, we’ll go
from concept to a running Stub API that other applications and APIs can start testing
and using.

Our Scenario
We’ll use the same speaker model that we’ve been using all along, and iteratively add
constraints and capabilities. Here are the steps we need in order to go from a concept
to a running Stub API:

1. Model a JSON document.

2. Generate a JSON Schema.

3. Generate sample data.

4. Deploy a Stub API with json-server.

Model a JSON Document
Before creating a Schema, we need to know the data that we’re exchanging. Besides
the fields and their formats, it’s important to get a good look-and-feel for the data
itself. To do this, we need to overcome one of the major issues with JSON itself: creat‐

146 | Chapter 5: JSON Schema



ing documents by hand is tedious and error-prone. Use a modeling tool rather than
doing a lot of typing. There are several good tools to support this, and my favorite is
JSON Editor Online. Refer to <Model JSON Data with JSON Editor Online= on page
18 in Chapter 1 for further details on the features of JSON Editor Online.

Figure 5-6 shows our speaker model.

Figure 5-6. Speaker model on jsoneditoronline.com

Rather than typing the JSON document, use JSON Editor Online to model the data,
and generate a JSON document. In the JSON model on the righthand portion of the
screen, click the icon next to an element (i.e., Object, key/value pair, Array) and you’ll
see a menu. Select Append or Insert to add elements:

• Objects

• Name/value pairs

• Arrays

After entering a few fields, press the left-arrow button (in the middle of the page) to
create the JSON document. You can then iteratively add, test, and review the content
of your document until it looks good. Then, save the JSON document, shown in
Example 5-49, into a file (with the Save to Disk option under the Save menu).

How to Design and Test an API with JSON Schema | 147



Example 5-49. ex-18-speaker.json

{

  "about": "Fred Smith is the CTO of Full Ventures, where he ...",

  "email": "fred.smith@fullventures.com",

  "firstName": "Fred",

  "lastName": "Smith",

  "picture": "http://placehold.it/fsmith-full-ventures-small.png",

  "tags": [

    "JavaScript",

    "REST",

    "JSON"

  ],

  "company": "Full Ventures, Inc."

}

Before going any further, it would be a good idea to validate the JSON document by
using JSONLint (either with the CLI or web app). This should validate because JSON
Editor Online produces valid JSON, but it’s always good to double-check.

Generate a JSON Schema
With a valid JSON document in hand, we can now use JSONSchema.net to generate a
corresponding JSON Schema based on the document structure and content. Again,
save yourself a lot of typing by letting a tool do most of the work for you.

Visit http://jsonschema.net and paste in the JSON document on the left side, as shown
in Figure 5-7.

Figure 5-7. Generate Speakers Schema on JSONSchema.net

148 | Chapter 5: JSON Schema

http://jsonschema.net


To generate a Schema, start with the default settings, and make the following changes:

• Turn off <Use absolute IDs.=

• Turn off <Allow additional properties.=

• Click the Generate Schema button.

• Copy the generated Schema (on the righthand side) to your clipboard.

After saving your clipboard to a file, we now have the Schema in Example 5-50.

Example 5-50. ex-18-speaker-schema-generated.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "id": "/",

  "type": "object",

  "properties": {

    "about": {

      "id": "about",

      "type": "string"

    },

    "email": {

      "id": "email",

      "type": "string"

    },

    "firstName": {

      "id": "firstName",

      "type": "string"

    },

    "lastName": {

      "id": "lastName",

      "type": "string"

    },

    "picture": {

      "id": "picture",

      "type": "string"

    },

    "tags": {

      "id": "tags",

      "type": "array",

      "items": [{

        "id": "0",

        "type": "string"

      }, {

        "id": "1",

        "type": "string"

      }, {

        "id": "2",

        "type": "string"

      }]

How to Design and Test an API with JSON Schema | 149



    },

    "company": {

      "id": "company",

      "type": "string"

    }

  },

  "additionalProperties": false,

  "required": [

    "about",

    "email",

    "firstName",

    "lastName",

    "picture",

    "tags",

    "company"

  ]

}

JSONSchema.net is great at generating a base Schema, but it adds fields that we don’t

use, plus it doesn’t do enum, pattern, and so forth. The main takeaway is that JSON‐
Schema.net does about 80 percent of the work for you, and then you need to fill in a

few pieces yourself. We don’t need the id fields at this time, but we do need to add a

Regular Expression to validate the email field (just use the Regex from previous
examples). After making these changes, the Schema should look like Example 5-51.

Example 5-51. ex-��-speaker-schema-generated-modioed.json

{

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "properties": {

    "about": {

      "type": "string"

    },

    "email": {

      "type": "string",

      "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"

    },

    "firstName": {

      "type": "string"

    },

    "lastName": {

      "type": "string"

    },

    "picture": {

      "type": "string"

    },

    "tags": {

      "type": "array",

      "items": [

150 | Chapter 5: JSON Schema



        {

          "type": "string"

        }

      ]

    },

    "company": {

      "type": "string"

    }

  },

  "additionalProperties": false,

  "required": [ "about", "email", "firstName",

                "lastName", "picture", "tags", "company"

  ]

}

Validate the JSON Document
Now that we have a JSON Schema, let’s validate the document against the Schema by
using the JSON Validate web app. Visit http://jsonvalidate.com/ and paste in the JSON
document and Schema, as shown in Figure 5-8.

Figure 5-8. Validate Speakers JSON document against Speakers JSON Schema on json‐
validate.com

Click the Validate button, and the document should validate against the Schema. You

could have used the validate CLI tool we’ve been using throughout this chapter, but
the web app is a great visual.

How to Design and Test an API with JSON Schema | 151

http://jsonvalidate.com/


Generate Sample Data
At this point, we have a JSON document with its corresponding Schema, but we need
more data to create an API for testing. We could use JSON Editor Online to generate
test data, but there are a couple of issues with this approach because a human would
have to randomize and generate massive amounts of data. Even with a GUI, it’s a big
manual effort.

JSON Editor Online is great for creating a small JSON document to get the design
process going, but we need another approach to generate randomized bulk JSON data
for API testing. We’ll use JSON Generator to create our data; visit http://www.json-
generator.com/ and you should see the screen in Figure 5-9.

Figure 5-9. json-generator site

The code on the left side is a template (in the form of a JavaScript Object Literal) that
JSON Generator uses to generate sample JSON data. Notice that this tool has the abil‐
ity to generate sample/random data for paragraphs, numbers, names, globally unique
identifiers (GUIDs), names, gender, email addresses, etc. Plus, it has the ability to do

this in bulk with the {{repeat}} tag at the top of the template. Click the Help button
for detailed documentation on the tags.

But these default settings are way more than we need. Let’s pare this template down to

the fields we need to generate three speaker objects with random data (see
Example 5-52).

152 | Chapter 5: JSON Schema

http://www.json-generator.com/
http://www.json-generator.com/


Example 5-52. ex-18-speaker-template.js

// Template for http://www.json-generator.com/

[

  '{{repeat(3)}}', {

    id: '{{integer()}}',

    picture: 'http://placehold.it/32x32',

    name: '{{firstName()}}',

    lastName: '{{surname()}}',

    company: '{{company()}}',

    email: '{{email()}}',

    about: '{{lorem(1, "paragraphs")}}'

  }

]

After clicking the Generate button, you should see the following JSON document in

the web app shown in Figure 5-10 (if you want more than the three speaker objects,

just change the 3 in the repeat tag to a higher number).

Figure 5-10. Create a Speaker JSON document with json-generator

Now, click the Copy to Clipboard button on the righthand side, and paste into a file,
as shown in Example 5-53.

Example 5-53. ex-18-speakers-generated.json

[

  {

    "id": 5,

    "picture": "http://placehold.it/32x32",

    "name": "Allen",

How to Design and Test an API with JSON Schema | 153



    "lastName": "Strickland",

    "company": "Coriander",

    "email": "allenstrickland@coriander.com",

    "about": "Quis enim labore ..."

  },

  {

    "id": 9,

    "picture": "http://placehold.it/32x32",

    "name": "Merle",

    "lastName": "Prince",

    "company": "Xylar",

    "email": "merleprince@xylar.com",

    "about": "Id voluptate duis ..."

  },

  {

    "id": 8,

    "picture": "http://placehold.it/32x32",

    "name": "Salazar",

    "lastName": "Ewing",

    "company": "Zentime",

    "email": "salazarewing@zentime.com",

    "about": "Officia qui id ..."

  }

]

We’re almost there, but we need to tweak the data just a bit so that we can deploy the
file as an API:

• We already have an Array. Let’s name it speakers, and then wrap it with the

{ and }. We now have a JSON document with the speakers Array as the root
element.

• Let’s redo the id fields so that they start at 0.

Our file now looks like Example 5-54.

Example 5-54. ex-��-speakers-generated-modioed.json

{

  "speakers": [

    {

      "id": 0,

      "picture": "http://placehold.it/32x32",

      "name": "Allen",

      "lastName": "Strickland",

      "company": "Coriander",

      "email": "allenstrickland@coriander.com",

      "about": "Quis enim labore ..."

    },

    {

      "id": 1,

154 | Chapter 5: JSON Schema



      "picture": "http://placehold.it/32x32",

      "name": "Merle",

      "lastName": "Prince",

      "company": "Xylar",

      "email": "merleprince@xylar.com",

      "about": "Id voluptate duis ..."

    },

    {

      "id": 2,

      "picture": "http://placehold.it/32x32",

      "name": "Salazar",

      "lastName": "Ewing",

      "company": "Zentime",

      "email": "salazarewing@zentime.com",

      "about": "Officia qui id ..."

    }

  ]

}

At this point, you’re probably wondering why we needed to make those modifica‐

tions. The changes were needed so that json-server has the proper URIs (routes) for
the Speaker data:

• We get the http://localhost:5000/speakers route by encapsulating with the speak

ers array, with all the data addressable from there.

• We can access the first element with this route: http://localhost:5000/speakers/0.

But we’re getting ahead of ourselves. Let’s get json-server up and running, and then
start browsing the API.

Deploy a Stub API with json-server
Now that we have a Schema and some test data, it’s time to deploy the sample data as
an API so consumers can start testing it and provide feedback. If you haven’t done so

before, now would be a great time to install the json-server Node.js module. To
install and run it, follow the instructions in Appendix A (see <Install npm Modules=
on page 323).

Run json-server (on port 5000) in the same directory where the ex-��-speakers-
generated-modioed.json file resides, and your command line should look like this:

How to Design and Test an API with JSON Schema | 155



When you visit http://localhost:5000/speakers in your browser, you should see the
screen in Figure 5-11.

Figure 5-11. Speakers Stub API on json-server

You now have a testable API without writing a single line of code; we just deployed a
static JSON file. The beauty of this approach is that this looks, acts, and feels like an
API. From here, you can interact with it just as you would with other APIs. You could
use your browser, cURL, or make HTTP calls from your favorite language to begin
interacting with it.

Now there are limits. With json-server, you can do an HTTP GET only on the data—
it’s read only.

156 | Chapter 5: JSON Schema



Final Thoughts on API Design and Testing with JSON Schema
After going through this exercise, you should have an appreciation for the powerful
JSON-based open source tools that can shorten your API development life cycle.
Here’s the bottom line:

• Use JSON modeling tools before committing to the final data structure. Iterate
with stakeholders early and often.

• Writing a JSON document or Schema by hand is tedious and error-prone. Let the
tools do most of the work for you and avoid as much typing as possible.

• Validate early and often.

• Generate bulk randomized JSON data rather than creating it yourself.

• Spinning up a Stub API is simple. Don’t write your own testing infrastructure,
because someone else has already done it for you. Just use what’s out there. You
have better things to do with your time.

Validation Using a JSON Schema Library
We’ve shown how to use the validate command-line tool and the JSON Validate
web app to validate a JSON document against a Schema, but the ultimate goal is to
validate from an application.

But JSON Schema isn’t only just for JavaScript and Node.js. Most major platforms
have excellent support for JSON Schema v4:

Ruby on Rails

json-schema gem.

Java

json-schema-validator.

PHP

jsv4-php.

Python

jsonschema.

Clojure

Just use the Java-based json-schema-validator.

Node.js
Node.js has several good JSON Schema processors. I’ve had success with the
following:

Validation Using a JSON Schema Library | 157

https://rubygems.org/gems/json-schema/versions/2.5.1
https://github.com/fge/json-schema-validator
https://github.com/geraintluff/jsv4-php
https://github.com/Julian/jsonschema


• ajv is my favorite library to use from a Node.js-based application because it’s

clean and simple. ajv is compatible with popular Node.js-based testing suites
(e.g., Mocha/Chai, Jasmine, and Karma). You can find more information on

ajv on the npm site and on GitHub. We’ll show how to use ajv in Chap‐
ter 10.

• ujs-jsonvalidate is a processor we’ve been using all through this chapter to
validate against a Schema from the command line. You can find further

usage information on GitHub. You can find the ujs-jsonvalidate npm
module at http://bit.ly/2tj4ODI.

Where to Go Deeper with JSON Schema
We’ve covered the basics of JSON Schema, but a definitive guide is far beyond the
scope of this chapter. In addition to the json-schema.org site mentioned previously,
here are a few more resources:

• Using JSON Schema by Joe McIntyre provides a wealth of JSON Schema-related
reference information and tools, including these:

— The Using JSON Schema ebook

— The jsonvalidate application

— The ujs-validate npm module

• Understanding JSON Schema by Michael Droettboom et al.

• A Short Guide to JSON Schema

What We Covered
We introduced JSON Schema and how it helps in application architecture. We then
designed and tested an API with JSON Schema, and leveraged JSON Schema-related
tooling along the way.

What’s Next?
Now that we’ve shown how to structure and validate JSON instance documents with
JSON Schema, we’ll show to how search JSON documents in Chapter 6.

158 | Chapter 5: JSON Schema

https://www.npmjs.com/package/ajv
https://github.com/epoberezkin/ajv
http://bit.ly/2reROyx
http://bit.ly/2tj4ODI
http://json-schema.org
http://usingjsonschema.com/
http://usingjsonschema.com/downloads/
http://jsonvalidate.com/
https://github.com/usingjsonschema/ujs-jsonvalidate-nodejs
http://spacetelescope.github.io/understanding-json-schema/UnderstandingJSONSchema.pdf
https://bugventure.github.io/jsen/json-schema


CHAPTER 6

JSON Search

JSON Search libraries and tools make it easier to search JSON documents and quickly
access the fields that you’re looking for. JSON Search shines when you need to search
through a large JSON document returned from a Web API.

In this chapter, we’ll cover the following:

• Making your job easier with JSON Search

• Using the major JSON Search libraries and tools

• Writing Unit Tests that search the content of JSON documents returned by a Web
API

In our examples, we’ll use several JSON Search technologies to search JSON data
from a Web API deployed on your local machine. We’ll create Unit Tests to execute
the searches and check results.

Why JSON Search?
Imagine that the result set from an API call has several hundred (or more) JSON
Objects, and you want to use only a subset of the data (key/value pairs) or apply a
search filter (based on your criteria). Without JSON Search, you would have to parse
the JSON document and sift through a large data structure by writing custom code.
This low-level approach is a tedious, code-intensive chore. You have better things to
do with your time. The JSON Search libraries and tools shown in this chapter will
reduce your work and make your job easier.

159



JSON Search Libraries and Tools
Many libraries (callable from an application) and command-line tools can search
JSON documents. Here are the most common, widely used libraries, which we’ll
explore later in this chapter:

• JSONPath

• JSON Pointer

• jq

Honorable Mention
Many high-quality JSON Search libraries and command-line tools are available to
search and filter JSON content, but we can’t cover all of them. Here are some others
that are worth a look, but we can not discuss them further in this chapter for the sake
of brevity:

SpahQL
SpahQL is like jQuery for JSON Objects. The SpahQL library is available in a
GitHub repository.

json

A command-line tool available on GitHub, and on the npm repository. Even

though we won’t use json’s search capabilities in this chapter, we’ll still use it to
pretty-print JSON documents.

jsawk

jsawk is a command-line tool that transforms a JSON document in addition to
searching.

Even though we’re not covering these tools, one or more could also be right for your

project. Compare them with JSONPath, JSON Pointer, and jq to see which one works
best for you.

What to Look For
Many libraries and tools are available, and it’s hard to choose which one(s) to use.
Here are my criteria:

Mindshare
Does it appear to be widely used? How many hits do you see when you do an
internet search?

160 | Chapter 6: JSON Search

https://github.com/danski/spahql
https://github.com/zpoley/json-command
https://www.npmjs.com/package/json
https://github.com/micha/jsawk


Developer community
Is the code on GitHub? Is it well maintained?

Platforms
Does it run on multiple platforms? Do multiple providers support the specifica‐
tion or library interfaces?

Intuitive
Is it well-documented? How easy is it to install? How intuitive is the interface?
How easy is it to use?

Standards
Is the library associated with a standard (e.g., IETF, WC3, or Ecma)?

We’ll use these guidelines to evaluate each JSON Search product.

Test Data
We need more realistic test data and a larger, richer JSON document to search
against, and the web has an abundant supply. For this chapter and the next, we’ll use
an open data set available from a public API rather than the Speaker data from previ‐
ous chapters. We’ll leverage the cities/weather data from the OpenWeatherMap API.
See the full API documentation.

The chapter-6/data/cities-weather-orig.json file contains weather data from the Open‐
WeatherMap API for cities within a rectangle by latitude/longitude (in this case,
Southern California, United States). Note that the weather data from OpenWeather‐
Map changes frequently, so the data I’ve captured for the book example will not
match the current data from the API. Let’s modify the weather data before we use it

with json-server. First, look at the data/cities-weather-orig.json file, and notice that

the weather data is stored in an Array called list. I’ve renamed it to cities for the
sake of clarity and testability and saved the changes in the data/cities-weather.json file.

Additionally, I moved the cod, calctime, and cnt fields (at the beginning of the docu‐

ment) into an Object. This second change was needed for compatibility with json-

server, which accepts only Objects or an Array of Objects. We’ll continue to leverage

the json-server Node.js module from earlier chapters to deploy the city weather
data as a Web API. Example 6-1 shows the modified weather data.

Example 6-1. data/cities-weather.json

{

  "other": {

    "cod": 200,

    "calctime": 0.006,

    "cnt": 110

  },

Test Data | 161

http://openweathermap.org
http://openweathermap.org/current


  "cities": [

  ...

  ]

}

Now, run json-server as follows:

json-server -p 5000 ./cities-weather.json

Visit http://localhost:5000/cities in your browser, and you should see the screen in
Figure 6-1.

Figure 6-1. OpenWeather API data on json-server viewed from the browser

We now have test JSON data deployed as a Stub API, and we’ll use it for Unit Testing
throughout this chapter.

Setting Up Unit Tests
All tests in this chapter will continue to leverage Mocha/Chai within a Node.js envi‐
ronment, just as you saw in previous chapters. Before going further, be sure to set up
your test environment. If you haven’t installed Node.js yet, refer to Appendix A, and
install Node.js (see <Install Node.js= on page 318 and <Install npm Modules= on page
323). If you want to follow along with the Node.js project provided in the code

162 | Chapter 6: JSON Search



examples, cd to chapter-6/cities-weather-test and do the following to install all depen‐
dencies for the project:

npm install

If you’d like to set up the Node.js project yourself, follow the instructions in the book’s
GitHub repository.

Now that we’ve set up a testing environment, it’s time to start working with JSONPath
and the other JSON Search libraries.

Comparing JSON Search Libraries and Tools
Now that we’ve covered the basics of JSON Search, we will compare the following
libraries and tools:

• JSONPath

• JSON Pointer

• jq

JSONPath
JSONPath was developed by Stefan Goessner in 2007 to search for and extract data
from JSON documents. The original library was developed in JavaScript, but because
of its popularity, most modern languages and platforms now support JSONPath.

JSONPath query syntax

JSONPath query syntax is based on XPath (which is used to search XML documents).
Table 6-1 lists some JSONPath queries based on our cities example.

Table 6-1. JSONPath queries

JSONPath query Description

$.cities Get all elements in the cities Array.

$.cities.length Get the number of elements in the cities Array.

$.cities[0::2] Get every other element in the cities array. See the description of

slice() in the following list.

$.cities[(@.length-1)] or

$.cities[-1:]

Get the last element in the cities Array.

$..weather Get all weather subelements.

$.cities[:3] Get the �rst three elements in cities Array.

$.cities[:3].name Get the city name for �rst three elements in the cities Array.

$.cities[?(@.main.temp > 84)] Get the cities where the temp > 84.

Comparing JSON Search Libraries and Tools | 163

https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-6/Project-Setup.md
http://goessner.net/articles/JsonPath


JSONPath query Description

$.cities[?(@.main.temp >= 84 && 

@.main.temp <= 85.5)]

Get the cities where the temp is between 84 and 85.5.

$.cities[?(@.weather[0].main == 

'Clouds')]

Get the cities with cloudy weather.

$.cities[?(@.weather[0].main.match(/

Clo/))]

Get the cities with cloudy weather by using regex.

These example queries use JSONPath keywords and symbols:

• $ represents the document root-level object.

• .. returns all elements and subelements that have a particular name.

• [] with an index is an Array query, and the index is based on the JavaScript

slice() function. The Mozilla Developer Network (MDN) provides a full

description. Here’s a brief overview of JSONPath slice():

— It provides the ability to select a portion of an Array.

— The begin parameter (as with JS slice()) is the beginning index, is zero-
based, and defaults to zero if omitted.

— The end parameter (as with JS slice()) is the end index (noninclusive), and
defaults to the end of the Array if omitted.

— The step parameter (added by JSONPath slice()) represents the step, and

defaults to 1. A step value of 1 returns all Array elements specified by the

begin and end parameters; a value of 2 returns every other (or second) ele‐
ment, and so on.

• @ represents the current element.

• [?(…)] enables a conditional search. The code inside the parentheses can be any

valid JS expression, including conditionals (e.g., == or >) and Regular Expres‐
sions.

JSONPath online tester

A couple of online JSONPath testers enable you to practice JSONPath queries before
writing a single line of code. I like the tester provided by Kazuki Hamasaki. Just paste
in the data/cities-weather.json document (from the Chapter 6 code examples) in the
left text box, and enter a JSONPath query. The results appear in the text box on the
righthand side of the page as shown in Figure 6-2.

164 | Chapter 6: JSON Search

https://mzl.la/2rRu4BH
https://mzl.la/2rRu4BH
http://ashphy.com/JSONPathOnlineEvaluator
https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-6


Figure 6-2. JSONPath Online Evaluator with OpenWeather API data

You’ll notice that only the data values are returned in the JSONPath results text box,
and that the keys are not returned.

JSONPath Unit Test

The Unit Test in Example 6-2 exercises several of the example JSONPath queries that

were shown earlier. This code leverages the jsonpath Node.js module to search
against the JSON data returned by the Cities API that runs on your local machine.

See https://github.com/dchester/jsonpath for a detailed description of the jsonpath
module.

Example 6-2. cities-weather-test/test/jsonpath-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API

   ([http://openweathermap.org]) under Creative Commons Share A Like

   License (https://creativecommons.org/licenses/by-sa/4.0).

   Changes were made to the data to work with json-server.

   This does not imply an endorsement by the licensor.

   This code is distributed under Creative Commons Share A Like License.

*/

Comparing JSON Search Libraries and Tools | 165

https://github.com/dchester/jsonpath


var expect = require('chai').expect;

var jp = require('jsonpath');

var unirest = require('unirest');

describe('cities-jsonpath', function() {

  var req;

  beforeEach(function() {

    req = unirest.get('http://localhost:5000/cities')

      .header('Accept', 'application/json');

  });

  it('should return a 200 response', function(done) {

    req.end(function(res) {

      expect(res.statusCode).to.eql(200);

      expect(res.headers['content-type']).to.eql(

        'application/json; charset=utf-8');

      done();

    });

  });

  it('should return all cities', function(done) {

    req.end(function(res) {

      var cities = res.body;

      expect(cities.length).to.eql(110);

      done();

    });

  });

  it('should return every other city', function(done) {

    req.end(function(res) {

      var cities = res.body;

      var citiesEveryOther = jp.query(cities, '$[0::2]');

      expect(citiesEveryOther[1].name).to.eql('Rosarito');

      expect(citiesEveryOther.length).to.eql(55);

      done();

    });

  });

  it('should return the last city', function(done) {

    req.end(function(res) {

      var cities = res.body;

      var lastCity = jp.query(cities, '$[(@.length-1)]');

      expect(lastCity[0].name).to.eql('Moreno Valley');

      done();

    });

  });

  it('should return the 1st 3 cities', function(done) {

166 | Chapter 6: JSON Search



    req.end(function(res) {

      var cities = res.body;

      var citiesFirstThree = jp.query(cities, '$[:3]');

      var citiesFirstThreeNames = jp.query(cities, '$[:3].name');

      expect(citiesFirstThree.length).to.eql(3);

      expect(citiesFirstThreeNames.length).to.eql(3);

      expect(citiesFirstThreeNames).to.eql(['Rancho Palos Verdes',

        'San Pedro', 'Rosarito'

      ]);

      done();

    });

  });

  it('should return cities within a temperature range', function(done) {

    req.end(function(res) {

      var cities = res.body;

      var citiesTempRange = jp.query(cities,

        '$[?(@.main.temp >= 84 && @.main.temp <= 85.5)]'

      );

      for (var i = 0; i < citiesTempRange.length; i++) {

        expect(citiesTempRange[i].main.temp).to.be.at.least(84);

        expect(citiesTempRange[i].main.temp).to.be.at.most(85.5);

      }

      done();

    });

  });

  it('should return cities with cloudy weather', function(done) {

    req.end(function(res) {

      var cities = res.body;

      var citiesWeatherCloudy = jp.query(cities,

        '$[?(@.weather[0].main == "Clouds")]'

      );

      checkCitiesWeather(citiesWeatherCloudy);

      done();

    });

  });

  it('should return cities with cloudy weather using regex', function(done) {

    req.end(function(res) {

      var cities = res.body;

      var citiesWeatherCloudyRegex = jp.query(cities,

        '$[?(@.weather[0].main.match(/Clo/))]'

      );

      checkCitiesWeather(citiesWeatherCloudyRegex);

      done();

Comparing JSON Search Libraries and Tools | 167



    });

  });

  function checkCitiesWeather(cities) {

    for (var i = 0; i < cities.length; i++) {

      expect(cities[i].weather[0].main).to.eql('Clouds');

    }

  }

});

Note the following in this example:

• The test sets up the URI and Accept for unirest using Mocha’s beforeEach()
method, so that setup occurs in only one place in the code. Mocha executes

beforeEach() before running each test (i.e., it) within the context of the

describe.

• Each test exercises one or more example JSONPath queries and uses expect-style
assertions.

• The calls to the jsonpath module work as follows:

— jp.query() takes a JavaScript Object and a String-based JSONPath query as
parameters, and synchronously returns the result set as a JavaScript Object.

• Each JSONPath query omits the leading .cities because json-server takes the

name of the cities Array (from the cities-weather.json file) and adds cities to
the URI:

— The URI address is http://localhost:5000/cities.

— Use $[:3] to get the first three cities, rather than $.cities[:3].

To run this test from the command line (in a second terminal session), do the
following:

cd cities-weather-test

npm test

You should see the following results:

json-at-work => npm test

...

> mocha test

...

cities-jsonpath

  ✓ should return a 200 response
  ✓ should return all cities

168 | Chapter 6: JSON Search



  ✓ should return every other city
  ✓ should return the last city
  ✓ should return 1st 3 cities
  ✓ should return cities within a temperature range
  ✓ should return cities with cloudy weather
  ✓ should return cities with cloudy weather using regex

...

If you call console.log() with the cities variable in any of the preceding tests,

you’ll see that the jsonpath module returns a valid JSON document with key/value
pairs.

JSONPath on other platforms

JSONPath is not limited to JavaScript and Node.js. Most major platforms have excel‐
lent support for JSONPath, including these:

• Ruby on Rails

• Python

• Java

There are other good JSONPath libraries are available, but please verify that they fol‐
low the syntax mentioned in Stefan Goessner’s article. Otherwise, it’s not really JSON‐
Path. To borrow a phrase from |e Princess Bride, <You keep using that word, but I do
not think it means what you think it means.=

JSONPath scorecard

Table 6-2 provides a scorecard for JSONPath based on the evaluation criteria from
the beginning of this chapter.

Table 6-2. JSONPath scorecard

Mindshare Y

Dev community Y

Platforms JavaScript, Node.js, Java, Ruby on Rails

Intuitive Y

Standard N

JSONPath provides a rich set of set of search features and works across most major
platforms. The only downsides are that JSONPath is not a standard and lacks a CLI
implementation, but don’t let that stop you from using it. JSONPath enjoys wide
community usage and acceptance, and has an excellent online tester. JSONPath
reduces the amount of code needed to search and access a JSON document, and gets
the subset of data that you need.

Comparing JSON Search Libraries and Tools | 169

https://github.com/joshbuddy/jsonpath
https://pypi.python.org/pypi/jsonpath/
https://github.com/jayway/JsonPath
http://goessner.net/articles/JsonPath


JSON Pointer
JSON Pointer is a standard for accessing a single value within a JSON document. The
JSON Pointer specification provides further details. JSON Pointer’s main purpose is

to support the JSON Schema specification’s $ref functionality in locating validation
rules within a Schema (see Chapter 5).

JSON Pointer query syntax

For example, consider the following document:

{

  "cities": [

    {

      "id": 5386035,

      "name": "Rancho Palos Verdes"

    },

    {

      "id": 5392528,

      "name": "San Pedro"

    },

    {

      "id": 5358705,

      "name": "Huntington Beach"

    }

  ]

}

Table 6-3 describes the preceding document’s common JSON Pointer query syntax:

Table 6-3. JSON Pointer queries

JSON Pointer query Description

/cities Get all cities in the Array.

/cities/0 Get the �rst city.

/cities/1/name Get the name of the second city.

JSON Pointer query syntax is quite simple, and works as follows:

• / is a path separator.

• Array indexing is zero-based.

You’ll notice that in the JSON Pointer specification, only the data values are returned
when making a query, and that the keys are not returned.

170 | Chapter 6: JSON Search

http://tools.ietf.org/html/rfc6901


JSON Pointer Unit Test

The Unit Test in Example 6-3 exercises some of the example JSON Pointer queries

that were shown earlier. This code leverages the json-pointer Node.js module to

search against the cities API. See https://github.com/manuelstofer/json-pointer for a

detailed description of the json-pointer module.

Example 6-3. cities-weather-test/test/json-pointer-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API

   ([http://openweathermap.org]) under Creative Commons Share A Like

   License (https://creativecommons.org/licenses/by-sa/4.0).

   Changes were made to the data to work with json-server.

   This does not imply an endorsement by the licensor.

   This code is distributed under Creative Commons Share A Like License.

*/

var expect = require('chai').expect;

var pointer = require('json-pointer');

var unirest = require('unirest');

describe('cities-json-pointer', function() {

  var req;

  beforeEach(function() {

    req = unirest.get('http://localhost:5000/cities')

                  .header('Accept', 'application/json');

  });

  it('should return a 200 response', function(done) {

    req.end(function(res) {

      expect(res.statusCode).to.eql(200);

      expect(res.headers['content-type']).to.eql(

                  'application/json; charset=utf-8');

      done();

    });

  });

  it('should return the 1st city', function(done) {

    req.end(function(res) {

      var cities = res.body;

      var firstCity = null;

      firstCity = pointer.get(cities, '/0');

      expect(firstCity.name).to.eql('Rancho Palos Verdes');

      expect(firstCity.weather[0].main).to.eql('Clear');

      done();

    });

Comparing JSON Search Libraries and Tools | 171

https://github.com/manuelstofer/json-pointer


  });

  it('should return the name of the 2nd city', function(done) {

    req.end(function(res) {

      var cities = res.body;

      var secondCityName = null;

      secondCityName = pointer.get(cities, '/1/name');

      expect(secondCityName).to.eql("San Pedro");

      done();

    });

  });

});

Note the following in this example:

• Each test runs an example JSON Pointer query and leverages expect-style asser‐
tions.

• The calls to the json-pointer module work as follows:

— pointer.get() takes a JavaScript Object and a String-based JSON Pointer
query as parameters, and synchronously returns the result set as a JavaScript
Object.

• Each JSON Pointer query omits the leading .cities because json-server takes

the name of the cities Array (from the cities-weather.json file) and adds cities
to the URI:

— The URI address is http://localhost:5000/cities.

— Use /0 to get the first city, rather than /cities/0.

To run this test from the command line, do the following:

cd cities-weather-test

npm test

You should see the following results:

json-at-work => npm test

...

> mocha test

...

cities-json-pointer

  ✓ should return a 200 response
  ✓ should return the 1st city
  ✓ should return the name of the 2nd city

172 | Chapter 6: JSON Search



...

If you invoke console.log() on the firstCity variable in the should return the

1st city test above, you’ll see that the json-pointer module returns a valid JSON
document with key/value pairs.

JSON Pointer on other platforms

In addition to Node.js, most major platforms have a JSON Pointer library:

• Ruby on Rails

• Python

• Java—Jackson currently supports JSON Pointer, but JavaEE 8 will provide JSON
Pointer support as part of JSR 374, Java API for JSON Processing 1.1.

Several tools claim to implement JSON Pointer, but they really don’t follow the JSON
Pointer specification. When evaluating a JSON Pointer library or tool, be sure it fol‐
lows RFC 6901. Again, if it doesn’t expressly mention RFC 6901, it’s not JSON
Pointer.

JSON Pointer scorecard

Table 6-4 shows a scorecard for JSON Pointer based on our criteria.

Table 6-4. JSON Pointer scorecard

Mindshare Y

Dev community Y

Platforms JavaScript, Node.js, Java, Ruby on Rails

Intuitive Y

Standard Y—RFC 6901

JSON Pointer provides a limited set of search capabilities. Each query returns only a
single field from a JSON document. JSON Pointer’s main purpose is to support JSON

Schema’s $ref syntax.

jq
jq is a JSON Search tool that provides JSON command-line processing, including fil‐

tering and array slicing. Per the jq GitHub repository, jq is like sed for JSON. But jq

is not limited to the command line; several good libraries enable you to use jq from
your favorite Unit-Testing framework (<jq Unit Test= on page 178 covers this).

Comparing JSON Search Libraries and Tools | 173

https://github.com/tent/json-pointer-ruby
https://github.com/stefankoegl/python-json-pointer
https://github.com/fge/jackson-coreutils
http://bit.ly/2reREao
http://tools.ietf.org/html/rfc6901
https://stedolan.github.io/jq


Integration with cURL

Many people in the UNIX community use cURL to make HTTP calls to Web APIs
from the command line. cURL provides the ability to communicate over multiple
protocols in addition to HTTP. To install cURL, please see <Install cURL= on page 330
in Appendix A.

We’ll start by using cURL to make a GET request from the command against the Cities
API as follows:

curl  -X GET 'http://localhost:5000/cities'

Now that we’re able to get a JSON response from the Cities API, let’s pipe the content

to jq to filter the Cities API data from the command line. Here’s a simple example:

curl  -X GET 'http://localhost:5000/cities' | jq .[0]

Run this command, and you should see the following:

174 | Chapter 6: JSON Search

http://curl.haxx.se


Note the following in this example:

• cURL makes an HTTP GET call to the OpenWeatherMap API and pipes the JSON
response to Standard Output.

• jq reads the JSON from Standard Input, selects the first city from the API, and
outputs the JSON to Standard Output.

cURL is a valuable and powerful part of an API developer’s toolkit. cURL also pro‐

vides the ability to test an API with all the main HTTP verbs (GET, POST, PUT, and

DELETE). We’ve just scratched the surface with cURL; visit the main site to learn more.

jq query syntax

Table 6-5 shows some basic jq queries.

Table 6-5. jq queries

jq query Description

.cities[0] Get the �rst city. jq Array �ltering starts at 0.

.cities[-1] Get the last city. An index of -1 indicates the last element of an Array.

.cities[0:3] Get the �rst three cities, where 0 is the start index (inclusive), and 3 is the end
index (exclusive).

.cities[:3] Get the �rst three cities. This is shorthand, and it omits the start index.

.cities[] | select 

(.main.temp >= 80 and 

(.main.temp_min >= 79 

and .main.temp_max <= 92))

Get all cities whose current temperature is >= 80 degrees Fahrenheit and whose
min and max temperature ranges between 79 and 92 degrees Fahrenheit
(inclusive).

Here’s how to execute a jq query to get the last city at the command line:

cd chapter-6/data

jq '.cities[-1]' cities-weather.json

You should see the following:

Comparing JSON Search Libraries and Tools | 175

http://curl.haxx.se


Let’s go deeper with a more concrete example.

jq online tester—jqPlay

jqPlay is a web-based tester for jq, and provides the ability to iteratively test jq quer‐

ies against JSON data. To test jqPlay, do the following to get a new Array of Objects

that contain the id and name of the first three cities:

1. Visit https://jqplay.org and paste the contents of the chapter-6/data/cities-

weather.json file into the JSON text area on the left.

2. Paste the following jq query into the Filter text box: [[].cities[0:3] | .[] |

{ id, name }]

You should see the screen in Figure 6-3.

176 | Chapter 6: JSON Search

https://jqplay.org
https://jqplay.org


Figure 6-3. Search OpenWeather API data with jqPlay

Here’s a breakdown of the [.cities[0:3] | .[] | { id, name }] query:

• The | enables you to chain your filters.

• .cities[0:3] selects the first three elements from the cities Array as a subarray.

• .[] returns all elements from the subarray.

• { id, name } selects only the id and name fields:

— The curly braces ({ and }) tell jq to create a new Object.

— The id and name tell jq to include only these fields in the new Object.

• The surrounding Array braces ([ and ]) convert the result set to an Array.

Scroll to the bottom of the jqplay page, and you’ll see that it has a cheat sheet with
links to more examples and documentation, as shown in Figure 6-4.

Figure 6-4. jq cheat sheet on jqPlay

Comparing JSON Search Libraries and Tools | 177



jq-tutorial

In addition to an online tester, the Node.js community has contributed a nice jq tuto‐
rial, which is available on the npm repository. Install this tutorial as follows:

npm install -g jq-tutorial

Run jq-tutorial from the command line, and you should see this:

This shows all the available jq tutorials. Then, choose one of the tutorials like this:

jq-tutorial objects

This tutorial will show how to use objects with jq. Follow each learning path, and

increase your overall jq skill level.

jq Unit Test

The Unit Test in Example 6-4 exercises several of the example jq queries that were

shown earlier. This code leverages the node-jq Node.js module to search against the

JSON data returned by the Cities API that runs on your local machine. See the

node-jq documentation on GitHub for a detailed description.

Example 6-4. cities-weather-test/test/jq-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API

   ([http://openweathermap.org]) under Creative Commons Share A Like

   License (https://creativecommons.org/licenses/by-sa/4.0).

   Changes were made to the data to work with json-server.

   This does not imply an endorsement by the licensor.

   This code is distributed under Creative Commons Share A Like License.

*/

var expect = require('chai').expect;

var jq = require('node-jq');

var unirest = require('unirest');

var _ = require('underscore');

178 | Chapter 6: JSON Search

https://www.npmjs.com/package/jq-tutorial
https://www.npmjs.com/package/
https://github.com/sanack/node-jq


describe('cities-jq', function() {

  var req;

  beforeEach(function() {

    req = unirest.get('http://localhost:5000/cities')

      .header('Accept', 'application/json');

  });

  it('should return a 200 response', function(done) {

    req.end(function(res) {

      expect(res.statusCode).to.eql(200);

      expect(res.headers['content-type']).to.eql(

        'application/json; charset=utf-8');

      done();

    });

  });

  it('should return all cities', function(done) {

    req.end(function(res) {

      var cities = res.body;

      expect(cities.length).to.eql(110);

      done();

    });

  });

  it('should return the last city', function(done) {

    req.end(function(res) {

      var cities = res.body;

      jq.run('.[-1]', cities, {

          input: 'json'

        })

        .then(function(lastCityJson) { // Returns JSON String.

          var lastCity = JSON.parse(lastCityJson);

          expect(lastCity.name).to.eql('Moreno Valley');

          done();

        })

        .catch(function(error) {

          console.error(error);

          done(error);

        });

    });

  });

  it('should return the 1st 3 cities', function(done) {

    req.end(function(res) {

      var cities = res.body;

      jq.run('.[:3]', cities, {

          input: 'json'

        })

Comparing JSON Search Libraries and Tools | 179



        .then(function(citiesFirstThreeJson) { // Returns JSON String.

          var citiesFirstThree = JSON.parse(citiesFirstThreeJson);

          var citiesFirstThreeNames = getCityNamesOnly(

            citiesFirstThree);

          expect(citiesFirstThree.length).to.eql(3);

          expect(citiesFirstThreeNames.length).to.eql(3);

          expect(citiesFirstThreeNames).to.eql([

            'Rancho Palos Verdes',

            'San Pedro', 'Rosarito'

          ]);

          done();

        })

        .catch(function(error) {

          console.error(error);

          done(error);

        });

    });

  });

  function getCityNamesOnly(cities) {

    return _.map(cities,

      function(city) {

        return city.name;

      });

  }

  it('should return cities within a temperature range', function(done) {

    req.end(function(res) {

      var cities = res.body;

      jq.run(

          '[.[] | select (.main.temp >= 84 and .main.temp <= 85.5)]',

          cities, {

            input: 'json'

          })

        .then(function(citiesTempRangeJson) { // Returns JSON String.

          var citiesTempRange = JSON.parse(citiesTempRangeJson);

          for (var i = 0; i < citiesTempRange.length; i++) {

            expect(citiesTempRange[i].main.temp).to.be.at.least(

              84);

            expect(citiesTempRange[i].main.temp).to.be.at.most(

              85.5);

          }

          done();

        })

        .catch(function(error) {

          console.error(error);

          done(error);

180 | Chapter 6: JSON Search



        });

    });

  });

  it('should return cities with cloudy weather', function(done) {

    req.end(function(res) {

      var cities = res.body;

      jq.run(

          '[.[] | select(.weather[0].main == "Clouds")]',

          cities, {

            input: 'json'

          })

        .then(function(citiesWeatherCloudyJson) { // Returns JSON String.

          var citiesWeatherCloudy = JSON.parse(

            citiesWeatherCloudyJson);

          checkCitiesWeather(citiesWeatherCloudy);

          done();

        })

        .catch(function(error) {

          console.error(error);

          done(error);

        });

    });

  });

  it('should return cities with cloudy weather using regex', function(done) {

    req.end(function(res) {

      var cities = res.body;

      jq.run(

          '[.[] | select(.weather[0].main | test("^Clo"; "i"))]',

          cities, {

            input: 'json'

          })

        .then(function(citiesWeatherCloudyJson) { // Returns JSON String.

          var citiesWeatherCloudy = JSON.parse(

            citiesWeatherCloudyJson);

          checkCitiesWeather(citiesWeatherCloudy);

          done();

        })

        .catch(function(error) {

          console.error(error);

          done(error);

        });

    });

  });

Comparing JSON Search Libraries and Tools | 181



  function checkCitiesWeather(cities) {

    for (var i = 0; i < cities.length; i++) {

      expect(cities[i].weather[0].main).to.eql('Clouds');

    }

  }

});

Note the following in this example:

• The test sets up the URI and Accept for unirest using Mocha’s beforeEach()
method, so that setup occurs in only one place in the code. Mocha executes

beforeEach() before running each test (i.e., it) within the context of the

describe.

• Each test exercises one or more example jq queries and uses expect-style asser‐
tions.

• The calls to the node-jq module work as follows. jq.run() does the following:

— Takes a String-based jq query as the first parameter.

— Uses an optional second parameter (an Object) that specifies the type of input:

— { input: 'json' } is a JavaScript Object. The Unit Tests use this option

because unirest returns Objects from the HTTP call to the Stub API pro‐

vided by json-server.

— { input: 'file' } is a JSON file. This is the default if the caller doesn’t
specify an input option.

— { input: 'string' } is a JSON String.

— Uses an ES6 JavaScript Promise to asynchronously return the result set as a
JSON String. In this case, the Unit Tests all need to do the following:

— Wrap their code within the then and catch constructs of the Promise.

— Use JSON.parse() to parse the result into a corresponding JavaScript
object structure.

— Visit the MDN site to learn more about the new Promise syntax.

• Each jq query omits the leading .cities because json-server takes the name of

the cities Array (from the cities-weather.json file) and adds cities to the URI:

— The URI address is http://localhost:5000/cities.

— Use $[:3] to get the first three cities, rather than $.cities[:3].

To run this test from the command line (in a second terminal session), do the
following:

182 | Chapter 6: JSON Search

https://mzl.la/2r0Q4sy


cd cities-weather-test

npm test

You should see the following results:

json-at-work => npm test

...

> mocha test

...

  cities-jq

    ✓ should return a 200 response
    ✓ should return all cities
    ✓ should return the last city
    ✓ should return the 1st 3 cities
    ✓ should return cities within a temperature range
    ✓ should return cities with cloudy weather
    ✓ should return cities with cloudy weather using regex

...

If you call console.log() with the cities variable in any of these tests, you’ll see that

the node-jq module returns a valid JSON document with key/value pairs.

jq on other platforms

In addition to Node.js, other major platforms have a jq library:

Ruby

The ruby-jq gem is available at RubyGems.org, and you can also find it on
GitHub.

Java

jackson-jq plugs into the Java Jackson library (from Chapter 4).

jq scorecard

Table 6-6 shows how jq stacks up against our evaluation criteria.

Table 6-6. jq scorecard

Mindshare Y

Dev community Y

Platforms CLI—Linux/macOS/Windows, Node.js, Java, Ruby on Rails

Intuitive Y

Standard N

Comparing JSON Search Libraries and Tools | 183

https://rubygems.org/gems/ruby-jq
https://github.com/winebarrel/ruby-jq
https://github.com/eiiches/jackson-jq


jq is excellent because it

• Enjoys solid support in most languages.

• Has excellent documentation.

• Provides a rich set of search and filtering capabilities.

• Can pipe query results to standard UNIX CLI tools (for example, sort, grep, and

uniq).

• Works great on the command line with the widely used cURL HTTP client.

• Has a fantastic online tester. jqPlay enables you to test jq queries from a simple
web interface. This rapid feedback enables you to iterate to a solution before
writing any code.

• Has a useful interactive tutorial (see the <jq-tutorial= section).

The only downside to jq is the initial learning curve. The sheer number of options
along with the query syntax can seem overwhelming at first, but the time you spend

to learn jq is well worth it.

We’ve covered the basics of jq in this chapter. jq has excellent documentation, and
you can find more detailed information at the following websites:

• jq Manual

• jq Tutorial

• jq Cookbook

• HyperPolyGlot JSON Tools: Jq

• Ubuntu jq man pages

JSON Search Library and Tool Evaluations—The Bottom
Line
Based on the evaluation criteria and overall usability, I rank the JSON Search libraries
in the following order:

1. jq

2. JSONPath

3. JSON Pointer

Although JSON Pointer is a standard and it can search a JSON document, I rank
JSONPath in second place over JSON Pointer for the following reasons:

184 | Chapter 6: JSON Search

https://stedolan.github.io/jq/manual
https://stedolan.github.io/jq/tutorial
https://github.com/stedolan/jq/wiki/Cookbook
http://hyperpolyglot.org/json
http://bit.ly/2rt8qBH


• JSONPath has a richer query syntax.

• A JSONPath query returns multiple elements in a document.

But jq is my overwhelming favorite JSON Search tool because it

• Works from the command line (JSONPath and JSON Pointer don’t provide this
capability). If you work with JSON in automated DevOps environments, you
need a tool that works from the command line.

• Has an online tester, which makes development faster.

• Has an interactive tutorial.

• Provides a rich query language.

• Has solid library support in most programming languages.

• Enjoys a large mindshare in the JSON community.

I’ve successfully used jq to search through JSON responses from other Web APIs

(not from OpenWeatherMap) that contained over 2 million lines of data, and jq per‐

formed flawlessly in a production environment. jq enjoys great mindshare in the
JSON community—just do a web search on <jq tutorial= and you’ll see several excel‐
lent tutorials that will help you go deeper.

What We Covered
We’ve shown some of the more widely used JSON Search libraries and tools, and how
to test search results. Hopefully, you’re now convinced to use one or more of these
JSON Search technologies to reduce your work rather than writing your own custom
utilities.

What’s Next?
Now that we’ve shown how to efficiently search JSON documents, we’ll move on to
transforming JSON in Chapter 7.

What We Covered | 185





CHAPTER 7

JSON Transform

Your application(s) may take in data from multiple APIs, and you’ll often need to
convert their JSON response data to a format that integrates with your application
architecture.

Many JSON Transform technologies enable you to convert between a JSON docu‐
ment and other data formats (e.g., HTML or XML) or a different JSON structure.
Many developers will be familiar with some of these libraries (e.g., Mustache and
Handlebars), but we’ll show how to use them in nontraditional ways (more on that
later). We’ll also cover libraries (e.g., JSON-T) that are not well-known to the com‐
munity at large, but are commonly used by members of the JSON community.

Types of JSON Transformation
Typical types of transformations include the following:

JSON-to-HTML
Many web and mobile applications have to handle JSON data from APIs, and this
is the most common type of JSON transformation.

JSON-to-JSON
Sometimes the JSON response from a Web API isn’t quite what you’re looking
for, and you’d like to change the format of the data to make it easier to work with.
In this case, you can alter the structure by modifying values and/or removing,
adding, and deleting fields. Some of the libraries are analogous to eXtensible
Stylesheet Language Transformations (XSLT) for XML (which is used to trans‐
form XML documents) in that they use a separate template to describe the trans‐
formation.

187



JSON-XML
SOAP/XML-based Web Services still exist, and sometimes you need to consume
XML and convert it to JSON for compatibility with newer applications in the
enterprise that are based on REST and JSON. Conversely, your applications may
need to send XML payloads to SOAP/XML-based Web Services. In this case,
you’ll need to convert from JSON to XML.

In this chapter, we’ll show how to do the following:

• Convert JSON to HTML

• Convert a JSON document to a new (JSON) structure

• Convert between XML and JSON

• Use JSON Transform libraries

• Write Unit Tests that transform the content of JSON documents returned by a
Web API

What to Look For in a JSON Transform Library
Just as you saw with JSON Search, several libraries are available for each type of trans‐
formation, and it’s hard to choose which one(s) to use. We’ll use the same criteria we
did in Chapter 6:

Mindshare
Does it appear to be widely used? How many hits do you see when you do an
internet search?

Developer community
Is the code on GitHub? Is it well maintained?

Platforms
Does it run on multiple platforms? Do multiple providers support the specifica‐
tion or library interfaces?

Intuitive
Is it well-documented? How easy is it to install? How intuitive is the interface?
How easy is it to use? How much code do I need to write?

Standards
Is the library associated with an official standard (e.g., IETF, WC3, or Ecma)?

188 | Chapter 7: JSON Transform



Test Input Data
We’ll use the same OpenWeatherMap API data that we used in previous chapters for
our examples. The original OpenWeatherMap API data was captured in chapter-7/
data/cities-weather.json. For the sake of brevity, Example 7-1 provides a shortened
version of the data.

Example 7-1. data/cities-weather-short.json

{

  "cities": [

    {

      "id": 5386035,

      "name": "Rancho Palos Verdes",

      "coord": {

        "lon": -118.387016,

        "lat": 33.744461

      },

      "main": {

        "temp": 84.34,

        "pressure": 1012,

        "humidity": 58,

        "temp_min": 78.8,

        "temp_max": 93

      },

      "dt": 1442171078,

      "wind": {

        "speed": 4.1,

        "deg": 300

      },

      "clouds": {

        "all": 5

      },

      "weather": [

        {

          "id": 800,

          "main": "Clear",

          "description": "Sky is Clear",

          "icon": "02d"

        }

      ]

    },

    {

      "id": 5392528,

      "name": "San Pedro",

      "coord": {

      "lon": -118.29229,

      "lat": 33.735851

      },

      "main": {

Test Input Data | 189



        "temp": 84.02,

        "pressure": 1012,

        "humidity": 58,

        "temp_min": 78.8,

        "temp_max": 91

      },

      "dt": 1442171080,

      "wind": {

        "speed": 4.1,

        "deg": 300

      },

      "clouds": {

        "all": 5

      },

      "weather": [

        {

          "id": 800,

          "main": "Clear",

          "description": "Sky is Clear",

          "icon": "02d"

        }

      ]

    },

    {

      "id": 3988392,

      "name": "Rosarito",

      "coord": {

        "lon": -117.033333,

        "lat": 32.333328

      },

      "main": {

        "temp": 82.47,

        "pressure": 1012,

        "humidity": 61,

        "temp_min": 78.8,

        "temp_max": 86

      },

      "dt": 1442170905,

      "wind": {

        "speed": 4.6,

        "deg": 240

      },

      "clouds": {

        "all": 32

      },

      "weather": [

        {

          "id": 802,

          "main": "Clouds",

          "description": "scattered clouds",

          "icon": "03d"

        }

190 | Chapter 7: JSON Transform



      ]

    }

  ]

}

Let’s start with a JSON-to-HTML transformation.

JSON-to-HTML Transformation
Most developers should be familiar with converting JSON from an API response to
HTML. For this type of conversion, we’ll look at the following libraries:

• Mustache

• Handlebars

Target HTML Document
Refer to <Test Input Data= on page 189. We want to simplify the Cities data and dis‐
play it in an HTML table as shown in Example 7-2.

Example 7-2. data/weather.html

<!DOCTYPE html>

<html>

  <head>

    <meta charset="UTF-8" />

    <title>OpenWeather - California Cities</title>

    <link rel="stylesheet" href="weather.css">

  </head>

  <body>

    <h1>OpenWeather - California Cities</h1>

    <table class="weatherTable">

      <thead>

        <tr>

          <th>City</th>

          <th>ID</th>

          <th>Current Temp</th>

        </tr>

      </thead>

      <tr>

        <td>Santa Rosa</td>

        <td>5201</td>

        <td>75</td>

      </tr>

    </table>

  </body>

JSON-to-HTML Transformation | 191



</html>

We’ll compare how each library converts the sample JSON input data to the target
HTML document.

Mustache
Mustache uses templates that provide a declarative (codeless) way to convert data into
other formats. In this case, we’ll use it to convert JSON data to an HTML document.
The Mustache team uses the term logicless to describe their library because templates
contain only simple tags without if/then/else clauses or looping constructs. Based on
the specification, Mustache expands the tags in a template file with values from a hash
or an object that is populated by an application. The beauty of templates (regardless
of whether you use Mustache or Handlebars, which reintroduces some conditional
logic) is that this approach provides a separation of concerns by factoring out the
transformation from application code to external files. External templates enable you
to easily add/remove data formats or change how you do the data formatting without
modifying application code.

For more information, see the following sites:

• Mustache main site

• Mustache GitHub repository

• Mustache 5 Specification

Mustache template syntax

The Mustache template in Example 7-3 converts the OpenWeatherMap JSON data to
HTML.

Example 7-3. templates/transform-html.mustache

<!DOCTYPE html>

<html>

  <head>

    <meta charset="UTF-8" />

    <title>OpenWeather - California Cities</title>

    <link rel="stylesheet" href="weather.css">

  </head>

  <body>

    <h1>OpenWeather - California Cities</h1>

    <table class="weatherTable">

      <thead>

        <tr>

192 | Chapter 7: JSON Transform

http://mustache.github.io/
https://github.com/janl/mustache.js
http://mustache.github.io/mustache.5.html


          <th>City</th>

          <th>ID</th>

          <th>Current Temp</th>

          <th>Low Temp</th>

          <th>High Temp</th>

          <th>Humidity</th>

          <th>Wind Speed</th>

          <th>Summary</th>

          <th>Description</th>

        </tr>

      </thead>

      {{#cities}}

        <tr>

          <td>{{name}}</td>

          <td>{{id}}</td>

          {{#main}}

            <td>{{temp}}</td>

            <td>{{temp_min}}</td>

            <td>{{temp_max}}</td>

            <td>{{humidity}}</td>

          {{/main}}

          <td>{{wind.speed}}</td>

          {{#weather.0}}

            <td>{{main}}</td>

            <td>{{description}}</td>

          {{/weather.0}}

        </tr>

      {{/cities}}

    </table>

  </body>

</html>

This template works as follows:

• The template is based on an HTML document, and Mustache expands each tag

with data from the cities Array.

• A tag can represent a single field, such as: {{temp}}.

• Sections are enclosed within begin (for example, {{#cities}}) and end (for

example, {{/cities}}) tags.

— A section can correspond to an Array (e.g., cities) or an object (e.g., main).

— A section sets the context for the other tags within that section. For example,

the {{temp}} tag inside the {{main}} section could be expressed as

{{main.temp}}, and corresponds to main.temp in the original JSON input
document.

JSON-to-HTML Transformation | 193



• The field syntax in a tag can refer to an Array index. For example, {{#weather.

0}} refers to weather[0] from the input JSON document.

Next, we’ll now show a Unit Test that renders the template with Cities data.

Mustache Unit Test

All tests in this chapter will continue to leverage Mocha/Chai, just as we saw in previ‐
ous chapters. Before going further, be sure to set up your test environment. If you
haven’t installed Node yet, visit Appendix A, and install Node.js (see <Install Node.js=
on page 318 and <Install npm Modules= on page 323). If you want to follow along

with the Node.js project provided in the code examples, cd to chapter-7/cities-
weather-transform-test and do the following to install all dependencies for the project:

npm install

If you’d like to set up the Node.js project yourself, follow the instructions in the book’s
GitHub repository.

Example 7-4 uses the following Node.js modules:

Mustache
This is available at https://www.npmjs.com/package/mustache. The corresponding
GitHub repository can be found at https://github.com/janl/mustache.js.

jsonfile

We’ll use this module to read the OpenWeatherMap JSON data from a file and

parse it. jsonfile is available at https�//www.npmjs.com/package/jsonole. Here’s

the jsonfile GitHub repository: https�//github.com/jprichardson/node-jsonole.

The Unit Test in Example 7-4 shows the example Mustache transformations in action.

Example 7-4. cities-weather-transform-test/test/mustache-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API

   ([http://openweathermap.org]) under Creative Commons Share A Like

   License (https://creativecommons.org/licenses/by-sa/4.0).

   Changes were made to the data to work with json-server.

   This does not imply an endorsement by the licensor.

   This code is distributed under Creative Commons Share A Like License.

*/

var expect = require('chai').expect;

var jsonfile = require('jsonfile');

var fs = require('fs');

var mustache = require('mustache');

194 | Chapter 7: JSON Transform

https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-7/Project-Setup.md
https://www.npmjs.com/package/mustache
https://github.com/janl/mustache.js
https://www.npmjs.com/package/jsonfile
https://github.com/jprichardson/node-jsonfile


describe('cities-mustache', function() {

  var jsonCitiesFileName = null;

  var htmlTemplateFileName = null;

  beforeEach(function() {

    var baseDir = __dirname + '/../..';

    jsonCitiesFileName = baseDir + '/data/cities-weather-short.json';

    htmlTemplateFileName = baseDir +

      '/templates/transform-html.mustache';

  });

  it('should transform cities JSON data to HTML', function(done) {

    jsonfile.readFile(jsonCitiesFileName, function(readJsonFileError,

      jsonObj) {

      if (!readJsonFileError) {

        fs.readFile(htmlTemplateFileName, 'utf8', function(

          readTemplateFileError, templateFileData) {

          if (!readTemplateFileError) {

            var template = templateFileData.toString();

            var html = mustache.render(template, jsonObj);

            console.log('\n\n\nHTML Output:\n' + html);

            done();

          } else {

            done(readTemplateFileError);

          }

        });

      } else {

        done(readJsonFileError);

      }

    });

  });

});

This code works as follows:

• beforeEach() runs before any Unit Test and does setup. In this case, it builds the
filenames for the input JSON file and the Mustache template.

• In the 'should transform cities JSON data to HTML' Unit Test:

— jsonfile.readFile() reads and parses the input JSON file into a JavaScript

Object (jsonObj).

— fs.readFile() reads the Mustache template into a JavaScript Object.

— We then convert the Mustache template to a String.

JSON-to-HTML Transformation | 195



— mustache.render() renders the Mustache template into an HTML document

using the values provided by jsonObj (which was read in earlier).

Before you run the Unit Test, open a terminal session and run json-server on port
5000 from your command line:

cd chapter-7/data

json-server -p 5000 ./cities-weather-short.json

Next, run the preceding test from a second terminal session as follows:

cd chapter-7/cities-weather-transform-test

npm test

You’ll see an HTML document that looks like our HTML target document.

Mustache online tester

The Architect template editor is an excellent online tester that makes it easy to itera‐
tively test and develop a Mustache template. This tool is great, because it shows how
the result changes as you modify the template. This WYSIWIG (What-You-See-Is-
What-You-Get) output enables rapid development and debugging.

In the Architect online tool, select Mustache.js in the Engine drop-down, paste the
Mustache template, and input JSON into the Template and View text boxes (respec‐
tively). You should see the screen in Figure 7-1.

Figure 7-1. Architect: JSON-to-HTML transformation with Mustache

196 | Chapter 7: JSON Transform

http://rowno.github.io/architect/


The Architect template editor also works with several other templating engines,
including Handlebars (which is covered in the next section), so this is my favorite
online template editor.

Remember that this web application is publicly available:

• Any data you paste into this app is visible to others. So don’t use this tool with
sensitive information (personal, proprietary, and so forth).

• A large amount of data will flood your browser. I’ve been successful with up to
about 10,000 lines of JSON, but after that this application begins to freeze up.

Mustache on the command line

Mustache also works directly from the command line. If you have installed Node.js,
do a global installation of the Mustache Node.js module and run it from the com‐
mand line (within the book example code directory) as follows:

npm install -g mustache

cd chapter-7

mustache ./data/cities-weather-short.json \

  ./templates/transform-html.mustache > output.html

Mustache on other platforms

A quick glance at the Mustache site will show that Mustache enjoys wide cross-
platform support, including the following:

• Node.js

• Ruby on Rails

• Java

Mustache scorecard

Table 7-1 shows a scorecard for Mustache based on the evaluation criteria from the
beginning of this chapter.

JSON-to-HTML Transformation | 197

http://mustache.github.io/
https://www.npmjs.com/package/mustache
http://github.com/defunkt/mustache
https://github.com/spullara/mustache.java


Table 7-1. Mustache scorecard

Mindshare Y

Dev community Y

Platforms JavaScript, Node.js, Java, Ruby on Rails

Intuitive Y

Standard N

Overall, Mustache is a powerful and flexible template engine used by many web
developers. Although it’s not a standard, Mustache has a solid specification.

Let’s move on and take a look at Handlebars.

Handlebars
Handlebars is an extension of Mustache, and it also expands the tags in a template file
with values from a hash or an object. Handlebars and Mustache are highly compati‐
ble, and Mustache templates will usually work with the Handlebars engine. HTML
conversion is pretty simple, and we won’t see any major differences between Mus‐
tache and Handlebars for now. Handlebars adds a few more features to enhance
transformation, and we’ll cover them in <JSON-to-JSON Transform= on page 204. For
more information on Handlebars, see the following:

• Handlebars main site (click the Learn More buttons for further details)

• Handlebars GitHub repository

�iferences between Handlebars and Mustache

Handlebars extends Mustache by providing additional capabilities, which include the 
following:

Conditional logic

Handlebars has built-in helpers such as if and unless. We’ll show how to lever‐

age unless in <JSON-to-JSON Transform= on page 204.

Helpers
Handlebars allows a developer to register custom helpers to extend Handlebars.
Each custom helper provides an additional directive that can be used in a tem‐

plate. For example, you could add a {{fullName}} helper that would combine

the firstName and lastName elements for a speaker. Helpers are powerful, but
we don’t cover them further in this book. See the Handlebars website and Jasko
Koyn’s Custom Helpers Handlebars.js Tutorial for more information on Handle‐
bars helpers.

198 | Chapter 7: JSON Transform

http://handlebarsjs.com
https://github.com/wycats/handlebars.js
http://handlebarsjs.com/#helpers
http://jaskokoyn.com/2013/08/08/custom-helpers-handlebars-js-tutorial
http://jaskokoyn.com/2013/08/08/custom-helpers-handlebars-js-tutorial


The Handlebars GitHub site has a full description of the differences between Handle‐
bars and Mustache.

Handlebars template syntax

Let’s use the Handlebars template in Example 7-5 to transform the input JSON to an
HTML document.

Example 7-5. templates/transform-html.hbs

<!DOCTYPE html>

<html>

  <head>

    <meta charset="UTF-8" />

    <title>OpenWeather - California Cities</title>

    <link rel="stylesheet" href="weather.css">

  </head>

  <body>

    <h1>OpenWeather - California Cities</h1>

    <table class="weatherTable">

      <thead>

        <tr>

          <th>ID</th>

          <th>City</th>

          <th>Current Temp</th>

          <th>Low Temp</th>

          <th>High Temp</th>

          <th>Humidity</th>

          <th>Wind Speed</th>

          <th>Summary</th>

          <th>Description</th>

        </tr>

      </thead>

      {{#each cities}}

      <tr>

        <td>{{id}}</td>

        <td>{{name}}</td>

        {{#main}}

          <td>{{temp}}</td>

          <td>{{temp_min}}</td>

          <td>{{temp_max}}</td>

          <td>{{humidity}}</td>

        {{/main}}

        <td>{{wind.speed}}</td>

        {{#each weather}}

          <td>{{main}}</td>

          <td>{{description}}</td>

        {{/each}}

      </tr>

      {{/each}}

JSON-to-HTML Transformation | 199

https://github.com/wycats/handlebars.js#differences-between-handlebarsjs-and-mustache


    </table>

  </body>

</html>

This template works as follows:

• Handlebars expands each tag with data from the cities Array.

• A tag can represent a single field, such as {{temp}}.

• Sections are enclosed within begin (e.g., {{#each cities}}) and end (e.g., {{/

cities}}) tags.

— A section can correspond to an Array (e.g., cities) or an object (e.g., main).

— The each tag (e.g., {{#each cities}}) is used for arrays (in this case, cities).

— A section sets the context for the other tags within that section. For example,

the {{temp}} tag inside the {{main}} section could be expressed as

{{main.temp}}, and corresponds to main.temp in the original JSON input
document.

Handlebars Unit Test

The Unit Test in Example 7-6 uses a Handlebars template to render HTML with the
Cities data.

Example 7-6. cities-weather-transform-test/test/handlebars-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API

   ([http://openweathermap.org]) under Creative Commons Share A Like

   License (https://creativecommons.org/licenses/by-sa/4.0).

   Changes were made to the data to work with json-server.

   This does not imply an endorsement by the licensor.

   This code is distributed under Creative Commons Share A Like License.

*/

var expect = require('chai').expect;

var jsonfile = require('jsonfile');

var fs = require('fs');

var handlebars = require('handlebars');

describe('cities-handlebars', function() {

  var jsonCitiesFileName = null;

  var htmlTemplateFileName = null;

200 | Chapter 7: JSON Transform



  beforeEach(function() {

    var baseDir = __dirname + '/../..';

    jsonCitiesFileName = baseDir + '/data/cities-weather-short.json';

    htmlTemplateFileName = baseDir +

      '/templates/transform-html.hbs';

  });

  it('should transform cities JSON data to HTML', function(done) {

    jsonfile.readFile(jsonCitiesFileName, function(readJsonFileError,

      jsonObj) {

      if (!readJsonFileError) {

        fs.readFile(htmlTemplateFileName, 'utf8', function(

          readTemplateFileError, templateFileData) {

          if (!readTemplateFileError) {

            var template = handlebars.compile(templateFileData);

            var html = template(jsonObj);

            console.log('\n\n\nHTML Output:\n' + html);

            done();

          } else {

            done(readTemplateFileError);

          }

        });

      } else {

        done(readJsonFileError);

      }

    });

  });

});

This Handlebars Unit Test is practically identical to its Mustache counterpart, with
the following differences:

• We don’t need to convert the Handlebars template (that is, read from fs.read

File()) to a String.

• It takes two steps to render the template:

— handlebars.compile() compiles the template into the template variable.

— template() (from the compile) then renders the jsonObj (input JSON) into
HTML.

When you run the preceding test with npm test, you’ll see a second HTML docu‐
ment that looks like our HTML target document.

JSON-to-HTML Transformation | 201



Handlebars online testers

Two excellent online testers make it easy to iteratively test and develop a Handlebars
template: TryHandlebars and Architect.

To use TryHandlebars, copy the Handlebars template and JSON into the Handlebars
Template and Context text boxes. The result is shown in Figure 7-2.

Figure 7-2. Try Handlebars.js: JSON-to-HTML transformation with Handlebars

You can also use the Architect template editor. Select Handlebars.js in the Engine
drop-down, paste the Handlebars template, and input JSON into the Template and
View text boxes (respectively). Click the Compile Handlebars Template button, and
you should see the result shown in Figure 7-3.

202 | Chapter 7: JSON Transform

http://tryhandlebarsjs.com/
http://rowno.github.io/architect


Figure 7-3. Architect: JSON-to-HTML transformation with Handlebars

Handlebars on the command line

Handlebars also works directly from the command line. If you have installed Node.js,

do a global installation of the hb-interpolate module, which is also available on
GitHub:

npm install -g hb-interpolate

cd chapter-7

hb-interpolate -j ./data/cities-weather-short.json \

   -t ./templates/transform-html.hbs > output.html

Handlebars on other platforms

Handlebars enjoys wide cross-platform support, including the following:

• Node.js

• Ruby on Rails

• Java

JSON-to-HTML Transformation | 203

https://www.npmjs.com/package/hb-interpolate
https://github.com/jimlloyd/hb-interpolate
https://www.npmjs.com/package/handlebars
https://github.com/cowboyd/handlebars-rails
https://github.com/jknack/handlebars.java


Handlebars scorecard

Table 7-2 provides a scorecard for Handlebars based on the evaluation criteria from
the beginning of this chapter.

Table 7-2. Handlebars scorecard

Mindshare Y

Dev community Y

Platforms JavaScript, Node.js, Java, Ruby on Rails

Intuitive Y

Standard N

Handlebars is another excellent engine that is used by many web developers. Just like
Mustache, Handlebars isn’t a standard, and it too has a solid specification and works
across multiple platforms.

JSON-to-HTML Transformation Evaluations—The Bottom Line
Mustache and Handlebars are both excellent choices for converting JSON to HTML,
and you’ll be fine with either library.

We’ve covered JSON-to-HTML conversion, and now it’s time to cover JSON-to-JSON
transformation.

JSON-to-JSON Transform
If you’ve worked with APIs for any length of time in a professional setting, you’ve
come to realize that APIs don’t always work the way you want them to. The JSON
response from an API is often the most overlooked part of an API’s design, and the
data provided by an API is often difficult to use. Even if the data is well-designed, you
may not want to use all of it or you may want to convert it to another JSON structure
that is better suited to the consuming application (or other applications in your
system).

Similar to the discussion in Chapter 6, you could do the following:

• Parse the JSON data from an API and manipulate the resulting hash structure
programmatically

• Write custom code to convert between an input JSON document and another
JSON structure

But these approaches are tedious and difficult. There’s no need to write this type of
utility code, because libraries are available to do most of the work for you.

204 | Chapter 7: JSON Transform



The Issues
The biggest issue I’ve seen in the area of JSON-to-JSON transformation is the lack of
standards (official or de facto). In the previous chapter, for example, even though
JSONPath is not an official standard, it is a de facto standard. JSONPath is a concept
and query language with wide acceptance and implementations on multiple plat‐
forms. But with the JSON Transform libraries, it was difficult to find something that
was more than just a single-language/platform implementation. I was looking for
products that could transcend individual platforms and serve a larger, more universal
purpose in the community. It was a journey to find the best solutions, but a few JSON
Transform libraries are better than a one-off solution, and I hope you find them use‐
ful for your projects.

JSON-to-JSON Transform Libraries
Several libraries (callable from an application) can transform JSON documents. We’ll
look into the following libraries:

• JSON Patch

• JSON-T

• Mustache

• Handlebars

If you’re in a hurry, Handlebars is the best choice for JSON-to-JSON transformation
(see <Handlebars= on page 219 and <JSON-to-JSON Transformation Evaluations—
The Bottom Line= on page 221). Otherwise, let’s walk through the various JSON-to-
JSON transformation techniques so you can see why.

Honorable Mention
Several JSON Transform libraries are available, but we can’t cover all of them. Here
are three additional libraries that are worth a look:

Jolt
Jolt works only in Java environments.

Json2Json
Json2Json is only available for Node.js.

jsonapter

jsonapter transforms JSON data in a declarative manner that leverages an exter‐
nal template with transformation rules. The template is analogous to XSL, but

that’s where the similarities stop. jsonapter and its template rules are in pure

JSON-to-JSON Transform | 205

http://bazaarvoice.github.io/jolt
https://github.com/joelvh/json2json
https://github.com/amida-tech/jsonapter


JavaScript, but XSL had its own separate templating language. Unfortunately, jso

napter works only with JavaScript and Node.js.

Target JSON Output
Refer to <Test Input Data= on page 189 earlier in this chapter. Even though there are

only three elements in the cities array, the data is overly complex for our use. We
don’t want to use all of these fields, so let’s simplify the structure as follows:

• Keep the cities array along with id and name.

• Make a completely new, flattened weather object.

• Add other weather-related fields from other structures to weather:

— main.temp, main.humidity, main.temp_min, main.temp_max

— wind.speed

— weather.0.main and weather.0.description

• Rename fields for the sake of clarity.

Given these transformation rules, the output should look like Example 7-7.

Example 7-7. data/cities-weather-short-transformed.json

{

  "cities": [

    {

      "id": "5386035",

      "name": "Rancho Palos Verdes",

      "weather": {

        "currentTemp": 84.34,

        "lowTemp": 78.8,

        "hiTemp": 93,

        "humidity": 58,

        "windSpeed": 4.1,

        "summary": "Clear"

        "description": "Sky is Clear"

      }

    },

    {

      "id": "5392528",

      "name": "San Pedro",

      "weather": {

        "currentTemp": 84.02,

        "lowTemp": 78.8,

        "hiTemp": 91,

        "humidity": 58,

        "windSpeed": 4.1,

        "summary": "Clear"

206 | Chapter 7: JSON Transform



        "description": "Sky is Clear"

      }

    },

    {

      "id": "3988392",

      "name": "Rosarito",

      "weather": {

        "currentTemp": 82.47,

        "lowTemp": 78.8,

        "hiTemp": 86,

        "humidity": 61,

        "windSpeed": 4.6,

        "summary": "Clouds"

        "description": "scattered clouds"

      }

    }

  ]

}

We’ll evaluate each of the JSON Transform libraries based on how easy it is to convert
the sample JSON input data to the target JSON output.

JSON Patch
JSON Patch is an IETF standard that specifies a data format for operations that trans‐
form a single resource. JSON Patch works in conjunction with the HTTP PATCH
standard. The purpose of HTTP PATCH is to modify a resource produced by an API.
In short, HTTP PATCH changes a portion of a resource, whereas HTTP PUT replaces
the resource entirely.

JSON Patch is supposed to be used as part of an HTTP Request, and not the
Response. JSON Patch is really meant for an API Producer, and not the Consumer.
But the context of this chapter is from the API Consumer’s point of view, and we’ll see
how far we can go with JSON Patch to transform the data in an HTTP Response.

JSON Patch syntax

Table 7-3 shows the main JSON Patch operations that could be used with the Open‐
WeatherMap data.

Table 7-3. JSON Patch operations

JSON Patch operation Description

Add - { "op": "add", "path": "/wind", 

"value": { "direction": "W" } }

Adds a value to either an existing Object or an Array. It can’t
create a completely new Object in a document.

Remove - { "op": "remove", "path": "/

main" }

Removes the main Object.

JSON-to-JSON Transform | 207

http://tools.ietf.org/html/rfc6902
http://tools.ietf.org/html/rfc5789
http://tools.ietf.org/html/rfc5789


JSON Patch operation Description

Replace - { "op": "replace", "path": "/

weather/0/main", "value": "Rain" }

Replaces a value in the document. This is the same as doing a

remove followed by an add.

Copy - { "op": "copy", "from": "/main/

temp", "path": "/weather/0/temp" }

Copies a value from one �eld to another.

Move - { "op": "move", "from": "/main/

temp", "path": "/weather/0/temp" }

Moves the temp key/value pair from the main Object to the

weather Array.

For a full description of JSON Patch, visit the main Patch site. Each value for path

and from is a JSON Pointer, which was covered in Chapter 6.

JSON Patch Unit Test

The Unit Test in Example 7-8 shows the example transformations in action. This code
uses the JSON Patch Node.js module. Patch has a corresponding GitHub repository.

The Unit Test in Example 7-8 shows how to use JSON Patch to transform the Cities
weather data to the target JSON data structure.

Example 7-8. cities-weather-transform-test/test/json-patch-spec.json

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API

   ([http://openweathermap.org]) under Creative Commons Share A Like

   License (https://creativecommons.org/licenses/by-sa/4.0).

   Changes were made to the data to work with json-server.

   This does not imply an endorsement by the licensor.

   This code is distributed under Creative Commons Share A Like License.

*/

var expect = require('chai').expect;

var jsonfile = require('jsonfile');

var jsonpatch = require('json-patch');

var citiesTemplate = [

  {

    op: 'remove',

    path: '/coord'

  },

  {

    op: 'remove',

    path: '/dt'

  },

  {

    op: 'remove',

    path: '/clouds'

  },

208 | Chapter 7: JSON Transform

http://jsonpatch.com/
https://www.npmjs.com/package/json-patch
https://github.com/bruth/jsonpatch-js


  {

    op: 'remove',

    path: '/weather/0/id'

  },

  {

    op: 'remove',

    path: '/weather/0/icon'

  },

  {

    op: 'move',

    from: '/main/temp',

    path: '/weather/0/currentTemp'

  },

  {

    op: 'move',

    from: '/main/temp_min',

    path: '/weather/0/lowTemp'

  },

  {

    op: 'move',

    from: '/main/temp_max',

    path: '/weather/0/hiTemp'

  },

  {

    op: 'move',

    from: '/main/humidity',

    path: '/weather/0/humidity'

  },

  {

    op: 'move',

    from: '/weather/0/main',

    path: '/weather/0/summary'

  },

  {

    op: 'move',

    from: '/wind/speed',

    path: '/weather/0/windSpeed'

  },

  {

    op: 'remove',

    path: '/main'

  },

  {

    op: 'remove',

    path: '/wind'

  }

];

describe('cities-json-patch', function() {

  var jsonFileName = null;

  var jsonCitiesFileName = null;

JSON-to-JSON Transform | 209



  beforeEach(function() {

    var baseDir = __dirname + '/../../data';

    jsonCitiesFileName = baseDir + '/cities-weather-short.json';

  });

  it('should patch all cities - fail', function(done) {

    jsonfile.readFile(jsonCitiesFileName, function(fileReadError,

      jsonObj) {

      if (!fileReadError) {

        try {

          var output = jsonpatch.apply(jsonObj, citiesTemplate);

          console.log('\n\n\n\Original JSON');

          console.log(jsonObj);

          console.log('\n\n\n\Patched JSON');

          console.log(JSON.stringify(output, null, 2));

          done();

        } catch (transformError) {

          console.error(transformError);

          done(transformError);

        }

      } else {

        console.error(fileReadError);

        done(fileReadError);

      }

    });

  });

  ...

});

In the example code, the test runs an example JSON Patch transformation. To run
this test from the command line, do the following:

cd cities-weather-transform-test

npm test

As you’ll notice, the should patch all cities - fail test fails as follows:

cities-json-patch

{ [PatchConflictError: Value at coord does not exist]

message: 'Value at coord does not exist',

name: 'PatchConflictError' }

  1) should patch all cities - fail

In this example, JSON Patch can’t find the following path to /coord because the
underlying JSON Pointer works only with individual objects, and not collections.

Example 7-9 is a second test that almost works.

210 | Chapter 7: JSON Transform



Example 7-9. cities-weather-transform-test/test/json-patch-spec.json

...

describe('cities-json-patch', function() {

  var jsonFileName = null;

  var jsonCitiesFileName = null;

  beforeEach(function() {

    var baseDir = __dirname + '/../../data';

    jsonCitiesFileName = baseDir + '/cities-weather-short.json';

  });

  ...

  it('should patch all cities - success (kind of)', function(done) {

    jsonfile.readFile(jsonCitiesFileName, function(fileReadError,

      jsonObj) {

      if (!fileReadError) {

        try {

          console.log('\n\n\n\Original JSON');

          console.log(jsonObj);

          var output = [];

          for (var i in jsonObj['cities']) {

            output.push(jsonpatch.apply(jsonObj['cities'][i],

              citiesTemplate));

          }

          console.log('\n\n\n\Patched JSON');

          console.log(JSON.stringify(output, null, 2));

          done();

        } catch (transformError) {

          console.error(transformError);

          done(transformError);

        }

      } else {

        console.error(fileReadError);

        done(fileReadError);

      }

    });

  });

});

Although the should patch all cities - success (kind of) test runs, it doesn’t
quite work for the following reasons:

• We want to create a new weather Object rather than use the existing Array, but
JSON Patch doesn’t allow for that.

JSON-to-JSON Transform | 211



• The test code iterates over the input JSON and transforms each element in the

cities array, and then collects the results in the output Array. This is needed
because JSON Patch can work only on a single resource (an Object) rather than a
collection (an Array).

JSON Patch on other platforms

Because JSON Patch is a standard, it enjoys cross-platform support (besides just
Node.js), including the following:

• Java

• Ruby

See http://jsonpatch.com/#libraries for more platform and library support.

JSON Patch scorecard

Table 7-4 shows a scorecard for JSON Patch based on the evaluation criteria from the
beginning of this chapter.

Table 7-4. JSON Patch scorecard

Mindshare Y

Dev community Y

Platforms JavaScript, Node.js, Java, Ruby on Rails

Intuitive N

Standard Y - RFC 6902

JSON Patch limitations

JSON Patch has the following limitations:

• JSON Patch doesn’t allow you to add completely new data structures. It can only
modify existing structures and their data.

• JSON Patch is designed only to change a single Object, and isn’t designed to work
with Arrays. This is because JSON Patch uses JSON Pointer to search for data,
where each query returns only a single field from a JSON document.

JSON Patch is not meant to transform the JSON data from an API’s HTTP Response,
but it was worth a try. JSON Patch is really designed to work with HTTP PATCH,
which specifies how to use JSON to patch portions of a resource’s data through an
HTTP Request. JSON Patch is a great fit when you need to implement HTTP PATCH
for an API.

212 | Chapter 7: JSON Transform

https://github.com/fge/json-patch
https://github.com/guillec/json-patch
http://jsonpatch.com/#libraries


But better libraries are available to transform JSON to other JSON data structures, so
let’s move on and try JSON-T.

JSON-T
JSON-T was one of the early JSON transform libraries, and it was developed in 2006
by Stefan Goessner (who also created JSONPath). JSON-T is similar to XSLT for
XML, and uses a template that contains transformation rules.

JSON-T syntax

JSON-T uses transformation rules defined in a JavaScript Object Literal, where each
rule is a key/value pair. Rules are in the following form:

var transformRules = {

  'ruleName': 'transformationRule',

  'ruleName': function

  ...

};

Note the following in the preceding form:

• Each ruleName or transformationRule must be enclosed by single ('') or dou‐

ble ("") quotes.

• Each transformationRule has one or more conversion expressions surrounded

by curly braces, like this: {cities}.

• A conversion expression can evaluate to another ruleName or to a field in the
document—an Array, Object, or key/value pair.

The following example shows the JSON-T transformation rules that could be used to
transform the OpenWeatherMap data:

var transformRules = {

  'self': '{ "cities": [{cities}] }',

  'cities[*]': '{ "id": "{$.id}", "name": "{$.name}", ' +

    '"weather": { "currentTemp": {$.main.temp}, "lowTemp": {$.main.temp_min}, ' +

    '"hiTemp": {$.main.temp_max}, "humidity": {$.main.humidity}, ' +

    '"windSpeed": {$.wind.speed}, "summary": "{$.weather[0].main}", ' +

    '"description": "{$.weather[0].description}" } },'

};

This example works as follows:

• self is the top-level rule that specifies how to format the new JSON document,

and {cities} refers to the cities[*] rule.

• cities[*] specifies how to format the cities Array:

JSON-to-JSON Transform | 213



— The star syntax in the cities[*] rule indicates that the rule applies to the

cities Array elements.

— The * resolves to each Array index.

— {$.} is shorthand notation. The {$.name} rule tells JSON-T to pull data from

the name field of each cities Array element. Here’s the longer notation:

cities[*].name.

For complete documentation on transformation rules, see <Basic Rules= on the main
JSON-T site.

JSON-T Unit Test

The Unit Test in Example 7-10 shows how to use JSON-T, and leverages the jsont
Node.js module.

Example 7-10. cities-weather-transform-test/test/jsont-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API

   ([http://openweathermap.org]) under Creative Commons Share A Like

   License (https://creativecommons.org/licenses/by-sa/4.0).

   Changes were made to the data to work with json-server.

   This does not imply an endorsement by the licensor.

   This code is distributed under Creative Commons Share A Like License.

*/

var expect = require('chai').expect;

var jsonfile = require('jsonfile');

var jsonT = require('../lib/jsont').jsonT;

describe('cities-jsont', function() {

  var jsonCitiesFileName = null;

  var transformRules = {

    'self': '{ "cities": [{cities}] }',

    'cities[*]': '{ "id": "{$.id}", "name": "{$.name}", ' +

      '"weather": { "currentTemp": {$.main.temp}, "lowTemp": {$.main.temp_min}, ' +

      '"hiTemp": {$.main.temp_max}, "humidity": {$.main.humidity}, ' +

      '"windSpeed": {$.wind.speed}, "summary": "{$.weather[0].main}", ' +

      '"description": "{$.weather[0].description}" } },'

  };

  ...

  beforeEach(function() {

    var baseDir = __dirname + '/../../data';

214 | Chapter 7: JSON Transform

http://goessner.net/articles/jsont/
http://goessner.net/articles/jsont/
https://github.com/tlrobinson/jsont
https://github.com/tlrobinson/jsont


    jsonCitiesFileName = baseDir + '/cities-weather-short.json';

  });

  it('should transform cities JSON data', function(done) {

    jsonfile.readFile(jsonCitiesFileName, function(readFileError,

      jsonObj) {

      if (!readFileError) {

        var jsonStr = jsonT(jsonObj, transformRules);

        jsonStr = repairJson(jsonStr);

        console.log(JSON.stringify(JSON.parse(jsonStr), null, 2));

        done();

      } else {

        done(readFileError);

      }

    });

  });

});

Notice that the preceding test invokes the repairJson() function in order to produce
valid JSON:

function repairJson(jsonStr) {

  var repairedJsonStr = jsonStr;

  var repairs = [

    [/,\s*}/gi, ' }'],

    [/,\s*\]/gi, ' ]']

  ];

  for (var i = 0, len = repairs.length; i < len; ++i) {

    repairedJsonStr = repairedJsonStr.replace(repairs[i][0], repairs[i][1]);

  }

  return repairedJsonStr;

}

// Modify the spec as follows:

...

jsonStr = repairJson(jsonStr);

console.log(JSON.stringify(JSON.parse(jsonStr), null, 2));

...

Without any modification, JSON-T produces a trailing comma after the last element

of the cities Array, so the transformed JSON would be invalid <as is.= To fix this, the

repairJson() function in the preceding example uses a Regular Expression (Regex)

to eliminate the final comma before the closing curly object bracket (}) or Array

brace (]). Although most languages have Regex functionality, this is bad because you

JSON-to-JSON Transform | 215



have to add custom code to correct the output. You shouldn’t have to write your own
infrastructure.

JSON-T on other platforms

In addition to Node.js, JSON-T runs on the following platforms:

In the browser
JSON-T runs as a JavaScript file, jsont.js.

Ruby
JSON-T can run as a pure Ruby implementation.

I haven’t been able to find a pure Java implementation of JSON-T.

JSON-T scorecard

Table 7-5 shows a scorecard for JSON-T based on the evaluation criteria from the
beginning of this chapter.

Table 7-5. JSON-T scorecard

Mindshare Y

Dev community Y

Platforms JavaScript, Node.js, Ruby on Rails

Intuitive N

Standard N

JSON-T limitations

JSON-T has the following limitations:

• Overly complex syntax.

• No Java implementation.

• Can’t handle an escaped String within a String. For example, JSON-T takes the

String, "escapedString": "I have a \"string within\" a string" and con‐

verts it to the following invalid String: "escapedString": "I have a "string

within " a string". Again, this requires a Regular Expression to fix the
problem.

• Can’t handle the last element in an Array or Object.

JSON-T is a small improvement over JSON Patch because JSON-T can process an
entire document. But JSON-T still requires a developer to write additional code to
make it work. JSON-T is a step in the right direction, but it still won’t work in a real

216 | Chapter 7: JSON Transform

http://goessner.net/download/prj/jsont/jsont.js
https://rubygems.org/gems/jsont/versions/0.1.3


development environment. JSON-T is good at converting JSON to HTML, but it’s not
designed to convert from one JSON document to another JSON structure.

Let’s move on and check out Mustache.

Mustache
In the previous section, we saw how Mustache can easily convert from JSON to
HTML. We’ll now see how well it can convert the Cities data to the target JSON out‐
put document.

Example 7-11 is a Mustache template to do the conversion (template details were
described in the JSON-to-HTML section on Mustache).

Example 7-11. templates/transform-json.mustache

{

  "cities": [

    {{#cities}}

      {

        "id": "{{id}}",

        "name": "{{name}}",

        "weather": {

          {{#main}}

          "currentTemp": {{temp}},

          "lowTemp": {{temp_min}},

          "hiTemp": {{temp_max}},

          "humidity": {{humidity}},

          {{/main}}

          "windSpeed": {{wind.speed}},

          {{#weather.0}}

          "summary": "{{main}}"

          "description": "{{description}}"

          {{/weather.0}}

        }

      },

    {{/cities}}

  ]

}

Let’s run this template in the Architect template editor. Select Mustache.js in the
Engine drop-down, paste the Mustache template, and input JSON into the Template
and View text boxes (respectively). You should see the result in Figure 7-4.

JSON-to-JSON Transform | 217

http://rowno.github.io/architect/


Figure 7-4. Architect: JSON-to-JSON transformation with Mustache

Take a look at line 41 of the resulting JSON (in the Result text box) and you’ll see the
trailing comma, which is invalid JSON. You can confirm that the resulting JSON is
invalid by pasting it into JSONLint:

Mustache limitations

Mustache doesn’t work for JSON-to-JSON transformation because (just like JSON-T)
it can’t determine when it has reached the last element in an Array or Object in the
input JSON.

Let’s move on to Handlebars.

218 | Chapter 7: JSON Transform



Handlebars
As we saw previously, Handlebars does a good job of converting JSON to HTML, and
the template in Example 7-12 shows how to convert the Cities JSON data into the tar‐
get JSON output.

Example 7-12. templates/transform-json.hbs

{

  "cities": [

    {{#each cities}}

      {

        "id": "{{id}}",

        "name": "{{name}}",

        "weather": {

          {{#main}}

          "currentTemp": {{temp}},

          "lowTemp": {{temp_min}},

          "hiTemp": {{temp_max}},

          "humidity": {{humidity}},

          {{/main}}

          "windSpeed": {{wind.speed}},

          {{#each weather}}

          "summary": "{{main}}",

          "description": "{{description}}"

          {{/each}}

        }

      }{{#unless @last}},{{/unless}}

    {{/each}}

  ]

}

This template is similar to the one shown in the JSON-to-HTML section on Handle‐
bars, but with one notable difference. The following line does exactly what we need: it
emits a comma after each element unless it’s the last element:

{{#unless @last}},{{/unless}}

Here’s how it works:

• {{#unless}} is a built-in Handlebars helper that renders the enclosing block

only if the condition returns false.

• @last@ is a built-in Handlebars variable that returns false if an element is the

last in an Array, and true if the current element is at the end of the Array.

For more information on {{#unless}} and @last@, visit the Handlebars website.

JSON-to-JSON Transform | 219

http://handlebarsjs.com/builtin_helpers.html


Let’s run the template in the Architect template editor. Select Handlebars.js in the
Engine drop-down, paste the Handlebars template, and input JSON into the Template
and View text boxes (respectively). You should see the result shown in Figure 7-5.

Figure 7-5. Architect: JSON-to-JSON transformation with Handlebars

Take a look at line 56 of the resulting JSON (in the Result text box) and you’ll see that
there is no trailing comma so this should be valid. You can confirm that the resulting
JSON is valid by pasting it into JSONLint, as shown in Figure 7-6.

220 | Chapter 7: JSON Transform

http://rowno.github.io/architect/


Figure 7-6. JSONLint validation of JSON transformed with Handlebars

This is exactly what we’re looking for. As noted earlier, Handlebars differs from Mus‐
tache in that Handlebars has just enough conditional logic to make the JSON-to-
JSON transformation work properly.

JSON-to-JSON Transformation Evaluations—The Bottom Line
Based on the evaluation criteria and overall usability, Handlebars is my overwhelming
choice for JSON-to-JSON transformation for the following reasons:

• It’s the only library that works <as is.= The conditional logic makes it possible.

• It has solid cross-platform support.

• The template language is rich enough to meet most transformation needs.

• It’s declarative, yet allows for custom logic with custom helpers.

• Excellent online tools facilitate development.

JSON-to-JSON Transform | 221



We’ve covered JSON-to-JSON conversion, and now it’s time to cover JSON-XML
transformation.

JSON-XML Transformation
Often, developers and architects need to integrate with legacy systems that still use
XML. To have a clean separation of concerns, it’s important to add a thin adapter at
the boundaries of your system that encapsulates the translation between XML and
JSON.

JSON-XML Transformation Conventions
It’s easy to convert XML elements (e.g., <weather>) to/from JSON, but it’s difficult to
convert XML attributes to/from JSON. This is a lossy conversion, which means that
you can’t convert the JSON back to the original XML, and vice versa because JSON
doesn’t have a standard way to represent attributes. Remember that JSON’s core con‐
structs are Objects, Arrays, and key/value pairs.

For example, an XML attribute provides metadata that describes an element, and
looks like this:

<weather temp="84.34" pressure="1012" humidity="58"

         temp_min="78.8" temp_max="93"/>

In this XML snippet, the temp, pressure, humidity, temp_min, and temp_max

attributes describe the weather element. Back in the days when XML was in vogue
(roughly 1998–2008), many XML Schema designers leveraged XML attributes to:

• Reduce the overall payload of messages going over the wire

• Simplify the conversion between XML and their native platform (e.g., Java, JS,
Ruby, or C#)

We’d like to see how to directly convert between XML and JSON, and several well-
known conventions (specifications) describe how to do this:

• Badgerfish

• Parker

• JsonML

• Spark

• GData

• Abdera

222 | Chapter 7: JSON Transform



This chapter focuses on Badgerfish and Parker because they’re well-known. A full dis‐
cussion and in-depth comparison of these XML-JSON conversion convention is
beyond the scope of this book, but you can find further details at the Open311 wiki.

To compare the Badgerfish and Parker conventions, we’ll start by showing a sample
input XML document based on the OpenWeatherMap data. Then, we’ll compare how
both conventions would convert from XML to JSON. Example 7-13 provides the
input XML.

Example 7-13. data/cities-weather-short.xml

<?xml version="1.0" encoding="UTF-8" ?>

<cities>

  <city>

    <id>5386035</id>

    <name>Rancho Palos Verdes</name>

    <coord>

      <lon>-118.387016</lon>

      <lat>33.744461</lat>

    </coord>

    <main temp="84.34" pressure="1012" humidity="58" temp_min="78.8" temp_max="93"/>

    <dt>1442171078</dt>

    <wind>

      <speed>4.1</speed>

      <deg>300</deg>

    </wind>

    <clouds>

      <all>5</all>

    </clouds>

    <weather>

      <id>800</id>

      <main>Clear</main>

      <description>Sky is Clear</description>

      <icon>02d</icon>

    </weather>

  </city>

  <city>

    <id>5392528</id>

    <name>San Pedro</name>

    <coord>

      <lon>-118.29229</lon>

      <lat>33.735851</lat>

    </coord>

    <main temp="84.02" pressure="1012" humidity="58" temp_min="78.8" temp_max="91"/>

    <dt>1442171080</dt>

    <wind>

      <speed>4.1</speed>

      <deg>300</deg>

    </wind>

    <clouds>

        <all>5</all>

JSON-XML Transformation | 223

http://wiki.open311.org/JSON_and_XML_Conversion


    </clouds>

    <weather>

      <id>800</id>

      <main>Clear</main>

      <description>Sky is Clear</description>

      <icon>02d</icon>

    </weather>

  </city>

  <city>

    <id>3988392</id>

    <name>Rosarito</name>

    <coord>

      <lon>-117.033333</lon>

      <lat>32.333328</lat>

    </coord>

    <main temp="82.47" pressure="1012" humidity="61" temp_min="78.8" temp_max="86"/>

    <dt>1442170905</dt>

    <wind>

      <speed>4.6</speed>

      <deg>240</deg>

    </wind>

    <clouds>

      <all>32</all>

    </clouds>

    <weather>

      <id>802</id>

      <main>Clouds</main>

      <description>scattered clouds</description>

      <icon>03d</icon>

    </weather>

  </city>

</cities>

��dgerosh

Badgerfish has an excellent online tester that makes it easy to convert from the input
XML to JSON (per the Badgerfish convention). The Badgerfish Online Tester is
shown in Figure 7-7.

224 | Chapter 7: JSON Transform

http://dropbox.ashlock.us/open311/json-xml


Figure 7-7. Badgerosh online tester—convert XML to JSON

Paste the input XML into the text box just below the Convert XML to JSON label,
click the <Translate XML above to JSON below button= and you’ll see very compact
JSON in the resulting text box. You can use JSONLint or your favorite text editor
(which includes a JSON beautifier plug-in), and you’ll see the (more readable) JSON
output shown in Example 7-14.

Example 7-14. data/cities-weather-short-badgerosh.json

{

  "cities": {

    "city": [{

      "id": {

        "$1": 5386035

      },

      "name": {

        "$1": "Rancho Palos Verdes"

      },

      "coord": {

        "lon": {

          "$1": "-118.387016"

        },

        "lat": {

          "$1": "33.744461"

        }

      },

      "main": {

        "@temp": "84.34",

        "@pressure": 1012,

        "@humidity": 58,

        "@temp_min": "78.8",

        "@temp_max": 93

      },

      "dt": {

        "$1": 1442171078

      },

JSON-XML Transformation | 225

http://jsonlint.com


      "wind": {

        "speed": {

          "$1": "4.1"

        },

        "deg": {

          "$1": 300

        }

      },

      "clouds": {

        "all": {

          "$1": 5

        }

      },

      "weather": {

        "id": {

          "$1": 800

        },

        "main": {

          "$1": "Clear"

        },

        "description": {

          "$1": "Sky is Clear"

        },

        "icon": {

          "$1": "02d"

        }

      }

    }, {

      "id": {

        "$1": 5392528

      },

      "name": {

        "$1": "San Pedro"

      },

      "coord": {

        "lon": {

          "$1": "-118.29229"

        },

        "lat": {

          "$1": "33.735851"

        }

      },

      "main": {

        "@temp": "84.02",

        "@pressure": 1012,

        "@humidity": 58,

        "@temp_min": "78.8",

        "@temp_max": 91

      },

      "dt": {

        "$1": 1442171080

      },

226 | Chapter 7: JSON Transform



      "wind": {

        "speed": {

          "$1": "4.1"

        },

        "deg": {

          "$1": 300

        }

      },

      "clouds": {

        "all": {

          "$1": 5

        }

      },

      "weather": {

        "id": {

          "$1": 800

        },

        "main": {

          "$1": "Clear"

        },

        "description": {

          "$1": "Sky is Clear"

        },

        "icon": {

          "$1": "02d"

        }

      }

    }, {

      "id": {

        "$1": 3988392

      },

      "name": {

        "$1": "Rosarito"

      },

      "coord": {

        "lon": {

          "$1": "-117.033333"

        },

        "lat": {

          "$1": "32.333328"

        }

      },

      "main": {

        "@temp": "82.47",

        "@pressure": 1012,

        "@humidity": 61,

        "@temp_min": "78.8",

        "@temp_max": 86

      },

      "dt": {

        "$1": 1442170905

      },

JSON-XML Transformation | 227



      "wind": {

        "speed": {

          "$1": "4.6"

        },

        "deg": {

          "$1": 240

        }

      },

      "clouds": {

        "all": {

          "$1": 32

        }

      },

      "weather": {

        "id": {

          "$1": 802

        },

        "main": {

          "$1": "Clouds"

        },

        "description": {

          "$1": "scattered clouds"

        },

        "icon": {

          "$1": "03d"

        }

      }

    }]

  }

}

The core rules of the Badgerfish convention include the following:

• Element names become Object properties.

• The textual content of an element goes into the $ property of an Object with the

same name. For example, <name>Rancho Palos Verdes</name> becomes

"name": { "$1": "Rancho Palos Verdes" }.

• Nested elements become nested properties. For example, the following XML

<wind>

  <speed>4.1</speed>

  <deg>300</deg>

</wind>

becomes

"wind": {

  "speed": {

    "$1": "4.1"

  },

  "deg": {

228 | Chapter 7: JSON Transform



    "$1": 300

  }

}

• Multiple elements with the same name at the same level become Array elements.
The following XML

<city>

</city>

<city>

</city>

becomes

"city": [ { ... } ]

• Attributes go in properties whose names begin with @. For example, the following
XML

<main temp="84.02" pressure="1012" humidity="58"

      temp_min="78.8" temp_max="91"/>

becomes

"main": {

  "@temp": "84.34",

  "@pressure": 1012,

  "@humidity": 58,

  "@temp_min": "78.8",

  "@temp_max": 93

}

We’ve glossed over a lot of details, but Badgerfish has excellent documentation and
resources. For further information, see the following:

• Badgerfish site

• Badgerfish documentation

• Badgerfish online tester

Parker

Parker provides a simple conversion, but it ignores XML attributes, so you will lose
the attribute data when converting to JSON. Following the Parker convention yields
the JSON document in Example 7-15 (based on the input XML).

Example 7-15. data/cities-weather-short-parker.json

{

  "cities": [{

    "id": 5386035,

JSON-XML Transformation | 229

http://badgerfish.ning.com
http://www.sklar.com/badgerfish
http://dropbox.ashlock.us/open311/json-xml


    "name": "Rancho Palos Verdes",

    "coord": {

      "lon": -118.387016,

      "lat": 33.744461

    },

    "main": null,

    "dt": 1442171078,

    "wind": {

      "speed": 4.1,

      "deg": 300

    },

    "clouds": {

      "all": 5

    },

    "weather": [{

      "id": 800,

      "main": "Clear",

      "description": "Sky is Clear",

      "icon": "02d"

    }]

  }, {

    "id": 5392528,

    "name": "San Pedro",

    "coord": {

      "lon": -118.29229,

      "lat": 33.735851

    },

    "main": null,

    "dt": 1442171080,

    "wind": {

      "speed": 4.1,

      "deg": 300

    },

    "clouds": {

      "all": 5

    },

    "weather": [{

      "id": 800,

      "main": "Clear",

      "description": "Sky is Clear",

      "icon": "02d"

    }]

  }, {

    "id": 3988392,

    "name": "Rosarito",

    "coord": {

      "lon": -117.033333,

      "lat": 32.333328

    },

    "main": null,

    "dt": 1442170905,

    "wind": {

230 | Chapter 7: JSON Transform



      "speed": 4.6,

      "deg": 240

    },

    "clouds": {

      "all": 32

    },

    "weather": [{

      "id": 802,

      "main": "Clouds",

      "description": "scattered clouds",

      "icon": "03d"

    }]

  }]

}

The core rules of the Parker convention include the following:

• Element names become Object properties.

• Attributes are ignored.

• Nested elements become nested properties.

The Parker convention is simple, but has the following issues:

• It is lossy because it ignores XML attributes when you convert to JSON.

• There is a lack of documentation and supporting tools.

The Issues with JSON-XML Transformation Conventions
The preceding XML-JSON transformation conventions have the following limita‐
tions:

• None are considered to be a widely accepted standard.

• They lack cross-platform support and full implementations.

• Documentation is not always complete.

• Data conversion can be lossy (Parker).

• Data conversion can introduce changes in the data structure (Badgerfish).

XML-JSON Transform—The Bottom Line
With these shortcomings in mind, I suggest No Convention (none of the above) to
convert the following:

JSON-XML Transformation | 231



XML-to-JSON
Parse (unmarshal) the XML into Objects/Hashes on your current platform by

using a well-known library (we’ll use xml2js for our Node.js-based examples).
Then, convert the Objects/Hashes from your platform into JSON with

JSON.stringify() if you’re using JavaScript. Chapters 3 and 4 show how to con‐
vert Ruby and Java, respectively, to JSON.

JSON-to-XML
Parse the JSON into data structures on your platform using a common library.

JSON.parse() works great for JavaScript. Chapters 3 and 4 show to parse JSON
into Ruby and Java. Then, generate an XML document from your data structure

(this is also known as marshaling). Again, we’ll leverage xml2js from a Node.js-
based Mocha/Chai test.

Rather than being concerned with a particular convention/style of conversion, focus
on the following:

• Do what works best for you.

• Use the libraries you already know and have on hand.

• Test the conversion results to make sure that you’re not losing any data.

• Keep it simple.

• Encapsulate everything and make sure that it fits well with the rest of your enter‐
prise application architecture.

In short, choose the best library that you can find on your platform and work with or
around the limitations.

Parsing/generating XML libraries

XML has been around for a long time, and each major platform has a solid imple‐
mentation, including the following:

Node.js

We’ll use xml2js.

Ruby
There are several good libraries, and two of the best are LibXml and Nokogiri.

Java
Java Architecture for XML Binding (JAXB) has been a mainstay for years in the
Java community.

232 | Chapter 7: JSON Transform

https://www.npmjs.com/package/xml2js
https://xml4r.github.io/libxml-ruby
http://www.nokogiri.org
https://jaxb.java.net/tutorial


JSON-XML Transformation Unit Test
The Unit Test suite in Example 7-16 has methods to test JSON-to-XML and XML-to-
JSON conversion, and uses the following technologies:

xml2js

To convert XML to/from JavaScript data structures, you can use xml2js, which is
also available on GitHub.

JSON.parse() / JSON.stringify()
To convert JSON to/from JavaScript structures. You can find more information

about JSON.parse() / JSON.stringify() at MDN and in Chapter 3.

Example 7-16. cities-weather-transform-test/test/json-xml-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API

   ([http://openweathermap.org]) under Creative Commons Share A Like

   License (https://creativecommons.org/licenses/by-sa/4.0).

   Changes were made to the data to work with json-server.

   This does not imply an endorsement by the licensor.

   This code is distributed under Creative Commons Share A Like License.

*/

var expect = require('chai').expect;

var jsonfile = require('jsonfile');

var fs = require('fs');

var xml2js = require('xml2js');

describe('json-xml', function() {

  var jsonCitiesFileName = null;

  var xmlCitiesFileName = null;

  beforeEach(function() {

    var baseDir = __dirname + '/../..';

    jsonCitiesFileName = baseDir + '/data/cities-weather-short.json';

    xmlCitiesFileName = baseDir +

      '/data/cities-weather-short.xml';

  });

  it('should transform cities JSON data to XML', function(done) {

    jsonfile.readFile(jsonCitiesFileName, function(readJsonFileError,

      jsonObj) {

      if (!readJsonFileError) {

        var builder = new xml2js.Builder();

        var xml = builder.buildObject(jsonObj);

JSON-XML Transformation | 233

https://www.npmjs.com/package/xml2js
https://github.com/Leonidas-from-XIV/node-xml2js
https://mzl.la/2s8UCRU


        console.log('\n\n\nXML Output:\n' + xml);

        done();

      } else {

        done(readJsonFileError);

      }

    });

  });

  it('should transform cities XML data to JSON', function(done) {

    fs.readFile(xmlCitiesFileName, 'utf8', function(

      readXmlFileError, xmlData) {

      if (!readXmlFileError) {

        var parser = new xml2js.Parser();

        parser.parseString(xmlData, function(error, xmlObj) {

          if (!error) {

            console.log('\n\n\nJSON Output:\n' +

              JSON.stringify(xmlObj, null, 2));

            done();

          } else {

            done(error);

          }

        });

      } else {

        done(readXmlFileError);

      }

    });

  });

});

The preceding code works as follows:

• beforeEach() runs before any Unit Test and does setup. In this case, it builds the
filenames for the input JSON file and the output XML file.

• In the 'should transform cities JSON data to XML' Unit Test:

— jsonfile.readFile() reads and parses the input JSON file into a JavaScript

Object (jsonObj).

— xml2js.Builder() creates an Object that can convert from JSON to XML.

— builder.buildObject(jsonObj) converts the JavaScript Object (from the
input JSON file) into an XML String.

• In the 'should transform cities XML data to JSON' Unit Test:

— fs.readFile() reads the XML file into a String.

— xml2js.Parser() creates an XML parser.

234 | Chapter 7: JSON Transform



— parser.parseString() parses the XML String (from the input XML file) into

a JavaScript Object (xmlObj).

— JSON.stringify() converts the xmlObj JavaScript Object into a JSON String.

What We Covered
We’ve shown several JSON Transform libraries to do the following:

• Convert JSON to HTML

— Either Mustache or JSON will work just fine.

• Transform JSON to other, cleaner JSON structures

— Choose Handlebars.

• Convert between XML and JSON

— Don’t worry about the XML/JSON conventions.

— Use an XML library that works well on your platform.

• Write Unit Tests that transform the content of JSON documents returned by a
Web API

Use these JSON Transform techniques to convert JSON data from external APIs into
data formats that are compatible with your applications.

What’s Next?
Now that we’ve covered the JSON Ecosystem (Schema, Search, and Transform), we’ll
move to the final section on JSON in the enterprise; this part of the book covers the
following topics:

• Hypermedia

• MongoDB (NoSQL)

• Messaging with Kafka

In Chapter 8, we’ll discuss Hypermedia with JSON in order to show how to interact
with an API.

What We Covered | 235





PART III

JSON in the Enterprise





CHAPTER 8

JSON and Hypermedia

Imagine building an application in HTML for use in a web browser. You can add
forms, links, and buttons by using standard HTML, and the browser renders your
new controls without requiring a new release of the browser. In the <olden days,= it
didn’t work this way. If we released a new version of our server-side application with
new functionality, we often had to release a new version of the client code to pair with
it. Browsers changed this expectation.

We now live in a world where <rich clients= are coming back in the form of apps on
people’s devices. We could just have phones access web pages, but for various reasons,
people (and companies) want native apps as icons that they can touch on their devi‐
ces. So how can we get rich native apps back, while still benefitting from the configu‐
rability of the browser? Hypermedia. We send not only the data, but also the actions
the user can take on the data, along with a representation of how to trigger that
action.

So far, the RESTful API calls and JSON responses in this book have been isolated
(without reference to other calls). Each JSON response from the Speakers API has
just contained data about the speaker, but without providing any information about
other related resources and actions.

Hypermedia enables a REST API to guide its Consumers on the following:

• Links to other related resources (e.g., other APIs). For example, a Conference
API could provide links to the Reservation, Speaker, or Venue APIs so that Con‐
sumers could learn more about the conference and the speakers, and purchase a
ticket.

• Semantics on the data returned by an API. This metadata documents the data in
the JSON response, and defines the meaning of the data elements.

239



• Additional actions that they can take on the current resource exposed by the API.
For example, a Speakers API could provide more than just CRUD operations.
How about a set of links that lead and guide a speaker through the speaker pro‐
posal process (in order to speak at a conference)?

Hypermedia groups resources together and guides a Consumer through a series of
calls to achieve a business result. Think of Hypermedia as the API equivalent of a
web-based shopping cart that leads the Consumer through the buying process and
(hopefully) to an eventual purchase. A Hypermedia format provides a standard way
for Consumers to interpret and process the link-related data elements from an API
response.

In this chapter, we’ll show how to compare these well-known JSON-based Hyperme‐
dia formats:

• Siren

• JSON-LD

• Collection+JSON

• json:api

• HAL

Comparing Hypermedia Formats
We’ll use the Speaker data from previous chapters to drive the discussion of Hyper‐

media formats. The following invocation to the fictitious myconference Speakers API
might return:

GET http://myconference.api.com/speakers/123456

{

  "id": "123456",

  "firstName": "Larson",

  "lastName": "Richard",

  "email": "larson.richard@myconference.com",

  "tags": [

    "JavaScript",

    "AngularJS",

    "Yeoman"

  ],

  "age": 39,

  "registered": true

}

240 | Chapter 8: JSON and Hypermedia



To see a list of a speaker’s presentations, make another API call:

GET http://myconference.api.com/speakers/123456/presentations

[

  {

    "id": "1123",

    "speakerId": "123456",

    "title": "Enterprise Node",

    "abstract": "Many developers just see Node as a way to build web APIs ...",

    "audience": [

      "Architects",

      "Developers"

    ]

  },

  {

    "id": "2123",

    "speakerId": "123456",

    "title": "How to Design and Build Great APIs",

    "abstract": "Companies now leverage APIs as part of their online ...",

    "audience": [

      "Managers",

      "Architects",

      "Developers"

    ]

  }

]

Let’s see how to represent the Speaker and Presentation APIs using several Hyperme‐
dia formats.

�eoning Key Terms
Before we go further, let’s define a couple of key terms related to REST:

Resource
Anything that holds data—an Object, a Document, or a Service (e.g., Stock
Quote). A resource can be related to other resources. A resource is an endpoint
that has a URI.

Representation
The current state of a resource, expressed in JSON or XML.

My Opinion on Hypermedia
All architects and developers have opinions that shape the way they evaluate a partic‐
ular technology. Before we review and compare each Hypermedia format, I’ll let you
know my opinion on Hypermedia. Hypermedia is powerful and provides rich meta-
data to the data returned by an API, but it is controversial. Many people love it, and
other people hate it, and I’m somewhere between these two groups.

Comparing Hypermedia Formats | 241



Many people in the REST and Hypermedia communities believe that adding meta-
data on operations and semantic data definitions to a JSON payload is helpful. I
respect everyone’s opinion, but I believe in the use of links to other resources only for
these reasons:

• Additional information on operations and data definitions is unnecessary if you
document your API properly in the first place. Why should the JSON data
returned from each API call return information on actions and data types? This
seems like clutter when you have the following situations:

— OpenApi (formerly Swagger), RAML, and API Blueprint can all provide this
information in an API’s documentation.

— JSON Schema describes the data types for the JSON data representation.

• Hypermedia adds complexity to the JSON payload returned by an API. With
richer/more functional Hypermedia formats, the following are true:

— The original data representation is altered and difficult to interpret. Most of
the formats shown in this chapter alter or embed the original data representa‐
tion of the resource, which makes it harder for Consumers to understand and
process.

— You have to spend more time and effort to explain how to use your API, and
Consumers will move on to something simpler.

— The payload is larger and takes up more network bandwidth.

• Simple links to other related resources are great because they guide an API Con‐
sumer through the use of your API(s) without altering the original JSON data
representation.

Siren
Structured Interface for Representing Entities (Siren) was developed in 2012. It was
designed to represent data from Web APIs, and works with both JSON and XML. You
can find Siren on GitHub. Siren’s Internet Assigned Numbers Authority (IANA)

media type is application/vnd.siren+json.

The key concepts in Siren are as follows:

Entities
An Entity is a resource that is accessible with a URI. It has properties and
Actions.

Actions
Actions that can be taken on an Entity.

242 | Chapter 8: JSON and Hypermedia

https://openapis.org/
http://raml.org/
https://apiblueprint.org/
https://github.com/kevinswiber/siren
http://www.iana.org/assignments/media-types/media-types.xhtml


Links
Navigational links to other Entities.

Example 8-1 shows the Speaker data in Siren format based on the following HTTP
Request:

GET http://myconference.api.com/speakers/123456

Accept: application/vnd.siren+json

Example 8-1. data/speaker-siren.json

{

  "class": ["speaker"],

  "properties": {

    "id": "123456",

    "firstName": "Larson",

    "lastName": "Richard",

    "email": "larson.richard@myconference.com",

    "tags": [

      "JavaScript",

      "AngularJS",

      "Yeoman"

    ],

    "age": 39,

    "registered": true

  },

  "actions": [

    {

      "name": "add-presentation",

      "title": "Add Presentation",

      "method": "POST",

      "href": "http://myconference.api.com/speakers/123456/presentations",

      "type": "application/x-www-form-urlencoded",

      "fields": [

        {

          "name": "title",

          "type": "text"

        },

        {

          "name": "abstract",

          "type": "text"

        },

        {

          "name": "audience",

          "type": "text"

        }

      ]

    }

  ],

  "links": [

    { "rel": ["self"],

      "href": "http://myconference.api.com/speakers/123456"

Comparing Hypermedia Formats | 243



    },

    {

      "rel": ["presentations"],

      "href": "http://myconference.api.com/speakers/123456/presentations"

    }

  ]

}

In this example, the speaker Entity is defined as follows:

• class indicates the class of the resource (in this case, speaker).

• properties is an Object that holds the representation of the resource. It’s the real
data payload from an API response.

• actions describes the Actions that can be taken on a speaker. In this case, the

actions indicate that you can add a presentation to a speaker.

• links provides links to self (the current resource) and presentations, a URI

that returns the list of the speaker’s presentations.

Siren provides excellent metadata for describing the available actions on an Entity
(resource). Siren has classes (types) to describe the data, but does not provide data
definitions (semantics) like JSON-LD.

JSON-LD
JavaScript Object Notation for Linking Data (JSON-LD) became a W3C standard in
2014. It was designed as a data-linking format to be used with REST APIs, and it
works with NoSQL databases such as MongoDB and CouchDB. You can find more
information at the main JSON-LD site, and you can find it on GitHub. The JSON-LD

media type is application/ld+json, and .jsonld is the file extension. JSON-LD has
an active community and large working group because of its status with the W3C.

Example 8-2 shows the Speaker data in JSON-LD format based on the following
HTTP Request:

GET http://myconference.api.com/speakers/123456

Accept: application/vnd.ld+json

244 | Chapter 8: JSON and Hypermedia

https://www.w3.org/TR/json-ld-api
http://json-ld.org
https://github.com/json-ld/json-ld.org


Example 8-2. data/speaker.jsonld

{

  "@context": {

    "@vocab": "http://schema.org/Person",

    "firstName": "givenName",

    "lastName": "familyName",

    "email": "email",

    "tags": "http://myconference.schema.com/Speaker/tags",

    "age": "age",

    "registered": "http://myconference.schema.com/Speaker/registered"

  },

  "@id": "http://myconference.api.com/speakers/123456",

  "id": "123456",

  "firstName": "Larson",

  "lastName": "Richard",

  "email": "larson.richard@myconference.com",

  "tags": [

    "JavaScript",

    "AngularJS",

    "Yeoman"

  ],

  "age": 39,

  "registered": true,

  "presentations": "http://myconference.api.com/speakers/123456/presentations"

}

In this example, the @context Object provides the overall context for the Speaker

data representation. In this case, @context does more than merely list the fields.

Rather, @context (in conjunction with @vocab) seeks to provide unambiguous

semantic meaning for each data element that comprises the speaker Object. Here are
the specifics:

• The Schema.org site provides unambiguous definitions for commonly used data
elements such as age and Person.

• @vocab sets the base type to Person and allows you to extend it with other fields

(e.g., tags or registered) for the speaker.

• @id is essentially the URI, the unique ID for accessing a particular speaker.

Notice that the core JSON representation of the speaker remains unchanged, which
is a major selling point if you have an existing API. This additive approach makes it
easier to adopt JSON-LD gradually, without breaking your API Consumers. The
existing JSON representation is undisturbed, which enables you to iteratively add the
semantics of data linking to your API’s data representation.

Comparing Hypermedia Formats | 245

http://schema.org/
http://schema.org/Person


Note that http://myconference.schema.com does not exist. Rather, it’s shown for the
sake of the example. If you need a definition that doesn’t exist on Schema.org, you’re
free to create one on your own domain. Just be sure that you provide good documen‐
tation.

Example 8-3 shows a speaker’s list of presentations in JSON-LD format based on the
following HTTP Request:

GET http://myconference.api.com/speakers/123456/presentations

Accept: application/vnd.ld+json

Example 8-3. data/presentations.jsonld

{

  "@context": {

    "@vocab": "http://myconference.schema.com/",

    "presentations": {

      "@type": "@id",

      "id": "id",

      "speakerId": "speakerId",

      "title": "title",

      "abstract": "abstract",

      "audience": "audience"

    }

  },

  "presentations": [

    {

      "@id": "http://myconference.api.com/speakers/123456/presentations/1123",

      "id": "1123",

      "speakerId": "123456",

      "title": "Enterprise Node",

      "abstract": "Many developers just see Node as a way to build web APIs or ...",

      "audience": [

        "Architects",

        "Developers"

      ]

    }, {

      "@id": "http://myconference.api.com/speakers/123456/presentations/2123",

      "id": "2123",

      "speakerId": "123456",

      "title": "How to Design and Build Great APIs",

      "abstract": "Companies now leverage APIs as part of their online strategy ...",

      "audience": [

        "Managers",

        "Architects",

        "Developers"

      ]

    }

  ]

}

246 | Chapter 8: JSON and Hypermedia



In this example, @context indicates that all the data is related to the concept of pre

sentations. In this case, we need to define presentations inline because the

http://myconference.schema.com/presentations Object doesn’t exist. If the

Object did exist, the @context would look like this:

  "@context": "http://myconference.schema.com/presentations"

You can try out the preceding example on the JSON-LD Playground. This is an excel‐
lent online tester that validates JSON-LD documents. Use this tool to validate your
data format before writing the code for your API.

JSON-LD by itself does not provide information on operations, nor does it provide
semantics on the data representations. HYDRA is an add-on to JSON-LD that pro‐
vides a vocabulary to specify client-server communication.

Here’s where to find more information on HYDRA:

• Main site

• W3C community

Example 8-4 shows the list of presentations in JSON-LD format enhanced with
HYDRA operations:

GET http://myconference.api.com/speakers/123456/presentations

Accept: application/vnd.ld+json

Example 8-4. data/presentations-operations.jsonld

{

  "@context": [

    "http://www.w3.org/ns/hydra/core", {

      "@vocab": "http://myconference.schema.com/",

      "presentations": {

        "@type": "@id",

        "id": "id",

        "speakerId": "speakerId",

        "title": "title",

        "abstract": "abstract",

        "audience": "audience"

      }

    }

  ],

  "presentations": [

    {

      "@id": "http://myconference.api.com/speakers/123456/presentations/1123",

      "id": "1123",

      "speakerId": "123456",

      "title": "Enterprise Node",

      "abstract": "Many developers just see Node as a way to build web APIs or ...",

      "audience": [

Comparing Hypermedia Formats | 247

http://json-ld.org/playground
http://www.markus-lanthaler.com/hydra/
https://www.w3.org/community/hydra


        "Architects",

        "Developers"

      ]

    }, {

      "@id": "http://myconference.api.com/speakers/123456/presentations/2123",

      "id": "2123",

      "speakerId": "123456",

      "title": "How to Design and Build Great APIs",

      "abstract": "Companies now leverage APIs as part of their online strategy ...",

      "audience": [

        "Managers",

        "Architects",

        "Developers"

      ]

    }

  ],

  "operation": {

    "@type": "AddPresentation",

    "method": "POST",

    "expects": {

      "@id": "http://schema.org/id",

      "supportedProperty": [

        {

          "property": "title",

          "range": "Text"

        }, {

          "property": "abstract",

          "range": "Text"

        }

      ]

    }

  }

}

Note the following in this example:

• operation indicates that you can add a presentation with a POST.

• @context points to the HYDRA domain to add the operation keyword.

• @vocab adds in the http://myconference.schema.com/ domain and the presenta

tions definition.

JSON-LD by itself is great, because it provides links to other related resources without
altering the original data representation. In other words, JSON-LD does not intro‐
duce breaking changes to your API Consumers. For the sake of simplicity, use JSON-
LD without the overhead of HYDRA.

248 | Chapter 8: JSON and Hypermedia



Collection+JSON
Collection+JSON was created in 2011, focuses on handling data items in a collection,
and is similar to the Atom Publication/Syndication formats. You can find more infor‐
mation at the main Collection+JSON site, and on GitHub. The Collection+JSON

media type is application/vnd.collection+json.

To be valid, a Collection+JSON response must have a top-level collection Object
that holds the following:

• A version

• An href with a URI that points to self (the original resource that was requested)

Example 8-5 shows the Speaker data in Collection+JSON format based on the follow‐
ing HTTP request:

GET http://myconference.api.com/speakers/123456

Accept: application/vnd.collection+json

Example 8-5. data/speaker-collection-json-links.json

{

  "collection": {

    "version": "1.0",

    "href": "http://myconference.api.com/speakers",

    "items": [

      {

        "href": "http://myconference.api.com/speakers/123456",

        "data": [

          { "name": "id", "value": "123456" },

          { "name": "firstName", "value": "Larson" },

          { "name": "lastName", "value": "Richard" },

          { "name": "email", "value": "larson.richard@myconference.com" },

          { "name": "age", "value": "39" },

          { "name": "registered", "value": "true" }

        ],

        "links": [

          {

            "rel": "presentations",

            "href": "http://myconference.api.com/speakers/123456/presentations",

            "prompt": "presentations"

          }

        ]

      }

    ]

  }

}

Note the following in this example:

Comparing Hypermedia Formats | 249

http://amundsen.com/media-types/collection/
https://github.com/collection-json/spec


• The collection Object encapsulates the Speaker data.

• The items Array contains all objects in the Speaker collection. Because we quer‐
ied by ID, there’s only one Object in the collection.

• The data Array contains name/value pairs for each data element that comprises a
Speaker.

• The links Array provides link relationships to resources related to the speaker.
Each link is composed of:

— A rel key that describes the relation.

— An href that provides a hyperlink to the presentations for this speaker.

— A prompt that could be used by HTML forms to reference the speaker collec‐
tion.

Collection+JSON also provides the ability to read, write, and query items in a collec‐
tion, but a full discussion of Collection+JSON is outside the scope of this book. Visit
http://amundsen.com/media-types/collection/examples/ for examples, and http://
amundsen.com/media-types/tutorials/collection/tutorial-01.html for a tutorial.

Collection+JSON does a nice job of providing link relations, but it completely
changes the structure of the Speaker data by converting it to key/value pairs inside

the data Array.

json:api
json:api was developed in 2013 and provides conventions for standardizing the for‐

mat of JSON requests/responses to/from an API. Although json:api’s main focus is
on API request/response data, it also includes Hypermedia. You can find more infor‐

mation at the main json:api site and on GitHub. The json:api media type is appli

cation/vnd.api+json.

A valid json:api document must have one of the following elements at the top level:

data

The data representation for the resource. This contains resource Objects, each of

which must have a type (specifies the data type) and id (unique resource ID)
field.

errors

An Array of error Objects that shows an error code and message for each error
encountered by the API.

meta

Contains nonstandard metadata (e.g., copyright and authors, etc.).

250 | Chapter 8: JSON and Hypermedia

http://amundsen.com/media-types/collection/examples/
http://amundsen.com/media-types/tutorials/collection/tutorial-01.html
http://amundsen.com/media-types/tutorials/collection/tutorial-01.html
http://jsonapi.org/
https://github.com/json-api/json-api


Optional top-level elements include the following:

links

An Object that holds link relations (hyperlinks) to resources related to the pri‐
mary resource.

included

An Array of embedded resource Objects that are related to the primary resource.

Example 8-6 shows a list of Speakers in json:api format based on the following
HTTP Request:

GET http://myconference.api.com/speakers

Accept: application/vnd.api+json

Example 8-6. data/speakers-jsonapi-links.json

{

  "links": {

    "self": "http://myconference.api.com/speakers",

    "next": "http://myconference.api.com/speakers?limit=25&offset=25"

  },

  "data": [

    {

      "type": "speakers",

      "id": "123456",

      "attributes": {

        "firstName": "Larson",

        "lastName": "Richard",

        "email": "larson.richard@myconference.com",

        "tags": [

          "JavaScript",

          "AngularJS",

          "Yeoman"

        ],

        "age": 39,

        "registered": true

      }

    },

    {

      "type": "speakers",

      "id": "223456",

      "attributes": {

        "firstName": "Ester",

        "lastName": "Clements",

        "email": "ester.clements@myconference.com",

        "tags": [

          "REST",

          "Ruby on Rails",

          "APIs"

        ],

Comparing Hypermedia Formats | 251



        "age": 29,

        "registered": true

      }

    },

    ...

  ]

}

This example works as follows:

• The links Array provides link relationships to resources related to the speaker.
In this case, each element contains the URI to the related resource. Note that

there are no restrictions/qualifications on the link names, but self is commonly

understood as the current resource, and next paginate.

• The data Array contains a list of the resource objects, each of which has a type

(e.g., speakers) and id to meet the requirements of the json:api format defini‐

tion. The attributes object holds the key/value pairs that make up each speaker
Object.

Example 8-7 shows how to embed all presentation Objects for a speaker with

json:api:

GET http://myconference.api.com/speakers/123456

Accept: application/vnd.api+json

Example 8-7. data/speaker-jsonapi-embed-presentations.json

{

  "links": {

    "self": "http://myconference.api.com/speakers/123456"

  },

  "data": [

    {

      "type": "speaker",

      "id": "123456",

      "attributes": {

        "firstName": "Larson",

        "lastName": "Richard",

        "email": "larson.richard@myconference.com",

        "tags": [

          "JavaScript",

          "AngularJS",

          "Yeoman"

        ],

        "age": 39,

        "registered": true

      }

    }

  ],

252 | Chapter 8: JSON and Hypermedia



  "included": [

    {

      "type": "presentations",

      "id": "1123",

      "speakerId": "123456",

      "title": "Enterprise Node",

      "abstract": "Many developers just see Node as a way to build web APIs or ...",

      "audience": [

        "Architects",

        "Developers"

      ]

    }, {

      "type": "presentations",

      "id": "2123",

      "speakerId": "123456",

      "title": "How to Design and Build Great APIs",

      "abstract": "Companies now leverage APIs as part of their online ...",

      "audience": [

        "Managers",

        "Architects",

        "Developers"

      ]

    }

  ]

}

In this example, the included Array (part of the json:api specification) specifies the

embedded presentations for the speaker. Although embedding resources reduces
the number of API calls, it introduces tight data coupling between resources because

the speaker needs to know the format and content of the presentation data.

Example 8-8 provides a better way to show relationships between resources with

links:

GET http://myconference.api.com/speakers/123456

Accept: application/vnd.api+json

Example 8-8. data/speaker-jsonapi-link-presentations.json

{

  "links": {

    "self": "http://myconference.api.com/speakers/123456",

    "presentations": "http://myconference.api.com/speakers/123456/presentations"

  },

  "data": [

    {

      "type": "speaker",

      "id": "123456",

      "attributes": {

        "firstName": "Larson",

        "lastName": "Richard",

Comparing Hypermedia Formats | 253



        "email": "larson.richard@myconference.com",

        "tags": [

          "JavaScript",

          "AngularJS",

          "Yeoman"

        ],

        "age": 39,

        "registered": true

      }

    }

  ]

}

In this example, the links Array shows that the speaker has presentations and pro‐

vides a URI, but the speaker resource (and API) doesn’t know about the data in the

presentation resource. Plus, there’s less data for the Consumer to process. This loose

coupling enables the presentation data to change without impacting the Speakers
API.

json:api has a rich feature set including standardized error messages, pagination,
content negotiation, and policies for Creating/Updating/Deleting resources. In the

past, I’ve borrowed portions of the json:api specification to create API style guides.
Plus, there are excellent libraries for most platforms that simplify working with

json:api. The data Array and its resource Objects (which require a type and id)
alter the JSON data representation, but the rest of the Object remains the same. A full

discussion of json:api is outside the scope of this book; visit the JSON API page for
examples, and the full specification.

HAL
Hypertext Application Language (HAL) became an IETF standard in 2012. It was
designed as a way to link resources using hyperlinks, and works with either JSON or
XML. You can find more information at the main HAL site and on GitHub. The HAL

media types are application/hal+json and application/hal+xml.

HAL’s format is simple, readable, and doesn’t alter the original data representation.
HAL is a popular media type, and is based on the following:

Resource Objects

Resources contain links (contained in a _links Object), other resources, and

embedded resources (e.g., an Order contains items) contained in an _embedded
Object.

Links
Links provide target URIs that lead to other external resources.

254 | Chapter 8: JSON and Hypermedia

http://jsonapi.org/implementations/
http://jsonapi.org/examples
http://jsonapi.org/examples
http://jsonapi.org/format
https://tools.ietf.org/html/draft-kelly-json-hal-08
http://stateless.co/hal_specification.html
https://github.com/mikekelly/hal_specification


Both the _embedded and _links objects are optional, but one must be present as the
top-level object so that you have a valid HAL document.

Example 8-9 shows the Speaker data in HAL format based on the following HTTP
Request:

GET http://myconference.api.com/speakers/123456

Accept: application/vnd.hal+json

Example 8-9. data/speaker-hal.json

{

  "_links": {

    "self": {

      "href": "http://myconference.api.com/speakers/123456"

    },

    "presentations": {

      "href": "http://myconference.api.com/speakers/123456/presentations"

    }

  },

  "id": "123456",

  "firstName": "Larson",

  "lastName": "Richard",

  "email": "larson.richard@myconference.com",

  "tags": [

    "JavaScript",

    "AngularJS",

    "Yeoman"

  ],

  "age": 39,

  "registered": true

}

This example works as follows:

• The _links object contains link relations, each of which shows the semantic
meaning of a link.

— href is required within a link relation. The value of an href must be a valid
URI (see RFC 3986) or URI Template (see RFC 6570).

• The link relations are as follows:

— self is a link to the current speaker resource (self).

— presentations are the presentations that this speaker will deliver. In this

case, the presentations Object describes the relationship between the current

resource and the http://myconference.api.com/speakers/123456/presen

tations hyperlink (through the href key).

Comparing Hypermedia Formats | 255

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc6570


— Note that next and find are not HAL keywords. HAL allows you to have cus‐
tom names for link objects.

Let’s make the example more interesting by getting a list of speakers, as shown in
Example 8-10.

GET http://myconference.api.com/speakers

Accept: application/vnd.hal+json

Example 8-10. data/speakers-hal-links.json

{

  "_links": {

    "self": {

      "href": "http://myconference.api.com/speakers"

    },

    "next": {

      "href": "http://myconference.api.com/speakers?limit=25&offset=25"

    },

    "find": {

      "href": "http://myconference.api.com/speakers{?id}", "templated": true

    }

  },

  "speakers": [

    {

      "id": "123456",

      "firstName": "Larson",

      "lastName": "Richard",

      "email": "larson.richard@myconference.com",

      "tags": [

        "JavaScript",

        "AngularJS",

        "Yeoman"

      ],

      "age": 39,

      "registered": true

    },

    {

      "id": "223456",

      "firstName": "Ester",

      "lastName": "Clements",

      "email": "ester.clements@myconference.com",

      "tags": [

        "REST",

        "Ruby on Rails",

        "APIs"

      ],

      "age": 29,

      "registered": true

    },

    ...

256 | Chapter 8: JSON and Hypermedia



  ]

}

This example works as follows:

• In addition to self, here are the following link relations:

— next indicates the next set of speaker resources. In other words, this is a way

to provide pagination for an API. In this case, the limit parameter indicates

that 25 speaker Objects will be returned in each API call. The offset param‐
eter indicates that we’re at the 26th Object in the list. This convention is simi‐
lar to Facebook’s pagination style.

— find provides a hyperlink to find an individual speaker with a templated link,

where {?id} indicates to the caller that they can find the speaker by id in the

URI. The templated key indicates that this is a templated link.

• The JSON data representation remains unchanged.

Returning to our first example, let’s embed all presentation Objects for a speaker, as 
shown in Example 8-11:

GET http://myconference.api.com/speakers/123456

Accept: application/vnd.hal+json

Example 8-11. /data/speaker-hal-embed-presentations.json

{

  "_links": {

    "self": {

      "href": "http://myconference.api.com/speakers/123456"

    },

    "presentations": {

      "href": "http://myconference.api.com/speakers/123456/presentations"

    }

  },

  "_embedded": {

    "presentations": [

      {

        "_links": {

          "self": {

            "href": "http://myconference.api.com/speakers/123456/presentations/1123"

          }

        },

        "id": "1123",

        "title": "Enterprise Node",

        "abstract": "Many developers just see Node as a way to build web APIs ...",

        "audience": [

          "Architects",

          "Developers"

        ]

Comparing Hypermedia Formats | 257



      },

      {

        "_links": {

          "self": {

            "href": "http://myconference.api.com/speakers/123456/presentations/2123"

          }

        },

        "id": "2123",

        "title": "How to Design and Build Great APIs",

        "abstract": "Companies now leverage APIs as part of their online ...",

        "audience": [

          "Managers",

          "Architects",

          "Developers"

        ]

      }

    ]

  },

  "id": "123456",

  "firstName": "Larson",

  "lastName": "Richard",

  "email": "larson.richard@myconference.com",

  "tags": [

    "JavaScript",

    "AngularJS",

    "Yeoman"

  ],

  "age": 39,

  "registered": true

}

In this example, instead of the presentations link relation, we’re using the _embed

ded Object to embed the presentation Objects for a speaker. Each presentation

Object in turn has a _links Object for related resources.

At first glance, embedding related resources looks reasonable, but I prefer link rela‐
tions instead for the following reasons:

• Embedded resources increase the size of the payload.

• The _embedded Object alters the data representation.

• It couples the Speakers and Presentation APIs. The Speakers API now has to

know about the data structure of the presentations. With a simple presentations
link relation, the Speakers API knows only that there is a related API.

HAL (minus the embedded resources) is lightweight and provides links to other
resources without altering the data representation.

258 | Chapter 8: JSON and Hypermedia



Conclusions on Hypermedia
Here’s the bottom line on Hypermedia: keep it simple. Maintain the original structure
of the resource representation. Provide solid documentation for your API as part of
the design process, and much of the need for Hypermedia (actions, documentation,
data typing) is already taken care of. For me, the most useful parts of Hypermedia are
the links to other resources. Proponents of full Hypermedia may vehemently disagree
(and that’s OK), but here’s my rebuttal:

• If your API is difficult to understand, people won’t want to use it.

• The original JSON representation is the most important thing. Don’t alter the
structure of the resource just for the sake of adhering to a Hypermedia format.

With these considerations in mind, I choose a minimal HAL structure (links only,
without embedded resources) as my Hypermedia format. With these caveats, HAL is
excellent because it

• Is the simplest possible thing that can work

• Is a standard

• Enjoys wide community support

• Has solid cross-platform libraries

• Doesn’t alter my JSON data representation

• Doesn’t impose requirements for data semantics and operations

• Does just what I want, and not a bit more

json:api (with links rather than embedded resources) is my second choice for
Hypermedia because it standardizes JSON requests/responses in addition to provid‐
ing Hypermedia capabilities, and still respects the integrity and intent of the original
JSON data representation. Of the Hypermedia formats that alter the JSON data repre‐

sentation, json:api appears to have the least impact. Because of its wide cross-

platform support, you can reduce the formatting work by leveraging a json:api
library for your programming language (this shortens and simplifies development).

json:api deserves strong consideration if you need more than just Hypermedia, and
you want to standardize JSON requests/responses across all the APIs in your enter‐
prise (but API design is outside the scope of this book).

JSON-LD (without HYDRA) is my third favorite Hypermedia format because it’s
simple and doesn’t change the JSON data representation. Although the data semantics
are not hard to add to an existing API, I don’t see a need for this, because good API
documentation combined with JSON Schema does a better job of defining the mean‐
ing and structure of the data.

Conclusions on Hypermedia | 259



Recommendations for Working with Hypermedia
You may disagree with my opinion on Hypermedia, but imagine you’re the architect
or team lead and you’re asking your team to use all aspects of Hypermedia to develop
an API. Would your developers see Hypermedia as being useful or burdensome?
Harkening back to the original days of eXtreme Programming (XP), do the simplest
thing that could possibly work. Use the right tools and techniques for the job, and
take the following approach:

• Document your API properly with OpenApi/Swagger or RAML.

• Define your data constructs by using JSON Schema.

• Choose HAL, json:api, or JSON-LD as your Hypermedia format, and start out
with simple links to related resources.

• Evaluate how well the development process is going:

— What’s the team velocity?

— How testable is the API?

• Ask your API Consumers for feedback. Can they

— Easily understand the data representation?

— Read and consume the data?

• Iterate and evaluate early and often.

Then, see whether you need to add in the operations and data definitions; you proba‐
bly won’t.

Practical Issues with Hypermedia
Here are some things to think about when you consider adding Hypermedia to an
API:

• Hypermedia is not well understood in the community. When I speak on this
topic, many developers haven’t heard of it, know little about it, or don’t know
what it’s used for. Some education is required even with the simplest Hypermedia
format.

• Lack of standardization. We’ve covered five of the leading formats, but there are
more. Only two (HAL and JSON-LD) in this chapter are backed by a standards
body. So there’s no consensus in the community.

• Hypermedia (regardless of the format) requires additional serialization/deseriali‐
zation by both the API Producer and Consumer. So, be sure to choose a widely
used Hypermedia format that provides cross-platform library support. This

260 | Chapter 8: JSON and Hypermedia



makes life easier for developers. We’ll cover this in the next section when we test
with HAL.

Testing with HAL in the Speakers API
As in previous chapters, we’ll test against a Stub API (that provides a JSON response)
that doesn’t require us to write any code.

Test Data
To create the stub, we’ll use the Speaker data from earlier chapters as our test data,
which is available on GitHub, and deploy it as a RESTful API. Again, we’ll leverage

the json-server Node.js module to serve up the speakers.json file as a Web API. If

you need to install json-server, refer to <Install npm Modules= on page 323 in
Appendix A.

Here’s how to run json-server on port 5000 from your local machine:

cd chapter-8/data

json-server -p 5000 ./speakers-hal-server-next-rel.json

Visit http://localhost:5000/speakers in Postman (which we used in earlier chapters),

select GET as the HTTP verb, and click the Send button. You should see all the speak‐
ers from our Stub API, as shown in Figure 8-1.

Testing with HAL in the Speakers API | 261

https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-8/data


Figure 8-1. Speakers data in HAL format served by json-server and viewed with
Postman

This URI is also viewable from your browser.

Note that we had to massage the Speaker data to work with json-server for this
example. Example 8-12 shows the updated structure that works with HAL.

Example 8-12. data/speakers-hal-server-next-rel.json

{

  "speakers": {

    "_links": {

      "self": {

        "href": "http://myconference.api.com/speakers"

      },

      "next": {

        "href": "http://myconference.api.com?limit=25&offset=25"

      },

      "find": {

        "href": "http://myconference.api.com/speakers{?id}",

        "templated": true

      }

    },

    "speakers": [{

      "id": "123456",

      "firstName": "Larson",

      "lastName": "Richard",

      "email": "larson.richard@myconference.com",

      "tags": [

262 | Chapter 8: JSON and Hypermedia



        "JavaScript",

        "AngularJS",

        "Yeoman"

      ],

      "age": 39,

      "registered": true

    }, {

      "id": "223456",

      "firstName": "Ester",

      "lastName": "Clements",

      "email": "ester.clements@myconference.com",

      "tags": [

        "REST",

        "Ruby on Rails",

        "APIs"

      ],

      "age": 29,

      "registered": true

    }]

  }

}

In this example, the outer speakers Object is needed so that json-server will serve
up the file with the proper URI: http://localhost:5000/speakers. The rest of the data

(links Object and speakers Array) remain the same.

HAL Unit Test
Now that we have the API in place, let’s create a Unit Test. We will continue to lever‐
age Mocha/Chai (within Node.js), just as we saw in previous chapters. Before going
further, be sure to set up your test environment. If you haven’t installed Node.js yet,
then refer to Appendix A, and install Node.js (see <Install Node.js= on page 318 and
<Install npm Modules= on page 323). If you want to follow along with the Node.js

project provided in the code examples, cd to chapter-8/myconference and do the fol‐
lowing to install all dependencies for the project:

npm install

If you’d like to set up the Node.js project yourself, follow the instructions in the book’s
GitHub repository.

Here are the npm modules in our Unit Test:

Unirest
We’ve used this in previous chapters to invoke RESTful APIs.

halfred
A HAL parser available at https://www.npmjs.com/package/halfred. The corre‐
sponding GitHub repository can be found at https://github.com/basti1302/halfred.

Testing with HAL in the Speakers API | 263

https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-8/Project-Setup.md
https://www.npmjs.com/package/halfred
https://github.com/basti1302/halfred


The following Unit Test shows how to validate the HAL response from the (Stub)
Speakers API.

Example 8-13. speakers-hal-test/test/hal-spec.js

'use strict';

var expect = require('chai').expect;

var unirest = require('unirest');

var halfred = require('halfred');

describe('speakers-hal', function() {

  var req;

  beforeEach(function() {

    halfred.enableValidation();

    req = unirest.get('http://localhost:5000/speakers')

      .header('Accept', 'application/json');

  });

  it('should return a 200 response', function(done) {

    req.end(function(res) {

      expect(res.statusCode).to.eql(200);

      expect(res.headers['content-type']).to.eql(

        'application/json; charset=utf-8');

      done();

    });

  });

  it('should return a valid HAL response validated by halfred', function(

    done) {

    req.end(function(res) {

      var speakersHALResponse = res.body;

      var resource = halfred.parse(speakersHALResponse);

      var speakers = resource.speakers;

      var speaker1 = null;

      console.log('\nValidation Issues: ');

      console.log(resource.validationIssues());

      expect(resource.validationIssues()).to.be.empty;

      console.log(resource);

      expect(speakers).to.not.be.null;

      expect(speakers).to.not.be.empty;

      speaker1 = speakers[0];

      expect(speaker1.firstName).to.not.be.null;

      expect(speaker1.firstName).to.eql('Larson');

      done();

    });

  });

});

264 | Chapter 8: JSON and Hypermedia



This Unit Test runs as follows:

• beforeEach(function() runs before each test, and does the following:

— Sets up the halfred library to validate HAL by invoking halfred.enableVali

dation()

— Invokes the Stub API at the following URI: http://localhost:5000/speakers

• The 'should return a 200 response' test ensures that the Stub API has a suc‐
cessful HTTP response.

• The 'should return a valid HAL response validated by halfred' test is
the main test, and does the following:

— Invokes halfred.parse() to parse the HAL response from the Stub API. This

call returns a halfred Response object that contains the HAL links and the

remaining JSON payload. Please see the halfred documentation for more
information

— Uses chai to check for validation errors in the HAL response by testing

resource.validationIssues(). We’ll see this call in action when we test with
invalid data in our second run of the Unit Test that follows

— Uses chai to ensure that the Response object still contains the original speak

ers Array in the payload

When you run the Unit Test with npm test, it will pass because the Stub API pro‐
duces valid HAL data. You should see the following:

Testing with HAL in the Speakers API | 265



Now that we’ve shown how to validate HAL data, we’ll change the data served up by

the Stub API so that it responds with invalid HAL data. Let’s remove the link to self

in the _links object as shown in Example 8-14.

Example 8-14. data/speakers-hal-server-next-rel-invalid.json

{

  "speakers": {

    "_links": {

      "next": {

        "href": "http://myconference.api.com?limit=25&offset=25"

      },

      "find": {

        "href": "http://myconference.api.com/speakers{?id}",

        "templated": true

      }

    },

    ...

  }

}

266 | Chapter 8: JSON and Hypermedia



Remember that the HAL specification requires the _links object to contain a refer‐

ence to self. Restart json-server with the invalid HAL data as follows:

cd chapter-8/data

json-server -p 5000 ./speakers-hal-server-next-rel-invalid.json

Rerun the test, and you should see that halfred catches the HAL validation issue and
that the test now fails:

Server-Side HAL
We’ve shown how to use HAL from the client side with Unit Tests, but the server-side

was deployed as a Stub (using json-server and a JSON file that follows the HAL
specification). We have limited server-side coverage throughout this book to keep the
focus on JSON. But here are some server-side libraries that will enable your RESTful
APIs to render HAL-based responses:

Java
Spring HATEOS provides HAL support for Spring-based RESTful APIs in Java.
You can find a good tutorial in the Spring documentation.

Ruby on Rails

The roar gem provides HAL support for Ruby on Rails.

Server-Side HAL | 267

https://spring.io/guides/gs/rest-hateoas
https://github.com/apotonick/roar


JavaScript/NodeJS

express-hal adds HAL to Express-based NodeJS RESTful APIs.

Regardless of your development platform and which Hypermedia format you choose,
be sure to do a spike implementation to test a library before committing to it as a sol‐
ution. It’s important to ensure that the library is easy to use and that it doesn’t get in
the way.

Going Deeper with Hypermedia
We’ve just scratched the surface with Hypermedia in this chapter. Here are a couple
resources that will take you further:

• RESTful Web APIs, by Leonard Richardson et al. (O’Reilly)

• REST in Practice: Hypermedia and Systems Architecture, by Jim Webber et al.
(O’Reilly)

What We Covered
We’ve shown how JSON and Hypermedia work together by doing the following:

• Comparing some of the well-known JSON-based Hypermedia formats

• Discussing considerations for adding Hypermedia to an API

• Leveraging HAL to support testing with the Speakers API

What’s Next?
Now that we’ve shown how JSON works with Hypermedia, we’ll move on to Chap‐
ter 9 to show how JSON works with MongoDB.

268 | Chapter 8: JSON and Hypermedia

https://www.npmjs.com/package/express-hal


CHAPTER 9

JSON and MongoDB

MongoDB is a NoSQL database that enables developers to persist data in document
form. This document-based approach works well with JSON, which is also
document-oriented. The MongoDB data model is hierarchical, and supports rich data
types similar to those we’ve seen in typical JSON documents. Just like JSON docu‐
ments, MongoDB documents integrate well with Object-Oriented platforms because
documents are compatible with Objects, so developers can move data in/out of the
database with little or no extra mapping logic. This approach is intuitive to develop‐
ers and reduces development effort needed to access the database.

In this chapter, we’ll show how to do the following:

• Import a JSON document into MongoDB

• Perform core CRUD operations with MongoDB

• Export MongoDB data to a JSON document

• Access MongoDB as a Mock/Stub RESTful API (without writing code)

This chapter focuses on using JSON with MongoDB and provides just enough infor‐
mation to work with the database. This chapter doesn’t cover how to develop applica‐
tions with MongoDB because that would fill an entire book. For a full description of
the rich functionality provided by MongoDB, I recommend reading MongoDB in
Action, 2nd Ed by Kyle Banker et al. (Manning).

What About BSON?
You may have seen references to Binary JSON (BSON) in the MongoDB documenta‐
tion. BSON is a binary data format that MongoDB uses internally to serialize JSON
documents. See the following for further details:

269



• BSON specification

• MongoDB

You can also use BSON to add richer data types to a JSON document.

But for our purposes in this chapter:

• JSON is all you need to know to access the database.

• JSON is the external interface to MongoDB, and BSON is used only internally by
MongoDB.

MongoDB Setup
Before we go any further, let’s install MongoDB. Refer to <Install MongoDB= on page
328 in Appendix A. With MongoDB in place, you’ll be able to run and build on the
examples in this chapter.

MongoDB Server and Tools
MongoDB comprises the following:

• The MongoDB server, mongod.

• The command shell, which is written in JavaScript.

• Database drivers, which enable developers to access MongoDB from their plat‐
form. 10gen, the creator of MongoDB, provides support for many languages,
including Java, Ruby, JavaScript, Node.js, C++, C#/.Net, and many others. Check
the MongoDB site for the official supported drivers.

• Command-line tools:

— mongodump and mongorestore are backup and restore utilities.

— mongoexport and mongoimport are utilities to export/import CSV, TSV, and
JSON data to/from MongoDB.

— mongostat monitors database performance (e.g., number of connections and
memory usage).

MongoDB Server
The mongod process is similar to other database servers; it accepts connections and
processes commands for Create/Read/Update/Delete (CRUD) operations on the data.

Let’s start mongod from the (macOS and Linux) command line:

270 | Chapter 9: JSON and MongoDB

http://bsonspec.org/
https://www.mongodb.com/json-and-bson
https://docs.mongodb.com/ecosystem/drivers


mongod &

If MongoDB was installed properly, the log from the initial startup should look simi‐
lar to this:

2016-06-29T11:05:37.960-0600 I CONTROL  [initandlisten] MongoDB starting : pid...

2016-06-29T11:05:37.961-0600 I CONTROL  [initandlisten] db version v3.2.4

2016-06-29T11:05:37.961-0600 I CONTROL  [initandlisten] git version: e2ee9ffcf...

2016-06-29T11:05:37.961-0600 I CONTROL  [initandlisten] allocator: system

2016-06-29T11:05:37.961-0600 I CONTROL  [initandlisten] modules: none

2016-06-29T11:05:37.961-0600 I CONTROL  [initandlisten] build environment:

2016-06-29T11:05:37.961-0600 I CONTROL  [initandlisten]     distarch: x86_64

2016-06-29T11:05:37.961-0600 I CONTROL  [initandlisten]     target_arch: x86_64

2016-06-29T11:05:37.961-0600 I CONTROL  [initandlisten] options: { config: "/u...

2016-06-29T11:05:37.962-0600 I -        [initandlisten] Detected data files in...

2016-06-29T11:05:37.963-0600 W -        [initandlisten] Detected unclean shutd...

2016-06-29T11:05:37.973-0600 I JOURNAL  [initandlisten] journal dir=/usr/local...

2016-06-29T11:05:37.973-0600 I JOURNAL  [initandlisten] recover begin

2016-06-29T11:05:37.973-0600 I JOURNAL  [initandlisten] info no lsn file in jo...

2016-06-29T11:05:37.973-0600 I JOURNAL  [initandlisten] recover lsn: 0

2016-06-29T11:05:37.973-0600 I JOURNAL  [initandlisten] recover /usr/local/var...

2016-06-29T11:05:37.974-0600 I JOURNAL  [initandlisten] recover applying initi...

2016-06-29T11:05:37.976-0600 I JOURNAL  [initandlisten] recover cleaning up

2016-06-29T11:05:37.976-0600 I JOURNAL  [initandlisten] removeJournalFiles

2016-06-29T11:05:37.977-0600 I JOURNAL  [initandlisten] recover done

2016-06-29T11:05:37.996-0600 I JOURNAL  [durability] Durability thread started

2016-06-29T11:05:37.996-0600 I JOURNAL  [journal writer] Journal writer thread...

2016-06-29T11:05:38.329-0600 I NETWORK  [HostnameCanonicalizationWorker] Start...

2016-06-29T11:05:38.330-0600 I FTDC     [initandlisten] Initializing full-time...

2016-06-29T11:05:38.330-0600 I NETWORK  [initandlisten] waiting for connection...

2016-06-29T11:05:39.023-0600 I FTDC     [ftdc] Unclean full-time diagnostic da...

Out of the box, mongod listens on port 27017, but you can change the port as follows:

mongod --port <your-port-number>

To stop the server, type the following from the command line:

kill <pid>

Here, <pid> is the Process ID (PID) of the mongod process. Never use kill -9 because
this could corrupt the database.

Importing JSON into MongoDB
Now that we have the server up and running, let’s import our Speaker data into the

database. We’ll leverage the mongoimport tool to upload the speakers.json file into
MongoDB. Even though we’ve been using the same Speaker data throughout the
book, we need to remove the following outer root document and the Array name:

{

  "speakers": [

Importing JSON into MongoDB | 271



  ]

}

The speakers.json file now looks like Example 9-1.

Example 9-1. speakers.json

[

  {

    "fullName": "Larson Richard",

    "tags": [

      "JavaScript",

      "AngularJS",

      "Yeoman"

    ],

    "age": 39,

    "registered": true

  }, {

    "fullName": "Ester Clements",

    "tags": [

      "REST",

      "Ruby on Rails",

      "APIs"

    ],

    "age": 29,

    "registered": true

  }, {

    "fullName": "Christensen Fisher",

    "tags": [

      "Java",

      "Spring",

      "Maven",

      "REST"

    ],

    "age": 45,

    "registered": false

  }

]

This change was needed because we don’t want to insert the contents of the JSON file

as an entire document. If we did that, the result would be a single speakers Array

document in the database. Instead, we want a simple collection of individual speaker

documents, each of which corresponds to a speaker Object from the input file.

When you execute mongoimport from the command line, you should see this:

272 | Chapter 9: JSON and MongoDB



In this example, we used the following:

• mongoimport to import the speakers JSON file into the speakers collection in

the jsaw database.

• mongo to access MongoDB, and select all documents from the speakers collec‐
tion. See the next section for further details.

Table 9-1 shows how basic MongoDB concepts relate to relational databases.

Table 9-1. MongoDB and relational databases

MongoDB Relational

Database Database instance

Collection Table

Document Row

MongoDB Command Shell
Now that the MongoDB server is up and running with some data, it’s time to access

the database and start working with the Speaker data. The mongo shell (which was
shown in the previous example) provides MongoDB access from the command line.

Start mongo as follows:

mongo defaults to the test database. We’ll use another database called jsaw (JSON at
Work) to keep the Speaker data separate:

MongoDB Command Shell | 273



The use command switches context to the jsaw database so that all future commands

will affect only that database. But you may be wondering how the jsaw database was
created. This happens in two ways:

• Through the mongoimport tool. The --db=jsaw and --collection-speakers

command-line options from the initial import created the speakers collection in

the jsaw database.

• By inserting a document into a collection from the mongo shell. We’ll show how
to do this in the next section.

To exit the shell, type exit at the prompt. This ends the shell session and returns con‐
trol back to the command line.

Basic CRUD with mongo
We’ve worked with some basic operations with the mongo shell, and now we’ll use it
for CRUD operations to modify the Speaker data. The MongoDB query language
used in the shell is based on JavaScript, which makes it easy to access JSON-based
documents.

Query documents

Here’s how to get all documents in the speakers collection (which was just imported
into MongoDB):

274 | Chapter 9: JSON and MongoDB



Here’s a breakdown of the shell command (db.speakers.find()):

• Shell commands start with db.

• speakers is the collection name.

• The find() without a query parameter returns all documents from the speakers
collection.

Going back to the shell output, notice that the data returned looks like JSON, and it’s
so close. Copy the output from the shell and paste it into JSONLint. Click the Validate

JSON button, and you’ll see that it complains about the _id field. MongoDB inserted

the _id field (an Object ID that serves as a Primary Key) when mongoimport impor‐

ted the Speakers data from the JSON input file and created the speakers collection.
The output from the MongoDB shell is not valid JSON because of the following:

• It lacks the surrounding Array brackets ([]).

• The ObjectId(…) is not a valid JSON value. Valid values include Numbers, Boo‐
leans, and double-quoted Strings.

• There are no commas to separate the speaker documents.

We’ve shown how to import valid JSON into MongoDB, and later we’ll show how to
export MongoDB collections as valid JSON after going through the remaining CRUD
operations.

To return only those speakers who are present on REST, add a query to the find()
method:

In this example, we added a query, {tags:'REST’}, which returns only speaker

documents that contain the value 'REST' in their tags Array. The MongoDB query
language is based on JavaScript Object Literal syntax. JavaScript: |e Deonitive Guide
6th Ed. by David Flanagan (O’Reilly) can help you improve your knowledge of Java‐
Script Objects.

MongoDB Command Shell | 275

https://jsonlint.com/


Use the following command to get the number of documents in the speakers collec‐
tion:

> db.speakers.count()

3

Create a document

The following example shows how to add a new document to the speakers collec‐
tion:

This example uses the insert() function with a JavaScript Object Literal containing

the key/value pairs for the new speaker document.

Update a document

Our new speaker, Carl ClojureDev, has decided to add Scala to his technical reper‐

toire. To add this language to the tags Array, do the following:

This example uses the update() function as follows:

• The {fullName: 'Carl ClojureDev'} query finds the speaker document to
update.

276 | Chapter 9: JSON and MongoDB



• The $push operator adds 'Scala' to the tags Array. This is similar to the push()
function in JavaScript.

Note that many other operators support the update() function, such as $set, but be
careful because it sets a field to a completely new value.

Delete a document

Finally, let’s delete the Carl Clojuredev speaker from the collection:

Here we use the remove() function with the {fullName: 'Carl ClojureDev'} query

to delete only that document. Subsequent calls to find() show that this document

was deleted without affecting the rest of the documents in the speakers collection.

Exporting from MongoDB to a JSON Document
Now that we’re comfortable with the MongoDB server and shell, let’s export the data

to a valid JSON document. Use the mongoexport tool as follows, and you should see
this:

json-at-work => mongoexport --db=jsaw --collection=speakers --pretty --jsonArray

2016-06-30T12:58:32.270-0600 connected to: localhost

[{

 "_id": {

  "$oid": "577549ee061561f7f9be9725"

 },

 "fullName": "Larson Richard",

 "tags": [

  "JavaScript",

  "AngularJS",

  "Yeoman"

 ],

 "age": 39,

 "registered": true

},

{

Exporting from MongoDB to a JSON Document | 277



 "_id": {

  "$oid": "577549ee061561f7f9be9726"

 },

 "fullName": "Ester Clements",

 "tags": [

  "REST",

  "Ruby on Rails",

  "APIs"

 ],

 "age": 29,

 "registered": true

},

{

 "_id": {

  "$oid": "577549ee061561f7f9be9727"

 },

 "fullName": "Christensen Fisher",

 "tags": [

  "Java",

  "Spring",

  "Maven",

  "REST"

 ],

 "age": 45,

 "registered": false

}]

2016-06-30T12:58:32.271-0600 exported 3 records

The mongoexport command in the above example pulls the data from the speakers

collection in the jsaw database and pretty-prints a JSON array to Standard Output.

This is a good start, but we need to remove the MongoDB Object ID (_id) so we have
valid JSON and can use the data outside MongoDB. Other tools are needed to filter

out the _id field because the mongoexport utility will always output the _id.

We can get the JSON format we want by combining tools, and jq is just the right tool

for the job. As you’ll recall from Chapter 6, jq is an amazing command-line utility

that not only searches JSON but also has excellent filtering capabilities. jq doesn’t
provide the full-blown JSON Transform capabilities of Handlebars (see Chapter 7),

but it’s more than adequate for our needs. By piping the output from mongoexport to

jq, you should see the following:

278 | Chapter 9: JSON and MongoDB



The output is everything we’re looking for: a valid JSON Array of speaker Objects
without the MongoDB Object ID. Here’s a breakdown of the command line:

• The mongoexport command is as follows:

— --db=jsaw --collection=speakers specifies the speakers collection in the

jsaw database.

— --pretty --jsonArray ensures that the output is a pretty-printed JSON
array.

• The mongoexport output goes to Standard Output and gets piped to jq.

• The jq expression [.[] | del(._id)] works as follows:

— The outer array brackets ([]) ensure that the JSON Array, Objects, and Fields/
Keys are preserved in the final output.

— The .[] tells jq to look at the whole Array.

— The pipe to the del(._id) command tells jq to delete the _id field from the
output.

Exporting from MongoDB to a JSON Document | 279



• The jq output goes to Standard Output, which could serve as input to a file.

This is a practical example of the power of jq. Although the jq syntax is a bit terse, it’s

a great addition to your JSON toolbelt. For more details on jq, refer to Chapter 6. You

can also visit the jq manual.

What About Schema?
MongoDB is schemaless, which means that the database neither validates data nor
does it requires a Schema in order to store data. But the data stored in each document
still has a structure that applications expect so that they can reliably work with collec‐
tions and documents. Object Document Mappers (ODMs) provide additional fea‐
tures on top of MongoDB:

• A Schema that validates the data and enforces a common data structure

• Object modeling

• Object-based data access

There is no single, cross-platform ODM for MongoDB. Rather, each platform has its
own library. Node.js developers typically use Mongoose. Here’s a brief example of

how to specify a speaker Schema, create a model, and insert a speaker into the
database:

var mongoose = require('mongoose');

var Schema = mongoose.Schema;

mongoose.connect('mongodb://localhost/jsaw');

// Specify the Speaker schema.

var speakerSchema = new Schema({

  fullName:  String,

  tags: [String],

  age: Number,

  registered: Boolean

});

// Create the Speaker model.

var Speaker = mongoose.model('Speaker', speakerSchema);

var speaker = new Speaker({

  fullName: 'Carl ClojureDev',

  tags: ['Clojure', 'Functional Programming'],

  age: 45,

  registered: false

});

280 | Chapter 9: JSON and MongoDB

https://stedolan.github.io/jq/manual
http://mongoosejs.com/index.html


speaker.save(function (err) {

  if (err) {

    console.log(err);

  } else {

    console.log('Created Speaker: ' + speaker.fullName);

  }

});

A Mongoose model is a constructor based on a Schema, and it encapsulates the
details of accessing a MongoDB collection. A Mongoose document is an instance of a
model, and provides access to a MongoDB document. A Mongoose Schema is not

the same thing as a JSON Schema. The json-schema-to-mongoose Node.js module
can convert a JSON Schema to an equivalent Mongoose Schema, but this is left as an
exercise for you. In addition to creating a document, Mongoose also provides the

ability to read (find()), update (save() or update()), and delete (remove()) a
document.

Other platforms have their own ODMs for accessing MongoDB:

Java
Spring users can leverage Spring Data, which provides POJO mapping to Mon‐
goDB. Hibernate OGM provides Java Persistence API (JPA) support for NoSQL
databases, including MongoDB.

Ruby
Mongoid, which is officially supported by MongoDB.

RESTful API Testing with MongoDB
The MEAN Stack is outside the scope of this book, so we can’t do justice to the topic
in this chapter and stay focused on JSON. Let’s do something different with Mon‐
goDB, and leverage it as a Mock/Stub RESTful API instead. Mock/Stub RESTful APIs
are great:

• There’s no coding involved, which frees developers from the drudgery of devel‐
oping and maintaining infrastructure code. Instead, developers can focus on use‐
ful code that delivers business value—the business logic of the API.

• It pushes the API development team to create an initial design for their API
before they start coding. This is also known as <API First= design. By doing it this
way, developers are less likely to expose the implementation details of domain
Objects and databases because they are designing to an interface (because the
Stub API has no implementation).

• API consumers have a viable Stub version of an API without having to wait for
the completion of the real API.

RESTful API Testing with MongoDB | 281

https://www.npmjs.com/package/json-schema-to-mongoose
http://www.springsource.org/spring-data/mongodb
http://hibernate.org/ogm
http://bit.ly/2rvO0Z0


• API developers now have enough time to develop the API properly without hav‐
ing to rush to <get something out the door= to support their consumers.

• API developers can gain early feedback on the usability of the API from their
consumers and use this information to iteratively update their design and imple‐
mentation.

Test Input Data
We’ll continue to use the Speaker data that we imported earlier in this chapter.

Providing a RESTful Wrapper for MongoDB
According to the MongoDB documentation, there are several solid REST interfaces
(that run as separate servers in front of MongoDB), including these:

Crest

Based on Node.js, Crest provides full CRUD (HTTP GET, PUT, POST, and DELETE)
capabilities. You can find details at the GitHub repository.

RESTHeart
This is Java-based, provides full CRUD functionality, and is available at http://
www.restheart.org.

DrowsyDromedary
Based on Ruby, this server provides full CRUD capabilities. You can find it on
GitHub.

Simple REST API
This is provided by default as part of MongoDB, but it works only with HTTP

GET, and doesn’t provide full REST capabilities (PUT, POST, and DELETE). For fur‐
ther information, see the Simple REST API documentation at the RESTHeart
site.

Either Crest, RESTHeart, or DrowsyDromedary will meet our needs here because
they can all handle CRUD requests from Consumers by supporting all major HTTP
verbs. Let’s go with Crest because it’s simple to install and set up. Refer to Appen‐
dix A, and install Crest (see <Install npm Modules= on page 323). Then, navigate to

the crest directory on your local machine and start the Crest server by typing node

server on the command line. You should see the following:

node server

DEBUG: util.js is loaded

DEBUG: rest.js is loaded

crest listening at http://:::3500

282 | Chapter 9: JSON and MongoDB

https://docs.mongodb.com/ecosystem/tools/http-interfaces/
https://github.com/cordazar/crest
http://www.restheart.org
http://www.restheart.org
https://github.com/zuk/DrowsyDromedary
https://docs.mongodb.com/ecosystem/tools/http-interfaces/#simple-rest-api
https://docs.mongodb.com/ecosystem/tools/http-interfaces/#simple-rest-api


Then, open your browser and enter the following URL: http://localhost:3500/jsaw/

speakers. This tells Crest to do a GET (read/find) on the speakers collection in the

jsaw database on MongoDB. You should see the screen in Figure 9-1.

Figure 9-1. Speakers data served by MongoDB/Crest and viewed from the browser

This is a good start, but you can’t do full API testing with your browser because it can

only send an HTTP GET request. Let’s use Postman (from earlier chapters) to fully
exercise the Crest/MongoDB-based Speakers API. Enter the http://localhost:3500/

jsaw/speakers URL, select GET as the HTTP verb, and click the Send button. You
should see the screen in Figure 9-2.

RESTful API Testing with MongoDB | 283



Figure 9-2. Speakers data served by MongoDB/Crest and viewed from Postman

This is what we saw before in the browser, but now we have the ability to modify the

data represented by the API. Let’s delete one of the speaker Objects. First, copy the id

for one of the speaker Objects, and add it to the URL http://localhost:3500/jsaw/

speakers/id (where id is the Object ID that you copied). Then (in Postman) choose

DELETE as the HTTP verb, and click the Send button. You should see the following in
the HTTP Response:

{

  "ok": 1

}

Now, go back and do another GET on http://localhost:3500/jsaw/speakers and you

should see that Crest invoked MongoDB to delete the selected speaker.

We now have a fully functional Stub REST API that accesses MongoDB and produces
valid JSON output, without the need to write code or set up big infrastructure. Use
this style of workflow to streamline your API Design and testing, and watch your
team’s productivity soar.

284 | Chapter 9: JSON and MongoDB



What We Covered
In this chapter, we’ve shown the basics of how JSON and MongoDB work together by
covering these topics:

• Importing a JSON document into MongoDB

• Performing core CRUD operations with MongoDB

• Exporting MongoDB data to a JSON document

• Accessing MongoDB as a Mock/Stub RESTful API (without writing code)

What’s Next?
Now that we’ve shown the synergy between JSON and MongoDB, we’ll move on to
the final stage of our Enterprise JSON journey and put everything together as we
describe how JSON works with Apache Kafka in Chapter 10.

What We Covered | 285





CHAPTER 10

JSON Messaging with Kafka

Apache Kaoa is a popular distributed scalable messaging system that enables hetero‐
genous applications (those that run on multiple platforms) to communicate asyn‐
chronously by passing messages. Kafka was originally developed by the LinkedIn
engineering team as part of a major rearchitecture effort. After the company moved
from monolithic applications to Microservices, they created Kafka to fill the need for
a universal data pipeline capable of processing large message volumes in order to
integrate the services and applications across their enterprise. In 2011, LinkedIn open
sourced Kafka to the Apache Foundation. Today, many companies successfully lever‐
age Kafka as the central messaging platform in their enterprise architecture strategy.
You can find more information about Kafka on the Apache Kafka main page.

Kafka differs from other messaging systems (e.g., Java Message Service, or JMS) in
that it is not tied to a particular platform. Although Kafka was written in Java, Pro‐
ducers and Consumers can be written in different languages. To demonstrate this,
we’ll have a Node.js-based Consumer and a Consumer written in Bourne Shell in our
end-to-end example.

Kafka supports both binary and text messages. The most popular text formats are
plain/flat text, JSON, and Apache Avro. The Kafka APIs (used by Producers and Con‐
sumers) communicate over TCP. In this chapter, we’ll use Kafka as a traditional mes‐
saging system with JSON-based messages, and show how to do the following:

• Produce/consume JSON messages with Kafka from the command line

• Design and implement a small end-to-end example that leverages Kafka with
JSON

287

http://kafka.apache.org


Kafka Use Cases
Typical Kafka use cases include the following:

Traditional messaging
Applications publish messages that are consumed by other applications. Kafka
uses an asynchronous (i.e., the sender doesn’t wait for a response) publish/
subscribe (or pub/sub) messaging model that decouples Producers from Con‐
sumers.

Analytics and stream processing
Applications publish real-time usage information (e.g., clicks, visitors, sessions,
page views, and purchases) to Kafka Topics. Then a streaming application such as
Apache Spark/Spark Streaming reads messages from the various topics, trans‐
forms the data (e.g., map/reduce), and sends it to a data store such as Hadoop
(via Flume). You can add analytics tools (e.g., data visualization) on top of the
target data store.

Operational and application performance netrics
Applications can publish statistics (e.g., message counts, number of transactions,
response time, HTTP status codes, and counts) for review by operations person‐
nel to monitor and track performance, usage, and potential issues.

Log aggregation
Applications across an enterprise can publish their log messages to a Kafka Topic,
which makes them available to log management applications—e.g., the ELK
(ElasticSearch, Logstash, Kibana) stack. Kafka could be used in front of Logstash
to receive large data volumes and allow Logstash to perform more-expensive
operations at its own pace without losing messages.

Kafka Concepts and Terminology
Here are some of the key concepts in Kafka’s architecture:

Producer
Publishes messages to a Topic.

Consumer
Registers for or Subscribes to a Topic and reads messages as they become avail‐
able.

Topic
A named channel, a message feed/stream for a category of messages. In our
example, new-proposals-recvd contains messages that represent new speaker
session proposals at MyConference. You can also think of a Topic as a stream of

288 | Chapter 10: JSON Messaging with Kafka

http://oreil.ly/2sprtks
http://oreil.ly/2sprtks


business events, including orders and product returns. A Topic is divided into
one or more Partitions.

Broker
A Kafka server that manages one or more Topics.

Cluster
Contains one or more Brokers.

Partition
In a distributed environment, a Topic is replicated across multiple Partitions
(each of which is managed by a separate Broker).

Ofset
A unique ID for a message within a Partition. This is how Kafka maintains the
ordering and sequencing of messages.

This is all you need to know in order to produce/consume JSON messages for this
chapter. Many other important areas are not covered in this book in order to main‐
tain brevity and focus, including Durability, Consumer Groups, Delivery Guarantees,
and Replication. Kafka is a big topic that warrants its own book, and you can find
more information in Kaoa� |e Deonitive Guide, by Neha Narkhede et al. (O’Reilly).

For our example, we will have a single Broker (Kafka server), and each Topic will
have a single Partition.

The Kafka Ecosystem—Related Projects
Kafka is a general-purpose messaging system that integrates with other message-
processing systems to build larger, more powerful messaging applications. Kafka’s
ecosystem includes, but is not limited to the following:

Apache Spark/Spark Streaming
Used for stream processing (see <Kafka Use Cases= on page 288).

HiveKa
Provides integration with Hive to create a SQL-like interface to Kafka Topics.

ElasticSearch
The standalone Consumer pulls data from Kafka Topics and loads it into Elastic‐
Search.

Kaoa Manager
A management console for Kafka that enables administrators to work with Kafka
Clusters, Topics, Consumers, and so forth.

The Kafka Ecosystem—Related Projects | 289

http://spark.apache.org/
https://spark.apache.org/streaming/
https://github.com/HiveKa/HiveKa
http://bit.ly/2rhV2B5
https://github.com/yahoo/kafka-manager


Flume
Moves large amounts of data from a channel (e.g., a Kafka topic) to the Hadoop
Distributed File System (HDFS).

Avro
A data serialization alternative to pure JSON that provides richer data structures.
Avro is not a standard, but has its own Schemas (which have no relationship to
JSON Schema) that are written in JSON. Avro is an alternative to JSON that pro‐
vides richer data structures and a more compact data format. Avro started as part
of Hadoop, and eventually became its own project.

This list is just a small sample of other systems that work with Kafka. See the Kafka
Ecosystem page for a full description of the Kafka Ecosystem.

Kafka Environment Setup
Before we look at the command-line interface, let’s install Kafka and Apache Zoo‐
Keeper to run and build all the examples in this chapter. Refer to <Install Apache
Kafka= on page 331 in Appendix A, and install Kafka and ZooKeeper.

Now it’s time to configure Kafka so that it allows us to delete Topics (this setting is
turned off by default). Edit the KAFKA-INSTALL-DIR/KAFKA��ERSION/libexec/
conog/server.properties file (where KAFKA-INSTALL-DIR is the directory where your
installation procedure installed Kafka, and KAFKA_VERSION is the installed Kafka
version) as follows:

# Switch to enable topic deletion or not, default value is false

delete.topic.enable=true

Why Do I Need ZooKeeper?
At this point, you may be wondering why you need ZooKeeper in addition to Kafka.
The short answer is that ZooKeeper is required in order to run Kafka. In other words,
Kafka (as a distributed application) is designed to run within the ZooKeeper environ‐
ment. ZooKeeper is a server that coordinates distributed processes by managing the
following: naming, status information, configuration, location information, synchro‐
nization, failover, etc. The naming registry uses a hierarchical namespace that is simi‐
lar to a filesystem.

ZooKeeper is used by several well-known projects, including Kafka, Storm, Hadoop
MapReduce, HBase, and Solr (Cloud Edition), and so forth. To learn more, visit the
ZooKeeper main page.

290 | Chapter 10: JSON Messaging with Kafka

http://flume.apache.org/
https://avro.apache.org/
https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem
https://cwiki.apache.org/confluence/display/KAFKA/Ecosystem
https://zookeeper.apache.org/


Kafka Command-Line Interface (CLI)
Kafka comes with a built-in CLI that enables developers to experiment with Kafka
without leaving the command line. We’ll demonstrate how to start Kafka, publish
JSON messages, and then shutdown the Kafka infrastructure.

To use the convenience scripts and avoid lots of typing, please be sure to visit the
chapter-10/scripts directory (from the code examples) and change the file permissions
so that all scripts will be executable:

chmod +x *.sh

How to Publish a JSON Message with the CLI
Here are the steps (in the required order) to start Kafka and then publish/consume
messages:

1. Start ZooKeeper.

2. Start the Kafka server.

3. Create a Topic.

4. Start a Consumer.

5. Publish a message to a Topic.

6. Consume a message.

7. Clean up and shut down Kafka:

• Stop the Consumer.

• Delete a Topic.

• Shutdown Kafka.

• Stop ZooKeeper.

Start ZooKeeper
As mentioned earlier, Kafka requires ZooKeeper. To start ZooKeeper, run the follow‐
ing command in a new terminal:

./start-zookeeper.sh

Example 10-1 shows the script.

Example 10-1. scripts/start-zookeeper.sh

zkServer start

Kafka Command-Line Interface (CLI) | 291



You should see the following:

Start Kafka
Now it’s time to start a Kafka server (from a new terminal):

./start-kafka.sh

The script looks like Example 10-2

Example 10-2. scripts/start-kaoa.sh

kafka-server-start /usr/local/etc/kafka/server.properties

In this script, the server.properties file has configuration settings for Kafka. We edited
this file earlier to enable the ability to delete topics.

The Kafka server should now be running. This command prints a lot of logging mes‐
sages, and you should see the following when the server reaches the steady state:

Create a Topic
Next, let’s create the test-proposals-recvd Topic to receive new speaker session
proposals. To create the Topic, run the script as follows (from a new terminal):

./create-topic.sh test-proposals-recvd

The script runs the kafka-topics command as shown in Example 10-3.

Example 10-3. scripts/create-topic.sh

...

kafka-topics --zookeeper localhost:2181 --create \

             --topic $1 --partitions 1 \

             --replication-factor 1

292 | Chapter 10: JSON Messaging with Kafka



This script works as follows:

• $1 is the command-line variable that has the Topic name (in this case, test-
proposals-recvd).

• We kept things simple by using only a single partition (an ordered sequence of
records) and one replica for the Topic. A Partition can be replicated across multi‐
ple servers for fault tolerance and load balancing. In a production configuration,
you would have multiple replicas to support large message volumes.

When you run the preceding script, you should see this:

List Topics
Let’s make sure that the new Topic was created properly by running the following
script:

./list-topics.sh

The script uses the kafka-topics command as shown in Example 10-4.

Example 10-4. scripts/list-topics.sh

kafka-topics --zookeeper localhost:2181 --list

You should see that the test-proposals-recvd Topic was created:

The __consumer_offsets is a low-level, internal Kafka implementation detail—pay
no attention to it. We’re concerned only with the Topic that we created.

Start a Consumer
Now that we have a Topic, it’s time to produce and consume messages. First, we’ll cre‐
ate a Consumer that subscribes to the test-proposals-recvd topic with the follow‐
ing script:

./start-consumer.sh test-proposals-recvd

This script uses the kafka-console-consumer command as shown in Example 10-5.

Kafka Command-Line Interface (CLI) | 293



Example 10-5. scripts/start-consumer.sh

...

kafka-console-consumer --bootstrap-server localhost:9092 \

                       --topic $1

In this script, $1 is the command-line variable that has the Topic name (in this case,
test-proposals-recvd) that the Consumer is listening on.

You should see that the Consumer is now polling/waiting for a new message, so
there’s no output yet:

Publish a JSON Message
It’s now time to publish a JSON message to our topic with the following script (in a
new terminal):

./publish-message.sh '{ "message": "This is a test proposal." }' test-proposals-recvd

Example 10-6 provides the script.

Example 10-6. scripts/publish-message.sh

...

echo $MESSAGE_FROM_CLI | kafka-console-producer \

          --broker-list localhost:9092 \

          --topic $TOPIC_NAME_FROM_CLI

...

Note the following in this script:

• We use echo to print the JSON message to Standard Output and pipe it to the
kafka-console-producer command.

• $MESSAGE_FROM_CLI is the command-line variable that has the JSON message to
publish.

• $TOPIC_NAME_FROM_CLI is the command-line variable that has the Topic name
(in this case, test-proposals-recvd).

294 | Chapter 10: JSON Messaging with Kafka



When you publish the message, you should see the following:

The message doesn’t show in this terminal window.

Consume a JSON Message
When you revisit the terminal window where you started the Consumer, you should
see that the Consumer has read and printed the message from the test-proposals-
recvd Topic:

We now have a simple CLI-based example with Kafka that produces and consumes
JSON messages. Now let’s clean up.

Clean Up and Shut Down Kafka
Here are the steps to clean up and shut down Kafka:

1. Stop the Consumer.

2. Delete a Topic (optional).

3. Stop Kafka.

4. Stop ZooKeeper.

Stop the Consumer

Just hit Ctrl-C in the terminal window where you started the Consumer and you
should see the following:

Delete a Topic

We’ll now delete the test-proposals-recvd Topic with the following script (this is
optional):

./delete-topic.sh test-proposals-recvd

Example 10-7 shows the script.

Kafka Command-Line Interface (CLI) | 295



Example 10-7. scripts/delete-topic.sh

...

kafka-topics --zookeeper localhost:2181 --delete --topic $1

In this script, $1 is the command-line variable that has the Topic name (in this case,
test-proposals-recvd).

You should see the following on your screen:

Stop Kafka

To stop Kafka, just press Ctrl-C in the terminal window where you started Kafka or
you can do a graceful shutdown as follows:

./stop-kafka.sh

Example 10-8 shows the script.

Example 10-8. scripts/stop-kaoa.sh

kafka-server-stop

This script uses the kafka-server-stop command to stop the Kafka server. The con‐
trolled/graceful shutdown takes a while and produces a lot of log messages. If you
return to the terminal window where you started the Kafka server, you should see the
following message at the end:

If you deleted the test-proposals-recvd Topic in the previous section, it won’t exist
when you restart Kafka. If you did not delete this Topic, it will be there upon a Kafka
restart.

Stop ZooKeeper

Let’s finish up by stopping ZooKeeper. Type the following from the command line:

./stop-zookeeper.sh

Example 10-9 shows the script.

296 | Chapter 10: JSON Messaging with Kafka



Example 10-9. scripts/stop-zookeeper.sh

zkServer stop

At this point, all the Kafka-related infrastructure should be stopped, and you should
see the following:

Kafka Libraries
Kafka enjoys wide support across the major application development platforms,
including the following libraries:

Java
Spring is widely used for integration within the Java community, and provides
support through the Spring Kafka library.

Ruby

Karafka is a gem you can find on GitHub.

JS

kafka-node is a module we’ll use for the end-to-end example in the next section.
You can find more information on kafka-node on npm and GitHub.

End-to-End Example—Speaker Proposals at
MyConference
We’ve shown how to use Kafka at the command line, and we’ll now combine that with
Node.js-based applications that consume and produce messages. For our final exam‐
ple, we’re going to create an application that enables speakers to submit proposals to
speak at MyConference (a fictitious company). Each speaker will submit a proposal,
which is reviewed by a member of the MyConference proposal team. The speaker is
then notified by email on the MyConference reviewer’s decision.

Test Data
We’ll continue to use the Speaker data that we’ve used in previous chapters, but we
need to add a few more elements to make this a fully dressed proposal.
Example 10-10 shows the upgraded speaker session proposal.

Kafka Libraries | 297

http://bit.ly/2sp3LEW
https://github.com/karafka/karafka
https://www.npmjs.com/package/kafka-node
https://github.com/SOHU-Co/kafka-node


Example 10-10. data/speakerProposal.json

{

  "speaker": {

    "firstName": "Larson",

    "lastName": "Richard",

    "email": "larson.richard@ecratic.com",

    "bio": "Larson Richard is the CTO of ... and he founded a JavaScript meetup ..."

  },

  "session": {

    "title": "Enterprise Node",

    "abstract": "Many developers just see Node as a way to build web APIs or ...",

    "type": "How-To",

    "length": "3 hours"

  },

  "conference": {

    "name": "Ultimate JavaScript Conference by MyConference",

    "beginDate": "2017-11-06",

    "endDate": "2017-11-10"

  },

  "topic": {

    "primary": "Node.js",

    "secondary": [

      "REST",

      "Architecture",

      "JavaScript"

    ]

  },

  "audience": {

    "takeaway": "Audience members will learn how to ...",

    "jobTitles": [

      "Architects",

      "Developers"

    ],

    "level": "Intermediate"

  },

  "installation": [

    "Git",

    "Laptop",

    "Node.js"

  ]

}

In this example, we have the following Objects:

speaker

The speaker’s contact information.

session

A description of the session, including title and length.

298 | Chapter 10: JSON Messaging with Kafka



conference

Tells which conference the speaker is applying for. MyConference runs multiple
events, so this is important.

topic

Primary and secondary topics covered in the talk.

audience

The audience level (beginner, intermediate, or advanced).

installation

Installation instructions (if any) that the audience should follow before attending
the session.

Architecture Components
Here are the components needed for the MyConference application:

Speaker Proposal Producer
Uses the publish-message.sh script to send the JSON-based speaker session pro‐
posal on the speaker’s behalf to the new-proposals-recvd Topic. In the real
world, this would be a nice AngularJS application with a solid UX design that
invokes a RESTful API, but we’ll stick with an extremely simple shell script inter‐
face to keep the focus on JSON.

Proposal Reviewer (i.e., Consumer)

Listens on the new-proposals-recvd Topic, accepts/rejects a proposal, and sends
a corresponding message to the proposals-reviewed Topic for further process‐
ing. In an enterprise-level architecture, we would put a RESTful API in front to
receive the speaker proposal and then publish the message to the new-
proposals-recvd Topic. But again, we’re not showing an API here to simplify the
example.

Speaker Notioer (i.e., Consumer)

Listens on the proposals-reviewed Topic, generates an acceptance/rejection
email (based on the reviewer’s decision), and sends a notification email to the
speaker.

Email Server (emulated)
Acts as MyConference’s Email Server to send notification emails.

Email Client (emulated)
Serves as the speaker’s Email Client to receive notification emails.

For the Email Client and Server, we’ll use MailCatcher, a simple email emulator to
simplify infrastructure setup.

End-to-End Example—Speaker Proposals at MyConference | 299



Figure 10-1 shows the overall flow and the way the components interact.

Figure 10-1. MyConference Speaker Proposal architecture—components

The flow of this diagram is as follows:

1. The Speaker uses the Speaker Proposal Producer to send a proposal to the new-
proposals-recvd Topic within the MyConference application.

2. The Proposal Reviewer receives a proposal message on new-proposals-recvd
Topic, makes a decision, and sends the acceptance/rejection message to the
proposals-reviewed Topic.

3. The Speaker Notifier receives an acceptance/rejection message on the
proposals-reviewed Topic, creates a notification email message, and sends it.

4. The Speaker reviews the notification email message(s).

It’s now time to walk through some code and run the example.

Set Up the Kafka Environment
If you ran through the CLI example, the steps should look familiar (refer to that sec‐
tion if you need to refresh your memory). We’ll need four terminal sessions to run
the example. Do the following to get started:

300 | Chapter 10: JSON Messaging with Kafka



1. Create terminal session 1.

• Start ZooKeeper.

• Start Kafka.

2. Create terminal session 2.

• Create the proposals-reviewed Topic.

• Create the new-proposals-recvd Topic.

With the core Kafka components in place, let’s set up an Email Server to receive
acceptance/rejection notification email messages.

Set Up Fake Email Server and Client—MailCatcher
We’ll use MailCatcher. A Simple Mail (SMTP) server is a great tool for testing emails
without forcing you to send a real email. MailCatcher has the characteristics we need
for this example:

• Follows standards—MailCatcher is based on the Simple Mail Transfer Protocol
(SMTP).

• Easy installation.

• Simple startup/shutdown.

• Security is optional. I know this sounds scary, but we don’t want to go through
the hassle of setting up the user ID/password for an email server. For simple
examples and prototyping as we’re doing here, this is OK. Of course, for bigger
prototypes and real-world situations, you definitely want to secure access to your
email server. MailCatcher will work well for bigger examples because it can also
accept user credentials.

• Nice web UI that shows email messages sent to the server.

For more information on MailCatcher, visit its website.

If you haven’t installed Ruby on Rails yet, refer to <Install Ruby on Rails= on page 326
in Appendix A, and install it. Install the mailcatcher gem on the command line
(staying in terminal session 2) as follows (also see <Install Ruby Gems= on page 327 in
Appendix A):

gem install mailcatcher

End-to-End Example—Speaker Proposals at MyConference | 301

https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5321
https://mailcatcher.me


Start the MailCatcher server as follows, and you should see the following on your
screen:

json-at-work => mailcatcher

Starting MailCatcher

==> smtp://127.0.0.1:1025

==> http://127.0.0.1:1080

*** MailCatcher runs as a daemon by default. Go to the web interface to quit.

MailCatcher runs as a daemon in the background, which enables you to do other
things in the current terminal session. We’ll visit the MailCatcher web UI after we
have some emails to review (see <Review Notification Email Messages with Mail‐
Catcher= on page 313 later in this chapter).

Set Up Node.js Project Environment
The Proposal Reviewer and Speaker Notifier are both written in Node.js. If you
haven’t installed Node.js yet, refer to Appendix A, and install Node.js (see <Install
Node.js= on page 318 and <Install npm Modules= on page 323). If you want to follow
along with the Node.js project provided in the code examples, cd to chapter-10/
myconference and do the following to install all dependencies for the project:

npm install

If you’d like to set up the Node.js project yourself, follow the instructions in the book’s
GitHub repository.

Speaker Proposal Producer (Send Speaker Proposals)
We’ll use the publish-message.sh script (that you saw earlier) to send the contents of
the speakerProposal.json file to the new-proposals-recvd Topic. In the same terminal
session (2), run the following command from the scripts directory:

./publish-message.sh -f ../data/speakerProposal.json new-proposals-recvd

The Proposal Reviewer accepts/rejects proposals randomly (see the next section for
details), so you’ll need to run this script three to five times (or more) to get accept‐
ance and rejection and notification messages for the Speaker.

Proposal Reviewer (Consumer/Producer)
The Proposal Reviewer does the following:

• Listens on the new-proposals-recvd Topic to receive Speaker session proposals

• Validates the proposal and decides to accept or reject it

• Sends the decision on the proposal to the proposals-reviewed Topic for further
processing

302 | Chapter 10: JSON Messaging with Kafka

https://github.com/tmarrs/json-at-work-examples/tree/master/chapter-10/Project-Setup.md


myconference/proposalReviewer.js includes the full Proposal Reviewer application.
Example 10-11 shows the portion of the code (along with setup) that receives the
Speaker session proposals on the new-proposals-recvd Topic.

Example 10-11. myconference/proposalReviewer.js

var kafka = require('kafka-node');

...

const NEW_PROPOSALS_RECEIVED_TOPIC = 'new-proposals-recvd';

...

var consumer = new kafka.ConsumerGroup({

  fromOffset: 'latest',

  autoCommit: true

}, NEW_PROPOSALS_RECEIVED_TOPIC);

// Use incoming JSON message.

// Use JSON.parse() and JSON.stringify() to process JSON.

consumer.on('message', function(message) {

  // console.log('received kafka message', message);

  processProposal(message);

});

consumer.on('error', function(err) {

  console.log(err);

});

process.on('SIGINT', function() {

  console.log(

    'SIGINT received - Proposal Reviewer closing. ' +

    'Committing current offset on Topic: ' +

    NEW_PROPOSALS_RECEIVED_TOPIC + ' ...'

  );

  consumer.close(true, function() {

    console.log(

      'Finished committing current offset. Exiting with graceful shutdown ...'

    );

    process.exit();

  });

});

End-to-End Example—Speaker Proposals at MyConference | 303



Note the following in this example:

• Use the kafka-node npm module to consume/produce Kafka messages. You can
find more information on kafka-node on the npm site and on GitHub.

• Listen on and consume messages from the new-proposals-recvd Topic as fol‐
lows:

— Instantiate and use the ConsumerGroup Object to consume Kafka messages on
the new-proposals-recvd Topic. The fromOffset: 'latest' parameter indi‐
cates that we want to receive the latest message on the Topic, and autoCommit:
true tells the consumer to commit each message automatically after it is con‐
sumed (this marks the message as processed).

— consumer.on('message' …) listens for a message and invokes processPro
posal() (more on this later) to process the incoming Speaker proposal that
was just received.

— consumer.on('error' …) prints an error message for any errors encountered
when processing the message.

— process.on('SIGINT' …) listens for a SIGINT (process shutdown), commits
the current offset, and does a graceful exit:

— consumer.close(…) commits the current offset. This ensures that the cur‐
rent message is marked as read, and that the Consumer on this Topic will
receive the next message on the topic upon restart.

Example 10-12 shows how to validate the Speaker proposal and make a decision.

Example 10-12. myconference/proposalReviewer.js

...

var fs = require('fs');

var Ajv = require('ajv');

...

const SPEAKER_PROPOSAL_SCHEMA_FILE_NAME =

  './schemas/speakerProposalSchema.json';

...

function processProposal(proposal) {

  var proposalAccepted = decideOnProposal();

  var proposalMessage = proposal.value;

  var proposalMessageObj = JSON.parse(proposalMessage);

  console.log('\n\n');

304 | Chapter 10: JSON Messaging with Kafka

https://www.npmjs.com/package/kafka-node
https://github.com/SOHU-Co/kafka-node


  console.log('proposalMessage = ' + proposalMessage);

  console.log('proposalMessageObj = ' + proposalMessageObj);

  console.log('Decision - proposal has been [' +

    (proposalAccepted ? 'Accepted' : 'Rejected') + ']');

  if (isSpeakerProposalValid(proposalMessageObj) && proposalAccepted) {

    acceptProposal(proposalMessageObj);

  } else {

    rejectProposal(proposalMessageObj);

  }

}

function isSpeakerProposalValid(proposalMessage) {

  var ajv = Ajv({

    allErrors: true

  });

  var speakerProposalSchemaContent = fs.readFileSync(

    SPEAKER_PROPOSAL_SCHEMA_FILE_NAME);

  var valid = ajv.validate(speakerProposalSchemaContent, proposalMessage);

  if (valid) {

    console.log('\n\nJSON Validation: Speaker proposal is valid');

  } else {

    console.log('\n\nJSON Validation: Error - Speaker proposal is invalid');

    console.log(ajv.errors + '\n');

  }

  return valid;

}

function decideOnProposal() {

  return Math.random() >= 0.5;

}

function acceptProposal(proposalMessage) {

  var acceptedProposal = {

    decision: {

      accepted: true,

      timeSlot: {

        date: "2017-11-06",

        time: "10:00"

      }

    },

    proposal: proposalMessage

  };

  var acceptedProposalMessage = JSON.stringify(acceptedProposal);

  console.log('Accepted Proposal = ' + acceptedProposalMessage);

  publishMessage(acceptedProposalMessage);

End-to-End Example—Speaker Proposals at MyConference | 305



}

function rejectProposal(proposalMessage) {

  var rejectedProposal = {

    decision: {

      accepted: false

    },

    proposal: proposalMessage

  };

  var rejectedProposalMessage = JSON.stringify(rejectedProposal);

  console.log('Rejected Proposal = ' + rejectedProposalMessage);

  publishMessage(rejectedProposalMessage);

}

...

After the Proposal Reviewer receives a Speaker proposal message, processPro
posal() does the following:

• decideOnProposal() randomly chooses to accept or reject the proposal to keep
things simple. In a real system, an application would put the proposal into some‐
one’s work inbox, and a human would review and make a decision.

• JSON.parse() parses the proposal message to ensure that it is syntactically cor‐
rect (it follows basic JSON formatting rules).

• isSpeakerProposalValid() uses the ajv npm module to validate against a JSON
Schema (schemas/speakerProposalSchema.json):

— Chapter 5 covers JSON Schema if you need to refresh your memory.

— Validating against a JSON Schema ensures that the incoming message is
semantically correct (it has all the required fields needed to process a Speaker
proposal).

— You can find more information on ajv on the npm site and on GitHub.

• If the Speaker proposal was accepted, acceptProposal() does the following:

— Creates an acceptance object with fields to indicate that the proposal was
accepted, and the time slot when the speaker will deliver the presentation at
the conference

— Uses JSON.stringify() to convert the acceptance object to JSON

— Invokes publishMessage() to send the acceptance message to the proposals-
reviewed Topic

• If the Speaker proposal was rejected (or its format was invalid), rejectPro
posal() does the following:

— Creates a rejection Object with fields to indicate that the proposal was rejected

306 | Chapter 10: JSON Messaging with Kafka

https://www.npmjs.com/package/ajv
https://github.com/epoberezkin/ajv


— Uses JSON.stringify() to convert the rejection Object to JSON

— Invokes publishMessage() to send the rejection message to the proposals-
reviewed Topic

Example 10-13 shows how to send an acceptance/rejection message on to the
proposals-reviewed Topic.

Example 10-13. myconference/proposalReviewer.js

...

const PROPOSALS_REVIEWED_TOPIC = 'proposals-reviewed';

...

var producerClient = new kafka.Client(),

  producer = new kafka.HighLevelProducer(producerClient);

...

function publishMessage(message) {

  var payloads = [{

    topic: PROPOSALS_REVIEWED_TOPIC,

    messages: message

  }];

  producer.send(payloads, function(err, data) {

    console.log(data);

  });

}

producer.on('error', function(err) {

  console.log(err);

});

This code publishes messages to the proposals-reviewed Topic as follows:

• Instantiates and uses the HighLevelProducer Object to publish messages to the
proposals-reviewed Topic. The instantiation for HighLevelProducer actually
happens toward the beginning of the file, but we show it here for convenience.

• publishMessage() invokes producer.send() to send the message. pro

ducer.on('message' …) listens for a message and invokes processProposal()
(more on this later) to process the incoming Speaker proposal that was just
received.

End-to-End Example—Speaker Proposals at MyConference | 307



We’ve only touched on the kafka-node Objects used by Producers and Consumers.
For further details, visit the kafka-node module documentation to learn more about
the following:

• HighLevelProducer

• ConsumerGroup

• Client

Now that we’ve looked at Proposal Reviewer code, create a new terminal session (3)
and run the following command (from the myconference directory) to start the Pro‐
posal Reviewer:

node proposalReviewer.js

When Speaker proposal messages arrive on the new-proposals-recvd Topic, you
should see that the Proposal Reviewer logs the proposals it receives and the decisions
it makes (on the proposals-reviewed Topic):

Speaker �otioer (Consumer)
After the decision has been made to accept/reject a proposal, the Speaker Notifier:

• Listens on the proposals-reviewed Topic for accepted/rejected proposals

• Formats an acceptance/rejection email

• Sends the acceptance/rejection email

myconference/speakerNotioer.js includes the full Speaker Notifier application.
Example 10-14 shows the portion of the code (along with setup) that receives the
accepted/rejected proposals on the proposals-reviewed Topic.

308 | Chapter 10: JSON Messaging with Kafka

http://bit.ly/2soUUmL


Example 10-14. myconference/speakerNotioer.js

var kafka = require('kafka-node');

...

const PROPOSALS_REVIEWED_TOPIC = 'proposals-reviewed';

...

var consumer = new kafka.ConsumerGroup({

  fromOffset: 'latest',

  autoCommit: true

}, PROPOSALS_REVIEWED_TOPIC);

...

consumer.on('message', function(message) {

  // console.log('received message', message);

  notifySpeaker(message.value);

});

consumer.on('error', function(err) {

  console.log(err);

});

process.on('SIGINT', function() {

  console.log(

   'SIGINT received - Proposal Reviewer closing. ' +

   'Committing current offset on Topic: ' +

    PROPOSALS_REVIEWED_TOPIC + ' ...'

  );

  consumer.close(true, function() {

    console.log(

      'Finished committing current offset. Exiting with graceful shutdown ...'

    );

    process.exit();

  });

});

...

End-to-End Example—Speaker Proposals at MyConference | 309



The Speaker Notifier listens on and consumes messages from the proposals-
reviewed Topic as follows:

• Instantiates and uses the ConsumerGroup Object to consume Kafka messages on
the proposals-reviewed Topic. The setup for this consumer is similar to the
code in the Proposal Reviewer.

• consumer.on('message' …) listens for a message and invokes notifySpeaker()
(more on this later) to process the incoming acceptance/rejection message that
was just received.

• consumer.on('error' …) and process.on('SIGINT' …) function in the same
manner as the Proposal Reviewer example.

Example 10-15 shows how to process the accepted/rejected proposals and formats a
corresponding acceptance/rejection email using Handlebars (which was covered in
Chapter 7).

Example 10-15. myconference/speakerNotioer.js

...

var handlebars = require('handlebars');

var fs = require('fs');

...

const EMAIL_FROM = 'proposals@myconference.com';

const ACCEPTED_PROPOSAL_HB_TEMPLATE_FILE_NAME =

  './templates/acceptedProposal.hbs';

const REJECTED_PROPOSAL_HB_TEMPLATE_FILE_NAME =

  './templates/rejectedProposal.hbs';

const UTF_8 = 'utf8';

...

function notifySpeaker(notification) {

  var notificationMessage = createNotificationMessage(notification);

  sendEmail(notificationMessage);

}

function createNotificationMessage(notification) {

  var notificationAsObj = JSON.parse(notification);

  var proposal = notificationAsObj.proposal;

  console.log('Notification Message = ' + notification);

310 | Chapter 10: JSON Messaging with Kafka



  var mailOptions = {

    from: EMAIL_FROM, // sender address

    to: proposal.speaker.email, // list of receivers

    subject: proposal.conference.name + ' - ' + proposal.session.title, // Subject

    html: createEmailBody(notificationAsObj)

  };

  return mailOptions;

}

function createEmailBody(notification) {

  // Read Handlebars Template file.

  var hbTemplateContent = fs.readFileSync(((notification.decision.accepted) ?

    ACCEPTED_PROPOSAL_HB_TEMPLATE_FILE_NAME :

    REJECTED_PROPOSAL_HB_TEMPLATE_FILE_NAME), UTF_8);

  // Compile the template into a function.

  var template = handlebars.compile(hbTemplateContent);

  var body = template(notification); // Render the template.

  console.log('Email body = ' + body);

  return body;

}

...

After the Speaker Notifier receives an acceptance/rejection message, notify

Speaker() does the following:

• Invokes createNotificationMessage() to create the notification email to send
to the Speaker:

— Uses JSON.parse() to parse the acceptance/rejection message into an Object

— Invokes createEmailBody():

— Uses the handlebars npm module to generate an acceptance/rejection
email message in HTML format from the acceptance/rejection Object.

— Chapter 7 covers Handlebars if you need to refresh your memory.

— You can find more information on handlebars on the npm site and on
GitHub.

• Invokes sendEmail() to send the notification email to the Speaker (see the next
example)

Example 10-16 shows how to send an acceptance/rejection email.

End-to-End Example—Speaker Proposals at MyConference | 311

https://www.npmjs.com/package/handlebars
https://github.com/wycats/handlebars.js


Example 10-16. myconference/speakerNotioer.js

...

var nodeMailer = require('nodemailer');

...

const MAILCATCHER_SMTP_HOST = 'localhost';

const MAILCATCHER_SMTP_PORT = 1025;

var transporter = nodeMailer.createTransport(mailCatcherSmtpConfig);

...

function sendEmail(mailOptions) {

  // send mail with defined transport object

  transporter.sendMail(mailOptions, function(error, info) {

    if (error) {

      console.log(error);

    } else {

      console.log('Email Message sent: ' + info.response);

    }

  });

}

The Speaker Notifier sends email messages to the MailCatcher server as follows:

• Instantiates and uses the nodemailer transporter Object to send email. The MAIL
CATCHER_SMTP_… constants indicate the host and port used by the MailCatcher on
your local machine. The instantiation for the nodemailer transporter Object
actually happens toward the beginning the file, but we show it here for conve‐
nience.

• sendEmail() invokes transporter.sendMail() to send the email message.

• nodemailer is a generic npm module that sends email messages by using SMTP.
You can find more information on ajv on the npm site and on the nodemailer
Community Page.

Now, create a new terminal session (4) and run the following command (from the
myconference directory) to start the Speaker Notifier:

node speakerNotifier.js

When accepted/rejected proposal messages arrive on the proposals-reviewed Topic,
you should see that the Speaker Notifier logs the accepted/rejected proposals it
receives and the email notifications it sends:

312 | Chapter 10: JSON Messaging with Kafka

https://www.npmjs.com/package/nodemailer
https://community.nodemailer.com
https://community.nodemailer.com


Review �otioc�tion Email Messages with MailCatcher
To wrap up our example, let’s look at the notification messages (generated by the
Speaker Notifier) sent to the prospective MyConference speakers.

Visit http://localhost:1080 on your machine and you’ll see the MailCatcher user inter‐
face. Figure 10-2 shows the summary page that lists the email messages generated by
the MyConference application (using Handlebars).

Figure 10-2. Speaker Notiocation messages on MailCatcher

End-to-End Example—Speaker Proposals at MyConference | 313



Click some of the messages until you see an Acceptance message indicating that the
session proposal was accepted, as shown in Figure 10-3.

Figure 10-3. Speaker Proposal Acceptance message on MailCatcher

Figure 10-4 shows a sample rejection message.

Figure 10-4. Speaker Proposal Rejection message on MailCatcher

The MailCatcher web UI controls work as follows:

• Download the current email message by clicking the Download button. This
saves the message as a file (with the extension .eml) in EML format, which

— Follows the MIME 822 standard

— Is compatible with MS Outlook and Outlook Express, Apple Mail, Mozilla
Thunderbird, and other email clients

— Preserves the original HTML format and headers

314 | Chapter 10: JSON Messaging with Kafka

https://www.ietf.org/rfc/rfc0822.txt


• Shut down the MailCatcher background process by clicking on the Quit button
on the upper-right side of the page

What We Covered
In this chapter, we’ve shown how to do the following:

• Produce/Consume JSON messages with Kafka from the command line.

• Design and implement a small end-to-end example MyConference application
that leverages Kafka Topics, Node.js, and a fake email server to process JSON-
based Speaker applications.

What We Covered | 315





APPENDIX A

Installation Guides

This appendix provides an installation guide and setup instructions to support the
code examples in this book.

Install JSON Tools in the Browser
This section shows how to install JSON-based tools in the browser.

Install JSONView in Chrome and Firefox
JSONView pretty-prints JSON in Chrome or Firefox. Follow the installation instruc‐
tions on the JSONView site for your browser.

JSONLint
Use JSONLint to validate JSON documents online. JSONLint doesn’t require an
installation.

JSON Editor Online
Use JSON Editor Online to model JSON documents. Since this is a web app, there’s
nothing to install.

Install Postman
Postman provides the ability to fully test a RESTful API. It can send HTTP GET, POST,
PUT, and DELETE requests and set HTTP headers. You can install Postman as a
Chrome extension or as a standalone GUI application on macOS, Linux, or Win‐
dows. Visit the Postman site for installation instructions.

317

http://jsonview.com/
https://jsonlint.com/
http://www.jsoneditoronline.org
https://www.getpostman.com/


Install Node.js
This book uses Node.js version v6.10.2, which is the current latest stable version as
of this writing.

Install Node.js on macOS and Linux with NVM
Although you could use the installation package from the Node.js site, it’s difficult to
change versions. Instead, let’s use Node Version Manager (NVM). NVM makes it
easy to install/uninstall Node.js, and upgrade to newer versions.

Install and conogure NVM

First, install NVM by using one of the following methods:

• Install script

• Manual install

Next, let’s make sure that NVM runs properly. Source it from a shell as follows:

source ~/.nvm/nvm.sh

Now NVM will work properly for the remainder of the installation process.

If you’re running bash, do the following so that NVM is automatically sourced
(configured):

• In $HOME/.bashrc, add these lines:

source ~/.nvm/nvm.sh export NVM_HOME=~/.nvm/v6.10.2

• In �HOME/.bashrc�proole, add this line:

[[ -s $HOME/.nvm/nvm.sh ]] && . $HOME/.nvm/nvm.sh # This loads NVM

Note that similar steps apply to the Bourne Shell or Korn Shell.

Install Node.js with NVM

Now that NVM is installed, use it to install Node.js:

1. Type nvm ls-remote to see what remote (not on your local machine) versions of
Node.js are available to install.

2. Install version v6.10.2 with the following command:

nvm install v6.10.2

• All Node.js versions are installed in $HOME/.nvm.

318 | Appendix A: Installation Guides

https://nodejs.org/en/download
https://nodejs.org
https://github.com/creationix/nvm
https://github.com/creationix/nvm#install-script
https://github.com/creationix/nvm#manual-install


3. Set the default Node.js version to be used in any new shell:

nvm alias default v6.10.2

• Without this, neither the node or npm commands will work properly when you
exit the current shell.

• Now, exit your current shell.

From a new shell, upgrade to the latest version of npm:

npm update -g npm

Then, do the following health checks:

• nvm ls, and you should see ... -> v6.10.2 system default -> v6.10.2

• node -v, which yields v6.10.2

• npm -v, and it looks like 4.6.1

To see a full list of NVM’s capabilities, type nvm --help.

When you check out the Node.js Request-Eval-Print-Loop (REPL), you should see
this:

json-at-work => node

-> .exit

Avoiding sudo with npm

npm may require you to run as sudo, and this can get cumbersome and annoying.
This also can be a security risk because packages can contain scripts, and npm is run‐
ning with root privilege. To avoid this, do the following:

sudo chown -R $USER ~/.nvm

This works if you installed Node.js with NVM (all Node.js installations go under that
directory). This tip was inspired by Isaac Z. Schlueter from How to Node.

Taming the REPL—mynode

Out of the box, the default behavior of the REPL leaves a bit to be desired because you
see undefined after most lines of JavaScript, hitting the Enter key, breathing, and so
forth. This is because JavaScript functions always return something. If nothing is
returned, undefined is returned by default. This behavior can be annoying and
unproductive. Here’s a sample session:

json-at-work => node

-> Hit Enter

-> undefined

Installation Guides | 319

https://nodejs.org/api/repl.html
http://howtonode.org/introduction-to-npm


-> var y = 5

-> undefined

-> .exit

To turn off undefined in the REPL, add the following to .bashrc (or your setup for
Bourne or Korn Shell):

source ~/.nvm/nvm.sh

...

alias mynode="node -e \"require('repl').start({ignoreUndefined: true})\""

Now, exit the current shell and start a new shell. Rather than redefining node, it’s safer
to define a new alias (in this case, mynode). This way, node will still work properly
from the command line and be able to run JavaScript files. Meanwhile, mynode serves
as your new REPL command:

json-at-work => mynode

-> var x = 5

-> .exit

You now have a Node.js REPL that does what you want—no more annoying unde
fined. You’re welcome.

Install Node.js on Windows
NVM also works well on Windows thanks to Corey Butler’s nvm-windows application.
This is a port of nvm to a Windows environment. I successfully used nvm-windows on
Windows 7.

Install Node.js on Windows with nvm-windows

Here are the steps:

1. Visit the nvm-windows Downloads page.

2. Download the latest nvm-setup.zip to your Downloads folder.

3. Unzip nvm-setup.zip with your favorite zip tool.

4. Run nvm-setup.exe, which is a wizard. Accept all defaults and the MIT License
agreement:

a. Download to C:\Users{username}\AppData\Roaming\nvm.

b. Click Finish when the install completes.

c. This sets up the necessary environment variables to run Node.js on your Win‐
dows machine.

5. Ensure that NVM is on your PATH:

320 | Appendix A: Installation Guides

https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows/releases


a. Navigate to Control Panel → System → Advanced System Settings.

b. Click Environment Variables on the Advanced System Settings pop up.

c. NVM_HOME should have been added to Env Vars during install: C:\Users{user‐
name}\AppData\Roaming\nvm

d. NVM_SYMLINK should point to C:\Program Files\nodejs

e. Both NVM_HOME and NVM_SYMLINK should be on the PATH.

6. Install Node.js with nvm-windows:

a. Type nvm list available to get a list of available versions.

b. Type nvm install v6.10.2

c. Set the version of Node.js: nvm use v6.10.2

d. Test the install: node -v

Uninstall Node.js
If you have a previous installation of Node.js that isn’t quite working properly any‐
more, you may need to completely uninstall it from your machine. This includes both
the node and npm executables.

Uninstall Node.js on macOS

Uninstalls can be complicated, and credit for the Mac uninstall instructions goes to
Clay at Hungred Dot Com. If Homebrew was used to install Node.js, simply type
brew uninstall node at the prompt.

If you didn’t use Homebrew, do the following:

• cd to /usr/local/lib and delete any node executable and node_modules.

• cd to /usr/local/include and delete any node and the node_modules directory.

• cd to /usr/local/bin and delete any node executable.

You may also need to do the following:

rm -rf /usr/local/bin/npm

rm -rf /usr/local/share/man/man1/node.1

rm -rf /usr/local/lib/dtrace/node.d

rm -rf $USER/.npm

Uninstall Node.js on Linux

Credit for the Linux uninstall instructions goes to Stack Overflow and GitHub. Do
the following:

Installation Guides | 321

https://github.com/coreybutler/nvm-windows
http://hungred.com/how-to/completely-removing-nodejs-npm/
http://bit.ly/2rGq2xs
https://github.com/joyent/node/issues/4058


1. Find the node installation by typing which node. Let’s assume it’s at /usr/
local/bin/node.

2. cd to /usr/local.

3. Execute the following:

sudo rm -rf bin/node

sudo rm -rf bin/npm

sudo rm -rf lib/node_modules/npm

sudo rm -rf lib/node

sudo rm -rf share/man/*/node.*

Uninstall Node.js on Windows

Credit for the Windows uninstall instructions goes to Team Treehouse. Here are the
steps:

1. Open the Windows Control Panel.

2. Choose Programs and Features.

3. Click <Uninstall a program.=

4. Select Node.js, and click the Uninstall link.

Install Yeoman
Yeoman consists of the following:

• yo (for Scaffolding)

• Either npm or bower (for Package Management)

• Either gulp or grunt (for the Build System)

For the code examples in this book, you’ll need both gulp and grunt-cli for the
Build System. Although gulp is used as the primary build tool, you still need grunt-
cli to run some of the gulp tasks.

I chose bower for Package Management.

Here are the installation steps:

• Install yo:

— npm install -g yo

— Test the yo installation: yo --version

• Install bower:

322 | Appendix A: Installation Guides

http://blog.teamtreehouse.com/install-node-js-npm-windows
http://yeoman.io
https://www.npmjs.com
https://bower.io
http://gulpjs.com
https://gruntjs.com
http://gulpjs.com
https://github.com/gruntjs/grunt-cli
http://gulpjs.com
https://github.com/gruntjs/grunt-cli
https://github.com/gruntjs/grunt-cli
https://bower.io
https://bower.io


— npm install -g bower

— Test the bower installation: bower --version

• Install gulp:

— npm install -g gulp-cli

— Test the gulp installation: gulp --version

• Install grunt-cli:

— npm install -g grunt-cli

— Test the grunt-cli installation: grunt --version

Refer to the Yeoman setup page for more information.

Install the generator-webapp Yeoman generator

See the generator-webapp GitHub page. Install the generator as follows:

npm install -g generator-webapp

Install npm Modules
We use the following npm modules at the command line, so we install them globally:

• jsonlint

• json

• ujs-jsonvalidate

• http-server

• json-server

• jq-tutorial

Install jsonlint

This is the npm equivalent of the JSONLint site used to validate a JSON document.
You can find jsonlint in the GitHub repository.

To install:

npm install -g jsonlint

To validate a JSON document:

jsonlint basic.json

Installation Guides | 323

http://gulpjs.com
https://github.com/gruntjs/grunt-cli
http://yeoman.io/codelab/setup.html
http://bit.ly/2rhUvz8
https://jsonlint.com/
https://github.com/zaach/jsonlint


Install json

json provides the ability to work with JSON (e.g., pretty-printing) from the com‐
mand line. It’s similar to jq, but not as powerful.

To install:

npm install -g json

Visit the json GitHub repository for usage instructions. json is available as an npm
module.

Install ujs-jsonvalidate

This is the npm equivalent of the JSON Validate site used to validate a JSON docu‐
ment against a JSON Schema. ujs-jsonvalidate can be found in the GitHub reposi‐
tory.

To install:

npm install -g ujs-jsonvalidate

To validate a JSON document:

validate basic.json basic-schema.json

Install http-server

http-server is a simple Web Server that serves up files in the current directory struc‐
ture on the local host system as static content. I like http-server because it has solid
documentation, and the command-line options and shutdown are intuitive. Here’s
the http-server in the GitHub Repository and http-server in the npm repository.

To install:

npm install -g http-server

To run:

http-server -p 8081

To access:

http://localhost:8081

To shut down: press Ctrl-C

Install json-server

json-server is a Stub REST server that takes a JSON file and exposes it as a RESTful
service. You can find json-server in the GitHub repository.

To install:

324 | Appendix A: Installation Guides

https://github.com/trentm/json
http://stedolan.github.io/jq/
https://github.com/trentm/json
https://www.npmjs.com/package/json
https://www.npmjs.com/package/json
http://jsonvalidate.com/
http://bit.ly/2riiFJM
http://bit.ly/2riiFJM
https://github.com/indexzero/http-server
https://www.npmjs.com/package/http-server
https://github.com/typicode/json-server


npm install -g json-server

To run:

json-server -p 5000 ./speakers.json

To access:

http://localhost:5000/speakers

Install Crest

Crest is a small REST server that provides a RESTful wrapper for MongoDB. You can
find Crest in the GitHub Repository. The global npm installation would be the sim‐
plest way to install Crest, but this is broken. Instead, do a git clone as follows:

1. cd to the directory where your other development projects reside. We’ll call this
directory projects:

cd projects

2. Clone the repository:

git clone git://github.com/Cordazar/crest.git

3. Navigate to the crest directory:

cd crest

4. Update the conog.json file to remove the username and password. Of course, this
isn’t secure, but you can re-add these fields and set them to proper values later;
just make sure that the settings match your MongoDB password. We just want to
get started quickly. The conog.json file should now look like this:

{

  "db": { "port": 27017, "host": "localhost" },

  "server": { "port": 3500, "address": "0.0.0.0" },

  "flavor": "normal",

  "debug": true

}

5. Be sure to install and start MongoDB first.

6. In a separate tab or command shell, start Crest by typing node server on the
command line. You should see the following:

node server

DEBUG: util.js is loaded

DEBUG: rest.js is loaded

crest listening at http://:::3500

Installation Guides | 325

https://github.com/cordazar/crest


Install jq-tutorial

jq-tutorial is an npm module that provides a nice jq tutorial from the command
line. Install it as follows:

npm install -g jq-tutorial

Then run it from the command line:

jq-tutorial

Install Ruby on Rails
There are several ways to install Ruby on Rails:

• Rails Installer

• ruby-install

• Ruby Version Manager (RVM) + the rails gem

• rbenv + the rails gem

Install Rails on macOS and Linux
I prefer RVM for macOS and Linux because it’s easy to upgrade to switch between
Ruby versions. Install RVM by visiting the RVM site and following the installation
instructions.

Use RVM to install Ruby as follows:

1. See the available versions of Ruby:

rvm list known

2. Install Ruby v2.4.0 as follows:

rvm install 2.4.0

3. Check the Ruby version, and you should see something like this:

ruby -v

ruby 2.4.0

4. After installing Ruby, you can install Rails as follows:

gem install rails

5. Check the Rails version, and it should look like this:

rails -v

Rails Rails 5.0.2

And you’re done.

326 | Appendix A: Installation Guides

https://www.npmjs.com/package/jq-tutorial
http://railsinstaller.org
https://github.com/postmodern/ruby-install
https://rvm.io/
https://github.com/sstephenson/rbenv
https://rvm.io/
https://rvm.io/rvm/install
https://rvm.io/rvm/install


You can easily upgrade to new versions of Ruby and Rails by following these steps:

1. Install a new version of Ruby (2.x for example):

rvm install 2.x

2. Use the new version:

rvm use 2.x

3. Install the rails gem as shown previously.

Install Rails on Windows
Use Rails Installer for a Windows environment, and do the following:

• Download the installer for Windows.

• Run the installer and follow the defaults.

I’ve used Rails Installer on Windows 7, and it worked properly. The Rails Installer
page has excellent information on RoR tutorials and how to get help with installation
issues.

Install Ruby Gems
We use the following Ruby gems outside Rails, so we install them globally:

• multijson

• oj

• awesome_print

• activesupport

• minitest

• mailcatcher

Install multi_json

multi_json provides a wrapper that invokes the most common JSON gems on behalf
of the caller by choosing the fastest JSON gem that has been loaded in an application’s
environment. Install it as follows:

gem install multi_json

Installation Guides | 327

http://railsinstaller.org
http://railsinstaller.org
http://railsinstaller.org
https://github.com/intridea/multi_json


Install oj

Optimized JSON (oj), is considered by many to be the fastest Ruby-based JSON pro‐
cessor available. Install it as follows:

gem install oj

Install awesome_print

awesome_print pretty-prints a Ruby object and is used for debugging purposes.
Install it as follows:

gem install awesome_print

Install activesupport

activesupport provides functionality that has been extracted from Rails. ActiveSup‐
port’s JSON module provides the ability to convert keys between camel case and
snake case. Install it as follows:

gem install activesupport

Install mailcatcher

mailcatcher is a simple mail (SMTP) server. It’s a great tool for testing emails
without forcing you to send a real email. Install it as follows:

gem install mailcatcher

Install MongoDB
See the MongoDB installation documentation and follow the instructions to install
and start MongoDB on your platform.

Install the Java Environment
Our Java environment depends on the following:

• Java SE

• Gradle

Install Java SE
We’re using Java Standard Edition (SE) 8 for this book, so visit the Oracle Java SE 8
download site.

You’ll see the term JDK (for Java Developer Kit) on that page. JDK is the old name for
Java SE. Just look for Java SE Development Kit, accept the license agreement, and do

328 | Appendix A: Installation Guides

https://github.com/ohler55/oj
https://github.com/awesome-print/awesome_print
https://github.com/rails/rails/tree/master/activesupport
https://mailcatcher.me
https://docs.mongodb.com/manual/installation/
http://bit.ly/1X9h0Ea
http://bit.ly/1X9h0Ea


the proper download for your operating system. After you’ve downloaded and run
the installer, you’ll want to set up your Java command-line environment for your
operating system.

Follow the instructions that follow for you system. Then run this:

java -version

You should see something similar to this

java version "1.8.0_72"

Java(TM) SE Runtime Environment (build 1.8.0_72-b15)

Java HotSpot(TM) 64-Bit Server VM (build 25.72-b15, mixed mode)

Java setup on macOS

In .bashrc, do the following to set up JAVA_HOME and add it to your PATH:

...

export

JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.x.y.jdk/Contents/Home #

x and y are the minor and patch versions

...

export PATH=...:$\{JAVA_HOME}/bin:...

Java setup on Linux

In .bashrc, do the following to set up JAVA_HOME and add it to your PATH:

...

export JAVA_HOME=/usr/java/jdk1.x.y/bin/java # x and y are the minor and

patch versions

...

export PATH=...:$\{JAVA_HOME}/bin:...

Then, refresh your environment:

source ~/.bashrc

Credit for Java setup on Linux goes to nixCraft.

Java setup on Windows

The Java Windows Installer usually puts the JDK in one of the following directories:
C:\Program Files\Java or C:\Program Files (x86)\Java.

Then, do the following:

Installation Guides | 329

http://www.cyberciti.biz/faq/linux-unix-set-java_home-path-variable/


1. Right-click the My Computer icon on your desktop and select Properties.

2. Click the Advanced tab.

3. Click the Environment Variables button.

4. Under System Variables, click New.

5. Enter the variable name as JAVA_HOME.

6. Enter the variable value as the installation path for the Java Development Kit (see
where the installer put the JDK directory).

7. Click OK.

8. Click Apply Changes.

Credit for the Java setup on Windows goes to Robert Sindall.

Install Gradle
Gradle is used for building source and test code. Visit the Gradle Installation Guide
and follow the instructions for your operating system. After you’ve completed the
installation, run gradle -v from the command line and you should see something
like this:

gradle -v

------------------------------------------------------------

Gradle 3.4.1

------------------------------------------------------------

On macOS, I succesfully used Homebrew to install Gradle.

Install jq
jq provides JSON-based command-line processing. To install it, just follow the
download instructions on the jq GitHub repository.

jq works with and depends on cURL.

Install cURL
cURL provides the ability to communicate over multiple protocols, including HTTP.
Use this to make HTTP calls to RESTful APIs from the command line.

Install cURL on macOS
Just as with Linux, cURL may already be installed on your Mac. Check it as follows:

curl --version

330 | Appendix A: Installation Guides

http://www.robertsindall.co.uk/blog/setting-java-home-variable-in-windows/
http://www.gradle.org
https://gradle.org/install
https://gradle.org/install#with-homebrew
http://stedolan.github.io/jq/
http://stedolan.github.io/jq/download/
http://curl.haxx.se/


If it’s already there, there’s nothing else to do. Otherwise, you’ll need to install it. I use
Homebrew as my package installer on macOS, so use the following command to
install cURL on a Mac:

brew install curl

Install cURL on Linux
Check whether cURL is already installed by entering the following command:

curl --version

If it isn’t there, do the following from the command line:

sudo apt-get install curl

This should work on Ubuntu or Debian.

Install cURL on Windows
To install cURL on Windows, do the following:

1. Visit the cURL Download Wizard.

2. Select the type of package: curl executable.

3. Select the Operating System: either Windows/Win32 or Win64.

4. Select the Flavor: either Cygwin (if you use Cygwin) or Generic (if you don’t use
Cygwin).

5. Select the Win32 version (only if you selected Windows/Win32 previously):
Unspecified.

Credit for the cURL Windows installation instructions goes to Stack Overflow.

Install Apache Kafka
We use Apache Kafka in Chapter 10 for JSON-based messaging. Kafka depends on
Apache ZooKeeper so you’ll need to install ZooKeeper, too. Before going any further,
be sure to install the Java Environment on your machine (because Kafka is based on
Java).

Install Kafka on macOS
Homebrew is the easiest way to install Kafka on macOS. Do the following from the
command line:

brew install kafka

This installs both Kafka and ZooKeeper. You’re done.

Installation Guides | 331

http://brew.sh/
http://curl.haxx.se/dlwiz/
https://www.cygwin.com/
https://www.cygwin.com/
http://bit.ly/2r6Yrqx
http://kafka.apache.org/
http://zookeeper.apache.org/
http://brew.sh/


Install Kafka on UNIX
Install ZooKeeper as follows:

• Download ZooKeeper from the ZooKeeper Releases page.

• Extract the TAR file from the GZipped file you downloaded (current/latest Zoo‐
Keeper download):

tar -zxf ZooKeeper-3.4.9.tar.gz

• Add system environment variables in ~/.bashrc:

export ZooKeeper_HOME = <Zookeeper-Install-Path>/zookeeper-3.4.9

export PATH=$PATH:$ZOOKEEPER_HOME/bin

Install Kafka as follows:

1. Download Kafka from the Kafka Downloads page.

2. Extract the TAR file from the GZipped file you downloaded (current/latest Kafka
download):

tar -zxf  kafka_2.11-0.10.1.1.tgz

3. Add system environment variables in ~/.bashrc:

export KAFKA_HOME = <Kafka-Install-Path>/zookeeper-3.4.9

export PATH=$PATH:$KAFKA_HOME/bin

Credit for the Apache Kafka installation on UNIX instructions goes to TutorialsPoint.

Install Kafka on Windows
Install ZooKeeper as follows:

1. Download ZooKeeper from the ZooKeeper Downloads page.

2. Use your favorite zip tool to unzip the ZooKeeper file to the C: drive.

3. Add System Variables as follows:

a. In Windows, navigate to Control Panel → System → Advanced System Set‐
tings → Environment Variables.

b. Create the following new System Variable (current/latest ZooKeeper down‐
load):

ZOOKEEPER_HOME = C:\zookeeper-3.4.9

c. Add ZooKeeper to your PATH by editing that variable and adding this at the
end:

332 | Appendix A: Installation Guides

http://bit.ly/2tmX0Rm
http://kafka.apache.org/downloads.html
https://www.tutorialspoint.com/apache_kafka/apache_kafka_installation_steps.htm
http://bit.ly/2tmX0Rm


;%ZOOKEEPER_HOME%\bin;

Install Kafka as follows:

1. Download Kafka from the Kafka Downloads page.

2. Use your favorite zip tool to unzip the Kafka file to the C: drive.

3. Add System Variables as follows:

a. In Windows, navigate to Control Panel → System → Advanced System Set‐
tings → Environment Variables.

b. Create the following new System Variable (current/latest Kafka download):

KAFKA_HOME = C:\kafka_2.11-0.10.1.1

c. Add Kafka to your PATH by editing that variable and adding this at the end:

;%KAFKA_HOME%\bin;

Credit for the Apache Kafka installation on Windows instructions goes to Gopal
Tiwari’s article on DZone.

References

• The AsciiDoc version of Appendix A in the book was generated by Pandoc from
the original Markdown in the JSON at Work GitHub examples repository.

Installation Guides | 333

http://kafka.apache.org/downloads.html
http://bit.ly/2rssBoa
http://bit.ly/2rssBoa
http://asciidoc.org
http://pandoc.org
https://github.com/tmarrs/json-at-work-examples/blob/master/appendix-a/README.md




APPENDIX B

JSON Community

JSON has an active and vibrant community. Visit the following groups and lists to get
involved and learn more:

JSON.org
Douglas Crockford’s JSON site where it all started.

JSON Yahoo! Group
This Yahoo Group is affiliated with the JSON.org site.

json-ietf Mailing List
This list is for the JSON IETF (Internet Engineering Task Force) Working Group
that maintains the JSON IETF specification.

JSONauts
Another great source of JSON tutorials, tools, and articles.

JSON Schema Speciocation Working Group
The JSON Schema specification is maintained in this GitHub Repository.

JSON Schema Google Group
This Google group is associated with the JSON Schema Specification Working
Group.

api-craft Google Group
This group focuses on API Design and development.

335

http://www.json.org
https://groups.yahoo.com/neo/groups/json/info
https://www.ietf.org/mailman/listinfo/json
http://jsonauts.github.io
https://github.com/json-schema-org/json-schema-spec
https://groups.google.com/forum/#!forum/json-schema
https://groups.google.com/forum/#!forum/api-craft




Index

Symbols
"" (double quotes), in JSON-T transformation

rules, 213
# (hash sign), indicating internal references in

JSON Schema, 136
$ (dollar sign) in JSONPath, 164
$ property of an Object, in Badgerfish, 228
$push operator, 277
$ref functionality, JSON Schema

support by JSON Pointer, 170
$schema keyword, 120, 122
'' (single quotes), in JSON-T transformation

rules, 213
. (dot), .. in JSONPath, 164
.[], returning subarray elements in jq, 177
@ (at sign)

in JSONPath slice function, 164
property names beginning with, in Badger‐

fish, 229
@context object, in JSON-LD, 245, 247
@id object, in JSON-LD, 245
@last@ Handlebars variable, 219
@vocab object, in JSON-LD, 245
[?(…)], conditional search in JSONPath slice

function, 164
[] (square brackets)

array creation in jq queries, 177
in JSONPath, 164

\ (backslash), characters escaped with in JSON
strings, 11

\\ (double backslash), denoting special charac‐
ters in Regular Expressions, 133

{{#unless}} Handlebars helper, 219
{} (curly braces)

enclosing JSON-T conversion expressions,
213

enclosing objects in JSON-T, 215
object creation in jq, 177

| (pipe symbol), chaining filters in jq queries,
177

A
acceptance/rejection messages, JSON messag‐

ing on Kafka, 307, 310
actions

in Siren, 242
in Siren Speaker entity, 244
information on, in JSON data returned

from API calls, 242
ActiveSupport gem

installing, 328
JSON deserialization with objects and

ActiveSupport, 65
JSON serialization with objects and Active‐

Support, 64
ajv library (Node.js), 158, 306
allOf keyword, 144
AMS (ActiveModel::Serializers), 73

choosing between RABL, Jbuilder, and
AMS, 74

customized JSON representation for web
API, 82

analytics and stream processing, using Kafka
messaging, 288

anyOf keyword, 143
Apache Kafka (see Kafka, JSON messaging

with)
Apache Kafka main page, 287

337



Apache Spark/Spark Streaming, 288-289
API Blueprint, 242
API First design, 281
APIs, 161

(see also RESTful APIs; Stub API; web appli‐
cations)

API design, JSON Schema in, 117
designing and testing with JSON Schema,

146-157
deploying a Stub API with json-server,

155
generating a JSON Schema, 148
generating sample data, 152

recommendations for working with hyper‐
media, 260

Architect template editor
JSON-to-HTML transformation with Mus‐

tache, 196
JSON-to-JSON transformation with Han‐

dlebars, 220
JSON-to-JSON transformation with Mus‐

tache, 217
usng on Handlebars, 202

architectural style, noBackend, 17
arrays

array type in JSON, 5
array type in JSON Schema, 121
JSON object with nested array, 9
overview of JSON arrays, 10
validating in JSON Schema, 126-128

assertions
assert (TDD) assertion style, 36
Chai assertion library, 36
expect-style, in JSON Pointer tests, 172
JUnit, 95
should (BDD) assertion style, 36

attributes (XML)
in Badgerfish convention, 229
Parker convention and, 229
problems with, in JSON-XML conversions,

222
Avro, 290
awesome_print gem, installing, 328
awrence gem, 65

B
backslash-escaped characters in JSON strings,

11
Badgerfish, 223-229

core rules, 228
documentation and resources for, 229
limitations of, 231
online tester, 224

BDD (behavior-driven development), 35
BDD-style assertions, 35
Binary JSON (BSON), 269
binary messages, Kafka support for, 287
booleans

boolean type in JSON Schema, 121-122
overview of JSON booleans, 13

Bootstrap, 41
table-striped CSS class, 47

Bower package manager, 40
Bray, Tim, 4
brokers (Kafka servers), 289
browsers

HTML applications for, 239
hypermedia and, 239
installing JSON tools in, 317
JSON-T running as JavaScript file, 216
viewing Speakers data served by Crest, 283

BSON (Binary JSON), 269
build tools (in Yeoman), 40
Bundler, 67

C
C#, 3
camel case

conversion between snake case and, using
ActiveSupport, 64

converting AMS JSON output to, 81
with JSON in Ruby on Rails, 63

Chai assertion library, 36, 162
BDD-style expect assertions, 38
in HAL unit test, 265

classes (Siren), 244
Clojure, support for JSON Schema, 157
clusters, 289
Collection+JSON, 249-250
command line interface (CLI)

Handlebars on, 203
jq, piping query results to UNIX tools, 184
Kafka, 291-297

cleaning up and shutting down Kafka,
295

convenience scripts with this book, 291
publishing a JSON message with, 291

MongoDB command-line tools, 270

338 | Index



Mustache on, 197
npm modules on, jsonlint and validate, 120
tools that search and filter JSON content,

160
validate tool, 151

comments, removal from JSON, 14
community, JSON, 335
conditionals in JSPath slice function, 164
conference example, 17-23
ConsumerGroup object, 310
consumers, 288

consuming a JSON message in Kafka, 295
kafka-node objects used by, 308
Proposal Reviewer (example), 299, 302
Speaker Notifier (example), 299, 308
starting in Kafka, 293
stopping in Kafka, 295

content negotiation, 14
@context object, in JSON-LD, 245, 247
conversion expressions in JSON-T transforma‐

tion rules, 213
Core JSON, 8
Crest, 282

installing, 325
installing and setting up, 282
Speakers data served by, 283

Crockford, Douglas, 3
cURL

installing, 330
jq integration with, 174

D
data representation

for resources, alteration by hypermedia, 242
for resources, in json:api, 250

data types, 8
arrays, 10
basic types in JSON Schema, 121-125

validating, 123
booleans, 13
information on, in JSON data returned

from API calls, 242
JSON value types, 11
name/value pairs, 8
numbers, 12
objects, 9
strings, 11

database drivers, 270
date property values, 15

db.speakers.count() shell command, 276
db.speakers.find() shell command, 275
definitions keyword, 136
dependencies keyword, 135
dependent properties, 135
deserialization, 26

(see also serialization/deserialization)
development environment, setting up, 21
document-oriented databases, 269
documents (JSON), 4
DrowsyDromedary, 282
DRY (Do Not Repeat Yourself) in JSON

Schema, 136

E
ECMA JSON standard, 3
ElasticSearch, 289
elements (XML)

rules in Parker convention, 231
rules of Badgerfish convention, 228

ELK (ElasticSearch, Logstash, Kibana) stack,
288

email addresses
regular expression for validation of, 150
standard format, validating in JSON

Schema, 133
email client (emulated), 299, 312

setting up, 301
email server (emulated), 299, 312

setting up, 301
embedded object in HAL, 254

embedded presentation Objects for speak‐
ers, 258

EML file format, 314
entities (in Siren), 242
enum keyword, 128
enumerated values, validating in JSON Schema,

128
errors array (json:api), 250
eval function, 30
expect-style assertions, 36, 172
Express-based NodeJS RESTful APIs, HAL sup‐

port, 268
eXtensible Stylesheet Language Transforma‐

tions (XSLT), 187
external references (JSON Schema), 138, 141

F
file type (JSON), 14

Index | 339



floating-point numbers in JSON, 12
Flume, 290

G
generator-webapp Yeoman generator, 41

installing, 323
key application files and directories gener‐

ated, 44
other important commands, 45

GET method (HTTP), 23
(see also HTTP; HTTP methods)

GitHub repositories, 188
Goessner, Stefan, 213

article on JSONPath, 169
Google, JSON Style Guide, 15
Gradle, 85

build.gradle script for Speakers API (exam‐
ple), 105

deploying the API with gradLew script, 107
important tasks, commands for, 86
installing, 330
key directories and files in projects, 86
overview, 85
running JUnit tests from command line, 95
tutorials and references on, 87

Grunt, 40
Gulp, 40

gulp --tasks command, 45
gulp build command, 45
gulp clean command, 45
gulp lint command, 45
gulp serve command, 41
gulp serve:test command, 45

H
Hadoop, 288

Avro and, 290
Hadoop Distributed File System (HDFS), 290
HAL (Hypertext Application Language),

254-258
benefits of choosing as hypermedia format,

259
embedded presentation objects for speakers,

257
media types, 254
server-side, 267
Speaker data in HAL format, 255
speakers list in HAL format, 256
testing with, in Speakers API, 261-267

halfred (HAL parser), 263
validating HAL data, 265

Handlebars library, 52
acceptance/rejection proposals processing

(example), 310
comparison with Mustache for JSON-to-

HTML transformations, 204
differences between Mustache and, 198
JSON-to-HTML transformations, 198-204

Handlebars on other platforms, 203
Handlebars on the command line, 203
online testers, 202
scorecard for evaluation criteria, 204
template syntax, 199

JSON-to-JSON transformations, 219-221
ranking for JSON-to-JSON transformations,

221
unit test, 200

HDFS (Hadoop Distributed File System), 290
Hibernate OGM, 281
HighLevelProducer object, 307
HiveKa, 289
Homebrew, uninstalling Node.js, 321
href

in collection object (Collection+JSON), 250
required in HAL link relations, 255

href+, in collection object (Collection+JSON),
249

HTML
applications for browsers, 239
factoring from JavaScript using a Mustache

template, 51
JSON-to-HTML transformations, 187,

191-204
JSON-T, 217
target HTML document, 191
using Handlebars, 198-204
using Mustache, 192-198

HTTP
HTTP Patch, 207
Java-based HTTP libraries, 36
JSON Patch as part of HTTP request, 207
request for Speaker data in JSON-LD for‐

mat, 244
request for Speaker data in json:api format,

251
request for speaker's list of presentations in

JSON-LD format, 246

340 | Index



Speaker data in Siren format based on
HTTP request, 243

Unirest client wrapper, 37
web application using JSON in JavaScript,

making an HTTP call with jQuery, 45
HTTP methods, 23

cURL support for, 175
GET method in Ruby on Rails application,

81
GET request in cURL, 174
support by RESTful MongoDB wrappers,

282
http-server, installing and running, 140, 324
HYDRA add-on (JSON-LD), 247

presentations in JSON-LD format enhanced
with HYDRA operations, 247

using JSON-LD without, 248
hypermedia, JSON and, 239-268

author's opinion on hypermedia, 241
comparing hypermedia formats, 242-258

Collection+JSON, 249-250
HAL, 254-258
JSON-LD, 244-248
json:api, 250-254
Siren, 242-244

conclusions on hypermedia, 259
defining key terms for REST, 241
JSON-based hypermedia formats, 240
learning more about hypermedia, 268
myconference Speakers API (example), 240
practical issues with hypermedia, 260
recommendations for working with hyper‐

media, 260
server-side HAL, 267
testing with HAL in Speakers API, 261-267

Hypertext Application Language (see HAL)

I
@id object, in JSON-LD, 245
IETF JSON standard, 3
included array (json:api), 251, 253
indentation in JSON code, 16
insert function, 276
installation guides, 317-333

installing Crest, 325
installing cURL, 330
installing Gradle, 330
installing http-server, 324
installing jq, 330

installing jq-tutorial, 326
installing JSON tools in browsers, 317
installing json-server, 324
installing Kafka, 331
installing MongoDB, 328
installing Node.js, 318

on Windows, 320
installing npm modules, 323
installing Ruby gems, 327
installing Ruby on Rails, 326

on macOS and Linux, 326
on Windows, 327

installing the Java environment, 328
installing Yeoman, 322
uninstalling Node.js on Linux, 321
uninstalling Node.js on macOS, 321
uninstalling Node.js on Windows, 322

integer type (JSON Schema), 121
interface-first approach to designing an API, 18
internal references (JSON Schema), 136-138

J
Jackson (JSON library), 87

important classes and methods that serial‐
ize/deserialize to/from JSON, 90

JSON serialization/deserialization with, 88
support for jq, 183
support for JSON Pointer, 173
tutorials on, 95

JAR (Java ARchive) files
building and deploying executable JAR for

Speakers API (example), 107
packaging web application as executable

JAR, 105
Java, 3

build systems based on, 85
HTTP libraries, 36
installing the Java environment, 328

Java SE, 328
Java setup on Linux, 329
Java setup on macOS, 329
Java setup on Windows, 329

Java Architecture for XML Binding (JAXB),
232

JSON in, 85-109
building small web API with Spring

Boot, 100-108
Java and Gradle setup, 85
Java-based JSON libraries, 87

Index | 341



JSON serialization/deserialization with
Jackson, 88

unit testing with a Stub API, 96-100
unit testing with JUnit, 87

ODMs for accessing MongoDB, 281
Spring Kafka library, 297
support for HAL, 267
support for jq, 183
support for JSON Patch, 212
support for JSON Pointer, 173
support for JSON Schema, 157
support for JSONPath, 169
support for Mustache, 197

Java Message Service (JMS), 287
JavaScript, 3

converting JSON to/from, 233
converting XML to/from, 233
ES6 JavaScript Promise, 182
JSON in, 25-55

building a web application, 39-53
JavaScript objects and JSON, 32-35
JSON serialization/deserialization, 26-32
unit testing with a Stub API, 35-39

JSON-T running as JavaScript file in brows‐
ers, 216

jsonapter library, 206
kafka-node module, 297
learning more about, 54
MongoDB query language based on, 275
resurgence of, 6
slice function, 164
support for HAL, 268

JavaScript Object Notation for Linking Data
(see JSON-LD)

Jbuilder, 73
choosing between AMS, RABL, and

Jbuilder, 74
JDK (Java Developer Kit), 328
JEP (Java Enhancement Proposal) 198, 88
Jolt, 205
jq, 173-184

documentation and resources for, 184
installing, 330
integration with cURL, 174
jq-tutorial, 178, 326
on other platforms, 183
online tester, jqPlay, 176
piping mongoexport data through, 278
query syntax, 175

ranking in comparison with other JSON
Search tools, 185

scorecard for evaluation criteria, 183
unit test, 178

jQuery
$(document).ready() function, 48
$.get() method, 53
$.getJSON() callback method, 48
.each() function, 48
making an HTTP call with, web application

in JavaScript using JSON, 45
jsawk tool, 160
JSON

benefits of, 6
community groups and lists, 335
Core, 8
installing JSON tools in browsers, 317
JSON-XML transformations

unit test, 233
overview, 3
RESTful APIs based on, 7
standard, 3
style guidelines for, 15
versions, 14

JSON Editor Online, 118, 317
features, 19
modeling JSON data with, 18
speaker data model in (example), 19
using to model a JSON document, 147

JSON gem, 58
JSON Generator, generating sample data with,

20, 152
JSON messaging (see Kafka, JSON messaging

with)
JSON Patch, 207-213

limitations of, 212
on other platforms, 212
scorecard for evaluation criteria, 212
syntax, 207
unit test, 208

JSON Pointer, 137, 170-173, 208
on other platforms, 173
query syntax, 170
ranking in comparison with other JSON

Search tools, 184
RFC 6901, 173
scorecard for evaluation criteria, 173
unit test, 171

JSON Schema, 113-158

342 | Index



arrays, validating, 126-128
basic schema example, 114
basic types in, 121-125

validation of basic types, 123
choosing validation rules, 141-146

allOf, 144
anyOf, 143
oneOf, 141

comparison with XML Schema, 117
core keywords, 120
current state of the standard, 117
dependent properties, 135
designing and testing an API, 146-157

generating a JSON Schema, 148
generating sample data, 152
modeling a JSON document, 146
shortening the development cycle, 157
steps in the process, 146
validating the JSON document, 151

external references, 138-141
internal references, 136-138
learning more about, 158
Mongoose Schema, converting to, 281
numbers, validating, 125-126
objects, validating, 129-131
online resources for, 115
overview, 113
pattern properties, validating, 131-133
regular expressions in, 133-134
semantic validation with, 114
use cases, 116
validating enumerated values, 128
validating Speaker Proposal against, 306
validation using a JSON Schema library, 157
workflow and tooling, 118-120

JSON Editor Online, 118
JSON Validate application, 119
JSONSchema.net, 118
npm modules on CLI, validate and json‐

lint, 120
JSON Search, 159-185

advantages of using, 159
comparing libraries and tools, 163

final ranking, 184
jq, 173-184
JSON Pointer, 170-173
JSONPath, 163-169

libraries and tools, 160
criteria for choosing, 160

honorable mention, 160
test data for, 161

json tool, 160
JSON Transform, 187-235

criteria for evaluating libraries, 188
JSON-to-HTML transformations, 191-204

comparing Mustache and Handlebars,
204

target HTML document, 191
using Handlebars, 198-204
using Mustache, 192-198

JSON-to-JSON transformations, 204-222
issues in, 205
libraries, 205
ranking of transformation libraries, 221
target JSON output, 206
using Handlebars, 219-221
using JSON Patch, 207-213
using JSON-T, 213-217
using Mustache, 217

JSON-XML transformations, 222-235
Badgerfish convention, 224-229
conventions, 222
issues with transformation conventions,

231
Parker convention, 229-231
parsing/generating XML libraries, 232
recommendations for JSON-to-XML,

232
recommendations for XML-to-JSON,

231
test data for, 189
types of transformations, 187

JSON Validate application, 119
validate module and, 120

JSON-java library, 88
JSON-LD, 244-248

benefits of choosing as hypermedia format,
259

HYDRA add-on, 247
presentations enhanced with HYDRA

operations, 247
Speaker data in JSON-LD format, 244
speaker's list of presentations in JSON-LD

format, 246
JSON-LD Playground, 247
json-patch module (Node.js), 208
json-pointer module (Node.js), 171
json-server

Index | 343



deploying a Stub API with, 155
deploying city weather data as web API, 161
installing, 324
installing and running, 21
limitation to HTTP GET on data, 156
serving Speakers data in HAL format, 261
URIS for sample data, 155
using Node.js to serve a file as a Web API,

37
JSON-T, 213-217

limitations of, 216
on other platforms, 216
scorecard for evaluation criteria, 216
syntax, 213
unit test, 214

JSON-to-JSON transformations, 187, 204
(see also JSON Transform)

JSON.parse() function, 26, 30-32, 233
JSON.stringify() function, 26-30, 233
Json2Json, 205
json:api, 250-254

advantages of using, 254
benefits of choosing as hypermedia format,

259
embedding all presentation objects for a

speaker, 252
myconference API Speakers data in json:api

format, 251
required and optional elements in a docu‐

ment, 250
showing relationships between resources,

using links in json:api, 253
jsonapter, 205
jsonfile module (Node.js), 194
JSONLint, 4

using for better JSON output, 225
using from command line, jsonlint module,

120
JSONPath, 163-169, 205

on other platforms, 169
online tester, 164
query syntax, 163
ranking in comparison with other JSON

Search tools, 184
scorecard for evaluation criteria, 169
unit test, 165

JSONSchema.net, 148
advantages and disadvantages of, 150

JsonUnit, 96

JSONView, 21
JSR (Java Specification Request) 353, 88
JUnit, 87

serializeBasicTypes and deserializeBasic‐
Types methods, 90

testing JSON serialization/deserialization
with Java objects, 94
JUNit assertions, 95

testing with APIs, 96

K
Kafka Manager, 289
Kafka, JSON messaging with, 287-315

cleaning up and shutting down Kafka
deleting a topic, 295
stopping Kafka, 296
stopping ZooKeeper, 296

differences between Kafka and other mes‐
sages systems, 287

end-to-end example, Speaker Proposals at
MyConference, 297-315
architecture components, 299
Proposal Reviewer, 302
reviewing notification email messages

with MailCatcher, 313
setting up emulated email server and cli‐

ent, 301
setting up Node.js project environment,

302
setting up the Kafka environment, 300
Speaker Notifier, 308
Speaker Proposal Producer, 302
test data, 297

installing Kafka, 331
Kafka command-line interface, 291-297

cleaning up and shutting down Kafka,
295

consuming a JSON message, 295
convenience scripts with this book, 291
creating a topic, 292
listing topics, 293
publishing a JSON message, 294
publishing a JSON message, steps in

Process, 291
starting a consumer, 293
starting Kafka, 292
starting ZooKeeper, 291

Kafka concepts and terminology, 288
Kafka ecosystem and related projects, 289

344 | Index



Kafka environment setup, 290
ZooKeeper, 290

Kafka libraries, 297
learning more about Kafka, 289
use cases for Kafka, 288

kafka-node npm module, 304
objects used by producers and consumers,

308
key/value pairs (see name/value pairs)
Kibana, 288

L
@last@ Handlebars variable, 219
latitude/longitude values, 16
links

author's opinion on, 242
in Siren, 243
in Siren Speaker entity, 244
link relations in HAL, 257
link relations versus embedding related

resources, 258
links object in HAL, 254

reference to self, 267
links object in json:api, 251
using in json:api to show relationships

between resources, 253
LiveReload, 41
log aggregation, using Kafka messaging, 288
logic-less templates (Mustache), 51
Logstash, 288
lowerCamelCase for JSON property names, 15

M
MailCatcher, 299

installing, 328
reviewing notification email messages, 313
setting up emulated email server and client,

301
Speaker Notifier sending message to server,

312
starting the server, 302

marshaling, 232
matchers (JsonUnit), for JSON comparison in

JUnit tests, 96
Maven Central Repository, 106
message design, using JSON Schema, 116
messaging platforms, 3
messaging with Kafka, 287-315

end-to-end example, Speaker Proposals at
MyConference, 297-315

Kafka command-line interface (CLI),
291-297

Kafka concepts and terminology, 288
Kafka ecosystem and related projects, 289
Kafka environment setup, 290
Kafka libraries, 297
use cases for Kafka, 288

metadata, 239
describing available actions for Siren enti‐

ties, 244
provided by hypermedia, author’s opinion

on, 241
MIME type (JSON), 14
Minitest

learning more about, 72
RSpec versus, 66

Mocha unit test framework, 36, 162
beforeEach method, 168
beforeEach() method, 38

model/view/controller (MVC) frameworks, 6
creating a controller for Rails application, 78
creating controller in Java application, 103
creating model in Java application, 101
JSON generation and, 74
templating, 52

mongo command shell, 273
basic CRUD operations with, 274-277

creating a document, 276
deleting a document, 277
querying documents, 274
updating a document, 276

exiting, 274
mongod server, 270

starting and running, 270
MongoDB

installing, 328
REST wrapper for, Crest, 325

MongoDB, JSON and, 269-285
BSON (Binary JSON), 269
exporting from MongoDB to JSON docu‐

ment, 277-280
importing JSON into MongoDB, 271
mongo command shell, 273-277
mongod server, 270
MongoDB and relational databases, 273
MongoDB server and tools, 270
MongoDB setup, 270

Index | 345



RESTful API, testing with MongoDB,
281-284

mongodump utility, 270
mongoexport utility, 270

exporting from MongoDB to JSON docu‐
ment, 277

piping output through jq utility, 278
mongoimport utility, 270

importing speakers JSON file, 271
Mongoose, 280
mongorestore utility, 270
mongostat utility, 270
Mountebank server, 23
MultiJson, 58

JSON deserialization with objects and Mul‐
tiJson, 61

JSON serialization/deserialization with sim‐
ple Ruby data types, 59

methods, 58
Mustache library, 50

adding to a web application, 53
differences between Handlebars and, 198
factoring HTML/DOM manipulation from

JavaScript with a template, 51
JSON-to-HTML transformations, 192-198

Mustache on other platforms, 197
Mustache on the command line, 197
Mustache template syntax, 192
online tester, 196
scorecard for evaluation criteria, 197
unit test, 194

JSON-to-JSON transformations, 217-218
limitations of Mustache, 218

Mustache module (Node.js), 194

N
name/value pairs, 8

value types, 11
noBackend, 17
node-jq module (Node.js), 178
Node.js, 3

cities weather test example project, 162
installing, 21, 318

on Windows, 320
jq-tutorial, 178
json-patch module, 208
json-pointer module, 171
Json2Json, 205
jsonapter, 206

Mongoose, 280
Mustache module, 197
Mustache unit test, 194
node-jq module, 178
Request-Eval-Print-Loop (REPL), 33
setting up Speaker Proposals at MyConfer‐

ence project, 302
setup, 25
support for HAL, 268
support for JSON Schema, 157
uninstaling on Linux, 321
uninstalling on macOS, 321
uninstalling on Windows, 322
using to test with HAL in Speakers API, 263
xml2js library, 232

nodemailer transporter object, 312
NoSQL databases, 3
npm, 40

avoding sudo with, 319
installing modules, 323

null values
in JSON, 13
null type in JSON Schema, 121

numbers
in JSON, 12
number type in JSON Schema, 121-122
validating in JSON Schema, 125-126

NVM (Node Version Manager), 318
nvm-windows, 320

O
Object Document Mappers (ODMs), 280

Mongoose, 280
platforms other than Node.js, 281

Object ID (_id) in MongoDB, removing from
JSON data, 278

object-oriented programming
SOLID principles of OO design, 74

ObjectMapper class, 90
objects, 7

containing another object, 9
data/cities-weather.json, 161
JavaScript objects and JSON, 32-35

learning more about JavaScript objects,
35

Node REPL, 33
object type in JSON Schema, 121
overview of JSON objects, 9
Plain Old Java Object (POJO), 101

346 | Index



Ruby object holding speaker data (example),
72

validating in JSON Schema, 129-131
offset (Kafka messages), 289, 304
oj gem, 58

installing, 328
serializing/deserializing Ruby data types

with, 59
oneOf keyword, 141
Open Web Application Project (OWASP), Web

Service Security Cheat Sheet, 116
OpenApis, 242
OpenStruct, 62, 65
OpenWeatherMap API, 161

data on json-server viewed from the
browser, 162

JSON Patch operations on data, 207
sample data in XML document form, 223
test data for JSON Transform, 189

operational and application performance met‐
rics, using Kafka messaging, 288

operations
adding metadata on, 242
information on, provided by HYDRA, 247

P
package management tools (in Yeoman), 40
Parker, 223, 229-231

cities weather JSON document output, 229
core rules, 231
limitations of, 231

partitions (Kafka topics), 289
pattern properties

patternProperties keyword, 131
validating in JSON Schema, 131-133

PHP, 3
support for JSON Schema, 157

Plain Old Java Object (POJO), 101
Plain Old Ruby Object (PORO), 72
plissken gem, 66
Postman, 21

installing, 317
Speakers data in HAL format viewed in, 261
testing Java Speakers API, 107
testing web API in Ruby on Rails, 81
viewing Speakers data served by Crest, 283

deleting a speaker, 284
pretty-printing JSON, 19
producers, 288

HighLevelProducer object, 307
kafka-node objects used by, 308
Speaker Proposal Producer (example), 299,

302
Promise (JavaScript), 182
properties

beginning with @, in Badgerfish, 229
date property values, 15
dependent properties in JSON Schema, 135
in Siren, 244
property names in JSON, 15
rules of Badgerfish convention, 228

properties keyword (JSON Schema), 121
Proposal Reviewer application (example), 303
prototyping, using JSON Schema, 117
publish/subscribe messaging, 288

consuming a JSON message in Kafka, 295
publishing a JSON message with Kafka CLI,

291
starting a consumer in Kafka, 293

$push operator, 277
PUT method (HTTP), 207
Python

support for JSON Pointer, 173
support for JSON Schema, 157
support for JSONPath, 169

R
RABL (Ruby API Builder Language), 73

choosing between Jbuilder, AMS, and
RABL, 74

RAML, 242
regular expressions

in JSON-T unit test, eliminating trailing
comma after last array element, 215

in JSONPath slice function, 164
learning more about, 134
pattern properties based on, 131
using in JSON Schema, 133-134, 150

relational databases, MongoDB and, 273
remove function, 277
REPL, turning off undefined in, 319
representation, 241

information on data representations from
HYDRA, 247

Representational State Transfer (see REST)
Request-Eval-Print-Loop (REPL) in Node, 33
requires keyword, 141
resources, 241

Index | 347



data representation in json:api, 250
data representation of, alteration by hyper‐

media, 242
data representation of, in JSON-LD, 245
embedded resources in HAL, 258
embedding with json:api, 252
included array in json:api, 251
Resource objects and embedded resources

in HAL, 254
showing relationships between, using links

in json:api, 253
REST

JSON and, 3
key terms, defining, 241

RESTful APIs
hypermedia and, 239
JSON-based, 7
server-side libraries for HAL-based respon‐

ses, 267
Stub API, testing with MongoDB, 281-284

RESTful wrapper for MongoDB, 282
testing with Postman, 22
Unirest client, 36

RESTHeart, 282
Routes file (in Rails applications), 80

shortening with resource-based routing, 80
RSpec, Minitest versus, 66
Ruby, 3

installing Ruby gems, 327
Karafka gem, 297
learning more about, 72
Mongoid ODM for accessing MongoDB,

281
parsing/generating XML libraries, 232
ruby-jq gem, 183
support for JSON Patch, 212
support for JSON-T, 216

Ruby API Builder Language (RABL), 73
Ruby on Rails

installing, 326
on macOS and Linux, 326
on Windows, 327

JSON in, 57-84
building small web API, 73-84
camel case for JSON, 63
JSON serialization/deserialization with

MultiJson, 58
Ruby JSON gems, 58
Ruby on Rails setup, 57

unit testing with a Stub API, 66-73
learning more about Rails and Rails-based

APIs, 84
mailcatcher gem, installing, 301
support for HAL, 267
support for JSON Pointer, 173
support for JSON Schema, 157
support for JSONPath, 169
support for Mustache, 197

S
scaffolding tool (Yeoman), 40
Schema.org website, 245
schemas, 113

(see also JSON Schema)
MongoDB data and, 280

search (see JSON Search)
security, JSON Schema and, 116
semantic validation, 114

objects, 129
serialization/deserialization

additional, required by use of hypermedia,
260

Avro data serialization, 290
JSON in Java, using Jackson, 88

with Java objects, 91
with simple Java data types, 88

serializers for JSON in Ruby on Rails, 73
using JSON in JavaScript, 26-32

JSON deserialization with an object and
JSON.parse(), 31

JSON deserialization with eval(), 30
JSON serialization with an object and

toJSON(), 29
serializing basic JavaScript data types, 26

using JSON in Ruby on Rails, 58
JSON deserialization with objects and

ActiveSupport, 65
JSON deserilization with objects and

MultiJson, 61
JSON serialization with objects and

ActiveSupport, 64
MultiJson, 58
simple Ruby data types, 59

should (BDD) assertion style, 36
Simple Mail Transfer Protocol (SMTP), 301
Simple REST API, 282
Single Responsibility Principle, 74
Siren, 242-244

348 | Index



key concepts, 242
Speaker data in Siren format, 243
speaker entity, definition of, 244

slice function, 164
SMTP server, 301
snake case, 15

converting between camel case and, using
ActiveSupport, 64

converting camel case Hash keys to, using
awrence gem, 65

converting camel case Hash keys to, using
plissken gem, 66

JSON in Ruby on Rails, 63
SOAP/XML-based Web Services, 188
SOLID principles of OO design, 74
SpahQL, 160
Spark/Spark Streaming, 288-289
Spring Boot, 100-108

advantages of using, 100
creating and deploying Speakers API

(example)
deploying the API, 107
registering the application, 105

Gradle plug-in, functions of, 106
steps in creating and deploying Speakers

API (example), 101
creating the controller, 103
creating the model, 101

Spring Data, 281
Spring HATEOS, 267
Spring Kafka library, 297
standards

lack of, in hypermedia, 260
lack of, in JSON-to-JSON transformations,

205
stream processing

Apache Spark/Spark Streaming, 289
Kafka messaging in, 288

stringifier/parser object (JSON), 26
strings

JSON String, deserializing into OpenStruct
object, 63

JSON-T handling of, 216
overview of JSON strings, 11
string type in JSON Schema, 121-122

Stub API
creating and deploying, 20
deploying with json-server, 155

leveraging MongoDB as RESTful stub API,
281-284

testing with HAL in Speakers API, 261-267
unit testing JSON in Java, 96-100

JUnit testing with APIs, 96
test data, 96

unit testing with, 35-39
web application consuming data from, 50

style guidelines for JSON, 15
date property values, 15
indentation, 16
latitude/longitude values, 16
property names, 15

sudo command, avoiding with npm, 319
syntactic validation, 114

T
table-striped CSS class, 47
TDD (test-driven development), 35
TDD-style unit tests, 35
templates

Handlebars library, 198
for JSON-to-JSON conversion, 219
template syntax, 199

jsonapter library, 205
Mustache library, 192

Architect template editor, 196
for JSON-to-JSON conversion, 217
syntax, 192

used by JSON Generator, 152
templating libraries for JavaScript, 52
terminal sessions (Kafka messaging example),

300
testing

Handlebars online testers, 202
Handlebars unit test, 200
Java Speakers API with Postman, 107
jq unit test, 178
JSON Patch unit test, 208
JSON Pointer unit test, 171
JSON-T unit test, 214
JSON-XML transformation unit test, 233
JSONPath online tester, 164
JSONPath unit test, 165
Kafka, JSON messaging with

test data, 297
Mustache online tester, 196
Mustache unit test, 194
online tester, jqPlay, 176

Index | 349



RESTful API, testing with MongoDB,
281-284

Ruby on Rails web API, using Postman, 81
setting up unit tests for JSON Search, 162
test data for JSON Search, 161
test data for JSON Transform, 189
unit testing JSON in Java with a Stub API,

96-100
unit testing with a Stub API, 35-39

setting up the test, 36
speakers test (example), 37
test data, 37
Unirest client, 36

unit testing with JUnit, 87-88
JSON serialization with Java objects, 94

with HAL in Speakers API, 261-267
HAL unit test, 263
test data, 261

text messages, Kafka support for, 287
toJSON() method, 29
topics (Kafka), 288

configuring Kafka to delete, 290
creating, 292
deleting, 295
listing, 293

traditional messaging, using Kafka, 288
transformation rules (JSON-T), 213
transformations, 187

(see also JSON Transform)
JSON, types of, 187

TryHandlebars, 202
type keyword (JSON Schema), 120, 122

U
ujs-jsonvalidate (Node.js), 158
Underscore.js, 52
Unirest API wrapper, 36, 168

in HAL unit test, 263
Java implementation, 96

additional features in, 100
Ruby implementation, 68
using to make API call to Speaker Stub API,

37
unit testing (see testing)
{{#unless}} Handlebars helper, 219
unmarshaling, 232
update function, 276
URIs

for external references in JSON Schema, 139

for internal references in JSON Schema, 136
for json-server, 155

V
validate CLI tool, 151
validate module, 120
validation, JSON documents, 4, 113

(see also JSON Schema)
basic types validation with JSON Schema,

123-125
in JSON Editor Online, 19
JSON Validate application, 119
output from mongo shell command, 275
Speaker Proposal example, 304
syntactic versus semantic validation, 114
using a JSON Schema library, 157
using JSON Validate web app, 151
using JSONLint, 148

values
JSON value types, 11

strings, 11
valid values in JSON, 275

@vocab object, in JSON-LD, 245

W
WAR (Web application ARchive) files, 101
weather data (see OpenWeatherMap API)
web applications

building a small web API with Ruby on
Rails, 73-84
camel-casing AMS JSON output, 81
choosing JSON serializer, 73
creating speakers API (example), 75
customized JSON representation, 82
deploying the API, 81
learning more about Rails and Rails-

based APIs, 84
testing with Postman, 81

building a small web API with Spring Boot,
100-108
creating the controller, 103
creating the model, 101
deploying the API, 107
registering the application, 104
writing the build script, 105

building using JSON in JavaScript, 39-53
consuming data from a Stub API and

using a template, 49

350 | Index



generating a web application with Yeo‐
man, 41

making an HTTP call with jQuery, 45
Yeoman framework, 39
Yeoman generators, 40
Yeoman toolset, 40

deploying city weather data as web API, 161
Web Service Security Cheat Sheet (OWASP),

116

X
XML

JSON-XML transformations, 188, 222-235
Badgerfish convention, 224-229
cities weather data sample XML docu‐

ment, 223
conventions, 222
issues with transformation conventions,

231
Parker convention, 229-231
parsing/generating XML libraries, 232
recommendations for JSON-to-XML,

232
recommendations for XML-to-JSON,

231

unit test, 233
XSLT transformations, 187

XML Schema, comparison with JSON Schema,
117

xml2js library, 232-233
XPath, 163

Y
yajl gem, 58
Yeoman, 39

generating a web application, 41
generators, 40
installing, 322
installing generator-web app Yeoman gener‐

ator, 323
toolset, 40
tutorials on, 40

Z
ZooKeeper, 290

installing, 332
starting from the Kafka CLI, 291
stopping, 296

Index | 351



About the Author

Tom Marrs is passionate about demonstrating the business value of technology. As
an Enterprise Architect at TEKsystems Global Services, he leverages the enabling
architectures and technologies that fuel the growing API Economy—REST, Microser‐
vices, and JSON. Tom has led enterprise-class API, Web, Mobile, Cloud, and SOA
projects. An avid Agilist, Tom is a Certified Scrum Master and enjoys mentoring and
coaching project teams.

In other JSON-related work, Tom wrote the Core JSON Refcard for DZone (the #1
downloaded Refcard in 2013). In a past life, Tom co-authored JBoss at Work for
O’Reilly. Tom has also been a speaker at the O’Reilly Open Source Convention
(OSCON), No Fluff Just Stuff (NFJS), and Great Indian Developer Summit (GIDS)
conferences. He hopes to speak at these conferences again in the near future.

Colophon

The animal on the cover of JSON at Work is the Siberian jay (Perisoreus infaustus), a
small bird native to northern Eurasia. Its habitat range is extremely large, stretching
from Sweden in the west to China in the east. They make their nests in coniferous
trees found in dense boreal forests (also known as taiga).

Siberian jays can grow to be 29 centimeters long and can weigh up to 79 grams. They
have long tails and brown and gray coloring. Siberian jays are omnivorous, feeding
on berries and seeds as well as insects, carrion, and small rodents. Females lay their
eggs once a year in March or April, and raise their young before the winter arrives.

There is some evidence that the European population of Siberian jays is declining as a
result of human-caused deforestation. However, because of their massive range across
sparsely inhabitated regions of Asia, the Siberian jay not currently listed as endan‐
gered or threatened.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Riverside Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

