

A Philosophy of Software Design

John Ousterhout
Stanford University

A Philosophy of Software Design
by John Ousterhout

Copyright © 2018-2021 John K. Ousterhout
All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the author.
Published by Yaknyam Press, Palo Alto, CA.

Cover design by Pete Nguyen and Shirin Oreizy (www.hellonextstep.com).

Printing History:
April 2018: First Edition (v1.0)
November 2018: First Edition (v1.01)
July 2021: Second Edition (v2.0)

ISBN 978-1-7321022-1-7

Digital book(s) (epub and mobi) produced by Booknook.biz.

http://www.hellonextstep.com/
http://booknook.biz/

Contents

Preface

1 Introduction
1.1 How to use this book

2 The Nature of Complexity
2.1 Complexity defined
2.2 Symptoms of complexity
2.3 Causes of complexity
2.4 Complexity is incremental
2.5 Conclusion

3 Working Code Isn’t Enough
3.1 Tactical programming
3.2 Strategic programming
3.3 How much to invest?
3.4 Startups and investment
3.5 Conclusion

4 Modules Should Be Deep
4.1 Modular design
4.2 What’s in an interface?
4.3 Abstractions
4.4 Deep modules
4.5 Shallow modules
4.6 Classitis
4.7 Examples: Java and Unix I/O

4.8 Conclusion

5 Information Hiding (and Leakage)
5.1 Information hiding
5.2 Information leakage
5.3 Temporal decomposition
5.4 Example: HTTP server
5.5 Example: too many classes
5.6 Example: HTTP parameter handling
5.7 Example: defaults in HTTP responses
5.8 Information hiding within a class
5.9 Taking it too far
5.10 Conclusion

6 General-Purpose Modules are Deeper
6.1 Make classes somewhat general-purpose
6.2 Example: storing text for an editor
6.3 A more general-purpose API
6.4 Generality leads to better information hiding
6.5 Questions to ask yourself
6.6 Push specialization upwards (and downwards!)
6.7 Example: editor undo mechanism
6.8 Eliminate special cases in code
6.9 Conclusion

7 Different Layer, Different Abstraction
7.1 Pass-through methods
7.2 When is interface duplication OK?
7.3 Decorators
7.4 Interface versus implementation
7.5 Pass-through variables
7.6 Conclusion

8 Pull Complexity Downwards
8.1 Example: editor text class
8.2 Example: configuration parameters
8.3 Taking it too far
8.4 Conclusion

9 Better Together Or Better Apart?
9.1 Bring together if information is shared
9.2 Bring together if it will simplify the interface
9.3 Bring together to eliminate duplication
9.4 Separate general-purpose and special-purpose code
9.5 Example: insertion cursor and selection
9.6 Example: separate class for logging
9.7 Splitting and joining methods
9.8 A different opinion: Clean Code
9.9 Conclusion

10 Define Errors Out Of Existence
10.1 Why exceptions add complexity
10.2 Too many exceptions
10.3 Define errors out of existence
10.4 Example: file deletion in Windows
10.5 Example: Java substring method
10.6 Mask exceptions
10.7 Exception aggregation
10.8 Just crash?
10.9 Taking it too far
10.10 Conclusion

11 Design it Twice

12 Why Write Comments? The Four Excuses
12.1 Good code is self-documenting

12.2 I don’t have time to write comments
12.3 Comments get out of date and become misleading
12.4 All the comments I have seen are worthless
12.5 Benefits of well-written comments
12.6 A different opinion: comments are failures

13 Comments Should Describe Things that Aren’t Obvious from the
Code

13.1 Pick conventions
13.2 Don’t repeat the code
13.3 Lower-level comments add precision
13.4 Higher-level comments enhance intuition
13.5 Interface documentation
13.6 Implementation comments: what and why, not how
13.7 Cross-module design decisions
13.8 Conclusion
13.9 Answers to questions from Section 13.5

14 Choosing Names
14.1 Example: bad names cause bugs
14.2 Create an image
14.3 Names should be precise
14.4 Use names consistently
14.5 Avoid extra words
14.6 A different opinion: Go style guide
14.7 Conclusion

15 Write The Comments First
15.1 Delayed comments are bad comments
15.2 Write the comments first
15.3 Comments are a design tool
15.4 Early comments are fun comments

15.5 Are early comments expensive?
15.6 Conclusion

16 Modifying Existing Code
16.1 Stay strategic
16.2 Maintaining comments: keep the comments near the code
16.3 Comments belong in the code, not the commit log
16.4 Maintaining comments: avoid duplication
16.5 Maintaining comments: check the diffs
16.6 Higher-level comments are easier to maintain

17 Consistency
17.1 Examples of consistency
17.2 Ensuring consistency
17.3 Taking it too far
17.4 Conclusion

18 Code Should be Obvious
18.1 Things that make code more obvious
18.2 Things that make code less obvious
18.3 Conclusion

19 Software Trends
19.1 Object-oriented programming and inheritance
19.2 Agile development
19.3 Unit tests
19.4 Test-driven development
19.5 Design patterns
19.6 Getters and setters
19.7 Conclusion

20 Designing for Performance
20.1 How to think about performance

20.2 Measure before (and after) modifying
20.3 Design around the critical path
20.4 An example: RAMCloud Buffers
20.5 Conclusion

21 Decide What Matters
21.1 How to decide what matters?
21.2 Minimize what matters
21.3 How to emphasize things that matter
21.4 Mistakes
21.5 Thinking more broadly

22 Conclusion

Index

Summary of Design Principles

Summary of Red Flags

Preface

People have been writing programs for electronic computers for more than
80 years, but there has been surprisingly little conversation about how to
design those programs or what good programs should look like. There has
been considerable discussion about software development processes such as
agile development and about development tools such as debuggers, version
control systems, and test coverage tools. There has also been extensive
analysis of programming techniques such as object-oriented programming
and functional programming, and of design patterns and algorithms. All of
these discussions have been valuable, but the core problem of software
design is still largely untouched. David Parnas’ classic paper <On the
Criteria to be used in Decomposing Systems into Modules= appeared in
1971, but the state of the art in software design has not progressed much
beyond that paper in the ensuing 45 years.

The most fundamental problem in computer science is problem
decomposition: how to take a complex problem and divide it up into pieces
that can be solved independently. Problem decomposition is the central
design task that programmers face every day, and yet, other than the work
described here, I have not been able to identify a single class in any
university where problem decomposition is a central topic. We teach for
loops and object-oriented programming, but not software design.

In addition, there is a huge variation in quality and productivity among
programmers, but we have made little attempt to understand what makes the
best programmers so much better or to teach those skills in our classes. I
have talked with several people I consider to be great programmers, but
most of them had difficulty articulating specific techniques that give them
their advantage. Many people assume that software design skill is an innate
talent that cannot be taught. However, there is quite a bit of scientific
evidence that outstanding performance in many fields is related more to
high-quality practice than innate ability (see, for example, Talent is
Overrated by Geoff Colvin).

For many years these issues have perplexed and frustrated me. I have
wondered whether software design can be taught, and I have hypothesized
that design skill is what separates great programmers from average ones. I
finally decided that the only way to answer these questions was to attempt to
teach a course on software design. The result is CS 190 at Stanford
University. In this class I put forth a set of principles of software design.
Students then work through a series of projects to assimilate and practice
the principles. The class is taught in a fashion similar to a traditional
English writing class. In an English class, students use an iterative process
where they write a draft, get feedback, and then rewrite to make
improvements. In CS 190, students develop a substantial piece of software
from scratch. We then go through extensive code reviews to identify design
problems, and students revise their projects to fix the problems. This allows
students to see how their code can be improved by applying design
principles.

I have now taught the software design class several times, and this book
is based on the design principles that emerged from the class. The principles
are fairly high level and border on the philosophical (<Define errors out of
existence=), so it is hard for students to understand the ideas in the abstract.
Students learn best by writing code, making mistakes, and then seeing how
their mistakes and the subsequent fixes relate to the principles.

At this point you may well be wondering: what makes me think I know
all the answers about software design? To be honest, I don’t. There were no
classes on software design when I learned to program, and I never had a
mentor to teach me design principles. At the time I learned to program,
code reviews were virtually nonexistent. My ideas about software design
come from personal experience writing and reading code. Over my career I
have written about 250,000 lines of code in a variety of languages. I’ve
worked on teams that created three operating systems from scratch, multiple
file and storage systems, infrastructure tools such as debuggers, build
systems, and GUI toolkits, a scripting language, and interactive editors for
text, drawings, presentations, and integrated circuits. Along the way I’ve
experienced firsthand the problems of large systems and experimented with
various design techniques. In addition, I’ve read a considerable amount of
code written by other people, which has exposed me to a variety of
approaches, both good and bad.

Out of all of this experience, I’ve tried to extract common threads, both
about mistakes to avoid and techniques to use. This book is a reflection of
my experiences: every problem described here is one that I have
experienced personally, and every suggested technique is one that I have
used successfully in my own coding.

I don’t expect this book to be the final word on software design; I’m
sure there are valuable techniques that I’ve missed, and some of my
suggestions may turn out to be bad ideas in the long run. However, I hope
that the book will start a conversation about software design. Compare the
ideas in this book with your own experiences and decide for yourself
whether the approaches described here really do reduce software
complexity. This book is an opinion piece, so some readers will disagree
with some of my suggestions. If you do disagree, try to understand why. I’m
interested in hearing about things that work for you, things that don’t work,
and any other ideas you may have about software design. I hope that the
ensuing conversations will improve our collective understanding of software
design. I will incorporate what I learn in future editions of this book.

The best way to communicate with me about the book is to send email
to the following address:

software-design-book@googlegroups.com

I’m interested in hearing specific feedback about the book, such as bugs
or suggestions for improvement, as well as general thoughts and experiences
related to software design. I’m particularly interested in compelling
examples that I can use in future editions of the book. The best examples
illustrate an important design principle and are simple enough to explain in
a paragraph or two. If you would like to see what other people are saying on
the email address and participate in discussions, you can join the Google
Group software-design-book.

If for some reason the software-design-book Google Group should
disappear in the future, search on the Web for my home page; it will contain
updated instructions for how to communicate about the book. Please don’t
send book-related email to my personal email address.

I recommend that you take the suggestions in this book with a grain of
salt. The overall goal is to reduce complexity; this is more important than
any particular principle or idea you read here. If you try an idea from this

mailto:software-design-book@googlegroups.com

book and find that it doesn’t actually reduce complexity, then don’t feel
obligated to keep using it (but, do let me know about your experience; I’d
like to get feedback on what works and what doesn’t).

Many people have offered criticisms or made suggestions that improved
the quality of the book. The following people offered helpful comments on
various drafts of the book: Abutalib Aghayev, Jeff Dean, Will Duquette,
Sanjay Ghemawat, John Hartman, Brian Kernighan, James Koppel, Amy
Ousterhout, Kay Ousterhout, Rob Pike, Partha Ranganathan, Daniel Rey,
Keith Schwartz, and Alex Snaps. Christos Kozyrakis suggested the terms
<deep= and <shallow= for classes and interfaces, replacing previous terms
<thick= and <thin=, which were somewhat ambiguous. I am indebted to the
students in CS 190; the process of reading their code and discussing it with
them has helped to crystallize my thoughts about design.

Chapter 1
Introduction
(It’s All About Complexity)

Writing computer software is one of the purest creative activities in the
history of the human race. Programmers aren’t bound by practical
limitations such as the laws of physics; we can create exciting virtual worlds
with behaviors that could never exist in the real world. Programming doesn’t
require great physical skill or coordination, like ballet or basketball. All
programming requires is a creative mind and the ability to organize your
thoughts. If you can visualize a system, you can probably implement it in a
computer program.

This means that the greatest limitation in writing software is our ability
to understand the systems we are creating. As a program evolves and
acquires more features, it becomes complicated, with subtle dependencies
between its components. Over time, complexity accumulates, and it
becomes harder and harder for programmers to keep all of the relevant
factors in their minds as they modify the system. This slows down
development and leads to bugs, which slow development even more and add
to its cost. Complexity increases inevitably over the life of any program. The
larger the program, and the more people that work on it, the more difficult it
is to manage complexity.

Good development tools can help us deal with complexity, and many
great tools have been created over the last several decades. But there is a
limit to what we can do with tools alone. If we want to make it easier to
write software, so that we can build more powerful systems more cheaply,
we must find ways to make software simpler. Complexity will still increase
over time, in spite of our best efforts, but simpler designs allow us to build
larger and more powerful systems before complexity becomes
overwhelming.

There are two general approaches to fighting complexity, both of which
will be discussed in this book. The first approach is to eliminate complexity
by making code simpler and more obvious. For example, complexity can be
reduced by eliminating special cases or using identifiers in a consistent
fashion.

The second approach to complexity is to encapsulate it, so that
programmers can work on a system without being exposed to all of its
complexity at once. This approach is called modular design. In modular
design, a software system is divided up into modules, such as classes in an
object-oriented language. The modules are designed to be relatively
independent of each other, so that a programmer can work on one module
without having to understand the details of other modules.

Because software is so malleable, software design is a continuous
process that spans the entire lifecycle of a software system; this makes
software design different from the design of physical systems such as
buildings, ships, or bridges. However, software design has not always been
viewed this way. In the early days of programming, design was often
concentrated at the beginning of a project, as it is in other engineering
disciplines. The extreme of this approach is called the waterfall model, in
which a project is divided into discrete phases such as requirements
definition, design, coding, testing, and maintenance. In the waterfall model,
each phase completes before the next phase starts; in many cases different
people are responsible for each phase. The entire system is designed at once,
during the design phase. The design is frozen at the end of this phase, and
the role of the subsequent phases is to flesh out and implement that design.

Unfortunately, the waterfall model rarely works well for software.
Software systems are intrinsically more complex than physical systems; it
isn’t possible to visualize the design for a large software system well enough
to understand all of its implications before building anything. As a result,
the initial design will have many problems. The problems do not become
apparent until implementation is well underway. However, the waterfall
model is not structured to accommodate major design changes at this point
(for example, the designers may have moved on to other projects). Thus,
developers try to patch around the problems without changing the overall
design. This results in an explosion of complexity.

Because of these issues, most software development projects today use
an incremental approach such as agile development, in which the initial

design focuses on a small subset of the overall functionality. This subset is
designed, implemented, and then evaluated. Problems with the original
design are discovered and corrected, then a few more features are designed,
implemented and evaluated. Each iteration exposes problems with the
existing design, which are fixed before the next set of features is designed.
By spreading out the design in this way, problems with the initial design can
be fixed while the system is still small; later features benefit from
experience gained during the implementation of earlier features, so they
have fewer problems.

The incremental approach works for software because software is
malleable enough to allow significant design changes partway through
implementation. In contrast, major design changes are much more
challenging for physical systems: for example, it would not be practical to
change the number of towers supporting a bridge in the middle of
construction.

Incremental development means that software design is never done.
Design happens continuously over the life of a system: developers should
always be thinking about design issues. Incremental development also
means continuous redesign. The initial design for a system or component is
almost never the best one; experience inevitably shows better ways to do
things. As a software developer, you should always be on the lookout for
opportunities to improve the design of the system you are working on, and
you should plan on spending some fraction of your time on design
improvements.

If software developers should always be thinking about design issues,
and reducing complexity is the most important element of software design,
then software developers should always be thinking about complexity. This
book is about how to use complexity to guide the design of software
throughout its lifetime.

This book has two overall goals. The first is to describe the nature of
software complexity: what does <complexity= mean, why does it matter, and
how can you recognize when a program has unnecessary complexity? The
book’s second, and more challenging, goal is to present techniques you can
use during the software development process to minimize complexity.
Unfortunately, there isn’t a simple recipe that will guarantee great software
designs. Instead, I will present a collection of higher-level concepts that
border on the philosophical, such as <classes should be deep= or <define

errors out of existence.= These concepts may not immediately identify the
best design, but you can use them to compare design alternatives and guide
your exploration of the design space.

1.1 How to use this book
Many of the design principles described here are somewhat abstract, so they
may be hard to appreciate without looking at actual code. It has been a
challenge to find examples that are small enough to include in the book, yet
large enough to illustrate problems with real systems (if you encounter good
examples, please send them to me). Thus, this book may not be sufficient by
itself for you to learn how to apply the principles.

The best way to use this book is in conjunction with code reviews. When
you read other people’s code, think about whether it conforms to the
concepts discussed here and how that relates to the complexity of the code.
It’s easier to see design problems in someone else’s code than your own.
You can use the red flags described here to identify problems and suggest
improvements. Reviewing code will also expose you to new design
approaches and programming techniques.

One of the best ways to improve your design skills is to learn to
recognize red flags: signs that a piece of code is probably more complicated
than it needs to be. Over the course of this book I will point out red flags
that suggest problems related to each major design issue; the most important
ones are summarized at the back of the book. You can then use these when
you are coding: when you see a red flag, stop and look for an alternate
design that eliminates the problem. When you first try this approach, you
may have to try several design alternatives before you find one that
eliminates the red flag. Don’t give up easily: the more alternatives you try
before fixing the problem, the more you will learn. Over time, you will find
that your code has fewer and fewer red flags, and your designs are cleaner
and cleaner. Your experience will also show you other red flags that you can
use to identify design problems (I’d be happy to hear about these).

When applying the ideas from this book, it’s important to use
moderation and discretion. Every rule has its exceptions, and every principle
has its limits. If you take any design idea to its extreme, you will probably
end up in a bad place. Beautiful designs reflect a balance between
competing ideas and approaches. Several chapters have sections titled

<Taking it too far,= which describe how to recognize when you are
overdoing a good thing.

Almost all of the examples in this book are in Java or C++, and much of
the discussion is in terms of designing classes in an object-oriented
language. However, the ideas apply in other domains as well. Almost all of
the ideas related to methods can also be applied to functions in a language
without object-oriented features, such as C. The design ideas also apply to
modules other than classes, such as subsystems or network services.

With this background, let’s discuss in more detail what causes
complexity, and how to make software systems simpler.

Chapter 2
The Nature of Complexity

This book is about how to design software systems to minimize their
complexity. The first step is to understand the enemy. Exactly what is
<complexity=? How can you tell if a system is unnecessarily complex? What
causes systems to become complex? This chapter will address those
questions at a high level; subsequent chapters will show you how to
recognize complexity at a lower level, in terms of specific structural
features.

The ability to recognize complexity is a crucial design skill. It allows
you to identify problems before you invest a lot of effort in them, and it
allows you to make good choices among alternatives. It is easier to tell
whether a design is simple than it is to create a simple design, but once you
can recognize that a system is too complicated, you can use that ability to
guide your design philosophy towards simplicity. If a design appears
complicated, try a different approach and see if that is simpler. Over time,
you will notice that certain techniques tend to result in simpler designs,
while others correlate with complexity. This will allow you to produce
simpler designs more quickly.

This chapter also lays out some basic assumptions that provide a
foundation for the rest of the book. Later chapters take the material of this
chapter as given and use it to justify a variety of refinements and
conclusions.

2.1 Complexity de�ned
For the purposes of this book, I define <complexity= in a practical way.
Complexity is anything related to the structure of a software system
that makes it hard to understand and modify the system. Complexity
can take many forms. For example, it might be hard to understand how a

piece of code works; it might take a lot of effort to implement a small
improvement, or it might not be clear which parts of the system must be
modified to make the improvement; it might be difficult to fix one bug
without introducing another. If a software system is hard to understand and
modify, then it is complicated; if it is easy to understand and modify, then it
is simple.

You can also think of complexity in terms of cost and benefit. In a
complex system, it takes a lot of work to implement even small
improvements. In a simple system, larger improvements can be implemented
with less effort.

Complexity is what a developer experiences at a particular point in time
when trying to achieve a particular goal. It doesn’t necessarily relate to the
overall size or functionality of the system. People often use the word
<complex= to describe large systems with sophisticated features, but if such
a system is easy to work on, then, for the purposes of this book, it is not
complex. Of course, almost all large and sophisticated software systems are
in fact hard to work on, so they also meet my definition of complexity, but
this need not necessarily be the case. It is also possible for a small and
unsophisticated system to be quite complex.

Complexity is determined by the activities that are most common. If a
system has a few parts that are very complicated, but those parts almost
never need to be touched, then they don’t have much impact on the overall
complexity of the system. To characterize this in a crude mathematical way:

The overall complexity of a system (C) is determined by the complexity of
each part p (cp) weighted by the fraction of time developers spend working

on that part (tp). Isolating complexity in a place where it will never be seen

is almost as good as eliminating the complexity entirely.
Complexity is more apparent to readers than writers. If you write a piece

of code and it seems simple to you, but other people think it is complex,
then it is complex. When you find yourself in situations like this, it’s worth
probing the other developers to find out why the code seems complex to
them; there are probably some interesting lessons to learn from the

disconnect between your opinion and theirs. Your job as a developer is not
just to create code that you can work with easily, but to create code that
others can also work with easily.

2.2 Symptoms of complexity
Complexity manifests itself in three general ways, which are described in
the paragraphs below. Each of these manifestations makes it harder to carry
out development tasks.

Change amplification: The first symptom of complexity is that a
seemingly simple change requires code modifications in many different
places. For example, consider a Web site containing several pages, each of
which displays a banner with a background color. In many early Web sites,
the color was specified explicitly on each page, as shown in Figure 2.1(a). In
order to change the background for such a Web site, a developer might have
to modify every existing page by hand; this would be nearly impossible for a
large site with thousands of pages. Fortunately, modern Web sites use an
approach like that in Figure 2.1(b), where the banner color is specified once
in a central place, and all of the individual pages reference that shared value.
With this approach, the banner color of the entire Web site can be changed
with a single modification. One of the goals of good design is to reduce the
amount of code that is affected by each design decision, so design changes
don’t require very many code modifications.

Cognitive load: The second symptom of complexity is cognitive load,
which refers to how much a developer needs to know in order to complete a
task. A higher cognitive load means that developers have to spend more
time learning the required information, and there is a greater risk of bugs
because they have missed something important. For example, suppose a
function in C allocates memory, returns a pointer to that memory, and
assumes that the caller will free the memory. This adds to the cognitive load
of developers using the function; if a developer fails to free the memory,
there will be a memory leak. If the system can be restructured so that the
caller doesn’t need to worry about freeing the memory (the same module
that allocates the memory also takes responsibility for freeing it), it will
reduce the cognitive load. Cognitive load arises in many ways, such as APIs
with many methods, global variables, inconsistencies, and dependencies
between modules.

System designers sometimes assume that complexity can be measured
by lines of code. They assume that if one implementation is shorter than
another, then it must be simpler; if it only takes a few lines of code to make
a change, then the change must be easy. However, this view ignores the
costs associated with cognitive load. I have seen frameworks that allowed
applications to be written with only a few lines of code, but it was extremely
difficult to figure out what those lines were. Sometimes an approach that
requires more lines of code is actually simpler, because it reduces
cognitive load.

Figure 2.1: Each page in a Web site displays a colored banner. In (a) the background color for the
banner is specified explicitly in each page. In (b) a shared variable holds the background color and
each page references that variable. In (c) some pages display an additional color for emphasis, which
is a darker shade of the banner background color; if the background color changes, the emphasis color
must also change.

Unknown unknowns: The third symptom of complexity is that it is not
obvious which pieces of code must be modified to complete a task, or what
information a developer must have to carry out the task successfully. Figure
2.1(c) illustrates this problem. The Web site uses a central variable to
determine the banner background color, so it appears to be easy to change.
However, a few Web pages use a darker shade of the background color for
emphasis, and that darker color is specified explicitly in the individual
pages. If the background color changes, then the the emphasis color must
change to match. Unfortunately, developers are unlikely to realize this, so

they may change the central bannerBg variable without updating the
emphasis color. Even if a developer is aware of the problem, it won’t be
obvious which pages use the emphasis color, so the developer may have to
search every page in the Web site.

Of the three manifestations of complexity, unknown unknowns are the
worst. An unknown unknown means that there is something you need to
know, but there is no way for you to find out what it is, or even whether
there is an issue. You won’t find out about it until bugs appear after you
make a change. Change amplification is annoying, but as long as it is clear
which code needs to be modified, the system will work once the change has
been completed. Similarly, a high cognitive load will increase the cost of a
change, but if it is clear which information to read, the change is still likely
to be correct. With unknown unknowns, it is unclear what to do or whether
a proposed solution will even work. The only way to be certain is to read
every line of code in the system, which is impossible for systems of any
size. Even this may not be sufficient, because a change may depend on a
subtle design decision that was never documented.

One of the most important goals of good design is for a system to be
obvious. This is the opposite of high cognitive load and unknown
unknowns. In an obvious system, a developer can quickly understand how
the existing code works and what is required to make a change. An obvious
system is one where a developer can make a quick guess about what to do,
without thinking very hard, and yet be confident that the guess is correct.
Chapter 18 discusses techniques for making code more obvious.

2.3 Causes of complexity
Now that you know the high-level symptoms of complexity and why
complexity makes software development difficult, the next step is to
understand what causes complexity, so that we can design systems to avoid
the problems. Complexity is caused by two things: dependencies and
obscurity. This section discusses these factors at a high level; subsequent
chapters will discuss how they relate to lower-level design decisions.

For the purposes of this book, a dependency exists when a given piece
of code cannot be understood and modified in isolation; the code relates in
some way to other code, and the other code must be considered and/or
modified if the given code is changed. In the Web site example of Figure

2.1(a), the background color creates dependencies between all of the pages.
All of the pages need to have the same background, so if the background is
changed for one page, then it must be changed for all of them. Another
example of dependencies occurs in network protocols. Typically there is
separate code for the sender and receiver for the protocol, but they must
each conform to the protocol; changing the code for the sender almost
always requires corresponding changes at the receiver, and vice versa. The
signature of a method creates a dependency between the implementation of
that method and the code that invokes it: if a new parameter is added to a
method, all of the invocations of that method must be modified to specify
that parameter.

Dependencies are a fundamental part of software and can’t be
completely eliminated. In fact, we intentionally introduce dependencies as
part of the software design process. Every time you write a new class you
create dependencies around the API for that class. However, one of the
goals of software design is to reduce the number of dependencies and to
make the dependencies that remain as simple and obvious as possible.

Consider the Web site example. In the old Web site with the background
specified separately on each page, all of the Web pages were dependent on
each other. The new Web site fixed this problem by specifying the
background color in a central place and providing an API that individual
pages use to retrieve that color when they are rendered. The new Web site
eliminated the dependency between the pages, but it created a new
dependency around the API for retrieving the background color.
Fortunately, the new dependency is more obvious: it is clear that each
individual Web page depends on the bannerBg color, and a developer can
easily find all the places where the variable is used by searching for its
name. Furthermore, compilers help to manage API dependencies: if the
name of the shared variable changes, compilation errors will occur in any
code that still uses the old name. The new Web site replaced a nonobvious
and difficult-to-manage dependency with a simpler and more obvious one.

The second cause of complexity is obscurity. Obscurity occurs when
important information is not obvious. A simple example is a variable name
that is so generic that it doesn’t carry much useful information (e.g., time).
Or, the documentation for a variable might not specify its units, so the only
way to find out is to scan code for places where the variable is used.
Obscurity is often associated with dependencies, where it is not obvious that

a dependency exists. For example, if a new error status is added to a system,
it may be necessary to add an entry to a table holding string messages for
each status, but the existence of the message table might not be obvious to a
programmer looking at the status declaration. Inconsistency is also a major
contributor to obscurity: if the same variable name is used for two different
purposes, it won’t be obvious to developers which of these purposes a
particular variable serves.

In many cases, obscurity comes about because of inadequate
documentation; Chapter 13 deals with this topic. However, obscurity is also
a design issue. If a system has a clean and obvious design, then it will need
less documentation. The need for extensive documentation is often a red
flag that the design isn’t quite right. The best way to reduce obscurity is by
simplifying the system design.

Together, dependencies and obscurity account for the three
manifestations of complexity described in Section 2.2. Dependencies lead to
change amplification and a high cognitive load. Obscurity creates unknown
unknowns, and also contributes to cognitive load. If we can find design
techniques that minimize dependencies and obscurity, then we can reduce
the complexity of software.

2.4 Complexity is incremental
Complexity isn’t caused by a single catastrophic error; it accumulates in lots
of small chunks. A single dependency or obscurity, by itself, is unlikely to
affect significantly the maintainability of a software system. Complexity
comes about because hundreds or thousands of small dependencies and
obscurities build up over time. Eventually, there are so many of these small
issues that every possible change to the system is affected by several of
them.

The incremental nature of complexity makes it hard to control. It’s easy
to convince yourself that a little bit of complexity introduced by your
current change is no big deal. However, if every developer takes this
approach for every change, complexity accumulates rapidly. Once
complexity has accumulated, it is hard to eliminate, since fixing a single
dependency or obscurity will not, by itself, make a big difference. In order
to slow the growth of complexity, you must adopt a <zero tolerance=
philosophy, as discussed in Chapter 3.

2.5 Conclusion
Complexity comes from an accumulation of dependencies and obscurities.
As complexity increases, it leads to change amplification, a high cognitive
load, and unknown unknowns. As a result, it takes more code modifications
to implement each new feature. In addition, developers spend more time
acquiring enough information to make the change safely and, in the worst
case, they can’t even find all the information they need. The bottom line is
that complexity makes it difficult and risky to modify an existing code base.

Chapter 3
Working Code Isn’t Enough
(Strategic vs. Tactical Programming)

One of the most important elements of good software design is the mindset
you adopt when you approach a programming task. Many organizations
encourage a tactical mindset, focused on getting features working as quickly
as possible. However, if you want a good design, you must take a more
strategic approach where you invest time to produce clean designs and fix
problems. This chapter discusses why the strategic approach produces better
designs and is actually cheaper than the tactical approach over the long run.

3.1 Tactical programming
Most programmers approach software development with a mindset I call
tactical programming. In the tactical approach, your main focus is to get
something working, such as a new feature or a bug fix. At first glance this
seems totally reasonable: what could be more important than writing code
that works? However, tactical programming makes it nearly impossible to
produce a good system design.

The problem with tactical programming is that it is short-sighted. If
you’re programming tactically, you’re trying to finish a task as quickly as
possible. Perhaps you have a hard deadline. As a result, planning for the
future isn’t a priority. You don’t spend much time looking for the best
design; you just want to get something working soon. You tell yourself that
it’s OK to add a bit of complexity or introduce a small kludge or two, if that
allows the current task to be completed more quickly.

This is how systems become complicated. As discussed in the previous
chapter, complexity is incremental. It’s not one particular thing that makes a
system complicated, but the accumulation of dozens or hundreds of small

things. If you program tactically, each programming task will contribute a
few of these complexities. Each of them probably seems like a reasonable
compromise in order to finish the current task quickly. However, the
complexities accumulate rapidly, especially if everyone is programming
tactically.

Before long, some of the complexities will start causing problems, and
you will begin to wish you hadn’t taken those early shortcuts. But, you will
tell yourself that it’s more important to get the next feature working than to
go back and refactor existing code. Refactoring may help out in the long
run, but it will definitely slow down the current task. So, you look for quick
patches to work around any problems you encounter. This just creates more
complexity, which then requires more patches. Pretty soon the code is a
mess, but by this point things are so bad that it would take months of work
to clean it up. There’s no way your schedule can tolerate that kind of delay,
and fixing one or two of the problems doesn’t seem like it will make much
difference, so you just keep programming tactically.

If you have worked on a large software project for very long, I suspect
you have seen tactical programming at work and have experienced the
problems that result. Once you start down the tactical path, it’s difficult to
change.

Almost every software development organization has at least one
developer who takes tactical programming to the extreme: a tactical
tornado. The tactical tornado is a prolific programmer who pumps out code
far faster than others but works in a totally tactical fashion. When it comes
to implementing a quick feature, nobody gets it done faster than the tactical
tornado. In some organizations, management treats tactical tornadoes as
heroes. However, tactical tornadoes leave behind a wake of destruction.
They are rarely considered heroes by the engineers who must work with
their code in the future. Typically, other engineers must clean up the messes
left behind by the tactical tornado, which makes it appear that those
engineers (who are the real heroes) are making slower progress than the
tactical tornado.

3.2 Strategic programming
The first step towards becoming a good software designer is to realize that
working code isn’t enough. It’s not acceptable to introduce unnecessary

complexities in order to finish your current task faster. The most important
thing is the long-term structure of the system. Most of the code in any
system is written by extending the existing code base, so your most
important job as a developer is to facilitate those future extensions. Thus,
you should not think of <working code= as your primary goal, though of
course your code must work. Your primary goal must be to produce a great
design, which also happens to work. This is strategic programming.

Strategic programming requires an investment mindset. Rather than
taking the fastest path to finish your current project, you must invest time to
improve the design of the system. These investments will slow you down a
bit in the short term, but they will speed you up in the long term, as
illustrated in Figure 3.1.

Some of the investments will be proactive. For example, it’s worth
taking a little extra time to find a simple design for each new class; rather
than implementing the first idea that comes to mind, try a couple of
alternative designs and pick the cleanest one. Try to imagine a few ways in
which the system might need to be changed in the future and make sure that
will be easy with your design. Writing good documentation is another
example of a proactive investment.

Other investments will be reactive. No matter how much you invest up
front, there will inevitably be mistakes in your design decisions. Over time,
these mistakes will become obvious. When you discover a design problem,
don’t just ignore it or patch around it; take a little extra time to fix it. If you
program strategically, you will continually make small improvements to the
system design. This is the opposite of tactical programming, where you are
continually adding small bits of complexity that cause problems in the
future.

3.3 How much to invest?
So, what is the right amount of investment? A huge up-front investment,
such as trying to design the entire system, won’t be effective. This is the
waterfall method, and we know it doesn’t work. The ideal design tends to
emerge in bits and pieces, as you get experience with the system. Thus, the
best approach is to make lots of small investments on a continual basis. I
suggest spending about 10–20% of your total development time on
investments. This amount is small enough that it won’t impact your

schedules significantly, but large enough to produce significant benefits
over time. Your initial projects will thus take 10–20% longer than they
would in a purely tactical approach. That extra time will result in a better
software design, and you will start experiencing the benefits within a few
months. It won’t be long before you’re developing at least 10–20% faster
than you would if you had programmed tactically. At this point your
investments become free: the benefits from your past investments will save
enough time to cover the cost of future investments. You will quickly
recover the cost of the initial investment. Figure 3.1 illustrates this
phenomenon.

Figure 3.1: At the beginning, a tactical approach to programming will make progress more quickly
than a strategic approach. However, complexity accumulates more rapidly under the tactical approach,
which reduces productivity. Over time, the strategic approach results in greater progress. Note: this
figure is intended only as a qualitative illustration; I am not aware of any empirical measurements of
the precise shapes of the curves.

Conversely, if you program tactically, you will finish your first projects
10–20% faster, but over time your development speed will slow as
complexity accumulates. It won’t be long before you’re programming at
least 10–20% slower. You will quickly give back all of the time you saved at
the beginning, and for the rest of system’s lifetime you will be developing
more slowly than if you had taken the strategic approach. If you haven’t ever
worked in a badly degraded code base, talk to someone who has; they will
tell you that poor code quality slows development by at least 20%.

The term technical debt is often used to describe the problems caused
by tactical programming. By programming tactically you are borrowing
time from the future: development will go more quickly now, but more
slowly later on. As with financial debt, the amount you pay back will exceed

the amount you borrowed. Unlike financial debt, most technical debt is
never fully repaid: you’ll keep paying and paying forever.

Figure 3.1 raises an important question: where is the crossover point
between the strategic and tactical curves? In other words, how long does it
take before the strategic approach has paid for itself? Unfortunately I am not
aware of any data on this topic, and it would be difficult to perform the kind
of controlled experiment needed to answer the question in a convincing
fashion. My personal opinion is that the time to payback is somewhere in
the range of 6–18 months. This has a lot to do with developers’ memory: by
the time a piece of code is a few months old, developers have forgotten most
of what was in their minds when they wrote it, so development will slow
down significantly if the code is complex. These additional costs quickly
compensate for any initial gains from strategic programming. Again, this is
just my opinion, and I don’t have any data to back it up.

3.4 Startups and investment
In some environments there are strong forces working against the strategic
approach. For example, early-stage startups feel tremendous pressure to get
their early releases out quickly. In these companies, it might seem that even
a 10–20% investment isn’t affordable. As a result, many startups take a
tactical approach, spending little effort on design and even less on cleanup
when problems pop up. They rationalize this with the thought that, if they
are successful, they’ll have enough money to hire extra engineers to clean
things up.

If you are in a company leaning in this direction, you should realize that
once a code base turns to spaghetti, it is nearly impossible to fix. You will
probably pay high development costs for the life of the product.
Furthermore, the payoff for good (or bad) design comes pretty quickly, so
there’s a good chance that the tactical approach won’t even speed up your
first product release.

Another thing to consider is that one of the most important factors for
success of a company is the quality of its engineers. The best way to lower
development costs is to hire great engineers: they don’t cost much more than
mediocre engineers but have tremendously higher productivity. However,
the best engineers care deeply about good design. If your code base is a
wreck, word will get out, and this will make it harder for you to recruit. As a

result, you are likely to end up with mediocre engineers. This will increase
your future costs and probably cause the system structure to degrade even
more.

Facebook is an example of a startup that encouraged tactical
programming. For many years the company’s motto was <Move fast and
break things.= New engineers fresh out of college were encouraged to dive
immediately into the company’s code base; it was normal for engineers to
push commits into production in their first week on the job. On the positive
side, Facebook developed a reputation as a company that empowered its
employees. Engineers had tremendous latitude, and there were few rules and
restrictions to get in their way.

Facebook has been spectacularly successful as a company, but its code
base suffered because of the company’s tactical approach; much of the code
was unstable and hard to understand, with few comments or tests, and
painful to work with. Over time the company realized that its culture was
unsustainable. Eventually, Facebook changed its motto to <Move fast with
solid infrastructure= to encourage its engineers to invest more in good
design. It remains to be seen whether Facebook can successfully clean up
the problems that accumulated over years of tactical programming.

In fairness to Facebook, I should point out that Facebook’s code
probably isn’t much worse than average among startups. Tactical
programming is commonplace among startups; Facebook just happens to be
a particularly visible example.

Fortunately, it is also possible to succeed in Silicon Valley with a
strategic approach. Google and VMware grew up around the same time as
Facebook, but both of these companies embraced a more strategic approach.
Both companies placed a heavy emphasis on high quality code and good
design, and both companies built sophisticated products that solved complex
problems with reliable software systems. The companies’ strong technical
cultures became well known in Silicon Valley. Few other companies could
compete with them for hiring the top technical talent.

These examples show that a company can succeed with either approach.
However, it’s a lot more fun to work in a company that cares about software
design and has a clean code base.

3.5 Conclusion

Good design doesn’t come for free. It has to be something you invest in
continually, so that small problems don’t accumulate into big ones.
Fortunately, good design eventually pays for itself, and sooner than you
might think.

It’s crucial to be consistent in applying the strategic approach and to
think of investment as something to do today, not tomorrow. When you get
in a crunch it will be tempting to put off cleanups until after the crunch is
over. However, this is a slippery slope; after the current crunch there will
almost certainly be another one, and another after that. Once you start
delaying design improvements, it’s easy for the delays to become permanent
and for your culture to slip into the tactical approach. The longer you wait to
address design problems, the bigger they become; the solutions become
more intimidating, which makes it easy to put them off even more. The
most effective approach is one where every engineer makes continuous
small investments in good design.

Chapter 4
Modules Should Be Deep

One of the most important techniques for managing software complexity is
to design systems so that developers only need to face a small fraction of the
overall complexity at any given time. This approach is called modular
design, and this chapter presents its basic principles.

4.1 Modular design
In modular design, a software system is decomposed into a collection of
modules that are relatively independent. Modules can take many forms, such
as classes, subsystems, or services. In an ideal world, each module would be
completely independent of the others: a developer could work in any of the
modules without knowing anything about any of the other modules. In this
world, the complexity of a system would be the complexity of its worst
module.

Unfortunately, this ideal is not achievable. Modules must work together
by calling each others’s functions or methods. As a result, modules must
know something about each other. There will be dependencies between the
modules: if one module changes, other modules may need to change to
match. For example, the arguments for a method create a dependency
between the method and any code that invokes the method. If the required
arguments change, all invocations of the method must be modified to
conform to the new signature. Dependencies can take many other forms,
and they can be quite subtle; as one example, a method may not function
correctly unless some other method has been invoked first. The goal of
modular design is to minimize the dependencies between modules.

In order to identify and manage dependencies, we think of each module
in two parts: an interface and an implementation. The interface consists of
everything that a developer working in a different module must know in

order to use the given module. Typically, the interface describes what the
module does but not how it does it. The implementation consists of the code
that carries out the promises made by the interface. A developer working in
a particular module must understand the interface and implementation of
that module, plus the interfaces of any other modules invoked by the given
module. A developer should not need to understand the implementations of
modules other than the one he or she is working in.

Consider a module that implements balanced trees. The module
probably contains sophisticated code for ensuring that the tree remains
balanced. However, this complexity is not visible to users of the module.
Users see a relatively simple interface for invoking operations to insert,
remove, and fetch nodes in the tree. To invoke an insert operation, the caller
need only provide the key and value for the new node; the mechanisms for
traversing the tree and splitting nodes are not visible in the interface.

For the purposes of this book, a module is any unit of code that has an
interface and an implementation. Each class in an object-oriented
programming language is a module. Methods within a class, or functions in
a language that isn’t object-oriented, can also be thought of as modules:
each of these has an interface and an implementation, and modular design
techniques can be applied to them. Higher-level subsystems and services are
also modules; their interfaces may take different forms, such as kernel calls
or HTTP requests. Much of the discussion about modular design in this
book focuses on designing classes, but the techniques and concepts apply to
other kinds of modules as well.

The best modules are those whose interfaces are much simpler than their
implementations. Such modules have two advantages. First, a simple
interface minimizes the complexity that a module imposes on the rest of the
system. Second, if a module is modified in a way that does not change its
interface, then no other module will be affected by the modification. If a
module’s interface is much simpler than its implementation, there will be
many aspects of the module that can be changed without affecting other
modules.

4.2 What’s in an interface?
The interface to a module contains two kinds of information: formal and
informal. The formal parts of an interface are specified explicitly in the

code, and some of these can be checked for correctness by the programming
language. For example, the formal interface for a method is its signature,
which includes the names and types of its parameters, the type of its return
value, and information about exceptions thrown by the method. Most
programming languages ensure that each invocation of a method provides
the right number and types of arguments to match its signature. The formal
interface for a class consists of the signatures for all of its public methods,
plus the names and types of any public variables.

Each interface also includes informal elements. These are not specified
in a way that can be understood or enforced by the programming language.
The informal parts of an interface include its high-level behavior, such as
the fact that a function deletes the file named by one of its arguments. If
there are constraints on the usage of a class (perhaps one method must be
called before another), these are also part of the class’s interface. In general,
if a developer needs to know a particular piece of information in order to
use a module, then that information is part of the module’s interface. The
informal aspects of an interface can only be described using comments, and
the programming language cannot ensure that the description is complete or

accurate1. For most interfaces the informal aspects are larger and more
complex than the formal aspects.

One of the benefits of a clearly specified interface is that it indicates
exactly what developers need to know in order to use the associated module.
This helps to eliminate the <unknown unknowns= problem described in
Section 2.2.

4.3 Abstractions
The term abstraction is closely related to the idea of modular design. An
abstraction is a simplified view of an entity, which omits unimportant
details. Abstractions are useful because they make it easier for us to think
about and manipulate complex things.

In modular programming, each module provides an abstraction in the
form of its interface. The interface presents a simplified view of the
module’s functionality; the details of the implementation are unimportant
from the standpoint of the module’s abstraction, so they are omitted from
the interface.

In the definition of abstraction, the word <unimportant= is crucial. The
more unimportant details that are omitted from an abstraction, the better.
However, a detail can only be omitted from an abstraction if it really is
unimportant. An abstraction can go wrong in two ways. First, it can include
details that are not really important; when this happens, it makes the
abstraction more complicated than necessary, which increases the cognitive
load on developers using the abstraction. The second error is when an
abstraction omits details that really are important. This results in obscurity:
developers looking only at the abstraction will not have all the information
they need to use the abstraction correctly. An abstraction that omits
important details is a false abstraction: it might appear simple, but in reality
it isn’t. The key to designing abstractions is to understand what is important,
and to look for designs that minimize the amount of information that is
important.

As an example, consider a file system. The abstraction provided by a file
system omits many details, such as the mechanism for choosing which
blocks on a storage device to use for the data in a given file. These details
are unimportant to users of the file system (as long as the system provides
adequate performance). However, some of the details of a file system’s
implementation are important to users. Most file systems cache data in main
memory, and they may delay writing new data to the storage device in order
to improve performance. Some applications, such as databases, need to
know exactly when data is written through to storage, so they can ensure
that data will be preserved after system crashes. Thus, the rules for flushing
data to secondary storage must be visible in the file system’s interface.

We depend on abstractions to manage complexity not just in
programming, but pervasively in our everyday lives. A microwave oven
contains complex electronics to convert alternating current into microwave
radiation and distribute that radiation throughout the cooking cavity.
Fortunately, users see a much simpler abstraction, consisting of a few
buttons to control the timing and intensity of the microwaves. Cars provide a
simple abstraction that allows us to drive them without understanding the
mechanisms for electrical motors, battery power management, anti-lock
brakes, cruise control, and so on.

Figure 4.1: Deep and shallow modules. The best modules are deep: they allow a lot of functionality
to be accessed through a simple interface. A shallow module is one with a relatively complex
interface, but not much functionality: it doesn’t hide much complexity.

4.4 Deep modules
The best modules are those that provide powerful functionality yet have
simple interfaces. I use the term deep to describe such modules. To
visualize the notion of depth, imagine that each module is represented by a
rectangle, as shown in Figure 4.1. The area of each rectangle is proportional
to the functionality implemented by the module. The top edge of a rectangle
represents the module’s interface; the length of that edge indicates the
complexity of the interface. The best modules are deep: they have a lot of
functionality hidden behind a simple interface. A deep module is a good
abstraction because only a small fraction of its internal complexity is visible
to its users.

Module depth is a way of thinking about cost versus benefit. The benefit
provided by a module is its functionality. The cost of a module (in terms of
system complexity) is its interface. A module’s interface represents the
complexity that the module imposes on the rest of the system: the smaller
and simpler the interface, the less complexity that it introduces. The best
modules are those with the greatest benefit and the least cost. Interfaces are
good, but more, or larger, interfaces are not necessarily better!

The mechanism for file I/O provided by the Unix operating system and
its descendants, such as Linux, is a beautiful example of a deep interface.
There are only five basic system calls for I/O, with simple signatures:

int open(const char* path, int flags, mode_t permissions);
ssize_t read(int fd, void* buffer, size_t count);
ssize_t write(int fd, const void* buffer, size_t count);

off_t lseek(int fd, off_t offset, int referencePosition);
int close(int fd);

The open system call takes a hierarchical file name such as /a/b/c and
returns an integer file descriptor, which is used to reference the open file.
The other arguments for open provide optional information such as whether
the file is being opened for reading or writing, whether a new file should be
created if there is no existing file, and access permissions for the file, if a
new file is created. The read and write system calls transfer information
between buffer areas in the application’s memory and the file; close ends
the access to the file. Most files are accessed sequentially, so that is the
default; however, random access can be achieved by invoking the lseek
system call to change the current access position.

A modern implementation of the Unix I/O interface requires hundreds
of thousands of lines of code, which address complex issues such as:

How are files represented on disk in order to allow efficient access?
How are directories stored, and how are hierarchical path names
processed to find the files they refer to?
How are permissions enforced, so that one user cannot modify or
delete another user’s files?
How are file accesses implemented? For example, how is functionality
divided between interrupt handlers and background code, and how do
these two elements communicate safely?
What scheduling policies are used when there are concurrent accesses
to multiple files?
How can recently accessed file data be cached in memory in order to
reduce the number of disk accesses?
How can a variety of different secondary storage devices, such as disks
and flash drives, be incorporated into a single file system?

All of these issues, and many more, are handled by the Unix file system
implementation; they are invisible to programmers who invoke the system
calls. Implementations of the Unix I/O interface have evolved radically over
the years, but the five basic kernel calls have not changed.

Another example of a deep module is the garbage collector in a
language such as Go or Java. This module has no interface at all; it works
invisibly behind the scenes to reclaim unused memory. Adding garbage
collection to a system actually shrinks its overall interface, since it

eliminates the interface for freeing objects. The implementation of a
garbage collector is quite complex, but that complexity is hidden from
programmers.

Deep modules such as Unix I/O and garbage collectors provide powerful
abstractions because they are easy to use, yet they hide significant
implementation complexity.

4.5 Shallow modules
On the other hand, a shallow module is one whose interface is relatively
complex in comparison to the functionality that it provides. For example, a
class that implements linked lists is shallow. It doesn’t take much code to
manipulate a linked list (inserting or deleting an element takes only a few
lines), so the linked list abstraction doesn’t hide very many details. The
complexity of a linked list interface is nearly as great as the complexity of
its implementation. Shallow classes like linked lists are sometimes
unavoidable and they can still be useful, but they don’t provide much
leverage against complexity.

Here is an extreme example of a shallow method, taken from a project in
a software design class:

private void addNullValueForAttribute(String attribute) {

data.put(attribute, null);
}

From the standpoint of managing complexity, this method makes things
worse, not better. The method offers no abstraction, since all of its
functionality is visible through its interface. For example, callers probably
need to know that the attribute will be stored in the data variable. It is no
simpler to think about the interface than to think about the full
implementation. If the method is documented properly, the documentation
will be longer than the method’s code. It even takes more keystrokes to
invoke the method than it would take for a caller to manipulate the data
variable directly. The method adds complexity (in the form of a new
interface for developers to learn) but provides no compensating benefit.

 Red Flag: Shallow Module

A shallow module is one whose interface is complicated relative to the
functionality it provides. Shallow modules don’t help much in the battle
against complexity, because the benefit they provide (not having to
learn about how they work internally) is negated by the cost of learning
and using their interfaces. Small modules tend to be shallow.

4.6 Classitis
Unfortunately, the value of deep classes is not widely appreciated today. The
conventional wisdom in programming is that classes should be small, not
deep. Students are often taught that the most important thing in class design
is to break up larger classes into smaller ones. The same advice is often
given about methods: <Any method longer than N lines should be divided
into multiple methods= (N can be as low as 10). This approach results in
large numbers of shallow classes and methods, which add to overall system
complexity.

The extreme of the <classes should be small= approach is a syndrome I
call classitis, which stems from the mistaken view that <classes are good, so
more classes are better.= In systems suffering from classitis, developers are
encouraged to minimize the amount of functionality in each new class: if
you want more functionality, introduce more classes. Classitis may result in
classes that are individually simple, but it increases the complexity of the
overall system. Small classes don’t contribute much functionality, so there
have to be a lot of them, each with its own interface. These interfaces
accumulate to create tremendous complexity at the system level. Small
classes also result in a verbose programming style, due to the boilerplate
required for each class.

4.7 Examples: Java and Unix I/O
One of the most visible examples of classitis today is the Java class library.
The Java language doesn’t require lots of small classes, but a culture of
classitis seems to have taken root in the Java programming community. For
example, for many years Java developers had to create three different objects
in order to open a file and read serialized objects from it:

FileInputStream fileStream =

new FileInputStream(fileName);
BufferedInputStream bufferedStream =

new BufferedInputStream(fileStream);
ObjectInputStream objectStream =

new ObjectInputStream(bufferedStream);

A FileInputStream object provides only rudimentary I/O: it is not capable
of performing buffered I/O, nor can it read or write serialized objects. The
BufferedInputStream object adds buffering to a FileInputStream, and the
ObjectInputStream adds the ability to read and write serialized objects. The
first two objects in the code above, fileStream and bufferedStream, are
never used once the file has been opened; all future operations use
objectStream.

It is particularly annoying (and error-prone) that buffering must be
requested explicitly by creating a separate BufferedInputStream object; if a
developer forgets to create this object, there will be no buffering and I/O
will be slow. Perhaps the Java developers would argue that not everyone
wants to use buffering for file I/O, so it shouldn’t be built into the base
mechanism. They might argue that it’s better to keep buffering separate, so
people can choose whether or not to use it. Providing choice is good, but
interfaces should be designed to make the common case as simple as
possible (see the formula on page 6). Almost every user of file I/O will
want buffering, so it should be provided by default. For those few situations
where buffering is not desirable, the library can provide a mechanism to
disable it. Any mechanism for disabling buffering should be cleanly
separated in the interface (for example, by providing a different constructor
for FileInputStream, or through a method that disables or replaces the
buffering mechanism), so that most developers do not even need to be aware
of its existence.

In contrast, the designers of the Unix system calls made the common
case simple. For example, they recognized that sequential I/O is most
common, so they made that the default behavior. Random access is still
relatively easy to do, using the lseek system call, but a developer doing only
sequential access need not be aware of that mechanism. If an interface has
many features, but most developers only need to be aware of a few of them,
the effective complexity of that interface is just the complexity of the
commonly used features.

4.8 Conclusion
By separating the interface of a module from its implementation, we can
hide the complexity of the implementation from the rest of the system.
Users of a module need only understand the abstraction provided by its
interface. The most important issue in designing classes and other modules
is to make them deep, so that they have simple interfaces for the common
use cases, yet still provide significant functionality. This maximizes the
amount of complexity that is concealed.

1There exist languages, mostly in the research community, where the overall behavior of a method
or function can be described formally using a specification language. The specification can be
checked automatically to ensure that it matches the implementation. An interesting question is
whether such a formal specification could replace the informal parts of an interface. My current
opinion is that an interface described in English is likely to be more intuitive and understandable for
developers than one written in a formal specification language.

Chapter 5
Information Hiding (and Leakage)

Chapter 4 argued that modules should be deep. This chapter, and the next
few that follow, discuss techniques for creating deep modules.

5.1 Information hiding
One of the most important techniques for achieving deep modules is
information hiding. This technique was first described in a classic paper by

David Parnas1. The basic idea is that each module should encapsulate a few
pieces of knowledge, which represent design decisions. The knowledge is
embedded in the module’s implementation but does not appear in its
interface, so it is not visible to other modules.

The information hidden within a module usually consists of details
about how to implement some mechanism. Here are some examples of
information that might be hidden within a module:

How to store information in a B-tree, and how to access it efficiently.
How to identify the physical disk block corresponding to each logical
block within a file.
How to implement the TCP network protocol.
How to schedule threads on a multi-core processor.
How to parse JSON documents.

The hidden information includes data structures and algorithms related
to the mechanism. It can also include lower-level details such as the size of a
page, and it can include higher-level concepts that are more abstract, such as
an assumption that most files are small.

Information hiding reduces complexity in two ways. First, it simplifies
the interface to a module. The interface reflects a simpler, more abstract

view of the module’s functionality and hides the details; this reduces the
cognitive load on developers who use the module. For instance, a developer
using a B-tree class need not worry about the ideal fanout for nodes in the
tree or how to keep the tree balanced. Second, information hiding makes it
easier to evolve the system. If a piece of information is hidden, there are no
dependencies on that information outside the module containing the
information, so a design change related to that information will affect only
the one module. For example, if the TCP protocol changes (to introduce a
new mechanism for congestion control, for instance), the protocol’s
implementation will have to be modified, but no changes should be needed
in higher-level code that uses TCP to send and receive data.

When designing a new module, you should think carefully about what
information can be hidden in that module. If you can hide more information,
you should also be able to simplify the module’s interface, and this makes
the module deeper.

Note: hiding variables and methods in a class by declaring them private
isn’t the same thing as information hiding. Private elements can help with
information hiding, since they make it impossible for the items to be
accessed directly from outside the class. However, information about the
private items can still be exposed through public methods such as getter and
setter methods. When this happens the nature and usage of the variables are
just as exposed as if the variables were public.

The best form of information hiding is when information is totally
hidden within a module, so that it is irrelevant and invisible to users of the
module. However, partial information hiding also has value. For example, if
a particular feature or piece of information is only needed by a few of a
class’s users, and it is accessed through separate methods so that it isn’t
visible in the most common use cases, then that information is mostly
hidden. Such information will create fewer dependencies than information
that is visible to every user of the class.

5.2 Information leakage
The opposite of information hiding is information leakage. Information
leakage occurs when a design decision is reflected in multiple modules.
This creates a dependency between the modules: any change to that design
decision will require changes to all of the involved modules. If a piece of

information is reflected in the interface for a module, then by definition it
has been leaked; thus, simpler interfaces tend to correlate with better
information hiding. However, information can be leaked even if it doesn’t
appear in a module’s interface. Suppose two classes both have knowledge of
a particular file format (perhaps one class reads files in that format and the
other class writes them). Even if neither class exposes that information in its
interface, they both depend on the file format: if the format changes, both
classes will need to be modified. Back-door leakage like this is more
pernicious than leakage through an interface, because it isn’t obvious.

Information leakage is one of the most important red flags in software
design. One of the best skills you can learn as a software designer is a high
level of sensitivity to information leakage. If you encounter information
leakage between classes, ask yourself <How can I reorganize these classes
so that this particular piece of knowledge only affects a single class?= If the
affected classes are relatively small and closely tied to the leaked
information, it may make sense to merge them into a single class. Another
possible approach is to pull the information out of all of the affected classes
and create a new class that encapsulates just that information. However, this
approach will be effective only if you can find a simple interface that
abstracts away from the details; if the new class exposes most of the
knowledge through its interface, then it won’t provide much value (you’ve
simply replaced back-door leakage with leakage through an interface).

5.3 Temporal decomposition
One common cause of information leakage is a design style I call temporal
decomposition. In temporal decomposition, the structure of a system
corresponds to the time order in which operations will occur. Consider an
application that reads a file in a particular format, modifies the contents of
the file, and then writes the file out again. With temporal decomposition,
this application might be broken into three classes: one to read the file,
another to perform the modifications, and a third to write out the new
version. Both the file reading and file writing steps have knowledge about
the file format, which results in information leakage. The solution is to
combine the core mechanisms for reading and writing files into a single
class. This class will get used during both the reading and writing phases of
the application. It’s easy to fall into the trap of temporal decomposition,

because the order in which operations must occur is often on your mind
when you code. However, most design decisions manifest themselves at
several different times over the life of the application; as a result, temporal
decomposition often results in information leakage.

 Red Flag: Information Leakage

Information leakage occurs when the same knowledge is used in
multiple places, such as two different classes that both understand the
format of a particular type of file.

Order usually does matter, so it will be reflected somewhere in the
application. However, it shouldn’t be reflected in the module structure
unless that structure is consistent with information hiding (perhaps the
different stages use totally different information). When designing
modules, focus on the knowledge that’s needed to perform each task,
not the order in which tasks occur.

5.4 Example: HTTP server
To illustrate the issues in information hiding, let’s consider the design
decisions made by students implementing the HTTP protocol in a software
design course. It’s useful to see both the things they did well and the areas
where they had problems.

HTTP is a mechanism used by Web browsers to communicate with Web
servers. When a user clicks on a link in a Web browser or submits a form,
the browser uses HTTP to send a request over the network to a Web server.
Once the server has processed the request, it sends a response back to the
browser; the response normally contains a new Web page to display. The
HTTP protocol specifies the format of requests and responses, both of
which are represented textually. Figure 5.1 shows a sample HTTP request
describing a form submission. The students in the course were asked to
implement one or more classes to make it easy for Web servers to receive
incoming HTTP requests and send responses.

 Red Flag: Temporal Decomposition

In temporal decomposition, execution order is reflected in the code
structure: operations that happen at different times are in different
methods or classes. If the same knowledge is used at different points in
execution, it gets encoded in multiple places, resulting in information
leakage.

Figure 5.1: A POST request in the HTTP protocol consists of text sent over a TCP socket. Each
request contains an initial line, a collection of headers terminated by an empty line, and an optional
body. The initial line contains the request type (POST is used for submitting form data), a URL
indicating an operation (/comments/create) and optional parameters (photo_id has the value 246),
and the HTTP protocol version used by the sender. Each header line consists of a name such as
Content-Length followed by its value. For this request, the body contains additional parameters
(comment and priority).

5.5 Example: too many classes
The most common mistake made by students was to divide their code into a
large number of shallow classes, which led to information leakage between
the classes. One team used two different classes for receiving HTTP
requests; the first class read the request from the network connection into a
string, and the second class parsed the string. This is an example of a
temporal decomposition (<first we read the request, then we parse it=).
Information leakage occurred because an HTTP request can’t be read
without parsing much of the message; for example, the Content-Length
header specifies the length of the request body, so the headers must be
parsed in order to compute the total request length. As a result, both classes

needed to understand most of the structure of HTTP requests, and parsing
code was duplicated in both classes. This approach also created extra
complexity for callers, who had to invoke two methods in different classes,
in a particular order, to receive a request.

Because the classes shared so much information, it would have been
better to merge them into a single class that handles both request reading
and parsing. This provides better information hiding, since it isolates all
knowledge of the request format in one class, and it also provides a simpler
interface to callers (just one method to invoke).

This example illustrates a general theme in software design:
information hiding can often be improved by making a class slightly
larger. One reason for doing this is to bring together all of the code related
to a particular capability (such as parsing an HTTP request), so that the
resulting class contains everything related to that capability. A second
reason for increasing the size of a class is to raise the level of the interface;
for example, rather than having separate methods for each of three steps of a
computation, have a single method that performs the entire computation.
This can result in a simpler interface. Both of these benefits apply in the
example of the previous paragraph: combining the classes brings together
all of the code related to parsing an HTTP request, and it replaces two
externally-visible methods with one. The combined class is deeper than the
original classes.

Of course, it is possible to take the notion of larger classes too far (such
as a single class for the entire application). Chapter 9 will discuss conditions
under which it makes sense to separate code into multiple smaller classes.

5.6 Example: HTTP parameter handling
After an HTTP request has been received by a server, the server needs to
access some of the information from the request. The code that handles the
request in Figure 5.1 might need to know the value of the photo_id
parameter. Parameters can be specified in the first line of the request
(photo_id in Figure 5.1) or, sometimes, in the body (comment and priority
in Figure 5.1). Each parameter has a name and a value. The values of
parameters use a special encoding called URL encoding; for example, in the
value for comment in Figure 5.1, <+= is used to represent a space character,
and <%21= is used instead of <!=. In order to process a request, the server

will need the values for some of the parameters, and it will want them in
unencoded form.

Most of the student projects made two good choices with respect to
parameter handling. First, they recognized that server applications don’t
care whether a parameter is specified in the header line or the body of the
request, so they hid this distinction from callers and merged the parameters
from both locations together. Second, they hid knowledge of URL encoding:
the HTTP parser decodes parameter values before returning them to the
Web server, so that the value of the comment parameter in Figure 5.1 will be
returned as <What a cute baby!=, not <What+a+cute+baby%21=). In both of
these cases, information hiding resulted in simpler APIs for the code using
the HTTP module.

However, most of the students used an interface for returning parameters
that was too shallow, and this resulted in lost opportunities for information
hiding. Most projects used an object of type HTTPRequest to hold the parsed
HTTP request, and the HTTPRequest class had a single method like the
following one to return parameters:

public Map<String, String> getParams() {
return this.params;

}

Rather than returning a single parameter, the method returns a reference to
the Map used internally to store all of the parameters. This method is
shallow, and it exposes the internal representation used by the HTTPRequest
class to store parameters. Any change to that representation will result in a
change to the interface, which will require modifications to all callers.
When implementations are modified, the changes often involve changes in
the representation of key data structures (to improve performance, for
example). Thus, it’s important to avoid exposing internal data structures as
much as possible. This approach also makes more work for callers: a caller
must first invoke getParams, then it must call another method to retrieve a
specific parameter from the Map. Finally, callers must realize that they
should not modify the Map returned by getParams, since that will affect the
internal state of the HTTPRequest.

Here is a better interface for retrieving parameter values:
public String getParameter(String name) { ... }
public int getIntParameter(String name) { ... }

getParameter returns a parameter value as a string. It provides a slightly
deeper interface than getParams above; more importantly, it hides the

internal representation of parameters. getIntParameter converts the value of
a parameter from its string form in the HTTP request to an integer (e.g., the
photo_id parameter in Figure 5.1). This saves the caller from having to
request string-to-integer conversion separately, and hides that mechanism
from the caller. Additional methods for other data types, such as
getDoubleParameter, could be defined if needed. (All of these methods will
throw exceptions if the desired parameter doesn’t exist, or if it can’t be
converted to the requested type; the exception declarations have been
omitted in the code above).

5.7 Example: defaults in HTTP responses
The HTTP projects also had to provide support for generating HTTP
responses. The most common mistake students made in this area was
inadequate defaults. Each HTTP response must specify an HTTP protocol
version; one team required callers to specify this version explicitly when
creating a response object. However, the response version must correspond
to that in the request object, and the request must already be passed as an
argument when sending the response (it indicates where to send the
response). Thus, it makes more sense for the HTTP classes to provide the
response version automatically. The caller is unlikely to know what version
to specify, and if the caller does specify a value, it probably results in
information leakage between the HTTP library and the caller. HTTP
responses also include a Date header specifying the time when the response
was sent; the HTTP library should provide a sensible default for this as well.

Defaults illustrate the principle that interfaces should be designed to
make the common case as simple as possible. They are also an example of
partial information hiding: in the normal case, the caller need not be aware
of the existence of the defaulted item. In the rare cases where a caller needs
to override a default, it will have to know about the value, and it can invoke
a special method to modify it.

Whenever possible, classes should <do the right thing= without being
explicitly asked. Defaults are an example of this. The Java I/O example on
page 26 illustrates this point in a negative way. Buffering in file I/O is so
universally desirable that noone should ever have to ask explicitly for it, or
even be aware of its existence; the I/O classes should do the right thing and

provide it automatically. The best features are the ones you get without even
knowing they exist.

 Red Flag: Overexposure

If the API for a commonly used feature forces users to learn about
other features that are rarely used, this increases the cognitive load on
users who don’t need the rarely used features.

5.8 Information hiding within a class
The examples in this chapter focused on information hiding as it relates to
the externally visible APIs for classes, but information hiding can also be
applied at other levels in the system, such as within a class. Try to design
the private methods within a class so that each method encapsulates some
information or capability and hides it from the rest of the class. In addition,
try to minimize the number of places where each instance variable is used.
Some variables may need to be accessed widely across the class, but others
may be needed in only a few places; if you can reduce the number of places
where a variable is used, you will eliminate dependencies within the class
and reduce its complexity.

5.9 Taking it too far
Information hiding only makes sense when the information being hidden is
not needed outside its module. If the information is needed outside the
module, then you must not hide it. Suppose that the performance of a
module is affected by certain configuration parameters, and that different
uses of the module will require different settings of the parameters. In this
case it is important that the parameters are exposed in the interface of the
module, so that they can be tuned appropriately. As a software designer,
your goal should be to minimize the amount of information needed outside
a module; for example, if a module can automatically adjust its
configuration, that is better than exposing configuration parameters. But,

it’s important to recognize which information is needed outside a module
and make sure it is exposed.

5.10 Conclusion
Information hiding and deep modules are closely related. If a module hides
a lot of information, that tends to increase the amount of functionality
provided by the module while also reducing its interface. This makes the
module deeper. Conversely, if a module doesn’t hide much information, then
either it doesn’t have much functionality, or it has a complex interface;
either way, the module is shallow.

When decomposing a system into modules, try not to be influenced by
the order in which operations will occur at runtime; that will lead you down
the path of temporal decomposition, which will result in information
leakage and shallow modules. Instead, think about the different pieces of
knowledge that are needed to carry out the tasks of your application, and
design each module to encapsulate one or a few of those pieces of
knowledge. This will produce a clean and simple design with deep modules.

1David Parnas, <On the Criteria to be Used in Decomposing Systems into Modules,=
Communications of the ACM, December 1972.

Chapter 6
General-Purpose Modules are Deeper

The process of teaching my software design course, in which I’m constantly
trying to identify the causes of complexity in student code, has changed my
thinking about software design in several ways. The most important of these
has to do with generality versus specialization. I have found over and over
that specialization leads to complexity; I now think that over-specialization
may be the single greatest cause of complexity in software. Conversely,
code that is more general-purpose is simpler, cleaner, and easier to
understand.

This principle applies at many different levels in software design. When
designing modules such as classes or methods, one of the best ways to
produce a deep API is to make it general-purpose (general-purpose APIs
result in more information hiding). When writing detailed code, one of the
most effective ways to simplify the code is by eliminating special cases, so
that the common-case code handles the edge cases as well. Eliminating
special cases can also make code more efficient, as we shall see in Chapter
20.

This chapter discusses the problems caused by specialization and the
benefits of generality. Specialization cannot be completely eliminated, so
the chapter also offers guidelines on how to separate special-purpose code
from general-purpose code.

6.1 Make classes somewhat general-
purpose

One of the most common decisions that you will face when designing a new
class is whether to implement it in a general-purpose or special-purpose
fashion. Some might argue that you should take a general-purpose

approach, in which you implement a mechanism that can be used to address
a broad range of problems, not just the ones that are important today. In this
case, the new mechanism may find unanticipated uses in the future, thereby
saving time. The general-purpose approach seems consistent with the
investment mindset discussed in Chapter 3, where you spend a bit more time
up front to save time later on.

On the other hand, we know that it’s hard to predict the future needs of a
software system, so a general-purpose solution might include facilities that
are never actually needed. Furthermore, if you implement something that is
too general-purpose, it might not do a good job of solving the particular
problem you have today. As a result, some might argue that it’s better to
focus on today’s needs, building just what you know you need, and
specializing it for the way you plan to use it today. If you take the special-
purpose approach and discover additional uses later, you can always refactor
it to make it general-purpose. The special-purpose approach seems
consistent with an incremental approach to software development.

When I first started teaching my software design course I leaned towards
the second approach (make it special-purpose to begin with), but after
teaching the course a few times I changed my mind. In reviewing student
projects I noticed that general-purpose classes were almost always better
than special-purpose alternatives. What particularly surprised me is that
general-purpose interfaces are simpler and deeper than special-purpose
ones, and they result in less code in the implementation. It turns out that
even if you use a class in a special-purpose way, it’s less work to build it in a
general-purpose way. And, the general-purpose approach can save you even
more time in the future, if you reuse the class for other purposes. But
general-purpose is still better even if you don’t reuse the class.

In my experience, the sweet spot is to implement new modules in a
somewhat general-purpose fashion. The phrase <somewhat general-
purpose= means that the module’s functionality should reflect your current
needs, but its interface should not. Instead, the interface should be general
enough to support multiple uses. The interface should be easy to use for
today’s needs without being tied specifically to them. The word <somewhat=
is important: don’t get carried away and build something so general-purpose
that it is difficult to use for your current needs.

6.2 Example: storing text for an editor
Let’s consider an example from a software design class in which students
were asked to build simple a GUI text editor. The editor had to display a file
and allow users to point, click, and type to edit the file. It also had to
support multiple simultaneous views of the same file in different windows,
and it had to support multi-level undo and redo for modifications to the file.

Each of the student projects included a class that managed the
underlying text of the file. The text classes typically provided methods for
loading a file into memory, reading and modifying the text of the file, and
writing the modified text back to a file. Many of the student teams
implemented special-purpose APIs for the text class.

They knew that the class was going to be used in an interactive editor, so
they thought about the features that the editor had to provide and tailored
the API of the text class to those specific features. For example, if a user of
the editor typed the backspace key, the editor deleted the character
immediately to the left of the cursor; if the user typed the delete key, the
editor deleted the character immediately to the right of the cursor. Knowing
this, some of the teams created one method in the text class to support each
of these specific features:

void backspace(Cursor cursor);
void delete(Cursor cursor);

Each of these methods takes the cursor position as its argument; a special
type Cursor represents this position. The editor also had to support a
selection that could be copied or deleted. The students handled this by
defining a Selection class and passing an object of this class to the text class
during deletions:

void deleteSelection(Selection selection);

The students probably thought that it would be easier to implement the user
interface if the methods of the text class corresponded to the features visible
to users. In reality, however, this specialization provided little benefit for the
user interface code, and it created a high cognitive load for developers
working on either the user interface or the text class. The text class ended up
with a large number of shallow methods, each of which was only suitable
for one user interface operation. Many of the methods, such as delete, were
only invoked in a single place. As a result, a developer working on the user
interface had to learn about a large number of methods for the text class.

This approach created information leakage between the user interface
and the text class. Abstractions related to the user interface, such as the
selection or the backspace key, were reflected in the text class; this
increased the cognitive load for developers working on the text class. Each
new user interface operation required a new method to be defined in the text
class, so a developer working on the user interface was likely to end up
working on the text class as well. One of the goals in class design is to allow
each class to be developed independently, but the specialized approach tied
the user interface and text classes together.

6.3 A more general-purpose API
A better approach is to make the text class more generic. Its API should be
defined only in terms of basic text features, without reflecting the higher-
level operations that will be implemented with it. For example, only two
methods are needed for modifying text:

void insert(Position position, String newText);
void delete(Position start, Position end);

The first method inserts an arbitrary string at an arbitrary position within
the text, and the second method deletes all of the characters at positions
greater than or equal to start but less than end. This API also uses a more
generic type Position instead of Cursor, which reflects a specific user
interface. The text class should also provide general-purpose facilities for
manipulating positions within the text, such as the following:

Position changePosition(Position position, int numChars);

This method returns a new position that is a given number of characters
away from a given position. If the numChars argument is positive, the new
position is later in the file than position; if numChars is negative, the new
position is before position. The method automatically skips to the next or
previous line when necessary. With these methods, the delete key can be
implemented with the following code (assuming the cursor variable holds
the current cursor position):

text.delete(cursor, text.changePosition(cursor, 1));

Similarly, the backspace key can be implemented as follows:
text.delete(text.changePosition(cursor, -1), cursor);

With the general-purpose text API, the code to implement user interface
functions such as delete and backspace is a bit longer than with the original
approach using a specialized text API. However, the new code is more

obvious than the old code. A developer working in the user interface
module probably cares about which characters are deleted by the backspace
key. With the new code, this is obvious. With the old code, the developer
had to go to the text class and read the documentation and/or code of the
backspace method to verify the behavior. Furthermore, the general-purpose
approach has less code overall than the specialized approach, since it
replaces a large number of special-purpose methods in the text class with a
smaller number of general-purpose ones.

A text class implemented with the general-purpose interface could
potentially be used for other purposes besides an interactive editor. As one
example, suppose you were building an application that modified a
specified file by replacing all occurrences of a particular string with another
string. Methods from the specialized text class, such as backspace and
delete, would have little value for this application. However, the general-
purpose text class would already have most of the functionality needed for
the new application. All that is missing is a method to search for the next
occurrence of a given string, such as this:

Position findNext(Position start, String string);

Of course, an interactive text editor is likely to have a mechanism for
searching and replacing, in which case the text class would already include
this method.

6.4 Generality leads to better information
hiding

The general-purpose approach provides a cleaner separation between the
text and user interface classes, which results in better information hiding.
The text class need not be aware of specifics of the user interface, such as
how the backspace key is handled; these details are now encapsulated in the
user interface class. New user interface features can be added without
creating new supporting functions in the text class. The general-purpose
interface also reduces cognitive load: a developer working on the user
interface only needs to learn a few simple methods, which can be reused for
a variety of purposes.

The backspace method in the original version of the text class was a
false abstraction. It purported to hide information about which characters
are deleted, but the user interface module really needs to know this; user

interface developers are likely to read the code of the backspace method in
order to confirm its precise behavior. Putting the method in the text class
just makes it harder for user interface developers to get the information they
need. One of the most important elements of software design is determining
who needs to know what, and when. When the details are important, it is
better to make them explicit and as obvious as possible, such as the revised
implementation of the backspace operation. Hiding this information behind
an interface just creates obscurity.

6.5 Questions to ask yourself
It is easier to recognize a clean general-purpose class design than it is to
create one. Here are some questions you can ask yourself, which will help
you to find the right balance between general-purpose and special-purpose
for an interface.

What is the simplest interface that will cover all my current needs? If
you reduce the number of methods in an API without reducing its overall
capabilities, then you are probably creating more general-purpose methods.
The special-purpose text API had at least three methods for deleting text:
backspace, delete, and deleteSelection. The more general-purpose API
had only one method for deleting text, which served all three purposes.
Reducing the number of methods makes sense only as long as the API for
each individual method stays simple; if you have to introduce lots of
additional arguments in order to reduce the number of methods, then you
may not really be simplifying things.

In how many situations will this method be used? If a method is designed
for one particular use, such as the backspace method, that is a red flag that it
may be too special-purpose. See if you can replace several special-purpose
methods with a single general-purpose method.

Is this API easy to use for my current needs? This question can help you
to determine when you have gone too far in making an API simple and
general-purpose. If you have to write a lot of additional code to use a class
for your current purpose, that’s a red flag that the interface doesn’t provide
the right functionality. For example, one approach for the text class would

be to design it around single-character operations: insert inserts a single
character and delete deletes a single character. This API is both simple and
general-purpose. However, it would not be particularly easy to use for a text
editor: higher-level code would contain lots of loops to insert or delete
ranges of characters. The single-character approach would also be
inefficient for large operations. Thus it’s better for the text class to have
built-in support for operations on ranges of characters.

6.6 Push specialization upwards (and
downwards!)

Most software systems must inevitably have some code that is specialized.
For example, applications provide specific features for their users; these are
often highly specialized. Thus it isn’t usually possible to eliminate
specialization altogether. However, specialized code should be cleanly
separated from general-purpose code. This can be done by pushing the
specialized code either up or down in the software stack.

One way to separate specialized code is to push it upwards. The top-
level classes of an application, which provide specific features, will
necessarily be specialized for those features. But this specialization need not
percolate down into the lower-level classes that are used to implement the
features. We saw this in the editor example earlier in this chapter. The
original student implementation leaked specialized user-interface details
such as the behavior of the backspace key down into the implementation of
the text class. The improved text API pushed all of the specialization
upwards into the user interface code, leaving only general-purpose code in
the text class.

Sometimes the best approach is to push specialization downwards. One
example of this is device drivers. An operating system typically must
support hundreds or thousands of different device types of devices, such as
different kinds of secondary storage devices. Each of these device types has
its own specialized command set. In order to prevent specialized device
characteristics from leaking into the main operating system code, operating
systems define an interface with general-purpose operations that any
secondary storage device must implement, such as <read a block= and <write
a block=. For each different device, a device driver module implements the

general-purpose interface using the specialized features of that particular
device. This approach pushes specialization down into the device drivers, so
that the core of the operating system can be written without any knowledge
of specific device characteristics. This approach also makes it easy to add
new devices: if a device has enough features to implement the device driver
interface, it can be added to the system with no changes to the main
operating system.

6.7 Example: editor undo mechanism
In the GUI editor project, one of the requirements was to support multi-level
undo/redo, not just for changes to the text itself, but also for changes in the
selection, insertion cursor, and view. For example, if a user selects some
text, deletes it, scrolls to a different place in the file, and then invokes undo,
the editor must restore its state to what it was just before the deletion. This
includes restoring the deleted text, selecting it again, and also making the
selected text visible in the window.

Some of the student projects implemented the entire undo mechanism as
part of the text class. The text class maintained a list of all the undoable
changes. It automatically added entries to this list whenever the text was
changed. For changes to the selection, insertion cursor, and view, the user
interface code invoked additional methods in the text class, which then
added entries for those changes to the undo list. When undo or redo was
requested by the user, the user interface code invoked a method in the text
class, which then processed the entries in the undo list. For entries related to
text, it updated the internals of the text class; for entries related to other
things, such as the selection, the text class called back to the user interface
code to carry out the undo or redo.

This approach resulted in an awkward set of features in the text class.
The core of undo/redo consists of a general-purpose mechanism for
managing a list of actions that have been executed and stepping through
them during undo and redo operations. The core was located in the text
class along with special-purpose handlers that implemented undo and redo
for specific things such as text and the selection. The special-purpose undo
handlers for the selection and the cursor had nothing to do with anything
else in the text class; they resulted in information leakage between the text
class and the user interface, as well as extra methods in each module to pass

undo information back and forth. If a new sort of undoable entity were
added to the system in the future, it would require changes to the text class,
including new methods specific to that entity. In addition, the general-
purpose undo core had little to do with the general-purpose text facilities in
the class.

These problems can be solved by extracting the general-purpose core of
the undo/redo mechanism and placing it in a separate class:

public class History {

public interface Action {

public void redo();

public void undo();

}

History() {...}

void addAction(Action action) {...}

void addFence() {...}

void undo() {...}

void redo() {...}

}

In this design, the History class manages a collection of objects that
implement the interface History.Action. Each History.Action describes a
single operation, such as a text insertion or a change in the cursor location,
and it provides methods that can undo or redo the operation. The History
class knows nothing about the information stored in the actions or how they
implement their undo and redo methods. History maintains a history list
describing all of the actions executed over the lifetime of an application, and
it provides undo and redo methods that walk backwards and forwards
through the list in response to user-requested undos and redos, calling undo
and redo methods in the History.Actions.

History.Actions are special-purpose objects: each one understands a
particular kind of undoable operation. They are implemented outside the
History class, in modules that understand particular kinds of undoable
actions. The text class might implement UndoableInsert and
UndoableDelete objects to describe text insertions and deletions. Whenever

it inserts text, the text class creates a new UndoableInsert object describing
the insertion and invokes History.addAction to add it to the history list. The
editor’s user interface code might create UndoableSelection and
UndoableCursor objects that describe changes to the selection and insertion
cursor.

The History class also allows actions to be grouped so that, for example,
a single undo request from the user can restore deleted text, reselect the
deleted text, and reposition the insertion cursor. To implement grouping the
History class uses fences, which are markers placed in the history list to
separate groups of related actions. Each call to History.redo walks
backwards through the history list, undoing actions until it reaches the next
fence. The placement of fences is determined by higher-level code by
invoking History.addFence.

This approach divides the functionality of undo into three categories,
each of which is implemented in a different place:

A general-purpose mechanism for managing and grouping actions and
invoking undo/redo operations (implemented by the History class).
The specifics of particular actions (implemented by a variety of
classes, each of which understands a small number of action types).
The policy for grouping actions (implemented by high-level user
interface code to provide the right overall application behavior).

Each of these categories can be implemented without any understanding
of the other categories. The History class does not know what kind of
actions are being undone; it could be used in a variety of applications. Each
action class understands only a single kind of action, and neither the
History class nor the action classes needs to be aware of the policy for
grouping actions.

The key design decision was the one that separated the general-purpose
part of the undo mechanism from the special-purpose parts, creating a
separate class for the general-purpose part and pushing the special-purpose
parts down into subclasses of History.Action. Once that was done, the rest
of the design fell out naturally.

Note: the suggestion to separate general-purpose code from special-
purpose code refers to code related to a particular mechanism. For example,
special-purpose undo code (such as code to undo a text insertion) should be

separated from general-purpose undo code (such as code to manage the
history list). However, it may make sense to combine special-purpose code
for one mechanism with general-purpose code for another. The text class is
an example of this: it implements a general-purpose mechanism for
managing text, but it includes special-purpose code related to undoing. The
undo code is special-purpose because it only handles undo operations for
text modifications. It doesn’t make sense to combine this code with the
general-purpose undo infrastructure in the History class, but it does make
sense to put it in the text class, since it is closely related to other text
functions.

6.8 Eliminate special cases in code
Up until this point I have been discussing specialization in the context of
class and method design. Another form of specialization occurs in the code
for method bodies, in the form of special cases. Special cases can result in
code that is riddled with if statements, which make the code hard to
understand and are prone to bugs. Thus, special cases should be eliminated
wherever possible. The best way to do this is by designing the normal case
in a way that automatically handles the edge conditions without any extra
code.

In the text editor project, students had to implement a mechanism for
selecting text and copying or deleting the selection. Most students
introduced a state variable in their selection implementation to indicate
whether or not the selection exists. They probably chose this approach
because there are times when no selection is visible on the screen, so it
seemed natural to represent this notion in the implementation. However, this
approach resulted in numerous checks to detect the <no selection= condition
and handle it specially.

The selection handling code can be simplified by eliminating the <no
selection= special case, so that the selection always exists. When there is no
selection visible on the screen, it can be represented internally with an
empty selection, whose starting and ending positions are the same. With
this approach, the selection management code can be written without any
checks for <no selection=. When copying the selection, if the selection is
empty then 0 bytes will be inserted at the new location; if implemented
correctly, there will be no need to check for 0 bytes as a special case.

Similarly, it should be possible to design the code for deleting the selection
so that the empty case is handled without any special-case checks. Consider
a selection all on a single line. To delete the selection, extract the portion of
the line preceding the selection and concatenate it with the portion of the
line following the selection to form the new line. If the selection is empty,
this approach will regenerate the original line.

Chapter 10 will discuss exceptions, which create many more special
cases, and how to reduce the number of places where they must be handled.

6.9 Conclusion
Unnecessary specialization, whether in the form of special-purpose classes
and methods or special cases in code, is a significant contributor to software
complexity. Specialization can’t be eliminated completely, but with good
design you should be able to reduce it significantly and separate specialized
code from general-purpose code. This will result in deeper classes, better
information hiding, and simpler and more obvious code.

Chapter 7
Di�erent Layer, Di�erent Abstraction

Software systems are composed in layers, where higher layers use the
facilities provided by lower layers. In a well-designed system, each layer
provides a different abstraction from the layers above and below it; if you
follow a single operation as it moves up and down through layers by
invoking methods, the abstractions change with each method call. For
example:

In a file system, the uppermost layer implements a file abstraction. A
file consists of a variable-length array of bytes, which can be updated
by reading and writing variable-length byte ranges. The next lower
layer in the file system implements a cache in memory of fixed-size
disk blocks; callers can assume that frequently used blocks will stay in
memory where they can be accessed quickly. The lowest layer consists
of device drivers, which move blocks between secondary storage
devices and memory.
In a network transport protocol such as TCP, the abstraction provided
by the topmost layer is a stream of bytes delivered reliably from one
machine to another. This level is built on a lower level that transmits
packets of bounded size between machines on a best-effort basis: most
packets will be delivered successfully, but some packets may be lost or
delivered out of order.

If a system contains adjacent layers with similar abstractions, this is a
red flag that suggests a problem with the class decomposition. This chapter
discusses situations where this happens, the problems that result, and how to
refactor to eliminate the problems.

7.1 Pass-through methods
When adjacent layers have similar abstractions, the problem often manifests
itself in the form of pass-through methods. A pass-through method is one
that does little except invoke another method, whose signature is similar or
identical to that of the calling method. For example, a student project
implementing a GUI text editor contained a class consisting almost entirely
of pass-through methods. Here is an extract from that class:

public class TextDocument ... {

private TextArea textArea;

private TextDocumentListener listener;

...

public Character getLastTypedCharacter() {

return textArea.getLastTypedCharacter();

}

public int getCursorOffset() {

return textArea.getCursorOffset();

}

public void insertString(String textToInsert,

int offset) {

textArea.insertString(textToInsert, offset);

}

public void willInsertString(String stringToInsert,

int offset) {

if (listener != null) {

listener.willInsertString(this, stringToInsert,

offset);

}

}

...
}

 Red Flag: Pass-Through Method

A pass-through method is one that does nothing except pass its
arguments to another method, usually with the same API as the pass-

through method. This typically indicates that there is not a clean
division of responsibility between the classes.

13 of the 15 public methods in that class were pass-through methods.
Pass-through methods make classes shallower: they increase the

interface complexity of the class, which adds complexity, but they don’t
increase the total functionality of the system. Of the four methods above,
only the last one has any functionality, and even there it is trivial: the
method checks the validity of one variable. Pass-through methods also
create dependencies between classes: if the signature changes for the
insertString method in TextArea, then the insertString method in
TextDocument will have to change to match.

Pass-through methods indicate that there is confusion over the division
of responsibility between classes. In the example above, the TextDocument
class offers an insertString method, but the functionality for inserting text
is implemented entirely in TextArea. This is usually a bad idea: the interface
to a piece of functionality should be in the same class that implements the
functionality. When you see pass-through methods from one class to
another, consider the two classes and ask yourself <Exactly which features
and abstractions is each of these classes responsible for?= You will probably
notice that there is an overlap in responsibility between the classes.

The solution is to refactor the classes so that each class has a distinct
and coherent set of responsibilities. Figure 7.1 illustrates several ways to do
this. One approach, shown in Figure 7.1(b), is to expose the lower level class
directly to the callers of the higher level class, removing all responsibility
for the feature from the higher level class. Another approach is to
redistribute the functionality between the classes, as in Figure 7.1(c).
Finally, if the classes can’t be disentangled, the best solution may be to
merge them as in Figure 7.1(d).

In the example above, there were three classes with intertwined
responsibilities: TextDocument, TextArea, and TextDocumentListener. The
student eliminated the pass-through methods by moving methods between
classes and collapsing the three classes into just two, whose responsibilities
were more clearly differentiated.

7.2 When is interface duplication OK?
Having methods with the same signature is not always bad. The important
thing is that each new method should contribute significant functionality.
Pass-through methods are bad because they contribute no new functionality.

One example where it’s useful for a method to call another method with
the same signature is a dispatcher. A dispatcher is a method that uses its
arguments to select one of several other methods to invoke; then it passes
most or all of its arguments to the chosen method. The signature for the
dispatcher is often the same as the signature for the methods that it calls.
Even so, the dispatcher provides useful functionality: it chooses which of
several other methods should carry out each task.

Figure 7.1: Pass-through methods. In (a), class C1 contains three pass-through methods, which do
nothing but invoke methods with the same signature in C2 (each symbol represents a particular
method signature). The pass-through methods can be eliminated by having C1’s callers invoke C2
directly as in (b), by redistributing functionality between C1 and C2 to avoid calls between the classes
as in (c), or by combining the classes as in (d).

For example, when a Web server receives an incoming HTTP request
from a Web browser, it invokes a dispatcher that examines the URL in the
incoming request and selects a specific method to handle the request. Some
URLs might be handled by returning the contents of a file on disk; others
might be handled by invoking a procedure in a language such as PHP or

JavaScript. The dispatch process can be quite intricate, and is usually driven
by a set of rules that are matched against the incoming URL.

It is fine for several methods to have the same signature as long as each
of them provides useful and distinct functionality. The methods invoked by
a dispatcher have this property. Another example is interfaces with multiple
implementations, such as disk drivers in an operating system. Each driver
provides support for a different kind of disk, but they all have the same
interface. When several methods provide different implementations of the
same interface, it reduces cognitive load. Once you have worked with one of
these methods, it’s easier to work with the others, since you don’t need to
learn a new interface. Methods like this are usually in the same layer and
they don’t invoke each other.

7.3 Decorators
The decorator design pattern (also known as a <wrapper=) is one that
encourages API duplication across layers. A decorator object takes an
existing object and extends its functionality; it provides an API similar or
identical to the underlying object, and its methods invoke the methods of the
underlying object. In the Java I/O example from Chapter 4, the
BufferedInputStream class is a decorator: given an InputStream object, it
provides the same API but introduces buffering. For example, when its read
method is invoked to read a single character, it invokes read on the
underlying InputStream to read a much larger block, and saves the extra
characters to satisfy future read calls. Another example occurs in
windowing systems: a Window class implements a simple form of window
that is not scrollable, and a ScrollableWindow class decorates the Window
class by adding horizontal and vertical scrollbars.

The motivation for decorators is to separate special-purpose extensions
of a class from a more generic core. However, decorator classes tend to be
shallow: they introduce a large amount of boilerplate for a small amount of
new functionality. Decorator classes often contain many pass-through
methods. It’s easy to overuse the decorator pattern, creating a new class for
every small new feature. This results in an explosion of shallow classes,
such as the Java I/O example.

Before creating a decorator class, consider alternatives such as the
following:

Could you add the new functionality directly to the underlying class,
rather than creating a decorator class? This makes sense if the new
functionality is relatively general-purpose, or if it is logically related to
the underlying class, or if most uses of the underlying class will also
use the new functionality. For example, virtually everyone who creates
a Java InputStream will also create a BufferedInputStream, and
buffering is a natural part of I/O, so these classes should have been
combined.
If the new functionality is specialized for a particular use case, would it
make sense to merge it with the use case, rather than creating a
separate class?
Could you merge the new functionality with an existing decorator,
rather than creating a new decorator? This would result in a single
deeper decorator class rather than multiple shallow ones.
Finally, ask yourself whether the new functionality really needs to wrap
the existing functionality: could you implement it as a stand-alone class
that is independent of the base class? In the windowing example, the
scrollbars could probably be implemented separately from the main
window, without wrapping all of its existing functionality.

There are occasionally situations where wrappers make sense. One
example is when a system uses an external class whose interface cannot be
modified, but the class must conform to a different interface in the
application where it is being used. In this case, a wrapper class can be used
to translate between the interfaces. However, situations like this are rare;
there is usually a better alternative than using a wrapper class.

7.4 Interface versus implementation
Another application of the <different layer, different abstraction= rule is that
the interface of a class should normally be different from its
implementation: the representations used internally should be different from
the abstractions that appear in the interface. If the two have similar
abstractions, then the class probably isn’t very deep. For example, in the text
editor project discussed in Chapter 6, most of the teams implemented the
text module in terms of lines of text, with each line stored separately. Some
of the teams also designed the APIs for the text class around lines, with

methods such as getLine and putLine. However, this made the text class
shallow and awkward to use. In the higher-level user interface code, it’s
common to insert text in the middle of a line (e.g., when the user is typing)
or to delete a range of text that spans lines. With a line-oriented API for the
text class, callers were forced to split and join lines to implement the user-
interface operations. This code was nontrivial and it was duplicated and
scattered across the implementation of the user interface.

The text classes were much easier to use when they provided a
character-oriented interface, such as an insert method that inserts an
arbitrary string of text (which may include newlines) at an arbitrary position
in the text and a delete method that deletes the text between two arbitrary
positions in the text. Internally, the text was still represented in terms of
lines. A character-oriented interface encapsulates the complexity of line
splitting and joining inside the text class, which makes the text class deeper
and simplifies higher level code that uses the class. With this approach, the
text API is quite different from the line-oriented storage mechanism; the
difference represents valuable functionality provided by the class.

7.5 Pass-through variables
Another form of API duplication across layers is a pass-through variable,
which is a variable that is passed down through a long chain of methods.
Figure 7.2(a) shows an example from a datacenter service. A command-line
argument describes certificates to use for secure communication. This
information is only needed by a low-level method m3, which calls a library
method to open a socket, but it is passed down through all the methods on
the path between main and m3. The cert variable appears in the signature of
each of the intermediate methods.

Pass-through variables add complexity because they force all of the
intermediate methods to be aware of their existence, even though the
methods have no use for the variables. Furthermore, if a new variable comes
into existence (for example, a system is initially built without support for
certificates, but you later decide to add that support), you may have to
modify a large number of interfaces and methods to pass the variable
through all of the relevant paths.

Eliminating pass-through variables can be challenging. One approach is
to see if there is already an object shared between the topmost and

bottommost methods. In the datacenter service example of Figure 7.2,
perhaps there is an object containing other information about network
communication, which is available to both main and m3. If so, main can store
the certificate information in that object, so it needn’t be passed through all
of the intervening methods on the path to m3 (see Figure 7.2(b)). However, if
there is such an object, then it may itself be a pass-through variable (how
else does m3 get access to it?).

Another approach is to store the information in a global variable, as in
Figure 7.2(c). This avoids the need to pass the information from method to
method, but global variables almost always create other problems. For
example, global variables make it impossible to create two independent
instances of the same system in the same process, since accesses to the
global variables will conflict. It may seem unlikely that you would need
multiple instances in production, but they are often useful in testing.

The solution I use most often is to introduce a context object as in
Figure 7.2(d). A context stores all of the application’s global state (anything
that would otherwise be a pass-through variable or global variable). Most
applications have multiple variables in their global state, representing things
such as configuration options, shared subsystems, and performance
counters. There is one context object per instance of the system. The context
allows multiple instances of the system to coexist in a single process, each
with its own context.

Figure 7.2: Possible techniques for dealing with a pass-through variable. In (a), cert is passed
through methods m1 and m2 even though they don’t use it. In (b), main and m3 have shared access to an
object, so the variable can be stored there instead of passing it through m1 and m2. In (c), cert is
stored as a global variable. In (d), cert is stored in a context object along with other system-wide
information, such as a timeout value and performance counters; a reference to the context is stored in
all objects whose methods need access to it.

Unfortunately, the context will probably be needed in many places, so it
can potentially become a pass-through variable. To reduce the number of
methods that must be aware of it, a reference to the context can be saved in
most of the system’s major objects. In the example of Figure 7.2(d), the
class containing m3 stores a reference to the context as an instance variable

in its objects. When a new object is created, the creating method retrieves
the context reference from its object and passes it to the constructor for the
new object. With this approach, the context is available everywhere, but it
only appears as an explicit argument in constructors.

The context object unifies the handling of all system-global information
and eliminates the need for pass-through variables. If a new variable needs
to be added, it can be added to the context object; no existing code is
affected except for the constructor and destructor for the context. The
context makes it easy to identify and manage the global state of the system,
since it is all stored in one place. The context is also convenient for testing:
test code can change the global configuration of the application by
modifying fields in the context. It would be much more difficult to
implement such changes if the system used pass-through variables.

Contexts are far from an ideal solution. The variables stored in a context
have most of the disadvantages of global variables; for example, it may not
be obvious why a particular variable is present, or where it is used. Without
discipline, a context can turn into a huge grab-bag of data that creates
nonobvious dependencies throughout the system. Contexts may also create
thread-safety issues; the best way to avoid problems is for variables in a
context to be immutable. Unfortunately, I haven’t found a better solution
than contexts.

7.6 Conclusion
Each piece of design infrastructure added to a system, such as an interface,
argument, function, class, or definition, adds complexity, since developers
must learn about this element. In order for an element to provide a net gain
against complexity, it must eliminate some complexity that would be present
in the absence of the design element. Otherwise, you are better off
implementing the system without that particular element. For example, a
class can reduce complexity by encapsulating functionality so that users of
the class needn’t be aware of it.

The <different layer, different abstraction= rule is just an application of
this idea: if different layers have the same abstraction, such as pass-through
methods or decorators, then there’s a good chance that they haven’t provided
enough benefit to compensate for the additional infrastructure they
represent. Similarly, pass-through arguments require each of several

methods to be aware of their existence (which adds to complexity) without
contributing additional functionality.

Chapter 8
Pull Complexity Downwards

This chapter introduces another way of thinking about how to create deeper
classes. Suppose that you are developing a new module, and you discover a
piece of unavoidable complexity. Which is better: should you let users of the
module deal with the complexity, or should you handle the complexity
internally within the module? If the complexity is related to the
functionality provided by the module, then the second answer is usually the
right one. Most modules have more users than developers, so it is better for
the developers to suffer than the users. As a module developer, you should
strive to make life as easy as possible for the users of your module, even if
that means extra work for you. Another way of expressing this idea is that it
is more important for a module to have a simple interface than a simple
implementation.

As a developer, it’s tempting to behave in the opposite fashion: solve the
easy problems and punt the hard ones to someone else. If a condition arises
that you’re not certain how to deal with, the easiest thing is to throw an
exception and let the caller handle it. If you are not certain what policy to
implement, you can define a few configuration parameters to control the
policy and leave it up to the system administrator to figure out the best
values for them.

Approaches like these will make your life easier in the short term, but
they amplify complexity, so that many people must deal with a problem,
rather than just one person. For example, if a class throws an exception,
every caller of the class will have to deal with it. If a class exports
configuration parameters, every system administrator in every installation
will have to learn how to set them.

8.1 Example: editor text class
Consider the class that manages the text of a file for a GUI text editor,
which was discussed in Chapters 6 and 7. The class provides methods to
read a file from disk into memory, query and modify the in-memory copy of
the file, and write the modified version back to disk. When students had to
implement this class, many of them chose a line-oriented interface, with
methods to read, insert, and delete whole lines of text. This resulted in a
simple implementation for the class, but it created complexity for higher
level software. At the level of the user interface, operations rarely involve
whole lines. For example, keystrokes cause individual characters to be
inserted within an existing line; copying or deleting the selection can
modify parts of several different lines. With the line-oriented text interface,
higher-level software had to split and join lines in order to implement the
user interface.

A character-oriented interface such as the one described in Section 6.3
pulls complexity downward. The user interface software can now insert and
delete arbitrary ranges of text without splitting and merging lines, so it
becomes simpler. The implementation of the text class probably becomes
more complex: if it represents the text internally as a collection of lines, it
will have to split and merge lines to implement the character-oriented
operations. This approach is better because it encapsulates the complexity
of splitting and merging within the text class, which reduces the overall
complexity of the system.

8.2 Example: con�guration parameters
Configuration parameters are an example of moving complexity upwards
instead of down. Rather than determining a particular behavior internally, a
class can export a few parameters that control its behavior, such as the size
of a cache or the number of times to retry a request before giving up. Users
of the class must then specify appropriate values for the parameters.
Configuration parameters have become very popular in systems today; some
systems have hundreds of them.

Advocates argue that configuration parameters are good because they
allow users to tune the system for their particular requirements and
workloads. In some situations it is hard for low-level infrastructure code to

know the best policy to apply, whereas users are much more familiar with
their domains. For instance, a user might know that some requests are more
time-critical than others, so it makes sense for the user to specify a higher
priority for those requests. In situations like this, configuration parameters
can result in better performance across a broader variety of domains.

However, configuration parameters also provide an easy excuse to avoid
dealing with important issues and pass them on to someone else. In many
cases, it’s difficult or impossible for users or administrators to determine the
right values for the parameters. In other cases, the right values could have
been determined automatically with a little extra work in the system
implementation. Consider a network protocol that must deal with lost
packets. If it sends a request but doesn’t receive a response within a certain
time period, it resends the request. One way to determine the retry interval
is to introduce a configuration parameter. However, the transport protocol
could compute a reasonable value on its own by measuring the response
time for requests that succeed and then using a multiple of this for the retry
interval. This approach pulls complexity downward and saves users from
having to figure out the right retry interval. It has the additional advantage
of computing the retry interval dynamically, so it will adjust automatically if
operating conditions change. In contrast, configuration parameters can
easily become out of date.

Thus, you should avoid configuration parameters as much as possible.
Before exporting a configuration parameter, ask yourself: <will users (or
higher-level modules) be able to determine a better value than we can
determine here?= When you do create configuration parameters, see if you
can provide reasonable defaults, so users will only need to provide values
under exceptional conditions. Ideally, each module should solve a problem
completely; configuration parameters result in an incomplete solution,
which adds to system complexity.

8.3 Taking it too far
Use discretion when pulling complexity downward; this is an idea that can
easily be overdone. An extreme approach would be to pull all of the
functionality of the entire application down into a single class, which clearly
doesn’t make sense. Pulling complexity down makes the most sense if (a)
the complexity being pulled down is closely related to the class’s existing

functionality, (b) pulling the complexity down will result in simplifications
elsewhere in the application, and (c) pulling the complexity down simplifies
the class’s interface. Remember that the goal is to minimize overall system
complexity.

Chapter 6 described how some students defined methods in the text
class that reflected the user interface, such as a method that implements the
functionality of the backspace key. It might seem that this is good, since it
pulls complexity downward. However, adding knowledge of the user
interface to the text class doesn’t simplify higher-level code very much, and
the user-interface knowledge doesn’t relate to the core functions of the text
class. In this case, pulling complexity down just resulted in information
leakage.

8.4 Conclusion
When developing a module, look for opportunities to take a little bit of extra
suffering upon yourself in order to reduce the suffering of your users.

Chapter 9
Better Together Or Better Apart?

One of the most fundamental questions in software design is this: given two
pieces of functionality, should they be implemented together in the same
place, or should their implementations be separated? This question applies
at all levels in a system, such as functions, methods, classes, and services.
For example, should buffering be included in the class that provides stream-
oriented file I/O, or should it be in a separate class? Should the parsing of
an HTTP request be implemented entirely in one method, or should it be
divided among multiple methods (or even multiple classes)? This chapter
discusses the factors to consider when making these decisions. Some of
these factors have already been discussed in previous chapters, but they will
be revisited here for completeness.

When deciding whether to combine or separate, the goal is to reduce the
complexity of the system as a whole and improve its modularity. It might
appear that the best way to achieve this goal is to divide the system into a
large number of small components: the smaller the components, the simpler
each individual component is likely to be. However, the act of subdividing
creates additional complexity that was not present before subdivision:

Some complexity comes just from the number of components: the
more components, the harder to keep track of them all and the harder
to find a desired component within the large collection. Subdivision
usually results in more interfaces, and every new interface adds
complexity.
Subdivision can result in additional code to manage the components.
For example, a piece of code that used a single object before
subdivision might now have to manage multiple objects.
Subdivision creates separation: the subdivided components will be
farther apart than they were before subdivision. For example, methods

that were together in a single class before subdivision may be in
different classes after subdivision, and possibly in different files.
Separation makes it harder for developers to see the components at the
same time, or even to be aware of their existence. If the components are
truly independent, then separation is good: it allows the developer to
focus on a single component at a time, without being distracted by the
other components. On the other hand, if there are dependencies
between the components, then separation is bad: developers will end
up flipping back and forth between the components. Even worse, they
may not be aware of the dependencies, which can lead to bugs.
Subdivision can result in duplication: code that was present in a single
instance before subdivision may need to be present in each of the
subdivided components.

Bringing pieces of code together is most beneficial if they are closely
related. If the pieces are unrelated, they are probably better off apart. Here
are a few indications that two pieces of code are related:

They share information; for example, both pieces of code might depend
on the syntax of a particular type of document.
They are used together: anyone using one of the pieces of code is likely
to use the other as well. This form of relationship is only compelling if
it is bidirectional. As a counter-example, a disk block cache will almost
always involve a hash table, but hash tables can be used in many
situations that don’t involve block caches; thus, these modules should
be separate.
They overlap conceptually, in that there is a simple higher-level
category that includes both of the pieces of code. For example,
searching for a substring and case conversion both fall under the
category of string manipulation; flow control and reliable delivery both
fall under the category of network communication.
It is hard to understand one of the pieces of code without looking at the
other.

The rest of this chapter uses more specific rules as well as examples to
show when it makes sense to bring pieces of code together and when it
makes sense to separate them.

9.1 Bring together if information is shared
Section 5.4 introduced this principle in the context of a project
implementing an HTTP server. In its first implementation, the project used
two different methods in different classes to read in and parse HTTP
requests. The first method read the text of an incoming request from a
network socket and placed it in a string object. The second method parsed
the string to extract the various components of the request. With this
decomposition, both of the methods ended up with considerable knowledge
of the format of HTTP requests: the first method was only trying to read the
request, not parse it, but it couldn’t identify the end of the request without
doing most of the work of parsing it (for example, it had to parse header
lines in order to identify the header containing the overall request length).
Because of this shared information, it is better to both read and parse the
request in the same place; when the two classes were combined into one, the
code got shorter and simpler.

9.2 Bring together if it will simplify the
interface

When two or more modules are combined into a single module, it may be
possible to define an interface for the new module that is simpler or easier
to use than the original interfaces. This often happens when the original
modules each implement part of the solution to a problem. In the HTTP
server example from the preceding section, the original methods required an
interface to return the HTTP request string from the first method and pass it
to the second. When the methods were combined, these interfaces were
eliminated.

In addition, when the functionality of two or more classes is combined,
it may be possible to perform some functions automatically, so that most
users need not be aware of them. The Java I/O library illustrates this
opportunity. If the FileInputStream and BufferedInputStream classes were
combined and buffering were provided by default, the vast majority of users
would never even need to be aware of the existence of buffering. A
combined FileInputStream class might provide methods to disable or
replace the default buffering mechanism, but most users would not need to
learn about them.

9.3 Bring together to eliminate duplication
If you find the same pattern of code repeated over and over, see if you can
reorganize the code to eliminate the repetition. One approach is to factor the
repeated code out into a separate method and replace the repeated code
snippets with calls to the method. This approach is most effective if the
repeated code snippet is long and the replacement method has a simple
signature. If the snippet is only one or two lines long, there may not be
much benefit in replacing it with a method call. If the snippet interacts in
complex ways with its environment (such as by accessing numerous local
variables), then the replacement method might require a complex signature
(such as many pass-by-reference arguments), which would reduce its value.

Another way to eliminate duplication is to refactor the code so that the
snippet in question only needs to be executed in one place. Suppose you are
writing a method that needs to return errors at several different points, and
the same cleanup actions need to be performed at each of these points
before returning (see Figure 9.1 for an example). If the programming
language supports goto, you can move the cleanup code to the very end of
the method and then goto that snippet at each of the points where an error
return is required, as in Figure 9.2. Goto statements are generally considered
a bad idea, and they can result in indecipherable code if used
indiscriminately, but they are useful in situations like this where they are
used to escape from nested code.

9.4 Separate general-purpose and special-
purpose code

If a module contains a mechanism that can be used for several different
purposes, then it should provide just that one general-purpose mechanism. It
should not include code that specializes the mechanism for a particular use,
nor should it contain other general-purpose mechanisms. Special-purpose
code associated with a general-purpose mechanism should normally go in a
different module (typically one associated with the particular purpose). The
GUI editor discussion in Chapter 6 illustrated this principle: the best design
was one where the text class provided general-purpose text operations,
while operations particular to the user interface (such as deleting the
selection) were implemented in the user interface module. This approach

eliminated information leakage and additional interfaces that were present
in an earlier design where the specialized user interface operations were
implemented in the text class.

 Red Flag: Repetition

If the same piece of code (or code that is almost the same) appears over
and over again, that’s a red flag that you haven’t found the right
abstractions.

Figure 9.1: This code processes incoming network packets of different types; for each type, if the
packet is too short for that type, a message gets logged. In this version of the code, the LOG statement
is duplicated for several different packet types.

Figure 9.2: A reorganization of the code from Figure 9.1 so that there is only one copy of the LOG
statement.

9.5 Example: insertion cursor and selection
The next sections work through two examples that illustrate the principles
discussed above. In the first example the best approach is to separate the
relevant pieces of code; in the second example it is better to join them
together.

The first example consists of the insertion cursor and the selection in the
GUI editor project from Chapter 6. The editor displays a blinking vertical
line indicating where text typed by the user will appear in the document. It
also displays a highlighted range of characters called the selection, which is
used for copying or deleting text. The insertion cursor is always visible, but
there are times when no text is selected. If the selection exists, the insertion
cursor is always positioned at one end of it.

The selection and insertion cursor are related in some ways. For
example, the cursor is always positioned at one end of the selection, and the
cursor and selection tend to be manipulated together: clicking and dragging
the mouse sets both of them, and text insertion first deletes the selected text,
if there is any, and then inserts new text at the cursor position. Thus, it
might seem logical to use a single object to manage both the selection and

the cursor, and one project team took this approach. The object stored two
positions in the file, along with booleans indicating which end was the
cursor and whether the selection existed.

However, the combined object was awkward. It provided no benefit for
higher-level code, since the higher-level code still needed to be aware of the
selection and cursor as distinct entities, and it manipulated them separately
(during text insertion, it first invoked a method on the combined object to
delete the selected text; then it invoked another method to retrieve the cursor
position in order to insert new text). The combined object was actually more
complex to implement than separate objects. It avoided storing the cursor
position as a separate entity, but instead had to store a boolean indicating
which end of the selection was the cursor. In order to retrieve the cursor
position, the combined object had to first test the boolean and then choose
the appropriate end of the selection.

In this case, the selection and cursor were not closely enough related to
combine them. When the code was revised to separate the selection and the
cursor, both the usage and the implementation became simpler. Separate
objects provided a simpler interface than a combined object from which
selection and cursor information had to be extracted. The cursor
implementation also got simpler because the cursor position was
represented directly, rather than indirectly through a selection and a
boolean. In fact, in the revised version no special classes were used for
either the selection or the cursor. Instead, a new Position class was
introduced to represent a location in the file (a line number and character
within line). The selection was represented with two Positions and the
cursor with one. Positions also found other uses in the project. This example
also demonstrates the benefits of a lower-level but more general-purpose
interface, which were discussed in Chapter 6.

 Red Flag: Special-General Mixture

This red flag occurs when a general-purpose mechanism also contains
code specialized for a particular use of that mechanism. This makes the
mechanism more complicated and creates information leakage between
the mechanism and the particular use case: future modifications to the

use case are likely to require changes to the underlying mechanism as
well.

9.6 Example: separate class for logging
The second example involved error logging in a student project. A class
contained several code sequences like the following:

try {

rpcConn = connectionPool.getConnection(dest);
} catch (IOException e) {

NetworkErrorLogger.logRpcOpenError(req, dest, e);

return null;
}

Rather than logging the error at the point where it was detected, a
separate method in a special error logging class was invoked. The error
logging class was defined at the end of the same source file:

private static class NetworkErrorLogger {
/**
* Output information relevant to an error that occurs when
trying

* to open a connection to send an RPC.
*
* @param req
* The RPC request that would have been sent through
* the connection
* @param dest
* The destination of the RPC
* @param e
* The caught error
*/
public static void logRpcOpenError(RpcRequest req,

AddrPortTuple dest, Exception e) {

logger.log(Level.WARNING, "Cannot send message: " + req +

". \n" + "Unable to find or open connection to " +

dest + " :" + e);
}

...
}

The NetworkErrorLogger class contained several methods such as
logRpcSendError and logRpcReceiveError, each of which logged a different

kind of error.
This separation added complexity with no benefit. The logging methods

were shallow: most consisted of a single line of code, but they required a
considerable amount of documentation. Each method was only invoked in a
single place. The logging methods were highly dependent on their
invocations: someone reading the invocation would most likely flip over to
the logging method to make sure that the right information was being
logged; similarly, someone reading the logging method would probably flip
over to the invocation site to understand the purpose of the method.

In this example, it would be better to eliminate the logging methods and
place the logging statements at the locations where the errors were detected.
This would make the code easier to read and eliminate the interfaces
required for the logging methods.

9.7 Splitting and joining methods
The issue of when to subdivide applies not just to classes, but also to
methods: are there times when it is better to divide an existing method into
multiple smaller methods? Or, should two smaller methods be combined
into one larger one? Long methods tend to be more difficult to understand
than shorter ones, so many people argue that length alone is a good
justification for breaking up a method. Students in classes are often given
rigid criteria, such as <Split up any method longer than 20 lines!=

However, length by itself is rarely a good reason for splitting up a
method. In general, developers tend to break up methods too much. Splitting
up a method introduces additional interfaces, which add to complexity. It
also separates the pieces of the original method, which makes the code
harder to read if the pieces are actually related. You shouldn’t break up a
method unless it makes the overall system simpler; I’ll discuss how this
might happen below.

Long methods aren’t always bad. For example, suppose a method
contains five 20-line blocks of code that are executed in order. If the blocks
are relatively independent, then the method can be read and understood one
block at a time; there’s not much benefit in moving each of the blocks into a
separate method. If the blocks have complex interactions, it’s even more
important to keep them together so readers can see all of the code at once; if
each block is in a separate method, readers will have to flip back and forth

between these spread-out methods in order to understand how they work
together. Methods containing hundreds of lines of code are fine if they have
a simple signature and are easy to read. These methods are deep (lots of
functionality, simple interface), which is good.

Figure 9.3: A method (a) can be split either by by extracting a subtask (b) or by dividing its
functionality into two separate methods (c). A method should not be split if it results in shallow
methods, as in (d).

When designing methods, the most important goal is to provide clean
abstractions. Each method should do one thing and do it completely. The
method should have a simple interface, so that users don’t need to have
much information in their heads in order to use it correctly. The method
should be deep: its interface should be much simpler than its
implementation. If a method has all of these properties, then it probably
doesn’t matter whether it is long or not.

Splitting up a method only makes sense if it results in cleaner
abstractions, overall. There are two ways to do this, which are diagrammed
in Figure 9.3. The best way is by factoring out a subtask into a separate
method, as shown in Figure 9.3(b). The subdivision results in a child
method containing the subtask and a parent method containing the
remainder of the original method; the parent invokes the child. The interface
of the new parent method is the same as the original method. This form of
subdivision makes sense if there is a subtask that is cleanly separable from
the rest of the original method, which means (a) someone reading the child
method doesn’t need to know anything about the parent method and (b)
someone reading the parent method doesn’t need to understand the
implementation of the child method. Typically this means that the child
method is relatively general-purpose: it could conceivably be used by other

methods besides the parent. If you make a split of this form and then find
yourself flipping back and forth between the parent and child to understand
how they work together, that is a red flag (<Conjoined Methods=) indicating
that the split was probably a bad idea.

The second way to break up a method is to split it into two separate
methods, each visible to callers of the original method, as in Figure 9.3(c).
This makes sense if the original method had an overly complex interface
because it tried to do multiple things that were not closely related. If this is
the case, it may be possible to divide the method’s functionality into two or
more smaller methods, each of which has only a part of the original
method’s functionality. If you make a split like this, the interface for each of
the resulting methods should be simpler than the interface of the original
method. Ideally, most callers should only need to invoke one of the two new
methods; if callers must invoke both of the new methods, then that adds
complexity, which makes it less likely that the split is a good idea. The new
methods will be more focused in what they do. It is a good sign if the new
methods are more general-purpose than the original method (i.e., you can
imagine using them separately in other situations).

Splits of the form shown in Figure 9.3(c) don’t make sense very often,
because they result in callers having to deal with multiple methods instead
of one. When you split this way, you run the risk of ending up with several
shallow methods, as in Figure 9.3(d). If the caller has to invoke each of the
separate methods, passing state back and forth between them, then splitting
is not a good idea. If you’re considering a split like the one in Figure 9.3(c),
you should judge it based on whether it simplifies things for callers.

There are also situations where a system can be made simpler by joining
methods together. For example, joining methods might replace two shallow
methods with one deeper method; it might eliminate duplication of code; it
might eliminate dependencies between the original methods, or
intermediate data structures; it might result in better encapsulation, so that
knowledge that was previously present in multiple places is now isolated in
a single place; or it might result in a simpler interface, as discussed in
Section 9.2.

 Red Flag: Conjoined Methods

It should be possible to understand each method independently. If you
can’t understand the implementation of one method without also
understanding the implementation of another, that’s a red flag. This red
flag can occur in other contexts as well: if two pieces of code are
physically separated, but each can only be understood by looking at the
other, that is a red flag.

9.8 A di�erent opinion: Clean Code
In the book Clean Code1, Robert Martin argues that functions should be
broken up based on length alone. He says that functions should be extremely
short, and that even 10 lines is too long:

The first rule of functions is that they should be small. The
second rule of functions is that they should be smaller than that....
Blocks within if statements, else statements, while statements, and so
on should be one line long. Probably that line should be a function
call.... This also implies that functions should not be large enough to
hold nested structures. Therefore, the indent level of a function
should not be greater than one or two. This, of course, makes the
functions easier to read and understand.

I agree that shorter functions are generally easier to understand than
longer ones. However, once a function gets down to a few dozen lines,
further reductions in size are unlikely to have much impact on readability. A
more important issue is: does breaking up a function reduce the overall
complexity of the system? In other words, is it easier to read several short
functions and understand how they work together than it is to read one
larger function? More functions means more interfaces to document and
learn. If functions are made too small, they lose their independence,
resulting in conjoined functions that must be read and understood together.
When this happens, then it’s better to keep the larger function, so all of the
related code is one place. Depth is more important than length: first make
functions deep, then try to make them short enough to be easily read. Don’t
sacrifice depth for length.

9.9 Conclusion
The decision to split or join modules should be based on complexity. Pick
the structure that results in the best information hiding, the fewest
dependencies, and the deepest interfaces.

1Clean Code, Robert C. Martin, Pearson Education, Inc., Boston, MA 2009

Chapter 10
De�ne Errors Out Of Existence

Exception handling is one of the worst sources of complexity in software
systems. Code that deals with special conditions is inherently harder to
write than code that deals with normal cases, and developers often define
exceptions without considering how they will be handled. This chapter
discusses why exceptions contribute disproportionately to complexity, then
it shows how to simplify exception handling. The key overall lesson from
this chapter is to reduce the number of places where exceptions must be
handled; in some cases the semantics of operations can be modified so that
the normal behavior handles all situations and there is no exceptional
condition to report (hence the title of this chapter).

10.1 Why exceptions add complexity
I use the term exception to refer to any uncommon condition that alters the
normal flow of control in a program. Many programming languages include
a formal exception mechanism that allows exceptions to be thrown by lower-
level code and caught by enclosing code. However, exceptions can occur
even without using a formal exception reporting mechanism, such as when a
method returns a special value indicating that it didn’t complete its normal
behavior. All of these forms of exceptions contribute to complexity.

A particular piece of code may encounter exceptions in several different
ways:

A caller may provide bad arguments or configuration information.
An invoked method may not be able to complete a requested operation.
For example, an I/O operation may fail, or a required resource may not
be available.

In a distributed system, network packets may be lost or delayed, servers
may not respond in a timely fashion, or peers may communicate in
unexpected ways.
The code may detect bugs, internal inconsistencies, or situations it is
not prepared to handle.

Large systems have to deal with many exceptional conditions,
particularly if they are distributed or need to be fault-tolerant. Exception
handling can account for a significant fraction of all the code in a system.

Exception handling code is inherently more difficult to write than
normal-case code. An exception disrupts the normal flow of the code; it
usually means that something didn’t work as expected and an operation
cannot be completed as planned. When an exception occurs, the
programmer can deal with it in two ways, each of which can be
complicated. The first approach is to move forward and complete the work
in progress in spite of the exception. For example, if a network packet is
lost, it can be resent; if data is corrupted, perhaps it can be recovered from a
redundant copy. The second approach is to abort the operation in progress
and report the exception upwards. However, aborting can be complicated
because the exception may have occurred at a point where system state is
inconsistent (a data structure might have been partially initialized); the
exception handling code must restore consistency, such as by unwinding any
changes made before the exception occurred.

Furthermore, exception handling code creates opportunities for more
exceptions. Consider the case of resending a lost network packet. Perhaps
the packet wasn’t actually lost, but was simply delayed. In this case,
resending the packet will result in duplicate packets arriving at the peer; this
introduces a new exceptional condition that the peer must handle. Or,
consider the case of recovering lost data from a redundant copy: what if the
redundant copy has also been lost? Secondary exceptions occurring during
recovery are often more subtle and complex than the primary exceptions. If
an exception is handled by aborting the operation in progress, then this must
be reported to the caller as another exception. To prevent an unending
cascade of exceptions, the developer must eventually find a way to handle
exceptions without introducing more exceptions.

Language support for exceptions tends to be verbose and clunky, which
makes exception handling code hard to read. For example, consider the

following code, which reads a collection of tweets from a file using Java’s
support for object serialization and deserialization:

try (

FileInputStream fileStream =

new FileInputStream(fileName);

BufferedInputStream bufferedStream =

new BufferedInputStream(fileStream);

ObjectInputStream objectStream =

new ObjectInputStream(bufferedStream);
) {

for (int i = 0; i < tweetsPerFile; i++) {

tweets.add((Tweet) objectStream.readObject());

}
}
catch (FileNotFoundException e) {

...
}
catch (ClassNotFoundException e) {

...
}
catch (EOFException e) {

// Not a problem: not all tweet files have full

// set of tweets.
}
catch (IOException e) {

...
}
catch (ClassCastException e) {

...
}

Just the basic try-catch boilerplate accounts for more lines of code than the
code for normal-case operation, without even considering the code that
actually handles the exceptions. It is hard to relate the exception handling
code to the normal-case code: for example, it’s not obvious where each
exception is generated. An alternative approach is to break up the code into
many distinct try blocks; in the extreme case there could be a try for each
line of code that can generate an exception. This would make it clear where
exceptions occur, but the try blocks themselves break up the flow of the

code and make it harder to read; in addition, some exception handling code
might end up duplicated in multiple try blocks.

It’s difficult to ensure that exception handling code really works. Some
exceptions, such as I/O errors, can’t easily be generated in a test
environment, so it’s hard to test the code that handles them. Exceptions
don’t occur very often in running systems, so exception handling code rarely
executes. Bugs can go undetected for a long time, and when the exception
handling code is finally needed, there’s a good chance that it won’t work
(one of my favorite sayings: <code that hasn’t been executed doesn’t work=).

A recent study found that more than 90% of catastrophic failures in

distributed data-intensive systems were caused by incorrect error handling1.
When exception handling code fails, it’s difficult to debug the problem,
since it occurs so infrequently.

10.2 Too many exceptions
Programmers exacerbate the problems related to exception handling by
defining unnecessary exceptions. Most programmers are taught that it’s
important to detect and report errors; they often interpret this to mean <the
more errors detected, the better.= This leads to an over-defensive style where
anything that looks even a bit suspicious is rejected with an exception,
which results in a proliferation of unnecessary exceptions that increase the
complexity of the system.

I made this mistake myself in the design of the Tcl scripting language.
Tcl contains an unset command that can be used to remove a variable. I
defined unset so that it throws an error if the variable doesn’t exist. At the
time I thought that it must be a bug if someone tries to delete a variable that
doesn’t exist, so Tcl should report it. However, one of the most common
uses of unset is to clean up temporary state created by some previous
operation. It’s often hard to predict exactly what state was created,
particularly if the operation aborted partway through. Thus, the simplest
thing is to delete all of the variables that might possibly have been created.
The definition of unset makes this awkward: developers end up enclosing
calls to unset in catch statements to catch and ignore errors thrown by
unset. In retrospect, the definition of the unset command is one of the
biggest mistakes I made in the design of Tcl.

It’s tempting to use exceptions to avoid dealing with difficult situations:
rather than figuring out a clean way to handle it, just throw an exception and
punt the problem to the caller. Some might argue that this approach
empowers callers, since it allows each caller to handle the exception in a
different way. However, if you are having trouble figuring out what to do for
the particular situation, there’s a good chance that the caller won’t know
what to do either. Generating an exception in a situation like this just passes
the problem to someone else and adds to the system’s complexity.

The exceptions thrown by a class are part of its interface; classes with
lots of exceptions have complex interfaces, and they are shallower than
classes with fewer exceptions. An exception is a particularly complex
element of an interface. It can propagate up through several stack levels
before being caught, so it affects not just the method’s caller, but potentially
also higher-level callers (and their interfaces).

Throwing exceptions is easy; handling them is hard. Thus, the
complexity of exceptions comes from the exception handling code. The best
way to reduce the complexity damage caused by exception handling is to
reduce the number of places where exceptions have to be handled. The
rest of this chapter will discuss four techniques for reducing the number of
exception handlers.

10.3 De�ne errors out of existence
The best way to eliminate exception handling complexity is to define your
APIs so that there are no exceptions to handle: define errors out of
existence. This may seem sacrilegious, but it is very effective in practice.
Consider the Tcl unset command discussed above. Rather than throwing an
error when unset is asked to delete an unknown variable, it should have
simply returned without doing anything. I should have changed the
definition of unset slightly: rather than deleting a variable, unset should
ensure that a variable no longer exists. With the first definition, unset can’t
do its job if the variable doesn’t exist, so generating an exception makes
sense. With the second definition, it is perfectly natural for unset to be
invoked with the name of a variable that doesn’t exist. In this case, its work
is already done, so it can simply return. There is no longer an error case to
report.

10.4 Example: �le deletion in Windows
File deletion provides another example of how errors can be defined away.
The Windows operating system does not permit a file to be deleted if it is
open in a process. This is a continual source of frustration for developers
and users. In order to delete a file that is in use, the user must search
through the system to find the process that has the file open, and then kill
that process. Sometimes users give up and reboot their system, just so they
can delete a file.

The Unix operating system defines file deletion more elegantly. In Unix,
if a file is open when it is deleted, Unix does not delete the file immediately.
Instead, it marks the file for deletion, then the delete operation returns
successfully. The file name has been removed from its directory, so no other
processes can open the old file and a new file with the same name can be
created, but the existing file data persists. Processes that already have the
file open can continue to read it and write it normally. Once the file has
been closed by all of the accessing processes, its data is freed.

The Unix approach defines away two different kinds of errors. First, the
delete operation no longer returns an error if the file is currently in use; the
delete succeeds, and the file will eventually be deleted. Second, deleting a
file that’s in use does not create exceptions for the processes using the file.
One possible approach to this problem would have been to delete the file
immediately and mark all of the opens of the file to disable them; any
attempts by other processes to read or write the deleted file would fail.
However, this approach would create new errors for those processes to
handle. Instead, Unix allows them to keep accessing the file normally;
delaying the file deletion defines errors out of existence.

It may seem strange that Unix allows a process to continue to read and
write a doomed file, but I have never encountered a situation where this
caused significant problems. The Unix definition of file deletion is much
simpler to work with, both for developers and users, than the Windows
definition.

10.5 Example: Java substring method
As a final example, consider the Java String class and its substring
method. Given two indexes into a string, substring returns the substring

starting at the character given by the first index and ending with the
character just before the second index. However, if either index is outside
the range of the string, then substring throws IndexOutOfBoundsException.
This exception is unnecessary and complicates the use of this method. I
often find myself in a situation where one or both of the indices may be
outside the range of the string, and I would like to extract all of the
characters in the string that overlap the specified range. Unfortunately, this
requires me to check each of the indices and round them up to zero or down
to the end of the string; a one-line method call now becomes 5–10 lines of
code.

The Java substring method would be easier to use if it performed this
adjustment automatically, so that it implemented the following API: <returns
the characters of the string (if any) with index greater than or equal to
beginIndex and less than endIndex.= This is a simple and natural API, and it
defines the IndexOutOfBoundsException exception out of existence. The
method’s behavior is now well-defined even if one or both of the indexes are
negative, or if beginIndex is greater than endIndex. This approach simplifies
the API for the method while increasing its functionality, so it makes the
method deeper. Many other languages have taken the error-free approach;
for example, Python returns an empty result for out-of-range list slices.

When I argue for defining errors out of existence, people sometimes
counter that throwing errors will catch bugs; if errors are defined out of
existence, won’t that result in buggier software? Perhaps this is why the Java
developers decided that substring should throw exceptions. The error-ful
approach may catch some bugs, but it also increases complexity, which
results in other bugs. In the error-ful approach, developers must write
additional code to avoid or ignore the errors, and this increases the
likelihood of bugs; or, they may forget to write the additional code, in which
case unexpected errors may be thrown at runtime. In contrast, defining
errors out of existence simplifies APIs and it reduces the amount of code
that must be written.

Overall, the best way to reduce bugs is to make software simpler.

10.6 Mask exceptions
The second technique for reducing the number of places where exceptions
must be handled is exception masking. With this approach, an exceptional

condition is detected and handled at a low level in the system, so that higher
levels of software need not be aware of the condition. Exception masking is
particularly common in distributed systems. For instance, in a network
transport protocol such as TCP, packets can be dropped for various reasons
such as corruption and congestion. TCP masks packet loss by resending lost
packets within its implementation, so all data eventually gets through and
clients are unaware of the dropped packets.

A more controversial example of masking occurs in the NFS network
file system. If an NFS file server crashes or fails to respond for any reason,
clients reissue their requests to the server over and over again until the
problem is eventually resolved. The low-level file system code on the client
does not report any exceptions to the invoking application. The operation in
progress (and hence the application) just hangs until the operation can
complete successfully. If the hang lasts more than a short time, the NFS
client prints messages on the user’s console of the form <NFS server xyzzy
not responding still trying.=

NFS users often complain about the fact that their applications hang
while waiting for an NFS server to resume normal operation. Many people
have suggested that NFS should abort operations with an exception rather
than hanging. However, reporting exceptions would make things worse, not
better. There’s not much an application can do if it loses access to its files.
One possibility would be for the application to retry the file operation, but
this would still hang the application, and it’s easier to perform the retry in
one place in the NFS layer, rather than at every file system call in every
application (a compiler shouldn’t have to worry about this!). The other
alternative is for applications to abort and return errors to their callers. It’s
unlikely that the callers would know what to do either, so they would abort
as well, resulting in a collapse of the user’s working environment. Users still
wouldn’t be able to get any work done while the file server was down, and
they would have to restart all of their applications once the file server came
back to life.

Thus, the best alternative is for NFS to mask the errors and hang
applications. With this approach, applications don’t need any code to deal
with server problems, and they can resume seamlessly once the server
comes back to life. If users get tired of waiting, they can always abort
applications manually.

Exception masking doesn’t work in all situations, but it is a powerful
tool in the situations where it works. It results in deeper classes, since it
reduces the class’s interface (fewer exceptions for users to be aware of) and
adds functionality in the form of the code that masks the exception.
Exception masking is an example of pulling complexity downward.

10.7 Exception aggregation
The third technique for reducing complexity related to exceptions is
exception aggregation. The idea behind exception aggregation is to handle
many exceptions with a single piece of code; rather than writing distinct
handlers for many individual exceptions, handle them all in one place with a
single handler.

Consider how to handle missing parameters in a Web server. A Web
server implements a collection of URLs. When the server receives an
incoming URL, it dispatches to a URL-specific service method to process
that URL and generate a response. The URL contains various parameters
that are used to generate the response. Each service method will call a
lower-level method (let’s call it getParameter) to extract the parameters that
it needs from the URL. If the URL does not contain the desired parameter,
getParameter throws an exception.

When students in a software design class implemented such a server,
many of them wrapped each distinct call to getParameter in a separate
exception handler to catch NoSuchParameter exceptions, as in Figure 10.1.
This resulted in a large number of handlers, all of which did essentially the
same thing (generate an error response).

Figure 10.1: The code at the top dispatches to one of several methods in a Web server, each of which
handles a particular URL. Each of those methods (bottom) uses parameters from the incoming HTTP
request. In this figure, there is a separate exception handler for each call to getParameter; this results
in duplicated code.

A better approach is to aggregate the exceptions. Instead of catching the
exceptions in the individual service methods, let them propagate up to the
top-level dispatch method for the Web server, as in Figure 10.2. A single
handler in this method can catch all of the exceptions and generate an
appropriate error response for missing parameters.

The aggregation approach can be taken even further in the Web
example. There are many other errors besides missing parameters that can
occur while processing a Web page; for example, a parameter might not
have the right syntax (the service method expected an integer, but the value
was <xyz=), or the user might not have permission for the requested
operation. In each case, the error should result in an error response; the
errors differ only in the error message to include in the response
(<parameter 'quantity' not present in URL= or <bad value 'xyz' for 'quantity'
parameter; must be positive integer=). Thus, all conditions resulting in an
error response can be handled with a single top-level exception handler. The
error message can be generated at the time the exception is thrown and

included as a variable in the exception record; for example, getParameter
will generate the <parameter 'quantity' not present in URL= message. The
top-level handler extracts the message from the exception and incorporates
it into the error response.

Figure 10.2: This code is functionally equivalent to Figure 10.1, but exception handling has been
aggregated: a single exception handler in the dispatcher catches all of the NoSuchParameter
exceptions from all of the URL-specific methods.

The aggregation described in the preceding paragraph has good
properties from the standpoint of encapsulation and information hiding. The
top-level exception handler encapsulates knowledge about how to generate
error responses, but it knows nothing about specific errors; it just uses the
error message provided in the exception. The getParameter method
encapsulates knowledge about how to extract a parameter from a URL, and
it also knows how to describe extraction errors in a human-readable form.
These two pieces of information are closely related, so it makes sense for
them to be in the same place. However, getParameter knows nothing about
the syntax of an HTTP error response. As new functionality is added to the
Web server, new methods like getParameter may be created with their own
errors. If the new methods throw exceptions in the same way as
getParameter (by generating exceptions that inherit from the same
superclass and including an error message in each exception), they can plug

into the existing system with no other changes: the top-level handler will
automatically generate error responses for them.

This example illustrates a generally-useful design pattern for exception
handling. If a system processes a series of requests, it’s useful to define an
exception that aborts the current request, cleans up the system’s state, and
continues with the next request. The exception is caught in a single place
near the top of the system’s request-handling loop. This exception can be
thrown at any point in the processing of a request to abort the request;
different subclasses of the exception can be defined for different conditions.
Exceptions of this type should be clearly distinguished from exceptions that
are fatal to the entire system.

Exception aggregation works best if an exception propagates several
levels up the stack before it is handled; this allows more exceptions from
more methods to be handled in the same place. This is the opposite of
exception masking: masking usually works best if an exception is handled in
a low-level method. For masking, the low-level method is typically a library
method used by many other methods, so allowing the exception to propagate
would increase the number of places where it is handled. Masking and
aggregation are similar in that both approaches position an exception
handler where it can catch the most exceptions, eliminating many handlers
that would otherwise need to be created.

Another example of exception aggregation occurs in the RAMCloud
storage system for crash recovery. A RAMCloud system consists of a
collection of storage servers that keep multiple copies of each object, so the
system can recover from a variety of failures. For example, if a server
crashes and loses all of its data, RAMCloud reconstructs the lost data using
copies stored on other servers. Errors can also happen on a smaller scale; for
example, a server may discover that an individual object is corrupted.

RAMCloud does not have separate recovery mechanisms for each
different kind of error. Instead, RAMCloud <promotes= many smaller errors
into larger ones. RAMCloud could, in principle, handle a corrupted object
by restoring that one object from a backup copy. However, it doesn’t do this.
Instead, if it discovers a corrupted object it crashes the server containing the
object. RAMCloud uses this approach because crash recovery is quite
complex and this approach minimized the number of different recovery
mechanisms that had to be created. Creating a recovery mechanism for
crashed servers was unavoidable, so RAMCloud uses the same mechanism

for other kinds of recovery as well. This reduced the amount of code that
had to be written, and it also meant that server crash recovery gets invoked
more often. As a result, bugs in recovery are more likely to be discovered
and fixed.

One disadvantage of promoting a corrupted object into a server crash is
that it increases the cost of recovery considerably. This is not a problem in
RAMCloud, since object corruption is quite rare. However, error promotion
may not make sense for errors that happen frequently. As one example, it
would not be practical to crash a server anytime one of its network packets
is lost.

One way of thinking about exception aggregation is that it replaces
several special-purpose mechanisms, each tailored for a particular situation,
with a single general-purpose mechanism that can handle multiple
situations. This provides another illustration of the benefits of general-
purpose mechanisms.

10.8 Just crash?
The fourth technique for reducing complexity related to exception handling
is to crash the application. In most applications there will be certain errors
that are not worth trying to handle. Typically, these errors are difficult or
impossible to handle and don’t occur very often. The simplest thing to do in
response to these errors is to print diagnostic information and then abort the
application.

One example is <out of memory= errors that occur during storage
allocation. Consider the malloc function in C, which returns NULL if it
cannot allocate the desired block of memory. This is an unfortunate
behavior, because it assumes that every single caller of malloc will check
the return value and take appropriate action if there is no memory.
Applications contain numerous calls to malloc, so checking the result after
each call would add significant complexity. If a programmer forgets the
check (which is fairly likely), then the application will dereference a null
pointer if memory runs out, resulting in a crash that camouflages the real
problem.

Furthermore, there isn’t much an application can do when it discovers
that memory is exhausted. In principle the application could look for
unneeded memory to free, but if the application had unneeded memory it

could already have freed it, which would have prevented the out-of-memory
error in the first place. Today’s systems have so much memory that memory
almost never runs out; if it does, it usually indicates a bug in the application.
Thus, it rarely make sense to try to handle out-of-memory errors; this
creates too much complexity for too little benefit.

A better approach is to define a new method ckalloc, which calls malloc,
checks the result, and aborts the application with an error message if
memory is exhausted. The application never invokes malloc directly; it
always invokes ckalloc.

In newer languages such as C++ and Java, the new operator throws an
exception if memory is exhausted. There’s not much point in catching this
exception, since there’s a good chance that the exception handler will also
try to allocate memory, which will also fail. Dynamically allocated memory
is such a fundamental element of any modern application that it doesn’t
make sense for the application to continue if memory is exhausted; it’s
better to crash as soon as the error is detected.

There are many other examples of errors where crashing the application
makes sense. For most programs, if an I/O error occurs while reading or
writing an open file (such as a disk hard error), or if a network socket
cannot be opened, there’s not much the application can do to recover, so
aborting with a clear error message is a sensible approach. These errors are
infrequent, so they are unlikely to affect the overall usability of the
application. Aborting with an error message is also appropriate if an
application encounters an internal error such as an inconsistent data
structure. Conditions like this probably indicate bugs in the program.

Whether or not it is acceptable to crash on a particular error depends on
the application. For a replicated storage system, it isn’t appropriate to abort
on an I/O error. Instead, the system must use replicated data to recover any
information that was lost. The recovery mechanisms will add considerable
complexity to the program, but recovering lost data is an essential part of
the value the system provides to its users.

10.9 Taking it too far
Defining away exceptions, or masking them inside a module, only makes
sense if the exception information isn’t needed outside the module. This was
true for the examples in this chapter, such the Tcl unset command and the

Java substring method; in the rare situations where a caller cares about the
special cases detected by the exceptions, there are other ways for it to get
this information.

However, it is possible to take this idea too far. In a module for network
communication, a student team masked all network exceptions: if a network
error occurred, the module caught it, discarded it, and continued as if there
were no problem. This meant that applications using the module had no way
to find out if messages were lost or a peer server failed; without this
information, it was impossible to build robust applications. In this case, it is
essential for the module to expose the exceptions, even though they add
complexity to the module’s interface.

With exceptions, as with many other areas in software design, you must
determine what is important and what is not important. Things that are not
important should be hidden, and the more of them the better. But when
something is important, it must be exposed (Chapter 21 will address this
topic in more detail).

10.10 Conclusion
Special cases of any form make code harder to understand and increase the
likelihood of bugs. This chapter focused on exceptions, which are one of the
most significant sources of special-case code, and discussed how to reduce
the number of places where exceptions must be handled. The best way to do
this is by redefining semantics to eliminate error conditions. For exceptions
that can’t be defined away, you should look for opportunities to mask them
at a low level, so their impact is limited, or aggregate several special-case
handlers into a single more generic handler. Together, these techniques can
have a significant impact on overall system complexity.

1Ding Yuan et. al., <Simple Testing Can Prevent Most Critical Failures: An Analysis of
Production Failures in Distributed Data-Intensive Systems,= 2014 USENIX Conference on Operating
System Design and Implementation.

Chapter 11
Design it Twice

Designing software is hard, so it’s unlikely that your first thoughts about
how to structure a module or system will produce the best design. You’ll
end up with a much better result if you consider multiple options for each
major design decision: design it twice.

Suppose you are designing the class that will manage the text of a file
for a GUI text editor. The first step is to define the interface that the class
will present to the rest of the editor; rather than picking the first idea that
comes to mind, consider several possibilities. One choice is a line-oriented
interface, with operations to insert, modify, and delete whole lines of text.
Another option is an interface based on individual character insertions and
deletions. A third choice is a string-oriented interface, which operates on
arbitrary ranges of characters that may cross line boundaries. You don’t
need to pin down every feature of each alternative; it’s sufficient at this
point to sketch out a few of the most important methods.

Try to pick approaches that are radically different from each other;
you’ll learn more that way. Even if you are certain that there is only one
reasonable approach, consider a second design anyway, no matter how bad
you think it will be. It will be instructive to think about the weaknesses of
that design and contrast them with the features of other designs.

After you have roughed out the designs for the alternatives, make a list
of the pros and cons of each one. The most important consideration for an
interface is ease of use for higher level software. In the example above, both
the line-oriented interface and the character-oriented interface will require
extra work in software that uses the text class. The line-oriented interface
will require higher level software to split and join lines during partial-line
and multi-line operations such as cutting and pasting the selection. The
character-oriented interface will require loops to implement operations that

modify more than a single character. It is also worth considering other
factors:

Does one alternative have a simpler interface than another? In the text
example, all of the text interfaces are relatively simple.
Is one interface more general-purpose than another?
Does one interface enable a more efficient implementation than
another? In the text example, the character-oriented approach is likely
to be significantly slower than the others, because it requires a separate
call into the text module for each character.

Once you have compared alternative designs, you will be in a better
position to identify the best design. The best choice may be one of the
alternatives, or you may discover that you can combine features of multiple
alternatives into a new design that is better than any of the original choices.

Sometimes none of the alternatives is particularly attractive; when this
happens, see if you can come up with additional schemes. Use the problems
you identified with the original alternatives to drive the new design(s). If
you were designing the text class and considered only the line-oriented and
character-oriented approaches, you might notice that each of the alternatives
is awkward because it requires higher level software to perform additional
text manipulations. That’s a red flag: if there’s going to be a text class, it
should handle all of the text manipulation. In order to eliminate the
additional text manipulations, the text interface needs to match more closely
the operations happening in higher level software. These operations don’t
always correspond to single characters or single lines. This line of reasoning
should lead you to a range-oriented API for text, which eliminates the
problems with the earlier designs.

The design-it-twice principle can be applied at many levels in a system.
For a module, you can use this approach first to pick the interface, as
described above. Then you can apply it again when you are designing the
implementation: for the text class, you might consider implementations such
as a linked list of lines, fixed-size blocks of characters, or a <gap buffer.=
The goals will be different for the implementation than for the interface: for
the implementation, the most important things are simplicity and
performance. It’s also useful to explore multiple designs at higher levels in
the system, such as when choosing features for a user interface, or when

decomposing a system into major modules. In each case, it’s easier to
identify the best approach if you can compare a few alternatives.

Designing it twice does not need to take a lot of extra time. For a
smaller module such as a class, you may not need more than an hour or two
to consider alternatives. This is a small amount of time compared to the
days or weeks you will spend implementing the class. The initial design
experiments will probably result in a significantly better design, which will
more than pay for the time spent designing it twice. For larger modules
you’ll spend more time in the initial design explorations, but the
implementation will also take longer, and the benefits of a better design will
also be higher.

I have noticed that the design-it-twice principle is sometimes hard for
really smart people to embrace. When they are growing up, smart people
discover that their first quick idea about any problem is sufficient for a good
grade; there is no need to consider a second or third possibility. This tends
to result in bad work habits. However, as these people get older, they get
promoted into environments with harder and harder problems. Eventually,
everyone reaches a point where your first ideas are no longer good enough;
if you want to get really great results, you have to consider a second
possibility, or perhaps a third, no matter how smart you are. The design of
large software systems falls in this category: no-one is good enough to get it
right with their first try.

Unfortunately, I often see smart people who insist on implementing the
first idea that comes to mind, and this causes them to underperform their
true potential (it also makes them frustrating to work with). Perhaps they
subconsciously believe that <smart people get it right the first time,= so if
they try multiple designs it would mean they are not smart after all. This is
not the case. It isn’t that you aren’t smart; it’s that the problems are really
hard! Furthermore, that’s a good thing: it’s much more fun to work on a
difficult problem where you have to think carefully, rather than an easy
problem where you don’t have to think at all.

The design-it-twice approach not only improves your designs, but it also
improves your design skills. The process of devising and comparing
multiple approaches will teach you about the factors that make designs
better or worse. Over time, this will make it easier for you to rule out bad
designs and hone in on really great ones.

Chapter 12
Why Write Comments? The Four
Excuses

In-code documentation plays a crucial role in software design. Comments
are essential to help developers understand a system and work efficiently,
but the role of comments goes beyond this. Documentation also plays an
important role in abstraction; without comments, you can’t hide complexity.
Finally, the process of writing comments, if done correctly, will actually
improve a system’s design. Conversely, a good software design loses much
of its value if it is poorly documented.

Unfortunately, this view is not universally shared. A significant fraction
of production code contains essentially no comments. Many developers
think that comments are a waste of time; others see the value in comments,
but somehow never get around to writing them. Fortunately, many
development teams recognize the value of documentation, and it feels like
the prevalence of these teams is gradually increasing. However, even in
teams that encourage documentation, comments are often viewed as drudge
work and many developers don’t understand how to write them, so the
resulting documentation is often mediocre. Inadequate documentation
creates a huge and unnecessary drag on software development.

In this chapter I will discuss the excuses developers use to avoid writing
comments, and the reasons why comments really do matter. Chapter 13 will
then describe how to write good comments and the next few chapters after
that will discuss related issues such as choosing variable names and how to
use documentation to improve a system’s design. I hope these chapters will
convince you of three things: good comments can make a big difference in
the overall quality of software; it isn’t hard to write good comments; and
(this may be hard to believe) writing comments can actually be fun.

When developers don’t write comments, they usually justify their
behavior with one or more of the following excuses:

<Good code is self-documenting.=
<I don’t have time to write comments.=
<Comments get out of date and become misleading.=
<The comments I have seen are all worthless; why bother?=

In the sections below I will address each of these excuses in turn.

12.1 Good code is self-documenting
Some people believe that if code is written well, it is so obvious that no
comments are needed. This is a delicious myth, like a rumor that ice cream
is good for your health: we’d really like to believe it! Unfortunately, it’s
simply not true. To be sure, there are things you can do when writing code
to reduce the need for comments, such as choosing good variable names
(see Chapter 14). Nonetheless, there is still a significant amount of design
information that can’t be represented in code. For example, only a small part
of a class’s interface, such as the signatures of its methods, can be specified
formally in the code. The informal aspects of an interface, such as a high-
level description of what each method does or the meaning of its result, can
only be described in comments. There are many other examples of things
that can’t be described in the code, such as the rationale for a particular
design decision, or the conditions under which it makes sense to call a
particular method.

Some developers argue that if others want to know what a method does,
they should just read the code of the method: this will be more accurate than
any comment. It’s possible that a reader could deduce the abstract interface
of the method by reading its code, but it would be time-consuming and
painful. In addition, if you write code with the expectation that users will
read method implementations, you will try to make each method as short as
possible, so that it’s easy to read. If the method does anything nontrivial,
you will break it up into several smaller methods. This will result in a large
number of shallow methods. Furthermore, it doesn’t really make the code
easier to read: in order to understand the behavior of the top-level method,
readers will probably need to understand the behaviors of the nested

methods. For large systems it isn’t practical for users to read the code to
learn the behavior.

Moreover, comments are fundamental to abstractions. Recall from
Chapter 4 that the goal of abstractions is to hide complexity: an abstraction
is a simplified view of an entity, which preserves essential information but
omits details that can safely be ignored. If users must read the code of a
method in order to use it, then there is no abstraction: all of the
complexity of the method is exposed. Without comments, the only
abstraction of a method is its declaration, which specifies its name and the
names and types of its arguments and results. The declaration is missing too
much essential information to provide a useful abstraction by itself. For
example, a method to extract a substring might have two arguments, start
and end, indicating the range of characters to extract. From the declaration
alone, it isn’t possible to tell whether the extracted substring will include the
character indicated by end, or what happens if start > end. Comments
allow us to capture the additional information that callers need, thereby
completing the simplified view while hiding implementation details. It’s
also important that comments are written in a human language such as
English; this makes them less precise than code, but it provides more
expressive power, so we can create simple, intuitive descriptions. If you
want to use abstractions to hide complexity, comments are essential.

12.2 I don’t have time to write comments
It’s tempting to prioritize comments lower than other development tasks.
Given a choice between adding a new feature and documenting an existing
feature, it seems logical to choose the new feature. However, software
projects are almost always under time pressure, and there will always be
things that seem higher priority than writing comments. Thus, if you allow
documentation to be de-prioritized, you’ll end up with no documentation.

The counter-argument to this excuse is the investment mindset discussed
on page 15. If you want a clean software structure, which will allow you to
work efficiently over the long-term, then you must take some extra time up
front in order to create that structure. Good comments make a huge
difference in the maintainability of software, so the effort spent on them
will pay for itself quickly. Furthermore, writing comments needn’t take a lot
of time. Ask yourself how much of your development time you spend typing

in code (as opposed to designing, compiling, testing, etc.), assuming you
don’t include any comments; I doubt that the answer is more than 10%. Now
suppose that you spend as much time typing comments as typing code; this
should be a safe upper bound. With these assumptions, writing good
comments won’t add more than about 10% to your development time. The
benefits of having good documentation will quickly offset this cost.

Furthermore, many of the most important comments are those related to
abstractions, such as the top-level documentation for classes and methods.
Chapter 15 will argue that these comments should be written as part of the
design process, and that the act of writing the documentation serves as an
important design tool that improves the overall design. These comments pay
for themselves immediately.

12.3 Comments get out of date and become
misleading

Comments do sometimes get out of date, but this need not be a major
problem in practice. Keeping documentation up-to-date does not require an
enormous effort. Large changes to the documentation are only required if
there have been large changes to the code, and the code changes will take
more time than the documentation changes. Chapter 16 discusses how to
organize documentation so that it is as easy as possible to keep it updated
after code modifications (the key ideas are to avoid duplicated
documentation and keep the documentation close to the corresponding
code). Code reviews provide a great mechanism for detecting and fixing
stale comments.

12.4 All the comments I have seen are
worthless

Of the four excuses, this is probably the one with the most merit. Every
software developer has seen comments that provide no useful information,
and most existing documentation is so-so at best. Fortunately, this problem
is solvable; writing solid documentation is not hard, once you know how.
The next chapters will lay out a framework for how to write good
documentation and maintain it over time.

12.5 Bene�ts of well-written comments
Now that I have discussed (and, hopefully, debunked) the arguments against
writing comments, let’s consider the benefits that you will get from good
comments. The overall idea behind comments is to capture information
that was in the mind of the designer but couldn’t be represented in the
code. This information ranges from low-level details, such as a hardware
quirk that motivates a particularly tricky piece of code, up to high-level
concepts such as the rationale for a class. When other developers come
along later to make modifications, the comments will allow them to work
more quickly and accurately. Without documentation, future developers will
have to rederive or guess at the developer’s original knowledge; this will
take additional time, and there is a risk of bugs if the new developer
misunderstands the original designer’s intentions. Comments are valuable
even when the original designer is the one making the changes: if it has
been more than a few weeks since you last worked in a piece of code, you
will have forgotten many of the details of the original design.

Chapter 2 described three ways in which complexity manifests itself in
software systems:
Change amplification: a seemingly simple change requires code
modifications in many places.
Cognitive load: in order to make a change, the developer must accumulate
a large amount of information.
Unknown unknowns: it is unclear what code needs to be modified, or what
information must be considered in order to make those modifications.

Good documentation helps with the last two of these issues.
Documentation can reduce cognitive load by providing developers with the
information they need to make changes and by making it easy for developers
to ignore information that is irrelevant. Without adequate documentation,
developers may have to read large amounts of code to reconstruct what was
in the designer’s mind. Documentation can also reduce the unknown
unknowns by clarifying the structure of the system, so that it is clear what
information and code is relevant for any given change.

Chapter 2 pointed out that the primary causes of complexity are
dependencies and obscurity. Good documentation can clarify dependencies,
and it fills in gaps to eliminate obscurity.

The next few chapters will show you how to write good documentation.
They will also discuss how to integrate documentation-writing into the
design process so that it improves the design of your software.

12.6 A di�erent opinion: comments are
failures

In his book Clean Code, Robert Martin takes a more negative view of
comments:

... comments are, at best, a necessary evil. If our programming
languages were expressive enough, or if we had the talent to subtly
wield those languages to express our intent, we would not need
comments very much — perhaps not at all.

The proper use of comments is to compensate for our failure to
express ourselves in code.... Comments are always failures. We must
have them because we can’t always figure out how to express
ourselves without them, but their use is not a cause for celebration.

I agree that good software design can reduce the need for comments
(particularly those in method bodies). But comments do not represent
failures. The information they provide is quite different from that provided
by code, and this information can’t be represented in code today. Code and
comments are each well-suited to the things they represent and they each
provide important benefits; even if the information in comments could
somehow be captured in code, it’s unclear that this would be an
improvement.

One of the purposes of comments is to make it it unnecessary to read
the code: for example, instead of reading the entire body of a method, a
developer can read a short interface comment to get all the information they
need in order to invoke the method. Martin takes the opposite tack: he
advocates replacing comments with code. Instead of writing a comment to
explain what is happening in a block of code in a method, Martin suggests
pulling that block out into a separate method (with no comments) and using
the name of the method as a replacement for the comment. This results in
long names such as isLeastRelevantMultipleOfNextLargerPrimeFactor.
Even with all these words, names like this are cryptic and provide less

information than a well-written comment. And, with this approach,
developers end up effectively retyping the documentation for a method
every time they invoke it!

I worry that Martin’s philosophy encourages a bad attitude in
programmers, where they avoid comments so as not to seem like failures.
This could even result in good designers coming under false criticism:
<What’s wrong with your code that it requires comments?=

Well-written comments are not failures. They increase the value of code
and serve a fundamental role in defining abstractions and managing system
complexity.

Chapter 13
Comments Should Describe Things
that Aren’t Obvious from the Code

The reason for writing comments is that statements in a programming
language can’t capture all of the important information that was in the mind of
the developer when the code was written. Comments record this information
so that developers who come along later can easily understand and modify the
code. The guiding principle for comments is that comments should describe
things that aren’t obvious from the code. There are many things that aren’t
obvious from the code. Sometimes it’s low-level details that aren’t obvious. For
example, when a pair of indices describe a range, it isn’t obvious whether the
elements given by the indices are inside the range or out. Sometimes it’s not
clear why code is needed, or why it was implemented in a particular way.
Sometimes there are rules the developer followed, such as <always invoke a
before b.= You might be able to guess a rule by looking at all of the code, but
this is painful and error-prone; a comment can make the rule explicit and clear.

One of the most important reasons for comments is abstractions, which
include a lot of information that isn’t obvious from the code. The idea of an
abstraction is to provide a simple way of thinking about something, but code is
so detailed that it can be hard to see the abstraction just from reading the code.
Comments can provide a simpler, higher-level view (<after this method is
invoked, network traffic will be limited to maxBandwidth bytes per second=).
Even if this information can be deduced by reading the code, we don’t want to
force users of a module to do that: reading the code is time-consuming and
forces them to consider a lot of information that isn’t needed to use the
module. Developers should be able to understand the abstraction provided
by a module without reading any code other than its externally visible
declarations. The only way to do this is by supplementing the declarations
with comments.

This chapter discusses what information needs to be described in
comments and how to write good comments. As you will see, good comments
typically explain things at a different level of detail than the code, which is
more detailed in some situations and less detailed (more abstract) in others.

13.1 Pick conventions
The first step in writing comments is to decide on conventions for
commenting, such as what you will comment and the format you will use for
comments. If you are programming in a language for which there exists a
document compilation tool, such as Javadoc for Java, Doxygen for C++, or
godoc for Go!, follow the conventions of the tools. None of these conventions
is perfect, but the tools provide enough benefits to make up for that. If you are
programming in an environment where there are no existing conventions to
follow, try to adopt the conventions from some other language or project that is
similar; this will make it easier for other developers to understand and adhere
to your conventions.

Conventions serve two purposes. First, they ensure consistency, which
makes comments easier to read and understand. Second, they help to ensure
that you actually write comments. If you don’t have a clear idea what you are
going to comment and how, it’s easy to end up writing no comments at all.

Most comments fall into one of the following categories:
Interface: a comment block that immediately precedes the declaration of a
module such as a class, data structure, function, or method. The comment
describes the module’s interface. For a class, the comment describes the
overall abstraction provided by the class. For a method or function, the
comment describes its overall behavior, its arguments and return value, if any,
any side effects or exceptions that it generates, and any other requirements the
caller must satisfy before invoking the method.
Data structure member: a comment next to the declaration of a field in a
data structure, such as an instance variable or static variable for a class.
Implementation comment: a comment inside the code of a method or
function, which describes how the code works internally.
Cross-module comment: a comment describing dependencies that cross
module boundaries.
The most important comments are those in the first two categories. Every class
should have an interface comment, every class variable should have a
comment, and every method should have an interface comment. Occasionally,

the declaration for a variable or method is so obvious that there is nothing
useful to add in a comment (getters and setters sometimes fall in this
category), but this is rare; it is easier to comment everything rather than spend
energy worrying about whether a comment is needed. Implementation
comments are often unnecessary (see Section 13.6 below). Cross-module
comments are the most rare of all and they are problematic to write, but when
they are needed they are quite important; Section 13.7 discusses them in more
detail.

13.2 Don’t repeat the code
Unfortunately, many comments are not particularly helpful. The most common
reason is that the comments repeat the code: all of the information in the
comment can easily be deduced from the code next to the comment. Here is a
code sample that appeared in a recent research paper:

ptr_copy = get_copy(obj) # Get pointer copy
if is_unlocked(ptr_copy): # Is obj free?

return obj # return current obj

if is_copy(ptr_copy): # Already a copy?

return obj # return obj

thread_id = get_thread_id(ptr_copy)
if thread_id == ctx.thread_id: # Locked by current ctx

return ptr_copy # Return copy

There is no useful information in any of these comments except for the
<Locked by= comment, which suggests something about the thread that might
not be obvious from the code. Notice that these comments are at roughly the
same level of detail as the code: there is one comment per line of code, which
describes that line. Comments like this are rarely useful.

Here are more examples of comments that repeat the code:
// Add a horizontal scroll bar
hScrollBar = new JScrollBar(JScrollBar.HORIZONTAL);
add(hScrollBar, BorderLayout.SOUTH);

// Add a vertical scroll bar
vScrollBar = new JScrollBar(JScrollBar.VERTICAL);
add(vScrollBar, BorderLayout.EAST);

// Initialize the caret-position related values
caretX = 0;
caretY = 0;
caretMemX = null;

None of these comments provide any value. For the first two comments, the
code is already clear enough that it doesn’t really need comments; in the third
case, a comment might be useful, but the current comment doesn’t provide
enough detail to be helpful.

After you have written a comment, ask yourself the following question:
could someone who has never seen the code write the comment just by
looking at the code next to the comment? If the answer is yes, as in the
examples above, then the comment doesn’t make the code any easier to
understand. Comments like these are why some people think that comments
are worthless.

Another common mistake is to use the same words in the comment that
appear in the name of the entity being documented:

/*
* Obtain a normalized resource name from REQ.
*/
private static String[] getNormalizedResourceNames(

HTTPRequest req) ...
/*
* Downcast PARAMETER to TYPE.
*/
private static Object downCastParameter(String parameter,
String type) ...
/*
* The horizontal padding of each line in the text.
*/
private static final int textHorizontalPadding = 4;

 Red Flag: Comment Repeats Code

If the information in a comment is already obvious from the code next to
the comment, then the comment isn’t helpful. One example of this is
when the comment uses the same words that make up the name of the
thing it is describing.

These comments just take the words from the method or variable name,
perhaps add a few words from argument names and types, and form them into
a sentence. For example, the only thing in the second comment that isn’t in the
code is the word <to=! Once again, these comments could be written just by

looking at the declarations, without any understanding the methods of
variables; as a result, they have no value.

At the same time, there is important information that is missing from the
comments: for example, what is a <normalized resource name=, and what are
the elements of the array returned by getNormalizedResourceNames? What
does <downcast= mean? What are the units of padding, and is the padding on
one side of each line or both? Describing these things in comments would be
helpful.

A first step towards writing good comments is to use different words in
the comment from those in the name of the entity being described. Pick
words for the comment that provide additional information about the meaning
of the entity, rather than just repeating its name. For example, here is a better
comment for textHorizontalPadding:

/*
* The amount of blank space to leave on the left and
* right sides of each line of text, in pixels.
*/
private static final int textHorizontalPadding = 4;

This comment provides additional information that is not obvious from the
declaration itself, such as the units (pixels) and the fact that padding applies to
both sides of each line. Instead of using the term <padding=, the comment
explains what padding is, in case the reader isn’t already familiar with the
term.

13.3 Lower-level comments add precision
Now that you know what not to do, let’s discuss what information you should
put in comments. Comments augment the code by providing information at
a different level of detail. Some comments provide information at a lower,
more detailed, level than the code; these comments add precision by clarifying
the exact meaning of the code. Other comments provide information at a
higher, more abstract, level than the code; these comments offer intuition, such
as the reasoning behind the code, or a simpler and more abstract way of
thinking about the code. Comments at the same level as the code are likely to
repeat the code. This section discusses the lower-level approach in more detail,
and the next section discusses the higher-level approach.

Precision is most useful when commenting variable declarations such as
class instance variables, method arguments, and return values. The name and

type in a variable declaration are typically not very precise. Comments can fill
in missing details such as:

What are the units for this variable?
Are the boundary conditions inclusive or exclusive?
If a null value is permitted, what does it imply?
If a variable refers to a resource that must eventually be freed or closed,
who is responsible for freeing or closing it?
Are there certain properties that are always true for the variable
(invariants), such as <this list always contains at least one entry=?

Some of this information could potentially be figured out by examining all
of the code where the variable is used. However, this is time-consuming and
error-prone; the declaration’s comment should be clear and complete enough
to make this unnecessary. By the way, when I say that the comment for a
declaration should describe things that aren’t obvious from the code, <the
code= refers to the code next to the comment (the declaration), not <all of the
code in the application.=

The most common problem with comments for variables is that the
comments are too vague. Here are two examples of comments that aren’t
precise enough:

// Current offset in resp Buffer
uint32_t offset;

// Contains all line-widths inside the document and
// number of appearances.
private TreeMap<Integer, Integer> lineWidths;

In the first example, it’s not clear what <current= means. In the second
example, it’s not clear that the keys in the TreeMap are line widths and values
are occurrence counts. Also, are widths measured in pixels or characters? The
revised comments below provide additional details:

// Position in this buffer of the first object that hasn’t
// been returned to the client.
uint32_t offset;

// Holds statistics about line lengths of the form <length, count>
// where length is the number of characters in a line (including
// the newline), and count is the number of lines with
// exactly that many characters. If there are no lines with
// a particular length, then there is no entry for that length.
private TreeMap<Integer, Integer> numLinesWithLength;

The second declaration uses a longer name that conveys more information. It
also changes <width= to <length=, because this term is more likely to make
people think that the units are characters rather than pixels. Notice that the
second comment documents not only the details of each entry, but also what it
means if an entry is missing.

When documenting a variable, think nouns, not verbs. In other words,
focus on what the variable represents, not how it is manipulated. Consider the
following comment:

/* FOLLOWER VARIABLE: indicator variable that allows the Receiver
and the

* PeriodicTasks thread to communicate about whether a heartbeat
has been

* received within the follower’s election timeout window.
* Toggled to TRUE when a valid heartbeat is received.
* Toggled to FALSE when the election timeout window is reset. */
private boolean receivedValidHeartbeat;

This documentation describes how the variable is modified by several pieces
of code in the class. The comment will be both shorter and more useful if it
describes what the variable represents rather than mirroring the code structure:

/* True means that a heartbeat has been received since the last
time

* the election timer was reset. Used for communication between
the

* Receiver and PeriodicTasks threads. */
private boolean receivedValidHeartbeat;

Given this documentation, it’s easy to infer that the variable must be set to true
when a heartbeat is received and false when the election timer is reset.

13.4 Higher-level comments enhance intuition
The second way in which comments can augment code is by providing
intuition. These comments are written at a higher level than the code. They
omit details and help the reader to understand the overall intent and structure
of the code. This approach is commonly used for comments inside methods
and for interface comments. For example, consider the following code:

// If there is a LOADING readRpc using the same session
// as PKHash pointed to by assignPos, and the last PKHash
// in that readRPC is smaller than current assigning
// PKHash, then we put assigning PKHash into that readRPC.
int readActiveRpcId = RPC_ID_NOT_ASSIGNED;
for (int i = 0; i < NUM_READ_RPC; i++) {
if (session == readRpc[i].session

&& readRpc[i].status == LOADING

&& readRpc[i].maxPos < assignPos

&& readRpc[i].numHashes < MAX_PKHASHES_PERRPC) {

readActiveRpcId = i;

break;

}
}

The comment is too low-level and detailed. On the one hand, it partially
repeats the code: <if there is a LOADING readRPC= just duplicates the test
readRpc[i].status == LOADING. On the other hand, the comment doesn’t
explain the overall purpose of this code, or how it fits into the method that
contains it. As a result, the comment doesn’t help the reader to understand the
code.

Here is a better comment:
// Try to append the current key hash onto an existing
// RPC to the desired server that hasn’t been sent yet.

This comment doesn’t contain any details; instead, it describes the code’s
overall function at a higher level. With this high-level information, a reader can
explain almost everything that happens in the code: the loop must be iterating
over all the existing remote procedure calls (RPCs); the session test is
probably used to see if a particular RPC is destined for the right server; the
LOADING test suggests that RPCs can have multiple states, and in some states it
isn’t safe to add more hashes; the MAX_PKHASHES_PERRPC test suggests that there
is a limit to how many hashes can be sent in a single RPC. The only thing not
explained by the comment is the maxPos test. Furthermore, the new comment
provides a basis for readers to judge the code: does it do everything that is
needed to add the key hash to an existing RPC? The original comment didn’t
describe the overall intent of the code, so it’s hard for a reader to decide
whether the code is behaving correctly.

Higher-level comments are more difficult to write than lower-level
comments because you must think about the code in a different way. Ask
yourself: What is this code trying to do? What is the simplest thing you can
say that explains everything in the code? What is the most important thing
about this code?

Engineers tend to be very detail-oriented. We love details and are good at
managing lots of them; this is essential for being a good engineer. But, great
software designers can also step back from the details and think about a system
at a higher level. This means deciding which aspects of the system are most
important, and being able to ignore the low-level details and think about the
system only in terms of its most fundamental characteristics. This is the

essence of abstraction (finding a simple way to think about a complex entity),
and it’s also what you must do when writing higher-level comments. A good
higher-level comment expresses one or a few simple ideas that provide a
conceptual framework, such as <append to an existing RPC.= Given the
framework, it becomes easy to see how specific code statements relate to the
overall goal.

Here is another code sample, which has a good higher-level comment:
if (numProcessedPKHashes < readRpc[i].numHashes) {

// Some of the key hashes couldn’t be looked up in
// this request (either because they aren’t stored
// on the server, the server crashed, or there
// wasn’t enough space in the response message).
// Mark the unprocessed hashes so they will get
// reassigned to new RPCs.
for (size_t p = removePos; p < insertPos; p++) {

if (activeRpcId[p] == i) {

if (numProcessedPKHashes > 0) {

numProcessedPKHashes--;

} else {

if (p < assignPos)

assignPos = p;

activeRpcId[p] = RPC_ID_NOT_ASSIGNED;

}

}
}

}

This comment does two things. The second sentence provides an abstract
description of what the code does. The first sentence is different: it explains
(in high level terms) why the code is executed. Comments of the form <how we
get here= are very useful for helping people to understand code. For example,
when documenting a method, it can be very helpful to describe the conditions
under which the method is most likely to be invoked (especially if the method
is only invoked in unusual situations).

13.5 Interface documentation
One of the most important roles for comments is to define abstractions. Recall
from Chapter 4 that an abstraction is a simplified view of an entity, which
preserves essential information but omits details that can safely be ignored.
Code isn’t suitable for describing abstractions; it’s too low level and it includes

implementation details that shouldn’t be visible in the abstraction. The only
way to describe an abstraction is with comments. If you want code that
presents good abstractions, you must document those abstractions with
comments.

The first step in documenting abstractions is to separate interface
comments from implementation comments. Interface comments provide
information that someone needs to know in order to use a class or method;
they define the abstraction. Implementation comments describe how a class or
method works internally in order to implement the abstraction. It’s important
to separate these two kinds of comments, so that users of an interface are not
exposed to implementation details. Furthermore, these two forms had better be
different. If interface comments must also describe the implementation,
then the class or method is shallow. This means that the act of writing
comments can provide clues about the quality of a design; Chapter 15 will
return to this idea.

The interface comment for a class provides a high-level description of the
abstraction provided by the class, such as the following:

/**
* This class implements a simple server-side interface to the

HTTP
* protocol: by using this class, an application can receive HTTP
* requests, process them, and return responses. Each instance of
* this class corresponds to a particular socket used to receive
* requests. The current implementation is single-threaded and
* processes one request at a time.
*/
public class Http {...}

This comment describes the overall capabilities of the class, without any
implementation details or even the specifics of particular methods. It also
describes what each instance of the class represents. Finally, the comments
describe the limitations of the class (it does not support concurrent access
from multiple threads), which may be important to developers contemplating
whether to use it.

The interface comment for a method includes both higher-level
information for abstraction and lower-level details for precision:

The comment usually starts with a sentence or two describing the
behavior of the method as perceived by callers; this is the higher-level
abstraction.

The comment must describe each argument and the return value (if any).
These comments must be very precise, and must describe any constraints
on argument values as well as dependencies between arguments.
If the method has any side effects, these must be documented in the
interface comment. A side effect is any consequence of the method that
affects the future behavior of the system but is not part of the result. For
example, if the method adds a value to an internal data structure, which
can be retrieved by future method calls, this is a side effect; writing to the
file system is also a side effect.
A method’s interface comment must describe any exceptions that can
emanate from the method.
If there are any preconditions that must be satisfied before a method is
invoked, these must be described (perhaps some other method must be
invoked first; for a binary search method, the list being searched must be
sorted). It is a good idea to minimize preconditions, but any that remain
must be documented.

Here is the interface comment for a method that copies data out of a
Buffer object:

/**
* Copy a range of bytes from a buffer to an external location.
*
* \param offset
* Index within the buffer of the first byte to copy.
* \param length
* Number of bytes to copy.
* \param dest
* Where to copy the bytes: must have room for at least
* length bytes.
*
* \return
* The return value is the actual number of bytes copied,
* which may be less than length if the requested range of
* bytes extends past the end of the buffer. 0 is returned
* if there is no overlap between the requested range and
* the actual buffer.
*/
uint32_t
Buffer::copy(uint32_t offset, uint32_t length, void* dest)
...

The syntax of this comment (e.g., \return) follows the conventions of
Doxygen, a program that extracts comments from C/C++ code and compiles
them into Web pages. The goal of the comment is to provide all the

information a developer needs in order to invoke the method, including how
special cases are handled (note how this method follows the advice of Chapter
10 and defines out of existence any errors associated with the range
specification). The developer should not need to read the body of the method
in order to invoke it, and the interface comment provides no information about
how the method is implemented, such as how it scans its internal data
structures to find the desired data.

For a more extended example, let’s consider a class called IndexLookup,
which is part of a distributed storage system. The storage system holds a
collection of tables, each of which contains many objects. In addition, each
table can have one or more indexes; each index provides efficient access to
objects in the table based on a particular field of the object. For example, one
index might be used to look up objects based on their name field, and another
index might be used to look up objects based on their age field. With these
indexes, applications can quickly extract all of the objects with a particular
name, or all of those with an age in a given range.

The IndexLookup class provides a convenient interface for performing
indexed lookups. Here is an example of how it might be used in an application:

query = new IndexLookup(table, index, key1, key2);
while (true) {

object = query.getNext();

if (object == NULL) {

break;

}

... process object ...
}

The application first constructs an object of type IndexLookup, providing
arguments that select a table, an index, and a range within the index (for
example, if the index is based on an age field, key1 and key2 might be
specified as 21 and 65 to select all objects with ages between those values).
Then the application calls the getNext method repeatedly. Each invocation
returns one object that falls within the desired range; once all of the matching
objects have been returned, getNext returns NULL. Because the storage
system is distributed, the implementation of this class is somewhat complex.
The objects in a table may be spread across multiple servers, and each index
may also be distributed across a different set of servers; the code in the
IndexLookup class must first communicate with all of the relevant index servers
to collect information about the objects in the range, then it must communicate
with the servers that actually store the objects in order to retrieve their values.

Now let’s consider what information needs to be included in the interface
comment for this class. For each piece of information given below, ask
yourself whether a developer needs to know that information in order to use
the class (my answers to the questions are at the end of the chapter):

1. The format of messages that the IndexLookup class sends to the servers
holding indexes and objects.

2. The comparison function used to determine whether a particular object
falls in the desired range (is comparison done using integers, floating-
point numbers, or strings?).

3. The data structure used to store indexes on servers.
4. Whether or not IndexLookup issues multiple requests to different servers

concurrently.
5. The mechanism for handling server crashes.

Here is the original version of the interface comment for the IndexLookup
class; the excerpt also includes a few lines from the class’s definition, which
are referred to in the comment:

/*
* This class implements the client side framework for index range
* lookups. It manages a single LookupIndexKeys RPC and multiple
* IndexedRead RPCs. Client side just includes "IndexLookup.h" in
* its header to use IndexLookup class. Several parameters can be

set
* in the config below:
* - The number of concurrent indexedRead RPCs
* - The max number of PKHashes a indexedRead RPC can hold at a

time
* - The size of the active PKHashes
*
* To use IndexLookup, the client creates an object of this class

by
* providing all necessary information. After construction of
* IndexLookup, client can call getNext() function to move to next
* available object. If getNext() returns NULL, it means we

reached
* the last object. Client can use getKey, getKeyLength, getValue,
* and getValueLength to get object data of current object.
*/
class IndexLookup {

...
private:

/// Max number of concurrent indexedRead RPCs
static const uint8_t NUM_READ_RPC = 10;

/// Max number of PKHashes that can be sent in one
/// indexedRead RPC
static const uint32_t MAX_PKHASHES_PERRPC = 256;
/// Max number of PKHashes that activeHashes can
/// hold at once.
static const size_t MAX_NUM_PK = (1 << LG_BUFFER_SIZE);

}

Before reading further, see if you can identify the problems with this
comment. Here are the problems that I found:

Most of the first paragraph concerns the implementation, not the
interface. As one example, users don’t need to know the names of the
particular remote procedure calls used to communicate with the servers.
The configuration parameters referred to in the second half of the first
paragraph are all private variables that are relevant only to the maintainer
of the class, not to its users. All of this implementation information
should be omitted from the comment.
The comment also includes several things that are obvious. For example,
there’s no need to tell users to include IndexLookup.h: anyone who writes
C++ code will be able to guess that this is necessary. In addition, the text
<by providing all necessary information= says nothing, so it can be
omitted.

A shorter comment for this class is sufficient (and preferable):
/*
* This class is used by client applications to make range queries
* using indexes. Each instance represents a single range query.
*
* To start a range query, a client creates an instance of this
* class. The client can then call getNext() to retrieve the

objects
* in the desired range. For each object returned by getNext(),

the
* caller can invoke getKey(), getKeyLength(), getValue(), and
* getValueLength() to get information about that object.
*/

The last paragraph of this comment is not strictly necessary, since it mostly
duplicates information in the comments for individual methods. However, it
can be helpful to have examples in the class documentation that illustrate how
its methods work together, particularly for deep classes with usage patterns
that are nonobvious. Note that the new comment does not mention NULL return
values from getNext. This comment is not intended to document every detail
of each method; it just provides high level information to help readers

understand how the methods work together and when each method might be
invoked. For details, readers can refer to the interface comments for individual
methods. This comment also does not mention server crashes; that is because
server crashes are invisible to users of this class (the system automatically
recovers from them).

 Red Flag: Implementation Documentation
Contaminates Interface

This red flag occurs when interface documentation, such as that for a
method, describes implementation details that aren’t needed in order to
use the thing being documented.

Now consider the following code, which shows the first version of the
documentation for the isReady method in IndexLookup:

/**
* Check if the next object is RESULT_READY. This function is
* implemented in a DCFT module, each execution of isReady() tries
* to make small progress, and getNext() invokes isReady() in a
* while loop, until isReady() returns true.
*
* isReady() is implemented in a rule-based approach. We check
* different rules by following a particular order, and perform
* certain actions if some rule is satisfied.
*
* \return
* True means the next Object is available. Otherwise, return
* false.
*/
bool IndexLookup::isReady() { ... }

Once again, most of this documentation, such as the reference to DCFT and
the entire second paragraph, concerns the implementation, so it doesn’t belong
here; this is one of the most common errors in interface comments. Some of
the implementation documentation is useful, but it should go inside the
method, where it will be clearly separated from interface documentation. In
addition, the first sentence of the documentation is cryptic (what does
RESULT_READY mean?) and some important information is missing. Finally, it
isn’t necessary to describe the implementation of getNext here. Here is a better
version of the comment:

/*
* Indicates whether an indexed read has made enough progress for
* getNext to return immediately without blocking. In addition,

this
* method does most of the real work for indexed reads, so it must
* be invoked (either directly, or indirectly by calling getNext)

in
* order for the indexed read to make progress.
*
* \return
* True means that the next invocation of getNext will not block
* (at least one object is available to return, or the end of the
* lookup has been reached); false means getNext may block.
*/

This version of the comment provides more precise information about what
<ready= means, and it provides the important information that this method
must eventually be invoked if the indexed retrieval is to make progress.

13.6 Implementation comments: what and
why, not how

Implementation comments are the comments that appear inside methods to
help readers understand how they work internally. Most methods are so short
and simple that they don’t need any implementation comments: given the code
and the interface comments, it’s easy to figure out how a method works.

The main goal of implementation comments is to help readers
understand what the code is doing (not how it does it). Once readers know
what the code is trying to do, it’s usually easy to understand how the code
works. For short methods, the code only does one thing, which is already
described in its interface comment, so no implementation comments are
needed. Longer methods have several blocks of code that do different things as
part of the method’s overall task. Add a comment before each of the major
blocks to provide a high-level (more abstract) description of what that block
does. Here is an example:

// Phase 1: Scan active RPCs to see if any have completed.

Comments like these help readers to navigate the code to find the parts that
matter to them. For loops, it’s helpful to have a comment before the loop that
describes what happens in each iteration:

// Each iteration of the following loop extracts one request from
// the request message, increments the corresponding object, and
// appends a response to the response message.

Notice how this comment describes the loop at a more abstract and intuitive
level; it doesn’t go into any details about how a request is extracted from the
request message or how the object is incremented. Loop comments are only
needed for longer or more complex loops, where it may not be obvious what
the loop is doing; many loops are short and simple enough that their behavior
is already obvious.

In addition to describing what the code is doing, implementation
comments are also useful to explain why. If there are tricky aspects to the code
that won’t be obvious from reading it, you should document them. For
example, if a bug fix requires the addition of code whose purpose isn’t totally
obvious, add a comment describing why the code is needed. For bug fixes
where there is a well-written bug report describing the problem, the comment
can refer to the issue in the bug tracking database rather than repeating all its
details (<Fixes RAM-436, related to device driver crashes in Linux 2.4.x=).
Developers can look in the bug database for more details (this is an example of
avoiding duplication in comments, which will be discussed in Chapter 16).

For longer methods, it can be helpful to write comments for a few of the
most important local variables. However, most local variables don’t need
documentation if they have good names. If all of the uses of a variable are
visible within a few lines of each other, it’s usually easy to understand the
variable’s purpose without a comment. In this case it’s OK to let readers read
the code to figure out the meaning of the variable. However, if the variable is
used over a large span of code, then you should consider adding a comment to
describe the variable. When documenting variables, focus on what the variable
represents, not how it is manipulated in the code.

13.7 Cross-module design decisions
In a perfect world, every important design decision would be encapsulated
within a single class. Unfortunately, real systems inevitably end up with design
decisions that affect multiple classes. For example, the design of a network
protocol will affect both the sender and the receiver, and these may be
implemented in different places. Cross-module decisions are often complex
and subtle, and they account for many bugs, so good documentation for them
is crucial.

The biggest challenge with cross-module documentation is finding a place
to put it where it will naturally be discovered by developers. Sometimes there
is an obvious central place to put such documentation. For example, the

RAMCloud storage system defines a Status value, which is returned by each
request to indicate success or failure. Adding a Status for a new error
condition requires modifying many different files (one file maps Status values
to exceptions, another provides a human-readable message for each Status,
and so on). Fortunately, there is one obvious place where developers will have
to go when adding a new status value, which is the declaration of the Status
enum. We took advantage of this by adding comments in that enum to identify
all of the other places that must also be modified:

typedef enum Status {
STATUS_OK = 0,
STATUS_UNKNOWN_TABLET = 1,
STATUS_WRONG_VERSION = 2,
...
STATUS_INDEX_DOESNT_EXIST = 29,
STATUS_INVALID_PARAMETER = 30,
STATUS_MAX_VALUE = 30,

// Note: if you add a new status value you must make the
// following additional updates:
// (1) Modify STATUS_MAX_VALUE to have a value equal to the
// largest defined status value, and make sure its

definition
// is the last one in the list. STATUS_MAX_VALUE is used
// primarily for testing.
// (2) Add new entries in the tables "messages" and "symbols"

in
// Status.cc.
// (3) Add a new exception class to ClientException.h
// (4) Add a new "case" to ClientException::throwException to

map
// from the status value to a status-specific

ClientException
// subclass.
// (5) In the Java bindings, add a static class for the

exception
// to ClientException.java
// (6) Add a case for the status of the exception to throw the
// exception in ClientException.java
// (7) Add the exception to the Status enum in Status.java,

making
// sure the status is in the correct position

corresponding to
// its status code.

}

New status values will be added at the end of the existing list, so the comments
are also placed at the end, where they are most likely to be seen.

Unfortunately, in many cases there is not an obvious central place to put
cross-module documentation. One example from the RAMCloud storage
system was the code for dealing with zombie servers, which are servers that
the system believes have crashed, but in fact are still running. Neutralizing
zombie servers required code in several different modules, and these pieces of
code all depend on each other. None of the pieces of code is an obvious central
place to put documentation. One possibility is to duplicate parts of the
documentation in each location that depends on it. However, this is awkward,
and it is difficult to keep such documentation up to date as the system evolves.
Alternatively, the documentation can be located in one of the places where it is
needed, but in this case it’s unlikely that developers will see the documentation
or know where to look for it.

I have recently been experimenting with an approach where cross-module
issues are documented in a central file called designNotes. The file is divided
up into clearly labeled sections, one for each major topic. For example, here is
an excerpt from the file:

...
Zombies

A zombie is a server that is considered dead by the rest of the
cluster; any data stored on the server has been recovered and will
be managed by other servers. However, if a zombie is not actually
dead (e.g., it was just disconnected from the other servers for a
while) two forms of inconsistency can arise:
* A zombie server must not serve read requests once replacement
servers have taken over; otherwise it may return stale data that
does not reflect writes accepted by the replacement servers.

* The zombie server must not accept write requests once
replacement servers have begun replaying its log during
recovery; if it does, these writes may be lost (the new values
may not be stored on the replacement servers and thus will not
be returned by reads).

RAMCloud uses two techniques to neutralize zombies. First,
...

Then, in any piece of code that relates to one of these issues there is a short
comment referring to the designNotes file:

// See "Zombies" in designNotes.

With this approach, there is only a single copy of the documentation and it is
relatively easy for developers to find it when they need it. However, this has
the disadvantage that the documentation is not near any of the pieces of code
that depend on it, so it may be difficult to keep up-to-date as the system
evolves.

13.8 Conclusion
The goal of comments is to ensure that the structure and behavior of the
system is obvious to readers, so they can quickly find the information they
need and make modifications to the system with confidence that they will
work. Some of this information can be represented in the code in a way that
will already be obvious to readers, but there is a significant amount of
information that can’t easily be deduced from the code. Comments fill in this
information.

When following the rule that comments should describe things that aren’t
obvious from the code, <obvious= is from the perspective of someone reading
your code for the first time (not you). When writing comments, try to put
yourself in the mindset of the reader and ask yourself what are the key things
he or she will need to know. If your code is undergoing review and a reviewer
tells you that something is not obvious, don’t argue with them; if a reader
thinks it’s not obvious, then it’s not obvious. Instead of arguing, try to
understand what they found confusing and see if you can clarify that, either
with better comments or better code.

13.9 Answers to questions from Section 13.5
Does a developer need to know each of the following pieces of information in
order to use the IndexLookup class?

1. The format of messages that the IndexLookup class sends to the servers
holding indexes and objects. No: this is an implementation detail that
should be hidden within the class.

2. The comparison function used to determine whether a particular object
falls in the desired range (is comparison done using integers, floating-
point numbers, or strings?). Yes: users of the class need to know this
information.

3. The data structure used to store indexes on servers. No: this information
should be encapsulated on the servers; not even the implementation of
IndexLookup should need to know this.

4. Whether or not IndexLookup issues multiple requests to different servers
concurrently. Possibly: if IndexLookup uses special techniques to improve
performance, then the documentation should provide some high-level
information about this, since users may care about performance.

5. The mechanism for handling server crashes. No: RAMCloud recovers
automatically from server crashes, so crashes are not visible to
application-level software; thus, there is no need to mention crashes in the
interface documentation for IndexLookup. If crashes were reflected up to
applications, then the interface documentation would need to describe
how they manifest themselves (but not the details of how crash recovery
works).

Chapter 14
Choosing Names

Selecting names for variables, methods, and other entities is one of the most
underrated aspects of software design. Good names are a form of
documentation: they make code easier to understand. They reduce the need
for other documentation and make it easier to detect errors. Conversely,
poor name choices increase the complexity of code and create ambiguities
and misunderstandings that can result in bugs. Name choice is an example
of the principle that complexity is incremental. Choosing a mediocre name
for a particular variable, as opposed to the best possible name, probably
won’t have much impact on the overall complexity of a system. However,
software systems have thousands of variables; choosing good names for all
of these will have a significant impact on complexity and manageability.

14.1 Example: bad names cause bugs
Sometimes even a single poorly named variable can have severe
consequences. The most challenging bug I ever fixed came about because of
a poor name choice. In the late 1980’s and early 1990’s my graduate
students and I created a distributed operating system called Sprite. At some
point we noticed that files would occasionally lose data: one of the data
blocks suddenly became all zeroes, even though the file had not been
modified by a user. The problem didn’t happen very often, so it was
exceptionally difficult to track down. A few of the graduate students tried to
find the bug, but they were unable to make progress and eventually gave up.
However, I consider any unsolved bug to be an intolerable personal insult,
so I decided to track it down.

It took six months, but I eventually found and fixed the bug. The
problem was actually quite simple (as are most bugs, once you figure them
out). The file system code used the variable name block for two different

purposes. In some situations, block referred to a physical block number on
disk; in other situations, block referred to a logical block number within a
file. Unfortunately, at one point in the code there was a block variable
containing a logical block number, but it was accidentally used in a context
where a physical block number was needed; as a result, an unrelated block
on disk got overwritten with zeroes.

While tracking down the bug, several people, including myself, read
over the faulty code, but we never noticed the problem. When we saw the
variable block used as a physical block number, we reflexively assumed that
it really held a physical block number. It took a long process of
instrumentation, which eventually showed that the corruption must be
happening in a particular statement, before I was able to get past the mental
block created by the name and check to see exactly where its value came
from. If different variable names had been used for the different kinds of
blocks, such as fileBlock and diskBlock, it’s unlikely that the error would
have happened; the programmer would have known that fileBlock couldn’t
be used in that situation. Even better would be to define distinct types for
the two different kinds of blocks, so that they cannot possibly be
interchanged.

Unfortunately, most developers don’t spend much time thinking about
names. They tend to use the first name that comes to mind, as long as it’s
reasonably close to matching the thing it names. For example, block is a
pretty close match for both a physical block on disk and a logical block
within a file; it’s certainly not a horrible name. Even so, it resulted in a huge
expenditure of time to track down a subtle bug. Thus, you shouldn’t settle
for names that are just <reasonably close=. Take a bit of extra time to choose
great names, which are precise, unambiguous, and intuitive. The extra
attention will pay for itself quickly, and over time you’ll learn to choose
good names quickly.

14.2 Create an image
When choosing a name, the goal is to create an image in the mind of the
reader about the nature of the thing being named. A good name conveys a
lot of information about what the underlying entity is, and, just as
important, what it is not. When considering a particular name, ask yourself:
<If someone sees this name in isolation, without seeing its declaration, its

documentation, or any code that uses the name, how closely will they be
able to guess what the name refers to? Is there some other name that will
paint a clearer picture?= Of course, there is a limit to how much information
you can put in a single name; names become unwieldy if they contain more
than two or three words. Thus, the challenge is to find just a few words that
capture the most important aspects of the entity.

Names are a form of abstraction: they provide a simplified way of
thinking about a more complex underlying entity. Like other forms of
abstraction, the best names are those that focus attention on what is most
important about the underlying entity while omitting details that are less
important.

14.3 Names should be precise
Good names have two properties: precision and consistency. Let’s start with
precision. The most common problem with names is that they are too
generic or vague; as a result, it’s hard for readers to tell what the name refers
to; the reader may assume that the name refers to something different from
reality, as in the block bug above. Consider the following method
declaration:

/**
* Returns the total number of indexlets this object is managing.
*/
int IndexletManager::getCount() {...}

The term <count= is too generic: count of what? If someone sees an
invocation of this method, they are unlikely to know what it does unless
they read its documentation. A more precise name like numActiveIndexlets
would be better: many readers will probably be able to guess what the
method returns without having to look at its documentation.

 Red Flag: Vague Name

If a variable or method name is broad enough to refer to many different
things, then it doesn’t convey much information to the developer and
the underlying entity is more likely to be misused.

Here are some other examples of names that aren’t precise enough,
taken from various student projects:

A project building a GUI text editor used the names x and y to refer to
the position of a character in the file. These names are too generic.
They could mean many things; for example, they might also represent
the coordinates (in pixels) of a character on the screen. Someone
seeing the name x in isolation is unlikely to think that it refers to the
position of a character within a line of text. The code would be clearer
if it used names such as charIndex and lineIndex, which reflect the
specific abstractions that the code implements.
Another editor project contained the following code:

// Blink state: true when cursor visible.
private boolean blinkStatus = true;

The name blinkStatus doesn’t convey enough information. The word
<status= is too vague for a boolean value: it gives no clue about what a
true or false value means. The word <blink= is also vague, since it
doesn’t indicate what is blinking. The following alternative is better:

// Controls cursor blinking: true means the cursor is
visible,
// false means the cursor is not displayed.
private boolean cursorVisible = true;

The name cursorVisible conveys more information; for example, it
allows readers to guess what a true value means (as a general rule,
names of boolean variables should always be predicates). The word
<blink= is no longer in the name, so readers will have to consult the
documentation if they want to know why the cursor isn’t always
visible; this information is less important.
A project implementing a consensus protocol contained the following
code:

// Value representing that the server has not voted (yet)
for
// anyone for the current election term.
private static final String VOTED_FOR_SENTINEL_VALUE =
"null";

The name for this value indicates that it’s special but it doesn’t say
what the special meaning is. A more specific name such as
NOT_YET_VOTED would be better.
A variable named result was used in a method with no return value.
This name has multiple problems. First, it creates the misleading

impression that it will be the return value of the method. Second, it
provides essentially no information about what it actually holds, except
that it is some computed value. The name should provide information
about what the result actually is, such as mergedLine or totalChars. In
methods that do actually have return values, then using the name
result is reasonable. This name is still a bit generic, but readers can
look at the method documentation to see its meaning, and it’s helpful
to know that the value will eventually become the return value.
The Linux kernel contains two structures describing network sockets:
struct socket and struct sock. A struct sock contains a struct
socket as its first element; it’s effectively a subclass of struct socket.
These names are so similar that it’s difficult to remember which is
which. It would be better to choose names that are easy to distinguish
and clarify the relationship between the two types, such as struct
sock_base and struct inet_sock.

Like all rules, the rule about choosing precise names has a few
exceptions. For example, it’s fine to use generic names like i and j as loop
iteration variables, as long as the loops only span a few lines of code. If you
can see the entire range of usage of a variable, then the meaning of the
variable will probably be obvious from the code so you don’t need a long
name. For example, consider the following code:

for (i = 0; i < numLines; i++) {

...
}

It’s clear from this code that i is being used to iterate over each of the lines
in some entity. If the loop gets so long that you can’t see it all at once, or if
the meaning of the iteration variable is harder to figure out from the code,
then a more descriptive name is in order.

It’s also possible for a name to be too specific, such as in this
declaration for a method that deletes a range of text:

void delete(Range selection) {...}

The argument name selection is too specific, since it suggests that the text
being deleted is the text currently selected in the user interface. However,
this method can be invoked on any range of text, selected or not. Thus, the
argument name should be more generic, such as range.

If you find it difficult to come up with a name for a particular variable
that is precise, intuitive, and not too long, this is a red flag. It suggests that

the variable may not have a clear definition or purpose. When this happens,
consider alternative factorings. For example, perhaps you are trying to use a
single variable to represent several things; if so, separating the
representation into multiple variables may result in a simpler definition for
each variable. The process of choosing good names can improve your
design by identifying weaknesses.

 Red Flag: Hard to Pick Name

If it’s hard to find a simple name for a variable or method that creates a
clear image of the underlying object, that’s a hint that the underlying
object may not have a clean design.

14.4 Use names consistently
The second important property of good names is consistency. In any
program there are certain variables that are used over and over again. For
example, a file system manipulates block numbers repeatedly. For each of
these common usages, pick a name to use for that purpose, and use the same
name everywhere. For example, a file system might always use fileBlock to
hold the index of a block within a file. Consistent naming reduces cognitive
load in much the same way as reusing a common class: once the reader has
seen the name in one context, they can reuse their knowledge and instantly
make assumptions when they see the name in a different context.

Consistency has three requirements: first, always use the common name
for the given purpose; second, never use the common name for anything
other than the given purpose; third, make sure that the purpose is narrow
enough that all variables with the name have the same behavior. This third
requirement was violated in the file system bug at the beginning of the
chapter. The file system used block for variables with two different
behaviors (file blocks and disk blocks); this led to a false assumption about
the meaning of a variable, which in turn resulted in a bug.

Sometimes you will need multiple variables that refer to the same
general sort of thing. For example, a method that copies file data will need

two block numbers, one for the source and one for the destination. When
this happens, use the common name for each variable but add a
distinguishing prefix, such as srcFileBlock and dstFileBlock.

Loops are another area where consistent naming can help. If you use
names such as i and j for loop variables, always use i in outermost loops
and j for nested loops. This allows readers to make instant (safe)
assumptions about what’s happening in the code when they see a given
name.

14.5 Avoid extra words
Every word in a name should provide useful information; words that don’t
help to clarify the variable’s meaning just add clutter (e.g. they may cause
more lines to wrap). One common mistake is to add a generic noun such as
field or object to a name, such as fileObject. In this case the word Object
probably doesn’t provide useful information (are there also files that are not
objects?), so it should be omitted from the name.

Some coding styles include type information in names, such as filePtr
for a variable that is a pointer to a file object. An extreme example of this is
Hungarian Notation, which was used for many years at Microsoft for C
programming. In Hungarian Notation, every variable name has a prefix that
indicates its full type. For example, the name arru8NumberList means that
the variable is an array of unsigned 8-bit integers. Although I have included
type information in variable names in the past, I no longer recommend it.
With modern IDEs it is easy to click from a variable name to its declaration
(or, the IDE may even display the type information automatically), so there
is no need to include this information in the variable name.

Another example of extraneous words is when an instance variable of a
class repeats the class name, such as an instance variable fileBlock in a
class named File. It should be obvious from the context that the variable is
part of the File class, so incorporating the class name in the variable name
provides no useful information. Just name the variable block (unless the
class contains multiple blocks of different types).

14.6 A di�erent opinion: Go style guide

Not everyone shares my views about naming. Some of the developers of the
Go language argue that names should be very short, often only a single
character. In a presentation on name choice for Go, Andrew Gerrand states

that <long names obscure what the code does.=1 He presents this code
sample, which uses single-letter variable names:

func RuneCount(b []byte) int {

i, n := 0, 0

for i < len(b) {

if b[i] < RuneSelf {

i++

} else {

_, size := DecodeRune(b[i:])

i += size

}

n++

}

return n
}

and argues that it is more readable than the following version, which uses
longer names:

func RuneCount(buffer []byte) int {

index, count := 0, 0

for index < len(buffer) {

if buffer[index] < RuneSelf {

index++

} else {

_, size := DecodeRune(buffer[index:])

index += size

}

count++

}

return count
}

Personally, I don’t find the second version any more difficult to read than
the first. If anything, the name count gives a slightly better clue to the
behavior of the variable than n. With the first version I ended up reading
through the code trying to figure out what n means, whereas I didn’t feel

that need with the second version. But, if n is used consistently throughout
the system to refer to counts (and nothing else), then the short name will
probably be clear to other developers.

The Go culture encourages the use of the same short name for multiple
different things: ch for character or channel, d for data, difference, or
distance, and so on. To me, ambiguous names like these are likely to result
in confusion and error, just as in the block example.

Overall, I would argue that readability must be determined by readers,
not writers. If you write code with short variable names and the people who
read it find it easy to understand, then that’s fine. If you start getting
complaints that your code is cryptic, then you should consider using longer
names (a Web search for <go language short names= will identify several
such complaints). Similarly, if I start getting complaints that long variable
names make my code harder to read, then I’ll consider using shorter ones.

Gerrand makes one comment that I agree with: <The greater the
distance between a name’s declaration and its uses, the longer the name
should be.= The earlier discussion about using loop variables named i and j
is an example of this rule.

14.7 Conclusion
Well chosen names help to make code more obvious; when someone
encounters the variable for the first time, their first guess about its behavior,
made without much thought, will be correct. Choosing good names is an
example of the investment mindset discussed in Chapter 3: if you take a
little extra time up front to select good names, it will be easier for you to
work on the code in the future. In addition, you will be less likely to
introduce bugs. Developing a skill for naming is also an investment. When
you first decide to stop settling for mediocre names, you may find it
frustrating and time-consuming to come up with good names. However, as
you get more experience you’ll find that it becomes easier; eventually, you’ll
get to the point where it takes almost no extra time to choose good names,
so you will get the benefits almost for free.

1https://talks.golang.org/2014/names.slide#1

https://talks.golang.org/2014/names.slide#1

Chapter 15
Write The Comments First
(Use Comments As Part Of The Design
Process)

Many developers put off writing documentation until the end of the
development process, after coding and unit testing are complete. This is one
of the surest ways to produce poor quality documentation. The best time to
write comments is at the beginning of the process, as you write the code.
Writing the comments first makes documentation part of the design process.
Not only does this produce better documentation, but it also produces better
designs and it makes the process of writing documentation more enjoyable.

15.1 Delayed comments are bad comments
Almost every developer I have ever met puts off writing comments. When
asked why they don’t write documentation earlier, they say that the code is
still changing. If they write documentation early, they say, they’ll have to
rewrite it when the code changes; better to wait until the code stabilizes.
However, I suspect that there is also another reason, which is that they view
documentation as drudge work; thus, they put it off as long as possible.

Unfortunately, this approach has several negative consequences. First,
delaying documentation often means that it never gets written at all. Once
you start delaying, it’s easy to delay a bit more; after all, the code will be
even more stable in a few more weeks. By the time the code has inarguably
stabilized, there is a lot of it, which means the task of writing
documentation has become huge and even less attractive. There’s never a
convenient time to stop for a few days and fill in all of the missing
comments, and it’s easy to rationalize that the best thing for the project is to

move on and fix bugs or write the next new feature. This will create even
more undocumented code.

Even if you do have the self-discipline to go back and write the
comments (and don’t fool yourself: you probably don’t), the comments
won’t be very good. By this time in the process, you have checked out
mentally. In your mind, this piece of code is done; you are eager to move on
to your next project. You know that writing comments is the right thing to
do, but it’s no fun. You just want to get through it as quickly as possible.
Thus, you make a quick pass over the code, adding just enough comments to
look respectable. By now, it’s been a while since you designed the code, so
your memories of the design process are becoming fuzzy. You look at the
code as you are writing the comments, so the comments repeat the code.
Even if you try to reconstruct the design ideas that aren’t obvious from the
code, there will be things you don’t remember. Thus, the comments are
missing some of the most important things they should describe.

15.2 Write the comments �rst
I use a different approach to writing comments, where I write the comments
at the very beginning:

For a new class, I start by writing the class interface comment.
Next, I write interface comments and signatures for the most important
public methods, but I leave the method bodies empty.
I iterate a bit over these comments until the basic structure feels about
right.
At this point I write declarations and comments for the most important
class instance variables in the class.
Finally, I fill in the bodies of the methods, adding implementation
comments as needed.
While writing method bodies, I usually discover the need for additional
methods and instance variables. For each new method I write the
interface comment before the body of the method; for instance
variables I fill in the comment at the same time that I write the variable
declaration.

When the code is done, the comments are also done. There is never a
backlog of unwritten comments.

The comments-first approach has three benefits. First, it produces better
comments. If you write the comments as you are designing the class, the
key design issues will be fresh in your mind, so it’s easy to record them. It’s
better to write the interface comment for each method before its body, so
you can focus on the method’s abstraction and interface without being
distracted by its implementation. During the coding and testing process you
will notice and fix problems with the comments. As a result, the comments
improve over the course of development.

15.3 Comments are a design tool
The second, and most important, benefit of writing the comments at the
beginning is that it improves the system design. Comments provide the only
way to fully capture abstractions, and good abstractions are fundamental to
good system design. If you write comments describing the abstractions at
the beginning, you can review and tune them before writing implementation
code. To write a good comment, you must identify the essence of a variable
or piece of code: what are the most important aspects of this thing? It’s
important to do this early in the design process; otherwise you are just
hacking code.

Comments serve as a canary in the coal mine of complexity. If a method
or variable requires a long comment, it is a red flag that you don’t have a
good abstraction. Remember from Chapter 4 that classes should be deep:
the best classes have very simple interfaces yet implement powerful
functions. The best way to judge the complexity of an interface is from the
comments that describe it. If the interface comment for a method provides
all the information needed to use the method and is also short and simple,
that indicates that the method has a simple interface. Conversely, if there’s
no way to describe a method completely without a long and complicated
comment, then the method has a complex interface. You can compare a
method’s interface comment with the implementation to get a sense of how
deep the method is: if the interface comment must describe all the major
features of the implementation, then the method is shallow. The same idea
applies to variables: if it takes a long comment to fully describe a variable,
it’s a red flag that suggests you may not have chosen the right variable

decomposition. Overall, the act of writing comments allows you to evaluate
your design decisions early, so you can discover and fix problems.

 Red Flag: Hard to Describe

The comment that describes a method or variable should be simple and
yet complete. If you find it difficult to write such a comment, that’s an
indicator that there may be a problem with the design of the thing you
are describing.

Of course, comments are only a good indicator of complexity if they are
complete and clear. If you write a method interface comment that doesn’t
provide all the information needed to invoke the method, or one that is so
cryptic that it’s hard to understand, then that comment doesn’t provide a
good measure of the method’s depth.

15.4 Early comments are fun comments
The third and final benefit of writing comments early is that it makes
comment-writing more fun. For me, one of the most enjoyable parts of
programming is the early design phase for a new class, where I’m fleshing
out the abstractions and structure for the class. Most of my comments are
written during this phase, and the comments are how I record and test the
quality of my design decisions. I’m looking for the design that can be
expressed completely and clearly in the fewest words. The simpler the
comments, the better I feel about my design, so finding simple comments is
a source of pride. If you are programming strategically, where your main
goal is a great design rather than just writing code that works, then writing
comments should be fun, since that’s how you identify the best designs.

15.5 Are early comments expensive?
Now let’s revisit the argument for delaying comments, which is that it
avoids the cost of reworking the comments as the code evolves. A simple

back-of-the-envelope calculation will show that this doesn’t save much.
First, estimate the total fraction of development time that you spend typing
in code and comments together, including time to revise code and
comments; it’s unlikely that this will be more than about 10% of all
development time. Even if half of your total code lines are comments,
writing comments probably doesn’t account for more than about 5% of your
total development time. Delaying the comments until the end will save only
a fraction of this, which isn’t very much.

Writing the comments first will mean that the abstractions will be more
stable before you start writing code. This will probably save time during
coding. In contrast, if you write the code first, the abstractions will probably
evolve as you code, which will require more code revisions than the
comments-first approach. When you consider all of these factors, it’s
possible that it might be faster overall to write the comments first.

15.6 Conclusion
If you haven’t ever tried writing the comments first, give it a try. Stick with
it long enough to get used to it. Then think about how it affects the quality
of your comments, the quality of your design, and your overall enjoyment of
software development. After you have tried this for a while, let me know
whether your experience matches mine, and why or why not.

Chapter 16
Modifying Existing Code

Chapter 1 described how software development is iterative and incremental.
A large software system develops through a series of evolutionary stages,
where each stage adds new capabilities and modifies existing modules. This
means that a system’s design is constantly evolving. It isn’t possible to
conceive the right design for a system at the outset; the design of a mature
system is determined more by changes made during the system’s evolution
than by any initial conception. Previous chapters described how to squeeze
out complexity during the initial design and implementation; this chapter
discusses how to keep complexity from creeping in as the system evolves.

16.1 Stay strategic
Chapter 3 introduced the distinction between tactical programming and
strategic programming: in tactical programming, the primary goal is to get
something working quickly, even if that results in additional complexity; in
strategic programming, the most important goal is to produce a great system
design. The tactical approach very quickly leads to a messy system design.
If you want to have a system that is easy to maintain and enhance, then
<working= isn’t a high enough standard; you have to prioritize design and
think strategically. This idea also applies when you are modifying existing
code.

Unfortunately, when developers go into existing code to make changes
such as bug fixes or new features, they don’t usually think strategically. A
typical mindset is <what is the smallest possible change I can make that
does what I need?= Sometimes developers justify this because they are not
comfortable with the code being modified; they worry that larger changes
carry a greater risk of introducing new bugs. However, this results in tactical
programming. Each one of these minimal changes introduces a few special

cases, dependencies, or other forms of complexity. As a result, the system
design gets just a bit worse, and the problems accumulate with each step in
the system’s evolution.

If you want to maintain a clean design for a system, you must take a
strategic approach when modifying existing code. Ideally, when you have
finished with each change, the system will have the structure it would
have had if you had designed it from the start with that change in mind.
To achieve this goal, you must resist the temptation to make a quick fix.
Instead, think about whether the current system design is still the best one,
in light of the desired change. If not, refactor the system so that you end up
with the best possible design. With this approach, the system design
improves with every modification.

This is also an example of the investment mindset introduced on page
15: if you invest a little extra time to refactor and improve the system design,
you’ll end up with a cleaner system. This will speed up development, and
you will recoup the effort that you invested in the refactoring. Even if your
particular change doesn’t require refactoring, you should still be on the
lookout for design imperfections that you can fix while you’re in the code.
Whenever you modify any code, try to find a way to improve the system
design at least a little bit in the process. If you’re not making the design
better, you are probably making it worse.

As discussed in Chapter 3, an investment mindset sometimes conflicts
with the realities of commercial software development. If refactoring the
system <the right way= would take three months but a quick and dirty fix
would take only two hours, you may have to take the quick and dirty
approach, particularly if you are working against a tight deadline. Or, if
refactoring the system would create incompatibilities that affect many other
people and teams, then the refactoring may not be practical.

Nonetheless, you should resist these compromises as much as possible.
Ask yourself <Is this the best I can possibly do to create a clean system
design, given my current constraints?= Perhaps there’s an alternative
approach that would be almost as clean as the 3-month refactoring but could
be done in a couple of days? Or, if you can’t afford to do a large refactoring
now, get your boss to allocate time for you to come back to it after the
current deadline. Every development organization should plan to spend a
small fraction of its total effort on cleanup and refactoring; this work will
pay for itself over the long run.

16.2 Maintaining comments: keep the
comments near the code

When you change existing code, there’s a good chance that the changes will
invalidate some of the existing comments. It’s easy to forget to update
comments when you modify code, which results in comments that are no
longer accurate. Stale comments are frustrating to readers, and if there are
very many of them, readers begin to distrust all of the comments.
Fortunately, with a little discipline and a couple of guiding rules, it’s
possible to keep comments up-to-date without a huge effort. This section
and the following ones put forth some specific techniques.

The best way to ensure that comments get updated is to position
them close to the code they describe, so developers will see them when
they change the code. The farther a comment is from its associated code, the
less likely it is that it will be updated properly. For example, the best place
for a method’s interface comment is in the code file, right next to the body
of the method. Any changes to the method will involve this code, so the
developer is likely to see the interface comments and update them if needed.

In languages with separate code and header files, such as C and C++, an
alternative is to place interface comments next to the method’s declaration
in the .h file. However, this is a long way from the code; developers won’t
see those comments when modifying the method’s body, and it takes
additional work to open a different file and find the interface comments to
update them. Some might argue that interface comments should go in
header files so that users can learn how to use an abstraction without having
to look at the code file. However, users should not need to read either code
or header files; they should get their information from documentation
compiled by tools such as Doxygen or Javadoc. In addition, many IDEs will
extract and present documentation to users, such as by displaying a
method’s documentation when the method’s name is typed. Given tools
such as these, the documentation should be located in the place that is most
convenient for developers working on the code.

When writing implementation comments, don’t put all the comments for
an entire method at the top of the method. Spread them out, pushing each
comment down to the narrowest scope that includes all of the code referred
to by the comment. For example, if a method has three major phases, don’t
write one comment at the top of the method that describes all of the phases

in detail. Instead, write a separate comment for each phase and position that
comment just above the first line of code in that phase. On the other hand, it
can also be helpful to have a comment at the top of a method’s
implementation that describes the overall strategy, like this:

// We proceed in three phases:
// Phase 1: Find feasible candidates
// Phase 2: Assign each candidate a score
// Phase 3: Choose the best, and remove it

Additional details can be documented just above the code for each phase.
In general, the farther a comment is from the code it describes, the more

abstract it should be (this reduces the likelihood that the comment will be
invalidated by code changes).

16.3 Comments belong in the code, not the
commit log

A common mistake when modifying code is to put detailed information
about the change in the commit message for the source code repository, but
then not to document it in the code. Although commit messages can be
browsed in the future by scanning the repository’s log, a developer who
needs the information is unlikely to think of scanning the repository log.
Even if they do scan the log, it will be tedious to find the right log message.

When writing a commit message, ask yourself whether developers will
need to use that information in the future. If so, then document this
information in the code. An example is a commit message describing a
subtle problem that motivated a code change. If this isn’t documented in the
code, then a developer might come along later and undo the change without
realizing that they have re-created a bug. If you want to include a copy of
this information in the commit message as well, that’s fine, but the most
important thing is to get it in the code. This illustrates the principle of
placing documentation in the place where developers are most likely to see
it; the commit log is rarely that place.

16.4 Maintaining comments: avoid
duplication

The second technique for keeping comments up to date is to avoid
duplication. If documentation is duplicated, it is more difficult for
developers to find and update all of the relevant copies. Instead, try to
document each design decision exactly once. If there are multiple places in
the code that are affected by a particular decision, don’t repeat the
documentation at each of these points. Instead, find the most obvious single
place to put the documentation. For example, suppose there is tricky
behavior related to a variable, which affects several different places where
the variable is used. You can document that behavior in the comment next to
the variable’s declaration. This is a natural place that developers are likely to
check if they’re having trouble understanding code that uses the variable.

If there is no <obvious= single place to put a particular piece of
documentation where developers will find it, create a designNotes file as
described in Section 13.7. Or, pick the best of the available places and put
the documentation there. In addition, add short comments in the other
places that refer to the central location: <See the comment in xyz for an
explanation of the code below.= If the reference becomes obsolete because
the master comment was moved or deleted, this inconsistency will be self-
evident because developers won’t find the comment at the indicated place;
they can use revision control history to find out what happened to the
comment and then update the reference. In contrast, if the documentation is
duplicated and some of the copies don’t get updated, there will be no
indication to developers that they are using stale information.

Don’t redocument one module’s design decisions in another module. For
example, don’t put comments before a method call that explain what
happens in the called method. If readers want to know, they should look at
the interface comments for the method. Good development tools will
usually provide this information automatically, for example, by displaying
the interface comments for a method if you select the method’s name or
hover the mouse over it. Try to make it easy for developers to find
appropriate documentation, but don’t do it by repeating the documentation.

If information is already documented someplace outside your
program, don’t repeat the documentation inside the program; just
reference the external documentation. For example, if you write a class
that implements the HTTP protocol, there’s no need for you to describe the
HTTP protocol inside your code. There are already numerous sources for
this documentation on the Web; just add a short comment to your code with

a URL for one of these sources. Another example is features that are already
documented in a user manual. Suppose you are writing a program that
implements a collection of commands, with one method responsible for
implementing each command. If there is a user manual that describes those
commands, there’s no need to duplicate this information in the code.
Instead, include a short note like the following in the interface comment for
each command method:

// Implements the Foo command; see the user manual for details.

It’s important that readers can easily find all the documentation needed to
understand your code, but that doesn’t mean you have to write all of that
documentation.

16.5 Maintaining comments: check the di�s
One good way to make sure documentation stays up to date is to take a few
minutes before committing a change to your revision control system to scan
over all the changes for that commit; make sure that each change is properly
reflected in the documentation. These pre-commit scans will also detect
several other problems, such as accidentally leaving debugging code in the
system or failing to fix TODO items.

16.6 Higher-level comments are easier to
maintain

One final thought on maintaining documentation: comments are easier to
maintain if they are higher-level and more abstract than the code. These
comments do not reflect the details of the code, so they will not be affected
by minor code changes; only changes in overall behavior will affect these
comments. Of course, as discussed in Chapter 13, some comments do need
to be detailed and precise. But in general, the comments that are most useful
(they don’t simply repeat the code) are also easiest to maintain.

Chapter 17
Consistency

Consistency is a powerful tool for reducing the complexity of a system and
making its behavior more obvious. If a system is consistent, it means that
similar things are done in similar ways, and dissimilar things are done in
different ways. Consistency creates cognitive leverage: once you have
learned how something is done in one place, you can use that knowledge to
immediately understand other places that use the same approach. If a system
is not implemented in a consistent fashion, developers must learn about each
situation separately. This will take more time.

Consistency reduces mistakes. If a system is not consistent, two
situations may appear the same when in fact they are different. A developer
may see a pattern that looks familiar and make incorrect assumptions based
on previous encounters with that pattern. On the other hand, if the system is
consistent, assumptions made based on familiar-looking situations will be
safe. Consistency allows developers to work more quickly with fewer
mistakes.

17.1 Examples of consistency
Consistency can be applied at many levels in a system; here are a few
examples.
Names. Chapter 14 has already discussed the benefits of using names in a
consistent way.
Coding style. It is common nowadays for development organizations to
have style guides that restrict program structure beyond the rules enforced
by compilers. Modern style guides address a range of issues, such as
indentation, curly-brace placement, order of declarations, naming,
commenting, and restrictions on language features considered dangerous.

Style guidelines make code easier to read and can reduce some kinds of
errors.
Interfaces. An interface with multiple implementations is another example
of consistency. Once you understand one implementation of the interface,
any other implementation becomes easier to understand because you already
know the features it will have to provide.
Design patterns. Design patterns are generally-accepted solutions to certain
common problems, such as the model-view-controller approach to user
interface design. If you can use an existing design pattern to solve the
problem, the implementation will proceed more quickly, it is more likely to
work, and your code will be more obvious to readers. Design patterns are
discussed in more detail in Section 19.5.
Invariants. An invariant is a property of a variable or structure that is
always true. For example, a data structure storing lines of text might enforce
an invariant that each line is terminated by a newline character. Invariants
reduce the number of special cases that must be considered in code and
make it easier to reason about the code’s behavior.

17.2 Ensuring consistency
Consistency is hard to maintain, especially when many people work on a
project over a long time. People in one group may not know about
conventions established in another group. Newcomers don’t know the rules,
so they unintentionally violate the conventions and create new conventions
that conflict with existing ones. Here are a few tips for establishing and
maintaining consistency:
Document. Create a document that lists the most important overall
conventions, such as coding style guidelines. Place the document in a spot
where developers are likely to see it, such as a conspicuous place on the
project Wiki. Encourage new people joining the group to read the
document, and encourage existing people to review it every once in a while.
Several style guides from various organizations have been published on the
Web; consider starting with one of these.

For conventions that are more localized, such as invariants, find an
appropriate spot in the code to document them. If you don’t write the
conventions down, it’s unlikely that other people will follow them.

Enforce. Even with good documentation, it’s hard for developers to
remember all of the conventions. The best way to enforce conventions is to
write a tool that checks for violations, and make sure that code cannot be
committed to the repository unless it passes the checker. Automated
checkers work particularly well for low-level syntactic conventions.

One of my recent projects had problems with line termination
characters. Some developers worked on Unix, where lines are terminated by
newlines; others worked on Windows, where lines are normally terminated
by a carriage-return followed by a newline. If a developer on one system
made a small edit to a file previously edited on the other system, the editor
would sometimes replace all of the line terminators with ones appropriate
for that system. This gave the appearance that every line of the file had been
modified, which made it hard to track the meaningful changes. We
established a convention that files should contain newlines only, but it was
hard to ensure that every tool used by every developer followed the
convention. Every time a new developer joined the project, we would
experience a rash of line termination problems while that developer adjusted
to the convention.

We eventually solved this problem by writing a short script that was
executed automatically before changes are committed to the source code
repository. The script checks all of the files that have been modified and
aborts the commit if any of them contain carriage returns. The script can
also be run manually to repair damaged files by replacing carriage-
return/newline sequences with newlines. This instantly eliminated the
problems, and it also helped train new developers.

Code reviews provide another opportunity for enforcing conventions and
for educating new developers about the conventions. The more nit-picky
that code reviewers are, the more quickly everyone on the team will learn
the conventions, and the cleaner the code will be.
When in Rome ... The most important convention of all is that every
developer should follow the old adage <When in Rome, do as the Romans
do.= When working in a new file, look around to see how the existing code
is structured. Are all public variables and methods declared before private
ones? Are the methods in alphabetical order? Do variables use <camel
case,= as in firstServerName, or <snake case,= as in first_server_name?
When you see anything that looks like it might possibly be a convention,
follow it. When making a design decision, ask yourself if it’s likely that a

similar decision was made elsewhere in the project; if so, find an existing
example and use the same approach in your new code.
Don’t change existing conventions. Resist the urge to <improve= on
existing conventions. Having a <better idea= is not a sufficient excuse to
introduce inconsistencies. Your new idea may indeed be better, but the
value of consistency over inconsistency is almost always greater than the
value of one approach over another. Before introducing inconsistent
behavior, ask yourself two questions. First, do you have significant new
information justifying your approach that wasn’t available when the old
convention was established? Second, is the new approach so much better
that it is worth taking the time to update all of the old uses? If your
organization agrees that the answers to both questions are <yes,= then go
ahead and make the upgrade; when you are done, there should be no sign of
the old convention. However, you still run the risk that other developers will
not know about the new convention, so they may reintroduce the old
approach in the future. Overall, reconsidering established conventions is
rarely a good use of developer time.

17.3 Taking it too far
Consistency means not only that similar things should be done in similar
ways, but that dissimilar things should be done in different ways. If you
become overzealous about consistency and try to force dissimilar things into
the same approach, such as by using the same variable name for things that
are really different or using an existing design pattern for a task that doesn’t
fit the pattern, you’ll create complexity and confusion. Consistency only
provides benefits when developers have confidence that <if it looks like an
x, it really is an x.=

17.4 Conclusion
Consistency is another example of the investment mindset. It will take a bit
of extra work to ensure consistency: work to decide on conventions, work to
create automated checkers, work to look for similar situations to mimic in
new code, and work in code reviews to educate the team. The return on this
investment is that your code will be more obvious. Developers will be able

to understand the code’s behavior more quickly and accurately, and this will
allow them to work faster, with fewer bugs.

Chapter 18
Code Should be Obvious

Obscurity is one of the two main causes of complexity described in Section
2.3. Obscurity occurs when important information about a system is not
obvious to new developers. The solution to the obscurity problem is to write
code in a way that makes it obvious; this chapter discusses some of the
factors that make code more or less obvious.

If code is obvious, it means that someone can read the code quickly,
without much thought, and their first guesses about the behavior or meaning
of the code will be correct. If code is obvious, a reader doesn’t need to
spend much time or effort to gather all the information they need to work
with the code. If code is not obvious, then a reader must expend a lot of
time and energy to understand it. Not only does this reduce their efficiency,
but it also increases the likelihood of misunderstanding and bugs. Obvious
code needs fewer comments than nonobvious code.

<Obvious= is in the mind of the reader: it’s easier to notice that someone
else’s code is nonobvious than to see problems with your own code. Thus,
the best way to determine the obviousness of code is through code reviews.
If someone reading your code says it’s not obvious, then it’s not obvious, no
matter how clear it may seem to you. By trying to understand what made the
code nonobvious, you will learn how to write better code in the future.

18.1 Things that make code more obvious
Two of the most important techniques for making code obvious have already
been discussed in previous chapters. The first is choosing good names
(Chapter 14). Precise and meaningful names clarify the behavior of the code
and reduce the need for documentation. If a name is vague or ambiguous,
then readers will have to read through the code in order to deduce the
meaning of the named entity; this is time-consuming and error-prone. The

second technique is consistency (Chapter 17). If similar things are always
done in similar ways, then readers can recognize patterns they have seen
before and immediately draw (safe) conclusions without analyzing the code
in detail.

Here are a few other general-purpose techniques for making code more
obvious:
Judicious use of white space. The way code is formatted can impact how
easy it is to understand. Consider the following parameter documentation, in
which whitespace has been squeezed out:

/**
* ...
* @param numThreads The number of threads that this manager

should
* spin up in order to manage ongoing connections. The

MessageManager
* spins up at least one thread for every open connection, so

this
* should be at least equal to the number of connections you

expect
* to be open at once. This should be a multiple of that number

if
* you expect to send a lot of messages in a short amount of

time.
* @param handler Used as a callback in order to handle incoming
* messages on this MessageManager’s open connections. See
* {@code MessageHandler} and {@code handleMessage} for details.
*/

It’s hard to see where the documentation for one parameter ends and the
next begins. It’s not even obvious how many parameters there are, or what
their names are. If a little whitespace is added, the structure suddenly
becomes clear and the documentation is easier to scan:

/**
* @param numThreads
* The number of threads that this manager should spin

up in
* order to manage ongoing connections. The

MessageManager spins
* up at least one thread for every open connection, so

this
* should be at least equal to the number of connections

you
* expect to be open at once. This should be a multiple

of that

* number if you expect to send a lot of messages in a
short

* amount of time.
* @param handler
* Used as a callback in order to handle incoming

messages on
* this MessageManager’s open connections. See
* {@code MessageHandler} and {@code handleMessage} for

details.
*/

Blank lines are also useful to separate major blocks of code within a
method, such as in the following example:

void* Buffer::allocAux(size_t numBytes)
{

// Round up the length to a multiple of 8 bytes, to ensure
alignment.
uint32_t numBytes32 = (downCast<uint32_t>(numBytes) + 7) &
~0x7;
assert(numBytes32 != 0);

// If there is enough memory at firstAvailable, use that.
Work down
// from the top, because this memory is guaranteed to be
aligned
// (memory at the bottom may have been used for variable-size
chunks).
if (availableLength >= numBytes32) {

availableLength -= numBytes32;

return firstAvailable + availableLength;
}

// Next, see if there is extra space at the end of the last
chunk.
if (extraAppendBytes >= numBytes32) {

extraAppendBytes -= numBytes32;

return lastChunk->data + lastChunk->length +

extraAppendBytes;
}

// Must create a new space allocation; allocate space within
it.
uint32_t allocatedLength;
firstAvailable = getNewAllocation(numBytes32,
&allocatedLength);
availableLength = allocatedLength - numBytes32;

return firstAvailable + availableLength;
}

This approach works particularly well if the first line after each blank line is
a comment describing the next block of code: the blank lines make the
comments more visible.

White space within a statement helps to clarify the structure of the
statement. Compare the following two statements, one of which has
whitespace and one of which doesn’t:

for(int pass=1;pass>=0&&!empty;pass--) {
for (int pass = 1; pass >= 0 && !empty; pass--) {

Comments. Sometimes it isn’t possible to avoid code that is nonobvious.
When this happens, it’s important to use comments to compensate by
providing the missing information. To do this well, you must put yourself in
the position of the reader and figure out what is likely to confuse them, and
what information will clear up that confusion. The next section shows a few
examples.

18.2 Things that make code less obvious
There are many things that can make code nonobvious; this section provides
a few examples. Some of these, such as event-driven programming, are
useful in some situations, so you may end up using them anyway. When this
happens, extra documentation can help to minimize reader confusion.
Event-driven programming. In event-driven programming, an application
responds to external occurrences, such as the arrival of a network packet or
the press of a mouse button. One module is responsible for reporting
incoming events. Other parts of the application register interest in certain
events by asking the event module to invoke a given function or method
when those events occur.

Event-driven programming makes it hard to follow the flow of control.
The event handler functions are never invoked directly; they are invoked
indirectly by the event module, typically using a function pointer or
interface. Even if you find the point of invocation in the event module, it
still isn’t possible to tell which specific function will be invoked: this will
depend on which handlers were registered at runtime. Because of this, it’s
hard to reason about event-driven code or convince yourself that it works.

To compensate for this obscurity, use the interface comment for each
handler function to indicate when it is invoked, as in this example:

/**
* This method is invoked in the dispatch thread by a transport

if a
* transport-level error prevents an RPC from completing.
*/
void
Transport::RpcNotifier::failed() {
...
}

 Red Flag: Nonobvious Code

If the meaning and behavior of code cannot be understood with a quick
reading, it is a red flag. Often this means that there is important
information that is not immediately clear to someone reading the code.

Generic containers. Many languages provide generic classes for grouping
two or more items into a single object, such as Pair in Java or std::pair in
C++. These classes are tempting because they make it easy to pass around
several objects with a single variable. One of the most common uses is to
return multiple values from a method, as in this Java example:

return new Pair<Integer, Boolean>(currentTerm, false);

Unfortunately, generic containers result in nonobvious code because the
grouped elements have generic names that obscure their meaning. In the
example above, the caller must reference the two returned values with
result.getKey() and result.getValue(), which give no clue about the
actual meaning of the values.

Thus, it’s better not to use generic containers. If you need a container,
define a new class or structure that is specialized for the particular use. You
can then use meaningful names for the elements, and you can provide
additional documentation in the declaration, which is not possible with the
generic container.

This example illustrates a general rule: software should be designed
for ease of reading, not ease of writing. Generic containers are expedient
for the person writing the code, but they create confusion for all the readers
that follow. It’s better for the person writing the code to spend a few extra

minutes to define a specific container structure, so that the resulting code is
more obvious.

Different types for declaration and allocation. Consider the following
Java example:

private List<Message> incomingMessageList;
...
incomingMessageList = new ArrayList<Message>();

The variable is declared as a List, but the actual value is an ArrayList. This
code is legal, since List is a superclass of ArrayList, but it can mislead a
reader who sees the declaration but not the actual allocation. The actual
type may impact how the variable is used (ArrayLists have different
performance and thread-safety properties than other subclasses of List), so
it is better to match the declaration with the allocation.

Code that violates reader expectations. Consider the following code,
which is the main program for a Java application

public static void main(String[] args) {
...
new RaftClient(myAddress, serverAddresses);

}

Most applications exit when their main programs return, so readers are
likely to assume that will happen here. However, that is not the case. The
constructor for RaftClient creates additional threads, which continue to
operate even though the application’s main thread finishes. This behavior
should be documented in the interface comment for the RaftClient

constructor, but the behavior is nonobvious enough that it’s worth putting a
short comment at the end of main as well. The comment should indicate that
the application will continue executing in other threads. Code is most
obvious if it conforms to the conventions that readers will be expecting; if it
doesn’t, then it’s important to document the behavior so readers aren’t
confused.

18.3 Conclusion
Another way of thinking about obviousness is in terms of information. If
code is nonobvious, that usually means there is important information about
the code that the reader does not have: in the RaftClient example, the
reader might not know that the RaftClient constructor created new threads;

in the Pair example, the reader might not know that result.getKey()
returns the number of the current term.

To make code obvious, you must ensure that readers always have the
information they need to understand it. You can do this in three ways. The
best way is to reduce the amount of information that is needed, using design
techniques such as abstraction and eliminating special cases. Second, you
can take advantage of information that readers have already acquired in
other contexts (for example, by following conventions and conforming to
expectations) so readers don’t have to learn new information for your code.
Third, you can present the important information to them in the code, using
techniques such as good names and strategic comments.

Chapter 19
Software Trends

As a way of illustrating the principles discussed in this book, this chapter
considers several trends and patterns that have become popular in software
development over the last few decades. For each trend, I will describe how
that trend relates to the principles in this book and use the principles to
evaluate whether that trend provides leverage against software complexity.

19.1 Object-oriented programming and
inheritance

Object-oriented programming is one of the most important new ideas in
software development over the last 30–40 years. It introduced notions such
as classes, inheritance, private methods, and instance variables. If used
carefully, these mechanisms can help to produce better software designs.
For example, private methods and variables can be used to ensure
information hiding: no code outside a class can invoke private methods or
access private variables, so there can’t be any external dependencies on
them.

One of the key elements of object-oriented programming is inheritance.
Inheritance comes in two forms, which have different implications for
software complexity. The first form of inheritance is interface inheritance,
in which a parent class defines the signatures for one or more methods, but
does not implement the methods. Each subclass must implement the
signatures, but different subclasses can implement the same methods in
different ways. For example, the interface might define methods for
performing I/O; one subclass might implement the I/O operations for disk
files, and another subclass might implement the same operations for
network sockets.

Interface inheritance provides leverage against complexity by reusing
the same interface for multiple purposes. It allows knowledge acquired in
solving one problem (such as how to use an I/O interface to read and write
disk files) to be used to solve other problems (such as communicating over a
network socket). Another way of thinking about this is in terms of depth: the
more different implementations there are of an interface, the deeper the
interface becomes. In order for an interface to have many implementations,
it must capture the essential features of all the underlying implementations
while steering clear of the details that differ between the implementations;
this notion is at the heart of abstraction.

The second form of inheritance is implementation inheritance. In this
form, a parent class defines not only signatures for one or more methods,
but also default implementations. Subclasses can choose to inherit the
parent’s implementation of a method or override it by defining a new
method with the same signature. Without implementation inheritance, the
same method implementation might need to be duplicated in several
subclasses, which would create dependencies between those subclasses
(modifications would need to be duplicated in all copies of the method).
Thus, implementation inheritance reduces the amount of code that needs to
be modified as the system evolves; in other words, it reduces the change
amplification problem described in Chapter 2.

However, implementation inheritance creates dependencies between the
parent class and each of its subclasses. Class instance variables in the parent
class are often accessed by both the parent and child classes; this results in
information leakage between the classes in the inheritance hierarchy and
makes it hard to modify one class in the hierarchy without looking at the
others. For example, a developer making changes to the parent class may
need to examine all of the subclasses to ensure that the changes don’t break
anything. Similarly, if a subclass overrides a method in the parent class, the
developer of the subclass may need to examine the implementation in the
parent. In the worst case, programmers will need complete knowledge of the
entire class hierarchy underneath the parent class in order to make changes
to any of the classes. Class hierarchies that use implementation inheritance
extensively tend to have high complexity.

Thus, implementation inheritance should be used with caution. Before
using implementation inheritance, consider whether an approach based on
composition can provide the same benefits. For instance, it may be possible

to use small helper classes to implement the shared functionality. Rather
than inheriting functions from a parent, the original classes can each build
upon the features of the helper classes.

If there is no viable alternative to implementation inheritance, try to
separate the state managed by the parent class from that managed by
subclasses. One way to do this is for certain instance variables to be
managed entirely by methods in the parent class, with subclasses using them
only in a read-only fashion or through other methods in the parent class.
This applies the notion of information hiding within the class hierarchy to
reduce dependencies.

Although the mechanisms provided by object-oriented programming
can assist in implementing clean designs, they do not, by themselves,
guarantee good design. For example, if classes are shallow, or have complex
interfaces, or permit external access to their internal state, then they will
still result in high complexity.

19.2 Agile development
Agile development is an approach to software development that emerged in
the late 1990’s from a collection of ideas about how to make software
development more lightweight, flexible, and incremental; it was formally
defined during a meeting of practitioners in 2001. Agile development is
mostly about the process of software development (organizing teams,
managing schedules, the role of unit testing, interacting with customers,
etc.) as opposed to software design. Nonetheless, it relates to some of the
design principles in this book.

One of the most important elements of agile development is the notion
that development should be incremental and iterative. In the agile approach,
a software system is developed in a series of iterations, each of which adds
and evaluates a few new features; each iteration includes design, test, and
customer input. This is similar to the incremental approach advocated here.
As mentioned in Chapter 1, it isn’t possible to visualize a complex system
well enough at the outset of a project to determine the best design. The best
way to end up with a good design is to develop a system in increments,
where each increment adds a few new abstractions and refactors existing
abstractions based on experience. This is similar to the agile development
approach.

One of the risks of agile development is that it can lead to tactical
programming. Agile development tends to focus developers on features, not
abstractions, and it encourages developers to put off design decisions in
order to produce working software as soon as possible. For example, some
agile practitioners argue that you shouldn’t implement general-purpose
mechanisms right away; implement a minimal special-purpose mechanism
to start with, and refactor into something more generic later, once you know
that it’s needed. Although these arguments make sense to a degree, they
argue against an investment approach, and they encourage a more tactical
style of programming. This can result in a rapid accumulation of
complexity.

Developing incrementally is generally a good idea, but the increments
of development should be abstractions, not features. It’s fine to put off
all thoughts about a particular abstraction until it’s needed by a feature.
Once you need the abstraction, invest the time to design it cleanly; follow
the advice of Chapter 6 and make it somewhat general-purpose.

19.3 Unit tests
It used to be that developers rarely wrote tests. If tests were written at all,
they were written by a separate QA team. However, one of the tenets of
agile development is that testing should be tightly integrated with
development, and programmers should write tests for their own code. This
practice has now become widespread. Tests are typically divided into two
kinds: unit tests and system tests. Unit tests are the ones most often written
by developers. They are small and focused: each test usually validates a
small section of code in a single method. Unit tests can be run in isolation,
without setting up a production environment for the system. Unit tests are
often run in conjunction with a test coverage tool to ensure that every line of
code in the application is tested. Whenever developers write new code or
modify existing code, they are responsible for updating the unit tests to
maintain proper test coverage.

The second kind of test consists of system tests (sometimes called
integration tests), which ensure that the different parts of an application all
work together properly. They typically involve running the entire application
under conditions similar to production. System tests are more likely to be
written by a separate QA or testing team.

Tests, particularly unit tests, play an important role in software design
because they facilitate refactoring. Without a test suite, it’s dangerous to
make major structural changes to a system. There’s no easy way to find
bugs, so it’s likely that bugs will go undetected until the new code is
deployed, where they are much more expensive to find and fix. As a result,
developers avoid refactoring in systems without good test suites; they try to
minimize the number of code changes for each new feature or bug fix,
which means that complexity accumulates and design mistakes don’t get
corrected. With a good set of tests, developers can be more confident when
refactoring because the test suite will find most bugs that are introduced.
This encourages developers to make structural improvements to a system,
which results in a better design.

Unit tests are particularly valuable: they provide a higher degree of code
coverage than system tests, so they are more likely to uncover any bugs.

For example, during the development of the Tcl scripting language, we
decided to improve performance by replacing Tcl’s interpreter with a byte-
code compiler. This was a huge change that affected almost every part of the
core Tcl engine. Fortunately, Tcl had an excellent unit test suite, which we
ran on the new byte-code engine. The existing tests were so effective in
uncovering bugs in the new engine that only a single bug turned up after the
alpha release of the byte-code compiler.

19.4 Test-driven development
Test-driven development is an approach to software development where
programmers write unit tests before they write code. When creating a new
class, the developer first writes unit tests for the class, based on its expected
behavior. None of the tests pass, since there is no code for the class. Then
the developer works through the tests one at a time, writing enough code for
that test to pass. When all of the tests pass, the class is finished.

Although I am a strong advocate of unit testing, I am not a fan of test-
driven development. The problem with test-driven development is that it
focuses attention on getting specific features working, rather than
finding the best design. This is tactical programming pure and simple, with
all of its disadvantages. Test-driven development is too incremental: at any
point in time, it’s tempting to just hack in the next feature to make the next

test pass. There’s no obvious time to do design, so it’s easy to end up with a
mess.

As mentioned in Section 19.2, the units of development should be
abstractions, not features. Once you discover the need for an abstraction,
don’t create the abstraction in pieces over time; design it all at once (or at
least enough to provide a reasonably comprehensive set of core functions).
This is more likely to produce a clean design whose pieces fit together well.

One place where it makes sense to write the tests first is when fixing
bugs. Before fixing a bug, write a unit test that fails because of the bug.
Then fix the bug and make sure that the unit test now passes. This is the
best way to make sure you really have fixed the bug. If you fix the bug
before writing the test, it’s possible that the new unit test doesn’t actually
trigger the bug, in which case it won’t tell you whether you really fixed the
problem.

19.5 Design patterns
A design pattern is a commonly used approach for solving a particular kind
of problem, such as an iterator or an observer. The notion of design patterns
was popularized by the book Design Patterns: Elements of Reusable Object-
Oriented Software by Gamma, Helm, Johnson, and Vlissides, and design
patterns are now widely used in object-oriented software development.

Design patterns represent an alternative to design: rather than designing
a new mechanism from scratch, just apply a well-known design pattern. For
the most part, this is good: design patterns arose because they solve
common problems, and because they are generally agreed to provide clean
solutions. If a design pattern works well in a particular situation, it will
probably be hard for you to come up with a different approach that is better.

The greatest risk with design patterns is over-application. Not every
problem can be solved cleanly with an existing design pattern; don’t try to
force a problem into a design pattern when a custom approach will be
cleaner. Using design patterns doesn’t automatically improve a software
system; it only does so if the design patterns fit. As with many ideas in
software design, the notion that design patterns are good doesn’t necessarily
mean that more design patterns are better.

19.6 Getters and setters
In the Java programming community, getter and setter methods are a
popular design pattern. A getter and a setter are associated with an instance
variable for a class. They have names like getFoo and setFoo, where Foo is
the name of the variable. The getter method returns the current value of the
variable, and the setter method modifies the value.

Getters and setters aren’t strictly necessary, since instance variables can
be made public. The argument for getters and setters is that they allow
additional functions to be performed while getting and setting, such as
updating related values when a variable changes, notifying listeners of
changes, or enforcing constraints on values. Even if these features aren’t
needed initially, they can be added later without changing the interface.

Although it may make sense to use getters and setters if you must
expose instance variables, it’s better not to expose instance variables in the
first place. Exposed instance variables mean that part of the class’s
implementation is visible externally, which violates the idea of information
hiding and increases the complexity of the class’s interface. Getters and
setters are shallow methods (typically only a single line), so they add clutter
to the class’s interface without providing much functionality. It’s better to
avoid getters and setters (or any exposure of implementation data) as much
as possible.

One of the risks of establishing a design pattern is that developers
assume the pattern is good and try to use it as much as possible. This has
led to overusage of getters and setters in Java.

19.7 Conclusion
Whenever you encounter a proposal for a new software development
paradigm, challenge it from the standpoint of complexity: does the proposal
really help to minimize complexity in large software systems? Many
proposals sound good on the surface, but if you look more deeply you will
see that some of them make complexity worse, not better.

Chapter 20
Designing for Performance

Up until this point, the discussion of software design has focused on
complexity; the goal has been to make software as simple and
understandable as possible. But what if you are working on a system that
needs to be fast? How should performance considerations affect the design
process? This chapter discusses how to achieve high performance without
sacrificing clean design. The most important idea is still simplicity: not only
does simplicity improve a system’s design, but it usually makes systems
faster.

20.1 How to think about performance
The first question to address is <how much should you worry about
performance during the normal development process?= If you try to
optimize every statement for maximum speed, it will slow down
development and create a lot of unnecessary complexity. Furthermore, many
of the <optimizations= won’t actually help performance. On the other hand,
if you completely ignore performance issues, it’s easy to end up with a large
number of significant inefficiencies spread throughout the code; the
resulting system can easily be 5–10x slower than it needs to be. In this
<death by a thousand cuts= scenario it’s hard to come back later and improve
the performance, because there is no single improvement that will have
much impact.

The best approach is something between these extremes, where you use
basic knowledge of performance to choose design alternatives that are
<naturally efficient= yet also clean and simple. The key is to develop an
awareness of which operations are fundamentally expensive. Here are a few
examples of operations that are relatively expensive today:

Network communication: even within a datacenter, a round-trip
message exchange can take 10–50 µs, which is tens of thousands of
instruction times. Wide-area round-trips can take 10–100 ms.
I/O to secondary storage: disk I/O operations typically take 5–10 ms,
which is millions of instruction times. Flash storage takes 10–100 µs.
New emerging nonvolatile memories may be as fast as 1 µs, but this is
still around 2000 instruction times.
Dynamic memory allocation (malloc in C, new in C++ or Java)
typically involves significant overhead for allocation, freeing, and
garbage collection.
Cache misses: fetching data from DRAM into an on-chip processor
cache takes a few hundred instruction times; in many programs, overall
performance is determined as much by cache misses as by
computational costs.

The best way to learn which things are expensive is to run micro-
benchmarks (small programs that measure the cost of a single operation in
isolation). In the RAMCloud project, we created a simple program that
provides a framework for micro-benchmarks. It took a few days to create the
framework, but the framework makes it possible to add new micro-
benchmarks in five or ten minutes. This has allowed us to accumulate
dozens of micro-benchmarks. We use these both to understand the
performance of existing libraries used in RAMCloud, and also to measure
the performance of new classes written for RAMCloud.

Once you have a general sense for what is expensive and what is cheap,
you can use that information to choose cheap operations whenever possible.
In many cases, a more efficient approach will be just as simple as a slower
approach. For example, when storing a large collection of objects that will
be looked up using a key value, you could use either a hash table or an
ordered map. Both are commonly available in library packages, and both are
simple and clean to use. However, hash tables can easily be 5–10x faster.
Thus, you should use a hash table unless you need the ordering properties
provided by the map.

As another example, consider allocating an array of structures in a
language such as C or C++. There are two ways you can do this. One way is
for the array to hold pointers to structures, in which case you must first
allocate space for the array, then allocate space for each individual structure.

It is much more efficient to store the structures in the array itself, so you
only allocate one large block for everything.

If the only way to improve efficiency is by adding complexity, then the
choice is more difficult. If the more efficient design adds only a small
amount of complexity, and if the complexity is hidden, so it doesn’t affect
any interfaces, then it may be worthwhile (but beware: complexity is
incremental). If the faster design adds a lot of implementation complexity,
or if it results in more complicated interfaces, then it may be better to start
off with the simpler approach and optimize later if performance turns out to
be a problem. However, if you have clear evidence that performance will be
important in a particular situation, then you might as well implement the
faster approach immediately.

In the RAMCloud project one of our overall goals was to provide the
lowest possible latency for client machines accessing the storage system
over a datacenter network. As a result, we decided to use special hardware
for networking, which allowed RAMCloud to bypass the kernel and
communicate directly with the network interface controller to send and
receive packets. We made this decision even though it added complexity,
because we knew from prior measurements that kernel-based networking
would be too slow to meet our needs. In most of the rest of the RAMCloud
system we were able to design for simplicity; getting this one big issue
<right= made many other things easier.

In general, simpler code tends to run faster than complex code. If you
have defined away special cases and exceptions, then no code is needed to
check for those cases and the system runs faster. Deep classes are more
efficient than shallow ones, because they get more work done for each
method call. Shallow classes result in more layer crossings, and each layer
crossing adds overhead.

20.2 Measure before (and after) modifying
But suppose that your system is still too slow, even though you have
designed it as described above. It’s tempting to rush off and start making
performance tweaks, based on your intuitions about what is slow. Don’t do
this! Programmers’ intuitions about performance are unreliable. This is true
even for experienced developers. If you start making changes based on
intuition, you’ll waste time on things that don’t actually improve

performance, and you’ll probably make the system more complicated in the
process.

Before making any changes, measure the system’s existing behavior.
This serves two purposes. First, the measurements will identify the places
where performance tuning will have the biggest impact. It isn’t sufficient
just to measure the top-level system performance. This may tell you that the
system is too slow, but it won’t tell you why. You’ll need to measure deeper
to identify in detail the factors that contribute to overall performance; the
goal is to identify a small number of very specific places where the system
is currently spending a lot of time, and where you have ideas for
improvement. The second purpose of the measurements is to provide a
baseline, so that you can re-measure performance after making your
changes to ensure that performance actually improved. If the changes didn’t
make a measurable difference in performance, then back them out (unless
they made the system simpler). There’s no point in retaining complexity
unless it provides a significant speedup.

20.3 Design around the critical path
At this point, let’s assume that you have carefully analyzed performance and
have identified a piece of code that is slow enough to affect the overall
system performance. The best way to improve its performance is with a
<fundamental= change, such as introducing a cache, or using a different
algorithmic approach (balanced tree vs. list, for instance). Our decision to
bypass the kernel for network communication in RAMCloud is an example
of a fundamental fix. If you can identify a fundamental fix, then you can
implement it using the design techniques discussed in previous chapters.

Unfortunately, situations will sometimes arise where there isn’t a
fundamental fix. This brings us to the core issue for this chapter, which is
how to redesign an existing piece of code so that it runs faster. This should
be your last resort, and it shouldn’t happen often, but there are cases where
it can make a big difference. The key idea is to design the code around the
critical path.

Start off by asking yourself what is the smallest amount of code that
must be executed to carry out the desired task in the common case.
Disregard any existing code structure. Imagine instead that you are writing a
new method that implements just the critical path, which is the minimum

amount of code that must be executed in the most common case. The
current code is probably cluttered with special cases; ignore them in this
exercise. The current code might pass through several method calls on the
critical path; imagine instead that you could put all the relevant code in a
single method. The current code may also use a variety of variables and
data structures; consider only the data needed for the critical path, and
assume whatever data structure is most convenient for the critical path. For
example, it may make sense to combine multiple variables into a single
value. Assume that you could completely redesign the system in order to
minimize the code that must be executed for the critical path. Let’s call this
code <the ideal.=

The ideal code probably clashes with your existing class structure, and it
may not be practical, but it provides a good target: this represents the
simplest and fastest that the code can ever be. The next step is to look for a
new design that comes as close as possible to the ideal while still having a
clean structure. You can apply all of the design ideas from previous chapters
of this book, but with the additional constraint of keeping the ideal code
(mostly) intact. You may have to add a bit of extra code to the ideal in order
to allow clean abstractions; for example, if the code involves a hash table
lookup, it’s OK to introduce an extra method call to a general-purpose hash
table class. In my experience it’s almost always possible to find a design
that is clean and simple, yet comes very close to the ideal.

One of the most important things that happens in this process is to
remove special cases from the critical path. When code is slow, it’s often
because it must handle a variety of situations, and the code gets structured
to simplify the handling of all the different cases. Each special case adds a
little bit of code to the critical path, in the form of extra conditional
statements and/or method calls. Each of these additions makes the code a bit
slower. When redesigning for performance, try to minimize the number of
special cases you must check. Ideally, there will be a single if statement at
the beginning, which detects all special cases with one test. In the normal
case, only this one test will need to be made, after which the critical path
can be executed with no additional tests for special cases. If the initial test
fails (which means a special case has occurred) the code can branch to a
separate place off the critical path to handle it. Performance isn’t as
important for special cases, so you can structure the special-case code for
simplicity rather than performance.

20.4 An example: RAMCloud Bu�ers
Let’s consider an example, in which the Buffer class of the RAMCloud
storage system was optimized to achieve a speedup of about 2x for the most
common operations.

RAMCloud uses Buffer objects to manage variable-length arrays of
memory, such as request and response messages for remote procedure calls.
Buffers are designed to reduce overheads from memory copying and
dynamic storage allocation. A Buffer stores what appears to be a linear
array of bytes, but for efficiency it allows the underlying storage to be
divided into multiple discontiguous chunks of memory, as shown in Figure
20.1. A Buffer is created by appending chunks of data. Each chunk is either
external or internal. If a chunk is external, its storage is owned by the caller;
the Buffer keeps a reference to this storage. External chunks are typically
used for large chunks in order to avoid memory copies. If a chunk is
internal, the Buffer owns the storage for the chunk; data supplied by the
caller is copied into the Buffer’s internal storage.

Figure 20.1: A Buffer object uses a collection of memory chunks to store what appears to be a linear
array of bytes. Internal chunks are owned by the Buffer and freed when the Buffer is destroyed;
external chunks are not owned by the Buffer.

Each Buffer contains a small built-in allocation, which is a block of
memory available for storing internal chunks. If this space is exhausted,
then the Buffer creates additional allocations, which must be freed when the
Buffer is destroyed. Internal chunks are convenient for small chunks where
the memory copying costs are negligible. Figure 20.1 shows a Buffer with 5

chunks: the first chunk is internal, the next two are external, and the final
two chunks are internal.

The Buffer class itself represents a <fundamental fix,= in that it
eliminates expensive memory copies that would have been required without
it. For example, when assembling a response message containing a short
header and the contents of a large object in the RAMCloud storage system,
RAMCloud uses a Buffer with two chunks. The first chunk is an internal
one that contains the header; the second chunk is an external one that refers
to the object contents in the RAMCloud storage system. The response can
be collected in the Buffer without copying the large object.

Aside from the fundamental approach of allowing discontiguous
chunks, we did not attempt to optimize the code of the Buffer class in the
original implementation. Over time, however, we noticed Buffers being used
in more and more situations; for example, at least four Buffers are created
during the execution of each remote procedure call. Eventually, it became
clear that speeding up the implementation of Buffer could have a noticeable
impact on overall system performance. We decided to see if we could
improve the performance of the Buffer class.

The most common operation for Buffer is to allocate space for a small
amount of new data using an internal chunk. This happens, for example,
when creating headers for request and response messages. We decided to
use this operation as the critical path for optimization. In the simplest
possible case, the space can be allocated by enlarging the last existing chunk
in the Buffer. However, this is only possible if the last existing chunk is
internal, and if there is enough space in its allocation to accommodate the
new data. The ideal code would perform a single check to confirm that the
simple approach is possible, then it would adjust the size of the existing
chunk.

Figure 20.2 shows the original code for the critical path, which starts
with the method Buffer::alloc. In the fastest possible case, Buffer::alloc
calls Buffer:: allocateAppend, which calls
Buffer::Allocation::allocateAppend. From a performance standpoint, this
code has two problems. The first problem is that multiple special cases are
checked individually and sometimes repeatedly. First,
Buffer::allocateAppend checks to see if the Buffer currently has any
allocations. Then the code checks twice to see if the current allocation has
enough room for the new data: once in

Buffer::Allocation::allocateAppend, and again when its return value is
tested by Buffer::allocateAppend. Furthermore, rather than trying to
expand the last chunk directly, the code allocates new space without any
consideration of the last chunk. Then Buffer::alloc checks to see if the
allocated space happens to be adjacent to the last chunk, in which case it
merges the new space with the existing chunk. This results in additional
checks. Overall, this code tests 6 distinct conditions in the critical path.

The second problem with the original code is that it has too many layers,
all of which are shallow. This is both a performance problem and a design
problem. The critical path makes two additional method calls in addition to
the original invocation of Buffer::alloc. Each method call takes additional
time, and in one of these cases the result of the call must be checked by its
caller, which results in another special case to consider. Chapter 7 discussed
how abstractions should normally change as you pass from one layer to
another, but all three of the methods in Figure 20.2 have identical signatures
and they provide essentially the same abstraction; this is a red flag.
Buffer::allocateAppend is nearly a pass-though method; its only
contribution is to create a new allocation if needed. The extra layers make
the code both slower and more complicated.

To fix these problems, we refactored the Buffer class so that its design is
centered around the most performance-critical paths. We considered not just
the allocation code above but several other commonly executed paths, such
as retrieving the total number of bytes of data currently stored in a Buffer.
For each of these critical paths, we tried to identify the smallest amount of
code that must be executed in the common case. Then we designed the rest
of the class around these critical paths. We also applied the design
principles from this book to simplify the class in general. For example, we
eliminated shallow layers, created deeper internal abstractions, and reduced
the number of special cases to check. The refactored class is 20% smaller
than the original version (1476 lines of code, versus 1886 lines in the
original).

Figure 20.2: The original code for allocating new space at the end of a Buffer, using an internal
chunk.

Figure 20.3: The new code for allocating new space in an internal chunk of a Buffer.

Figure 20.3 shows the new critical path for allocating internal space in a
Buffer. The new code is not only faster, but it is also easier to read, since it
avoids shallow abstractions. The entire path is handled in a single method,
and it uses a single test to rule out all of the special cases. The new code
introduces a new instance variable, availableAppendBytes, in order to
simplify the critical path. This variable keeps track of how much unused
space is available immediately after the last chunk in the Buffer. If there is
no space available, or if the last chunk in the Buffer isn’t an internal chunk,
or if the Buffer contains no chunks at all, then availableAppendBytes is
zero; three different special cases can be checked at once, just by testing
availableAppendBytes. The code in Figure 20.3 represents the least possible
amount of code to handle the common case where space is available.

Note: the update to totalLength could have been eliminated by
recomputing the total Buffer length from the individual chunks whenever it
is needed. However, this approach would be expensive for a large Buffer
with many chunks, and fetching the total Buffer length is another common
operation. Thus, we chose to add a small amount of extra overhead to alloc
in order to ensure that the Buffer length is always immediately available.

The new code is about twice as fast as the old code: the total time to
append a 1-byte string to a Buffer using internal storage dropped from 8.8
ns to 4.75 ns. Many other Buffer operations also speeded up because of the
revisions. For example, the time to construct a new Buffer, append a small
chunk in internal storage, and destroy the Buffer dropped from 24 ns to 12
ns.

20.5 Conclusion
The most important overall lesson from this chapter is that clean design and
high performance are compatible. The Buffer class rewrite improved its
performance by a factor of 2 while simplifying its design and reducing code
size by 20%. Complicated code tends to be slow because it does extraneous
or redundant work. On the other hand, if you write clean, simple code, your
system will probably be fast enough that you don’t have to worry much
about performance in the first place. In the few cases where you do need to
optimize performance, the key is simplicity again: find the critical paths that
are most important for performance and make them as simple as possible.

Chapter 21
Decide What Matters

One of the most important elements of good software design is separating
what matters from what doesn’t matter. Structure software systems around
the things that matter. For the things that don’t matter as much, try to
minimize their impact on the rest of the system. Things that matter should
be emphasized and made more obvious; things that don’t matter should be
hidden as much as possible.

Many of the ideas in the preceding chapters have at their heart the
notion of separating what matters from what doesn’t. For example, this is
what we do when designing abstractions. The interface of a module reflects
what matters to users of that module; things that don’t matter to the
module’s users should be hidden in the implementation, where they are less
obvious. When choosing a variable name, the goal is to pick a few words
that convey the most possible information about the variable and use those
in the name; these are the aspects of the variable that matter most. If
performance really matters for a module, then the design of the module
should be structured around achieving the performance goals; in the
example of Section 20.4, this meant finding a design where the
performance-critical path had as few method calls and special-case checks
as possible, while still being clean, simple, and obvious.

21.1 How to decide what matters?
Sometimes things that are important are imposed as external constraints on
a system, such as performance in Section 20.4. More often it is up to the
designer to determine what matters. Even when there are external
constraints, the designer must figure out what matters most in achieving
those constraints.

To decide what matters, look for leverage, where the solution to one
problem also allows many other problems to be solved, or where knowing
one piece of information makes it easy to understand many other things. For
example, in the discussion of how to store text in Section 6.2, a general-
purpose interface for inserting and deleting ranges of characters could be
used to solve many problems, whereas specialized methods such as
backspace only solved a single problem. The general-purpose interface
provided more leverage. At the level of the text class interface, it didn’t
matter whether the interface was being invoked in response to the backspace
key; all that really mattered was that text needed to be deleted. An invariant
is another example of a leverage point: once you know an invariant for a
variable or structure, you can predict how that variable or structure will
behave in many different situations.

It’s easier to determine what is most important if you have multiple
options to choose among. For example, when choosing a variable name,
make a mental list of words that relate to that variable, then pick a few of
the words that convey the most information. Use those words to form the
variable name. This is an example of the <design it twice= principle.

Sometimes it may not be obvious which things matter the most; this can
be particularly hard for younger developers who don’t have much
experience. In these situations I recommend making a hypothesis: <I think
this is what matters most.= Then commit to that hypothesis, build the system
under that assumption, and see how it works out. If your hypothesis was
right, think about why it ended up being right, and what clues there might
have been that you can use in the future. If your hypothesis was wrong,
that’s still OK: think about why it ended up being wrong, and whether there
were clues that you could have used to avoid this choice. Either way, you
will learn from the experience and you will gradually make better and better
choices.

21.2 Minimize what matters
Try to make as little matter as possible: this will result in simpler systems.
For example, try to minimize the number of parameters that must be
specified to construct an object, or provide default values that reflect most
common usage. For things that do matter, try to minimize the number of
places where they matter. Information that is hidden within a module

doesn’t matter to code outside that module. If an exception can be handled
entirely at a low level in a system, then it doesn’t matter to the rest of the
system. If a configuration parameter can be computed automatically based
on system behavior (rather than exposing it for an administrator to choose
manually) then it no longer matters to administrators.

21.3 How to emphasize things that matter
Once you have identified the things that matter, you should emphasize them
in the design. One way to emphasize is with prominence: important things
should appear in places where they are more likely to be seen, such as
interface documentation, names, or parameters to heavily used methods.
Another way to emphasize is with repetition: key ideas appear over and over
again. A third way to emphasize is with centrality. The things that matter the
most should be at the heart of the system, where they determine the
structure of things around them. One example is the interface for device
drivers in operating systems; this is a central idea because hundreds or
thousands of drivers will depend on it.

Of course, the converse is also true: if an idea is more likely to be seen,
or if it appears over and over again, or if it impacts a system’s structure in
significant ways, then that idea matters.

Similarly, things that don’t matter should be de-emphasized. They
should be hidden as much as possible, they should not be encountered
frequently, and they should not impact the structure of the system.

21.4 Mistakes
In deciding what matters, there are two kinds of mistakes you can make.
The first mistake is to treat too many things as important. When this
happens, unimportant things clutter up the design, adding complexity and
increasing cognitive load. One example is methods with arguments that are
irrelevant to most callers. Another example is the Java I/O interface
discussed on page 26: it forced developers to be aware of the distinction
between buffered and unbuffered I/O, even though this distinction is almost
never important (developers almost always want buffering and don’t want to
waste time asking for it explicitly). Shallow classes are often the result of
treating too many things as important.

The second kind of mistake is to fail to recognize that something is
important. This mistake leads to situations where important information is
hidden, or important functionality is not available so developers must
continually recreate it. This kind of mistake impedes developer productivity
and leads to unknown unknowns.

21.5 Thinking more broadly
The idea of focusing on what’s most important applies in other domains
beside software design. It’s also important in technical writing: the best way
to make a document easy to read is to identify a few key concepts at the
beginning and structure the remainder of the document around them. When
discussing the details of a system, it helps to tie them back to the overall
concepts.

Focusing on what is important is also a great life philosophy: identify a
few things that matter most to you, and try to spend as much of your energy
as possible on those things. Don’t fritter away all of your time on things that
you don’t consider important or rewarding.

The phrase <good taste= describes the ability to distinguish what is
important from what isn’t important. Having good taste is an important part
of being a good software designer.

Chapter 22
Conclusion

This book is about one thing: complexity. Dealing with complexity is the
most important challenge in software design. It is what makes systems hard
to build and maintain, and it often makes them slow as well. Over the
course of the book I have tried to describe the root causes that lead to
complexity, such as dependencies and obscurity. I have discussed red flags
that can help you identify unnecessary complexity, such as information
leakage, unneeded error conditions, or names that are too generic. I have
presented some general ideas you can use to create simpler software
systems, such as striving for classes that are deep and generic, defining
errors out of existence, and separating interface documentation from
implementation documentation. And, finally, I have discussed the
investment mindset needed to produce simple designs.

The downside of all these suggestions is that they create extra work in
the early stages of a project. Furthermore, if you aren’t used to thinking
about design issues, then you will slow down even more while you learn
good design techniques. If the only thing that matters to you is making your
current code work as soon as possible, then thinking about design will seem
like drudge work that is getting in the way of your real goal.

On the other hand, if good design is an important goal for you, then the
ideas in this book should make programming more fun. Design is a
fascinating puzzle: how can a particular problem be solved with the simplest
possible structure? It’s fun to explore different approaches, and it’s a great
feeling to discover a solution that is both simple and powerful. A clean,
simple, and obvious design is a beautiful thing.

Furthermore, the investments you make in good design will pay off
quickly. The modules you defined carefully at the beginning of a project
will save you time later as you reuse them over and over. The clear
documentation that you wrote six months ago will save you time when you

return to the code to add a new feature. The time you spent honing your
design skills will also pay for itself: as your skills and experience grow, you
will find that you can produce good designs more and more quickly. Good
design doesn’t really take much longer than quick-and-dirty design, once
you know how.

The reward for being a good designer is that you get to spend a larger
fraction of your time in the design phase, which is fun. Poor designers
spend most of their time chasing bugs in complicated and brittle code. If
you improve your design skills, not only will you produce higher quality
software more quickly, but the software development process will be more
enjoyable.

Index

Note: Entries in this index, carried over verbatim from the print edition of
this title, are unlikely to correspond to the pagination of any given e-book
reader. However, entries in this index, and other terms, are easily located by
using the search feature of your e-book reader.

abstraction, 21, 171
aggregating exceptions, 84
agile development, 2, 155

change amplification, 7, 99
class interface comment, 110
classitis, 26
Clean Code, 76, 99
coding style, 143
cognitive load, 7, 43, 99
comments

as design tool, 133
benefits, 98
canary in the coal mine, 133
conventions for, 102
duplication, 140
for intuition, 107
for precision, 105
implementation, 116
interface, 110
near code, 139
obsolete, 98
procrastination, 131
repeating code, 103
role in abstraction, 101
worthless, 98
writing before code, 131

complexity
causes of, 9

definition, 5
incremental nature of, 11, 163
pulling downwards, 61, 84
symptoms, 7

composition, 154
configuration parameters, 62
conjoined methods, 74
consistency, 143, 148
context object, 57
cross-module design decisions, 117

decorator, 55
deep module, 23
defaults, 36
dependency, 9
design it twice, 91, 172
design patterns, 144, 158
designNotes file, 118, 141
device driver, 45
disk I/O, 162
dispatcher, 53
do the right thing, 36

editor text class example, 41, 56, 62, 172
event-driven programming, 150
example

linked list, 25
text editor selection, 48

examples
configuration parameters, 62
editor text class, 41, 56, 62, 91, 172
editor undo, 45
file data loss, 121
file deletion, 81
HTTP parameters, 34
HTTP response, 36
HTTP server, 32, 66
IndexLookup, 112
Java I/O, 26, 55, 67, 173
Java substring, 82
missing parameter, 84
NFS server crash, 83

non-existent selection, 48
out of memory, 88
RAMCloud Buffer, 165
RAMCloud error promotion, 87
RAMCloud Status, 117
selection/cursor, 70
Tcl unset, 80
undo, 45
Unix I/O, 23
Web site colors, 7

exception, 77
aggregation, 84
masking, 83

Facebook, 17
false abstraction, 22, 43
fence, for undo, 47
file data loss example, 121
file deletion example, 81
file descriptor, 24
flash storage, 162

garbage collection, 162
general-purpose class, 40, 72
general-purpose code, 45, 68
generic containers, 151
getter, 158
global variable, 57
Go language, 127

short names in, 127
Google, 18

HTTP parameters example, 34
HTTP response example, 36
HTTP server example, 32, 66
Hungarian notation, 127

implementation, 20, 56
implementation documentation, 116
implementation inheritance, 154
incremental development, 2, 40
IndexLookup example, 112
information hiding, 29

information leakage, 30
inheritance, 153
integration tests, 156
interface, 20, 56

formal parts, 20
informal parts, 21

interface comment
class, 110
method, 110

interface documentation, 110
interface inheritance, 153
invariant, 144, 172
investment mindset, 15, 40, 129, 138, 146

Java I/O example, 26, 55, 67, 173
Java substring example, 82
linked list example, 25
long method, 73

Martin, Robert, 76, 99
masking exceptions, 83
memory allocation, dynamic, 162
method interface comment, 110
micro-benchmark, 162
missing parameter example, 84
modular design, 2, 19
module, 20

names
consistency, 126, 143
generic, 123
how to choose, 121, 171
making code more obvious, 148
precise, 123
short names in Go, 127

network communication, 162
NFS server crash example, 83
non-existent selection example, 48
nonvolatile memory, 162

object-oriented programming, 153
obscurity, 10, 147
obvious code, 9, 147

out of memory example, 88

Parnas, David, 29
pass-through method, 52
pass-through variable, 57
performance

designing for, 161, 171
micro-benchmark, 162

private variables, 30
project

text editor, 70

RAMCloud Buffer example, 165
RAMCloud error promotion example, 87
RAMCloud Status example, 117

selection/cursor example, 70
self-documenting code, 96
setter, 158
shallow module, 25
small classes, 26
special cases, 48, 167
special-purpose code, 45, 68
specification, formal, 21
strategic programming, 14, 137
style, coding, 143
substring example (Java), 82
system tests, 156

tactical programming, 13, 137, 155
tactical tornado, 14
Tcl unset example, 80
technical debt, 16
temporal decomposition, 31
test-driven development, 157
tests

integration, 156
system, 156
unit, 156

text editor project, 70
text editor selection example, 48
try block, 79

undo example, 45
unit tests, 156
Unix I/O example, 23
unknown unknowns, 8, 99, 173
URL encoding, 34

VMware, 18

waterfall model, 2
Web site colors example, 7
white space, 148

Summary of Design Principles

Here are the most important software design principles discussed in this
book:

1. Complexity is incremental: you have to sweat the small stuff (see p.
11).

2. Working code isn’t enough (see p. 14).
3. Make continual small investments to improve system design (see p.

15).
4. Modules should be deep (see p. 23)
5. Interfaces should be designed to make the most common usage as

simple as possible (see p. 27).
6. It’s more important for a module to have a simple interface than a

simple implementation (see pp. 61, 74).
7. General-purpose modules are deeper (see p. 39).
8. Separate general-purpose and special-purpose code (see pp. 45, 68).
9. Different layers should have different abstractions (see p. 51).

10. Pull complexity downward (see p. 61).
11. Define errors out of existence (see p. 81).
12. Design it twice (see p. 91).
13. Comments should describe things that are not obvious from the code

(see p. 101).
14. Software should be designed for ease of reading, not ease of writing

(see p. 151).
15. The increments of software development should be abstractions, not

features (see p. 156).
16. Separate what matters from what doesn’t matter and emphasize the

things that matter (see p. 171).

Summary of Red Flags

Here are a few of of the most important red flags discussed in this book.
The presence of any of these symptoms in a system suggests that there is a
problem with the system’s design:
Shallow Module: the interface for a class or method isn’t much simpler
than its implementation (see pp. 25, 110).
Information Leakage: a design decision is reflected in multiple modules
(see p. 31).
Temporal Decomposition: the code structure is based on the order in
which operations are executed, not on information hiding (see p. 32).
Overexposure: An API forces callers to be aware of rarely used features in
order to use commonly used features (see p. 36).
Pass-Through Method: a method does almost nothing except pass its
arguments to another method with a similar signature (see p. 52).
Repetition: a nontrivial piece of code is repeated over and over (see p. 68).
Special-General Mixture: special-purpose code is not cleanly separated
from general purpose code (see p. 71).
Conjoined Methods: two methods have so many dependencies that its hard
to understand the implementation of one without understanding the
implementation of the other (see p. 75).
Comment Repeats Code: all of the information in a comment is
immediately obvious from the code next to the comment (see p. 104).
Implementation Documentation Contaminates Interface: an interface
comment describes implementation details not needed by users of the thing
being documented (see p. 114).
Vague Name: the name of a variable or method is so imprecise that it
doesn’t convey much useful information (see p. 123).
Hard to Pick Name: it is difficult to come up with a precise and intuitive
name for an entity (see p. 125).
Hard to Describe: in order to be complete, the documentation for a
variable or method must be long. (see p. 133).

Nonobvious Code: the behavior or meaning of a piece of code cannot be
understood easily. (see p. 150).

About the Author

John Ousterhout is the Bosack Lerner Professor of Computer Science at
Stanford University. His current research focuses on new software stack
layers to allow datacenter applications to take advantage of communication
and storage technologies with microsecond-scale latencies. Ousterhout's
prior positions include 14 years in industry, where he founded two
companies (Scriptics and Electric Cloud), preceded by 14 years as Professor
of Computer Science at U.C. Berkeley. He is the creator of the Tcl scripting
language and is also well known for his work in distributed operating
systems and storage systems. Ousterhout received a BS degree in Physics
from Yale University and a PhD in Computer Science from Carnegie
Mellon University. He is a member of the National Academy of Engineering
and has received numerous awards, including the ACM Software System
Award, the ACM Grace Murray Hopper Award, the National Science
Foundation Presidential Young Investigator Award, and the U.C. Berkeley
Distinguished Teaching Award.

	Title Page
	Copyright
	Contents
	Preface
	1: Introduction
	1.1 How to use this book
	2: The Nature of Complexity
	2.1 Complexity defined
	2.2 Symptoms of complexity
	2.3 Causes of complexity
	2.4 Complexity is incremental
	2.5 Conclusion
	3: Working Code Isn’t Enough
	3.1 Tactical programming
	3.2 Strategic programming
	3.3 How much to invest?
	3.4 Startups and investment
	3.5 Conclusion
	4: Modules Should Be Deep
	4.1 Modular design
	4.2 What’s in an interface?
	4.3 Abstractions
	4.4 Deep modules
	4.5 Shallow modules
	4.6 Classitis
	4.7 Examples: Java and Unix I/O
	4.8 Conclusion
	5: Information Hiding (and Leakage)
	5.1 Information hiding
	5.2 Information leakage
	5.3 Temporal decomposition
	5.4 Example: HTTP server
	5.5 Example: too many classes
	5.6 Example: HTTP parameter handling
	5.7 Example: defaults in HTTP responses
	5.8 Information hiding within a class
	5.9 Taking it too far
	5.10: Conclusion
	6: General-Purpose Modules are Deeper
	6.1 Make classes somewhat general-purpose
	6.2 Example: storing text for an editor
	6.3 A more general-purpose API
	6.4 Generality leads to better information hiding
	6.5 Questions to ask yourself
	6.6 Push specialization upwards (and downwards!)
	6.7 Example: editor undo mechanism
	6.8 Eliminate special cases in code
	6.9 Conclusion
	7: Different Layer, Different Abstraction
	7.1 Pass-through methods
	7.2 When is interface duplication OK?
	7.3 Decorators
	7.4 Interface versus implementation
	7.5 Pass-through variables
	7.6 Conclusion
	8: Pull Complexity Downwards
	8.1 Example: editor text class
	8.2 Example: configuration parameters
	8.3 Taking it too far
	8.4 Conclusion
	9: Better Together Or Better Apart?
	9.1 Bring together if information is shared
	9.2 Bring together if it will simplify the interface
	9.3 Bring together to eliminate duplication
	9.4 Separate general-purpose and special-purpose code
	9.5 Example: insertion cursor and selection
	9.6 Example: separate class for logging
	9.7 Splitting and joining methods
	9.8 A different opinion: Clean Code
	9.9 Conclusion
	10: Define Errors Out Of Existence
	10.1 Why exceptions add complexity
	10.2 Too many exceptions
	10.3 Define errors out of existence
	10.4 Example: file deletion in Windows
	10.5 Example: Java substring method
	10.6 Mask exceptions
	10.7 Exception aggregation
	10.8 Just crash?
	10.9 Taking it too far
	10.10 Conclusion
	11: Design it Twice
	12: Why Write Comments? The Four Excuses
	12.1 Good code is self-documenting
	12.2 I don’t have time to write comments
	12.3 Comments get out of date and become misleading
	12.4 All the comments I have seen are worthless
	12.5 Benefits of well-written comments
	12.6 A different opinion: comments are failures
	13: Comments Should Describe Things that Aren’t Obvious from the Code
	13.1 Pick conventions
	13.2 Don’t repeat the code
	13.3 Lower-level comments add precision
	13.4 Higher-level comments enhance intuition
	13.5 Interface documentation
	13.6 Implementation comments: what and why, not how
	13.7 Cross-module design decisions
	13.8 Conclusion
	13.9 Answers to questions from Section 13.5
	14: Choosing Names
	14.1 Example: bad names cause bugs
	14.2 Create an image
	14.3 Names should be precise
	14.4 Use names consistently
	14.5 Avoid extra words
	14.6 A different opinion: Go style guide
	14.7 Conclusion
	15: Write The Comments First
	15.1 Delayed comments are bad comments
	15.2 Write the comments first
	15.3 Comments are a design tool
	15.4 Early comments are fun comments
	15.5 Are early comments expensive?
	15.6 Conclusion
	16: Modifying Existing Code
	16.1 Stay strategic
	16.2 Maintaining comments: keep the comments near the code
	16.3 Comments belong in the code, not the commit log
	16.4 Maintaining comments: avoid duplication
	16.5 Maintaining comments: check the diffs
	16.6 Higher-level comments are easier to maintain
	17: Consistency
	17.1 Examples of consistency
	17.2 Ensuring consistency
	17.3 Taking it too far
	17.4 Conclusion
	18: Code Should be Obvious
	18.1 Things that make code more obvious
	18.2 Things that make code less obvious
	18.3 Conclusion
	19: Software Trends
	19.1 Object-oriented programming and inheritance
	19.2 Agile development
	19.3 Unit tests
	19.4 Test-driven development
	19.5 Design patterns
	19.6 Getters and setters
	19.7 Conclusion
	20: Designing for Performance
	20.1 How to think about performance
	20.2 Measure before (and after) modifying
	20.3 Design around the critical path
	20.4 An example: RAMCloud Buffers
	20.5 Conclusion
	21: Decide What Matters
	21.1 How to decide what matters?
	21.2 Minimize what matters
	21.3 How to emphasize things that matter
	21.4 Mistakes
	21.5 Thinking more broadly
	22: Conclusion
	Index
	Summary of Design Principles
	Summary of Red Flags
	About the Author
	Back Cover

