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Preface

Almost every fall since 1999, I have taught a Princeton course
called <Computers in Our World.= The course title is embarrassingly
vague, but I had to invent it in less than five minutes one day and
then it became too hard to change. Teaching the course itself,
however, has proven to be the most fun thing that I do, in a job that
is almost entirely enjoyable.

The course is based on the observation that computers and
computing are all around us. Some computing is highly visible: every
student has a laptop computer that is far more powerful than the
single IBM 7094 computer that cost several million dollars, occupied
a large air-conditioned room, and served the whole Princeton
campus when I arrived there as a graduate student in 1964. Every
student has a cell phone too, also with much more computing power
than that ancient computer. Every student has high-speed Internet
access, as does a significant fraction of the world’s population.
Everyone searches and shops online, and uses email, texting and
social networks to keep in touch with friends and family.

But this is only part of a computing iceberg, much of which lies
hidden below the surface. We don’t see and usually don’t think about
the computers that lurk within appliances, cars, airplanes and the
pervasive electronic gadgets that we take for granted—smart TVs
and thermostats and doorbells, voice recognizers, fitness trackers,
earbuds, toys, and games. Nor do we think much about the degree
to which infrastructure depends on computing: the telephone
network, cable television, air traffic control, the power grid, and
banking and financial services.

Most people will not be directly involved in creating such systems,
but everyone is strongly affected by them, and some will have to
make important decisions about them. An educated person ought to
know at least the rudiments of computing: what computers can do
and how they do it; what they can’t do at all and what’s merely too



hard right now; how they talk to each other and what happens when
they do; and the many ways that computing and communications
influence the world around us.

The pervasive nature of computing affects us in unexpected ways.
Although we are from time to time reminded of the growth of
surveillance systems, incursions into our privacy, and the perils of
identity theft, we perhaps do not realize the extent to which they are
enabled by computing and communications.

In June 2013, Edward Snowden, a contractor at the United States
National Security Agency (NSA), provided journalists with fifty
thousand documents which revealed that the NSA had been
routinely monitoring and collecting the electronic communications—
phone calls, texts, email, and Internet use—of pretty much everyone
in the world, but notably of American citizens living in the US who
were no threat whatsoever to the security of their country. The
Snowden documents also showed that other countries were spying
on their citizens too. Perhaps most surprising is that after initial
outrage, it’s back to business as usual, with more and more
government monitoring and spying, and resigned or oblivious
acceptance by citizens.

Corporations also track and monitor what we do online and in the
real world. The business models of many companies are based on
extensive data collection and the ability to predict and influence our
behavior. The availability of voluminous data has enabled great
progress in speech understanding, computer vision and language
translation, but it has come at a cost to our privacy, and has made it
hard for anyone to be anonymous.

Hackers of all stripes have become sophisticated in their attacks
on data repositories. Electronic break-ins at businesses and
government agencies are an almost daily occurrence; information
about customers and employees is stolen in large quantities, often to
be used for fraud and identity theft. Attacks on individuals are
common as well. It used to be that one could be safe from online
scams by ignoring mail from putative Nigerian princes or their
relatives, but targeted attacks are now far more subtle and have
become one of the most common ways in which corporate
computers are breached.



Social media sites like Facebook, Instagram, Twitter, Reddit, and
many others have changed how people relate to each other.
Sometimes this is positive—keeping in touch with friends and family,
watching news, entertainment of all sorts. Occasionally there are
positive effects, for example viral videos of police brutality that
brought Black Lives Matter to everyone’s attention in mid-2020.

But social media have also contributed to a significant number of
negatives. Racists, hate groups, conspiracy theorists and other crazy
people, no matter what their beliefs or political positions, can easily
find each other on the Internet, to coordinate and amplify their
effects. Thorny questions about free speech and technological
challenges in moderating content make it difficult to slow the spread
of hatred and nonsense.

Jurisdictional issues are difficult in a world totally interconnected
by the Internet. In 2018, the European Union implemented the
General Data Protection Regulation (GDPR), which allows EU
residents to control the collection and use of their personal data, and
prevents companies from sending or storing such data outside the
EU. The jury is still out on how effective the GDPR has been in
improving individual privacy, and of course these rules apply only in
the EU and are different in other parts of the world.

The rapid adoption of cloud computing, where individuals and
companies store their data and do their computing on servers owned
by Amazon, Google, Microsoft and the like, adds another layer of
complexity. Data is no longer held directly by its owners but rather by
third parties that have different agendas, responsibilities and
vulnerabilities, and may face conflicting jurisdictional requirements.

There’s a rapidly growing <Internet of Things= in which all kinds of
devices connect to the Internet. Cell phones are an obvious
instance, of course, but it’s also cars, security cameras, home
appliances and controls, medical equipment, and a great deal of
infrastructure like air traffic control and power grids. This trend
towards connecting everything to the Internet will continue, because
the benefits of connection are compelling. Unfortunately, there are
major risks, since some of these devices control life and death
systems, not just our entertainment, and security for them is often
much weaker than for more mature systems.



Cryptography is one of the few effective defenses against all of
this, since it provides ways to keep communications and data
storage private and secure. But strong cryptography is under
continuous attack. Governments don’t like the idea that individuals or
companies or terrorists could have truly private communications, so
there are frequent calls for putting backdoors into cryptographic
algorithms to allow government agencies to break the encryption,
though of course only with <proper safeguards= and only <in the
interests of national security.= However well-intentioned, this is a truly
bad idea. Even if you believe that governments will always behave
honorably and secret information will never leak (Snowden
notwithstanding), weak cryptography helps your adversaries as well
as your friends, and the bad guys won’t use it anyway.

These are some of the problems and issues that ordinary people
like the students in my course or the proverbial educated person on
the street must worry about, no matter what their background and
training.

The students in my course are not technical—no engineers,
physicists or mathematicians. Instead they are English and politics
majors, historians, classicists, economists, musicians and artists, a
wonderful slice through the humanities and social sciences. By the
end of the course these bright people should be able to read and
understand a newspaper article about computing, to learn more from
it, and perhaps to spot places where it might not be accurate. More
broadly, I want my students and my readers to be intelligently
skeptical about technology, to know that it is often a good thing but
not a panacea. Conversely, though it sometimes has bad effects,
technology is not an unmitigated evil.

A fine book by Richard Muller called Physics for Future Presidents
attempts to explain the scientific and technical background
underlying major issues that leaders have to grapple with—nuclear
threats, terrorists, energy, global warming, and the like. Well-
informed citizens without presidential aspirations should know
something of these topics as well. Muller’s approach is a good
metaphor for what I would like to accomplish: <Computing for Future
Presidents.=



What should a future president know about computing? What
should a well-informed person know about computing? What should
you know?

I think there are four core technical areas: hardware, software,
communications, and data.

Hardware is the tangible part, the computers we can see and
touch, that sit in our homes and offices, and that we carry around in
our phones. What’s inside a computer, how does it work, how is it
built? How does it store and process information? What are bits and
bytes, and how do we use them to represent music, movies, and
everything else?

Software, the instructions that tell computers what to do, is by
contrast hardly tangible at all. What can we compute, and how fast
can we compute it? How do we tell computers what to do? Why is it
so hard to make them work right? Why are they so often hard to
use?

Communications means computers, phones, and other devices
talking to each other on our behalf and letting us talk to each other:
the Internet, the web, email and social networks. How do these
work? The rewards are obvious, but what are the risks, especially to
our privacy and security, and how can they be mitigated?

Data is all the information that hardware and software collect,
store and process, and which communications systems send around
the world. Some of this is data we contribute voluntarily, whether
prudently or not, by uploading our words, pictures and videos. Much
of it is personal information about us, gathered and shared without
our knowledge, let alone agreement, as we go about our daily lives.

President or not, you should know about the world of computing
because it affects you personally. No matter how non-technical your
life and work, you’re going to have to interact with technology and
technical people. Knowing something of how devices and systems
operate is a big advantage, even something as simple as
recognizing when a salesperson, a help line or a politician is not
telling you the whole truth.

Indeed, ignorance can be directly harmful. If you don’t understand
viruses, phishing and similar threats, you become more susceptible
to them. If you don’t know how social networks leak, or even



broadcast, information that you thought was private, you’re likely to
reveal much more than you realize. If you’re not aware of the
headlong rush by commercial interests to exploit what they have
learned about your life, you’re giving up privacy for little benefit. If
you don’t know why it’s risky to do your personal banking in a coffee
shop or an airport, you’re vulnerable to theft of money and identity. If
you don’t know how easily data can be manipulated, you’re more
likely to be taken in by fake news, fraudulent images, and conspiracy
theories.

The book is meant to be read from front to back but you might
prefer to skip ahead to topics of personal interest and come back
later. For example, you could begin by reading about networks, cell
phones, the Internet, the web and privacy issues starting in Chapter
8; you might have to look back at earlier chapters to understand a
few parts, but mostly it will be accessible. You can skip anything
quantitative, for instance how binary numbers work in Chapter 2, and
ignore the details of programming languages in a couple of chapters.

The notes at the end list books that I like, and include links to
sources and helpful supplements. The glossary gives brief definitions
and explanations of important technical terms and acronyms.

Any book about computing can become dated quickly, and this
one is no exception. The previous edition was published well before
we learned about the extent to which hostile actors could sway
public opinion and affect elections in the US and other countries. I’ve
updated the book with important new stories, many of which relate to
personal privacy and security, since that issue has become more
pressing in the last few years. There’s a new chapter on artificial
intelligence, machine learning, and the role of <big data= in making
them so effective and in some cases so dangerous. I’ve also tried to
clarify explanations that were murky, and dated material has been
deleted or replaced. Nevertheless, some details will be wrong or out
of date when you read this, though I’ve tried to ensure that content of
lasting value is clearly identified.

My goal for this book is that you will come away with some
appreciation for an amazing technology and a real understanding of
how it works, where it came from, and where it might be going in the



future. Along the way, perhaps you’ll pick up a helpful way of thinking
about the world. I hope so.
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Introduction

<It was the best of times, it was the worst of times.=
Charles Dickens, A Tale of Two Cities, 1859.

My wife and I had planned to spend the summer of 2020 on
vacation in England. We made reservations, paid deposits, bought
tickets, arranged with friends to look after our house and cat, and
then the world changed.

By early March, it was clear that Covid-19 was going to be a
major worldwide health crisis. Princeton University shut down
physical classes and sent most students home on short notice. They
were given a week to pack their belongings and leave, and it was
quickly decided that they were not going to return that semester.

Classes moved online. Students watched lectures, wrote papers,
took exams, and got their grades, all remotely. I became, if not an
expert, at least an experienced amateur user of the Zoom video
conferencing system. Fortunately, I was teaching two small
seminars, with less than a dozen students in each, so it was possible
to see everyone in the group at the same time, and to have
reasonable conversations. Things were not so good for colleagues
who were teaching large lecture classes, however, and of course the
students on the other side of all these virtual lecterns were adversely
affected.

Most students moved back to comfortable homes with reliable
electric power, good Internet connectivity, a supportive family
environment, and no shortages of food or other crucial supplies.
Naturally, relationships suffered because of enforced separation, or
prospered because of enforced togetherness, and sometimes vice
versa. But these were minor problems.

Other students were in far worse situations. Some had intermittent
or non-existent Internet connections that made video and email



unusable. Some were ill or quarantined for extended periods. Some
had sick relatives to care for, or even deaths in their families.

Day-to-day university administrative chores moved online as well,
with casual hallway conversations converted into daily virtual
meetings; paperwork was mostly replaced by email. Zoom fatigue
set in quickly, but so far I have not been a victim of Zoom bombing
where some hacker invades my online space.

In many parts of the world, fortunate people were able to do their
jobs online, and companies quickly shifted to <work from home=
mode. People refined their video backdrops to show arrays of books,
or neat displays of flowers and pictures, and they learned how to
keep children, pets and significant others (mostly) quiet and out of
the frame.

Streaming video from sources like Netflix, already popular,
became more so. Online gaming grew as well, along with fantasy
sports when real sports were canceled entirely.

We got continuously updated status reports on the rapid spread
and discouragingly slow and erratic containment of Covid-19, albeit
with far too much magical thinking and outright lies from politicians;
honest and competent leaders were few and far between. We
learned a bit about how quickly exponential processes grow.

It was surprisingly easy to adapt to this new way of doing
business. The lucky ones were able to keep working, stay in virtual
contact with friends and family, order food and supplies, almost as
before. The Internet and all the infrastructure kept us connected. It
was remarkably resilient—communications systems were always
there, as, fortunately, were power, heat and water.

These technological systems worked so well during a global crisis
that, aside from occasional anxious moments, we tended not to think
about them, even though we would have been dead in the water
without them, and, unsaid but so true, without the many heroic
people behind the scenes who kept things working, often at grave
risk to their own health and even lives. We also didn’t think enough
about the many millions of people who became unemployed,
because their jobs couldn’t be done via the Internet and just
disappeared overnight.



I had literally never heard of Zoom before I had to start using it in
March. Zoom was launched in 2013 to provide a video conferencing
system that competed with larger operations like Microsoft Teams
and Google’s oft-renamed Meet. Zoom went public in 2019, and as I
write this late in the fall of 2020, it is valued at over $125 billion, far
more than older and better-known companies like General Motors
($61 billion) and General Electric ($85 billion), and well ahead of IBM
($116 billion).

Moving online worked for those who had fast, reliable Internet,
and a computer with a camera and a microphone. Internet and cloud
service providers had enough capacity to handle increased traffic.
Video meeting services were commonplace and refined enough that
most people were comfortable using them. None of this would have
worked nearly so well, if at all, ten years earlier.

In short, ubiquitous modern technology made it possible for the
fortunate to carry on a reasonable simulation of normality. This
experience reminds us of the range of technology, how deeply it has
become part of our lives, and how it has improved life in all kinds of
ways.

But there’s another side to the story, not so optimistic.
The Internet, already a hotbed of paranoia, hatred and crackpot

theories, grew worse. Social media enabled politicians and
government officials to spread lies, divide us further, and avoid
blame, abetted by <news= outlets with no regard for facts. Sites like
Twitter and Facebook tried unsuccessfully to find middle ground
between being neutral platforms for the free expression of ideas and
limiting the barrage of incendiary postings and outright falsehoods.

Surveillance has reached new heights, with technology used in
many countries to restrict people and monitor and control their
behavior. For instance, China uses face recognition for, among other
things, keeping track of its minority populations. During the Covid-19
pandemic, the Chinese government mandated installation of an app
that works as a sort of immunity passport but also reports its users’
locations to the police. In the US and the UK, local law enforcement
agencies use face recognition, license plate readers, and the like to
keep an eye on people.



Our mobile phones continuously monitor our locations and a
variety of parties are able to aggregate the data. Tracking
applications for smartphones are an excellent example of the
double-sided nature of technology. Who could be against a Covid-19
contact-tracing system that tells you whether you have been
exposed to a potentially contagious person? But any technology that
enables the government to know where you’ve been and who you’ve
been talking to also helps them to monitor and control more
effectively. It’s a short and slippery slope from disease tracking to
ferreting out peaceful protesters, dissidents, political enemies,
whistle-blowers, and anyone else that the authorities think might be
a threat. (It’s not clear whether app-based contact tracing works at
all, since it’s susceptible to high false positive and false negative
rates.)

For almost all of our interactions with the online world and often in
the real world as well, countless computer systems watch and
remember who you and I dealt with, how much we paid, and where
we were at the time. A large part of this data gathering is for
commercial purposes, since the more that companies know about
us, the more accurately they can target us for advertising. Most
readers know that such data is collected, but I expect that many
would be surprised by how much there is and how detailed.

Companies are not the only observers; governments are deeply
involved in surveillance as well. The NSA emails, internal reports,
and PowerPoint presentations disclosed by Edward Snowden
revealed much about spying in the digital era. The gist is that the
NSA watches everyone on a grand scale.

Snowden’s revelations were stunning. It had been widely
suspected that the NSA spied on more people than it admitted, but
the extent surpassed everyone’s imagination. The NSA routinely
collected metadata about all telephone calls made in the US—who
called who, when they talked, and for how long—and may have
recorded the content of these calls as well. It recorded my Skype
conversations and email contacts, and probably the mail contents as
well. (Yours too, of course.) It tapped the cell phones of world
leaders. It intercepted huge amounts of Internet traffic by placing
recording devices on equipment where submarine cables enter and



leave the US. It enlisted or coerced the major telecommunications
and Internet companies to gather and hand over information about
their users. It stored great amounts of data for extended periods of
time, sharing some of it with spy agencies in other countries.

Meanwhile, back on the commercial front, hardly a day goes by
when we don’t learn of another breach of security at some company
or institution, in which shadowy hackers steal information like names,
addresses, credit card numbers, and other personal information
about millions of people. Usually these are high-tech criminals, but
sometimes it’s espionage by other countries, looking for valuable
information. From time to time, foolish or careless behavior by
whoever maintains the information accidentally exposes private data.
No matter what the mechanism, data that has been collected about
us is all too often exposed or stolen, potentially to be used against
us.

The purpose of this book is to explain the technology that lies
behind all of this, so you understand how such systems operate.
How can pictures, music, movies, and intimate details of your
personal life be sent around the world in no time at all? How do
email and texting work, and how private are they? Why is spam so
easy to send and so hard to get rid of? Do cell phones report where
you are all the time? Who is tracking you online and on your phone,
and why does that matter? Can your face be recognized in a crowd?
Who knows that it’s your face? Can hackers take over your car?
How about self-driving cars? Can we defend our privacy and
security, or should we just give up? By the end of the book, you
should have a decent idea of how computer and communications
systems work, how they affect you, and how you can strike a
balance between using helpful services and protecting your privacy.

There are only a handful of fundamental ideas, which we will
discuss in much more detail in the rest of the book.

First is the universal digital representation of information. Complex
and sophisticated mechanical systems like those that stored
documents, pictures, music and movies for much of the 20th century
have been replaced by a single uniform storage mechanism.
Information is represented digitally—as numeric values—rather than
in specialized forms like colored dyes embedded in plastic film or



magnetic patterns on vinyl tape. Paper mail gives way to digital mail.
Paper maps yield to digital ones. Paper documents are replaced by
online databases. All those disparate analog representations have
been replaced by a common low-level representation in which
everything is just numbers: digital information.

Second is the universal digital processor. All of this digital
information can be processed by a single general-purpose device,
the digital computer. Digital computers that process the uniform
digital representation have replaced the elaborate and complicated
mechanical devices that process analog representations. As we’ll
see, computers are all equally capable in what they can compute,
differing only in how fast they operate and how much data they can
store. A smartphone is a computer of great sophistication, with as
much computing power as a laptop. Thus more and more of what
might once have been limited to desktop or laptop computers has
found its way onto phones, and this process of convergence is
accelerating.

Third is the universal digital network. The Internet connects the
digital computers that process the digital representation; it connects
computers and phones to mail, search, social networks, shopping,
banking, news, entertainment, and everything else. The majority of
the world’s population has access to this network. You can exchange
email with anyone, regardless of where they might be or how they
choose to access their mail. You can search, comparison shop, and
purchase from your phone, laptop, or tablet. Social networks keep
you in touch with friends and family, again from your phone or
computer. You can watch endless entertainment, often for free.
<Smart= devices monitor and control systems in your home; you can
talk to them to tell them what to do or to ask them questions. There’s
a worldwide infrastructure that makes all these services work
together.

Fourth, an immense amount of digital data is continuously being
collected and analyzed. Maps, aerial photographs, and street-level
views of much of the world are freely available. Search engines
tirelessly scan the Internet so they can answer queries efficiently.
Millions of books are available in digital form. Social networks and
sharing sites maintain enormous amounts of data for and about us.



Both online and brick-and-mortar stores and services provide access
to their wares while quietly recording everything we do when we visit
them, aided and abetted by search engines, social networks and our
phones. For all of our online interactions, Internet service providers
log the connections we make, and perhaps more. Governments spy
on us all the time, to an extent and with a precision that would have
been impossible a decade or two ago.

All of this is changing rapidly because digital technological
systems continue to get smaller, faster, and cheaper. New phones
with fancier features, better screens, and more interesting
applications arrive continuously. New gadgets appear all the time;
the most useful find their functionality subsumed into phone apps.
This is a natural by-product of digital technology, in which any
technological development leads to improvement across the board
for digital devices: if some change makes it possible to handle data
cheaper, faster or in larger quantity, all devices will benefit. As a
result, digital systems are pervasive, an integral part of our lives both
visibly and behind the scenes.

This progress must surely be a good thing, and indeed in most
ways it is. But there are clouds around the silver lining. One of the
most obvious and perhaps the most worrying to individuals is the
impact of technology on personal privacy. When you use your phone
to search for some product and then visit store web sites, all parties
keep records of what you visited and what you clicked on. They
know who you are because your phone identifies you uniquely. They
know where you are because your phone reports its location to
within a hundred meters or so all the time. The phone company
records this information and may sell it. With GPS, the Global
Positioning System, you can be located to within five to ten meters;
with location services turned on, that information is available to apps,
and they too can sell that information. In fact, it’s even worse:
disabling location services only prevents apps from using GPS data;
it does not prevent the phone’s operating system from collecting and
uploading the data, which it could do by the cell network, Wi-Fi or
Bluetooth.

You’re being watched in real life as well as online. Face
recognition technology can identify you on the street or in a store.



Traffic cameras scan your license plates and know where your car is;
so do electronic toll-collection systems. Internet-connected smart
thermostats, voice responders, door locks, baby monitors and
security cameras are surveillance devices that we have invited into
our homes. The tracking that we permit today without even thinking
about it makes the monitoring in George Orwell’s 1984 look casual
and superficial.

The records of what we do and where we do it may well live
forever. Digital storage is so cheap and data is so valuable that
information is rarely discarded. If you post something embarrassing
online or send mail that you subsequently regret, it’s too late.
Information about you can be combined from multiple sources to
create a detailed picture of your life, and is available to commercial,
government and criminal interests without your knowledge or
permission. It is likely to remain available indefinitely and could
surface to harm you at anytime in the future.

The universal network and its universal digital information have
made us vulnerable to strangers to a degree never imagined a
decade or two ago. As Bruce Schneier says in his excellent book
Data and Goliath, <Our privacy is under assault from constant
surveillance. Understanding how this occurs is critical to
understanding what’s at stake.=

The societal mechanisms that protect our privacy and our
property have not kept up with the rapid advances in technology.
Thirty years ago, I dealt with my local bank and other financial
institutions by physical mail and occasional personal visits.
Accessing my money took time and it left an extensive paper trail; it
would have been difficult for someone to steal from me. Today, I deal
with financial institutions mostly through the Internet. I can
conveniently access my data, but it’s possible that through some
blunder on my part or a screwup by one of these companies,
someone on the far side of the world could clean out my account,
steal my identity, ruin my credit rating, and who knows what else, in
no time at all and with little chance of recourse.

This book is about understanding how these systems work and
how they are changing our lives. Of necessity it’s a snapshot, so you
can be certain that ten years from now, today’s systems will seem



clunky and antiquated. Technological change is not an isolated event
but an ongoing process—rapid, continuous, and accelerating.
Fortunately, the basic ideas of digital systems will remain the same,
so if you understand those, you’ll understand tomorrow’s systems
too, and you’ll be in a better position to deal with the challenges and
the opportunities that they present.





Part I
Hardware

<I wish to God these calculations had been executed by steam.=
Charles Babbage, 1821, quoted in Harry Wilmot Buxton,
Memoir of the Life and Labours of the Late Charles Babbage,
1872.

Hardware is the solid, visible part of computing: devices and
equipment that you can see and put your hands on. The history of
computing devices is interesting, but I will only mention a little of it here.
Some trends are worth noting, however, especially the exponential
increase in how much circuitry and how many devices can be packed
into a given amount of space, often for a fixed price. As digital
equipment has become cheaper and more powerful, widely disparate
mechanical systems have been superseded by much more uniform
electronic ones.

Computing machinery has a long history, though most early
computational devices were specialized, often for predicting
astronomical events and positions. For example, one (unproven) theory
holds that Stonehenge was an astronomical observatory. The
Antikythera mechanism, from about 100 BCE, is an astronomical
computer of remarkable mechanical sophistication. Arithmetic devices
like the abacus have been used for millennia, especially in Asia. The
slide rule was invented in the early 1600s, not long after John Napier’s
description of logarithms. I used one as an undergraduate engineer in
the 1960s, but slide rules are now curiosities, replaced by calculators
and computers, and my painfully acquired expertise is useless.

The most relevant precursor to today’s computers is the Jacquard
loom, which was invented in France by Joseph Marie Jacquard around
1800. The Jacquard loom used rectangular cards with multiple rows of
holes that specified weaving patterns. The Jacquard loom thus could be
<programmed= to weave a wide variety of different patterns under the
control of instructions that were provided on punched cards; changing
the cards caused a different pattern to be woven. The creation of labor-



saving machines for weaving led to social disruption as weavers were
put out of work; the Luddite movement in England in 1811–1816 was a
violent protest against mechanization. Modern computing technology
has similarly led to disruption.

Figure I.1: Modern implementation of Babbage’s Difference
Engine.

Computing in today’s sense began in England in the mid-19th
century with the work of Charles Babbage. Babbage was a scientist
who was interested in navigation and astronomy, both of which required
tables of numeric values for computing positions. Babbage spent much
of his life trying to build computing devices that would mechanize the
tedious and error-prone manual arithmetic calculations needed to
create the tables, and even to print them. You can sense his
exasperation in the quotation on the previous page. For a variety of



reasons, including alienating his financial backers, he never succeeded
in his ambitions, but his designs were sound. Modern implementations
of some of his machines, built with tools and materials from his time,
can be seen in the Science Museum in London and the Computer
History Museum in Mountain View, California (in the figure above).

Babbage encouraged a young woman, Augusta Ada Byron, the
daughter of the poet George Byron, and later Countess of Lovelace, in
her interests in mathematics and his computational devices. Lovelace
wrote detailed descriptions of how to use Babbage’s Analytical Engine
(the most advanced of his planned devices) for scientific computation
and speculated that machines could do non-numeric computation as
well, such as composing music. <Supposing, for instance, that the
fundamental relations of pitched sounds in the science of harmony and
of musical composition were susceptible of such expression and
adaptations, the engine might compose elaborate and scientific pieces
of music of any degree of complexity or extent.= Ada Lovelace is often
called the world’s first programmer, and the Ada programming language
is named in her honor.



Figure I.2: Ada Lovelace. Detail from 1836 portrait by Margaret
Sarah Carpenter.

Herman Hollerith, working with the US Census Bureau in the late
1800s, designed and built machines that could tabulate census
information far more rapidly than could be done by hand. Using ideas
from the Jacquard loom, Hollerith used holes punched in stiff paper
cards to encode census data in a form that could be processed by his
machines. Famously, the 1880 census had taken eight years to
tabulate, but with Hollerith’s punch cards and tabulating machines, the
1890 census took only one year to prepare, instead of the predicted 10
years or more. Hollerith founded a company that in 1924 became,
through mergers and acquisitions, International Business Machines,
which we know today as IBM.

Babbage’s machines were complex mechanical assemblies of gears,
wheels, levers and rods. The development of electronics in the 20th



century made it possible to imagine computers that did not rely on
mechanical components. The first significant one of these all-electronic
machines was ENIAC, the Electronic Numerical Integrator and
Computer, which was built during the 1940s at the University of
Pennsylvania in Philadelphia, by Presper Eckert and John Mauchly.
ENIAC occupied a large room and required a large amount of electric
power; it could do about 5,000 additions in a second. It was intended to
be used for ballistics computations and the like, but it was not
completed until 1946, well after the end of World War II. (Parts of
ENIAC are on display in the Moore School of Engineering at the
University of Pennsylvania.)

Babbage saw clearly that a computing device could store its
operating instructions and its data in the same form, but ENIAC did not
store instructions in memory along with data; instead it was
programmed by setting up connections through switches and re-
cabling. The first computers that truly stored programs and data
together were built in England, notably EDSAC, the Electronic Delay
Storage Automatic Calculator, at Cambridge in 1949.

Early electronic computers used vacuum tubes as computing
elements. Vacuum tubes are electronic devices roughly the size and
shape of a cylindrical light bulb (see Figure 1.7 in the next chapter);
they were expensive, fragile, bulky, and power hungry. With the
invention of the transistor in 1947, and then of integrated circuits in
1958, the modern era of computing really began. These technologies
have allowed electronic systems to steadily become smaller, cheaper
and faster.

The next three chapters describe computer hardware, focusing on
the logical architecture of computing systems more than on the physical
details of how they are built. The architecture has been largely
unchanged for decades, while the hardware has changed to an
astonishing degree. The first chapter is an overview of the structure and
components of a computer. The second chapter shows how computers
represent information with bits, bytes and binary numbers. The third
chapter explains how computers actually compute: how they process
the bits and bytes to make things happen.





1
What Is a Computer?

<Inasmuch as the completed device will be a general-purpose
computing machine it should contain certain main organs relating
to arithmetic, memory-storage, control and connection with the
human operator.=

Arthur W. Burks, Herman H. Goldstine, John von Neumann,
<Preliminary discussion of the logical design of an electronic
computing instrument,= 1946.

Let’s begin our discussion of hardware with an overview of what a
computer is. We can look at a computer from at least two viewpoints:
the logical or functional organization—what the pieces are, what they do
and how they are connected—and the physical structure—what the
pieces look like and how they are built. The goal of this chapter is to
understand what a computer is, see what’s inside, learn what each part
does, and get a sense of what the myriad acronyms and numbers
mean.

Think about your own computing devices. Many readers will have
some kind of <PC,= that is, a laptop or desktop computer descended
from the Personal Computer that IBM first sold in 1981, running some
version of the Windows operating system from Microsoft. Others will
have an Apple Macintosh that runs a version of the macOS operating
system. Still others might have a Chromebook running Chrome OS that
relies on the Internet for most of its storage and computation. More
specialized devices like smartphones, tablets and ebook readers are
also powerful computers. These all look different and when you use
them they feel different as well, but underneath the skin, they are
fundamentally the same. We’ll talk about why.

There’s a loose analogy to cars. Functionally, cars have been the
same for well over a hundred years. A car has an engine that uses
some kind of fuel to make the engine run and the car move. It has a
steering wheel that the driver uses to control the car. There are places
to store the fuel and places to store the passengers and their goods.



Physically, however, cars have changed greatly over a century: they are
made of different materials, and they are faster, safer, and much more
reliable and comfortable. There’s a world of difference between my first
car, a well-used 1959 Volkswagen Beetle, and a Ferrari, but either one
will carry me and my groceries home from the store or across the
country, and in that sense they are functionally the same. (For the
record, I have never even sat in a Ferrari, let alone owned one, so I’m
speculating about whether there’s room for the groceries. I did park next
to one once— Figure 1.1.)

Figure 1.1: The closest I’ve ever come to a Ferrari.

The same is true of computers. Logically, today’s computers are very
similar to those of the 1950s, but the physical differences go far beyond
the kinds of changes that have occurred with the automobile. Today’s



computers are much smaller, cheaper, faster and more reliable than
those of 60 or 70 years ago, literally a million times better in some
properties. Such improvements are the fundamental reason why
computers are so pervasive.

The distinction between the functional behavior of something and its
physical properties—the difference between what it does and how it’s
built or works inside— is an important idea. For computers, the <how it’s
built= part changes at an amazing rate, as does how fast it runs, but the
<what it does= part is quite stable. This distinction between an abstract
description and a concrete implementation will come up repeatedly in
what follows.

I sometimes do a survey in my class in the first lecture. How many
have a PC? How many have a Mac? The ratio was fairly constant at 10
to 1 in favor of PCs in the early 2000s, but changed rapidly over a few
years, to the point where Macs now account for well over three quarters
of the computers. This is not typical of the world at large, however,
where PCs dominate by a wide margin.

Is the ratio unbalanced because one is superior to the other? If so,
what changed so dramatically in such a short time? I ask my students
which kind is better, and for objective criteria on which to base that
opinion. What led you to your choice when you bought your computer?

Naturally, price is one answer. PCs tend to be cheaper, the result of
fierce competition in a marketplace with many suppliers. A wider range
of hardware add-ons, more software, and more expertise are all readily
available. This is an example of what economists call a network effect:
the more other people use something, the more useful it will be for you,
roughly in proportion to how many others there are.

On the Mac side are perceived reliability, quality, esthetics, and a
sense that <things just work,= for which many consumers are willing to
pay a premium.

The debate goes on, with neither side convincing the other, but it
raises some good questions and helps to get people thinking about
what is different between various kinds of computing devices and what
is really the same.

There’s an analogous debate about phones. Almost everyone has a
<smartphone= that can run programs (<apps=) downloaded from Apple’s
App Store or the Google Play Store. The phone serves as a browser, a
mail system, a watch, a camera, a music and video player, a voice
recorder, a map, a navigator, a comparison shopping tool, and even



occasionally a device for conversation. Typically about three quarters of
my students have an iPhone; almost all the rest have an Android phone
from one of many suppliers. iPhones are more expensive but offer
smooth integration with Apple’s ecosystem of computers, tablets,
watches, music players, and cloud services, another example of a
network effect. Rarely, someone admits to having only a <feature
phone,= which is defined as a phone that has no features beyond the
ability to make phone calls. My sample is for the US and a
comparatively affluent environment; in other environments and other
parts of the world, Android phones would be much more common.

Again, people have good reasons—functional, economic, esthetic—
for choosing one kind of phone over others but underneath, just as for
PCs versus Macs, the hardware that does the computing is very similar.
Let’s look at why.

1.1 Logical Construction

If we were to draw an abstract picture of a simple generic computer
—its logical or functional architecture—it would look like the diagram in
Figure 1.2 for both a Mac and a PC: a processor, some primary
memory, some secondary storage, and a variety of other components,
all connected by a set of wires called a bus that carries information
between them.

If instead we drew this picture for a phone or tablet, it would be
similar, though mouse, keyboard and display are combined into one
component, the screen, and there are many hidden components like a
compass, an accelerometer, and a GPS receiver for determining your
physical location.

The basic organization—a processor, memory and storage for
instructions and data, and input and output devices—has been standard
since the 1940s. It’s often called the von Neumann architecture, after
John von Neumann, who described it in the 1946 paper quoted above.
Though there is still occasional debate over whether von Neumann gets
too much credit for work done by others, the paper is so clear and
insightful that it is well worth reading even today. For example, the
quotation at the beginning of this chapter is the first sentence of the
paper. Translated into today’s terminology, the processor provides
arithmetic and control, the primary memory and secondary storage are



memory-storage, and the keyboard, mouse and display interact with the
human operator.

Figure 1.2: Architectural diagram of a simple idealized computer.

A note on terminology: the processor has historically been called the
CPU or central processing unit, but is now more often just <processor.=
The primary memory is often called RAM or random access memory,
and secondary storage is often disk or drive, reflecting different physical
implementations. I’ll mostly use the words processor, memory and
storage, but with occasional lapses into the older terms.

1.1.1 Processor

The processor is the brain, if a computer could be said to have such
a thing. The processor does arithmetic, moves data around, and
controls the operation of the other components. The processor has a
limited repertoire of basic operations that it can perform but it does them
blazingly fast, billions per second. It can decide what operations to do
next based on the results of previous computations, so it is to a
considerable degree independent of its human users. We will spend
more time on this component in Chapter 3 because it’s so important.

If you go to a store or shop online to buy a computer, you’ll find most
of these components mentioned, usually accompanied by mysterious
acronyms and equally mysterious numbers. For example, you might
see a processor described as a <2.2 GHz dual-core Intel Core i7,= as it
is for one of my computers. What’s that? Intel makes the processor and
<Core i7= is Intel’s name for an extensive line of processors. This
particular processor has two processing units in a single package; in



this context, lower case <core= has become a synonym for <processor.=
A core is a processor in its own right, but the CPU may have several
cores that can work together or independently to compute faster. For
most purposes, it’s sufficient to think of the combination as <the
processor,= no matter how many cores it has.

<2.2 GHz= is the more interesting part. Processor speed is measured,
at least approximately, in terms of the number of operations or
instructions or parts thereof that it can do in a second. The processor
uses an internal clock, rather like a heartbeat or the ticking of a clock, to
step through its basic operations. One measure of speed is the number
of such ticks per second. One beat or tick per second is called one
hertz (abbreviated Hz), after the German engineer Heinrich Hertz,
whose 1888 discovery of how to produce electromagnetic radiation led
directly to radio and other wireless systems. Radio stations give their
broadcast frequencies in megahertz (millions of hertz), like 102.3 MHz.
Computers today typically run in the billions of hertz, or gigahertz, or
GHz; my quite ordinary 2.2 GHz processor is zipping along at
2,200,000,000 ticks per second. The human heartbeat is about 1 Hz or
almost 100,000 beats per day, which is around 30 million per year. So
each core in my processor does in 1 second the number of beats my
heart would do in 70 years.

This is our first encounter with some of the numerical prefixes like
mega and giga that are so common in computing. <Mega= is one million,
or 106; <giga= is one billion, or 109, and pronounced with a hard <g= as in
<gig.= We’ll see more units soon enough, and there is a complete table
in the glossary.

1.1.2 Primary memory

The primary memory stores information that is in active use by the
processor and other parts of the computer; its contents can be changed
by the processor. The primary memory stores not only the data that the
processor is currently working on, but also the instructions that tell the
processor what to do with that data. This is a crucially important point:
by loading different instructions into memory, we can make the
processor do a different computation. This makes the stored-program
computer a general-purpose device; the same computer can run a word
processor and a spreadsheet, surf the web, send and receive email,
keep up with friends on Facebook, do my taxes, and play music, all by



placing suitable instructions in the memory. The importance of the
stored-program idea cannot be overstated.

The primary memory provides a place to store information while the
computer is running. It stores the instructions of programs that are
currently active, like Word, Photoshop or a browser. It stores their data
—the documents being edited, the pictures on the screen, the music
that’s currently playing. It also stores the instructions of the operating
system—Windows, macOS or something else—that operates behind
the scenes to let you run multiple applications at the same time. We’ll
talk about applications and operating systems in Chapter 6.

The primary memory is called random access memory or RAM
because the processor can access the information stored at any place
within it as quickly as in any other; to over-simplify a little, there’s no
speed penalty for accessing memory locations in a random order.
Though they passed from the scene long ago, you might remember
VCR tapes, where to look at the end of a movie, you had to fast forward
(slowly!) over everything from the beginning; that’s called sequential
access.

Most RAM is volatile, that is, its contents disappear if the power is
turned off, and all of the currently active information is lost. That’s why
it’s prudent to save your work often, especially on a desktop machine,
where tripping over the power cord could be a real disaster.

Your computer has a fixed amount of primary memory. Capacity is
measured in bytes, where a byte is an amount of memory that’s big
enough to hold a single character like W or @, or a small number like 42,
or a part of a larger value. Chapter 2 will show how information is
represented in memory and other parts of a computer, since it’s one of
the fundamental issues in computing. But for now, you can think of the
memory as a large collection of identical little boxes, numbered up to a
few billion, each of which can hold a small amount of information.

What is the capacity? The laptop I’m using right now has 8 billion
bytes or 8 gigabytes or 8 GB of primary memory, which is perhaps too
small. The reason is that more memory usually translates into faster
computing, since there’s never enough for all the programs that want to
use it at the same time, and it takes time to move parts of an inactive
program out to make room for something new. If you want your
computer to run faster, buying extra RAM is likely to be the best
strategy, at least if the memory is upgradable—it might not be.



1.1.3 Secondary storage

The primary memory has a large but limited capacity to store
information; its contents disappear when the power is turned off.
Secondary storage holds information even when the power is off. There
are two main kinds of secondary storage: the older magnetic disk,
called the hard disk or hard drive, and the newer form called the solid
state drive or SSD. Both kinds of drive store much more information
than the primary memory and it’s not volatile: information on either kind
of drive stays there even if there is no power. Data, instructions, and
everything else is stored on secondary storage for the long term and
brought into primary memory only transiently.

Magnetic disks store information by setting the direction of
magnetization of tiny regions of magnetic material on rotating metallic
surfaces. Data is stored in concentric tracks that are read and written by
a sensor that moves from track to track. The whirring and clicking that
you heard when an older computer was doing something is the disk in
action, moving the sensor to the right places on the surface. The disk
surface rotates at high speed, at least 5, 400 revolutions per minute.
You can see the surface and sensor in the picture of a standard laptop
disk in Figure 1.3; the platter is 2.5 inches (6.35 cm) in diameter.

Disk storage is about 100 times cheaper per byte than RAM, but
accessing information is slower. It takes about ten milliseconds for the
disk drive to access any particular track on the surface; data is then
transferred at roughly 100 MB per second.

Ten years ago, almost all laptops had magnetic disks. Today almost
all have SSD, which uses flash memory instead of rotating machinery.
Flash memory is non-volatile; information is stored as electric charges
in circuitry that maintains the charge in individual circuit elements even
when the power is off. Stored charges can be read to see what their
values are, and they can be erased and overwritten with new values.
Flash memory is faster, lighter, more reliable, won’t break if dropped,
and requires less power than conventional disk storage, so it’s also
used in cell phones, cameras, and the like. It’s still more expensive per
byte but prices are coming down and the advantages are so compelling
that SSD has pretty much taken over from mechanical disks in laptops.

A typical laptop SSD holds 250 to 500 gigabytes. External drives that
can be plugged in to a USB socket have capacities in the multi-terabyte



(TB) range; they are still based on rotating machinery. <Tera= is one
trillion, or 1012, another unit that you’ll see often.

Figure 1.3: Inside a hard disk drive.

How big is a terabyte, or even a gigabyte for that matter? One byte
holds one alphabetic character in the most common representation of
English text. Pride and Prejudice, about 250 pages on paper, has about
680,000 characters, so 1 GB could hold nearly 1,500 copies of it. More
likely, I would store one copy and then include some music. Music in
MP3 format is about 1 MB per minute, so an MP3 version of one of my
favorite audio CDs, The Jane Austen Songbook, is about 60 MB, and
there would still be room for another 15 hours of music in one gigabyte.
The two-disk DVD of the 1995 BBC production of Pride and Prejudice
with Jennifer Ehle and Colin Firth is less than 10 GB, so I could store it
and a hundred similar movies in one terabyte.

A disk drive is a good example of the difference between logical
structure and physical implementation. Programs like File Explorer on
Windows or Finder on macOS display the contents of a drive as a
hierarchy of folders and files. But the data could be stored on rotating



machinery, integrated circuits with no moving parts, or something else
entirely. The particular kind of drive in a computer doesn’t matter.
Hardware in the drive itself and software in the operating system, called
the file system, work together to create the organizational structure. We
will return to this in Chapter 6.

The logical organization is so well matched to people (or, more likely,
by now we’re so completely used to it) that other devices provide the
same organization even though they use completely different physical
means to achieve it. For example, the software that gives you access to
information from a CD-ROM or DVD makes it look like this information
is stored in a file hierarchy, regardless of how it is physically stored. So
do USB devices, cameras and other gadgets that use removable
memory cards. Even the venerable floppy disk, now totally obsolete,
looked the same at the logical level. This is a good example of
abstraction, a pervasive idea in computing: physical implementation
details are hidden. In the file system case, no matter how the different
technologies work, the contents are presented to users as a hierarchy
of files and folders.

1.1.4 Et cetera

Myriad other devices serve special functions. Mice, keyboards, touch
screens, microphones, cameras and scanners all allow users to provide
input. Displays, printers and speakers output to users. Networking
components like Wi-Fi or Bluetooth communicate with other computers.
A variety of assistive technologies help people cope with vision, hearing
or other access problems.

The architecture drawing in Figure 1.2 shows these as if they were all
connected by a set of wires called a bus, a term borrowed from
electrical engineering. In reality, there are multiple buses inside a
computer, with properties appropriate to their function—short, fast, and
expensive between processor and memory; long, slow, but cheap to the
headphone jack. Some of the buses make an appearance outside as
well, like the ubiquitous Universal Serial Bus or USB for plugging
devices into a computer.

We won’t spend much time on other devices at the moment, though
we’ll occasionally mention them in some specific context. For now, try to
list the different devices that might accompany your computer or be
attached to it: mice, keyboards, touchpads and touch screens, displays,



printers, scanners, game controllers, headphones, speakers,
microphones, cameras, phones, fingerprint sensors, connections to
other computers. The list goes on and on. All of these have gone
through the same evolution as processors, memory, and disk drives: the
physical properties have changed rapidly, usually towards more
capabilities in a smaller package at a lower price.

It’s also worth noting how these devices are converging into a single
one. Cell phones now serve as watches, calculators, still and video
cameras, music and movie players, game consoles, barcode readers,
navigators, and even flashlights. A smart-phone has the same abstract
architecture as a laptop, though with major implementation differences
due to size and power constraints. Phones don’t have hard disks like
the one shown in Figure 1.3, but they do have flash memory to store
information— contact lists, pictures, apps, and the like—when the
phone is turned off. They don’t have many external devices either,
though there’s likely a socket for headphones, and a USB connector.
Tiny cameras are so cheap that most phones have one on each side.
Tablets like the iPad and its competitors occupy another position in the
space of possibilities; they too are computers with the same general
architecture and similar components.

1.2 Physical Construction

In class, I pass around a variety of hardware devices (the legacy of
decades of dumpster diving), with their innards exposed. So many
things in computing are abstract that it’s helpful to be able to see and
touch disks, integrated circuit chips, the wafers on which they are
manufactured, and so on. It’s also interesting to see the evolution of
some of these devices. For example, a laptop hard drive today is
indistinguishable from one a decade or two old; the newer one is likely
to have 10 or 100 times the capacity but the improvement is invisible.
The same is true of Secure Digital (SD) cards like those used in digital
cameras. Today’s packages are identical to those of a few years ago
(Figure 1.4), but the capacity is much higher and the price is lower; that
32 GB card costs less than 10 dollars.



Figure 1.4: SD cards of very different capacities.

On the other hand, there’s a clear progression in the circuit boards
that hold the components of a computer; there are fewer components
today because more of the circuitry is inside them, the wiring is finer,
and the connecting pins are more numerous and much closer together
than they were 20 years ago.

Figure 1.5: PC circuit board, circa 1998; 12 x 7.5 inches (30 x 19
cm).



Figure 1.5 shows a desktop PC circuit board from the late 1990s.
The components like the processor and the memory are mounted on or
plugged into this board, and are connected by wires printed on the other
side. Figure 1.6 shows part of the back side of the circuit board in
Figure 1.5; the parallel printed wires are buses of various sorts.

Figure 1.6: Buses on printed circuit board.

Electronic circuits in computers are built from large numbers of a
handful of basic elements. The most important of these is the logic gate,
which computes a single output value based on one or two input values;
it uses input signals like voltage or current to control an output signal,
also voltage or current. Given enough of such gates connected in the
right way, it’s possible to perform any kind of computation. Charles
Petzold’s book Code is a nice introduction to this, and numerous web
sites offer graphical animations that show how logic circuits can do
arithmetic and other computations.



The fundamental circuit element is the transistor, a device invented
at Bell Labs in 1947 by John Bardeen, Walter Brattain and William
Shockley, who shared the 1956 Nobel Prize in physics for their
invention. In a computer, a transistor is basically a switch, a device that
can turn a current on or off under the control of a voltage; with this
simple foundation, arbitrarily complicated systems can be constructed.

Logic gates used to be built from discrete components—vacuum
tubes the size of light bulbs in ENIAC and individual transistors about
the size of a pencil eraser in the computers of the 1960s. Figure 1.7
shows a replica of the first transistor (on the left), a vacuum tube, and a
processor in its package; the actual circuit part is at the center and is
about 1 cm square; the vacuum tube is about 4 inches (10 cm) long. A
modern processor of this size would contain several billion transistors.

Logic gates are created on integrated circuits or ICs, often called
chips or microchips. An integrated circuit has all the components and
wiring of an electronic circuit on a single flat surface (a thin sheet of
silicon) that is manufactured by a complex sequence of optical and
chemical processes to produce a circuit that has no discrete pieces and
no conventional wires. ICs are thus much smaller and far more robust
than discrete-component circuitry. Chips are fabricated en masse on
circular wafers about 12 inches (30 cm) in diameter; the wafers are
sliced into separate chips that are individually packaged. A typical chip
(Figure 1.7, bottom right) is mounted in a larger package with dozens to
hundreds of pins that connect it to the rest of the system. Figure 1.8
shows an integrated circuit in its package; the actual processor is at the
center, and is about 1 cm square.



Figure 1.7: Vacuum tube, first transistor, processor chip in
package.

The fact that integrated circuits are based on silicon led to the
nickname Silicon Valley for the region in California south of San
Francisco where the integrated circuit business first took off; it’s now a
shorthand for all the high-tech businesses in the area, and the
inspiration for dozens of wannabes like Silicon Alley in New York and
Silicon Fen in Cambridge, England.

ICs were independently invented around 1958 by Robert Noyce and
Jack Kilby; Noyce died in 1990, but Kilby shared the 2000 Nobel Prize
in physics for his role. Integrated circuits are central to digital
electronics, though other technologies are used as well: magnetic
storage for disks, lasers for CDs and DVDs, and optical fiber for
networking. All of these have had dramatic improvements in size,
capacity and cost over the past 50 or 60 years.



Figure 1.8: Integrated circuit chip.

1.3 Moore’s Law

In 1965, Gordon Moore, later the co-founder and long-time CEO of
Intel, published a short article entitled <Cramming more components
onto integrated circuits.= Extrapolating from a very few data points,
Moore observed that as technology improved, the number of transistors
that could be manufactured on an integrated circuit of a particular size
was doubling approximately every year, a rate that he later revised to
every two years, and others have set at 18 months. Since the number
of transistors is a rough surrogate for computing power, this meant that
computing power was doubling every two years, if not faster. In 20
years there would be ten doublings and the number of devices would
have increased by a factor of 210, that is, about one thousand. In forty
years, the factor is a million or more.



This exponential growth, now known as Moore’s Law, has been
going on for nearly sixty years, so integrated circuits now have well over
a million times as many transistors as they did in 1965. Graphs of
Moore’s Law in action, especially for processor chips, show the number
of transistors rising from a couple of thousand in Intel’s 8008 processor
in the early 1970s to billions in the processors in inexpensive consumer
laptops today.

The single number that best characterizes the scale of circuitry is the
size of individual features on an integrated circuit, for example, the
width of a wire or the active part of a transistor. This number has been
shrinking steadily for many years. The first (and only) integrated circuit I
ever designed used 3.5 micron (3.5 micrometer) features in 1980. For
many ICs in 2021, the minimum feature size is 7 nanometers, that is, 7
billionths of a meter, and the next step will be 5 nanometers. <Milli= is
one thousandth, or 10−3; <micro= is one millionth, or 10−6; <nano= is one
billionth, or 10−9, and nanometer is abbreviated nm. For comparison, a
sheet of paper or a human hair is about 100 micrometers or 1/10th of a
millimeter thick.

If the width of features on an integrated circuit shrinks by a factor of
1,000, then the number of components in a given area increases by the
square, that is, by a factor of a million. That factor is what takes a
thousand transistors in an older technology into a billion in newer
technology.

The design and manufacture of integrated circuits is an extremely
sophisticated business, and highly competitive. Manufacturing
operations (<fabrication lines=) are expensive as well; a new factory can
cost billions of dollars. A company that can’t keep up technically and
financially is at a competitive disadvantage, and a country that doesn’t
have such resources must depend on others for its technology,
potentially a serious strategic problem.

Moore’s Law is not a law of nature, but a guideline that the
semiconductor industry has used to set targets. At some point the law
will stop working. Its limits have often been predicted in the past, though
ways around them have been found so far. We are getting to the point
where there are only a handful of individual atoms in some circuits,
however, and that’s too small to control.

Processor speeds are not growing much, certainly no longer doubling
every couple of years, in part because faster chips generate too much



heat, but memory capacity still does increase. Meanwhile, processors
can use more transistors by placing more than one processor core on a
chip, and systems often have multiple processor chips; the growth is in
the number of cores, not in how fast individual ones run.

It’s striking to compare a personal computer of today to the original
IBM PC, which appeared in 1981. That PC had a 4.77 MHz processor;
the clock rate in a 2.2 GHz processor core is nearly 500 times faster,
and there are likely two or four cores. It had 64 kilobytes of RAM;
today’s 8 GB computers have 125,000 times as much. (<Kilo= is one
thousand, abbreviated <K=.) The first PC had at most 750 KB of floppy
disk storage and no hard disk; today’s laptops are creeping up on a
million times as much secondary storage. The PC had an 11-inch
screen that could only display 24 rows of 80 green letters on a black
background; I wrote much of this book on a 24-inch screen with 16
million colors. A PC with 64 KB of memory and a single 160 KB floppy
disk cost $3,000 in 1981 dollars, which now might be equivalent to
$10,000; today a laptop with a 2 GHz processor, 8 GB of RAM, and a
256 GB solid state drive costs a few hundred dollars.

1.4 Summary

Computer hardware, indeed digital hardware of all sorts, has been
improving exponentially for sixty years, starting with the invention of the
integrated circuit. The word <exponential= is often misunderstood and
misused, but in this case it’s accurate; over every fixed period of time,
circuits have consistently gotten smaller or cheaper or more capable by
a given percentage. The simplest version is Moore’s Law: every 18
months or so the number of devices that can be put on an integrated
circuit of a given size approximately doubles. This tremendous growth
in capabilities is at the heart of the digital revolution that has changed
our lives so much.

This growth in capability and capacity has also changed our notions
of what computing and computers are. The first computers were viewed
as number crunchers, suitable for ballistics, weapon design, and other
scientific and engineering computations. The next use was business
data processing—computing payrolls, generating invoices, and so on,
and then as storage became cheaper, managing the databases that
kept track of the information needed for computing those payrolls and



bills. With the advent of the PC, computers became cheap enough that
anyone could afford one and they began to be used for personal data
processing, keeping track of home finances, and word processing tasks
like writing letters. Not long after that, they also began to be used for
entertainment: playing music CDs, and especially for games. And when
the Internet appeared, our computers became communications devices
as well, providing mail, the web, and social media.

The basic architecture of a computer—what the pieces are, what
they do, and how they are connected to each other—has not changed
since the 1940s. If von Neumann were to come back and examine one
of today’s computers, I conjecture that he would be stunned by the
capabilities and the applications of modern hardware but he would find
the architecture completely familiar.

Computers used to be physically huge, occupying large air-
conditioned rooms, but they have shrunk steadily. Laptops today are
about as small as they can get while remaining useful. The computers
inside our phones are just as powerful, and phones are also about as
small as they can reasonably be. The computers inside our gadgets are
tiny too, as are the gadgets themselves in many cases. At the other end
of the spectrum, we routinely deal with <computers= that live in data
centers (back to the air-conditioned rooms) somewhere. We shop,
search, and talk with friends using those computers, without even
thinking of them as computers, let alone worrying about where they
might be. They are just <there= somewhere in the cloud.

One of the great insights of 20th century computer science is that the
logical or functional properties of today’s digital computers, the original
PC, its physically much bigger but less powerful ancestors, our
ubiquitous phones, our computer-enabled devices, and the servers that
provide cloud computing are all the same. If we ignore practicalities like
speed and storage capacity, they all can compute exactly the same
things. Thus, improvements in hardware make a great practical
difference in what we can compute, but surprisingly do not of
themselves make any fundamental change in what could be computed
in principle. We’ll talk more about this in Chapter 3.





2
Bits, Bytes, and Representation of Information

<If the base 2 is used the resulting units may be called binary
digits, or more briefly bits, a word suggested by J. W. Tukey.=

Claude Shannon, A Mathematical Theory of Communication,
1948.

In this chapter we’re going to discuss three fundamental ideas about
how computers represent information.

First, computers are digital processors: they store and process
information that comes in discrete chunks and takes on discrete values
—basically just numbers. By contrast, analog information implies
smoothly varying values.

Second, computers represent information in bits. A bit is a binary
digit, that is, a number that is either 0 or 1. Everything inside the
computer is represented with bits instead of the familiar decimal
numbers that people use.

Third, groups of bits represent larger things. Numbers, letters, words,
names, sounds, pictures, movies, and the instructions that make up the
programs that process them—all of these are represented as groups of
bits.

You can safely skip the numeric details in this chapter, but the ideas
are important.

2.1 Analog versus Digital

Let’s distinguish between analog and digital. <Analog= comes from
the same root as <analogous,= and is meant to convey the idea of
values that change smoothly as something else changes. Much of what
we deal with in the real world is analog, like a water tap or the steering
wheel of a car. If you want to turn the car a little, you turn the wheel a
little; you can make as small an adjustment as you like. Compare this to
the turn signal, which is either on or off; there’s no middle ground. In an



analog device, something (how much the car turns) varies smoothly and
continuously in proportion to a change in something else (how much
you turn the steering wheel). There are no discrete steps; a small
change in one thing implies a small change in another.

Digital systems deal with discrete values, so there are only a fixed
number of possible values: the turn signal is either off or it’s on in one
direction or the other. A small change in something results either in no
change or in a sudden change in something else, from one of its
discrete values to another.

Think about a watch. Analog watches have an hour hand, a minute
hand, and a second hand that goes around once a minute. Although
modern watches are controlled by digital circuitry inside, the hour and
minute hands move smoothly through every possible position as time
passes. By contrast, a digital watch or a cell phone clock displays time
with digits. The display changes every second, a new minute value
appears every minute, and there’s never a fractional second.

Think about a car speedometer. My car has a traditional analog
speedometer, where a needle moves smoothly in direct proportion to
the car’s speed. The transitions from one speed to another are smooth
and there’s no break. But it also has a digital display that shows speed
to the nearest mile or kilometer per hour. Go a tiny bit faster and the
display goes from 65 to 66; go a tiny bit slower and it drops back to 65.
There’s never a display of 65.5.

Think about a thermometer. The kind with a column of red liquid
(colored alcohol, usually) or mercury is analog: the liquid expands or
contracts in direct proportion to temperature changes, so a small
change in temperature will produce a similarly small change in the
height of the column. But the sign that flashes 37° outside a building is
digital: the display is numeric, and it shows 37 for all temperatures
between 36½ and 37½.

This can lead to some odd situations. Years ago, I was listening to
my car radio on a US highway within reception distance of Canada,
which uses the metric system. The announcer, trying to be helpful to
everyone in his audience, said <the Fahrenheit temperature has gone
up one degree in the last hour; the Celsius temperature is unchanged.=

Why digital instead of analog? After all, our world is analog, and
analog devices like watches and speedometers are easier to interpret at
a glance. Nevertheless, much modern technology is digital; in many
ways, that’s the story told in this book. Data from the external world—



sound, images, movement, temperature, and everything else—is
converted as soon as possible to a digital form on the input side, and is
converted back to analog form as late as possible on the output side.
The reason is that digital data is easy for computers to work with. It can
be stored, transported, and processed in many ways regardless of its
original source. As we’ll see in Chapter 8, digital information can be
compressed by squeezing out redundant or unimportant information. It
can be encrypted for security and privacy, it can be merged with other
data, it can be copied exactly, it can be shipped anywhere via the
Internet, and it can be stored in an endless variety of devices. Most of
this is infeasible or even impossible with analog information.

Digital systems have another advantage over analog: they are much
more easily extended. In stopwatch mode, my digital watch can display
elapsed times to a hundredth of a second; adding that capability to an
analog watch would be challenging. On the other hand, analog systems
sometimes have the advantage: old media like clay tablets, stone
carvings, parchment, paper and photographic film have all stood the
test of time in a way that digital forms may not.

2.2 Analog-Digital Conversion

How do we convert analog information into digital form? Let’s look at
some of the basic examples, beginning with pictures and music, which
between them illustrate the most important ideas.

2.2.1 Digitizing images

Conversion of images to digital form is probably the easiest way to
visualize the process. Suppose we take a picture of the family cat
(Figure 2.1).



Figure 2.1: The family cat in 2020.

An analog camera creates an image by exposing a light-sensitive
area of chemical-coated plastic film to light from the object being
photographed. Different areas receive different amounts of light of
different colors, and that affects dyes in the film. The film is developed
and printed on paper through a complicated sequence of chemical
processes; the colors are displayed as varying amounts of colored
dyes.

In a digital camera, the lens focuses the image onto a rectangular
array of tiny light-sensitive detectors that lie behind red, green and blue
filters. Each detector stores an amount of electric charge that is
proportional to the amount of light that falls on it. These charges are
converted into numeric values and the digital representation of the
picture is the sequence of resulting numbers that represent the light
intensities. If the detectors are more numerous and the charges are
measured more precisely, then the digitized image will capture the
original more accurately.



Each element of the sensor array is a trio of detectors that measure
the amount of red, green and blue light; each group is called a pixel, for
picture element. If the image is 4,000 by 3,000 pixels, that’s twelve
million picture elements, or twelve megapixels, small for today’s digital
cameras. The color of a pixel is usually represented by three values that
record the intensities of red, green and blue that it contains, so a twelve
megapixel image has 36 million light intensity values altogether.
Screens display images on arrays of triplets of tiny red, green and blue
lights whose brightness levels are set by the corresponding levels in the
pixel; if you look at the screen of a phone, computer or TV with a
magnifying glass, you can see the individual colored spots, somewhat
like those in Figure 2.2. If you’re close enough, you can see the same
thing on stadium screens and digital billboards.

Figure 2.2: RGB pixels.

2.2.2 Digitizing sound

The second example of analog-to-digital conversion is sound,
especially music. Digital music is a nice example because it was one of
the first areas where the properties of digital information began to have
major social, economic and legal implications. Unlike vinyl records or
audio tape cassettes, digital music can be copied perfectly on any home
computer as many times as desired, for free, and the perfect copies can
be sent anywhere in the world without error via the Internet, also for
free. The recorded music industry saw this as a serious threat and
began a campaign of legal and political action to try to suppress
copying. The war is not over—skirmishes are still fought in courts and



political arenas—but the advent of streaming music services like Spotify
has reduced the problem. We’ll come back to this in Chapter 9.

What is sound? A sound source creates fluctuations in air pressure
by vibration or other rapid motion, and our ears convert the pressure
changes into neural activity that our brains interpret as sound. In the
1870s, Thomas Edison built a device that he called a <phonograph,=
which converted the fluctuations into a pattern of grooves in a wax
cylinder that could be used later to recreate the air pressure
fluctuations. Converting a sound into a pattern of grooves was
<recording=; converting from the pattern to fluctuations in air pressure
was <playback.= Edison’s invention was rapidly refined, and by the
1940s had evolved into the long-playing record or LP (Figure 2.3),
which is still in use today, though primarily by retro sound enthusiasts.

LPs are vinyl disks with long spiral grooves that encode variations in
sound pressure over time. A microphone measures variations in
pressure as a sound is produced. These measurements are used to
create a pattern on the spiral groove. When the LP is played, a fine
needle follows the pattern in the groove and its motion is converted into
a fluctuating electrical current that is amplified and used to drive a
loudspeaker or an earphone, devices that create sound by vibrating a
surface.



Figure 2.3: LP (<long-playing=) record.

It’s easy to visualize sound by plotting how air pressure changes with
time, as in the graph in Figure 2.4. The pressure can be represented in
any number of physical ways: voltage or current in an electronic circuit,
brightness of a light, or a purely mechanical system as it was in
Edison’s original phonograph. The height of the sound pressure wave is
the sound intensity or loudness, and the horizontal dimension is time;
the number of waves per second is the pitch or frequency.

Figure 2.4: Sound waveform.

Suppose we measure the height of the curve—the air pressure at the
microphone, perhaps—at regular intervals, as indicated by the vertical
lines in Figure 2.5.

The measurements provide a sequence of numeric values that
approximate the curve; the more often and the more precisely we
measure, the more accurate the approximation will be. The resulting
sequence of numbers is a digital representation of the waveform that
can be stored, copied, manipulated and shipped elsewhere. We can do
playback with a device that converts the numeric values into a matching
pattern of voltage or current to drive a speaker or earphone and thus
render it back into sound. Converting from the waveform to numbers is
analog-to-digital conversion and the device is called an A/D converter;
the other direction is of course digital-to-analog conversion, or D/A.
Conversion is never perfect; something is lost in each direction. For



most people the loss is imperceptible, though audiophiles claim that
digital sound is not as good as LPs.

Figure 2.5: Sampling a sound waveform.

The audio compact disc or CD appeared around 1982, and was the
first consumer example of digital sound. Rather than the analog groove
of an LP record, a CD records numbers in a long spiral track on one
side of the disk. The surface at each point along the track either is
smooth or has a tiny pit. These pitted or smooth spots are used to
encode the numeric values of the wave; each spot is a single bit, and a
sequence of bits represents the numeric value in a binary encoding, as
we will discuss in the next section. As the disk rotates, a laser shines on
the track and a photoelectric sensor detects changes in how much light
is reflected. If there’s not much light, there was a pit; if there’s a lot of
reflected light, there was no pit. The standard encoding for CDs uses
44,100 samples per second; each sample is two values (left side and
right side, for stereo) of amplitudes measured to an accuracy of one
part in 65,536, which is 216. The pits are so small that they can only be
seen with a microscope. DVDs are similar; smaller spots and a shorter
wavelength laser allow them to store nearly 5 GB, compared to about
700 MB for a CD.

The audio CD almost drove the LP out of existence because it was
so much better in most ways—not subject to wear because there is no
physical contact from the laser, not much bothered by dirt or scratches,
not fragile, and definitely compact. LPs periodically enjoy a modest



renaissance, while CDs of popular music are in serious decline because
it’s easier and cheaper to download music from the Internet. CDs had a
second career as a storage and distribution medium for software and
data, but that was superseded by DVDs, which in turn have largely
been replaced by Internet storage and downloading. To many readers,
audio CDs may seem as antique as LPs. Nevertheless I am happy that
my music collection is entirely on CDs (though they are also stored in
MP3 format on removable hard drives). I own them outright, which is
not true of music collections <in the cloud.= And manufactured CDs will
outlast me, though copied ones may not, because they rely on a
chemical change in a light-sensitive dye whose properties may change
overtime.

Because they contain more detail than humans can perceive, sound
and images can be compressed. For music, this is done with
compression techniques like MP3 and AAC (Advanced Audio Coding),
which reduce the size by a factor of 10 with little perceptible
degradation. For images, the most common compression technique is
called JPEG, named after the Joint Photographic Experts Group, the
organization that defined it; it also shrinks an image by a factor of 10 or
more. Compression is an example of the kind of processing that can be
done on digital information but would be extremely difficult if not
impossible with analog. We’ll discuss compression further in Chapter 8.

2.2.3 Digitizing movies

What about movies? In the 1870s, the English photographer
Eadweard Muy-bridge showed how to create the illusion of motion by
displaying a sequence of still images one after another in rapid
succession. Today, a motion picture displays images at 24 frames per
second, and TV displays at 25 to 30 frames per second, which is fast
enough that the human eye perceives the sequence as continuous
motion. Video games are typically 60 frames per second. Old movies
used only a dozen frames per second so they had noticeable flicker;
that artifact lives on in the old word <flicks= for movies and today in the
name Netflix.

A digital representation of a movie combines and synchronizes the
sound and picture components. Compression can be used to reduce
the amount of space required, as in standard movie representations like
MPEG (<Moving Picture Experts Group=). In practice, video



representation is more complicated than audio, in part because it’s
intrinsically harder, but also because much of it is based on standards
for broadcast television, which for most of its lifetime was analog.
Analog television is being phased out in most parts of the world. In the
US, television broadcasting switched to digital in 2009; other countries
are in various stages of the process.

Movies and television shows are a combination of pictures and
sound, and commercial ones cost much more to produce than music
does. Yet it’s just as easy to make perfect digital copies and send them
around the world for free. So the copyright stakes are higher than for
music, and the entertainment industry continues its campaign against
copying.

2.2.4 Digitizing text

Some kinds of information are easy to represent in digital form, since
no transformation is needed beyond agreement on what the
representation is. Consider ordinary text, like the letters, numbers and
punctuation in this book. We could assign a unique number to each
different letter—A is 1, B is 2, and so on—and that would be a fine digital
representation. In fact, that’s exactly what is done, except that in the
standard representation, A through Z are 65 through 90, a through z are
97 through 122, the digits 0 through 9 are 48 through 57, and other
characters like punctuation take other values. This representation is
called ASCII, the American Standard Code for Information Interchange,
which was standardized in 1963.

Figure 2.6 shows part of ASCII; I’ve omitted the first four rows, which
contain tab, backspace and other non-printing characters.

Figure 2.6: ASCII characters and their numeric values.



There are multiple character-set standards in different geographic or
linguistic regions, but the world has more or less converged on a single
standard called Unicode, which specifies a unique numeric value for
every character in every language. This is a big collection, since
humans have been endlessly inventive but rarely systematic in their
creation of writing systems. Unicode has over 140,000 characters and
the number rises steadily. As might be imagined, Asian character sets
like Chinese account for a substantial part of Unicode, but by no means
all. The Unicode web site, unicode.org, has charts of all the characters;
it’s fascinating and well worth a detour.

The bottom line: a digital representation can represent all of these
kinds of information and indeed anything that can be converted into
numeric values. Since it is just numbers, it can be processed by digital
computers; as we will see in Chapter 9 it can be copied to any other
computer by the universal digital network, the Internet.

2.3 Bits, Bytes, and Binary

<There are only 10 kinds of people in the world—those who
understand binary numbers and those who don’t.=

Digital systems represent information of all types as numeric values,
but perhaps surprisingly, they do not use the familiar base ten (decimal)
number system internally. Instead they use binary numbers, that is,
numbers in base two.

Although everyone is more or less comfortable with arithmetic, in my
experience their understanding of what a number means is sometimes
shaky, at least when it comes to drawing the analogy between base ten
(totally familiar) and base two (not familiar to most). I’ll try to remedy this
problem in this section, but if things seem confused or confusing, keep
repeating to yourself, <It’s just like ordinary numbers, but with two
instead of ten.=

2.3.1 Bits

The most elemental way to represent digital information is with bits.
As noted in the quotation at the beginning of this chapter, the word bit is
a contraction of binary digit that was coined by the statistician John
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Tukey in the mid-1940s. It is said that Edward Teller, best known as the
father of the hydrogen bomb, preferred <bigit,= a term that mercifully
didn’t catch on.

The word <binary= suggests something with two values (the prefix <bi=
means two), and that is indeed the case: a bit is a digit that takes on
either the value 0 or the value 1, with no other possibilities. This can be
contrasted with the 10 possible values of the decimal digits 0 through 9.

With a single bit, we can encode or represent any choice that
involves selecting one of two values. Such binary choices abound:
on/off, true/false, yes/no, high/low, in/out, up/down, left/right,
north/south, east/west, and so on. A single bit is sufficient to identify
which one of the pair was selected. For example, we could assign 0 to
off and 1 to on, or vice versa, so long as everyone agrees on which
value represents which state.

Figure 2.7 shows the power switch on my printer and the standard
on-off symbol that is seen on many devices. It’s a Unicode character
too.

Figure 2.7: On-off switch and standard on-off symbol.

A single bit is enough to represent on/off, true/false and similar binary
choices but we need a way to deal with more choices or to represent
more complicated things. For that, we use a group of bits, assigning
meanings to the different possible combinations of 0’s and 1’s. For
example, we could use two bits to represent the four years of college in
the US—freshman (00), sophomore (01), junior (10) and senior (11). If
there were one more category, say graduate student, two bits is not
sufficient: there would be five possible values but only four different



combinations of two bits. Three bits would be enough, however, and in
fact could represent as many as eight different kinds of things, so we
could also include faculty, staff and post-doc. The combinations would
be 000, 001, 010, 011, 100, 101, 110, and 111.

There’s a pattern that relates the number of bits to the number of
items that can be labeled with that many bits. The relationship is simple:
if there are N bits, the number of different bit patterns is 2N, that is, 2 × 2
× ... × 2(N times), as in Figure 2.8.

Figure 2.8: Powers of 2.

This is directly analogous to decimal digits: with N decimal digits, the
number of different digit patterns (which we call <numbers=) is 10N, as in
Figure 2.9.

Figure 2.9: Powers of 10.

2.3.2 Powers of two and powers of ten



Since everything in a computer is handled in binary, properties like
sizes and capacities tend to be expressed in powers of two. If there are
N bits, there are 2N possible values, so it’s handy to know the powers of
two up to some value, say 210. Once the numbers get larger, they are
certainly not worth memorizing. Fortunately, Figure 2.10 shows that
there’s a shortcut that gives a good approximation: certain powers of
two are close to powers of ten, in an orderly way that’s easy to
remember. Figure 2.10 includes one more size prefix, <peta= or 1015; it’s
pronounced like <pet,= not <Pete.= The glossary at the end of the book
has a larger table with still more units.

Figure 2.10: Powers of 2 and powers of 10.

The approximation gets worse as the numbers get bigger, but it’s
only 12.6 percent too high at 1015, so it’s useful over a very wide range.
You’ll find that people often blur the distinction between the power of
two and the power of ten (sometimes in a direction that favors some
point that they are trying to make), so <kilo= or <1K= might mean one
thousand, or it might mean 210 or 1,024. This is usually a minor
difference, so the powers of two and ten are a good way to do mental
arithmetic on big numbers involving bits.

2.3.3 Binary numbers

A sequence of bits can represent a numeric value if the digits are
interpreted in the usual place-value sense, but using base 2 instead of
base 10. Ten digits, 0 through 9, are enough to assign labels to up to
ten items. If we need to go beyond ten, we must use more digits; with
two decimal digits, we can label up to 100 things, with labels 00 through
99. For more than 100 items, it’s on to three digits, which gives a range
of 1,000, from 000 to 999. We don’t normally write the leading zeroes



for ordinary numbers, but they are there implicitly. In daily life we also
start labeling at one, not zero.

Decimal numbers are shorthands for sums of powers of ten; for
example, 1867 is 1×103 + 8×102 + 6×101 + 7×100, which is 1×1000 +
8×100 + 6×10 + 7×1, which is 1000+800+60+7. In elementary school,
you might have called these the 1’s column, the 10’s column, the 100’s
column and so on. This is so familiar that we rarely think about it.

Binary numbers are the same except that the base is two instead of
ten, and the only digits involved are 0 and 1. A binary number like 11101
is interpreted as 1×24 + 1×23 + 1×22 + 0×21 + 1×20, which we express
in base ten as 16+8+4+0+1 or 29.

The fact that sequences of bits can be interpreted as numbers
means that there is a natural pattern for assigning binary labels to
items: put them in numeric order. We saw that above with the labels for
freshmen, sophomores, and so on: 00, 01, 10, 11, which in base ten
have the numeric values 0, 1, 2 and 3. The next sequence would be
000, 001, 010, 011, 100, 101, 110, 111, with numeric values from 0 to 7.

Here’s an exercise to confirm your understanding. We’re all familiar
with counting up to ten on our fingers, but how high can you count on
your fingers if you use binary numbers, with each finger and thumb (a
digit!) representing a binary digit? What’s the range of values? If the
binary representations of 4 and 132 remind you of something, you’ve
got the idea.

As you can see, it’s easy to convert binary to decimal: just add up the
powers of two for which the corresponding bit of the number is 1.
Converting decimal to binary is harder, but not by much. Repeatedly
divide the decimal number by two. Write down the remainder, which will
be either zero or one, and use the quotient as the next value to divide.
Keep going until the original number has been divided down to zero.
The sequence of remainders is the binary number, except it’s in reverse
order, so flip it end for end.

As an example, Figure 2.11 shows the conversion of 1867 to binary.
Reading the bits off backwards, we have 111 0100 1011, which we can
check by adding up the powers of two: 1024+512+256+64+8+2+1 =
1867.

Each step of this procedure produces the least significant (rightmost)
bit of the number that remains. It’s analogous to the process you would
go through to convert a large number in seconds into days, hours,



minutes and seconds: divide by 60 to get minutes (and the remainder is
the number of seconds); divide the result by 60 to get hours (and the
remainder is the number of minutes); divide the result by 24 to get days
(and the remainder is the number of hours). The difference is that time
conversions do not use a single base, but mix bases of 60 and 24.

Figure 2.11: Conversion of decimal 1867 to binary 11101001011.

You can also convert decimal to binary by subtracting decreasing
powers of two from the original number, starting with the highest power
of two that the number contains, like 210 in 1867. Each time a power is
subtracted, write 1, or if the power is too big, write 0, as with 27 or 128
in the example above. At the end the sequence of 1’s and 0’s will be the
binary value. This approach is perhaps more intuitive but not so
mechanical.

Binary arithmetic is easy. Since there are only two digits to work with,
the addition and multiplication tables have only two rows and two
columns, as shown in Figure 2.12. It’s unlikely that you’ll ever need to



do binary arithmetic yourself, but the simplicity of these tables hints at
why computer circuitry for binary arithmetic is much simpler than it
would be for decimal arithmetic.

Figure 2.12: Binary addition and multiplication tables.

2.3.4 Bytes

In all modern computers, the basic unit of processing and memory
organization is 8 bits that are treated as a unit. A group of eight bits is
called a byte, a word coined in 1956 by Werner Buchholz, a computer
architect at IBM. A single byte can encode 256 distinct values (28, all
the different combinations of 8 zeroes and ones), which could be an
integer value between 0 and 255, or a single character in the 7-bit
ASCII character set (with one bit to spare), or something else. Often, a
particular byte is part of a larger group that represents something bigger
or more complicated. Tw o bytes together provides 16 bits, enough to
represent a number between 0 and 216 − 1, or 65,535. They could also
represent a character in the Unicode character set, perhaps one or the
other of

which are the two Unicode characters of <Tokyo=; each character is two
bytes. Four bytes is 32 bits, which could be four ASCII characters, or
two Unicode characters, or a number up to 232 − 1, around 4.3 billion.
There’s no limit to what a set of bytes might represent, though the
processor itself has a modest set of specific groupings, like integers of
various sizes, and has instructions for processing such groups.

If we want to write down the numeric value represented by one or
more bytes, we could express it in decimal form, which is convenient for
a human reader if it’s really numeric. We could write it in binary to see
the individual bits, which matters if different bits encode different kinds



of information. Binary is bulky, however, more than three times longer
than the decimal form, so an alternative notation called hexadecimal is
commonly used. Hexadecimal is base 16, so it has 16 digits (like
decimal has 10 digits and binary has 2); the digits are 0, 1, ..., 9, A, B, C,
D, E, and F. Each hex digit represents 4 bits, with the numeric values
shown in Figure 2.13.

Figure 2.13: Table of hexadecimal digits and their binary values.

Unless you’re a programmer, there are only a handful of places
where you might see hexadecimal. One is colors on a web page. As
mentioned earlier, the most common representation of colors in a
computer uses three bytes for each pixel, one for the amount of red,
one for the amount of green, and one for the amount of blue; this is
called RGB encoding. Each of those components is stored in a single
byte, so there are 256 possible amounts of red; for each of those there
are 256 possible amounts of green, and then for each of those there are
256 possible blue values. Altogether that’s 256 × 256 × 256 possible
colors, which sounds like a lot. We can use powers of two and ten to
get a quick estimate of how many. It’s 28 × 28 × 28, which is 224, or 24 ×
220, or about 16 × 106, or 16 million. You’ve probably seen this number
used to describe computer displays (<More than 16 million colors!=). The
estimate is about 5 percent low; the true value of 224 is 16,777,216.

An intense red pixel would be represented as FF0000, that is,
maximum red of 255 decimal, no green, no blue, while a bright but not
intense blue, like the color of links on many web pages, would be
0000CC. Yellow is red plus green, so FFFF00 would be the brightest
possible yellow. Shades of gray have equal amounts of red, green and
blue, so a medium gray pixel would be 808080, that is, the same amount
of red, green and blue. Black and white are 000000 and FFFFFF
respectively.

Hex values are also used in Unicode code tables to identify
characters:



is 6771 4EAC. You will also see hex in Ethernet addresses, which we’ll
talk about in Chapter 8, and representing special characters in URLs, in
Chapter 10.

You’ll sometimes see the phrase <64-bit= in computer advertisements
(<Microsoft Windows 10 Home 64-bit=). What does this mean?
Computers manipulate data internally in chunks of different sizes; the
chunks include numbers, for which 32 bits and 64 bits are convenient,
and addresses, that is, locations of information in primary memory. It is
this latter property that is being referred to. Thirty years ago there was a
transition from 16-bit addresses to 32-bit addresses, which are big
enough to access up to 4 GB of memory, and today the transition from
32 to 64 bits for general-purpose computers is almost complete. I won’t
try to predict when the transition from 64 to 128 will occur, but we
should be safe for a while.

The critical thing to remember in all of this discussion of bits and
bytes is that the meaning of a group of bits depends on their context;
you can’t tell what they mean just by looking at them. A single byte
could be a single bit representing true or false and 7 unused bits, or it
could be storing a small integer or an ASCII character like #, or it could
be part of a character in another writing system, part of a larger number
with 2 or 4 or 8 bytes, or part of a picture or a piece of music, or part of
an instruction for the processor to execute, or many other possibilities.
(This is just like decimal digits. Depending on context, a three-decimal-
digit number could represent a US area code, a highway number, a
baseball batting average, or many other things.)

One program’s instructions are sometimes another program’s data.
When you download a program or app, it’s just data: bits to be copied
blindly. But when you run the program, its bits are treated as
instructions as they are processed by the CPU.

2.4 Summary

Why binary instead of decimal? The answer is that it’s much easier to
make physical devices that have only two states, like on and off, than
devices that have ten states. This comparative simplicity is exploited in



many technologies: current (flowing or not), voltage (high or low),
electric charge (present or not), magnetism (north or south), light (bright
or dim), reflectance (shiny or dull). Von Neumann clearly realized this; in
1946 he said, <Our fundamental unit of memory is naturally adapted to
the binary system since we do not attempt to measure gradations of
charge.=

Why should anyone know or care about binary numbers? One
reason is that working with numbers in an unfamiliar base is an
example of quantitative reasoning that might even improve
understanding of how numbers work in good old base ten. Beyond that,
it’s also important because the number of bits is usually related in some
way to how much space, time or complexity is involved. And
fundamentally, computers are worth understanding, and binary is
central to their operation.

Binary shows up in real-world settings unrelated to computing as
well, probably because doubling or halving weights, lengths, and so on
is such a natural operation for people. For instance, volume 2 of Donald
Knuth’s The Art of Computer Programming describes English wine
container units in the 1300s that run over 13 binary orders of
magnitude: 2 gills is one chopin, 2 chopins is one pint, 2 pints is one
quart, and so on until 2 barrels is one hogshead, 2 hogsheads is one
pipe, and 2 pipes is one tun. About half of those units are still in
common use in the English system of liquid measures, though charming
words like firkin and kilderkin (two firkins, or half a barrel) are now rarely
seen.





3
Inside the Processor

<If, however, the orders to the machine are reduced to a numerical
code and if the machine can in some fashion distinguish a number
from an order, the memory organ can be used to store both
numbers and orders.=

Arthur W. Burks, Herman H. Goldstine, John von Neumann,
<Preliminary discussion of the logical design of an electronic
computing instrument,= 1946.

In Chapter 1, I said that the processor or CPU was <the brain= of a
computer, though with a caveat that the term didn’t really make sense.
It’s now time to take a detailed look at the processor, since it is the most
important component of a computer, the one whose properties are the
most significant for the rest of the book.

How does the processor work? What does it process and how? To a
first approximation, the processor has a repertoire of basic operations
that it can perform. It can do arithmetic—add, subtract, multiply and
divide numbers, like a calculator. It can fetch data from the memory to
operate on and it can store results back into the memory, like the
memory operations on many calculators. And it controls the rest of the
computer; it uses signals on the bus to orchestrate and coordinate input
and output for whatever is electrically connected to it, including mouse,
keyboard, display, and everything else.

Most important, it can make decisions, albeit of a simple kind: it can
compare numbers (is this number bigger than that one?) or other kinds
of data (is this piece of information the same as that one?), and it can
decide what to do next based on the outcome. This is the most
important thing of all, because it means that although the processor
can’t do much more than a calculator can, it can operate without human
intervention. As Burks, Goldstine and von Neumann said, <It is intended
that the machine be fully automatic in character, i.e., independent of the
human operator after the computation starts.=



Because the processor can decide what to do next based on the
data that it is processing, it is able to run the whole system on its own.
Although its repertoire is not large or complicated, the processor can
perform billions of operations every second, so it can do exceedingly
sophisticated computations.

3.1 The Toy Computer

Let me explain how a processor operates by describing a machine
that doesn’t exist. It’s a made-up or <pretend= computer that uses the
same ideas as a real computer but is much simpler. Since it exists only
on paper, I can design it in any way that might help to explain how real
computers work. I can also create a program for a real computer that
will simulate my paper design, so I can write programs for the pretend
machine and see how they run.

I’ve taken to calling this made-up machine the <Toy= computer, since
it’s not real but it has many of the properties of the real thing; it’s at
about the level of minicomputers of the late 1960s, and somewhat
similar to the design presented in the original paper by Burks, Goldstine
and von Neumann. The Toy has memory for storing instructions and
data, and it has one additional storage area called the accumulator that
has enough capacity to hold a single number. The accumulator is
analogous to the display in a calculator, which holds the number most
recently entered by the user or the most recent computational result.
The Toy has a repertoire of about ten instructions for performing basic
operations like those described above. Figure 3.1 shows the first six.



Figure 3.1: Representative Toy machine instructions.

Each memory location holds one number or one instruction, so a
program consists of a sequence of instructions and data items stored in
the memory. In operation, the processor starts at the first memory
location and repeats a simple cycle:

Fetch: get the next instruction from memory
Decode: figure out what that instruction does
Execute: perform the instruction

go back to Fetch

3.1.1 The first Toy program

To create a program for the Toy, we have to write a sequence of
instructions that will do the desired task, put them into the memory, and
tell the processor to start executing them. As an example, suppose that
the memory contains exactly these instructions, which would be stored
in memory as binary numbers:

GET
PRINT
STOP

When this sequence is executed, the first instruction will ask the user
for a number, the second will print that number, and the third will tell the
processor to stop. This is terminally boring, but it is enough to show
what a program looks like. Given areal Toy machine, the program could
even be run.

Fortunately, there are working Toy computers. Figure 3.2 shows one
of them in operation; it’s a simulator that was written in JavaScript so
that it can run in any browser, as we will see in Chapter 7.



Figure 3.2: Toy machine simulator with a program ready to run.

When you push RUN, the dialog box of Figure 3.3 pops up when the
GET instruction is executed; the number 123 has been typed by the user.



Figure 3.3: Toy machine simulator input dialog box.

After the user types a number and pushes OK, the simulator runs
and displays the result shown in Figure 3.4. As promised, the program
asks for an input number, prints it, and stops.

Figure 3.4: Toy machine simulator after running a short program.

3.1.2 The second Toy program



The next program (Figure 3.5) is slightly more complicated and adds
a new idea: storing a value in the memory and then retrieving it. The
program gets a number into the accumulator, stores it in memory, gets a
second number into the accumulator (which overwrites the first
number), adds the first number to it (taken from memory, where we had
carefully stored it), prints the sum of the two numbers, and then stops.

The processor starts at the beginning of the program and fetches
instructions one at a time. It executes each instruction in turn, then goes
on to the next one. Each instruction is followed by a comment, that is,
explanatory material to help programmers; comments have no effect on
the program itself.

Figure 3.5: Toy machine program to add two numbers and print
the sum.

The only tricky bit is that we need to set aside a place in the memory
to hold a data value, the first number that will be read. We can’t leave
the first number in the accumulator, since the second GET instruction will
overwrite it. Because the number is data, not an instruction, we have to
store it someplace in the memory where it won’t be interpreted as an
instruction. If we place it at the end of the program, after all of the
instructions, the processor will never try to interpret the data value as an
instruction because it will STOP before it gets there.

We also need a way to refer to that location when it’s needed by
instructions of the program. One possibility would be to observe that the
data will be in the seventh memory location (after the six instructions),
so we could write <STORE 7=. In fact the program will eventually be stored
in this form. But the location might change if the program is modified.
The solution is to give the data location a name, and as we’ll see in
Chapter 5, a program can do the clerical task of keeping track of where
the data is located in the memory, replacing the name by the proper
numeric location. The name FirstNum is meant to suggest that it’s the



<first number.= The name is arbitrary, though it’s good practice to use a
name that indicates the purpose or meaning of the data or instruction it
is attached to. We use a colon after the name to indicate that it is a
label. By convention, instructions in a program are indented while the
names attached to instructions or memory locations are not indented.
The Toy simulator takes care of all these details.

3.1.3 Branch instructions

How could the program of Figure 3.5 be extended so it will add three
numbers? It would be easy enough to add another sequence of STORE,
GET and ADD instructions (there are two places they could be inserted),
but that certainly won’t scale up to adding a thousand numbers, nor
would it work if we don’t know in advance how many numbers there will
be.

The solution is to add a new kind of instruction to the processor’s
repertoire that lets it re-use sequences of instructions. The GOTO
instruction, often called <branch= or <jump,= tells the processor to take its
next instruction not from the next one in sequence but from the location
specified in the GOTO instruction itself.

With a GOTO instruction we can make the processor return to an
earlier part of the program and repeat instructions. One simple example
is a program that prints each number as it is entered; that’s the essence
of a program that copies or displays its input, and it shows what the
GOTO instruction does. The first instruction of the program in Figure 3.6 is
labeled Top, an arbitrary name that suggests its role, and the last
instruction causes the processor to go back to that first instruction.

Figure 3.6: Data-copying program that runs forever.

This gets us part of the way—we can re-use instructions—but there’s
still a critical problem: there’s no way to stop this repeated sequence of
instructions, or loop, from continuing indefinitely. To stop the loop we
need another kind of instruction, one that can test a condition and
decide what to do next rather than pressing on blindly. That kind of



instruction is called a conditional branch or conditional jump. One
possibility offered by all computers is an instruction that tests whether a
value is zero, and jumps to a specific instruction if it is. Fortunately, the
Toy has an instruction called IFZERO that branches to a specified
instruction if the accumulator value is zero; otherwise, execution
continues at the next sequential instruction.

We can use the IFZERO instruction to write a program (Figure 3.7) that
reads and prints input values until a value of zero appears in the input.

This keeps fetching data and printing it until the user gets tired and
enters a zero, at which point the program jumps to the STOP instruction,
labeled Bot for <bottom,= and quits. (It’s tempting to write IFZERO STOP
but that won’t work: IFZERO must be followed by a location, not an
instruction.)

Figure 3.7: Data-copying program that stops when 0 is entered.

Note that the program does not print the zero that signaled the end of
the input. How would you modify the program so that it does print the
zero before stopping? This is not a trick question—the answer is clear—
but it is a good illustration of how programs may embody subtle
distinctions in what they are supposed to do or how they might do
something different than what was intended, all because of a simple
transposition of two instructions.

The combination of GOTO and IFZERO lets us write programs that
repeat instructions until some specified condition becomes true; the
processor can change the course of a computation according to the
results of previous computations. (You might think about whether GOTO is
strictly necessary if you have IFZERO—is there a way to simulate GOTO
with an IFZERO and some other instructions?) It’s not obvious, but this is
all we need to compute anything that can be computed by any digital
computer—any computation can be broken down into small steps using
elementary instructions.

With IFZERO in its repertoire, the Toy processor can in principle be
programmed to do literally any computation.



I say <in principle= because in practice we can’t ignore processor
speed, memory capacity, the finite sizes of numbers in a computer, and
the like. We’ll come back to this idea of the equivalence of all computers
from time to time, since it’s a fundamental notion.

As another example of IFZERO and GOTO, Figure 3.8 shows a program
that will add up a bunch of numbers, stopping when the number zero is
entered. Using a special value to terminate a sequence of inputs is a
common practice. Zero works well as an end marker in this specific
example because we’re adding up numbers and adding a zero data
value isn’t necessary.

Figure 3.8: Toy machine program to add up a sequence of
numbers.

Toy simulators interpret an <instruction= like the last line of this
program to mean <assign a name to a memory location and put a
specific numeric value in that location before the program starts to run.=
It’s not a real instruction, but rather a <pseudo-instruction= that is
interpreted by the simulator as it is processing the program text, before
it starts to run the program.

We need a place in memory to hold the running sum as it is being
added to. That memory location should start out holding the value zero,
just like clearing the memory in a calculator. We also need a name for
the memory location that can be used by the rest of the program to refer
to it. That name is arbitrary but Sum is a good choice since it indicates
the role of the memory location.



How would you check this program to be sure it works? It looks OK
on the surface and it produces the right answers on simple test cases,
but problems are easily overlooked, so it’s important to test
systematically. The operative word is <systematically=; it’s not effective
to just throw random inputs at a program.

What’s the simplest test case? If there are no numbers at all except
the zero that terminates the input, the sum should be zero, so that’s a
good first test case. The second thing to try is to input a single number;
the sum should be that number. Next is to try two numbers whose sum
you already know, like 1 and 2; the result should be 3. With a few tests
like this, you can be reasonably confident that the program is working. If
you’re careful, you can test the code before it ever gets near a
computer, by stepping carefully through the instructions yourself. Good
programmers do this kind of checking for every program they write.

3.1.4 Representation in memory

So far I have ducked the question of exactly how instructions and
data are represented in the memory. How might that work?

Here’s one possibility. Suppose that each instruction uses one
memory location to store its numeric code and also uses the next
location if the instruction refers to memory or has a data value. That is,
GET occupies one location while instructions like IFZERO and ADD that
refer to a memory location occupy two memory cells, the second of
which is the location that they refer to.

Suppose also that any data value will fit in a single location. These
are simplifications, though not far off from what happens in real
computers. Finally, suppose that the numeric values of the instructions
are GET = 1, PRINT = 2, STORE = 3, LOAD = 4, ADD = 5, STOP = 6, GOTO = 7,
IFZERO = 8, following their order of appearance in previous pages.

The program in Figure 3.8 adds up a sequence of numbers. When
the program is about to begin, the memory contents would be as shown
in Figure 3.9, which also shows the actual memory locations, the labels
attached to three locations, and the instructions and addresses that
correspond to the memory contents.

The Toy simulator is written in JavaScript, a programming language
that we will talk about in Chapter 7, though it could be written in any
language. The simulator is easy to extend. For instance, it’s
straightforward to add a multiplication instruction or a different kind of



conditional branch even if you’ve never seen a computer program
before; it’s a good way to test your understanding. The code can be
found on the web site for the book.

Figure 3.9: Add-up-the-numbers program in memory.

3.2 Real Processors

What we’ve just seen is a simplified version of a processor, though
not too unrealistic for early or small computers. Reality today is much
more complex in the details, centering around performance.

A processor performs the fetch, decode, execute cycle over and
over. It fetches the next instruction from memory, which is normally the



instruction stored in the next memory location, but could instead be one
from a location specified by a GOTO or IFZERO. The processor decodes
the instruction, that is, it figures out what the instruction does and
makes whatever preparations are necessary to carry it out. It then
executes the instruction, by fetching information from memory, doing
arithmetic or logic, and storing results, in whatever combination is
appropriate for that instruction. Then it goes back to the fetch part of the
cycle. The fetch-decode-execute cycle in a real processor has elaborate
mechanisms for making the whole process run fast, but at its heart it’s
just a loop like the ones we showed above for adding up numbers.

Real computers have more instructions than our Toy does, though
the instructions are of the same basic types. They have more ways to
move data around, more ways to do arithmetic and on different sizes
and kinds of numbers, more ways to compare and branch, and more
ways to control the rest of the machine. A typical processor will have a
few dozen to a few hundred different instructions; instructions and data
occupy several memory locations, often 2 to 8 bytes. A real processor
will have multiple accumulators, often 16 or 32, so that it can hold more
than one intermediate result in what amounts to extremely fast memory.

Real programs are enormous by comparison with our Toy examples,
often with millions of instructions. We’ll come back to how such
programs are written when we talk about software in later chapters.

Computer architecture is the discipline that deals with designing the
processor and its connections to the rest of the machine; in universities,
it’s often a subfield on the border of computer science and electrical
engineering.

One concern of computer architecture is the instruction set—the
repertoire of instructions that the processor provides. Should there be a
large number of instructions to handle a wide variety of different kinds of
computation, or should there be fewer instructions that would be simpler
to build and might run faster? Architecture involves complicated
tradeoffs among functionality, speed, complexity, power consumption,
and programmability. Von Neumann again: <In general, the inner
economy of the arithmetic unit is determined by a compromise between
the desire for speed of operation [...] and the desire for simplicity, or
cheapness, of the machine.=

How is the processor connected to the primary memory and the rest
of the computer? Processors are very fast, performing an instruction in
well under a nanosecond. (Recall that <nano= is one billionth, or 10−9.)



By comparison, memory is excruciatingly slow—fetching data or an
instruction from memory might take 10 to 20 nanoseconds. That’s fast
in absolute terms, of course, but it’s slow from the perspective of the
processor, which might have executed dozens of instructions if it didn’t
have to wait for data to arrive.

Modern computers use a small number of high-speed memories
called caches between the processor and the memory to hold recently
used instructions and data. Accessing information that can be found in
a cache is faster than waiting for it to come from primary memory. I’ll
discuss caches and caching in the next section.

Designers also have a collection of architectural tricks that make
processors run faster. A processor can be designed to overlap fetch
and execute so that there are several instructions in various stages of
completion; this is called pipelining, and is similar in spirit to cars
moving along an assembly line. The result is that although any given
instruction still takes the same time to complete, others are in process
at the same time and the overall completion rate is higher. Another
option is to do multiple instructions in parallel if they do not interfere with
or depend on each other; the automotive analogy would be to have
parallel assembly lines. Sometimes it’s even possible to do instructions
out of order if they do not interact.

Yet another option is to have multiple processors operating at the
same time. This is the norm in laptops and cell phones today. The Intel
processor in the 2015 computer I’m using right now has two cores on a
single integrated circuit chip, and the trend is strongly towards more and
more processor cores on single chips and more than one chip per
machine. As integrated-circuit feature sizes become smaller, it’s
possible to pack more transistors onto a chip, and those tend to be
used for more cores and more cache memory. Individual processors are
not getting faster but there are more cores so effective computation
speeds are still rising.

A different set of tradeoffs in processor design comes into play when
one considers where the processor will be used. For a long time, the
main target was desktop computers, where electrical power and
physical space were comparatively plentiful. That meant that designers
could concentrate on making the processor run as fast as possible,
knowing that there would be plenty of power and a way to dissipate
heat with fans. Laptops significantly changed this set of tradeoffs, since
space is tight and an unplugged laptop gets its power from a battery



that is heavy and expensive. All else being equal, processors for
laptops tend to be slower and use less power.

Cell phones, tablets and other highly portable devices push this
tradeoff even further, since size, weight and power are even more
constrained. This is an area where merely tweaking a design is not
good enough. Although Intel and its primary competitor AMD are the
dominant suppliers of processors for desktops and laptops, most cell
phones and tablets use a processor design called <ARM,= which is
specifically designed to use low power. ARM processor designs are
licensed from the English company Arm Holdings.

Processor speed comparisons are difficult and not terribly
meaningful. Even basic operations like arithmetic can be handled in
ways that are sufficiently different that it’s hard to make a head-to-head
comparison. For example, one processor might require three
instructions to add two numbers and store the result in a third, as the
Toy does. A second processor might require two instructions, while a
third processor might have a single instruction for that computation.
One processor might be able to handle several instructions in parallel or
overlap several so that they are proceeding in stages. Processors can
sacrifice speedy execution for lower power consumption, even adjusting
their speed dynamically depending on whether power is coming from
batteries. Some processors have some fast cores and some slow ones,
allocated to different tasks. You should be cautious about claims that
one processor is <faster= than another; your mileage may vary.

3.3 Caching

<We are therefore forced to recognize the possibility of constructing
a hierarchy of memories, each of which has greater capacity than
the preceding but which is less quickly accessible.=

Arthur W. Burks, Herman H. Goldstine, John von Neumann,
<Preliminary discussion of the logical design of an electronic
computing instrument,= 1946.

It’s worth a brief digression here on caching, an idea of broad
applicability far beyond computing. In the processor, a cache is a small,
fast memory that is used to store recently used information to avoid



accessing the primary memory, which is larger but much slower. A
processor will normally access groups of data and instructions multiple
times in short succession. For instance, the five instructions of the loop
in the program of Figure 3.9 will be executed once for each input
number. If those instructions are stored in a cache, then there will be no
need to fetch them from memory each time through the loop and the
program will run faster because it does not have to wait for the memory
to produce the instructions. Similarly, keeping Sum in a data cache will
speed access as well, though the real bottleneck in this program is in
getting the data.

A typical processor has two or three caches, successively larger but
slower, and often called levels L1, L2 and L3; the largest might hold
some megabytes of data. (My laptop has 256 KB of L2 cache for each
core and 4 MB in a single L3 cache.) Caching works because recently
used information is likely to be used again soon— having it in the cache
means less time waiting for memory. The caching process usually loads
blocks of information all at once, for instance a block of consecutive
memory locations when a single byte is requested. This is because
adjacent information will probably be used soon as well, and thus is
likely to already be in the cache when needed; references to nearby
information may not have to wait.

This kind of caching is mostly invisible to users except insofar as it
improves performance. But caching is a much more general idea that is
helpful whenever we use something now and are likely to use it again
soon or are likely to use something nearby. Multiple accumulators in
processors are in effect a form of cache at the high speed end. Primary
memory can be a cache for disks, and memory and disks are both
caches for data coming from a network. Networks often have caches to
speed up the flow of information from faraway servers, and servers
themselves have caches.

You may have seen the word in the context of <clearing the cache=
for a web browser. The browser keeps local copies of images and other
comparatively bulky materials that are part of some web page, since it
will be faster to use the local copy than to download it again if a page is
revisited. The cache can’t grow indefinitely, so the browser will quietly
remove old items to make room for newer ones, and it offers you a way
to remove everything as well.

You can sometimes observe cache effects for yourself. For example,
start a big program like Word or Firefox and time how long before it



finishes loading from the disk and is ready to use. Then quit the
program and restart it immediately. Usually the start up will be
noticeably faster the second time, because the instructions of the
program are still in memory, which is serving as a cache for the disk. As
you use other programs over a period of time, the memory will fill with
their instructions and data. The original program won’t be cached any
more.

The list of recently used files in programs like Word or Excel is also a
form of caching. Word remembers the files that you have used most
recently and displays the names on a menu so you don’t have to search
to find them. As you open more files, the names of ones that have not
been accessed for a while will be replaced by the more recent ones.

3.4 Other Kinds of Computers

It’s easy to think that all computers are laptops, because that’s what
we see most often. But there are other kinds of computers, large and
small, that share the core attributes of what they can logically compute,
and that have similar architectures but make different tradeoffs among
cost, power, size, speed, and so on.

Cell phones and tablets are computers too, running an operating
system and providing a rich computing environment. Even smaller
systems are embedded in almost all the digital devices that clutter our
lives, including cameras, ebook readers, fitness trackers, appliances,
game consoles, and on and on and on. The so-called <Internet of
Things=—networked thermostats, security cameras, smart lights, voice
recognizers, and the like—also relies on such processors.

Supercomputers tend to have a large number of processors and a lot
of memory, and the processors themselves may have instructions that
process certain kinds of data much faster than their more conventional
siblings. Today’s supercomputers are based on clusters of speedy but
basically ordinary processors rather than specialized hardware. Every
six months the web site top500.org publishes a new list of the world’s
500 fastest computers. It’s striking how quickly the top speed rises; a
machine that might have been in the top handful a few years ago would
not be on the current list at all. The top machine in November 2020,
built by Fujitsu in Japan, has 7.6 million cores and can execute 537 ×



1015 arithmetic operations per second at peak. Supercomputer speeds
are measured by the number of floating point operations or flops, that
is, arithmetic operations on numbers with a fractional part, that they can
perform per second. The top of the top500.org list is thus 537 petaflops,
and the 500th is 2.4 petaflops.

A Graphics Processing Unit or GPU is a specialized processor that
performs certain graphics computations much faster than a general-
purpose CPU. GPUs were originally developed for the high-speed
graphics needed for games and are also used for speech and signal
processing in phones. GPUs can also help accelerate regular
processors for certain kinds of workloads. A GPU can do a large
number of simple arithmetic computations in parallel, so if some part of
a computational task involves operations that can be done in parallel
and can be handed off to a GPU, the overall computation can proceed
more rapidly. GPUs are particularly useful for machine learning
(Chapter 12), where the same computation is done independently on
different parts of a large dataset.

Distributed computing refers to computers that are more independent
—they don’t share memory, for example, and they may be physically
more spread out, even located in different parts of the world. This
makes communication even more of a potential bottleneck, but it
enables people and computers to cooperate at large distances. Large-
scale web services—search engines, online shopping, social networks,
and cloud computing in general—are distributed computing systems,
with thousands of computers cooperating to provide results quickly for
large numbers of users.

All of these kinds of computers share the same fundamental
principles. They are based on a general-purpose processor that can be
programmed to perform an endless variety of tasks. Each processor
has a limited repertoire of simple instructions that do arithmetic,
compare data values, and select the next instruction to perform based
on the results of previous computations. The general architecture hasn’t
changed much since the late 1940s, but the physical construction has
continued to evolve at an amazing rate.

Perhaps unexpectedly, all of these computers have the same logical
capabilities and can compute exactly the same things, leaving aside
practical considerations like speed and memory requirements. This
result was proven independently in the 1930s by several people,
including the English mathematician Alan Turing. Turing’s approach is



the easiest for a non-specialist to understand. He described a simple
computer, much simpler than our Toy, and showed that it could compute
anything that was computable in a very general sense. Today that kind
of computer is called a Turing machine. He then showed how to create
a Turing machine that could simulate any other Turing machine; that’s
now called a universal Turing machine. It’s easy to write a program that
will simulate a universal Turing machine, and it’s also possible (though
not easy) to write a program for a universal Turing machine that will
simulate a real computer. Hence, all computers are equivalent in what
they can compute, though not in how fast they operate.

During World War II, Turing turned from theory to practice: he was
central to the development of specialized computers for decrypting
German military communications, which we will mention again briefly in
Chapter 13. Turing’s wartime work has been featured in several movies,
with considerable artistic license, including Breaking the Code in 1996
and The Imitation Game in 2014.

In 1950, Turing published a paper called <Computing Machinery and
Intelligence,= which proposed a test (today called the Turing test) that
one might use to assess whether a computer was displaying human
intelligence. Imagine a computer and a human communicating
separately with a human interrogator via a keyboard and screen. By
having a conversation, can the interrogator determine which is the
human and which is the computer? Turing’s thought was that if they
could not be reliably distinguished, the computer was displaying
intelligent behavior. As we will see in Chapter 12, computers now
perform at human level or above in some areas, though certainly not in
anything like over all intelligence.

Figure 3.10: ACAPTCHA.

Turing’s name is part of the somewhat forced acronym CAPTCHA,
which stands for <Completely Automated Public Turing test to tell
Computers and Humans Apart.= CAPTCHAs are the distorted patterns
of letters like the one in Figure 3.10 that are widely used to try to ensure



that the user of a web site is a human, not a program. A CAPTCHA is
an example of a re verse Turing test, since it attempts to distinguish
between human and computer by using the fact that people are
generally better at identifying the visual patterns than computers are. Of
course CAPTCHAs are impossible for anyone with a visual impairment.

Turing is one of the most important figures in computing, a major
contributor to our understanding of computation. The Turing Award,
computer science’s equivalent of the Nobel Prize, is named in his
honor; later chapters will describe half a dozen important computing
inventions whose inventors have received the Turing Award.

Tragically, in 1952 Turing was prosecuted for homosexual activities,
which were illegal in England at the time, and he died in 1954,
apparently a suicide.

3.5 Summary

A computer is a general-purpose machine. It takes its instructions
from memory, and one can change the computation it performs by
putting different instructions in the memory. Instructions and data are
indistinguishable except by context; one person’s instructions are
another person’s data.

A modern computer almost surely has multiple cores on a single chip
and it may have several processor chips as well, with lots of cache on
the integrated circuit to make memory access more efficient. Caching
itself is a fundamental idea in computing, seen at all levels from the
processor up through how the Internet is organized. It always involves
using locality in time or space to gain faster access most of the time.

There are many ways to define the instruction set architecture of a
machine, a complex tradeoff among factors like speed, power
consumption, and complexity of the instructions themselves. These
details are of crucial importance to hardware designers, but much less
so to most of those who program the computers, and not at all to those
who merely use them in some device.

Turing showed that all computers of this structure, which includes
anything you’re likely to see, have the same computational capabilities,
in the sense that they can compute exactly the same things. Their
performance can vary widely, of course, but all are equivalently capable
except for issues of speed and memory capacity. The tiniest and



simplest computer can in principle compute anything that its larger
siblings could. Indeed, any computer can be programmed to simulate
any other, which is in effect how Turing proved his result.

<It is unnecessary to design various new machines to do various
computing processes. They can all be done with one digital
computer, suitably programmed for each case.=

Alan Turing, <Computing Machinery and Intelligence,= Mind,
1950.





Wrap-up on Hardware

We’ve come to the end of our discussion of hardware, though
we’ll return occasionally to talk about some gadget or device. Here
are the fundamental ideas you should take away from this part.

A digital computer, whether desktop, laptop, phone, tablet, ebook
reader, or any of many other devices, contains one or more
processors and various kinds of memory. Processors execute simple
instructions very quickly. They can decide what to do next based on
the results of earlier computations and inputs from the outside world.
Memory contains both data and instructions that determine how to
process the data.

The logical structure of computers has not changed much since
the 1940s, but the physical construction has changed enormously.
Moore’s Law, in effect for over fifty years and by now almost a self-
fulfilling prophecy, has described an exponential decrease in the size
and price of individual components and thus an exponential increase
in computational power for a given amount of space and money.
Warnings about how Moore’s Law will end in about the next ten
years have been a staple of technology predictions for decades. It is
clear that current integrated circuit technology is encountering
trouble as devices get down to only a handful of individual atoms, but
people have been remarkably inventive in the past; perhaps some
new invention will keep us on the curve.

Digital devices work in binary; at the bottom level, information is
represented in two-state devices because those are easiest to build
and the most reliable in operation. Information of any sort is
represented as collections of bits. Numbers of various types
(integers, fractions, scientific notation) are represented as 1, 2, 4, or
8 bytes, sizes which computers handle naturally in hardware. That
means that in ordinary circumstances numbers have a finite size and
limited precision. With suitable software, it’s possible to support
arbitrary size and precision, though programs using such software



will run more slowly. Information like characters in natural languages
is also represented as some number of bytes. ASCII, which works
fine for English, uses one byte per character. Less parochially,
Unicode, which has several encodings, handles all character sets
but uses somewhat more space. The UTF-8 encoding is a variable-
length encoding of Unicode that is meant for exchanging information
between systems; it uses one byte for ASCII characters and two or
more bytes for others.

Analog information like measurements is converted into digital
form and then back again. Music, pictures, movies, and similar types
of information are converted to digital form by a sequence of
measurements specific to the particular form, and converted back
again for human use; in this case, some loss of information is not
only expected but can be taken advantage of for compression.

Reading about hardware, and how all it does is arithmetic, might
make you wonder: if the processor is no more than a high-speed
programmable calculator, how can that hardware understand
speech, recommend a movie you might like, or tag a friend in a
photo? That’s a good question. The basic answer is that even
complicated processes can be broken down into tiny computational
steps. We’ll talk more about this in the next few chapters on
software, and later on as well.

There’s one last topic that should be mentioned. These are digital
computers: everything is ultimately reduced to bits, which,
individually or in groups, represent information of any sort as
numbers. The interpretation of the bits depends on the context.
Anything that we are able to reduce to bits can be represented and
processed by a digital computer. But keep in mind that there are
many, many things that we do not know how to encode in bits nor
how to process in a computer. Most of these are important things in
life: creativity, truth, beauty, love, honor, and values. I suspect those
will remain beyond our computers for some while. You should be
skeptical of anyone who claims to know how to deal with such
matters <by computer.=





Part II
Software

The good news is that a computer is a general-purpose machine,
capable of performing any computation. Although it only has a few
kinds of instructions to work with, it can do them very fast, and it can
largely control its own operation.

The bad news is that it doesn’t do anything itself unless someone
tells it what to do, in excruciating detail. A computer is the ultimate
sorcerer’s apprentice, able to follow instructions tirelessly and
without error, but requiring painstaking accuracy in the specification
of what to do.
Software is the general term for sequences of instructions that

make a computer do something useful. It’s <soft= in contrast with
<hard= hardware because it’s intangible, not easy to put your hands
on. Hardware is tangible: if you drop a laptop on your foot, you’ll
notice. Not true for software.

In the next few chapters we’re going to talk about software: how to
tell a computer what to do. Chapter 4 is a discussion of software in
the abstract, focusing on algorithms, which are in effect idealized
programs for focused tasks. Chapter 5 discusses programming and
programming languages, which we use to express sequences of
computational steps. Chapter 6 describes the major kinds of
software systems that we all use, whether we know it or not. The
final chapter of this section, Chapter 7, is a brief introduction to
programming in two of today’s most popular languages, JavaScript
and Python.

Something to keep in mind as we go: modern technological
systems increasingly use general-purpose hardware—processors,
memory, and connections to the environment—and create specific
behaviors by software. The conventional wisdom is that software is
cheaper, more flexible, and easier to change than hardware is,
especially once some device has left the factory. For example, if a



computer controls how power and brakes are applied in a car,
apparently different functions like anti-lock braking and electronic
stability control are software features.

Trains, boats, and airplanes are also increasingly reliant on
software. Unfortunately, it’s not always simple to use software to
change physical behavior. Airplane software was much in the news
in the aftermath of two fatal crashes of Boeing’s 737 MAX in October
2018 and March 2019, in which 346 people died.

Boeing started making 737s in 1967, and the plane evolved
steadily over the years. The 737 MAX, which went into service in
2017, was a major modification with bigger and more efficient
engines.

The new engines caused the plane to have significantly different
flying characteristics. Rather than making aerodynamic modifications
to keep its behavior close to earlier models, Boeing developed an
automated flight control software system called the Maneuvering
Characteristics Augmentation System, or MCAS. The intent of
MCAS was that the MAX would fly the same as any other 737, and
thus would not need recertification, nor would pilots need to be
retrained, both expensive processes: software would make the new
plane just like the older ones.

To over-simplify a complicated situation, the heavier and
repositioned engines changed the MAX’s flying characteristics. In
some circumstances, when MCAS thought that the plane’s nose was
too high, it interpreted this as a potential stall and pushed the nose
down. It based its decision on a single potentially faulty input sensor,
even though the plane had two sensors. When pilots tried to pull the
nose up, MCAS overrode them. The result was a series of up and
down oscillations that eventually caused the fatal crashes. To make
the story even worse, Boeing had not revealed the existence of
MCAS, so pilots were not aware of the potential problem and thus
were not properly trained to deal with it.

Soon after the second fatal crash, aviation authorities around the
world grounded the MAX. Boeing’s reputation was badly tarnished,
and estimates of its losses run to more than $20 billion. In late
November 2020, the US Federal Aviation Authority cleared the MAX



to fly again after changes are made in pilot training and in the plane
itself, but it’s not clear when it will return to regular service.

Computers are central to critical systems, and software controls
them. Self-driving cars, or merely the assists provided by modern
cars, are controlled by software. As a simple example, my Subaru
Forester has two cameras that look out the front windshield; it uses
computer vision to warn me if I change lanes without signaling or
when a car or a person appears to be too close. It’s often wrong and
the frequent false positives are more distracting than helpful, but it
has saved me a few times.

Medical imaging systems use computers to control signals and
form images for doctors to interpret, and film has been replaced by
digital images. It’s also true of infrastructure like the air traffic control
system, navigational aids, the power grid and the telephone network.
Computer-based voting machines have had serious flaws. In early
2020, vote tabulation for the Iowa Democratic primaries was a
computer-system fiasco that took days to fix. Internet voting, a
popular idea during the Covid-19 pandemic, is much riskier than
election officials acknowledge; it’s very difficult to create a system
that lets people vote securely while preserving the secrecy of how
they voted.

Military systems for both weapons and logistics are entirely
dependent on computers, as are the world’s financial systems.
Cyber warfare and espionage are real threats. The Stuxnet worm of
2010 destroyed uranium-enrichment centrifuges in Iran. A large
power outage in Ukraine in December 2015 was caused by malware
of Russian origin, though the Russian government denies
involvement. Two years later, a second set of attacks using
ransomware called Petya interfered with a variety of Ukrainian
services. The 2017 ransomware attack known as WannaCry caused
billions of dollars of damages all over the world; the US government
formally accused North Korea of being responsible. In July 2020, a
Russian cyber espionage group was accused by several countries of
trying to steal information about potential Covid-19 vaccines.

State-sponsored and criminal attacks are quite possible on a wide
variety of targets. If our software is not reliable and robust, we’re in
trouble and it’s only going to get worse as our dependency grows. As



we’ll see, it’s hard to write software that is completely reliable. Any
error or oversight in logic or implementation can cause a program to
behave incorrectly, and even if that doesn’t happen in normal use, it
might leave an opening for an attacker.





4
Algorithms

The Feynman Algorithm:
1. Write down the problem.
2. Think real hard.
3. Write down the solution.

Attributed to physicist Murray Gell-Mann, 1992.

A popular metaphor for explaining software is to compare it to
recipes for cooking. A recipe for some dish lists the ingredients needed,
the sequence of operations that the cook has to perform, and the
expected outcome. By analogy, a program for some task needs data to
operate on and spells out what to do to the data. Real recipes are much
more vague and ambiguous than programs could ever be, however, so
the analogy isn’t terribly good. For instance, a chocolate cake recipe
says <Bake in the oven for 30 minutes or until set. Test by placing the
flat of your hand gently on the surface.= What should the tester be
looking for4wiggling, resistance, or something else? How gentle is
<gently=? Should the baking time be at least 30 minutes or no longer
than 30 minutes?

Tax forms are a better metaphor: they spell out in painful detail what
to do (<Subtract line 30 from line 29. If zero or less, enter 0. Multiply line
31 by 25%, ...=). The analogy is still imperfect but tax forms capture the
computational aspects much better than recipes do: arithmetic is
required, data values are copied from one place to another, conditions
are tested, and subsequent computations depend on the results of
earlier ones.

For taxes especially, the process should be complete4it should
always produce a result, the amount of tax due, no matter what the
situation. It should be unambiguous4anyone starting from the same
initial data should arrive at the same final answer. And it should stop
after a finite amount of time. Speaking from personal experience, these
are all idealizations, because terminology is not always clear,
instructions are more ambiguous than the tax authorities care to admit,
and frequently it’s unclear what data values to use.



An algorithm is the computer science version of a careful, precise,
unambiguous recipe or tax form, a sequence of steps that is guaranteed
to compute a result correctly. Each step is expressed in terms of basic
operations whose meaning is completely specified, for example <add
two integers.= There’s no ambiguity about what anything means. The
nature of the input data is given. All possible situations are covered; the
algorithm never encounters a situation where it doesn’t know what to do
next. When in a pedantic mood, computer scientists usually add one
more condition: the algorithm has to stop eventually. By that standard,
the classic shampoo instruction to <Lather, Rinse, Repeat= is not an
algorithm.

The design, analysis and implementation of efficient algorithms is a
core part of academic computer science, and there are real-world
algorithms of great importance. I’m not going to try to explain or express
algorithms precisely, but I do want to get across the idea of specifying a
sequence of operations with sufficient detail and precision that there is
no doubt about what the operations mean and how to perform them,
even if they are being performed by an entity with no intelligence or
imagination. We will also discuss algorithmic efficiency, that is, how
computation time depends on the amount of data to be processed. We’ll
do this for a handful of basic algorithms that are familiar and readily
understood.

You don’t have to follow all the details or the occasional formulas in
this chapter, but the ideas are important.

4.1 Linear Algorithms

Suppose we want to find out who is the tallest person in the room.
We could just look around and make a guess, but an algorithm must
spell out the steps so precisely that even a dumb computer can follow
them. The basic approach is to ask each person in turn about their
height, and keep track of the tallest person seen so far. Thus we might
ask each person in turn: <John, how tall are you? Mary, how tall are
you?= and so on. If John is the first person we ask, then so far he’s the
tallest. If Mary is taller, she’s now the tallest; otherwise, John retains his
position. Either way, we ask the third person. At the end of the process,
after each person has been asked, we know who the tallest person is
and his or her height. Obvious variations would find the richest person,



or the person whose name comes first in the alphabet, or the person
whose birthday is closest to the end of the year.

There are complications. How do we handle duplicates, for instance
two or more people who are exactly the same height? We have to
choose whether to report the first or the last or a random one, or
perhaps all of them. Notice that finding the largest group of people who
are equally tall is a significantly harder problem, since it means we have
to remember the names of all people who are the same height: we
won’t know until the end of the input who is on the final list. This
example involves data structures4how to represent the information
needed during a computation4 which are an important consideration
for many algorithms, though we won’t talk much about them here.

What if we want to compute the average height? We could ask each
person for his or her height, add up the values as they are obtained
(perhaps using the Toy program for adding up a sequence of numbers),
and at the end divide the sum by the number of people. If there’s a list
of N heights written on a piece of paper, we might express this example
more <algorithmically= like this:

set sum to 0
for each height on the list
   add the height to sum
set average to sum / N

We have to be more careful if we’re asking a computer to do the job,
however. What happens, for example, if there are no numbers on the
piece of paper? This isn’t a problem if a person is doing the work, since
we realize that there’s nothing to do. A computer, by contrast, has to be
told to test for this possibility and how to act if it occurs. If the test isn’t
made, the result will be an attempt to divide the sum by zero, which is
an undefined operation. Algorithms and computers have to handle all
possible situations. If you’ve ever received a check made out for <0
dollars and 00 cents= or a bill telling you to pay a balance due of zero,
you’ve seen an example of failing to test all cases properly.

What if we don’t know ahead of time how many data items there will
be, as is usually the case? Then we can count the items as we compute
the sum:

set sum to 0
set N to 0
repeat these two steps for each height:



   add the next height to sum
   add 1 to N
if N is greater than 0
   set average to sum divided by N
otherwise
   report that no heights were given

This shows one way to handle the problem of potential division by zero,
by testing for the awkward case explicitly.

One crucial property of algorithms is how efficiently they operate4
are they fast or slow, and how long are they likely to take to handle a
given amount of data? For the examples given above, the number of
steps to perform, or how long it might take a computer to do the job, is
directly proportional to the amount of data that must be processed. If
there are twice as many people in the room, it will take twice as long to
find the tallest or compute the average height, and if there are ten times
as many, it will take ten times as long. When the computation time is
directly or linearly proportional to the amount of data, the algorithm is
called linear-time or just linear. If we were to plot running time against
the number of data items, the graph would be a straight line pointing
upward and to the right. Many of the algorithms that we encounter in
day-to-day life are linear, since they involve doing the same basic
operation or operations on some data, and more data means more work
in direct proportion.

Many linear algorithms take the same basic form. There may be
some initialization, like setting the running sum to zero or the largest
height to a small value. Then each item is examined in turn and a
simple computation is done on it4counting it, comparing it to a previous
value, transforming it in a simple way, perhaps printing it. At the end,
some step may be needed to finish the job, like computing the average
or printing the sum or the largest height. If the operation on each item
takes about the same amount of time, then the total time is proportional
to the number of items.

4.2 Binary Search

Can we ever do any better than linear time? Suppose we have a
bunch of names and telephone numbers in a printed list or a stack of
business cards. If the names are in no particular order and we want to



find Mike Smith’s number, then we have to look at all the cards until we
find his name, or fail to find it because it’s not there at all. If the names
are in alphabetical order, however, we can do better.

Think about how we look up a name in an old-fashioned paper phone
book. We start approximately in the middle. If the name we’re looking
for is earlier in the alphabet than names on the middle page, we can
completely ignore the last half of the book and look next at the middle of
the first half (one quarter of the way into the original); otherwise, we
ignore the first half and check the middle of the last half (three quarters
of the way in). Because the names are in alphabetical order, at each
step we know which half to look in next. Eventually we get down to the
point where either the name we’re looking for has been found, or we
know for sure that it’s not there at all.

This search algorithm is called binary search, because each check or
comparison divides the items into two groups, one of which can be
eliminated from further consideration. It’s an example of a general
strategy called divide and conquer. How fast is it? At each step, half the
remaining items are eliminated, so the number of steps is the number of
times we can divide the original size by 2 before we get down to a
single item.

Suppose we start with 1,024 names, a number chosen to make the
arithmetic easy. With one comparison, we can eliminate 512 names.
Another comparison gets us down to 256, then 128, then 64, then 32,
then 16, 8, 4, 2, and finally 1. That’s 10 comparisons. It’s clearly not a
coincidence that 210 is 1,024. The number of comparisons is the power
of 2 that brings us to the original number; running the sequence up from
1 to 2 to 4 ... to 1,024, we’re multiplying by 2 each time.

If you remember logarithms from school (not many people do4who
would have thought?), you may recall that the logarithm of a number is
the power to which you raise the base (2 in this case) to get the
number. So the log (base 2) of 1,024 is 10, since 210 is 1,024. For our
purposes, the log is the number of times you have to divide a number
by 2 to get down to 1 or, equivalently, the number of times you have to
multiply 2 by itself to get up to the number. In this book, log will always
mean base 2. We don’t need precision or fractions; ballpark figures and
integer values are good enough, which is a real simplification.

The important thing about binary search is that the amount of work to
be done grows slowly with the amount of data. If there are 1,000 names



in alphabetical order, we have to look at 10 names to find a specific
one. If there are 2,000 names, we only have to look at 11 names
because the first name we look at immediately eliminates 1,000 of the
2,000, bringing us back to where we have to look at 1,000 (10 tests). If
there are a million names, that’s 1,000 times 1,000. The first 10 tests
get us back down to 1,000, and another 10 get us down to 1, which is
20 tests in all. A million is 106, which is close to 220, so the log (base 2)
of a million is about 20.

From this, you should be able to see that looking up a name in a
directory of a billion names (the whole earth phone book, nearly) would
only take 30 name comparisons, since a billion is about 230. That’s why
we say the amount of work grows slowly with the amount of data4a
thousand times more data requires only 10 more steps.

As a quick validation, I decided to search for my friend Harry Lewis in
an old Harvard paper telephone directory, which at the time had about
20,000 names in 224 pages. (Of course, paper phone books have long
since disappeared, so I can’t repeat the experiment today.) I began at
page 112, finding the name Lawrence. <Lewis= comes later than that; it’s
in the second half, so I next tried page 168, halfway between 112 and
224, to find Rivera. <Lewis= is before that, so I tried 140 (halfway
between 112 and 168), leading to Morita. Next to 126 (halfway between
112 and 140) to find Mark. The next try was 119 (Little), then 115
(Leitner), then 117 (Li), to 116. There were about 90 names on this
page, so another 7 comparisons, all on the same page, found Harry
among a dozen other Lewises. This experiment took 14 tests in all,
which is about what would be expected, since 20,000 lies between 214

(16,384) and 215 (32,768).
This kind of binary division shows up in real-world settings like the

knockout tournaments used in many sports. The tournament starts with
a large number of competitors, for example 128 for men’s singles tennis
at Wimbledon. Each round eliminates half the contenders, leaving one
pair in the final round, from which a single winner emerges. Not by
coincidence, 128 is a power of two (27), so Wimbledon has seven
rounds. One could imagine a worldwide knockout tournament; even
with seven billion participants, it would only take 33 rounds to determine
the winner. If you recall the discussion of powers of two and ten in
Chapter 2, you can verify this with easy mental arithmetic.



4.3 Sorting

But how do we get those names into alphabetical order in the first
place? Without that preliminary step, we can’t use binary search. This
brings us to another fundamental algorithmic problem, sorting, which
puts things into order so that subsequent searches can run quickly.

Suppose we want to sort some names into alphabetical order so we
can later search them efficiently with binary search. One algorithm is
called selection sort, since it keeps selecting the next name from among
the ones not yet in order. It’s based on the technique for finding the
tallest person in the room that we saw earlier.

Let’s illustrate by sorting these 16 familiar names alphabetically:

Intel Facebook Zillow Yahoo Pinterest Twitter Verizon Bing
Apple Google Microsoft Sony PayPal Skype IBM Ebay

Start at the beginning. Intel is first, so it’s alphabetically first so far.
Compare that to the next name, Facebook. Facebook comes earlier in
the alphabet, so it temporarily becomes the new first name. Zillow is not
before Facebook, nor are any other names until Bing, which replaces
Facebook; Bing is in turn replaced by Apple. We examine the rest of the
names but none of them precedes Apple, so Apple is truly first in the
list. We move Apple to the front and leave the rest of the names as they
were. The list now looks like this:

Apple
          
Intel Facebook Zillow Yahoo Pinterest Twitter Verizon Bing
Google Microsoft Sony PayPal Skype IBM Ebay

Now we repeat the process to find the second name, starting with
Intel, which is the first name in the unsorted group. Again Facebook
replaces it, then Bing becomes the first element. After the second pass
is complete, the result is:

Apple Bing
          
Intel Facebook Zillow Yahoo Pinterest Twitter Verizon
Google Microsoft Sony PayPal Skype IBM Ebay



After 14 more steps this algorithm produces a completely sorted list.
How much work does it do? It makes repeated passes through the

remaining items, each time finding the next name in alphabetical order.
With 16 names, identifying the first name requires looking at 16 names.
Finding the second name takes 15 steps, finding the third takes 14
steps, and so on. In the end, we have to look at 16+15+14+...+3+2+1
names, 136 in all. Of course a clever sorting algorithm could discover
that the names are already in order, but computer scientists who study
algorithms are pessimists and assume the worst case, where there are
no shortcuts and all the work has to be done.

The number of passes through the names is directly proportional to
the original number of items (16 for our example, or N in general). Each
pass has to deal with one less item, however, so the amount of work in
the general case is

N + (N − 1) + (N − 2) + (N − 3) + ... + 2 + 1

This series adds up to N × (N + 1)/2 (most easily seen by adding the
numbers in pairs from each end), which is N2/2 + N/2. Ignoring the
division by 2, the work is proportional to N2 + N. As N gets bigger, N2

quickly becomes much bigger than N (for instance, if N is a thousand,
N2 is a million), so the effect is that the amount of work is approximately
proportional to N2 or the square of N, a growth rate called quadratic.
Quadratic is worse than linear; in fact, it’s much worse. If there are twice
as many items to sort, it will take four times as long; if there are ten
times as many items, it will take one hundred times as long; and if there
are a thousand times as many items, it will take a million times as long!
This is not good.

Fortunately, it is possible to sort much more quickly. Let’s take a look
at one clever way, an algorithm called Quicksort, which was invented by
the English computer scientist Tony Hoare around 1959. (Hoare won
the Turing Award in 1980 for multiple contributions, including Quicksort.)
It’s an elegant algorithm, and a great example of divide and conquer.

Here are the unsorted names again:

Intel Facebook Zillow Yahoo Pinterest Twitter Verizon Bing
Apple Google Microsoft Sony PayPal Skype IBM Ebay



To sort the names with a simplified version of Quicksort, first go through
the names once, putting the ones that begin with A through M in one
pile and N through Z in another. That produces two piles, each having
about half the names. This assumes that the distribution of names isn’t
badly skewed, so that approximately half the names at each stage fall
into each pile. In our case, the two resulting piles each have eight
names:

Intel Facebook Bing Apple Google Microsoft IBM Ebay
Zillow Yahoo Pinterest Twitter Verizon Sony PayPal Skype

Now go through the A3M pile, putting A through F in one pile and G
through M in another; go through the N3Z pile, putting N3S in one pile
and T3Z in another. At this point, we have made two passes through the
names, and have four piles, each with about one quarter of the names:

Facebook Bing Apple Ebay
Intel Google Microsoft IBM
Pinterest Sony PayPal Skype
Zillow Yahoo Twitter Verizon

The next pass goes through each of those piles, splitting the A3F pile
into ABC and DEF and G3M into GHIJ and KLM, and the same for N3S
and T3Z; at this point we have eight piles with about two names in
each:

Bing Apple
Facebook Ebay
Intel Google IBM
Microsoft
Pinterest PayPal
Sony Skype
Twitter Verizon
Zillow Yahoo

Of course, eventually we will have to look at more than just the first
letter of the names, for example to put IBM ahead of Intel and Skype
ahead of Sony. But after one or two more passes, we’ll have 16 piles of
one name each, and the names will be in alphabetical order.



How much work was that? We looked at each of the 16 names in
each pass. If the split were perfect each time, the piles would have 8
names, then 4, then 2, then 1. The number of passes is the number of
times we divide 16 by 2 to get down to 1. That’s the log base 2 of 16,
which is 4. Thus the amount of work is 16 log2 16 for 16 names. If we
make four passes through the data, that’s 64 operations, compared to
136 for selection sort. That’s for 16 names; when there are more,
Quicksort’s advantage will be much greater, as can be seen in Figure
4.1.

Figure 4.1: Growth of log N, N, N log N and N2.

This algorithm will always sort the data, but it is only efficient if each
division divides the group into piles of about the same size. On real
data, Quicksort has to guess the middle data value so it can split into
two approximately equal-size groups each time; in practice this can be



estimated well enough by sampling a few items. In general, Quicksort
takes about N log N operations to sort N items; the amount of work is
proportional to N × log N. That’s worse than linear, but not terribly so,
and it’s enormously better than quadratic or N2 when N is at all large.

The graph in Figure 4.1 shows how log N, N, N log N and N2 grow as
the amount of data grows; it plots them for 20 values, though only 10 for
quadratic, which would otherwise be through the roof.

As an experiment, I generated 10 million random 9-digit numbers,
analogous to US Social Security numbers, and timed how long it took to
sort groups of various sizes with selection sort (N2 or quadratic) and
with Quicksort (N log N); the results are in Figure 4.2. The dashes in the
table are cases I did not run.

It’s hard to accurately measure programs that run for short times, so
take these numbers with a large grain of salt. Nevertheless, you can
see roughly the expected N log N growth of run time for Quicksort, and
you can also see that selection sort might be feasible for up to say
10,000 items, though far from competitive; at every stage, it’s
hopelessly outclassed by Quicksort.

You might also have noticed that the selection sort time for 100,000
items is nearly 200 times larger than for 10,000, rather than the
expected 100 times. This is likely a caching effect4the numbers don’t
all fit in the cache and thus sorting is slower. It’s a good illustration of
the difference between an abstraction of computational effort and the
reality of a concrete computation by an actual program.

Figure 4.2: Comparison of sorting times.

4.4 Hard Problems and Complexity



We’ve now studied several points along a spectrum of algorithmic
<complexity= or running time. At one end is log N, as seen in binary
search, where the amount of work grows slowly as the amount of data
increases. The most common case is linear, or plain N, where the work
is directly proportional to the amount of data. There’s N log N, as in
Quicksort; that’s worse (grows faster) than N, but still eminently
practical for large values of N because the log factor grows so slowly.
And there’s N2, or quadratic, which grows quickly enough that it’s
somewhere between painful and impractical.

There are plenty of other complexity possibilities, some easy to
understand, like cubic, or N3, which is worse than quadratic but the
same idea, and others so esoteric that only specialists could care about
them. One more is worth knowing, since it occurs in practice, it’s
especially bad, and it’s important. Exponential complexity grows like 2N

(which is not the same as N2). In an exponential algorithm, the amount
of work grows exceptionally rapidly: adding one more item doubles the
amount of work to be done. In a sense, exponential is at the opposite
end from a log N algorithm, where doubling the number of items adds
only one more step.

Exponential algorithms arise in situations where in effect we must try
all the possibilities one by one. Fortunately, there is a silver lining to the
existence of problems that require exponential algorithms. Some
algorithms, notably in cryptography, are based on the exponential
difficulty of performing a specific computational task. For such
algorithms, one chooses N large enough that it’s not computationally
feasible to solve the problem directly without knowing a secret shortcut
4it would take far too long4and that provides the protection from
adversaries. We’ll take a look at cryptography in Chapter 13.

By now you should have an intuitive understanding that some
problems are easy to deal with, while others seem harder. It’s possible
to make this distinction more precise. <Easy= problems are <polynomial=
in their complexity; that is, their running time is expressed as some
polynomial like N2, though if the exponent is more than 2, they are likely
to be challenging. (Don’t worry if you’ve forgotten what a polynomial is
4here, think of it as an expression with only integer powers of a
variable, like N2 or N3.) Computer scientists call this class of problems
<P=, for <polynomial,= because they can be solved in polynomial time.



A large number of problems that occur in practice or as the essence
of practical problems seem to require exponential algorithms to solve;
that is, we know of no polynomial algorithm. These problems are called
<NP= problems. NP problems have the property that we can’t find a
solution quickly but we can verify quickly that a proposed solution is
correct. NP stands for <nondeterministic polynomial,= which informally
means that they can be solved in polynomial time by an algorithm that
always guesses right when it has to make a choice. In real life, nothing
is lucky enough to always choose correctly, so this is a theoretical idea
only.

Many NP problems are quite technical, but one is easy to explain and
its practical applications can be imagined. In the Traveling Salesman
Problem (TSP), a salesman has to start from his or her home city, visit a
number of other specific cities in any order, and then return home. The
goal is to visit each city exactly once (no repeats) and to travel the
minimum total distance. This captures the idea of efficiently routing
school buses or garbage trucks; when I worked on it long ago, it was
used for tasks as diverse as planning how to drill holes in circuit boards
and sending boats to pick up water samples at specific places in the
Gulf of Mexico.

Figure 4.3 shows a randomly generated 10-city problem, with a
solution found by the intuitively appealing <nearest neighbor= heuristic:
start at some city and at each city, go next to the nearest unvisited city.
The length of this tour is 12.92. Note that different starting cities can
lead to different tours; the tour in Figure 4.3 is the shortest of those. 0



Figure 4.3: Nearest-neighbor solution to a 10-city TSP (length
12.92).

The Traveling Salesman Problem was first described in the 1800s
and has been the subject of intense study for many years. Although
we’re better now at solving larger instances, techniques for finding the
best solution still amount to clever variations of trying all possible
routes. For comparison, Figure 4.4 is the shortest tour, found by
exhaustive search of all 180,000 tours; its length is 11.86, about 8
percent shorter than the best nearest-neighbor tour.



Figure 4.4: Best solution to the 10-city TSP (length 11.86).

The same is true for a wide variety of problems: we don’t have good
ways to solve them efficiently other than by exhaustive search of all
possible solutions. For people who study algorithms, this is frustrating.
We don’t know whether these problems are intrinsically hard or we’re
just dumb and haven’t figured out how to deal with them yet, though the
betting today heavily favors the <intrinsically hard= side.

A remarkable mathematical result by Stephen Cook in 1971 showed
that many of these problems are equivalent, in the sense that if we
could find a polynomial-time algorithm (that is, something like N2) for
any one of them, that would enable us to find polynomial-time
algorithms for all of them. Cook won the 1982 Turing Award for this
work.

In 2000, the Clay Mathematics Institute offered a prize of one million
dollars each for the solution of seven unsolved problems. One of these
questions is to determine whether P equals NP, that is, whether the
hard problems are really the same class as the easy problems. The
Poincaré Conjecture, another problem on the list, dates from the early
1900s. It was resolved by the Russian mathematician Grigori Perelman
and the prize was awarded in 2010, though Perelman declined to



accept it. Only six problems are left4better hurry before someone
beats you to it!

There are a couple of things to keep in mind about this kind of
complexity. Although the P=NP question is important, it is more a
theoretical issue than a practical one. Most complexity results stated by
computer scientists are for the worst case. That is, some problem
instances will require the maximum time to compute the answer, but not
all instances need be that hard. They are also asymptotic measures
that only apply for large values of N. In real life, N might be small
enough that the asymptotic behavior doesn’t matter. For instance, if
you’re only sorting a few dozen or even a few hundred items, selection
sort might be fast enough even though its complexity is quadratic and
thus asymptotically much worse than Quicksort’s N log N. If you’re only
visiting 10 cities, it’s feasible to try all possible routes, but that would
likely be infeasible for 100 cities and definitely impossible for 1,000.
Finally, in most real situations an approximate solution is probably good
enough; there’s no need for an absolutely optimal solution.

On the flip side, some important applications, like cryptographic
systems, are based on the belief that a particular problem truly is
difficult, so the discovery of an attack, however impractical it might be in
the short run, could be significant.

4.5 Summary

Computer science as a field has spent years refining the notion of
<how fast can we compute=; the idea of expressing running time in
terms of the amount of data like N, log N, N2, or N log N is the
distillation of that thinking. It ignores concerns like whether one
computer is faster than another, or whether you are a better
programmer than I am. It does capture the complexity of the underlying
problem or algorithm, however, and for that reason, it’s a good way to
make comparisons and to reason about whether some computation is
likely to be feasible or not. (The intrinsic complexity of a problem and
the complexity of an algorithm to solve it need not be the same. For
example, sorting is an N log N problem, for which Quicksort is an N log
N algorithm, but selection sort is an N2 algorithm.)



The study of algorithms and complexity is a major part of computer
science, as both theory and practice. We’re interested in what can be
computed and what can’t, and how to compute fast and without using
more memory than necessary or perhaps by trading off speed against
memory. We look for fundamentally new and better ways to compute;
Quicksort is a nice example of that, though from long ago.

Many algorithms are more specialized and complicated than the
basic searching and sorting that we’ve talked about. For example,
compression algorithms attempt to reduce the amount of memory
occupied by text, music (MP3, AAC), images and pictures (PNG, JPEG)
and movies (MPEG). Error detection and correction algorithms are also
important. Data is subject to potential damage as it is stored and
transmitted, for example over noisy wireless channels or CDs that have
been scratched; algorithms that add controlled redundancy to the data
make it possible to detect and even correct some kinds of errors. We’ll
come back to these algorithms in Chapter 8 since they have
implications when we talk about communications networks.

Cryptography, the art of sending secret messages so they can be
read only by the intended recipients, depends strongly on algorithms.
We’ll discuss cryptography in Chapter 13, since it’s highly relevant when
computers exchange private information in a secure fashion.

Search engines like Bing and Google are yet another place where
algorithms are crucial. In principle, much of what a search engine does
is simple: collect some web pages, organize the information to make it
easy to search, and then search it efficiently. The problem is scale.
When there are billions of web pages and billions of queries every day,
even N log N isn’t good enough, and much algorithmic and
programming cleverness goes into making search engines run fast
enough to keep up with the growth of the web and our interest in finding
things on it. We’ll talk more about search engines in Chapter 11.

Algorithms are also at the heart of services like speech
understanding, face and image recognition, machine translation of
languages, and so on. These all depend on having lots of data that can
be mined for relevant features, so the algorithms have to be linear or
better and generally have to be parallelizable so separate pieces can
run on multiple processors simultaneously. More on this in Chapter 12.





5
Programming and Programming Languages

<The realization came over me with full force that a good part of the
remainder of my life was going to be spent in finding errors in my
own programs.=

Maurice Wilkes, Memoirs of a Computer Pioneer, 1985.

So far we have talked about algorithms, which are abstract or
idealized process descriptions that ignore details and practicalities. An
algorithm is a precise and unambiguous recipe. It9s expressed in terms
of a fixed set of basic operations whose meanings are completely
known and specified. It spells out a sequence of steps using those
operations, with all possible situations covered, and it9s guaranteed to
stop eventually.

By contrast, a program is anything but abstract—it9s a concrete
statement of every step that a real computer must perform to
accomplish a task. The distinction between an algorithm and a program
is like the difference between a blueprint and a building; one is an
idealization and the other is the real thing.

One way to view a program is as one or more algorithms expressed
in a form that a computer can process directly. A program has to worry
about practical problems like insufficient memory, limited processor
speed, invalid or even malicious input data, faulty hardware, broken
network connections, and (in the background and often exacerbating
the other problems) human frailty. So if an algorithm is an idealized
recipe, a program is the detailed set of instructions for a cooking robot
preparing a month of meals for an army while under enemy attack.

We can only get so far with metaphors, of course, so we9re going to
talk about real programming enough that you can understand what9s
going on, though not enough to make you into a professional
programmer. Programming can be hard—there are many details to get
right and tiny slip-ups can lead to large errors—but it9s not impossible
and it can be a great deal of fun, as well as a marketable skill.



There aren9t enough programmers in the world to do the amount of
programming involved in making computers do everything we want or
need. So one continuing theme in computing has been to enlist
computers to handle more and more of the details of programming. This
leads to a discussion of programming languages: languages that let us
express the computational steps needed to perform some task in a form
that9s more or less natural for humans.

It9s also hard to manage the resources of a computer, especially
given the complexity of modern hardware. So we also use the computer
to control its own operations, which leads us to operating systems.
Programming and programming languages are the topic of this chapter,
and software systems, especially operating systems, will come in the
next. Chapter 7 takes a more detailed look at two important languages,
JavaScript and Python.

You can certainly skip the syntactic details in the programming
examples in this chapter, but it9s worth looking at similarities and
differences in how computations are expressed.

5.1 Assembly Language

For the first truly programmable electronic computers, programming
was a laborious process. Programmers had to convert instructions and
data into binary numbers, make these numbers machine-readable by
punching holes into cards or paper tape, then load them into the
computer memory. Programming at this level was incredibly difficult
even for tiny programs—hard to get right in the first place, and hard to
change if a mistake was found or instructions and data had to be
changed or added.

Maurice Wilkes9s comment in the epigraph above hints at the
challenge. Wilkes was the designer and implementer of EDSAC, one of
the first stored-program computers; it became operational in 1949. He
won the Turing Award in 1967 for his contributions, and was knighted in
2000.

Early in the 1950s, programs were created to handle some of the
straightforward clerical chores, so that programmers could use
meaningful words for instructions (ADD instead of 5, for example) and
names for specific memory locations (Sum instead of 14). This powerful



idea—a program to manipulate another program—has been at the heart
of most significant advances in software.

The program that does this specific manipulation is called an
assembler because originally it also assembled any necessary parts of
a program that had been written earlier by other programmers. The
language is called assembly language and programming at this level is
called assembly language programming. The language that we used to
describe and program the Toy computer in Chapter 3 is an assembly
language. Assemblers make it much easier to modify a program,
because when the programmer adds or removes instructions, the
assembler keeps track of where each instruction and data value will be
located in memory, rather than requiring the programmer to do the
bookkeeping by hand.

An assembly language for a particular processor architecture is
specific to that architecture; it usually matches the instructions of the
processor one for one and it knows the specific way that instructions
are encoded in binary, how information is placed in memory, and so on.
This means that a program written in the assembly language of one
particular kind of processor, say an Intel processor in a Mac or PC, will
be different from an assembly language program for the same task for a
different CPU, like the ARM processor in a cell phone. If one wants to
convert an assembly language program from one of those processors
to the other, the program must be totally rewritten.

To make this concrete, in the Toy computer it takes three instructions
to add two numbers and store the result in a memory location:

LOAD  X
ADD   Y
STORE Z

This would be similar in a variety of current processors. In a CPU
with a different instruction repertoire, however, this computation might
be accomplished with a sequence of two instructions that access
memory locations without using an accumulator:

COPY X, Z
ADD  Y, Z

To convert a Toy program to run on the second computer, a
programmer would have to be intimately familiar with both processors



and meticulous in converting from one instruction set to the other. It9s
hard work.

5.2 High-Level Languages

During the late 1950s and early 1960s, another step was taken
towards getting the computer to do more for programmers, arguably the
most important step in the history of programming. This was the
development of high-level programming languages that were
independent of any particular processor architecture. High-level
languages make it possible to express computations in terms that are
closer to the way a person might express them.

Code written in the high-level language is converted by a translator
program into instructions in the assembly language of a specific target
processor, which in turn are converted by the assembler into bits to be
loaded into the memory and executed. The translator is usually called a
compiler, another historical term that doesn9t convey much insight or
intuition.

In a typical high-level language, the computation above that adds two
numbers X and Y and stores the result as a third, Z, would be expressed
as

Z = X + Y

This means <get the values from the memory locations called X and Y,
add them together, and store the result in the memory location called Z.=
The operator <== means <replace= or <store,= not <equal to.=

A compiler for the Toy would convert this into the sequence of three
instructions, while a compiler for the other computer would convert it
into two instructions. The respective assemblers would then be
responsible for converting their assembly language instructions into the
actual bit patterns of real instructions, as well as setting aside memory
locations for the quantities X, Y and Z. The resulting bit patterns would
almost certainly be different for the two computers.

This process is illustrated in Figure 5.1, which shows the same input
expression going through two different compilers and their
corresponding assemblers, to produce two different sequences of
instructions.



Figure 5.1: The compilation process with two compilers.

As a practical matter, a compiler will likely be divided internally into a
<front end= that processes programs in the high-level programming
language into some intermediate form, and several <back ends,= each
one of which converts the common intermediate form into the assembly
language for its specific architecture. This organization is simpler than
having multiple completely independent compilers.

High-level languages have great advantages over assembly
language. Because high-level languages are closer to the way that
people think, they are easier to learn and use; one doesn9t need to
know anything about the instruction repertoire of any particular
processor to program effectively in a high-level language. Thus they
make it possible for more people to program computers and to program
them more quickly.



Second, a program in a high-level language is independent of any
particular architecture, so the same program can be run on different
architectures, usually without any changes at all, merely by compiling it
with a different compiler, as in Figure 5.1. The program is written only
once but can be run on different computers. This makes it possible to
amortize development costs over multiple kinds of computers, even
ones that don9t yet exist.

The compilation step also provides a preliminary check for some
kinds of gross errors—misspellings, syntax errors like unbalanced
parentheses, operations on undefined quantities, and so on—that the
programmer must correct before an executable program can be
produced. Some such errors are hard to detect in assembly language
programs, where any sequence of instructions must be presumed legal.
(Of course a syntactically correct program can still be full of errors
undetectable by a compiler.) It9s hard to overstate the importance of
high-level languages.

I9m going to show the same program in six of the most important
high-level programming languages—Fortran, C, C++, Java, JavaScript,
and Python—so you can get a sense of their similarities and
differences. Each program does the same thing as the program that we
wrote for the Toy in Chapter 3. It adds up a sequence of integers; when
a zero value is read, it prints the sum and stops. The programs all have
the same structure: name the quantities that the program uses, initialize
the running sum to zero, read numbers and add them to the running
sum until zero is encountered, then print the sum. Don9t worry about
syntactic details; this is mostly to give you an impression of what the
languages look like. I9ve tried to keep the examples as similar as
possible, even though that might not be the best way to write them
individually.

The first high-level languages concentrated on specific application
domains. One of the earliest languages was called FORTRAN, a name
derived from <Formula Translation= and written today as <Fortran.=
Fortran was developed by an IBM team led by John Backus, and was
very successful for expressing computations in science and
engineering. Many scientists and engineers (including me) learned
Fortran as their first programming language. Fortran is alive and well
today; it has gone through several evolutionary stages since 1958, but
is recognizably the same language. Backus received the Turing Award
in 1977 in part for his work on Fortran.



Figure 5.2 shows a Fortran program to add up a series of numbers.

Figure 5.2: Fortran program to add up numbers.

This is written in Fortran 77; it would look a bit different in an earlier
version or a later one like Fortran 2018, the most recent. You can
imagine how to translate both the arithmetic expressions and the
sequencing of operations into Toy assembly language. The read and
write operations obviously correspond to GET and PRINT, and the fourth
line is clearly an IFZERO test.

A second major high-level language of the late 1950s was COBOL
(Common Business Oriented Language), which was strongly influenced
by the work of Grace Hopper on high-level alternatives to assembly
language. Hopper worked with Howard Aiken on the Harvard Mark I
and II, early mechanical computers, and then on the UNIVAC I. She
was one of the first people to see the potential of high-level languages
and compilers. COBOL was specifically aimed at business data
processing, with language features to make it easy to express the kinds
of data structures and computations that go into managing inventories,
preparing invoices, computing payrolls, and the like. COBOL too lives
on, much changed but still recognizable. There are a lot of legacy
COBOL programs, but not many COBOL programmers. In 2020, the
state of New Jersey discovered that their ancient programs for
processing unemployment claims couldn9t cope with the increased
volume caused by Covid-19, but the state couldn9t find enough
experienced programmers to upgrade the COBOL programs.



BASIC (Beginner9s All-purpose Symbolic Instruction Code),
developed at Dartmouth in 1964 by John Kemeny and Tom Kurtz, is
another language of the time. BASIC was meant to be an easy
language for teaching programming. It was especially simple and
required limited computing resources, so it was the first high-level
language available on the first personal computers. In fact, Bill Gates
and Paul Allen, the founders of Microsoft, got their start by writing a
BASIC compiler for the Altair microcomputer in 1975; it was their
company9s first product. Today one major strain of BASIC is still actively
supported as Microsoft Visual Basic.

In the early days when computers were expensive yet slow and
limited, there was a concern that programs written in high-level
languages would be too inefficient, because compilers could not
produce compact and efficient assembly code as well as a skilled
assembly language programmer could. Compiler writers worked hard to
generate code that was as good as hand-written, which helped to
establish the languages. Today, with computers millions of times faster
and with plentiful memory, programmers rarely worry about efficiency at
the level of individual instructions, though compilers and compiler
writers certainly still do.

Fortran, COBOL and BASIC achieved part of their success by
focusing on specific application areas and intentionally did not try to
handle every possible programming task. During the 1970s, languages
were created that were intended for <system programming,= that is, for
writing programmer tools like assemblers, compilers, text editors, and
even operating systems. By far the most successful of these languages
was C, developed at Bell Labs by Dennis Ritchie in 1973 and still one of
the most popular and widely used. C has changed only a small amount
since then; a C program today looks much like one from 30 or 40 years
earlier. For comparison, Figure 5.3 shows the same <add up the
numbers= program in C.



Figure 5.3: C program to add up numbers.

The 1980s saw the development of languages like C++ (by Bjarne
Stroustrup, also at Bell Labs) that were meant to help manage the
complexities of very large programs. C++ evolved from C and in most
cases a C program is also a valid C++ program, as the one in Figure
5.3 is, though not vice versa. Figure 5.4 shows the example of adding
up numbers in C++, one of many ways to write it.

Figure 5.4: C++ program to add up numbers.

Most of the major programs that we use on our own computers today
are written in C or C++. I9m writing this book on Macs, where most
software is written in C, C++ and Objective-C (a C dialect). The very
first draft was in Word, a C and C++ program; today I edit, format and
print with C and C++ programs, and make backup copies on Unix and



Linux operating systems (both C programs) while surfing with Firefox,
Chrome and Edge (all C++).

During the 1990s, more languages were developed in response to
the growth of the Internet and the World Wide Web. Computers
continued to get faster processors and bigger memories, and
programming speed and convenience became more important than
machine efficiency; languages like Java and JavaScript make this
tradeoff intentionally.

Java was developed in the early 1990s by James Gosling at Sun
Microsystems. Its original target was small embedded systems like
home appliances and electronic gadgets, where speed didn9t matter
much but flexibility did. Java was repurposed to run on web pages,
where it did not catch on, but it is widely used by web servers: when
you visit a site like Ebay, your computer is running C++ and JavaScript,
but Ebay might well be using Java to prepare the page it sends to your
browser. Java is also the primary language for writing Android apps.
Java is simpler than C++ (though evolving towards similar complexity)
but more complicated than C. It9s also safer than C since it eliminates
some dangerous features and has built-in mechanisms to handle error-
prone tasks like managing complicated data structures in memory. For
that reason, it9s also popular as the first language in programming
classes.

Figure 5.5 shows the add-up-the-numbers program in Java. The
program is wordier than in the other languages, which is not atypical of
Java, but it could be made two or three lines shorter by combining a few
computations.

This brings up an important general point about programs and
programming. There are always many ways to write a program to do a
specific task. In this sense, programming is like literary composition.
Concerns like style and effective use of language that matter when
writing prose are also important when writing programs and help
separate truly great programmers from the merely good ones. Because
there are so many ways to express the same computation, it9s usually
not hard to spot a program that has been copied from another program.
This point is made strongly at the beginning of every programming
course, yet occasionally students think that changing variable names or
the placement of lines will be sufficient to disguise plagiarism. Sorry—it
doesn9t work.



Figure 5.5: Java program to add up numbers.

JavaScript is a language in the same broad family that began with C,
though with plenty of differences. It was created at Netscape in 1995 by
Brendan Eich. Except for sharing part of its name, JavaScript has no
relationship to Java. It was designed from the beginning to be used in a
browser to achieve dynamic effects on web pages; today almost all web
pages include some JavaScript code. We will talk more about
JavaScript in Chapter 7, but to make the side-by-side comparisons
easy, Figure 5.6 is aversion of adding up the numbers in JavaScript.

Figure 5.6: JavaScript program to add up numbers.

JavaScript is easy to experiment with. The language itself is simple.
You don9t need to download a compiler; there9s one built into every



browser. The results of your computations are immediately visible. As
we9ll see shortly, you could add a handful of additional lines and put this
example on a web page for anyone in the world to use.

Python was created in 1990 by Guido van Rossum at the Centrum
Wiskunde & Informatica (CWI) in Amsterdam. It is syntactically
somewhat different from C, C++, Java and JavaScript, most visibly in
that instead of braces, it uses indentation to indicate how statements
are grouped.

Python was designed from the beginning with a focus on readability.
It is easy to learn, and has become one of the most widely used of all
languages, with a rich collection of software libraries for almost any
conceivable programming task. If I had to pick a single language to
learn or to teach, I9d pick Python. We will talk more about it in Chapter
7. Meanwhile, Figure 5.7 is a version of adding up the numbers in
Python.

Figure 5.7: Python program to add up numbers.

Where will languages go from here? My guess is that we will
continue to make programming easier by using more computer
resources to help us. We9ll also continue to evolve towards languages
that are safer for programmers. For example, C is an exceedingly sharp
tool and it9s easy to inadvertently make programming errors that aren9t
detected until too late, perhaps after they have been exploited for
nefarious purposes. Newer languages make it easier to prevent or at
least detect some errors, though sometimes at the cost of running
slower and using more memory. Most of the time this is the right
tradeoff to make, though there are certainly still plenty of applications—
control systems in cars, planes, spacecraft and weapons, for instance—



where tight, fast code matters a lot and highly efficient languages like C
will still be used.

Although all languages are formally equivalent, in that they can be
used to simulate or be simulated by a Turing machine, they are by no
means equally good for all programming tasks. There9s a world of
difference between writing a JavaScript program to control a
complicated web page, and writing a C++ program that implements a
JavaScript compiler. It would be unusual to find a programmer who was
truly expert at both of these tasks. Experienced professional
programmers might be comfortable and passably proficient in a dozen
languages, but they are not going to have the same skill in all of them.

Thousands of programming languages have been invented over the
years, though fewer than a hundred are in widespread use. Why so
many? As I9ve hinted, each language represents a set of tradeoffs
among concerns like efficiency, expressiveness, safety, and complexity.
Many languages are explicitly a reaction to the perceived weaknesses
of earlier languages, taking advantage of hindsight and more computing
power, and often strongly influenced by the personal taste of their
designer. New application areas also give rise to new languages that
focus on the new domain.

No matter what happens, programming languages are an important
and fascinating part of computer science. As the American linguist
Benjamin Whorf said, <Language shapes the way we think and
determines what we can think about.= Linguists still debate whether this
is true for natural languages, but it does seem to apply to the artificial
languages that we invent to tell our computers what to do.

5.3 Software Development

Programming in the real world tends to happen on a large scale. The
strategy is similar to what one might use to write a book or undertake
any other big project: figure out what to do, starting with a broad
specification that is broken into smaller and smaller pieces, then work
on the pieces separately while making sure that they hang together. In
programming, pieces tend to be of a size such that one person can
write the precise computational steps in some programming language.
Ensuring that the pieces written by different programmers work together
is challenging, and failing to get this right is a major source of errors.



For instance, NASA9s Mars Climate Orbiter failed in 1999 because the
flight system software used metric units for thrust, but course-correction
data was entered in English units, causing an erroneous trajectory that
brought the Orbiter too close to the planet9s surface.

The examples above that illustrate different languages are mostly
less than ten lines long. Small programs of the kind that might be
written in an introductory programming course will have a few dozen to
a few hundred lines of code. The first <real= program I ever wrote—real
in the sense that it was used by a significant number of other people—
was about a thousand lines of Fortran. It was a simple-minded word
processor for formatting and printing my thesis, and it was taken over
by a student agency and used for another five years or so after I
graduated. The good old days!

A more substantial program to do a useful task today might have
thousands to tens of thousands of lines. Students in my project courses,
working in small groups, routinely turn out two or three thousand lines in
8 to 10 weeks, including the time to design their system and learn a
new language or two while keeping up with other courses and their
extracurricular activities. The product is often a web service for easy
access to some university database or a phone app to facilitate social
life.

A compiler or a web browser might have hundreds of thousands to a
million lines. Big systems, however, have multiple millions or even tens
of millions of lines of code, with hundreds or thousands of people
working on them at the same time, and lifetimes measured in decades.
Companies are usually circumspect about revealing how big their
programs are, but reliable information occasionally surfaces. For
instance, Google had about two billion lines of code in total, according
to a Google conference presentation in 2015; it9s likely at least twice
that by now.

Software on this scale requires teams of programmers, testers and
documenters, with schedules, deadlines, layers of management, and
endless meetings to keep it all going. A colleague who was in a position
to know used to claim that there was one meeting for every line of code
in a major system that he had worked on. Since the system had several
million lines, perhaps he exaggerated, but experienced programmers
might say <not by much.=

5.3.1 Libraries, interfaces, and development kits



If you9re going to build a house today, you don9t start by cutting down
trees to make lumber and digging clay to make your own bricks.
Instead, you buy prefabricated pieces like doors, windows, plumbing
fixtures, a furnace, and a water heater. House construction is still a big
job, but it9s manageable because you can build on the work of others
and rely on an infrastructure, indeed an entire industry, that will help.

The same is true of programming. Hardly any significant program is
created from nothing. Many components written by others can be taken
off the shelf and used directly. For instance, if you9re writing a program
for Windows or a Mac, you have access to code for prefabricated
menus, buttons, graphics computations, network connections, database
access, and so on. Much of the job is understanding the components
and gluing them together in your own way. Of course these components
in turn rest on other simpler and more basic ones, often for several
layers. Below that, everything runs on the operating system, a program
that manages the hardware and controls everything that happens. We9ll
talk about operating systems in the next chapter.

At the simplest level, programming languages provide a function
mechanism that makes it possible for one programmer to write code
that performs a useful operation, then package it in a form that other
programmers can use in their programs without having to know how it
works. For example, the C program a few pages ago includes these
lines:

while (scanf("%d", &num) != EOF && num != 0)
   sum = sum + num;
printf("%d\n", sum);

This code <calls= (that is, uses) two functions that come with C: scanf
reads data from an input source, which is analogous to GET in the Toy,
and printf prints output, like PRINT. A function has a name and a set of
input data values that it needs to do its job; it does a computation and
may return a result to the part of the program that used it. The syntax
and other details here are specific to C and would be different in
another language, but the idea is universal. Functions make it possible
to create a program by building on components that have been created
separately and that can be used as necessary by all programmers.

A collection of related functions is usually called a library. For
instance, C has a standard library of functions for reading and writing



data on disks and other places, and scanf and printf are part of that
library.

The services that a function library provides are described to
programmers in terms of an Application Programming Interface or API,
which lists the functions, what they do, how to use them in a program,
what input data they require, and what values they produce. The API
might also describe data structures—the organization of data that is
passed back and forth—and various other bits and pieces that all
together define what a programmer has to do to request services and
what will be computed as a result. This specification must be detailed
and precise, since in the end the program will be interpreted by a dumb
literal computer, not by a friendly and accommodating human.

An API includes not only the bare statement of syntactic
requirements but also supporting documentation to help programmers
use the system effectively. Large systems today often involve a
Software Development Kit or SDK so programmers can navigate
increasingly complicated software libraries. For example, Apple
provides an environment and supporting tools for developers writing
iPhone and iPad code; Google provides an analogous SDK for Android
phones; Microsoft provides a variety of development environments for
writing Windows code in different languages for different devices. SDKs
are themselves large software systems; for instance, Android Studio,
the development environment for Android, is 1.6 GB, and Xcode, the
SDK for Apple developers, is much bigger.

5.3.2 Bugs

Sadly, no substantial program works the first time; life is too
complicated and programs reflect that complexity. Programming
requires perfect attention to detail, something that few people can
achieve. Thus all programs of any size will have errors, that is, they will
do the wrong thing or produce the wrong answer under some
circumstances. Those flaws are called bugs, a term popularly attributed
to Grace Hopper, who was mentioned above. In 1947, Hopper9s
colleagues found a literal bug (a dead moth) in the Harvard Mark II, a
mechanical computer that they were working with, and she apparently
said that they were <debugging= the machine. The bug was preserved
and has passed into a kind of immortality; it can be seen in the



Smithsonian9s American History museum in Washington and in the
photograph in Figure 5.8.

Figure 5.8: Bug from the Harvard Mark II.

Hopper did not coin this use of the word <bug,= however; it dates from
1889. As the Oxford English Dictionary (second edition) says,

bug. A defect or fault in a machine, plan, or the like. orig. U.S.
1889 Pall Mall Gaz. 11 Mar. 1/1 Mr. Edison, I was informed, had
been up the two previous nights discovering 8a bug9 in his
phonograph—an expression for solving a difficulty, and implying
that some imaginary insect has secreted itself inside and is
causing all the trouble.

Bugs arise in so many ways that it would take a large book to
describe them (and such books do exist). Among the endless



possibilities are forgetting to handle a case that might occur, writing the
wrong logical or arithmetic test to evaluate some condition, using the
wrong formula, accessing memory outside the range allotted to the
program or a part of it, applying the wrong operation to a particular kind
of data, and failing to validate user input.

As a contrived example, Figure 5.9 shows a pair of JavaScript
functions that convert from Celsius temperatures to Fahrenheit and vice
versa. (The operators * and / perform multiplication and division
respectively.) One of these functions has an error. Can you see it? I9ll
come back to it in a moment.

Figure 5.9: Functions for converting between Celsius and
Fahrenheit.

Testing is a big part of real-world programming. Software companies
often have more tests than code and more testers than programmers, in
the hope of identifying as many bugs as possible before software is
shipped to users. That9s hard, but one can at least get to the state
where bugs are encountered infrequently.

How would you test the temperature conversion functions in Figure
5.9? You would certainly want to try some simple test cases with known
answers, for example Celsius temperatures of 0 and 100 where the
corresponding Fahrenheit values should be 32 and 212. Those work
fine.

But in the other direction, Fahrenheit to Celsius, things don9t work so
well: the function reports that 32°F is −14.2°C and 212°F is 85.8°C, both
grossly wrong. The problem is that parentheses are necessary to
subtract 32 from the Fahrenheit value before multiplying it by 5/9; the
expression in ftoc should read



return 5/9 * (f - 32);

Fortunately these are easy functions to test, but you can imagine how
much work might be involved in testing and debugging a program with a
million lines when the failures are not so obvious.

By the way, these two functions are inverses of each other (like 2n
and log n) and that makes some testing easy. If you pass any value
through each function in turn, the result should be the original number,
except perhaps for a tiny discrepancy caused by the fact that computers
don9t represent non-integers with perfect precision.

Bugs in software can leave systems vulnerable to attack, often by
permitting adversaries to overwrite memory with their own malicious
code. There9s an active marketplace in exploitable bugs; white hats fix
problems, black hats exploit them, and there9s a gray area in the middle
where government agencies like the NSA stockpile exploits to be used
or fixed later.

The prevalence of vulnerabilities explains the frequent updates of
important programs like browsers, which are the focus of attention for
many hackers. Writing robust programs is hard, and bad guys are
always watching for openings; it9s important for ordinary users to keep
our software up to date as security holes are patched.

Another complexity in real-world software is that the environment
changes all the time, and programs have to be adapted. New hardware
is developed; it needs new software that may require changes in
systems. New laws and other requirements change the specifications of
programs—for instance, a program like TurboTax has to respond to
frequent tax law changes in many jurisdictions. Computers, tools,
languages and physical devices become obsolete and have to be
replaced. Data formats become obsolete too—for example, Word files
from the early 1990s can9t be read by today9s version of Word.
Expertise disappears too, as people retire, die, or get fired in a
corporate downsizing. Student-created systems at universities suffer in
the same way when the expertise graduates.

Keeping up with steady change is a big part of software
maintenance, but it has to be done; otherwise, programs suffer <bit rot=
and after a while don9t work any more or can9t be updated because they
can9t be recompiled or some library has changed too much. At the same
time, the effort to fix problems or add new features can create new bugs
or change behaviors that users depended on.



5.4 Intellectual Property

The term intellectual property refers to various kinds of intangible
property that result from individual creative efforts like inventions or
authorship—books, music, paintings, photographs. Software is an
important example. It9s intangible, yet valuable. It takes sustained hard
work to create and maintain a significant body of code. At the same
time, software can be copied in unlimited quantities and distributed
worldwide at zero cost, it9s readily modified, and ultimately it9s invisible.

Ownership of software raises difficult legal issues, I think more so
than hardware does, though that may be my bias as a programmer.
Software is a newer field than hardware; there was no software before
about 1950, and it9s only in the past roughly 40 years that software has
become a major independent economic sector. As a result, there has
been less time for laws, commercial practice and social norms to
evolve. In this section, I9ll discuss some of the problems, to give you
enough technical background that you can at least appreciate the
situation from multiple viewpoints. I9m also writing from the perspective
of US law; other countries have analogous systems but differ in many
respects.

Several legal mechanisms for protecting intellectual property apply,
with varying degrees of success, to software. These include trade
secrets, trademarks, copyrights, patents, and licenses.

5.4.1 Trade secret

Trade secret is the most obvious. The property is kept secret by its
owner, or disclosed to others only under a legally binding contract like a
non-disclosure agreement. This is simple and often effective, but
provides little recourse if the secret is ever revealed. The classic
example of a trade secret, in a different domain, is the formula for Coca-
Cola. In theory, if the secret became public knowledge, anyone could
make an identical product, though they could not call it Coca-Cola or
Coke, because those are trademarks, another form of intellectual
property. In software, the code for major systems like PowerPoint or
Photoshop is a trade secret.

5.4.2 Trademark



A trademark is a word or phrase, a name, a logo, even a distinctive
color, that distinguishes the goods or services provided by a company.
For example, think of the flowing script in which the words Coca-Cola
appear in advertisements, and the shape of the classic Coke bottle;
both are trademarks. McDonald9s Golden Arches are a trademark that
distinguishes them from other fast-food companies.

Computing has endless trademarks, like the glowing cut out on Mac
laptops, a trademark of Apple. Microsoft9s four-color logos on their
operating systems, computers and game controllers are also examples.

5.4.3 Copyright

Copyright protects creative expression. Copyright is familiar in the
context of literature, art, music and movies—it protects creative work
from being copied by others, at least in theory, and it gives creators the
right to exploit their work for a limited period. In the US, that period used
to be 28 years with one renewal but is now the lifetime of the author
plus 70 years. In many other countries, the period is life plus 50 years.
In 2003, the US Supreme Court ruled that 70 years after the author9s
death is a <limited= term. This is technically correct, but practically not
very different from <forever.= Rights-holders in the US are pushing hard
to extend copyright terms worldwide to conform to US law.

Enforcing copyright for digital material is difficult. Any number of
electronic copies can be made and distributed throughout the online
world at no cost. Attempts to protect copyrighted material by encryption
and other forms of digital rights management or DRM have uniformly
failed—the encryption usually proves breakable and even if not,
material can be re-recorded as it is being played (the <analog hole=), for
example by surreptitiously filming in a theater. Legal recourse against
copyright infringement is hard for individuals and even for large
organizations to pursue effectively. I9ll return to this topic in Chapter 9.

Copyright also applies to programs. If I write a program, I own it, just
as if I had written a novel. No one else can use my copyrighted program
without my permission. That sounds simple enough, but as always the
devil is in the details. If you study my program9s behavior and create
your own version, how similar can it be without violating my copyright?
If you change the formatting and the names of all the variables in the
program, that9s still a violation. However, for more subtle changes it9s
not obvious and the issues can only be settled by an expensive legal



process. If you study the behavior of my program, understand the
behavior thoroughly, and then do a genuinely new implementation, that
might be valid. In fact, in the technique called cleanroom development
(a reference to integrated-circuit manufacturing), programmers explicitly
have no access to or knowledge of the code whose properties they are
trying to replicate. They write new code that behaves the same way as
the original but which has demonstrably not been copied. Then the legal
question becomes one of proving that the cleanroom really was clean
and no one was tainted by exposure to the original code.

5.4.4 Patent

Patents provide legal protection for inventions. This contrasts with
copyrights, which protect only expression—how the code is written—but
not any original ideas the code might contain. There are plenty of
hardware patents like the cotton gin, the telephone, the transistor, the
laser, and of course myriad processes, devices, and improvements on
them.

Originally, software—algorithms and programs—was not patentable,
since it was thought to be <mathematics= and thus not within the scope
of patent law. As a programmer with a modest background in
mathematics, I don9t think that algorithms are mathematics, though they
might involve mathematics. (Think about Quicksort, which today might
well be patentable.) Another viewpoint is that many software patents
are obvious, no more than using a computer to do some straightforward
or well-known process, and thus should not be patentable because they
lack originality. I9m much more in sympathy with that position, though
again as a non-expert and certainly not as a lawyer.

The poster child for software patents might be Amazon9s <1-click=
patent. In September 1999, US patent 5,960,411 was granted to four
inventors at Amazon. com, including Jeff Bezos, the founder and CEO.
The patent covers <A method and system for placing an order to
purchase an item via the Internet=; the claimed innovation was allowing
a registered customer to place an order with a single mouse click
(Figure 5.10). By the way, note that <1-Click= is a registered Amazon
trademark, indicated by 1-Click®.



Figure 5.10: Amazon 1-Click®.

The 1-click patent was the subject of debate and legal struggle for
nearly 20 years. It9s probably fair to say that most programmers think
the idea is obvious, but the law requires that an invention be
<unobvious= to <a person having ordinary skill in the art= at the time of
invention, which was 1997, in the early days of web commerce. The US
Patent Office denied some claims of the patent; others were sustained
on appeal. In the meantime, the patent was licensed by other
companies, including Apple for its iTunes online store, and Amazon
obtained injunctions against companies that used the 1-click idea
without permission. Naturally the situation was different in other
countries. Fortunately, this is all moot today since the duration of a
patent is 20 years, and it has now expired.

One of the downsides of how easy it is to get a software patent has
been the rise of so-called patent trolls or, less pejoratively, <non-
practicing entities.= A patent troll acquires the rights to a patent, not to
use the invention but to sue others that it claims are in violation. The
suit is often filed in a location where judgments have tended to favor the
plaintiff, that is, the troll. The direct cost of patent litigation is high and
the cost if one loses a suit is potentially very high. Especially for small
companies it9s easier and safer to cave in and pay a license fee to the
troll, even though the patent claims are weak and the infringement is
not clear.

The legal climate is changing, though slowly, and this kind of patent
activity may become less of an issue, but it is still a major problem.

5.4.5 Licenses



Licenses are legal agreements granting permission to use a product.
Every computer user is familiar with one step in the process of installing
a new version of some software: the <End User License Agreement= or
EULA. A dialog box shows a small window on an enormous block of
tiny type, a legal document whose terms you must agree to before you
can go further. Most people just click to get past it and thus are in
principle and probably in practice legally bound by the terms of the
agreement.

If you do read those terms, it won9t be a big surprise to discover that
they are one-sided. The supplier disclaims all warranties and liability,
and in fact doesn9t even promise that the software will do anything. The
excerpt below (all capital letters as in the original) is a small part of the
EULA for macOS Mojave, the operating system running on my Mac:

B. YOU EXPRESSLY ACKNOWLEDGE AND AGREE THAT, TO
THE EXTENT PERMITTED BY APPLICABLE LAW, USE OF THE
APPLE SOFTWARE AND ANY SERVICES PERFORMED BY OR
ACCESSED THROUGH THE APPLE SOFTWARE IS AT YOUR
SOLE RISK AND THAT THE ENTIRE RISK AS TO
SATISFACTORY QUALITY, PERFORMANCE, ACCURACY AND
EFFORT IS WITH YOU.
C. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, THE APPLE SOFTWARE AND SERVICES ARE PROVIDED
<AS IS= AND <AS AVAILABLE=, WITH ALL FAULTS AND
WITHOUT WARRANTY OF ANY KIND, AND APPLE AND
APPLE9S LICENSORS (COLLECTIVELY REFERRED TO AS
<APPLE= FOR THE PURPOSES OF SECTIONS 7 AND 8)
HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS
WITH RESPECT TO THE APPLE SOFTWARE AND SERVICES,
EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES AND/OR
CONDITIONS OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE,
ACCURACY, QUIET ENJOYMENT, AND NON-INFRINGEMENT
OF THIRD PARTY RIGHTS.
D. APPLE DOES NOT WARRANT AGAINST INTERFERENCE
WITH YOUR ENJOYMENT OF THE APPLE SOFTWARE AND
SERVICES, THAT THE FUNCTIONS CONTAINED IN, OR



SERVICES PERFORMED OR PROVIDED BY, THE APPLE
SOFTWARE WILL MEET YOUR REQUIREMENTS, THAT THE
OPERATION OF THE APPLE SOFTWARE OR SERVICES WILL
BE UNINTERRUPTED OR ERROR-FREE, THAT ANY SERVICES
WILL CONTINUE TO BE MADE AVAILABLE, THAT THE APPLE
SOFTWARE OR SERVICES WILL BE COMPATIBLE OR WORK
WITH ANY THIRD PARTY SOFTWARE, APPLICATIONS OR
THIRD PARTY SERVICES, OR THAT DEFECTS IN THE APPLE
SOFTWARE OR SERVICES WILL BE CORRECTED.
INSTALLATION OF THIS APPLE SOFTWARE MAY AFFECT THE
AVAILABILITY AND USABILITY OF THIRD PARTY SOFTWARE,
APPLICATIONS OR THIRD PARTY SERVICES, AS WELL AS
APPLE PRODUCTS AND SERVICES.

Most EULAs say you can9t sue for damages if the software does you
harm. There are conditions on what the software can be used for, and
you agree that you won9t try to reverse-engineer or disassemble it. You
can9t ship it to certain countries and you can9t use it to develop nuclear
weapons (really). My lawyer friends say that such licenses are generally
valid and enforceable if the terms are not too unreasonable, which
seems to beg the question of what is reasonable.

Another clause may come as a bit of a surprise, especially if you
have purchased the software in a physical or online store: <This
software is licensed, not sold.= For most purchases, a legal doctrine
called <first sale= says that once you have bought something, you own
it. If you buy a printed book, it9s your copy and you can give it away or
resell it to someone else, though of course you can9t violate the author9s
copyright by making and distributing copies. But suppliers of digital
goods almost always <sell= them under a license that lets the supplier
retain ownership and restrict what you can do with <your= copy.

A great example of this surfaced in July 2009. Amazon <sells= lots of
books for its Kindle e-book readers, but in fact the books are licensed,
not sold. At one point, Amazon realized that it was distributing some
books that it did not have permission for, so it <unsold= them by
disabling them on all Kindles. In a wonderful bit of irony, one of the
recalled books was an edition of George Orwell9s dystopian novel 1984.
I9m sure that Orwell would have loved the Kindle story.

APIs also raise some interesting legal questions, mostly focused on
copyrights. Suppose I9m the manufacturer of a programmable game



system, analogous to the Xbox or PlayStation. I want people to buy my
game machine, and that will be more likely if there are plenty of good
games for it. I can9t possibly write all that software myself, so I carefully
define a suitable API—an application programming interface— so
programmers can write games for my machine. I might also provide a
software development kit or SDK, analogous to Microsoft9s XDK for the
Xbox, to help game developers. With luck, I will sell a bunch of
machines, make a pile of money, and retire happy.

An API is in effect a contract between the service user and the
service provider. It defines what happens on both sides of the interface
—not the details of how it9s implemented, but definitely what each
function does when used in a program. That means that someone else,
like a competitor, could also play the provider side, by building a
competing game machine that provides the same API as mine. If they
used cleanroom techniques, that would ensure that they didn9t copy my
implementation in any way. If they did this well—everything works the
same—and if the competitor9s machine were better in other ways, like a
lower price and sexier physical design, it could drive me out of
business. That9s bad news for my hopes of becoming wealthy.

What are my legal rights? I can9t patent the API, since it9s not an
original idea, and it9s not a trade secret because I have to show it to
people so they can use it. If defining the API is a creative act, however, I
might be able to protect it by copyright, allowing others to use it only if
they have licensed the rights from me; the same is likely to be the case
if I provide an SDK. Is that sufficient protection? This legal question,
and a variety of others like it, is not really resolved.

The copyright status of APIs is not a hypothetical question. In
January 2010, Oracle bought Sun Microsystems, creator of the Java
programming language, and in August 2010 sued Google, alleging that
Google was illegally using the Java API on Android phones, which run
Java code.

To over-simplify the tale of a complicated case, a district court
determined that APIs were not copyrightable. Oracle appealed and the
decision was reversed. Google petitioned the US Supreme Court to
hear the case, but in June 2015 the court declined to do so. In the next
round, Oracle asked for over 9 billion dollars in damages, but a jury
decided that Google9s use of the APIs was <fair use= and thus not a
violation of copyright law. I think that most programmers would agree
with Google in this specific case, but the matter is not yet settled. (As a



disclaimer, I have twice been a signatory on amicus briefs submitted by
the Electronic Frontier Foundation that support Google9s position.) After
yet more rounds of legal process, the Supreme Court heard the case
again in October, 2020.

5.5 Standards

A standard is a precise and detailed description of how some artifact
is built or is supposed to work. Some standards, like the Word .doc and
.docx file formats, are de facto standards—they have no official
standing but everyone uses them. The word <standard= is best reserved
for formal descriptions, often developed and maintained by a quasi-
neutral party like a government agency or a consortium, that define how
something is built or operates. The definition is sufficiently complete and
precise that separate entities can interact or provide independent
implementations.

We benefit from hardware standards all the time, though we may not
notice how many there are. If I buy a new television set, I can plug it
into the electrical outlets in my home, thanks to standards for the size
and shape of plugs and the voltage they provide. (Though not in other
countries, of course; for European vacations, I have to take along
several ingenious adapters that let me plug my North American power
supplies into the different sockets in England and France.) The TV itself
will receive signals and display pictures because of standards for
broadcast and cable television. I can plug other devices into it through
standard cables and connectors like HDMI, USB, S-video and so on.
But every TV needs its own remote control because those are not
standardized; so-called <universal= remotes work only some of the time.

There are sometimes even competing standards, which seems
counter-productive. (As computer scientist Andy Tanenbaum once said,
<The nice thing about standards is that you have so many to choose
from.=) Historical examples include Betamax versus VHS for videotape
and HD-DVD versus Blu-ray for high-definition video disks. In both
cases, one standard eventually won out, but in other cases multiple
standards may co-exist, like the two incompatible cell phone
technologies used in the US until around 2020.

Software has plenty of standards as well, including character sets
like ASCII and Unicode, programming languages like C and C++,



algorithms for encryption and compression, and protocols for
exchanging information over networks.

Standards are crucial for interoperability and an open competitive
landscape. They make it possible for independently created things to
cooperate, and they open an area to competition from multiple
suppliers, while proprietary systems tend to lock everyone in. Naturally
the owners of proprietary systems prefer lock-in. Standards have
disadvantages too—a standard can impede progress if it is inferior or
outdated yet everyone is forced to use it. But these are modest
drawbacks compared to the advantages.

5.6 Open Source Software

The code that a programmer writes, whether in assembly language
or (much more likely) in a high-level language, is called source code.
The result of compiling it into a form suitable for a processor to execute
is called object code. This distinction, like several others I9ve made,
might seem pedantic but it9s important. Source code is readable by
programmers, though perhaps with some effort, so it can be studied
and adapted, and any innovations or ideas it contains are visible. By
contrast, object code has gone through so much transformation that it is
usually impossible to recover anything remotely like the original source
code or to extract any form that can be used for making variants or
even understanding how it works. It is for this reason that most
commercial software is distributed only in object-code form; the source
code is a valuable secret and is kept metaphorically and perhaps
literally under lock and key.

Open source refers to an alternative in which source code is freely
available for study and improvement.

In early times, most software was developed by companies and most
source code was unavailable, a trade secret of whoever developed it.
Richard Stallman, a programmer working at MIT, was frustrated that he
could not fix or enhance the programs that he was using because their
source code was proprietary and thus inaccessible to him. In 1983,
Stallman started a project that he called GNU (<GNU9s Not Unix,=
gnu.org) to create free and open versions of important software
systems, like an operating system and compilers for programming
languages. He also formed a non-profit organization called the Free
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Software Foundation to support open source. The goal was to produce
software that was perpetually <free= in the sense of being non-
proprietary and unencumbered by restrictive ownership. This was
accomplished by distributing implementations under a clever copyright
license called the GNU General Public License or GPL.

The Preamble to the GPL says

<The licenses for most software and other practical works are
designed to take away your freedom to share and change the
works. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change all versions of a
program—to make sure it remains free software for all its users.=

The GPL specifies that the licensed software can be freely used, but
if it is distributed to anyone else the distribution must make the source
code available with the same <free for any use= license. The GPL is
strong enough that companies that have violated its terms have been
forced by court decisions to stop their use of the code or to distribute
source that they based on licensed code.

The GNU project, supported by companies, organizations, and
individuals, has produced a large collection of program development
tools and applications, all covered by the GPL. Other open source
programs and documents have analogous licenses, for example the
Creative Commons that accompanies many images in Wikipedia. In
some cases, the open source versions set the standard against which
proprietary commercial versions are measured. The Firefox and
Chrome browsers are open source; so are Apache and NGINX, the two
most common web servers; so is the Android operating system for cell
phones.

Programming languages and supporting tools are now almost always
open source; indeed, it would be hard to establish a new programming
language if it were strictly proprietary. In the past decade, Google
created and released Go, Apple created and released Swift, Mozilla
created and released Rust, and Microsoft released C# and F#, which
had been proprietary for years.

The Linux operating system is perhaps the most visible open source
project; it is widely used by individuals and large commercial
enterprises like Google, which runs its entire infrastructure on Linux.
You can download the Linux operating system source code for free from



kernel.org; you can use it for your own purposes and make any
modifications you like. But if you distribute it in any form, for example, in
a new gadget that has an operating system, you must make your
source code available under the same GPL. Both my cars, from
different manufacturers, run Linux; deep within the on-screen menu
system is a GPL statement and a link. Using that link, I was able to
download the code from the Internet (not from the car!), nearly 1 GB of
Linux source.

Open source is intriguing. How can one make money by giving
software away? Why do programmers voluntarily contribute to open
source projects? Can open source written by volunteers be better than
proprietary software developed by large teams of coordinated
professionals? Is the availability of source code a threat to national
security?

These questions continue to interest economists and sociologists,
but some answers are becoming clearer. For example, Red Hat was
founded in 1993 and by 1999 was a public company traded on the New
York Stock Exchange; in 2019 it was acquired by IBM for $34 billion.
Red Hat distributes Linux source code that you can get for free on the
Internet but makes money by charging for support, training, quality
assurance, integration, and other services. Many open source
programmers are regular employees of companies that use open
source and contribute to it. IBM, Facebook, and Google are notable
examples but certainly not unique; Microsoft is now one of the largest
contributors to open source software projects. The companies benefit
from being able to help guide the evolution of programs and from
having others fix bugs and make enhancements.

Not all open source software is best of breed, and the open source
versions of some software may lag behind the commercial systems on
which they are modeled. Nevertheless, for core programmer tools and
systems, open source is hard to beat.

5.7 Summary

Programming languages are how we tell our computers what to do.
Although the idea can be pushed too far, there are parallels between
natural languages and the artificial languages that we invent to make it
easier to write code. One obvious parallel is that there are thousands of
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programming languages, although probably no more than a few
hundred programming languages are in frequent use, and two dozen
account for the large majority of programs that run today. Of course
programmers hold opinions, often strong, about which languages are
best, but one of the reasons why there are so many languages is that
no one language is ideal for all programming tasks. There is always the
feeling that a suitable new language would make programming ever so
much easier and more productive. Languages have also evolved to
take advantage of steadily increasing hardware resources. Long ago,
programmers had to work hard to squeeze programs into available
memory; that9s less of an issue today, and languages provide
mechanisms that manage memory use automatically so that
programmers don9t have to think about it as much.

Intellectual property issues for software are challenging, especially
with patents, where trolls are a strongly negative force. Copyright
seems easier, but even there, major legal issues like the status of APIs
remain unresolved. As is often the case, the law does not (and probably
can not) respond quickly to new technology, and when the responses
come, they vary from country to country.





6
Software Systems

<The programmer, like the poet, works only slightly removed from
pure thought-stuff. He builds his castles in the air, from air, creating
by exertion of the imagination. Few media of creation are so
flexible, so easy to polish and rework, so readily capable of
realizing grand conceptual structures.=

Frederick P. Brooks, The Mythical Man-Month, 1975.

In this chapter, we’re going to look at two major kinds of software:
operating systems and applications. As we’ll see, an operating system
is the software underpinning that manages the hardware of a computer
and makes it possible to run other programs, which are called
applications.

When you use a computer at home, school or office, you have a wide
variety of programs available, including browsers, word processors,
music and movie players, tax software (alas), virus scanners, plenty of
games, and tools for mundane tasks like searching for files or looking at
folders. The situation is analogous on your phone, though with different
details.

The jargon term for such programs is application, presumably from
<this program is an application of a computer to some task.= It’s a
standard term for programs that are more or less self-contained and
focused on doing a single job. The word used to be the province of
computer programmers, but with the runaway success of Apple’s App
Store, which sells applications to run on iPhones, the abbreviated form
app has become part of everyone’s vocabulary.

When you buy a new computer or a phone, it comes with a number
of such programs already installed, and more are added over time as
you buy them or download them. Apps in this sense are important to us
as users, and they have interesting properties from several technical
perspectives. We’re going to talk briefly about a few apps, then focus on
a specific one, the browser. A browser is a representative example that



everyone is familiar with, but it still holds some surprises, including an
unexpected parallel with operating systems.

Let’s begin, however, with the behind-the-scenes program that
makes it possible to use applications: the operating system. As we go,
keep in mind that pretty much every computer, whether laptop, phone,
tablet, media player, smart watch, camera or other gadget, has an
operating system of some type to manage the hardware.

6.1 Operating Systems

In the early 1950s, there was no distinction between application and
operating system. Computers were so limited that they could only run
one program at a time, and that program took over the whole machine;
indeed, programmers had to sign up for a time slot to use the computer
(in the middle of the night if one were a lowly student) to run their one
program. As computers became more sophisticated, it was too
inefficient to have amateurs running them, so the job was turned over to
professional operators, who fed programs in and distributed the results.
Operating systems began as programs to help automate those tasks for
the human operators.

Operating systems steadily became more elaborate, matching the
evolution of the hardware that they controlled, and as hardware became
more powerful and complicated, it made sense to devote more
resources to controlling it. The first widely used operating systems
appeared in the late 1950s and early 1960s, usually provided by the
same company that made the hardware and tightly tied to it by being
written in assembly language. Thus IBM and smaller companies like
Digital Equipment and Data General provided their own operating
systems for their own hardware. Fred Brooks, who is quoted in the
epigraph above, managed the development of IBM’s System/360 series
of computers and OS/360, the company’s flagship operating system
from 1965 to 1978. Brooks won the 1999 Turing Award for his
contributions to computer architecture, operating systems, and software
engineering.

Operating systems were also objects of research at universities and
industrial labs. MIT was a pioneer, creating in 1961 a system called
CTSS (<Compatible Time-Sharing System=) that was especially
advanced for its time, and, unlike its industrial competitors, a pleasure



to use. The Unix operating system was created at Bell Labs starting in
1969 by Ken Thompson and Dennis Ritchie, who had worked on
Multics, the more elaborate but less successful follow-on to CTSS.
Today most operating systems, except those from Microsoft, are
descended either from the original Bell Labs Unix or the compatible but
independently created Linux. Ritchie and Thompson shared the 1983
Turing Award for their creation of Unix.

A modern computer is a complicated beast indeed. It has many parts
4processors, memory, secondary storage, display, network interfaces,
and on and on4as we saw in Figure 1.2. To use these components
effectively, it needs to run multiple programs at the same time, some of
which are waiting for something to happen (a web page to download),
some of which are demanding an immediate response (tracking mouse
movement or updating the display as you play a game), and some of
which are interfering with the others (starting up a new program that
needs space in the already over-crowded memory). It’s a mess.

The only way to manage this elaborate juggling act is to use a
program, another example of making the computer help with its own
operation. That program is called an operating system. For computers
at home or work, Microsoft Windows, in its various evolutionary stages,
is the most common operating system; it runs perhaps 80 to 90 percent
of the desktop and laptop computers one sees in day-to-day life. Apple
computers run macOS. Many behind-the-scenes computers (and some
foreground ones as well) run Linux. Cell phones run operating systems
too, originally specialized systems but today often smaller versions of
Unix or Linux. For instance, iPhones and iPads run iOS, an operating
system derived from macOS, which at its heart is a Unix variant, while
Android phones run Linux, as does my television, the TiVo, Amazon’s
Kindle, and Google Nest. I can even log in to my Android phone and run
basic Unix commands on it.

An operating system controls and allocates the resources of a
computer. First, it manages the processor, scheduling and coordinating
the programs that are currently in use. It switches the processor’s
attention among the programs that are actively computing at any given
moment, both applications and background processes like anti-virus
software. It suspends programs that are waiting for an event, like a user
clicking on a dialog box. It keeps individual programs from hogging
resources4if one program demands too much processor time, the



operating system throttles it back so other tasks get a reasonable share
as well.

A typical operating system will have hundreds of processes in
simultaneous operation. Some are programs started by users, though
most are system tasks that are invisible to the casual user. You can see
what’s going on with programs like Activity Monitor on macOS and Task
Manager on Windows, or similar programs on your phone. Figure 6.1
shows a handful of the 300 processes running on the Mac where I am
currently typing. Most of these are independent of each other and thus
a good match for a multi-core architecture.

Second, the operating system manages primary memory. It loads
programs into memory so they can begin executing instructions. It
copies them out to the disk temporarily if there isn’t enough memory for
everything that’s happening at the same time, then moves them back in
when there’s room again. It keeps separate programs from interfering
with each other so one program can’t access the memory allocated to
another program or to the operating system itself. This is partly to
maintain sanity but it’s also a safety measure: one doesn’t want a rogue
or buggy program poking around where it shouldn’t be. (The <blue
screen of death= that used to be a common sight in Windows was
sometimes caused by a failure to provide adequate protection.)

It takes good engineering to make effective use of primary memory.
One technique is to bring only part of a program into memory when
needed and copy it back out to disk when inactive, a process called
swapping. Programs are written as if they had the entire computer to
themselves and unlimited primary memory. A combination of software
and hardware provides this abstraction, which makes programming
significantly easier. The operating system then has to support the
illusion by swapping chunks of program in and out, with help from the
hardware to translate program memory addresses into real addresses
in real memory. This mechanism is called virtual memory. Like most
uses of the word <virtual,= it means giving the illusion of reality but not
the real thing.

Figure 6.2 shows how my computer is using its memory. Processes
are sorted by the amount of memory they are using. In this case,
browser processes account for most of the memory use, which is typical
4browsers are memory-hungry. As a general rule, the more memory
you have, the faster your computer will feel, since it will be spending
less time swapping between memory and secondary storage. If you



want your computer to run faster, more primary memory is likely to be
the most cost-effective thing to try, though there is usually a physical
upper limit on how much can be added, and some computers can’t be
upgraded.

Figure 6.1: Activity Monitor showing processor activity on
macOS.

Third, the operating system manages information stored on
secondary storage. A major component of the operating system called
the file system provides the familiar hierarchy of folders and files that
we see when we use a computer. We’ll come back to file systems later
in this chapter, since they have enough interesting properties to warrant
a more extended discussion.

Finally, the operating system manages and coordinates the activities
of the devices connected to the computer. A program can assume that it
has non-overlapping windows all to itself. The operating system
performs the complicated task of managing multiple windows on the
display, making sure that the right information gets to the right window,



and that it’s properly restored when the window is moved, resized, or
hidden and re-exposed. The operating system directs input from the
keyboard and mouse to the program that’s expecting it. It handles traffic
to and from network connections, whether wired or wireless. It sends
data to printers and it fetches data from scanners.

Notice that I said that an operating system is a program. It’s just
another program, like the ones in the previous chapter, written in the
same kinds of languages, most often C or C++. Early operating systems
were small, since memories were smaller and the job was simpler. The
earliest operating systems only ran one program at a time, so only
limited swapping was needed. There wasn’t a lot of memory to allocate,
less than a hundred kilobytes. They didn’t have many external devices
to deal with, certainly not the rich variety that we have today. Operating
systems are now very large4millions of lines of code4and complicated
because they are doing a variety of complicated tasks.

Figure 6.2: Activity Monitor showing memory use on macOS.



For calibration, the 6th edition of the Unix operating system, the
ancestor of many systems today, was 9,000 lines of C and assembly
language in 1975, and was written by two people. Today Linux has well
over 10 million lines, the work of thousands of people over decades.
Windows 10 is guessed to be about 50 million lines, though no
authoritative size has been published. These numbers aren’t directly
comparable anyway, since modern computers are much more
sophisticated and deal with much more complex environments and far
more devices; there are also differences in what’s deemed to be
included in the operating system.

Since an operating system is just a program, you can in principle
write your own. Indeed, Linux began when Linus Torvalds, a Finnish
college student, decided to write his own version of Unix from scratch in
1991. He posted an early draft (just under 10,000 lines) on the Internet
and invited others to try it and help out. Since then, Linux has become a
major force in the software industry, used by many large companies and
numerous smaller players. As noted in the previous chapter, Linux is
open source, so anyone can use it and contribute. Today there are
thousands of contributors, with a core of full-time developers; Torvalds
still maintains overall control and is the ultimate arbiter of technical
decisions.

You can run a different operating system on your hardware than
might have been originally intended4running Linux on computers
originally intended for Windows is a good example. You can store
several operating systems on disk and determine which one to run each
time you turn the computer on. This <multiple boot= feature can be seen
with Apple’s Boot Camp, which makes it possible to start up a Mac
running Windows instead of macOS.

You can even run one operating system under the control of another,
as a virtual operating system. Virtual operating system programs like
VMware, VirtualBox and Xen (which is open source) make it possible to
run one operating system, say Windows or Linux, as a guest operating
system on a host, say macOS. The host operating system intercepts
requests made by the guest that would require operating system
privileges, such as file system or network access. The host does the
operation and then returns to the guest. When the host and guest are
both compiled for the same hardware, the guest system runs at the full
hardware speed for the most part, and feels nearly as responsive as it
would if it were on the bare machine.



Figure 6.3 shows schematically how a virtual operating system runs
on a host operating system; the guest operating system is an ordinary
application as far as the host operating system is concerned.

Figure 6.3: Virtual operating system organization.

Figure 6.4 is a screenshot of my Mac running VirtualBox, which in
turn is running two guest operating systems: Linux on the left and
Windows 10 on the right.

Cloud computing, which we will return to in Chapter 11, relies on
virtual machines. A cloud service provider has a large number of
physical computers, with plenty of storage and network bandwidth,
which it uses to provide computing power to its customers. Each
customer uses some number of virtual machines that are supported on
fewer physical machines; multi-core processors are a natural fit for this
kind of operation.

Amazon Web Services (AWS) is the largest provider of cloud
computing, followed by Microsoft Azure and Google Cloud Platform;
AWS has been particularly successful, accounting for well over half of
Amazon’s operating profit. These all offer a service whose capacity for
any given customer can grow or shrink as load changes; there are
sufficient resources to let individual users scale up or down
instantaneously. Many companies, including large ones like Netflix, find
cloud computing more cost-effective than running their own servers,
thanks to economies of scale, adaptability to changing load, and less
need for in-house staff.

Virtual operating systems raise some interesting ownership
questions. If a company runs a large number of virtual Windows
instances on one physical computer, how many Windows licenses does
it need to buy from Microsoft? Ignoring legal issues, the answer is one,
but Microsoft’s licenses for Windows limit the total number of virtual
instances that you can legitimately run without paying for more copies.



Figure 6.4: macOS running Windows and Linux virtual
machines.

Another use of the word <virtual= should be mentioned here. A
program that simulates a computer, whether a real one or a pretend one
(like the Toy), is also often called a virtual machine. That is, the
computer exists only as software, a program that mimics its behavior as
if it were hardware.

Such virtual machines are common. Browsers have one virtual
machine to interpret JavaScript programs, and may have another
separate virtual machine for Java programs. There is also a Java virtual
machine in Android cell phones. Virtual machines are used because it’s
easier and more flexible to write and distribute a program than to build
and ship physical equipment.

6.2 How an Operating System Works

The processor is constructed so that when the computer is powered
on, the processor starts by executing a few instructions stored in a
permanent memory. Those instructions in turn read instructions from a



small flash memory that contains enough code to read more
instructions from a known place on a disk, a USB memory, or a network
connection, which reads still more instructions, until finally enough has
been loaded to do useful work. This getting-started process was
originally called <bootstrapping,= after the old expression of pulling
oneself up by one’s bootstraps, and is now just booting. The details
vary, but the basic idea is the same4a few instructions are sufficient to
find more, which in turn lead to still more.

Part of this process may involve querying the hardware to determine
what devices are attached to the computer, for example whether there
is a printer or a scanner. Memory and other components are checked to
verify that they are working correctly. The boot process may involve
loading software components (drivers) for connected devices so the
operating system can use them. All of this takes time, while we’re
waiting impatiently for the computer to start doing something useful. It’s
frustrating that although computers are far faster than they used to be,
they may still take a minute or two to boot.

Once the operating system is running, it settles down to a fairly
simple cycle, giving control in turn to each application that is ready to
run or that needs attention. If I am typing text in a word processor,
checking my mail, surfing randomly, and playing music in the
background, the operating system gives the processor’s attention to
each of these processes one after another, switching the focus among
them as necessary. Each program gets a short slice of time, which ends
when the program requests a system service or its allocated time runs
out.

The system responds to events like the end of the music, the arrival
of mail or a web page, or a keypress; for each, it does whatever is
necessary, often relaying the fact that something has happened to the
application that must take care of it. If I decide to rearrange the windows
on my screen, the operating system tells the display where to put the
windows, and it tells each application what parts of that application’s
window are now visible so the application can redraw them. If I quit an
application with File | Exit or by clicking the little × in the upper corner of
the window, the system notifies the application that it’s about to die, so it
has a chance to put its affairs in order, for instance by asking the user
<Do you want to save the file?= The operating system then reclaims any
resources that the program was using, and tells apps whose windows
are now exposed that they have to redraw.



6.2.1 System calls

An operating system provides an interface between the hardware
and other software. It makes the hardware appear to provide higher-
level services than it really does, so programming is easier. In the
jargon of the field, the operating system provides a platform upon which
applications can be built. It’s another example of abstraction, providing
an interface or surface that hides irregularities and irrelevant details of
implementation.

The operating system defines a set of operations or services that it
offers to application programs, like storing data in a file or retrieving
data from a file, making network connections, fetching whatever has
been typed on the keyboard, reporting mouse movements and button
clicks, and drawing on the display.

The operating system makes these services available in a
standardized or agreed-upon fashion, and an application program
requests them by executing a particular instruction that transfers control
to a specific place in the operating system. The system does whatever
the request implies, and returns control and the results to the
application. These entry points into the system are called system calls,
and their detailed specification defines what the operating system is. A
modern operating system typically has a few hundred system calls.

6.2.2 Device drivers

A device driver is code that acts as a bridge between the operating
system and a specific kind of hardware device like a printer or a mouse.
Driver code has detailed knowledge of how to make a particular device
do whatever it does4how to access motion and button information from
a specific mouse or trackpad, how to make a disk read and write
information on an integrated circuit or a spinning magnetic surface, how
to make a printer put marks on paper, or how to make a specific
wireless chip send and receive radio signals.

The driver insulates the rest of the system from the idiosyncrasies of
particular devices4all devices of one kind, like keyboards, have basic
properties and operations that the operating system cares about4and
the driver interface lets the operating system access the device in a
uniform way so it’s easy to switch devices.



Consider a printer. The operating system wants to make standard
requests: print this text at this position on the page, draw this image,
move to the next page, describe your capabilities, report your status,
and so on, in a uniform way that would apply to any printer. Printers
differ in their capabilities, however, for example whether they support
color, two-sided printing, multiple paper sizes, and the like, and also in
the mechanics of how marks are transferred to paper. The driver for a
given printer is responsible for converting operating system requests
into whatever is needed to make the particular device do those tasks,
for example converting color to grayscale for a black and white printer.
In effect, the operating system makes generic requests to an abstract or
idealized device and the driver implements them for its own hardware.
You can see this mechanism if you have multiple printers for a given
computer: the dialog boxes for printing offer different options for the
different printers.

A general-purpose operating system will have many drivers; for
example, Windows ships with drivers already installed for an enormous
variety of devices that might be potentially used by consumers, and
every device manufacturer has a web site from which new and updated
drivers can be downloaded.

Part of the boot process is to load drivers for currently available
devices into the running system; the more devices there are, the more
time this will take. It’s also normal for new devices to appear out of
nowhere. When an external disk is plugged into a USB socket, the
operating system recognizes a new device, determines that it is a disk,
and loads a USB disk driver for subsequent communication. Normally
there’s no need to find a new driver; the mechanism is so standardized
that the operating system already has what it needs and the specifics of
driving the device are buried in a processor within the device itself.

Figure 6.5 illustrates the relationships among the operating system,
system calls, drivers, and applications. The picture would be similar for
a cell phone system like Android or iOS.

6.3 Other Operating Systems

The existence of ever cheaper and smaller electronics makes it
feasible to include more of that hardware in a device; as a result, many
devices have significant processing power and memory. Calling a digital



camera <a computer with a lens= is not far off the mark. As processing
power and memory have increased, cameras have ever more
capabilities; my inexpensive point-and-shoot camera records high-
definition videos and uses Wi-Fi to upload pictures and videos to a
computer or phone. Phones themselves are another great example,
and of course cameras and phones are converging; any random phone
today has far more megapixels than my first digital camera did, though
the lens quality is another story.

Figure 6.5: Operating system, system call, and device driver
interfaces.

The overall result is that devices are taking on the trappings of
mainstream general-purpose computers like those we discussed in
Chapter 1. They have a powerful processor, a lot of memory, and some
peripheral devices, like the lens and display on a camera. They may
have sophisticated user interfaces. They often have a network
connection so they can talk to other systems4cell phones use the
telephone network and Wi-Fi, while game controllers use infrared and
Bluetooth4and many use USB for occasional ad hoc connections. The
<Internet of Things= is based on this as well: thermostats, lights, security



systems, and the like are controlled by embedded computers and are
connected to the Internet.

As this trend continues, it increasingly makes more sense to use a
commodity operating system than to write one’s own. Unless the
environment is unusual, it’s easier and cheaper to use a stripped-down
version of Linux, which is robust, adaptable, portable and free, rather
than to develop one’s own specialized system or license a costly
commercial product. A drawback is that one may have to release some
of the resulting code under a license like the GPL. This could raise
issues of how to protect intellectual property in the device, but it has not
proven insurmountable for the likes of Kindle and TiVo, along with many
others.

6.4 File Systems

The file system is the part of the operating system that makes
physical storage media like disks, CDs and DVDs, and other removable
memory devices look like hierarchies of files and folders. The file
system is a great example of the distinction between logical
organization and physical implementation: file systems organize and
store information on many different kinds of devices but the operating
system presents the same interface for all of them. The ways that file
systems store information can have practical and even legal
implications, so another reason for studying file systems is to
understand why <removing a file= does not mean that its contents are
gone forever.

Most readers will have used Windows File Explorer or macOS
Finder, which show the hierarchy starting from the top (the C: drive on
Windows, for example). A folder contains the names of other folders
and files; examining a folder will reveal more folders and files. (Unix
systems traditionally use the word directory instead of folder.) The
folders provide the organizational structure, while the files hold the
actual contents of documents, pictures, music, spreadsheets, web
pages, and so on. All the information that your computer holds is stored
in the file system and is accessible through it if you poke around. This
includes not only your data, but the executable forms of programs like
Word and Chrome, libraries, configuration information, device drivers,
and the files that make up the operating system itself. There’s an



astonishing amount; I was amazed to discover that my modest
MacBook has over 900,000 files; a friend reports over 800,000 on one
of his Windows computers. Figure 6.6 shows parts of five levels of
hierarchy on my computer, leading down to some pictures in my home
directory.

Figure 6.6: File system hierarchy.

In spite of their names, Finder and Explorer are most useful when
you already know where your files are: you can always navigate from
the root or top of the file system hierarchy. If you don’t know where a file
is located, however, you might have to use a search tool, like Spotlight
on macOS.

The file system manages all this information, making it accessible for
reading and writing by applications and the rest of the operating system.
It coordinates accesses so they are performed efficiently and don’t
interfere with each other, it keeps track of where data is physically
located, and it ensures that the pieces are kept separate so that parts of
your email don’t mysteriously wind up in your spreadsheets or tax
returns. On systems that support multiple users, it enforces information
privacy and security, making it impossible for one user to access
another user’s files without permission, and it may impose quotas on
the amount of space that each user can use.

File system services are available through system calls at the lowest
level, usually supplemented by software libraries to make common
operations easy to program.

6.4.1 Secondary storage file systems



The file system is a wonderful example of how a wide variety of
physical systems can be made to present a uniform logical appearance,
a hierarchy of folders and files. How does it work?

A 500 GB drive holds 500 billion bytes, but software on the drive
itself is likely to present this as something like 500 million chunks or
blocks of 1,000 bytes each. (In real computers, these sizes would be
powers of 2; I’m using decimal numbers to make it easier to see
relationships.) A file of say 2,500 bytes, like a small mail message,
would be stored in three of these blocks; it’s too big for two blocks but
three is enough.

File systems don’t store bytes of one file in the same block as bytes
of a different file, so there’s some waste if the last block is not
completely full: 500 bytes are unused in the last block in our example.
That’s a modest price for a considerable simplification in bookkeeping
effort, especially since secondary storage is so cheap.

A folder entry for this file would contain its name, its size of 2,500
bytes, the date and time it was created or changed, and other
miscellaneous facts about it (permissions, type, etc., depending on the
operating system). All of that information is visible through a program
like Explorer or Finder.

The folder entry also contains information about where the file is
stored on the drive4which of the 500 million blocks contain its bytes.
There are many different ways to manage that location information. The
folder entry could contain a list of block numbers; it could refer to a
block that itself contains a list of block numbers; or it could contain the
number of the first block, which in turn gives the second block, and so
on.

Figure 6.7 sketches an organization with blocks that refer to lists of
blocks, as it might look on a conventional hard drive. Blocks need not
be physically adjacent on a hard drive, and in fact they typically won’t
be, at least for large files. A megabyte file will occupy a thousand
blocks, and those are sure to be scattered to some degree. The folders
and the blocklists are themselves stored in blocks on the same drive,
though that’s not shown in the diagram.

The physical implementation would be very different for a solid state
drive, but the basic idea is the same. As noted earlier, most computers
today use SSDs because although more expensive per byte, they’re
smaller and offer greater reliability, lower weight, and lower power
consumption. Viewed from a program like Finder or Explorer, there’s no



difference whatsoever. But an SSD device will have a different driver,
and the device itself has sophisticated code to remember where
information is located on the device. This is because SSD devices are
limited by how many times each part can be used. Software in the drive
keeps track of how much each physical block has been used and
moves data around to ensure that each block is used roughly the same
amount, a process called wear leveling.

A folder is a file that contains information about where folders and
files are located. Because information about file contents and
organization must be perfectly accurate and consistent, the file system
reserves to itself the right to manage and maintain the contents of
folders. Users and application programs can only change folder
contents implicitly, by making requests of the file system.

Figure 6.7: File system organization on a hard disk.

From one perspective, folders are files; there’s no difference in how
they are stored except that the file system is totally responsible for
folder contents, and application programs have no direct way to change
them. But at the lowest level it’s just blocks, all managed by the same
mechanisms.

When a program wants to access an existing file, the file system has
to search for the file starting at the root of the file system hierarchy,
looking for each component of the file path name in the corresponding
folder. That is, if the file is /Users/bwk/book/book.txt on a Mac, the file
system will search the root of the file system for Users, then search
within that folder for bwk, then within that folder for book, then within that



for book.txt. On Windows, the name might be C:\My
Documents\book\book.txt, and the search would be analogous.

This is an efficient strategy, since each component of the path
narrows the search to files and folders that lie within that folder; all
others are eliminated. Thus multiple files can have the same name for
some component; the only requirement is that the full path name be
unique. In practice, programs and the operating system keep track of
the folder that is currently in use, so searches need not start from the
root each time, and the system will also cache frequently used folders
to speed up operations.

When a program wants to create a new file, it makes a request of the
file system, which puts a new entry in the appropriate folder, including
name, date, and so on, and a size of zero (since no blocks are allocated
to the brand new file yet). When the program later writes data into the
file, say by appending the text of a mail message, the file system finds
enough currently unused or <free= blocks to hold the requested
information, copies the data into them, inserts them into the folder’s list
of blocks, and returns to the application.

This suggests that the file system maintains a list of all the blocks on
the drive that are not currently in use, that is, not already part of some
file. When a request for a new block arrives, it can be satisfied with a
block taken from the list of free blocks. The free list is kept in file system
blocks too, but is only accessible to the operating system, not to
application programs.

6.4.2 Removing files

When a file is removed, the opposite happens: the blocks of the file
are returned to the free list and the folder entry for the file can be
cleared, so the file appears to have gone away. In reality, it’s not quite
like that, and therein lie a number of interesting implications.

When a file is removed in Windows or macOS it goes to the <Recycle
Bin= or <Trash,= which appears to be just another folder, albeit with
slightly different properties. Indeed, that’s exactly what the recycle bin
is. When a file is to be removed, its folder entry and full name is copied
from the current folder to a folder called Recycle or Trash, and the
original folder entry is cleared. The blocks of the file and thus its
contents do not change at all! Recovering a file from the recycle bin
reverses the process, restoring the entry to its original folder.



<Emptying the trash= is more like what we originally described, where
the Recycle or Trash folder entry is cleared and the blocks are really
added to the free list. This is true whether the emptying is done
explicitly or happens quietly behind your back because the file system
knows it’s running low on free space.

Suppose you empty the trash explicitly by clicking <Empty recycle
bin= or <Empty trash.= That clears the entries in the recycle folder itself
and puts the blocks on the free list, but their contents haven’t yet been
deleted4all the bytes of each block of the original files are still sitting
there untouched. They won’t be overwritten with new content until that
block is taken off the free list and given to a new file.

This delay means that information that you thought was removed still
exists and is readily accessible if one knows how to find it. Any program
that reads the drive by physical blocks, that is, without going through
the file system hierarchy, can see what the old content was. In mid-
2020, Microsoft announced Windows File Recovery, a free tool for
doing exactly this kind of recovery for a wide variety of file systems and
media.

This has potential benefits. If something goes wrong with your disk, it
might still be possible to recover information even if the file system is
confused. There’s no guarantee that the data is really gone, however,
which is bad if you truly want the information removed, perhaps
because it’s private or you are plotting some evil deed. A competent
enemy or law enforcement agency would have no trouble recovering it.
If you’re planning something nefarious or if you’re just paranoid, you
have to use a program that will erase the information from freed blocks.

In practice you may have to do better than this, since a truly
dedicated adversary with lots of resources might be able to extract
traces of information even when new information has overwritten it.
Military-grade file erasing overwrites blocks multiple times with random
patterns of 1s and 0s. Even better is to demagnetize a hard disk by
putting it near a strong magnet. Best of all is to physically destroy it;
that’s the only way to ensure that the contents are gone.

Even that might not be enough, however, if your data is being backed
up automatically all the time (as mine is at work) or if your files are kept
on a network file system or somewhere <in the cloud= rather than on
your own drive. (And if you sell or give away an old computer or phone,
you might want to ensure that any data on it is unrecoverable.)



A somewhat similar situation applies to the folder entry itself. When
you remove a file, the file system will note that the folder entry no longer
points to a valid file. It could do that by setting a bit in the folder that
means <this entry is not in use.= Then it would be possible to recover the
original information about the file, including the contents of any blocks
that had not been re-allocated, until the folder entry was itself re-used.
This mechanism was at the heart of commercial file recovery programs
for Microsoft’s MS-DOS system in the 1980s, which marked free entries
by setting the first character of the filename to a special value. This
made it easy to recover the whole file if the recovery was attempted
soon enough.

The fact that the contents of files can survive long after their creator
thought them deleted has implications for legal procedures like
discovery and document retention. It’s remarkably common, for
example, for old email messages to surface that are in some way
embarrassing or incriminating. If records exist only on paper, there’s a
decent chance that careful shredding will destroy all copies, but digital
records proliferate, are readily copied onto removable devices, and can
be tucked away in many places. The results of searching the web for
phrases like <emails reveal= or <leaked email= should convince you to be
circumspect about what you say in mail and indeed in any information
that you commit to a computer.

6.4.3 Other file systems

I’ve been discussing conventional file systems on secondary storage
drives, since that’s where much of the information is and that’s what we
most often see on our own computers. But the file system abstraction
applies to other media as well.

CD-ROMs and DVDs provide access to their information as if it were
a file system, again with a hierarchy of folders and files. Flash memory
file systems on USB and SD (<Secure Digital,= Figure 6.8) drives are
ubiquitous. When plugged into a Windows computer, a flash drive
appears as another disk drive. It can be explored with File Explorer and
files can be read and written exactly as if it were built-in. The only
difference is that its capacity might be smaller and access may be
somewhat slower.



Figure 6.8: SD card flash memory.

If that same device is plugged into a Mac, it appears there as a folder
as well, to be explored with Finder, and files can be transferred back
and forth. It can also be plugged into Unix or Linux computers, and
again appears in the file system on those systems. Software makes the
physical device look like a file system, with the same abstractions of
folders and files, on a variety of operating systems. Internally, the
organization is likely to be a Microsoft FAT file system, the widely used
de facto standard, but we don’t know for sure and we don’t need to. The
abstraction is perfect. (<FAT= stands for File Allocation Table; it’s not a
commentary on implementation quality.) Standardization of hardware
interfaces and software structure makes this possible.

My first digital camera stored pictures in an internal file system and I
had to connect the camera to a computer and run proprietary software
to retrieve them. Every camera since has had a removable SD memory
card, like the one shown in Figure 6.8, and I can upload pictures by
moving the card from camera to computer. This is much faster than it
was before, and as an unexpected fringe benefit, it has freed me from
the camera manufacturer’s appallingly awkward and flaky software. A
familiar and uniform interface with standard media replaces clumsy and
unique software and hardware. I imagine that the manufacturer is also
happy that it’s no longer necessary to provide specialized file transfer
software.

It’s worth mentioning one other version of the same idea: the network
file system, which is common in schools and businesses. Software
makes it possible to access the file system on some other computer as



if it were on one’s own machine, again using File Explorer, Finder or
other programs to access the information. The file system at the far end
may be of the same kind (both Windows computers, for example) or it
might be something different, say macOS or Linux. As with flash
memory devices, the software hides the differences and presents a
uniform interface so it looks like a regular file system on the local
machine.

Network file systems are often used as backup as well as primary file
storage. Multiple older copies of files can be copied onto archival media
for storage at a different site; this protects against a disaster like a
ransomware attack or a fire that destroys the only copy of vital records.
Some disk systems also rely on a technique called RAID (<redundant
array of independent disks=) that writes data onto multiple disks with an
error-correction algorithm that makes it possible to recover information
even if one of the disks breaks. Naturally such systems also make it
hard to ensure that all traces of information have been erased.

Cloud computing systems, which we will discuss further in Chapter
11, have some of the same properties but typically don’t present their
contents with a file system interface.

6.5 Applications

<Application= is a blanket term for all kinds of programs or software
systems that do some task, using the operating system as a platform.
An application might be tiny or large; it might focus on one specific task
or handle a broad range; it might be sold or given away; its code could
be highly proprietary, freely available open source, or unrestricted.

Applications come in a wide range of sizes, from small self-contained
programs that do only one thing to large programs that do complex sets
of operations, like Word or Photoshop.

As an example of a simple application, consider the Unix program
called date, which prints the current date and time:

$ date
Fri Nov 27 16:50:00 EST 2020

The date program behaves the same way on Unix-like systems,
including macOS and is similar on Windows. The implementation of



date is tiny, because it builds on a system call (time) that provides the
current date and time in an internal format, and on libraries for
formatting dates (ctime) and printing text (printf). Here’s a complete
implementation in C so you can see how short it is:

#include <stdio.h>
#include <time.h>
int main() {
   time_t t = time(0);
   printf("%s", ctime(&t));
   return 0;
}

Unix systems have a program called ls that lists the files and folders
in a directory, a bare-bones text-only analog of programs like Windows
File Explorer and macOS Finder. Other programs copy files, move
them, rename them, and so on, operations that have graphical
equivalents in Finder and Explorer. Again, these programs use system
calls to access the basic information about what is in folders, and rely
on libraries to read, write, format and display information.

An application like Word is much, much bigger than a program to
explore the file system. It clearly has to include some of the same kind
of file system code so that users can open files, read their contents and
save documents in the file system. It includes sophisticated algorithms,
for example to update the display continuously as the text changes. It
supports an elaborate user interface that displays information and
provides ways to adjust sizes, fonts, colors, layout, and so on; this is
likely to be a major part of the program. Word and other large programs
of substantial commercial value undergo continuous evolution as new
features are added. I have no idea how big the source code for Word is,
but I would not be surprised if it were ten million lines of C, C++ and
other languages, especially if one includes variants for Windows, Macs,
phones and browsers.

A browser is an example of a large, free, and sometimes open
source application of even greater complexity in some dimensions. You
have surely used at least one of Firefox, Safari, Edge or Chrome, and
many people routinely use several. Chapter 10 will talk more about the
web and how browsers fetch information; here I want to focus on the
ideas in big, complicated programs.



Seen from the outside, a browser sends requests to web servers and
retrieves information from them for display. Where’s the complexity?

First, the browser has to deal with asynchronous events, that is,
events that happen at unpredictable times and in no particular order.
For instance, the browser has sent a request for a page because you
clicked on a link, but it can’t just wait for the reply; it has to remain
responsive in case you scroll the current page, or abort the request if
you hit the Back button or click on a different link, even while the
requested page is coming in. It has to update the display if you reshape
the window, perhaps continuously as you reshape back and forth while
data is arriving. If the page includes sound or movies, the browser has
to manage those as well. Programming asynchronous systems is
always hard, and browsers must deal with lots of asynchrony.

The browser has to support many kinds of content, from static text to
interactive programs that want to change what the page contains. Some
of this can be delegated to helper programs4this is the norm for
standard formats like PDF and movies4but the browser has to provide
mechanisms for starting such helpers, sending and receiving data and
requests for them, and integrating them into the display.

The browser manages multiple tabs and/or multiple windows, each of
which may be doing some of the foregoing operations. It maintains a
history for each of these, along with other data like bookmarks,
favorites, and so on. It accesses the local file system for uploads,
downloads and caching images.

It provides a platform for extensions at several levels: plug-ins like
QuickTime, a virtual machine for JavaScript, and add-ons like Adblock
Plus and Ghostery. Underneath, it has to work on multiple versions of
multiple operating systems, including mobile devices.

With all of this complicated code, a browser is vulnerable to attacks
through bugs in its own implementation or in the programs it enables,
and through the innocence, ignorance and ill-advised behavior of its
users, most of whom (save the readers of this book) have almost no
understanding of what’s going on or what the risks might be. It’s not
easy.

If you look back over the description in this section, does it remind
you of something? A browser is similar to an operating system. It
manages resources, it controls and coordinates simultaneous activities,
it stores and retrieves information from multiple sources, and it provides
a platform on which application programs can run.



For many years, it has seemed like it should be possible to use the
browser as the operating system and thus be independent of whatever
operating system is controlling the underlying hardware. A decade or
two ago, this was a fine idea but there were too many practical hurdles.
Today it’s a viable alternative. Numerous services are already accessed
exclusively through a browser interface4mail, calendars, music, videos
and social networks are obvious examples4and this will continue.
Google offers an operating system called Chrome OS that relies
primarily on web-based services. A Chromebook is a computer that
runs Chrome OS; it has only a limited amount of local storage, using the
web for most storage, and it only runs browser-based applications like
Google Docs. We’ll come back to this topic when we talk about cloud
computing in Chapter 11.

6.6 Layers of Software

Software, like many other things in computing, is organized into
layers, analogous to geological strata, that separate one concern from
another. Layering is one of the important ideas that help programmers
to manage complexity. Each layer implements something, and provides
an abstraction that the layer above can use for access to services.

At the bottom, at least for our purposes, is the hardware, which is
more or less immutable except that buses make it possible to add and
remove devices even while the system is running.

The next level is the operating system proper, often called the kernel
to suggest its central function. The operating system is a layer between
the hardware and the applications. No matter what the hardware, the
operating system can hide its specific properties and provide
applications with an interface or facade that is independent of many of
the details of the specific hardware. If the interface has been well
designed, it’s possible for the same operating system interface to be
available on different kinds of processors and to be provided by different
suppliers.

This is true of the Unix and Linux operating system interface4Unix
and Linux run on all kinds of processors, providing the same operating
system services on each. In effect, the operating system has become a
commodity; the underlying hardware doesn’t matter much except for
price and performance, and the software on top doesn’t depend on it.



(One way this is evident is that I’ll often use <Unix= and <Linux=
interchangeably, since for most purposes the distinction is irrelevant.)
With care, all that’s necessary to move a program to a new processor is
to compile it with a suitable compiler. Of course the more tightly a
program is tied to particular hardware properties, the harder this job will
be, but it’s eminently feasible for many programs.

As a large-scale example, Apple converted its software from the IBM
PowerPC processor to Intel processors in less than a year in 20053
2006. In mid-2020, Apple announced that it was going to do the same
thing again, henceforth using ARM processors in all its phones, tablets
and computers, rather than processors from Intel. This is another
demonstration of how software can be largely independent of a specific
processor architecture.

This has been less true of Windows, which for many years was fairly
closely tied to the Intel architecture that began with the Intel 8086
processor in 1978 and its many evolutionary steps since. (The family of
processors is often called <x86= since for many years Intel processors
had numbers ending in 86, including the 80286, 80386, and 80486.)
The association was so tight that Windows running on Intel was
sometimes called <Wintel.= Today, however, Windows also runs on ARM
processors.

The next layer above the operating system is a set of libraries that
provide generally useful services so that individual programmers don’t
have to re-create them; these are accessed through their APIs. Some
libraries are at a low level, dealing with basic functionality (computing
mathematical functions like square root or logarithm, for example, or
date and time computations like those in the date command above);
others are much more complicated (cryptography, graphics,
compression). Components for graphical user interfaces4dialog boxes,
menus, buttons, check boxes, scroll bars, tabbed panes, and the like4
involve a lot of code; once they are in a library, everyone can use them,
which helps to ensure a uniform look and feel. That’s why most
Windows applications, or at least their basic graphical components, look
so similar; the same is even more true on a Mac. It’s too much work for
most software vendors to re-invent and re-implement, and pointlessly
different visual appearances are confusing to users.

Sometimes the distinction between kernel, library and application is
not as clear as I have made it sound, since there are many ways to
create and connect software components. For instance, the kernel



could provide fewer services and rely on libraries in a layer above to do
most of the work. Or it could take on more of the task itself, relying less
on libraries. The border between operating system and application is
not sharply defined.

What is the dividing line? A useful guideline, though not perfect, is
that anything necessary to ensure that one application does not
interfere with another is part of the operating system. Memory
management4deciding where to put programs in RAM as they run4is
part of the operating system. Similarly, the file system4where to store
information on secondary storage4is a central function. So is control of
devices4two applications should not be able to run the printer at the
same time, nor write to the display without coordination. At the core,
control of the processors is an operating system function, since that is
necessary to ensure all the other properties.

A browser is not part of the operating system, since it’s possible to
run any browser, or multiple ones simultaneously, without interfering
with shared resources or control. This might sound like a technical fine
point, but it has had major legal ramifications. The Department of
Justice versus Microsoft antitrust lawsuit that began in 1998 and ended
in 2011 was in part about whether Microsoft’s Internet Explorer browser
(<IE=) was part of the operating system or merely an application. If it was
part of the system, as Microsoft argued, then it could not reasonably be
removed and Microsoft was within its rights to require the use of IE. If it
was just an application, however, then Microsoft could be deemed to be
illegally forcing others to use IE when they did not need to. The case
was of course more complicated than this, but the dispute about where
to draw this line was an important part. For the record, the court
decided that a browser is an application, not part of the operating
system; in the words of Judge Thomas Jackson, <Web browsers and
operating systems are separate products.=

6.7 Summary

Applications get things done, with the operating system acting as
coordinator and traffic cop to ensure that applications share resources
4processor time, memory, secondary storage, network connections,
other devices4efficiently and equitably, and do not interfere with each
other. Essentially all computers today have an operating system, and



the trend is towards using a general-purpose system like Linux rather
than something specialized, because unless there are unusual
circumstances, it’s easier and cheaper to use existing code than to write
new.

Much of the discussion in this chapter has been phrased in terms of
applications for individual consumers, but many large software systems
are invisible to most of their users. These include the programs that
operate infrastructure like telephone networks, power grids,
transportation services, and financial and banking systems. Planes and
air traffic control, cars, medical devices, weapons, and so on are all run
by large software systems. Indeed, it’s hard to think of any significant
technology that we use today that doesn’t have a major software
component.

Software systems are big, complicated, and often buggy, and all of
these are made worse by constant change. It’s difficult to get accurate
estimates of how much code there is in any big system, but the major
systems that we rely on tend to involve millions of lines at a minimum.
Thus it’s inevitable that there will be significant bugs that can be
exploited. As our systems get more complicated, this situation is likely
to get worse, not better.





7
Learning to Program

<Don’t just play on your phone, program it!=
President Barack Obama, December 2013.

In my course, I teach a small amount of programming, because I
think that it’s important for a well-informed person to know something
about programming, perhaps only that it can be surprisingly difficult to
get even simple programs to work properly. There is nothing like doing
battle with a computer to teach this lesson, but also to give people a
taste of the wonderful feeling of accomplishment when a program does
work for the first time. It may also be valuable to have enough
programming experience that you are cautious when someone says
that programming is easy or that there are no errors in a program. If you
had trouble making 10 lines of code work after a day of struggle, you
might be legitimately skeptical of someone who claims that a million-line
program will be delivered on time and bug-free. On the other hand,
there are times when it’s helpful to know that not all programming tasks
are difficult, for instance when hiring a consultant.

There are zillions of languages. Which one should you learn first? If
you want to program your phone, as President Obama exhorted us, you
need Java for Android or Swift for iPhones; both can be learned by
beginners but are difficult for casual use, and phone programming has a
lot of details as well. Scratch, a visual programming system from MIT, is
especially good for children, but it does not scale up to larger or more
complicated programs.

In this chapter, I’m going to talk briefly about two programming
languages, JavaScript and Python. Both are widely used by both
amateur and professional programmers. They are easy to learn at a
beginner level, scale up to larger programs, and are broadly applicable.

JavaScript is included in every browser so there’s no software to
download. If you do write a program, you can use it on your own web
pages to show your friends and family. The language itself is simple and
one can do neat things with comparatively little experience; at the same



time, it is remarkably flexible. Almost every web page includes some
JavaScript, and that code can be examined from within a browser by
viewing the page source, though you will have to go through a couple of
menus to find the right item, and browsers make it harder to find than
they should. Many web page effects are enabled by JavaScript,
including Google Docs and equivalent programs from other sources.
JavaScript is also the language for APIs provided by web services like
Twitter, Facebook, Amazon, and so on.

JavaScript has disadvantages too. Some parts of the language are
awkward and there are some surprising behaviors. The browser
interface is not as standardized as one would like, so programs don’t
always behave the same way on different browsers. At the level we’re
talking about, this is not an issue, and even for professional
programmers it’s getting better all the time.

JavaScript programs generally run as part of a web page, though
non-browser use is growing. When JavaScript is used with a browser as
host, one has to learn a small amount of HTML (Hypertext Markup
Language), the language for describing the layout of web pages. (We
will see a bit of that in Chapter 10.) In spite of these minor drawbacks,
it’s well worth the effort of learning a little JavaScript.

Our other language is Python. Python is excellent for day-to-day
programming over an immense range of potential applications. In the
past few years, Python has become a standard language for
introductory programming classes, and for classes focused on data
science and machine learning. Although you would normally run Python
on your own computer, there are now web sites that make it possible to
run Python programs as a web service so there’s no need to download
anything nor learn how to use a command-line interface. If I were
teaching a programming course for people who were learning their first
language, I would use Python.

If you follow the material here and do some experimentation, you can
learn how to program, at least at a basic level, and that’s a skill worth
having. The knowledge you acquire will carry over into other languages,
making them easier to learn. If you want to dig deeper or get a different
take on it, search for JavaScript or Python tutorials on the web and
you’ll get a long list of helpful sites, including Codecademy, the Khan
Academy, and W3Schools, that teach programming to absolute
beginners.



All that said, however, it’s fine to skim this chapter and ignore
syntactic details; nothing else depends on it.

7.1 Programming Language Concepts

Programming languages share certain basic ideas, since they are all
notations for spelling out a computation as a sequence of steps. Every
programming language thus will provide ways to read input data, do
arithmetic, store and retrieve intermediate values as computation
proceeds, decide how to proceed on the basis of previous
computations, display results along the way, and save results when the
computation is finished.

Languages have syntax, that is, rules that define what is
grammatically legal and what is not. Programming languages are picky
about grammar: you have to say it right or there will be a complaint.
Languages also have semantics, that is, a well-defined meaning for
anything you can say in the language.

In theory there should be no ambiguity about whether a particular
program is syntactically correct and, if so, what its meaning is. This
ideal is not always achieved, unfortunately. Languages are usually
defined in words and, like any other document in a natural language,
the definitions can have ambiguities and allow for different
interpretations. On top of this, implementers can make mistakes, and
languages evolve over time. Accordingly, JavaScript implementations
differ somewhat from browser to browser, and even from version to
version of the same browser. Similarly, there are two versions of
Python, largely compatible but with just enough differences to be
irritating. Fortunately, version 2 is on the way out, being replaced by
version 3, and this will cease to be a problem.

Most programming languages have three aspects. First is the
language itself: statements that tell the computer to do arithmetic, test
conditions, and repeat computations. Second, there are libraries of
code that others have written that you can use in your own programs;
these are prefabricated pieces that you don’t have to write for yourself.
Typical examples include math functions, calendar computations, and
functions for searching and manipulating text. Third, there is access to
the environment in which the program runs. A JavaScript program
running in a browser can get input from a user, react to events like



button pushes or typing into a form, and cause the browser to display
different content or go to a different page. A Python program can
access the file system on the computer where it is running, something
that a JavaScript program running in a browser is prohibited from doing.

7.2 A First JavaScript Program

I’m going to start with JavaScript, then follow up with Python. The
ideas from the JavaScript part will make it easier to read the Python
sections, but you could read in the opposite order as well. Generally,
after you learn one language, others come easily because you
understand the concepts and only have to pick up a new syntax.

The first JavaScript program is as small as they get: it just pops up a
dialog box that says <Hello, world= when the web page is loaded. Here’s
the complete page in HTML, which we will meet when we talk about the
World Wide Web in Chapter 10. For now focus on the single line of
highlighted JavaScript code, which appears between <script> and
</script>.

<html>
  <body>
    <script>
      alert("Hello, world");
    </script>
  </body>
</html>

If you put these seven lines into a file called hello.html and load that
file into your browser, you’ll see a result like one of those in Figure 7.1.

The images are from Firefox, Chrome, Edge and Safari on macOS.
You can see that different browsers may behave differently. Notice that
Safari displays <Close= but not as a button; Edge is nearly identical to
Chrome because Edge is built on the Chrome implementation.

The alert function is part of the JavaScript library for interacting with
the browser. It pops up a dialog box that displays whatever text appears
between the quotes and waits for the user to push OK or Close. By the
way, when you create your own JavaScript programs, you must use the
standard double quote character that looks like this ", not the so-called
<smart quotes= that you see in ordinary text. This is a simple example of



a syntax rule. Don’t use a word processor like Word to create HTML
files; use a text editor like Notepad or TextEdit and make sure that it
saves files as plain text (that is, plain ASCII without formatting
information) even when the filename extension is .html.



Figure 7.1: Firefox, Chrome, Edge, Safari, all on macOS.

Once you have this example working, you can extend it to do more
interesting computations. I won’t show the HTML parts from now on,
just the JavaScript, which goes between <script> and </script>.

7.3 A Second JavaScript Program

The second JavaScript program asks the user for a name, then
displays a personalized greeting:

var username;
username = prompt("What's your name?");
alert("Hello, " + username);

This program has several new constructs and corresponding ideas.
First, the word var introduces or declares a variable, which is a place in
primary memory where the program can store a value as the program
runs. It’s called a variable because its value can be changed as a result
of what the program is doing. Declaring a variable is the high-level
language analog of giving a name to a memory location as we did in the
Toy assembly language. Metaphorically, declarations specify the
dramatis personae, the list of characters in a play. I named the variable
username, which describes its role in this program.

Second, the program uses a JavaScript library function called prompt,
which is similar to alert but pops up a dialog box that asks the user for
input. Whatever text the user types is made available to the program as
the value computed by the prompt function. That value is assigned to
the variable username by the line

username = prompt("What's your name?");

The equals sign <== means <perform the operation on the right side
and store the result in the variable named on the left side,= like storing
the accumulator value in memory in the Toy; interpreting the equals sign
this way is an example of semantics. This operation is called
assignment and = does not mean equality; it means copying a value.
Most programming languages use the equals sign for assignment, in
spite of potential confusion with mathematical equality.



Finally, the plus sign + is used in the alert statement

alert("Hello, " + username);

to join the word Hello (and a comma and a space) and the name that
was provided by the user. This is potentially confusing too because + in
this context does not mean addition of numbers but concatenation of
two strings of text characters.

When you run this program, prompt displays a dialog box where you
can type something, shown in Figure 7.2 (from Firefox).

If you type <Joe= into this dialog box and then push OK, the result is
the message box seen in Figure 7.3.

It would be an easy extension to allow for a first name and a last
name as separate inputs, and there are plenty of variants that you might
try for practice. Notice that if you respond with <My name is Joe=, the
result will be <Hello, My name is Joe=. If you want smarter behavior from
a computer, you have to program it yourself.

Figure 7.2: Dialog box waiting for input.



Figure 7.3: Result of responding OK to dialog box.

7.4 Loops and Conditionals

Figure 5.6 is a JavaScript version of the program that adds up a
sequence of numbers. Figure 7.4 shows it again so you don’t have to
look back.

Figure 7.4: JavaScript program to add up numbers.

As a reminder, the program reads numbers until a zero is entered,
then prints the sum. We’ve already seen several of the language
features in this program, like declarations, assignments, and the prompt
function. The first line is a variable declaration that names the two
variables num and sum that the program will use. The second line is an
assignment statement that sets sum to zero, and the third line sets num to
the value that the user types into the dialog box.



The important new feature is the while loop, which includes lines 4
through 7. Computers are wonderful devices for repeating sequences of
instructions over and over again; the question is how to express that
repetition in a programming language. The Toy language introduced the
GOTO instruction, which branches to another place in a program rather
than the next instruction in sequence, and the IFZERO instruction, which
branches only if the accumulator value is zero.

These ideas appear in most high-level languages in a statement
called a while loop, which provides a more orderly and disciplined way
to repeat a sequence of operations. The while statement tests a
condition (written between parentheses) and if the condition is true,
executes all the statements between the { ... } braces in order. It then
goes back and tests the condition again. This cycle continues while the
condition is true. When the condition becomes false, execution
continues with the statement that follows the closing brace of the loop.

This is almost an exact match for what we wrote with IFZERO and GOTO
in Toy programs in Chapter 3, except that with a while loop we don’t
need to invent labels and the test condition can be any expression that
evaluates to true or false. Here the test is whether the variable num is
not the character 0. The operator != means <not equal to=; it’s inherited
from C, as is the while statement itself.

I’ve been casual about the type of data that these sample programs
process, but internally computers make a strong distinction between
numbers like 123 and arbitrary text like Hello. Some languages require
programmers to express that distinction carefully; other languages try to
guess what the programmer might have meant. JavaScript is closer to
the latter position, so sometimes it’s necessary to be explicit about the
type of data you’re dealing with and how values are to be interpreted.

The function prompt returns characters (text) and the test determines
whether the returned characters are a literal 0, which is expressed by
placing it in quotes. Without the quotes, it would be a numeric zero.

The function parseInt converts text into an internal form that can be
used for integer arithmetic. In other words, its input data is to be treated
as an integer (like 123) instead of as three characters that happen to be
decimal digits. If we don’t use parseInt, the data returned by prompt will
be interpreted as text and the + operator will append it to the end of the
previous text. The result would be the concatenation of all the digits the
user entered—interesting, perhaps, but not what we intended.



The next example, in Figure 7.5, does a slightly different job, finding
the numerically largest of all the numbers that were entered. It’s an
excuse to introduce another control-flow statement, if-else, which
appears in some form in all high-level languages as a way to make
decisions. In effect, it’s a general-purpose version of IFZERO.
JavaScript’s version of if-else is the same as in C.

The if-else statement comes in two forms. The one shown here has
no else part: if the parenthesized condition is true, the statements in {
... } braces that follow are executed. Regardless, execution continues
with the statement that follows the closing brace. The more general
form has an else part for a sequence of statements to be executed if
the condition is false. Either way, execution continues with the next
statement after the whole if-else.

You might have noticed that the example programs use indentation
to highlight structure: the statements controlled by while and if are
indented. This is good practice because it makes it possible to see at a
glance what the scope is for statements like while and if that control
other statements.

It’s easy to test this program if you run it from a web page, but
professional programmers would check it out even before that,
simulating its behavior by mentally stepping through the statements of
the program one at a time, doing what a real computer would do. For
example, try the input sequences 1, 2, 0 and 2, 1, 0; you might even
start with the sequences 0 and then 1, 0 to be sure the simplest cases
work properly. If you do that (it’s good practice for being sure you
understand how it works), you will conclude that the program works for
any sequence of input values.



Figure 7.5: Finding the largest of a sequence of numbers.

Or does it? It works fine if the inputs include at least one positive
number, but what happens if all of them are negative? If you try that,
you’ll discover that the program always says that the maximum is zero.

Think about why for a moment. The program keeps track of the
largest value seen so far in a variable called max (just like finding the
tallest person in the room). The variable has to have some initial value
before we can compare subsequent numbers to it, so the program sets
it to zero at the beginning, before any numbers have been provided by
the user. That’s fine if at least one input value is greater than zero, as
would be the case for heights. But if all inputs are negative, the program
doesn’t print the largest of the negative values; instead it prints the
original value of max, which is never updated.

This bug is easy to eliminate. I’ll show one solution at the end of the
JavaScript discussion, but it’s a good exercise to discover a fix by
yourself.

The other thing that this example shows is the importance of testing.
Testing requires more than throwing random inputs at a program. Good
testers think hard about what could go wrong, including weird or invalid
input, and <edge= or <boundary= cases like no data at all or division by
zero. A good tester would think of the possibility of all negative inputs.
The problem is that as programs become larger, it’s harder and harder
to think of all the test cases, especially when they involve humans who
are likely to input random values at random times in random order.
There’s no perfect solution, but careful program design and
implementation helps, as does including consistency and sanity checks
in the program from the beginning, so that if something does go wrong,
it’s likely to be caught early by the program itself.

7.5 JavaScript Libraries and Interfaces

JavaScript has an important role as the extension mechanism for
sophisticated web applications. Google Maps is a nice example. It
provides a library and an API so that map operations can be controlled
by JavaScript programs, not just by mouse clicks. Thus anyone can
write JavaScript programs that display information on a map provided
by Google. The API is easy to use; for example the code in Figure 7.6



(with a few extra lines of HTML and an authorization key from Google)
displays the map image of Figure 7.7, where perhaps some reader of
this book will live some day.

Figure 7.6: JavaScript code to use Google Maps.



Figure 7.7: Might you live here some day?

As we’ll see in Chapter 11, the trend on the web is towards more and
more use of JavaScript, including programmable interfaces like Maps.
One downside of this is that it’s difficult to protect intellectual property
when you are forced to reveal source code, which you necessarily must
do if you’re using JavaScript. Anyone can use the browser to look at the
source of a page. Some JavaScript is obfuscated, either intentionally or
as a by-product of trying to make it compact so that it can be
downloaded more quickly, and the result can be totally impenetrable
unless one is determined.

7.6 How JavaScript Works

Recall the discussion of compilers, assemblers and machine
instructions in Chapter 5. A JavaScript program is converted into
executable form in an analogous way, although there are significantly
different details. When the browser encounters JavaScript in a web
page (when it sees a <script> tag, for example), it passes the text of
the program to a JavaScript compiler. The compiler checks the program
for errors, and compiles it into assembly language instructions for a
made-up machine analogous to the Toy, though with a richer instruction
repertoire: a virtual machine as described in the previous chapter. It
then runs a simulator like the Toy to perform whatever actions the
JavaScript program is supposed to do. The simulator and the browser
interact closely; when a user pushes a button, for example, the browser
notifies the simulator that the button has been pushed. When the
simulator wants to do something like pop up a dialog box, it asks the
browser to do the work by calling alert or prompt.

This is all we’ll say about JavaScript here, but if you’re interested in
more, there are good books, and online tutorials that let you edit
JavaScript code in place and show you the results immediately.
Programming can be frustrating, but it can also be great fun, and you
can even make a decent living with it. Anyone can be a programmer,
but it helps if you have an eye for detail and are able to zoom in to look
at fine points and zoom out again to the big picture. It also helps to be a
bit compulsive about getting details right, since programs won’t work
well or perhaps not at all if you’re not careful. And as with most



activities, there is a large gap between an amateur and a real
professional.

Here’s one possible answer to the programming question a few
pages back:

num = prompt("Enter new value, or 0 to end");
max = num;
while (num != '0') ...

Set max to the first number that the user supplies; that is the largest
value so far, no matter whether it’s positive or negative. Nothing else
needs to change, and the program now handles all inputs, though it will
quit early if one of those values is zero. It even does something sensible
if the user provides no values at all, though to handle that well in
general requires learning more about the prompt function.

7.7 A First Python Program

I’m now going to reprise some of the material from the first part of the
chapter in Python, focusing on differences with JavaScript. One major
change from a few years ago is that it is now easy to run Python
programs from a browser, which means that, as with JavaScript, there’s
no need to download anything to your own computer. There are still
restrictions on what you can access and what resources are available,
since you are running your program on someone else’s computer, but
there’s plenty to get you started.

If you do have Python installed on your computer, you can run it from
the command-line using Terminal on macOS or Windows. The
traditional first program prints Hello, world, and the interaction looks
like this:

$ python
Python 3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 03:13:28)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help" [...] for more information.
>>> print("Hello, world")
Hello, world
>>>



Whatever you type is in bold italic, text printed by the computer is in
the regular monospace font, and >>> is the prompt from Python itself.

If you don’t have Python installed on your computer, or if you want to
try an online alternative, there are a variety of services that let you run it
from a web browser. Google’s Colab (colab.research.google.com) is
one of the easiest. It provides convenient access to a variety of
machine-learning tools. We won’t go into that here, but Colab is also
good for getting started with Python. If you go to the Colab web site,
select File, then New notebook, then type the program in the <+ Code=
box and optionally the text in a <+ Text= box, you should see something
like Figure 7.8, which shows the situation just before running the first
program: a line of text that explains what the example is, and then the
code itself.

Figure 7.8: Colab before running Hello world.

Clicking the triangle icon will compile and run the program; the result
is shown in Figure 7.9.

The text area is used for documentation of any sort, and you can add
as much code as you like. You can also add more sections of text and
code as you evolve a system. Colab is a cloud version of a widely used
interactive tool called a Jupyter notebook, a computer-based analog of
a physical notebook in which you can record ideas, explanations,
experiments, code and data, all in a single web page that can be edited,
updated, executed, and distributed to others. More information can be
found at jupyter.org.

http://colab.research.google.com/
http://jupyter.org/


Figure 7.9: Colab after running Hello world.

7.8 A Second Python Program

We have already seen this program, which adds up a sequence of
numbers and prints the sum at the end; it’s in Chapter 5. The version in
Figure 7.10 prints a message along with the sum but is otherwise
identical. (This program won’t work if you just copy and paste it into
Python, because the input function call is interpreted right away. You
have to put it in a separate file, like addup.py, and then run Python on
that file.)

Figure 7.10: Python program to add up numbers.

Let’s add it to our Colab notebook. Figure 7.11 shows the code and
the state of the program just after it begins execution; the blue rectangle
is where input is to be typed, the equivalent of the prompt dialog box
that we used in JavaScript.



Figure 7.11: Colab before running Addup.

Figure 7.12 shows the result after I type the numbers 1, 2, 3, 4 and
the 0 that terminates the loop. This version of the program includes a
text message that identifies what is printed, but it does not prompt the
user before each input. It’s an easy and instructive exercise to add that
feature.

The next example (Figure 7.13) is a program that computes the
maximum value in a sequence of numbers.

Figure 7.12: Colab after running Addup.



Figure 7.13: Colab before running Max.

Figure 7.14 shows the result after entering a sequence of numbers.
Note that the program gets the right answer even when all the numbers
are negative.

Figure 7.14: Colab after running Max.

One minor change that you could make: rather than integer values,
you could modify the program to use floating-point numbers, that is,
numbers that potentially have fractional parts, like 3.14; the only change
that is required is to replace int with float in the lines that convert input
text to a numeric internal representation.

7.9 Python Libraries and Interfaces



One of Python’s great strengths is the enormous collection of
libraries available to Python programmers. Name an application area,
and there’s probably a Python library that makes it easy to write
programs for that domain.

I’ll illustrate with one brief example here, the matplotlib library for
drawing graphs. Suppose we want to replicate Figure 4.1, which shows
how running times grow in proportion to the amount of data. I created
that figure originally in Excel, but it’s easy to do the same with Python,
again using our Colab notebook.

Figure 7.15: Computing a graph of complexity classes.

The code in Figure 7.15 introduces several new features. The two
import statements are used to access libraries of Python code, the
math library and a plotting library; the latter has a long name so it’s
conventionally given the short alias plt. The values to be computed and
plotted are stored in four lists, which begin life with nothing in them,
indicated by the line

log = []; linear = []; nlogn = []; quadratic = []

Later statements append new values to the lists, in a loop that runs
from 1 to 20 inclusive, setting the variable n to each value in turn. (The



upper limit of the range is one value past the end, a Python convention
that simplifies loop control.)

After the end of the loop, each list (now containing 20 items) is set up
for plotting by calling the plot function, which will eventually draw the
plot and add a label to the legend. There is one exception: only the first
10 items of the quadratic list are plotted, since the values grow so
quickly that they would swamp the rest of the graph. The notation
[0:10] selects a slice of the list containing the first ten items, which are
numbered 0 through 9.

The legend function sets up the legend with the labels for each curve,
and the show function generates the graph, which is shown in Figure
7.16. Matplotlib has many more features; it’s worth exploring them to
see how much more you can do without much effort.

Most of the program examples so far have been numeric, and it
would be easy to think that programming is all about moving numbers
around. But of course that’s not true, as we see from all the interesting
non-numeric applications in our lives.

Python’s libraries make it easy to experiment with text applications as
well. Figure 7.17 uses the Python requests library to access a copy of
Pride and Prejudice from Gutenberg.org and print the famous opening
sentence. There’s a fair amount of boilerplate at the front of the book
that must be skipped over. The function find finds the starting position
of the first occurrence of some string of characters in a text, so we can
use that to find the start and end locations.

http://gutenberg.org/


Figure 7.16: Growth of log N, N, N log N and N2.

The line that says

pandp = pandp[start:]

replaces the original pandp by the substring that begins at position start
and goes to the end of the string.

Next, we use find again to locate the first period, which is at the end
of the first sentence, and then print the substring that begins at position
zero. Why end+1? The variable end contains the location of <.=, so we
need to extend it by 1 to include the period itself.



Figure 7.17: Accessing Internet data from Python.

In the last few examples, I’ve thrown a fair amount at you without
much explanation, to show some of the basic ideas in a minimal form.
Given this much sample code, it’s easy to do simple experiments. For
example, you could plot other function values like square root (sqrt) or
N3 or even 2N . That would require changing the data ranges. You could
also explore the features of matplotlib, which can do much more than
we’ve seen here. You could download more of Pride and Prejudice or
other texts, and explore them with Python packages for natural
language processing like NLTK or spaCy.

In my experience, experimenting with existing programs is an
effective way to learn more about programming, and notebooks like
those enabled by Colab are a convenient way to keep track of your
experiments in one place.

7.10 How Python Works

Recall the discussion of compilers, assemblers and machine
instructions in Chapter 5, and the explanation of how JavaScript works,
a few pages ago. A Python program is converted into executable form
in an analogous way, although the details are significantly different.
When you run Python, whether directly through the python command in
a command-line environment or implicitly by clicking on something in a
web page, the text of your program is passed to a Python compiler.

The compiler checks the program for errors, and compiles it into
assembly language instructions for a made-up machine analogous to



the Toy, though with a richer instruction repertoire: a virtual machine as
described in Chapter 6. If there are import statements, the code from
those libraries is also included. The compiler then runs a virtual
machine to perform whatever actions the Python program is supposed
to do. The virtual machine interacts with the environment to do
operations like reading data from the keyboard or the Internet, or
printing output to the screen.

If you are running Python in a command-line environment, you can
use it as a high-powered calculator. You can type Python statements
one at a time and each is compiled and executed right then. This makes
it easy to experiment with the language and figure out what basic
functions do. This is even easier when you use Python in something like
a Jupyter or Colab notebook.

7.11 Summary

In the past few years, it has become trendy to encourage everyone to
learn to program, with famous and influential people jumping on the
bandwagon.

Should programming be a required course in elementary or high
school? Should it be required in university (which my own school
debates from time to time)?

My position is that it’s good for anyone to know how to program. It’s
helpful for understanding more fully what computers do and how they
do it. Programming can be a satisfying and rewarding way to spend
time. The habits of thought and approaches to problem solving that
programmers use transfer well to many other parts of life. And of course
knowing how to program opens up opportunities; one can have a great
career as a programmer and be well paid for it.

All that said, programming isn’t for everyone and I don’t think it
makes sense to force everyone to learn to program, unlike reading,
writing, and arithmetic, which are mandatory. It seems best to make the
idea appealing, be sure it’s easy to get started, provide plenty of
opportunities, remove as many barriers as possible, and then let nature
take its course.

Furthermore, computer science, often mentioned in the same
discussions, is not just about programming, though programming is an
important part of it. Academic computer science also involves



theoretical and practical study of algorithms and data structures, which
we sampled in Chapter 4. It includes architecture, languages, operating
systems, networks, and an immense range of applications where
computer science joins forces with other disciplines. Again, it’s great for
some people and many of the ideas are of broad applicability, but it’s
overkill to require everyone to take a formal computer science course.





Wrap-up on Software

We’ve covered a lot of material in the last four chapters. Here’s a
brief summary of the most important points.

Algorithms. An algorithm is a sequence of precise, unambiguous
steps that perform some task and then stop; it describes a
computation independent of implementation details. The steps are
based on well-defined elementary or primitive operations. There are
many algorithms; we concentrated on some of the most
fundamental, like searching and sorting.

Complexity. The complexity of an algorithm is an abstract
description of how much work it does, measured in terms of basic
operations like examining a data item or comparing one data item
with another, and expressed in terms of how that number of
operations depends on the number of items. This leads to a
hierarchy of complexities, ranging in our case from logarithmic at one
end (doubling the number of items adds only one operation) through
linear (doubling the number of items doubles the number of
operations) to exponential (adding one item doubles the number of
operations).

Programming. Algorithms are abstract. A program is the concrete
expression of all the steps necessary to make a real computer do a
complete real task. A program has to cope with limited memory and
time, finite size and precision of numbers, perverse or malicious
users, and a milieu of constant change.

Programming languages. A programming language is a notation
for expressing all those steps, in a form that people can write
comfortably but that can be translated into the binary representation
that computers ultimately use. The translation can be accomplished
in several ways, but in the most common case, a compiler, perhaps
with an assembler, translates a program written in a language like C
into binary to run on a real computer. Each different kind of
processor has a different repertoire and representation of



instructions, and thus needs a different compiler, though parts of that
compiler may be common to different processors. An interpreter or
virtual machine is a program that simulates a real or made-up
computer for which code can be compiled and run; this is commonly
how JavaScript and Python programs operate.

Libraries. Writing a program to run on a real computer involves a
lot of intricate detail for common operations. Libraries and related
mechanisms provide prefabricated components that programmers
can use as they create their own programs, so that new work can
build on what has already been done. Programming today is often as
much gluing existing components together as it is writing original
code. Components may be library functions like those we’ve seen in
JavaScript and Python, or big systems like Google Maps and other
web services. A library may be open source, so that any programmer
can read, understand and improve the code, or it may be closed
proprietary code. Underneath, however, they are all created by
programmers writing detailed instructions in some of the languages
we’ve talked about or others like them.

Interfaces. An interface or API is a contract between two parties:
the software that provides some service and software that uses the
service. Libraries and components provide their services through
application programming interfaces. Operating systems make
hardware look more regular and programmable through their system
call interfaces.

Abstraction and virtualization. Abstraction is a fundamental idea in
computing, found at all levels from hardware to large software
systems. It’s especially relevant in the design and implementation of
software, because it separates concerns about what some piece of
code does from how it is implemented. Software can be used to hide
the details of implementation or to pretend to be something else;
examples include virtual memory, virtual machines, interpreters,
even cloud computing.

Bugs. Computers are unforgiving, and programming requires a
sustained level of error-free performance from all-too-fallible
programmers. Thus all big programs have bugs, and don’t do exactly
what they were meant to. Some bugs are mere nuisances, more like
bad design than actual errors. (<That’s not a bug, it’s a feature= is a



common saying among programmers.) Some are triggered only in
such rare or unusual circumstances that they aren’t even
reproducible, let alone fixable. A few bugs are truly serious, with
potentially grave consequences that put security, safety and even
lives at stake. Liability is likely to become more of an issue in
computing devices than it has been, especially as more and more
critical systems are based on software. The model of <take it or leave
it, without warranty= that operates in personal computing will
probably be replaced by more reasonable product warranties and
consumer protections as in the hardware world.

As we learn from experience, as programs are created more from
proven components and as existing bugs are squashed, then in
principle programs ought to become more and more free of errors.
Against these advances, however, are the inevitable failures arising
from continual changes as computers and languages evolve, as
systems undertake new requirements, and as marketing and
consumer desires create relentless pressure for new features. All of
these lead to more and bigger programs. Unfortunately, bugs will
always be with us.





Part III
Communications

Communications is the third major part of our four-part
organization, after hardware and software. In many ways, this is
where things start to get interesting (occasionally in the sense of
<May you live in interesting times=), because communications
involves computing devices of all types talking to each other, usually
on our behalf but sometimes up to no good at all. Most technological
systems now combine hardware, software, and communications, so
the pieces that we have been discussing will all come together.
Communications systems are also the place where most societal
issues arise, presenting difficult problems of privacy, security, and the
competing rights of individuals, businesses, and governments.

We’ll cover a bit of historical background, talk about network
technology, and then get to the Internet, which is the collection of
networks that carries much of the world’s computer-to-computer
traffic. After that comes the (World Wide) Web, which in the mid-
1990s took the Internet from a small and mostly technical user
population to a ubiquitous service for everyone. We’ll then turn to
some of the applications that use the Internet, like mail, online
commerce, and social networks, along with threats and
countermeasures.

People have communicated over long distances since as far back
as there are records, using much ingenuity and a remarkable variety
of physical mechanisms. Every example comes with a fascinating
story that would be worth a book of its own.

Long-distance runners have carried messages for millennia. In
490 BCE, Pheidippides ran 26 miles (42 kilometers) from the
battlefield at Marathon to Athens, to bring news of the Athenians’
great victory over the Persians. Unfortunately, at least in legend, he
gasped <Rejoice, we conquer= and died.

Herodotus described the system of riders who carried messages
throughout the Persian empire at about the same time; his



description lives on in the 1914 inscription on the former main post
office building on Eighth Avenue in New York City: <Neither snow nor
rain nor heat nor gloom of night stays these couriers from the swift
completion of their appointed rounds.= The Pony Express, whose
horseback riders carried mail 1,900 miles (3,000 km) between St.
Joseph, Missouri, and Sacramento, California, is an icon of the
American West, though it lasted less than two years, from April 1860
to October 1861.

Signal lights and fires, mirrors, flags, drums, carrier pigeons, even
human voices have all communicated over long distances. The word
<stentorian= comes from the Greek <stentor,= a person whose loud
voice carried messages across narrow valleys.

One early mechanical system is not as well known as it deserves
to be: the optical telegraph invented in France by Claude Chappe
around 1792 and independently in Sweden by Abraham Edelcrantz.
The optical telegraph used a signaling system based on mechanical
shutters or arms mounted on towers, as seen in Figure III.1.





Figure III.1: Optical telegraph station.

The telegraph operator read signals coming from the adjacent
tower in one direction and passed them on to the next tower in the
other direction. The arms or shutters could take on only a fixed
number of positions, so the optical telegraph was truly digital. By the
1830s there was an extensive network of these towers over large
parts of Europe and some parts of the United States. Towers were
about 10 kilometers (6 miles) apart; transmission speeds were a few
characters per minute and, according to one account, a single
character could be sent from Lille to Paris (230 km or 140 miles) in
about 10 minutes.

The issues that arise in modern communications systems
appeared even in the 1790s. Standards were required for how
information was represented, how messages were exchanged, and
how errors were detected and recovered from. Sending information
quickly was always a problem, though it would only take a few hours
to send a short message from one end of France to the other.
Security and privacy problems cropped up too. Chapter 61 of The
Count of Monte Cristo by Alexandre Dumas, published in 1844,
relates how the count bribed a telegraph operator to send a false
message to Paris, causing the financial ruin of the evil banker Baron
Danglars. This is a perfect example of a man-in-the-middle attack.

The optical telegraph had at least one major operational problem:
it could only be used when visibility was good, not at night or in bad
weather. The electrical telegraph, invented by Samuel F. B. Morse in
the 1830s, came to fruition in the 1840s, and killed the optical
telegraph within a decade. Commercial telegraph service soon linked
major US cities; the first was between Baltimore and Washington in
1844 and the first trans-Atlantic telegraph cable was laid in 1858. The
electrical telegraph led to many of the same hopes, aspirations and
disappointments that people experienced during the early days of the
Internet boom and dot-com bust of the late 1990s. Fortunes were
made and lost, frauds were perpetrated, optimists predicted the
coming of world peace and understanding, and realists correctly
perceived that although the details were different, most of it had been
seen before. <This time it’s different= is rarely if ever true.



In 1876, as the story goes, Alexander Graham Bell beat Elisha
Gray to the US Patent Office by a few hours with his invention, the
telephone, though there is still uncertainty about the exact sequence
of events. As the telephone evolved over the next hundred years, it
did revolutionize communications, though it did not lead to world
peace and understanding either. It let people talk to each other
directly, it required no expertise to use, and standards and
agreements among telephone companies made it possible to
connect almost any pair of telephones in the world.

The telephone system profited from a long period of comparative
stability. It only carried the human voice. A typical conversation lasted
three minutes, so it didn’t matter if it took a few seconds to set up the
connection. A telephone number was a unique identifier with a fairly
clear geographical location. The user interface was spartan, a plain
black telephone with a rotary dial; these have mostly now vanished,
leaving only the linguistic echo of <dialing the phone.= The phone was
the very antithesis of today’s smartphones. All the intelligence was in
the network and a user could do nothing but dial numbers to place a
call, answer the phone when it rang, or ask a human operator for
more complicated services. Figure III.2 shows a rotary dial phone,
which was the standard for many years.

All of this meant that the telephone system could concentrate on
two core values: high reliability and guaranteed quality of service. For
50 years, if one picked up the phone, there would be a dial tone
(another linguistic echo), the call would always go through, the
person at the other end could be heard clearly, and it would stay that
way until both parties hung up. I probably have an excessively rosy
view of the phone system, since I worked for over thirty years at Bell
Labs, part of the American Telephone and Telegraph company
(AT&T), and saw many of the changes from the inside, though far
from the center of the action. On the other hand, I do miss the almost
perfect reliability and clarity of pre3cell phone days.

For the phone system, the last quarter of the 20th century was a
period of rapid change in technology, society and politics. The traffic
model changed as fax machines became common in the 1980s.
Computer-to-computer communications became common as well,
using modems that converted bits into sound and vice versa; like fax



machines, they used audio to pass digital data through the analog
phone system. Technology made it possible to set up calls faster, to
send more information (with fiber optic cables in particular, both
domestically and across oceans), and to encode everything digitally.
Mobile phones changed usage patterns even more dramatically;
today they dominate telephony to the point where many people have
abandoned wired connections at home in favor of cell phones.

Figure III.2: Rotary dial telephone (courtesy of Dimitri
Karetnikov).

Politically there was a worldwide revolution as control in the
telecom industry shifted from tightly regulated companies and
government agencies to deregulated private companies. This
unleashed wide-open competition, which resulted in a downward



spiral in revenue for the old-line telephone companies and the rise
and often fall of a host of new players.

Today, telecom companies continue to wrestle with the threats
raised by new communications systems, primarily those based on
the Internet, often in the face of declining revenue and market share.
One threat comes from Internet telephony. It’s easy to send digital
voice over the Internet. Services like Skype push this further, offering
free computer-to-computer voice and video and a way to call from
the Internet to conventional phones for a nominal price, usually much
less than the incumbent phone companies charge, especially for
international calling. The handwriting was on the wall long ago,
though not everyone saw it. I recall a colleague telling AT&T
management in the early 1990s that prices for domestic long
distance phone calls would drop to a cent a minute4at a time when
AT&T was charging more like 10 cents a minute4and he was
laughed at.

Similarly, cable companies like Comcast are threatened by
streaming services provided by Netflix, Amazon, Google, and many
others, all of which use the Internet, reducing the cable company to
merely carrying someone else’s bits.

Naturally, incumbent companies are fighting to retain their
revenues and effective monopolies by technical, legal and political
means. One approach is to charge competitors for access to the
wired phones in residences. Another approach is to put bandwidth
limitations and other slowdowns in the path of competitors that
provide telephone service using the Internet (<voice overIP= or
<VoIP=) or other services.

This is related to a general issue called net neutrality. Should
Internet service providers be allowed to interfere with, degrade, or
block traffic for any reason other than purely technical ones related to
efficient network management? Should telephone and cable
companies be required to provide the same level of Internet service
to all users, or should they be able to treat services and users
differently? If so, on what grounds? For instance, should a telephone
company be allowed to slow down traffic from a competitor, say a
VoIP company like Vonage? Should a cable and entertainment
company like Comcast be allowed to slow down traffic for Internet



movie services like Netflix that it competes with? Should service
providers be allowed to impede traffic for sites that espouse social or
political views that the owners disagree with? As usual, there are
arguments on both sides.

The resolution of the net neutrality issue will have a significant
effect on the future of the Internet. So far the Internet has generally
provided a neutral platform that carries all traffic without interference
or restrictions. This has benefited everyone and in my opinion, it’s
highly desirable to maintain this state of affairs.

On the other hand, the Internet supports a wide variety of sites
that provide forums for misinformation, fake news, bigotry and
mysogyny, hate speech, conspiracy theories, libel, and any number
of other undesirable activities. In the US at least, there is an ongoing
discussion over whether Internet sites like Twitter and Facebook are
merely platforms for communication, and thus not responsible for the
content that they host, just as phone companies are not responsible
for what people say when they use the telephone. Or are they
publishers like newspapers who must take some responsibility for
what is published on their sites? Not surprisingly, positions taken
depend on what problem is being avoided, but for the most part,
social media sites do not want to be considered publishers.





8
Networks

<Mr. Watson4Come here4I want to see you.=
First intelligible message sent by telephone,
Alexander Graham Bell, March 10, 1876.

In this chapter, I’m going to talk about network technologies that one
encounters directly in daily life: conventional wired networks like
telephones, cable, and Ethernet, and then wireless networks, of which
Wi-Fi and cell phones are the most common. These are how most
people connect to the Internet, which is the topic of Chapter 9.

All communications systems share basic properties. At the source,
they convert information into a representation that can be transmitted
over some medium. At the destination, they convert that representation
back into a usable form.

Bandwidth is the most fundamental property of any network4how
fast the network can transmit data. This ranges from a few bits per
second for systems that operate under severe power or environmental
constraints to terabits per second for the fiber optic networks that carry
Internet traffic across continents and oceans. For most people,
bandwidth is the property that matters the most. If there’s enough
bandwidth, data flows quickly and smoothly; if not, communication is a
frustrating experience of halting and stuttering.

Latency or delay measures how long it takes for a particular chunk of
information to go through the system. High latency need not mean low
bandwidth: driving a truck full of disk drives across the country has high
delay but enormous bandwidth.

Jitter4the variability of delay4also matters in some communications
systems, especially those dealing with speech and video.

Range defines how geographically big a network can be with a given
technology. Some networks are local, a few meters at most, while
others literally span the world.

Other properties include whether the network broadcasts so that
multiple receivers can hear one sender (as with radio), or is point to



point, pairing a specific sender and receiver. Broadcast networks are
intrinsically more vulnerable to eavesdropping, which may have security
implications. One has to worry about what kinds of errors can occur and
how they are handled. Other factors to consider include the cost of
hardware and infrastructure, and the amount of data to be sent.

8.1 Telephones and Modems

The telephone network is a large and successful worldwide network
that began by carrying voice traffic and eventually evolved to carrying
considerable data traffic as well. In the early days of home computers,
most users were connected online by phone lines.

At the residential level, the wired telephone system still carries mostly
analog voice signals, not data. So to send digital data, it’s necessary to
have a device that converts bits to sound and back again. The process
of imposing an information-carrying pattern on a signal is called
modulation. At the other end, it’s necessary to convert the pattern back
into its original form, which is called demodulation. The device that does
modulation and demodulation is called a modem. A telephone modem
used to be a large and expensive separate box of electronics, but today
it’s a single chip and is practically free. In spite of that, the use of wired
telephones to connect to the Internet is uncommon now, and few
computers have modems.

Using the telephone for data connections has major drawbacks. It
requires a dedicated phone line, so if you only have one phone line in
your home, you have to choose between connecting or leaving the
phone available for voice calls. More important for most people,
however, is that there is a tight limit on how quickly information can be
sent by telephone. The maximum speed is about 56 Kbps (56,000 bits
per second4a lower case <b= conventionally stands for bits, in contrast
to the upper case <B= that stands for bytes), which is 7 KB per second.
A 20 KB web page thus takes 3 seconds to download, a 400 KB image
takes nearly 60 seconds, and a video or a software update could take
hours or even days.

8.2 Cable and DSL



The 56 Kbps limitation on how fast an analog telephone line can
carry signals is inherent in its design, an artifact of engineering
decisions made 60 years ago, at the beginning of the transition to a
digital telephone system. Tw o other technologies provide an alternative
for many people, with at least 100 times the bandwidth.

The first is to use the cable that carries cable television into many
homes. That cable can carry hundreds of video channels
simultaneously. It has enough excess capacity that it can be used to
carry data to and from homes as well; a cable system will offer a wide
range of download speeds (and prices), typically a few hundred Mbps.
The device that converts signals from the cable into bits for a computer
and back again is called a cable modem, since it does modulation and
demodulation just like a telephone modem, though it runs quite a bit
faster.

The high speed is illusory in a way. The same TV signal goes to
every house, regardless of whether it’s being watched or not. On the
other hand, although the cable is a shared medium, data going to my
house is meant for me and won’t be the same data at the same time as
is going to your house, so there’s no way for us to share the content.
Data bandwidth has to be shared among data users of the cable, and if
I’m using a lot of it, you won’t get as much. More likely, we’ll both get
less. Fortunately, we’re not likely to interfere with each other too much.
It’s rather like a communications version of deliberate over-booking by
airlines and hotels. They know that not everyone will show up, so they
can safely over-commit resources. It works in communications systems
too.

Now you can see another problem. We all watch potentially the same
TV signals, but I don’t want my data going to your house any more than
you want your data going to my house. After all, it’s personal4it
includes my email, my online shopping and banking information, and
perhaps even personal entertainment tastes that I would rather not
have others know about. This can be addressed by encryption, which
prevents anyone else from reading my data; we’ll talk more about this in
Chapter 13.

There is yet another complication. The first cable networks were one-
way: signals were broadcast to all homes, which was easy to build but
provided no way to send information back from the customer to the
cable company. Cable companies had to find a way to deal with this
anyway, to enable pay-per-view and other services that require



communication from the customer. Thus cable systems became two
way, which makes them usable as communications systems for
computer data. It is common, however, for the upload speed (from
consumer to cable company) to be much lower than the download
speed, since most of the traffic is downloading.

The other reasonably fast network technology for home use is based
on the other system that’s already in the home, the good old telephone.
It’s called Digital Subscriber Loop or DSL (sometimes ADSL, for
<asymmetric,= because the bandwidth down to the home is higher than
the bandwidth up from the home). It provides much the same service as
cable, but with major differences underneath.

DSL sends data on the telephone wire with a technique that doesn’t
interfere with the voice signal, so you can talk on the phone while
surfing, and neither affects the other. This works well but only up to a
certain distance. If you live within about 3 miles (5 km) of a local
telephone company switching office, as many people do, you can have
DSL, but if you’re too far away, you’re out of luck.

The other nice thing about DSL is that it’s not a shared medium. It
uses the dedicated wire between your home and the phone company,
but no one else does, so you don’t share the capacity with your
neighbors, nor do your bits go to their homes. A special box at your
house4another modem, with a matching one at the telephone
company’s building4converts signals into the right form to be sent
along the wires. Otherwise, cable and DSL look and feel much the
same. The prices tend to be about the same too, at least when there is
competition. Anecdotally, however, DSL use in the US seems to be
decreasing.

Technology continues to improve, and home fiber optic service is
replacing the older coaxial cable or copper wires. For example, Verizon
recently replaced their aging copper connection to my home with optical
fiber, which is cheaper to maintain, and allows them to offer additional
services like Internet access. The only downside from my standpoint
(aside from a few days without service because they inadvertently cut a
cable during the installation) is that if there’s an extended power failure I
won’t have phone service. In olden times, phones got their power from
batteries and generators at the phone company’s facility, and would
work in spite of power failures; that’s not true of fiber optic cables.

Fiber optic systems are much faster than the alternatives. Signals are
sent as pulses of light along an extremely pure glass fiber with low loss;



signals can propagate for kilometers before they need to be amplified
back to full strength. In the early 1990s, I was part of a <fiber to the
home= research experiment and for a decade had a 160 Mbps
connection to my house. That gave me serious bragging rights but not
much else, since there wasn’t any service that could take advantage of
that much bandwidth.

Today, through another accident of geography, I have a gigabit fiber
connection into my home (not the one from Verizon), but the effective
rate is only 30 to 40 Mbps because it’s limited by my home wireless
router. On my office wireless network, I get about 80 Mbps to a laptop,
but 500 to 700 Mbps to a computer on an Ethernet connection. You can
test your own connections at sites like speedtest.net.

8.3 Local Area Networks and Ethernet

Telephone and cable are network technologies that connect a
computer to a larger system, usually at a considerable distance.
Historically, there was another thread of development that led to one of
today’s most common network technologies, Ethernet.

In the early 1970s, Xerox’s Palo Alto Research Center (Xerox PARC)
developed an innovative computer called the Alto that served as a
vehicle for experiments that led to numerous other innovations. It had
the first window system and a bitmap display that was not restricted to
displaying characters. Although Altos were too expensive to be
personal computers in today’s sense, every researcher at PARC had
one.

One problem was how to connect Altos to each other or to a shared
resource like a printer. The solution, invented by Bob Metcalfe and
David Boggs in the early 1970s, was a networking technology that they
called Ethernet. An Ethernet carried signals between computers that
were all connected to a single coaxial cable, physically similar to the
one that carries cable TV into your house today. The signals were
pulses of voltage whose strength or polarity encoded bit values; the
simplest form might use a positive voltage for a 1-bit and a negative
voltage for a 0-bit.

Each computer was connected to the Ethernet by a device with a
unique identification number. When one computer wanted to send a
message to another, it listened to make sure no one else was already

http://speedtest.net/


sending, then broadcast its message onto the cable along with the
identification number of the intended recipient. Every computer on the
cable could hear the message, but only the computer to which it was
directed would read and process it.

Every Ethernet device has a 48-bit identification number, different
from all other devices, called its (Ethernet) address. This allows for 248

(about 2. 8 × 1014) devices in all. You can find the Ethernet address for
your computer, since it is sometimes printed on the bottom of the
computer and it can also be displayed by programs like ipconfig on
Windows or ifconfig on Macs, or found in System Preferences or
Settings. Ethernet addresses are always written in hexadecimal with
two digits per byte, so there are 12 hex digits in all. Look for some
sequence of hexadecimal digits like 00:09:6B:D0:E7:05 (with or without
the colons), though since that’s from one of my laptops, you won’t likely
find exactly that one on your computer.

From the discussion of cable systems above, you can imagine that
Ethernets will have similar problems of privacy and contention for a
limited resource.

Contention is handled by a neat trick: if a network interface starts to
send but detects that someone else is sending too, it stops, waits a brief
period, and tries again. If the waiting time is random and gradually
increases over a series of failures, then eventually everything goes
through. It’s sort of like conversation at a party: if two people start to say
something at the same time, both back off, then one restarts before the
other.

Privacy wasn’t originally a concern since everyone was an employee
of the same company and all were working in the same small building.
Privacy is a major problem today, however. It’s possible for software to
put an Ethernet interface into <promiscuous mode,= in which it reads the
contents of all messages on the network, not just those intended for it
specifically. That means it can look for interesting content like
unencrypted passwords. Such <sniffing= used to be a common security
problem on Ethernet networks in college dorms. Encryption of packets
on the cable is a solution, and today most traffic is encrypted by default.

You can experiment with sniffing with an open-source program called
Wireshark, which displays information about Ethernet traffic, including
wireless. I occasionally demonstrate Wireshark in class when it seems



that students are paying more attention to their laptops and phones
than to me; the demo does catch their attention, albeit briefly.

Information on an Ethernet is transmitted in packets. A packet is a
sequence of bits or bytes that contains information in a precisely
defined format so that it can be packed up for sending and cracked
open when received. If you think of a packet as an envelope (or
perhaps a postcard) with the sender’s address, the recipient’s address,
the content, and miscellaneous other information, in a standard format,
that’s a reasonably good metaphor, as are the standardized packages
used by shipping companies like FedEx.

The details of packet format and content vary greatly among
networks. An Ethernet packet (Figure 8.1) has six-byte source and
destination addresses, some miscellaneous information, and up to
about 1500 bytes of data.

Figure 8.1: Ethernet packet format.

Ethernet has been an exceptionally successful technology. It was first
made into a commercial product (not by Xerox, but by 3Com, a
company founded by Metcalfe), and over the years billions of Ethernet
devices have been sold by a large number of vendors. The first version
ran at 3 Mbps, but today’s versions are anywhere from 100 Mbps to 10
Gbps. As with modems, the first devices were bulky and expensive, but
today an Ethernet interface is a single inexpensive chip.

Ethernets have a limited range, a few hundred meters. The original
coaxial cable has been superseded by an 8-wire cable with a standard
connector that lets each device plug in to a <switch= or <hub= that
broadcasts incoming data to the other connected devices. Desktop
computers usually have a socket that accepts this standard connector,
which also appears on devices like wireless base stations and cable
modems that simulate Ethernet behavior; the socket has disappeared
from modern laptops, which rely on wireless networking.

8.4 Wireless



Ethernet has one significant drawback: it needs wires, real physical
equipment that snakes through walls, under floors, and sometimes (I
speak from personal experience here) across the hall, down the stairs,
and through the dining room and kitchen on its way to the family room.
A computer on an Ethernet can’t be easily moved around, and if you
like to lean back with your laptop on your lap, an Ethernet cable is a
nuisance.

Fortunately, there’s a way to have your cake and eat it too, with
wireless. A wireless system uses radio to carry data, so it can
communicate from any place where there is enough signal. The normal
range for wireless networks is tens to hundreds of meters. Unlike
infrared, which is used for TV remotes, wireless doesn’t have to be line
of sight because radio waves can pass through some materials, though
not all. Metal walls and concrete floors interfere with radio waves, so in
practice the range can be less than it would be in open air. Higher
frequencies are generally absorbed more than lower frequencies, all
else being equal.

Wireless systems use electromagnetic radiation to carry signals. The
radiation is a wave of a particular frequency measured in Hz or more
likely MHz or GHz for the systems we encounter, like the 103.7 MHz of
a radio station. A modulation process imposes an information signal
onto the carrier wave. For example, amplitude modulation (<AM=)
changes the amplitude or strength of the carrier to convey information,
while frequency modulation (<FM=) changes the frequency of the carrier
around its central value. The received signal strength varies directly
with power level at the transmitter and inversely as the square of the
distance from the transmitter to the receiver; thus a receiver twice as far
away as another will receive a signal only one quarter as strong.

Wireless systems operate under strict rules about what range of
frequencies they can use4their spectrum4and how much power they
can use for transmission. Spectrum allocation is a contentious process,
since there are many competing demands on it. Spectrum is allocated
by government agencies like the Federal Communications Commission
(FCC) in the United States, and international agreements are
coordinated by the International Telecommunication Union or ITU,
which is an agency of the United Nations. In the US, when new
spectrum space becomes available, most often of very high frequency
bands, it is typically allocated by public auctions run by the FCC.



The wireless standard for computers has the catchy name IEEE
802.11, though you will more often see the term Wi-Fi, which is a
trademark of the Wi-Fi Alliance, an industry group. IEEE is the Institute
of Electrical and Electronics Engineers, a professional society that
among other activities establishes standards for a wide variety of
electronic systems, including wireless. 802.11 is the number of the
standard, which has more than a dozen parts for different speeds and
underlying technologies. Nominal speeds range up to nearly a gigabit
per second, but these rates overstate the speed that one might achieve
in real-world conditions.

A wireless device encodes digital data into a form suitable for
carrying on radio waves. A typical 802.11 system is packaged so that it
behaves like an Ethernet. The range is likely to be similar, but there are
no wires to contend with.

Wireless Ethernet devices operate at frequencies around 2.432.5
GHz, 5 GHz, and higher frequencies as well. When wireless devices all
use the same narrow frequency band, contention is a distinct possibility.
Worse, other devices use this same overcrowded band, including some
cordless telephones, medical equipment, and even microwave ovens.

I’m going to briefly describe three wireless systems that are in
widespread use. The first is Bluetooth, which is named after the Danish
king Harald Bluetooth (c. 9353985). Bluetooth is intended for short-
range ad hoc communications. It uses the same 2.4 GHz frequency
band as 802.11 wireless. The range is from 1 to 100 meters, depending
on power level, and the data rate is 1 to 3 Mbps. Bluetooth is used in
TV remote controls, wireless microphones, ear buds, keyboards, mice,
and game controllers, where low power consumption is critical; it’s also
used in cars for hands-free use of phones.

RFID or radio-frequency identification is a low-power wireless
technology used in electronic door locks, identification tags for a variety
of goods, automatic toll systems, implanted chips in pets, and even in
documents like passports. The tag is basically a small radio receiver
and transmitter that broadcasts its identification as a stream of bits.
Passive tags do not have batteries, but obtain power from an antenna
that receives a signal broadcast by an RFID sensor; when the chip is
near enough to a sensor, typically only a few inches, it responds with its
identifying information. RFID systems use a variety of frequencies,
though 13.56 MHz is typical. RFID chips make it possible to quietly
monitor where things and people are. Chip implants in pets are popular



4our cat has one so she can be identified if she gets lost4and as
might be expected, there have been suggestions for implanting people
as well, for both good and bad reasons.

The Global Positioning System (GPS) is an important one-way
wireless system, commonly seen in car and phone navigation systems.
GPS satellites broadcast precise time and location information, and a
GPS receiver uses the time it takes for signals to arrive from three or
four satellites to compute its position on the ground. But there is no
return path. It’s a common misconception that GPS somehow tracks its
users. As a story in the New York Times had it a few years ago, <Some
[cell phones] rely on a global positioning system, or GPS, which sends
the signal to satellites that can pinpoint almost exactly where a user is.=
This is wrong. GPS-based tracking needs ground-based systems like
cell phones to relay the location. A cell phone is in constant
communication with base stations, as we will discuss next, so the
phone company knows your precise location whenever your phone is
on. When you enable location services, that information is also made
available to apps.

8.5 Cell Phones

The most common wireless communication system for most people
is the cell or mobile phone, now usually just <cell= or <mobile,= a
technology that barely existed in the 1980s, but which is now used by
well over half of the world’s population. Cell phones are a case study for
the kinds of topics that are covered in this book4interesting hardware,
software and of course communications, with plenty of social,
economic, political and legal issues to go along with them.

The first commercial cell phone system was developed by AT&T in
the early 1980s. The phones were heavy and bulky; advertisements of
the time show users carrying a small suitcase for the batteries while
standing next to a car that carries the antenna.

Why <cell=? Because spectrum and radio range are both limited, a
geographical area is divided into <cells,= rather like imaginary hexagons
(Figure 8.2), with a base station in each cell; the base station is
connected to the rest of the telephone system. Phones talk to the
closest base station, and when they move from one cell to another, a



call in progress is handed off from the old base station to the new one;
most of the time the user doesn’t know this has happened.

Since received power falls off in proportion to the square of the
distance, frequency bands within the allotted spectrum can be re-used
in non-adjacent cells without significant interference; this was the insight
that made it possible to use the limited spectrum effectively. In the
diagram of Figure 8.2, the base station at 1 will not share frequencies
with base stations 2 through 7, but can share with 8 through 19
because they are far enough away to avoid interference. The details
depend on factors like antenna patterns; the diagram is an idealization.

Figure 8.2: Cell phone cells.

Cell sizes vary, from a few hundred meters to a few tens of
kilometers in diameter, depending on traffic, terrain, obstacles, and the
like.

Cell phones are part of the regular telephone network, but are
connected to it by radio via the base stations instead of wires. The
essence of cell phones is mobility. Phones move long distances, often



at high speed, and can appear in a new location with no warning at all,
as they do when turned on again after a long flight.

Cell phones share a narrow radio frequency spectrum that has
limited capacity for carrying information. Phones must operate with low
radio power because they use batteries, and by law their transmission
power is limited to avoid interference with others. The bigger the
battery, the longer the time between charges, but also the bigger and
heavier the phone; this is another of the tradeoffs that designers must
make.

Cell phone systems use different frequency bands in different parts
of the world, but are generally around 900 and 1900 MHz; newer phone
standards like 5G also use much higher frequencies. Each frequency
band is divided into multiple channels, and a conversation uses one
channel for each direction. Signaling channels are shared by all phones
in the cell; they are also used for text messages and data in some
systems.

Each phone has a unique 15-digit identification number called its
International Mobile Equipment Identity, or IMEI, analogous to an
Ethernet address. When the phone is turned on, it broadcasts its
identification number. The nearest base station hears the phone and
validates it with the home system. As the phone moves around, its
location is kept up to date by base stations reporting to the home
system; when someone calls the phone, the home system knows which
base station is currently in contact with the phone.

Phones talk to the base station with the strongest signal. The phone
continuously adjusts its power level, to use less power when it’s closer
to the base station; this preserves its own battery and creates less
interference for other phones. Merely keeping in touch with a base
station uses much less power than a phone call does, which is why
standby times are measured in days while talk times are in hours. If the
phone is in an area of weak or non-existent signal, however, it will use
up its battery faster as it looks in vain for a base station.

All phones use data compression to squeeze the signal into as few
bits as possible, then add error correction to cope with the inevitable
errors of sending data over a noisy radio channel in the face of
interference. We’ll come back to these shortly.

Mobile phones raise political and social issues. Spectrum allocation
is clearly one; in the US, the government restricts the use of the allotted
frequencies to at most two companies in each band. Thus spectrum is a



valuable resource. One of the driving forces behind the merger of Sprint
and T-Mobile in 2020 was to make better use of their somewhat
separate spectrum holdings.

Cell tower locations are another source of potential conflicts. Cell
phone towers are not the most esthetic of outdoor structures; for
instance, Figure 8.3 shows a <Frankenpine,= a cell tower imperfectly
disguised as a tree. Many communities don’t want such towers within
their borders, though of course they want high quality phone service.

Cell phone traffic is vulnerable to a targeted attack by a device
known generically as a stingray, after a commercial product called
<StingRay.= A stingray mimics a cell tower so that nearby cell phones
communicate with the device rather than a real tower. This can be used
for passive surveillance or active engagement with the cell phone (a
man-in-the-middle attack). Phones are designed to communicate with
the base station that provides the strongest signal; a stingray thus
works in a small area where it can present a stronger signal than any
nearby cell tower.

Local law enforcement agencies in the US appear to be using
stingray devices in growing numbers, but have been trying to keep their
use secret or at least low profile. It’s not at all clear that their use to
collect information about potential criminal activity is legal.



Figure 8.3: Cell phone tower disguised as a tree.

On the social level, cell phones have revolutionized many aspects of
life. We use smartphones less for conversation than for all their other
features. Phones have become the primary form of Internet access,



since they provide browsing, mail, shopping, entertainment and social
networking, albeit on a small screen. Indeed, there is some
convergence between laptops and cell phones as the latter become
more powerful while remaining highly portable. Phones have also taken
over the functions of other devices, from watches and address books to
cameras, GPS navigators, fitness trackers, voice recorders, and music
and movie players.

Downloading movies to a phone requires a lot of bandwidth. As cell
phone use expands, the strain on existing facilities is only going to
increase. In the US, carriers apply usage-sensitive pricing and
bandwidth caps to their data plans, ostensibly to restrain bandwidth
hogs who download full-length movies, though the caps apply even
when traffic is light.

It’s also possible to use a mobile phone as a hotspot that lets you
connect your computer to the Internet through the phone’s cellular
connection. This is sometimes called <tethering.= Carriers may apply
limits and extra charges, since a hotspot can also use a lot of
bandwidth.

8.6 Bandwidth

Data on a network flows no faster than the slowest link permits.
Traffic can slow down at many places, so bottlenecks are common on
the links themselves and in the processing at computers along the way.
The speed of light is also a limiting factor. Signals propagate at 300
million meters per second in vacuum (about one foot per nanosecond,
as Grace Hopper so often observed) and more slowly in electronic
circuits, so it takes time to get a signal from one place to another even if
there are no other delays. At the speed of light in a vacuum, the time to
travel from the east coast of the US to the west coast (2,500 miles or
4,000 km) is about 13 milliseconds. For comparison, a typical Internet
delay for the same trip is about 40 msec, Paris is about 50 msec,
Sydney is 110 msec and Beijing is 140 msec. The times are not
necessarily in order of physical distance.

We encounter a wide range of bandwidths in day-to-day life. My first
modem ran at 110 bits per second or bps, which was fast enough to
keep up with a mechanical typewriter-like device. Home wireless
systems running 802.11 can in theory operate up to 600 Mbps, though



in practice the rates will be much lower. Wired Ethernets are commonly
1 Gbps. A cable connection between your home and your Internet
service provider might be a few hundred megabits per second if it uses
optical fiber. Your ISP is likely connected to the rest of the Internet
through fiber optic links that could in principle provide 100 Gbps or
more.

Phone technology is exceptionally complicated, and changes
continuously in the quest for higher bandwidth. Cell phones operate in
such complex environments that it’s hard to assess their effective
bandwidth. Most phones today use a standard called 4G, or fourth
generation, and the industry is moving to the next generation, not
surprisingly called 5G. 3G phones still exist but appear to be an
endangered species in the US; a recent message from my carrier warns
that within a year one of my phones will no longer work.

4G phones are supposed to provide about 100 Mbps for moving
environments like cars and trains, and 1 Gbps for stationary or slowly
moving phones. These speeds seem to be more aspirational than real,
and there is plenty of room for optimistic advertising. That said, my 4G
phone is fast enough for my low-intensity uses, like mail, occasional
browsing and interactive maps.

You will sometimes see the term 4G LTE. LTE stands for Long-Term
Evolution, which is not a standard but a sort of road map for the path
from 3G to 4G. Phones that are somewhere on that path may display
<4G LTE= to show that they are at least heading towards 4G.

The first deployments of 5G began in 2019. Phones that use the 5G
standard will have higher bandwidth, at least when connected to the
right equipment at the right distance; the nominal speed range is from
50 Mbps to as much as 10 Gbps. The phones use up to three frequency
ranges, the lower two of which are used by existing 4G phones as well,
so 5G is similar to 4G in these bands. 5G uses much higher frequencies
for short-range connections (roughly 100 meters), and these allow for
higher speeds. 5G also allows many more devices in a given area,
which will help as Internet of Things devices begin to use 5G.

8.7 Compression

One way to make better use of available memory and bandwidth is to
compress data. The basic idea of compression is to avoid storing or



sending redundant information, that is, information that can be
recreated or inferred when retrieved or received at the other end of a
communications link. The goal is to encode the same information in
fewer bits. Some bits carry no information and can be removed entirely;
some bits can be computed from others; some don’t matter to the
recipient and can be safely discarded.

Consider English text like this book. In English, letters do not occur
with equal frequency; <e= is most common, followed by <t,= <a,= <o,= <i=
and <n= in approximately that order; at the other end, <z,= <x= and <q= are
much less common. In the ASCII representation of text, each letter
occupies one byte or 8 bits. One way to save a bit (so to speak) is to
use only 7 bits; the 8th bit (that is, the leftmost) is always zero in US
ASCII and thus carries no information.

We can do even better by using fewer bits to represent the most
common letters and if necessary more bits to represent infrequent
letters, reducing the total bit count significantly. This is analogous to the
approach taken by Morse code, which encodes the frequent letter <e= as
a single dot, <t= as a single dash, but the infrequent <q= as dash-dash-
dot-dash.

Let’s make this more concrete. Pride and Prejudice has somewhat
over 121,000 words, or 680,000 bytes. The most common character is
the space between words: there are nearly 110,000 spaces. The next
most common characters are e (68,600), t (456,900), and a (31,200); at
the other end, Z occurs only three times, and X not at all. The least
common lower case letters are j 551 times, q 627 times, and x at 839.
Clearly if we used two bits each for space, e, t, and a, we’d save a great
deal and it wouldn’t matter if we had to use more than 8 bits for X, Z, and
other infrequent letters. An algorithm called Huffman coding does this
systematically, finding the best possible compression that encodes
individual letters; it compresses Pride and Prejudice by 44 percent, to
390,000 bytes, so the average letter requires about four and a half bits.

It’s possible to do even better by compressing larger chunks than
single letters, for example entire words or phrases, and by adapting to
the properties of the source document. Several algorithms do this well.
The widely used ZIP compression algorithm squeezes the book by 64
percent, down to 249,000 bytes. The Unix program called bzip2 gets it
down to 175,000 bytes, barely one quarter of its original size.

Images can also be compressed. Tw o common forms are GIF
(Graphics Interchange Format) and PNG (Portable Network Graphics),



which are intended for images that are primarily text, line art and blocks
of solid colors. GIF supports only 256 distinct colors, but PNG supports
at least 16 million. Neither is intended for photographic images.

All of these techniques do lossless compression4the compression
loses no information, so uncompressing restores the original source
exactly. Although it might seem counterintuitive, there are situations
where it’s not necessary to reproduce the original input exactly4an
approximate version is good enough4and in those situations, a lossy
compression technique can give even better results.

Lossy compression is most often used for content that is going to be
seen or heard by people. Consider compressing an image from a digital
camera. The human eye can’t distinguish colors that are close to each
other, so it’s not necessary to preserve the exact colors of the input;
fewer colors will do and those can be encoded in fewer bits. Similarly
it’s possible to discard some fine detail; the resulting image will not be
as sharp as the original but the eye won’t notice. The same is true for
fine gradations of brightness. The JPEG compression algorithm that
produces the ubiquitous .jpg images uses this to compress a typical
image by a factor of 10 or more without significant degradation as seen
by our eyes. Most programs that produce JPEG allow some control
over the amount of compression; <higher quality= means that there is
less compression.

Figure 8.4: RGB pixels.



Figure 2.2, reproduced in Figure 8.4, is the kind of image that PNG
compression is meant for. At its original size of about 2 inches (5 cm)
wide, it occupies about 10 KB. A JPEG version is 25 KB, and when
viewed close up, shows obvious visual artifacts that are not in the
original. On the other hand, photographs will compress better with
JPEG.

The MPEG family of algorithms for compressing movies and TV is
also a perceptual technique. Individual frames can be compressed as in
JPEG but in addition, it’s possible to compress a sequence of blocks
that do not change much from one frame to the next. It’s also possible
to predict the result of motion and encode only the change, and even to
separate a moving foreground from a static background, using fewer
bits for the latter.

MP3 and its successor AAC are the audio part of MPEG; they are
perceptual coding algorithms for compressing sound. Among other
things, they take advantage of the fact that louder sounds mask softer
sounds, and that the human ear can’t hear frequencies higher than
about 20 KHz, a number that falls off as one gets older. The encoding
generally compresses standard CD audio by a factor of about 10.

Cell phones use a great deal of compression. Voice can be
squeezed significantly more than arbitrary sound can be, because it has
a narrow range of frequencies and it’s produced by a vocal tract that
can be modeled for individual speakers; using the characteristics of an
individual person makes better compression possible.

The idea in all forms of compression is to reduce or eliminate bits
that do not convey their full potential information content, by encoding
more frequently occurring elements in fewer bits, by building
dictionaries of frequent sequences, and by encoding repetitions with
counts. Lossless compression allows the original to be reconstructed
perfectly; lossy compression discards some information that is not
needed by the recipient, and offers a tradeoff between quality and
compression factor.

It’s possible to make other tradeoffs as well, for example between
compression speed and complexity versus decompression speed and
complexity. When a digital television picture breaks up into blocks or the
sound starts to become garbled, that’s a result of the decompression
algorithm failing to recover from some input error, probably because the
data didn’t arrive fast enough. Finally, no matter what the algorithm,
some inputs will not shrink, as you can see by imagining repeatedly



applying the algorithm to its own output; in fact, some inputs will
become larger.

It’s hard to imagine, but compression can even be the stuff of
entertainment. The HBO television series Silicon Valley, which
premiered in 2014 and ran for 53 episodes over 6 seasons, is based on
the invention of a novel compression algorithm and the struggles of its
inventor to protect his startup company against larger companies that
want to steal his ideas.

8.8 Error Detection and Correction

If compression is the process of removing redundant information,
error detection and correction is the process of adding carefully
controlled redundancy that makes it possible to detect and even correct
errors.

Some common numbers have no redundancy and thus it’s not
possible to detect when an error might have occurred. For example, US
Social Security numbers have 9 digits and almost any 9 digit sequence
could be a legitimate number. (This is helpful when someone asks for
yours when they don’t need it; just make one up.) But if some extra
digits were added or if some possible values were excluded, it would be
possible to detect errors.

Credit card and cash machine numbers are 16 digits long but not
every 16-digit number is a valid card number. They use a checksum
algorithm, invented by Hans Peter Luhn at IBM in 1954, that detects
single-digit errors and most transposition errors in which two digits are
interchanged; those are the most common kinds of errors that occur in
practice.

The algorithm is easy: starting at the rightmost digit, multiply each
successive digit alternately by 1 or by 2. If the result is greater than 9,
subtract 9. Add the resulting digits; the sum must be divisible by 10.
Test it on your own cards and on 4417 1234 5678 9112, a number that
some banks use in advertisements. The result on the latter is 9, so this
is not a valid number, but changing the final digit to 3 makes it valid.

The 10- or 13-digit ISBNs on books also have a checksum that
defends against the same kinds of errors, using a similar algorithm.

Those algorithms are special-purpose and aimed at decimal
numbers. A parity code is the simplest example of general purpose



error detection that is applied to bits. A single additional parity bit is
attached to each group of bits; the parity bit’s value is chosen so that
the total number of (say) 1-bits in the group is even. That way if a single
bit error occurs, the receiver will see an odd number of 1-bits and know
that something has been damaged. Of course this doesn’t identify
which bit was in error, nor does it detect the occurrence of two errors.

For example, Figure 8.5 shows the first half-dozen upper case letters
in ASCII, written in binary. The even-parity column replaces the unused
leftmost bit by a parity bit that makes the parity even (each byte has an
even number of 1-bits), while in the odd-parity column each byte has an
odd number of 1-bits. If any bit in any of these is flipped, the resulting
byte does not have the correct parity and thus the error can be
detected. If a few more bits were used, a code could correct single bit
errors.

Figure 8.5: ASCII characters with even and odd parity bits.

Error detection and correction are used extensively in computing and
communications. Error correction codes can be used on arbitrary binary
data, though different algorithms are chosen for different kinds of likely
errors. For example, some primary memories use parity bits to detect
single-bit errors at random places; CDs and DVDs use codes that can
correct long runs of damaged bits; cell phones can cope with short
bursts of noise. QR codes like the one in Figure 8.6 are two-
dimensional barcodes with a lot of error correction. As with
compression, error detection can’t solve all problems, and some errors
will always be too severe to be detected or corrected.



Figure 8.6: QR code for http://www.kernighan.com.

8.9 Summary

Spectrum is a critical resource for wireless systems, and there is
never enough for the demand. Many parties compete for spectrum
space, with established interests like broadcasting and telephone
companies resisting change. One way to cope is to use existing
spectrum more efficiently. Cell phones originally used analog encoding
but those systems were phased out long ago in favor of digital systems
that use much less bandwidth. Sometimes existing spectrum is
repurposed; the switch to digital TV in the US in 2009 freed up a large
block of spectrum space for other services to fight over. Finally, it’s
possible to use higher frequencies, but that usually means shorter
range; effective range decreases with the square of the frequency,
another example of a quadratic effect.

Wireless is a broadcast medium, so anyone can listen in; encryption
is the only way to control access and protect information in transit. The
original standard for wireless encryption on 802.11 networks (WEP, or

http://www.kernighan.com/


Wired Equivalent Privacy) proved to have significant weaknesses;
current encryption standards like WPA (Wi-Fi Protected Access) are
better. Some people still run open networks, that is, with no encryption
at all, in which case anyone nearby can not only listen in but can use
the wireless service for free. Anecdotally, the number of open networks
is much lower today than a few years ago, as people have become
more sensitive to the perils of eavesdropping and free riding.

Free Wi-Fi services in coffee shops, hotels, airports, and so on are
an exception; for example, coffee shops want their customers to linger
(and buy expensive coffee) while using their laptops. Information
passing over those networks is open to all unless you use encryption,
and not all servers will encrypt on demand. Furthermore, not all open
wireless access points are legitimate; sometimes they are set up with
the explicit intent of trapping naive users. You should not do anything
sensitive over a public network and be especially careful about using
access points that you don’t know anything about.

Wired connections will always be a major network component behind
the scenes, especially for high bandwidth and long distances.
Nevertheless, in spite of limits on spectrum and bandwidth, wireless will
be the visible face of networking in the future.





9
The Internet

LO
The first ARPANET message, sent on October 29, 1969, from
UCLA to Stanford. It was supposed to say LOGIN but the
system crashed.

We’ve talked about local network technologies like Ethernet and
wireless. The phone system connects telephones worldwide. How do
we do the same for computers? How do we scale up to connect one
local network to another, perhaps to link all the Ethernets in a building,
or to connect computers in my home to computers in your building in
the next town, or to connect a corporate network in Canada to one in
Europe? How do we make it work when the underlying networks use
unrelated technologies? How do we do it in a way that expands
gracefully as more networks and more users are connected, as
distances grow, and as equipment and technology change overtime?

The Internet is one answer to those questions, and it has been so
successful that for most purposes, it has become the answer.

The Internet is neither a giant network nor a giant computer. It’s a
loose, unstructured, chaotic, ad hoc collection of networks, bound
together by standards that define how networks and the computers on
them communicate with each other.

How do we connect networks that have different physical properties
—optical fiber, Ethernet, wireless—and that may be far away from each
other? We need names and addresses so we can identify networks and
computers, the equivalent of telephone numbers and a phone book. We
need to be able to find routes between networks that are not directly
connected. We need to agree on how information is formatted as it
moves around, and on a great number of other less obvious matters like
coping with errors, delays and overload. Without such agreements,
communication would be difficult or even impossible.

Agreements on data formats, who speaks first and what responses
can follow, how errors are handled, and the like, are dealt with in all



networks, and in the Internet especially, with protocols. <Protocol= has
somewhat the same meaning as it does in ordinary speech—a set of
rules for interacting with another party—but network protocols are
based on technical considerations, not social custom, and are much
more precise than even the most rigid social structure.

It might not be entirely obvious, but the Internet strongly requires
such rules: everyone has to agree on protocols and standards for how
information is formatted, how it is exchanged between computers, how
computers are identified and authorized, and what to do when
something fails. Agreeing on protocols and standards can be
complicated, since there are many vested interests, including
companies that make equipment or sell services, entities that hold
patents or secrets, and governments that might want to monitor and
control what passes across their borders and between their citizens.

Some resources are in scarce supply; spectrum for wireless services
is one obvious example. Names for web sites can’t be handled by
anarchy. Who allocates such resources and on what basis? Who pays
what to whom for the use of limited resources? Who adjudicates the
inevitable disputes? What legal system(s) will be used to resolve
disputes? Indeed, who gets to make the rules? It might be
governments, companies, industry consortia, and nominally
disinterested or neutral bodies like the UN’s International
Telecommunication Union, but in the end everyone has to agree to
abide by the rules.

It’s clear that such issues can be resolved—after all, the telephone
system works worldwide, connecting disparate equipment in different
countries. The Internet is more of the same, though it’s newer, larger,
much more disorderly, and changing more rapidly. It’s a free-for-all
compared to the controlled environments of traditional phone
companies, most of which were either government monopolies or tightly
regulated companies. But under government and commercial
pressures, the Internet is less free-wheeling and more constrained than
in its early days.

9.1 An Internet Overview

Before we dive into details, here’s the big picture. The Internet began
in the 1960s with attempts to build a network that could connect



computers at widely separated geographical locations. The funding for
much of this work came from the Advanced Research Projects Agency
of the US Department of Defense, and the resulting network came to be
called ARPANET. The first ARPANET message was sent from a
computer at UCLA to one at Stanford, a distance of about 350 miles or
550 km, on October 29, 1969, which thus could be called the birthday of
the Internet. (The bug that caused the initial failure was quickly fixed
and the next attempt worked.)

From the beginning, the ARPANET was designed to be robust in the
face of failure of any of its components and to route traffic around
problems. The original ARPANET computers and technology were
replaced over time. The network itself originally linked university
computer science departments and research institutions, then spread
into the commercial world in the 1990s, becoming <the Internet=
somewhere along the way.

Today, the Internet consists of many millions of loosely connected
independent networks. Nearby computers are connected by local area
networks, often wireless Ethernets. Networks in turn are connected to
other networks via gateways or routers—specialized computers that
route packets of information from one network to the next. (Wikipedia
says that a gateway is a more general device and a router is a special
case, but the usage is not universal.) Gateways exchange routing
information so they know, at least in a local way, what is connected and
thus reachable.

Each network may connect many host systems, like computers and
phones in homes, offices and dorm rooms. Individual computers within
a home are likely to use wireless to connect to a router that in turn is
connected to an Internet Service Provider or ISP by cable or DSL; office
computers might use wired Ethernet connections.

As I mentioned in the previous chapter, information travels through
networks in chunks called packets. A packet is a sequence of bytes with
a specified format; different devices use different packet formats. Part of
the packet will contain address information that tells where the packet
comes from and where it is going. Other parts of the packet will contain
information about the packet itself, like its length, and finally the
information being carried, the payload.

On the Internet, data is carried in IP packets (for <Internet Protocol=).
IP packets all have the same format. On any particular network, an IP
packet may be transported in one or more physical packets. For



instance, a large IP packet will be split into multiple smaller Ethernet
packets because the largest possible Ethernet packet (about 1,500
bytes) is much smaller than the largest IP packet (somewhat more than
65,000 bytes).

Each IP packet passes through multiple gateways; each gateway
sends the packet on to a gateway that is closer to the ultimate
destination. As a packet travels from here to there, it might pass
through 20 gateways, owned and operated by a dozen different
companies or institutions, and possibly in different countries. Traffic
need not follow the shortest path; convenience and cost could route
packets through longer routes. Many packets with origins and
destinations outside the United States use cables that pass through the
US, a fact that the NSA exploits to record worldwide traffic.

To make this work, we need several mechanisms.
Addresses: Each host computer must have an address that will

identify it uniquely among all hosts on the Internet, rather like a
telephone number. This identifying number, the IP address, is either 32
bits (4 bytes) or 128 bits (16 bytes). The shorter addresses are for
version 4 of the Internet protocol (<IPv4=), while the longer ones are for
version 6 (<IPv6=). IPv4 has been used for many years and is still
dominant, but all available IPv4 addresses have now been allocated, so
the shift to IPv6 is accelerating.

IP addresses are analogous to Ethernet addresses. An IPv4 address
is conventionally written as the values of its 4 bytes, each as a decimal
number, separated by periods, as in 140.180.223.42 (which is
www.princeton.edu). This odd notation is called dotted decimal; it’s used
because it’s easier for humans to remember than pure decimal or
hexadecimal would be. Figure 9.1 shows that IP address in dotted
decimal, binary, and hex.

IPv6 addresses are conventionally written as 16 hexadecimal bytes
with colons separating each pair, like
2620:0:1003:100c:9227:e4ff:fee9:05ec. These are even less intuitive
than dotted decimal, so I’ll use IPv4 for illustrations. You can determine
your own IP address through System Preferences on macOS or an
analogous application on Windows, or through Settings on your phone if
you’re using Wi-Fi.

http://www.princeton.edu/


Figure 9.1: Dotted decimal notation for IPv4 addresses.

A central authority assigns a block of consecutive IP addresses to
the administrator of a network, which in turn assigns individual
addresses to host computers on that network. Each host computer thus
has a unique address that is assigned locally according to the network it
is on. This address might be permanent for a desktop computer, but for
mobile devices it’s dynamic and changes at least every time the device
reconnects to the Internet.

Names: A host that people will try to access directly must have a
name for human use, since few of us are good at remembering arbitrary
32-bit numbers, even in dotted decimal. Names are the ubiquitous
forms like www.nyu.edu or ibm.com, which are called domain names. A
critical piece of Internet infrastructure, the Domain Name System or
DNS, converts between names and IP addresses.

Routing: There must be a mechanism for finding a path from source
to destination for each packet. This is provided by the gateways
mentioned above, which continuously exchange routing information
among themselves about what is connected to what, and use that to
forward each incoming packet onward to a gateway that is closer to its
ultimate destination.

Protocols: Finally, there must be rules and procedures that spell out
exactly how all of these and other components interoperate, so that
information gets copied successfully from one computer to another.

The core protocol, which is called IP (Internet Protocol), defines a
uniform transport mechanism and a common format for information in
transit. IP packets are carried by different kinds of network hardware
using their own protocols.

Above IP, a protocol called TCP (Transmission Control Protocol)
uses IP to provide a reliable mechanism for sending arbitrarily long
sequences of bytes from a source to a destination.

Above TCP, higher-level protocols use TCP to provide the services
that we think of as <the Internet,= like browsing, mail, file sharing, and so

http://www.nyu.edu/
http://ibm.com/


on. There are many other protocols as well. For example, changing IP
addresses dynamically is handled by a protocol called DHCP (Dynamic
Host Configuration Protocol). All these protocols, taken together, define
the Internet.

We will talk more about each of these topics in turn.

9.2 Domain Names and Addresses

Who makes the rules? Who controls the allocation of names and
numbers? Who’s in charge? For many years, the Internet was managed
by informal cooperation among a small group of technical experts.
Much of the Internet’s core technology was developed by a loose
coalition operating as the Internet Engineering Task Force (IETF) to
produce designs and documents that describe how things should work.
Technical specifications were (and still are) hammered out through
regular meetings and frequent publications called Requests for
Comments, or RFCs, that eventually become standards. RFCs are
available on the web (there are 9,000 of them). Not all RFCs are deadly
serious; check out RFC-1149, <A Standard for the Transmission of IP
Datagrams on Avian Carriers,= published on April 1, 1990.

Other aspects of the Internet are managed by an organization called
ICANN, the Internet Corporation for Assigned Names and Numbers
(icann.org), which provides technical coordination of the Internet. That
includes assignment of names and numbers that have to be unique for
the Internet to function, like domain names, IP addresses, and some
protocol information. ICANN also accredits domain name registrars,
who in turn assign domain names to individuals and organizations.
ICANN began as an agency of the US Department of Commerce but is
now an independent non-profit organization based in California and
financed largely by fees from registrars and domain name registrations.

Not surprisingly, complicated political issues surround ICANN. Some
countries are unhappy with its origin and current location in the US,
calling it a tool of the US government, and there are bureaucrats who
would like to see it become part of the United Nations or another
international body, where it could be more easily controlled.

In early 2020, a mysterious private equity group called Ethos Capital
made a bid to take over the .org registry, and ICANN agreed to the
sale. It became clear that the goal was to gain control, then raise prices

http://icann.org/


while selling customer data. Fortunately there was a public outcry
sufficiently loud that even the Attorney General of California threatened
action, ICANN backed off, and the deal was canceled.

9.2.1 Domain Name System

The Domain Name System or DNS provides the familiar hierarchical
naming scheme that brings us berkeley.edu or cnn.com. The names
.com, .edu and so on, and two-letter country codes like .us and .ca, are
called top-level domains. Top-level domains delegate responsibility for
administration and further names to lower levels. For example,
Princeton University is responsible for administering princeton.edu and
can define sub-domain names within that range, such as
classics.princeton.edu for the Classics department and
cs.princeton.edu for the Computer Science department. Those in turn
can define domain names like www.cs.princeton.edu and so on.

Domain names impose a logical structure but need not have any
geographical significance. For instance, IBM operates in many
countries but its computers are all included in ibm.com. It’s possible for a
single computer to serve multiple domains, which is common for
companies that provide hosting services; conversely, a single domain
may be served by many computers, as with large sites like Facebook
and Amazon.

The lack of geographical constraints has some interesting
implications. For example, the country of Tuvalu (population 11,000), a
group of small islands in the South Pacific halfway between Hawaii and
Australia, has the country code .tv. Tuvalu leases the rights to that
country code to commercial interests, who will happily sell you a .tv
domain. If the name you want has some potential commercial
significance, say news.tv, you’ll likely have to pay handsomely for it. On
the other hand, kernighan.tv is under thirty dollars a year. Other
countries blessed by linguistic accidents include the Republic of
Moldova, whose .md might appeal to doctors, and Italy, which shows up
in sites like play.it. Normally domain names are restricted to the 26
letters of English, digits and hyphens, but in 2009, ICANN approved
some internationalized top-level domain names like

http://berkeley.edu/
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as an alternative to .cn for China, and

in addition to .eg for Egypt.
Around 2013, ICANN began to authorize new top-level domains like

.online and .club. It’s not clear how successful these will be in the long
run, though some, like .info and .io, seem to be popular. Commercial
and governmental domains like .toyota and .paris are also available
for a price, and have raised questions about ICANN’s motives—are
such domains necessary or are they merely a way to generate more
revenue?

9.2.2 IP addresses

Each network and each connected host computer must have an IP
address so that it can communicate with others. An IPv4 address is a
unique 32-bit quantity: only one host at a time can use that value over
the whole Internet. The addresses are assigned in blocks by ICANN,
and the blocks are sub-allocated by the institutions that receive them.
For example, Princeton has two blocks, 128.112.ddd.ddd and
140.180.ddd.ddd, where each ddd is a decimal number between 0 and
255. Each of these blocks allows up to 65,536 (216)hosts, or about
131,000 in all.

These blocks of addresses have no numerical or geographical
significance whatsoever. Just as the numerically adjacent US telephone
area codes 212 and 213 are New York City and Los Angeles, a
continent apart, there’s no reason to expect that adjacent blocks of IP
addresses represent physically nearby computers, and there’s no way
to infer a geographical location from an IP address by itself, though it’s
often possible to deduce where an IP address is from other information.
For example, DNS supports reverse lookups (IP address to name), and
reports that 140.180.223.42 is www.princeton.edu, so it’s reasonable to
guess that’s in Princeton, New Jersey, though the server could be
somewhere else entirely.

It is sometimes possible to learn more about who is behind a domain
name using a service called whois, available on the web at
whois.icann.org or as the Unix command-line program whois.

http://www.princeton.edu/
http://whois.icann.org/


There are only 232 possible IPv4 addresses, which is about 4.3
billion. That’s less than one per person on earth, so at the rate that
people are using more and more communications services, something
will run out. In fact, the situation is worse than it sounds, since IP
addresses are handed out in blocks and thus are not used as efficiently
as they might be (are there 131,000 computers concurrently active at
Princeton?). In any case, with a few exceptions, all IPv4 addresses
have been allocated in most parts of the world.

Techniques for piggy-backing multiple hosts onto a single IP address
provide some breathing room. Home wireless routers generally use
network address translation or NAT, where a single external IP address
can serve multiple internal IP addresses. If you have a NAT, all of your
home devices appear externally to have the same IP address; hardware
and software in the device handle the conversion in both directions. For
example, in my house there are at least a dozen computers and other
gadgets that need an IP address. They are all served by a NAT with a
single external address.

Once the world shifts to IPv6, which uses 128-bit addresses, the
pressure will be off—there are 2128 or about 3 × 1038 of those, so we
won’t run out in a hurry.

9.2.3 Root servers

The crucial DNS service is to convert names into IP addresses. The
top-level domains are handled by a set of root name servers that know
the IP addresses for all top-level domains, for example mit.edu. To
determine the IP address for www.cs.mit.edu, one asks a root server for
mit.edu’s IP address. That’s sufficient to get to MIT, where one asks the
MIT name server for cs.mit.edu, and that in turn leads to a name server
that knows about www.cs.mit.edu.

DNS thus uses an efficient algorithm for searching: an initial query at
the top immediately eliminates most potential addresses from further
consideration. The same is true at each level as the search works its
way down the tree. It’s the same idea as we saw earlier in hierarchical
file systems.

In practice, name servers maintain caches of names and addresses
that have been looked up and passed through them recently, so a new
request can often be answered with local information rather than going
far away. If I access kernighan.com, the odds are strong that no one else
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has looked at that recently, and the local name servers may have to ask
a root server for the IP address. If I use that name again soon, however,
the IP address is cached nearby and the query runs faster. When I tried
this, the first query took a quarter of a second; a few seconds later the
same query took less than one tenth of that, as did another query
several minutes later.

You can do your own DNS experiments with commands like
nslookup. Try the Unix command

nslookup a.root-servers.net

In principle one could imagine having a single root server, but it
would be a single point of failure, truly a bad idea for such a critical
system. So there are thirteen root servers, spread over the whole world,
with about half in the US. Most of these servers consist of multiple
computers at widely separated locations that function like a single
computer but use a protocol that routes requests to a nearby member of
the group. Root servers run different software systems on different
kinds of hardware, so they are less vulnerable to bugs and viruses than
a monoculture would be. Nevertheless, from time to time root servers
are subjected to coordinated attacks and it’s conceivable that some
combination of circumstances could bring them all down at once.

9.2.4 Registering your own domain

It’s easy to register your own domain if the name you want isn’t
already taken. ICANN has accredited hundreds of registrars around the
world, so you can pick one, choose your domain name, pay for it, and
it’s yours (though you have to renew every year). There are some
restrictions but there seem to be no rules against obscenities (easily
verified by trying a few) or personal attacks, to the point where
corporations and public figures are forced to preemptively acquire
domains like bigcorp-sucks.com in self-defense. Names are limited to
63 characters and normally only contain letters, digits and hyphens,
though it is possible to use Unicode characters; if there are non-ASCII
characters, a standard encoding called Punycode converts back into
the letter-digit-hyphen subset.

You need a host for your site, that is, a computer to hold and serve
the content that your site will display to visitors. You also need a name

http://bigcorp-sucks.com/


server to respond with the IP address of your host when someone tries
to find your domain’s IP address. That’s a separate component, though
registrars usually provide the service or easy access to someone who
does.

Competition keeps prices down; a .com registration costs ten or
twenty dollars initially and a similar amount per year to maintain. A
hosting service costs five or ten dollars a month for low-volume casual
use; merely <parking= a domain with a generic page might well be free.
Some hosting services are free, or have a nominal price if you’re not
doing much with it, or for a short time while you’re testing the waters.

Who owns a domain name? How are disputes resolved? What can I
do if someone else has registered kernighan.com? That last one is easy:
not much except offer to buy it. For a name with commercial value, like
mcdonalds.com or apple.com, courts and ICANN’s dispute resolution
policies have tended to favor the party with the clout. If your name is
McDonald or Apple, you won’t have much chance of wresting a domain
away from one of them, and you might have trouble hanging on to it
even if you got there first. (In 2003, a Canadian high school student
named Mike Rowe set up a web site at mikerowesoft.com for his tiny
software business. This brought a threat of legal action from a rather
larger corporation with a similar-sounding name. Eventually the case
was settled and Mr. Rowe chose a different domain name.)

9.3 Routing

Routing—finding a path from source to destination—is a central
problem in any large network. Some networks use static routing tables
that provide a next step in the path for all possible destinations. The
problem with the Internet is that it’s far too large and dynamic for static
tables. As a result, Internet gateways continuously refresh their routing
information by exchanging information with adjacent gateways; this
ensures that information about possible and desirable paths is always
relatively up to date.

The sheer scale of the Internet requires a hierarchical organization to
manage routing information. At the top level, some tens of thousands of
autonomous systems provide routing information about the networks
they contain; normally an autonomous system corresponds to a large
Internet service provider (ISP). Within a single autonomous system,
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routing information is exchanged locally, but the system presents unified
routing information to outside systems.

Although it’s not formal or rigorous, there is a sort of physical
hierarchy as well. One accesses the Internet via an ISP, which is a
company or other organization that in turn connects to other Internet
providers. Some ISPs are tiny, some are huge (those run by telephone
and cable companies, for example); some are run by organizations like
a company, university or government agency, while others offer access
as a service for a fee—telephone and cable companies are typical
examples. Individuals connect to their ISP by cable (common for
residential service) or phone; companies and schools offer Ethernet or
wireless connections.

Figure 9.2: Traffic at DE-CIX Frankfurt IXP (courtesy of DE-CIX).

ISPs connect to each other through gateways. For high volume
between major carriers, there are Internet exchange points (IXP) where
network connections from multiple companies meet and physical
connections are made between networks, so data from one network
can be efficiently passed to another. Large exchanges pass terabits per
second from one network to another; for example, the DE-CIX Frankfurt



exchange, one of the largest in the world, presently averages nearly 6
Tbps and has had peaks above 9 Tbps. Figure 9.2 shows a 5-year
graph of traffic. Notice the steady growth, and the significant rise in
traffic when the Covid-19 crisis that began early in 2020 forced many
people to work remotely.

Some countries have comparatively few gateways that provide
access into or out of the country, and these can be used to monitor and
filter traffic that the government considers undesirable.

You can explore routing with a program called traceroute on Unix
systems (including Macs) or tracert on Windows, and there are web-
based versions as well. Figure 9.3 shows the path from Princeton to a
computer at the University of Sydney in Australia, edited for space.
Each line shows the name, IP address and round trip time for the next
hop in the path.

Figure 9.3: Traceroute from Princeton, NJ, to University of
Sydney, Australia.

The round-trip times show a meandering trip across the United
States, then two big hops across the Pacific to Australia. It’s fun to try to
figure out where the various gateways are from the cryptic
abbreviations in their names. A connection from one country to another
can easily go through gateways in other countries as well, often



including the US; this might be surprising, and perhaps undesirable,
depending on the nature of the traffic and the countries involved. The
map of submarine cables in Figure 9.4 shows the degree to which fiber
optic cables reach land in the US, Europe and Asia. The figure does not
show cables on land.

Unfortunately, security concerns have made traceroute less
informative over time, as more and more sites choose not to provide the
information necessary to make it work. For instance, some sites don’t
reveal names or IP addresses; those are marked with asterisks in the
figure.

9.4 TCP/IP Protocols

A protocol defines the rules that govern how two parties interact with
each other: whether one offers to shake hands, how deeply to bow, who
goes through the door first, which side of the road to drive on, and so
on. Most protocols in daily life are pretty informal, though the proper
side of the road has the force of law. By contrast, network protocols are
very precisely specified.



Figure 9.4: Submarine cables (courtesy of
submarinecablemap.com).

The Internet has many protocols, two of which are absolutely
fundamental. IP is the Internet Protocol; it defines how individual
packets are formatted and transmitted. TCP, the Transmission Control
Protocol, defines how IP packets can be combined into streams of data
and connected to services. Together the pair of protocols is called
TCP/IP.

Gateways route IP packets, though each physical network has its
own format for carrying IP packets. Each gateway has to convert
between the network format and IP as packets come in and go out.

Above the IP level, TCP provides reliable communication, so that
users (programmers, really) don’t have to think about packets, just
streams of information. Most of the services that we think of as <the
Internet= use TCP.

Above these are application-level protocols that provide those
services, mostly built on TCP: the web, mail, file transfer, and the like.
Thus there are several layers of protocols, each relying on the services
of the one below and providing services to the one above. This is an
excellent example of the layering of software described in Chapter 6,
and one conventional diagram (Figure 9.5) looks vaguely like a layered
wedding cake.

UDP, the User Datagram Protocol, is another protocol at the same
level as TCP. UDP is much simpler than TCP and is used for data
exchange that doesn’t require a two-way stream, just efficient packet
delivery with a few extra features. DNS uses UDP, as do video
streaming, voice overIP, and some online games.

http://submarinecablemap.com/


Figure 9.5: Protocol layers.

9.4.1 IP, the Internet Protocol

IP, the Internet Protocol, provides an unreliable, connectionless
packet delivery service. <Connectionless= means that each IP packet is
self-contained and has no relationship to any other IP packet. IP has no
state or memory: the protocol does not have to remember anything
about a packet once it has been passed on to the next gateway.

<Unreliable= means both more and less than it appears to. IP is a
<best effort= protocol that makes no guarantees about how well it
delivers packets—if something goes wrong, that’s tough. Packets may
be lost or damaged, they may be delivered out of order, and they may
arrive too quickly to be processed or too slowly to be useful. In actual
use, IP is very reliable. When a packet does go astray or get damaged,
however, there’s no attempt at recovery. It’s like dropping a postcard
into a mailbox in some strange place: the postcard probably gets
delivered though it might be damaged en route. Sometimes it doesn’t
arrive at all, and sometimes delivery takes much longer than you
expected. (There is one IP failure mode that postcards don’t share: an
IP packet can be duplicated, so the recipient gets more than one copy.)

IP packets have a maximum size of about 65 KB. Thus a long
message must be broken up into smaller chunks that are sent
separately, then reassembled at the far end. An IP packet, like an
Ethernet packet, has a specified format. Figure 9.6 shows some of the
IPv4 format; the IPv6 packet format is analogous, but the source and
destination addresses are each 128 bits long.

Figure 9.6: IPv4 packet format.

One interesting part of the packet is the time to live, or TTL. The TTL
is a one-byte field that is set to an initial value (typically about 40) by the
source of the packet and is decreased by one by each gateway that
handles the packet. If the count ever gets down to zero, the packet is
discarded and an error packet is sent back to the originator. A typical
trip through the Internet might involve 15 to 20 gateways, so a packet



that takes 255 hops is clearly in trouble, probably in a loop. The TTL
field doesn’t eliminate loops but it does prevent individual packets from
living forever.

The IP protocol itself makes no guarantees about how fast data will
flow: as a best-effort service, it doesn’t even promise that information
will arrive, let alone how fast. The Internet makes extensive use of
caching to try to keep things moving; we’ve already seen this in the
discussion of name servers. Web browsers also cache information, so if
you try to access a page or an image that you’ve looked at recently, it
may come from a local cache rather than from the network. Major
Internet servers also use caching to speed up responses. Companies
like Akamai provide content distribution services for other companies
like Yahoo; this amounts to caching content closer to the recipients.
Search engines also maintain large caches of pages they have found
during their crawl of the web; that’s a topic for Chapter 11.

9.4.2 TCP, the Transmission Control Protocol

Higher-level protocols synthesize reliable communications from this
unreliable substrate. The most important of these is TCP, the
Transmission Control Protocol. To its users, TCP provides a reliable
two-way stream: put data in at one end and it comes out the other end,
with little delay and low probability of error, as if it were a direct wire
from one end to the other.

I won’t go into the details of how TCP works—there are a lot of them
—but the basic idea is simple enough. A stream of bytes is chopped up
into pieces and put into TCP packets or segments. A TCP segment
contains not only the real data but also a <header= with control
information, including a sequence number so the recipient knows which
part of the stream each packet represents; in this way a lost segment
will be noticed and can be resent. Error-detection information is
included, so if a segment is damaged, that is likely to be detected as
well. Each TCP segment is transmitted in an IP packet. Figure 9.7
shows the contents of a TCP segment header, which will be sent inside
an IP packet along with the data.



Figure 9.7: TCP segment header format.

Each segment must be acknowledged, positively or negatively, by
the recipient. For each segment that I send to you, you must send me
an acknowledgment that you got it. If I don’t get the acknowledgment
after a decent interval, I must assume that the segment was lost and I
will send it again. Similarly, if you are expecting a particular segment
and haven’t received it, you must send me a negative acknowledgment
(<Segment 27 has not arrived=) and I will know to send it again.

Of course, if the acknowledgments themselves are lost, the situation
is even more complicated. TCP has a number of timers that determine
how long to wait before assuming that something is wrong. If an
operation is taking too long, recovery can be attempted; ultimately, a
connection will time out and be abandoned. (You’ve probably
encountered this with unresponsive web sites.) All of this is part of the
protocol.

The protocol also has mechanisms to make this work efficiently. For
example, a sender can send packets without waiting for
acknowledgments of previous packets, and a receiver can send a single
acknowledgment for a group of packets; if traffic is flowing smoothly,
this reduces the overhead due to acknowledgments. If congestion
occurs and packets begin to get lost, however, the sender quickly backs
off to a lower rate, and only slowly builds back up again.

When a TCP connection is set up between two host computers, the
connection is not just to a specific computer but to a specific port on
that computer. Each port represents a separate conversation. A port is
represented by a two-byte (16-bit) number, so there are 65,536 possible
ports, and thus in principle a host could be carrying on 65,536 separate
TCP conversations at the same time. This is analogous to a company
having a single phone number and employees having different
extensions.

A hundred or so <well known= ports are reserved for connections to
standard services. For instance, web servers use port 80, and mail
servers use port 25. If a browser wants to access www.yahoo.com, it will
establish a TCP connection to port 80 at Yahoo, but a mail program will
use port 25 to access a Yahoo mail server. The source and destination
ports are part of the TCP header that accompanies the data.

There are many more details but the basic ideas are no more
complicated than this. TCP and IP were originally designed around
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1973 by Vinton Cerf and Robert Kahn, who shared the 2004 Turing
Award for their work. Although the TCP/IP protocols have undergone
refinements, they remain essentially the same even though network
sizes and traffic speeds have grown by many orders of magnitude. The
original design was remarkably well done, and today TCP/IP handles
most of the traffic on the Internet.

9.5 Higher-Level Protocols

TCP provides a reliable two-way stream that transfers data back and
forth between two computers. Internet services and applications use
TCP as the transport mechanism but have their own protocols specific
to the task at hand. For example, HTTP, the Hypertext Transfer
Protocol, is a particularly simple protocol used by web browsers and
servers. When I click on a link, my browser opens a TCP/IP connection
to port 80 on the server, say amazon. com, and sends a short message
that requests a specific page. In Figure 9.8, the browser is the client
application at the top left; the message goes down the chain of
protocols, crosses the Internet (normally with many more steps), and
then back up to the matching server application at the far end.

At Amazon, the server prepares the page, then sends it to me along
with a small amount of additional data, perhaps information about how
the page is encoded; the return path need not be the same as the
original path. My browser reads this response and uses the information
to display the contents.

9.5.1 Telnet and SSH: remote login

Given the Internet as a carrier of information, what can we do with it?
We’ll look at a couple of the earliest TCP/IP applications that used the
nascent Internet; they date from the early 1970s, yet are still used
today, a tribute to their design and utility. They are command-line
programs and although mostly simple to use, they are aimed at
comparative experts, not casual users.



Figure 9.8: TCP/IP connections and information flow.

You can access Amazon by using Telnet, a TCP service for
establishing a remote login session on another machine. Normally
Telnet uses port 23, but it can be aimed at other ports as well. Type
these lines into a command-line window:

$ telnet www.amazon. com 80
GET / HTTP/1.0
   [type an extra blank line here]

and back will come over 225,000 characters that a browser would use
to display the page.

GET is one of a handful of HTTP requests, </= asks for the default file
at the server, and HTTP/1.0 is the protocol name and version. We’ll talk
more about HTTP and the web in the next chapter.

Telnet provides a way to access a remote computer as if one were
directly connected to it. Telnet accepts keystrokes from the client and
passes them to the server as if they had been typed there directly; it
intercepts the server’s output and sends it back to the client. Telnet
makes it possible to use any computer on the Internet as if it were local,
if one has the right permissions. As another example, here’s how to use
it to do a search:

$ telnet www.google.com 80
GET /search?q=whatever
   [type an extra blank line here]

This produces over 110,000 bytes of output, mostly JavaScript and
images, but the search results are visible within if one looks carefully.

http://www.google.com/


Telnet offers no security. If the remote system accepts logins without
a password, none is requested. If the remote system asks for a
password, Telnet sends the client’s password in the clear, so anyone
watching the flow of data could see it. This total lack of security is one
reason why Telnet is now rarely used except in special circumstances
where security does not matter. Its descendant SSH (Secure Shell) is
widely used, however, since it encrypts all traffic in both directions and
thus can exchange information securely; it uses port 22.

9.5.2 SMTP: Simple Mail Transfer Protocol

The second protocol is SMTP, the Simple Mail Transfer Protocol. We
usually send and receive mail with a browser or a standalone program.
But like many other things on the Internet, several layers lie beneath
this surface, each enabled by programs and protocols. Mail involves
two basic kinds of protocols. SMTP is used to exchange mail with
another system. It establishes a TCP/IP connection to port 25 at the
recipient’s mail computer and uses the protocol to identify the sender
and recipient, and to transfer messages. SMTP is text based; you can
run it with Telnet on port 25 if you want to see how it works, though
there are enough security restrictions that you might have trouble using
it even locally on your own computer. Figure 9.9 shows a sample dialog
(edited for compactness) from an actual session with a local system, in
which I sent myself mail as if from someone else (in effect, spam). My
typing is in bold italic.



Figure 9.9: Sending mail with SMTP.

This nonsensical (or at least improbable) message was duly
delivered to my mailbox, as seen in Figure 9.10.

Since SMTP requires that mail messages be ASCII text, a standard
called MIME (Multipurpose Internet Mail Extensions, in effect another
protocol) describes how to convert other kinds of data into text and how
to combine multiple pieces into a single mail message. This is the
mechanism used to include mail attachments like pictures and video,
and it’s also used by HTTP.

Although SMTP is an end-to-end protocol, the TCP/IP packets pass
through 15 to 20 gateways on their way from source to destination. It is
entirely possible for any gateway along the path to examine the packets
and make copies for leisurely inspection. SMTP itself can make copies
of the contents, and mail systems keep track of contents and headers. If
the contents are to be kept private, they must be encrypted at the
source. Bear in mind that encrypting the contents does not conceal the
identities of sender and receiver. Traffic analysis reveals who is



communicating with whom; such metadata is often as informative as the
actual contents, as we will discuss in Chapter 11.

Figure 9.10: Mail received!

SMTP transfers mail from source to destination but it has nothing to
do with access to the mail thereafter. Once the mail arrives at the target
computer, it normally waits there until the recipient retrieves it, usually
with another protocol called IMAP (Internet Message Access Protocol).
With IMAP, your mail remains on a server and you can access it from
multiple places. IMAP ensures that your mailbox is always in a
consistent state even if there are multiple simultaneous readers and
updaters, as is the case when you handle your mail from a browser and
a phone. There’s no need to make multiple copies of messages or to
copy them around among computers.

It’s common for mail to be handled <in the cloud= by systems like
Gmail or Outlook. Underneath, these use SMTP for transfer and behave
like IMAP for client access. I’ll talk about cloud computing in Chapter 11.

9.5.3 File sharing and peer-to-peer protocols

In June 1999, Shawn Fanning, a freshman at Northeastern
University, released Napster, a program that made it dead easy for
people to share music compressed in MP3 format. Fanning’s timing was
great. Audio CDs of popular music were ubiquitous but expensive.
Personal computers were fast enough to do MP3 encoding and



decoding, and the algorithms were widely available. Bandwidths were
high enough that songs in MP3 format could be transferred across a
network reasonably quickly, especially for college students on dormitory
Ethernets. Fanning’s design and implementation were well done and
Napster spread like wildfire. A company was formed to provide the
service in mid-1999, and claimed to have 80 million users at its peak.
The first lawsuits were filed later in 1999, alleging theft of copyrighted
music on a grand scale, and a court decision put Napster out of
business by mid-2001. From nothing to 80 million users to nothing in
barely two years was a vivid illustration of the then-popular phrase
<Internet time.=

To use Napster, one had to download a Napster client program to run
on one’s own computer. The client established a local folder for the files
that would be shareable. When the client subsequently logged in to a
Napster server, it uploaded the names of shareable files and Napster
added them to a central directory of currently available filenames. The
central directory was continuously updated: as new clients connected,
their filenames were added, and when a client failed to respond to a
probe, its filenames were de-listed.

When a user searched the central directory for song titles or
performers, Napster supplied a list of other users who were currently
online and willing to share those files. When a user selected a supplier,
Napster arranged the contact (sort of like a dating service) by providing
an IP address and a port number, and the client program on the user’s
computer made direct contact with the supplier and retrieved the file.
The supplier and the consumer reported status to Napster, but the
central server was otherwise <not involved= because it never touched
any of the music itself.

We are used to the client-server model, where a browser (the client)
requests something from a web site (the server). Napster was an
example of a different model. It provided a central directory that listed
the music that was currently available for sharing, but the music itself
was only stored on user machines, and when a file was transferred, it
went directly from one Napster user to another, rather than through the
central system. Hence the organization was called peer-to-peer, with
the sharers being the peers. Because the music itself was only stored
on the peer computers, never on the central server, Napster hoped to
sidestep copyright issues, but courts were not persuaded by that legal
fine point.



The Napster protocol used TCP/IP, so it was in effect a protocol at
the same level as HTTP and SMTP. Without in any way deprecating
Fanning’s work, which was neat indeed, Napster is a simple system
when the infrastructure of the Internet, TCP/IP, MP3, and tools for
building graphical user interfaces are in place already.

Most current file sharing, whether legal or not, uses a peer-to-peer
protocol called BitTorrent, which was developed by Bram Cohen in
2001. BitTorrent is particularly good for sharing large popular files like
movies and TV programs, because each site that starts to download a
file with BitTorrent must also begin to upload pieces of the file to others
who want to download. Files are found by searching distributed
directories and a small <torrent file= is used to identify a tracker that
maintains a record of who has sent and received which blocks.
BitTorrent users are vulnerable to detection, since the protocol requires
that downloaders also upload and thus they are easily identified in the
act of making allegedly copyrighted material available.

Peer-to-peer networks have other uses than file sharing of
questionable legality. Bitcoin, a digital currency and payment system
that we will discuss in Chapter 13, also uses a peer-to-peer protocol.

9.6 Copyright on the Internet

In the 1950s, it was not practical to copy a book or an audio
recording. Copying steadily became cheaper, however, and by the
1990s it was easy to make a digital copy of a book or a record, and
those copies could be made in quantity and sent to others via the
Internet at high speed and zero cost.

The entertainment industry, through trade groups like the Recording
Industry Association of America (RIAA) and the Motion Picture
Association of America (MPAA), has been tireless in trying to prevent
sharing of copyrighted material. This has included lawsuits and threats
of legal action against large numbers of alleged copyright infringers, as
well as intense lobbying efforts in support of legislation to make such
activities illegal. Piracy will likely always be with us, but it appears that
by charging reasonable prices for guaranteed quality, businesses can
greatly reduce its effects and still make money; Apple’s iTunes music
store is an example, as are streaming services like Netflix and Spotify.



In the US, the primary law for digital copyright issues is the 1998
Digital Millennium Copyright Act or DMCA, which made it illegal to
circumvent copyright protection techniques on digital media, including
distribution of copyrighted material on the Internet; other countries have
analogous laws. The DMCA is the legal mechanism used by the
entertainment industry to go after copyright violators.

The DMCA provides a <safe harbor= provision for Internet service
providers: if an ISP is notified by a legitimate copyright holder that a
user of the ISP is supplying copyrighted material, the ISP itself is not
liable for copyright violation if it requires the infringer to remove the
copyrighted material. This safe harbor provision is important at
universities, where the university is the ISP for its students and faculty.
Thus every university has some official who deals with allegations of
infringement. Figure 9.11 is the DMCA notice for Princeton.

Figure 9.11: DMCA notification information from a web page.

The DMCA is also invoked (on both sides) in legal tussles between
more evenly matched opponents. In 2007 Viacom, a major film and TV
company, sued Google for $1 billion over copyrighted material available
on YouTube, a Google service. Viacom said that the DMCA was not
meant to enable wholesale theft of copyrighted material. Part of
Google’s defense was that it responded appropriately to DMCA take-
down notices when they were properly presented, but that Viacom had
not done so. A judge ruled in favor of Google in June 2010, an appeals
court reversed part of the decision, then another judge ruled in favor of
Google, again on the grounds that YouTube was following DMCA
procedures properly. The parties settled in 2014 but regrettably the
terms of the settlement were not made public.

In 2004, Google began a project to scan a large number of books
held primarily in research libraries. In 2005 it was sued by the Authors
Guild, which alleged that Google was profiting by violating the
copyrights of authors. The case dragged on for a very long time, but a
decision in 2013 said that Google was not guilty, on the grounds that it



preserved books that might otherwise be lost, made them available in
digital form for scholarship, and could even generate income for authors
and publishers. An appeals court affirmed this decision late in 2015,
based in part on the fact that Google made only limited amounts of
each book available online. The Authors Guild appealed to the
Supreme Court, which in 2016 declined to hear the case, thus
effectively ending the dispute.

This is another case where one can see reasonable arguments on
both sides. As a researcher I would like to be able to search in books
that I might otherwise not be able to see or even know about, but as an
author I want people to buy legitimate copies of my books rather than
download pirated copies.

It’s easy to file DMCA complaints. I sent one to Scribd about an
illegal uploaded copy of the first edition of this book, and they took it
down within 24 hours. Unfortunately, most illegal copies of most books
are basically impossible to remove.

The DMCA is sometimes used in an anti-competitive way that was
presumably not part of its original intent. For example, Philips makes
<smart= network-connected light bulbs that allow controllers to adjust
their brightness and color. Late in 2015, Philips announced that it was
modifying the firmware so that only Philips bulbs could be used with
Philips controllers. The DMCA would prevent anyone else from reverse-
engineering the software to allow third-party bulbs. There was a
considerable outcry and Philips backed down for this specific case, but
other companies continue to use the DMCA to limit competition, for
example with replacement cartridges for printers and coffee makers.

9.7 The Internet of Things

Smartphones are just computers that are able to use the standard
phone system, but all modern phones can also access the Internet
either via the wireless carrier or through Wi-Fi if it’s available. This
accessibility blurs the distinction between the telephone network and
the Internet, a distinction that’s likely to eventually fade away.

The same forces that have made mobile phones such a pervasive
part of our world today operate on other digital devices as well. As I’ve
said earlier, many gadgets and devices contain powerful processors,
memory, and often a wireless network connection as well. It’s natural to



want to connect such devices to the Internet, and it’s easy because all
the necessary mechanisms are already in place, and the incremental
cost is close to zero. Thus we see cameras that can upload pictures by
Wi-Fi or Blue-tooth, cars that download entertainment while uploading
location and engine telemetry, thermostats that measure and control
their environment and report to the absent home-owner, video monitors
that keep an eye on children and nannies and people who ring the
doorbell, voice response systems like Alexa, and as mentioned above,
networked light bulbs, all based on Internet connections. The popular
buzzword for all of these is the Internet of Things, or IoT.

In many respects, this is a great idea and it’s certain that the future
holds more and more of it. But there is a large downside as well. These
specialized devices are more vulnerable to problems than their general-
purpose peers. Hacking, break-ins, damage, and so on are quite
possible, and in fact are more likely because attention to security and
privacy for the Internet of Things has lagged well behind the state of the
art for personal computers and phones. A surprising number of devices
<call home= by sending information back to servers in their country of
manufacture.

As one random example from a rich selection, in January 2016 a web
site allowed its users to search for web cameras that display their video
without any protection at all. The site offers images for <marijuana
plantations, back rooms of banks, children, kitchens, living rooms,
garages, front gardens, back gardens, ski slopes, swimming pools,
colleges and schools, laboratories, and cash register cameras in retail
stores.= One can imagine uses from simple voyeurism to much worse.

Some children’s toys are Internet-enabled, which opens up a
different set of potential hazards. One study showed that several toys
included analytics code that could be used to track children, and
insecure mechanisms that would permit using the toy as a vector for
other attacks. (One of the toys was an Internet-connected water bottle
apparently intended to monitor hydration.) The potential tracking is a
violation of COPPA, the Children’s Online Privacy Protection Act, and of
the stated privacy policies of the toys.

Consumer products like the web cams mentioned above are often
vulnerable because manufacturers don’t provide good security. It may
be deemed too costly to bother with, or too complicated for consumers,
or it could just be badly implemented. For example, in late 2019, a
hacker posted IP addresses and Telnet passwords for half a million IoT



devices, which he had found by scanning for devices that responded on
port 22, then trying default accounts and passwords like <admin= and
<guest.=

Infrastructure systems for power, communications, transportation and
many other things have been connected to the Internet without enough
attention to protecting them. As one instance, in December 2015 it was
reported that wind turbines from a particular manufacturer have a web-
enabled administrative interface and can be trivially attacked (just by
editing the URL) to shut off the power that they are generating.

9.8 Summary

There are only a handful of basic ideas behind the Internet; it is
remarkable how much can be accomplished with so little mechanism
(though with a great deal of engineering).

The Internet is a packet network: information is sent in standardized
individual packets that are routed dynamically through a large and
changing collection of networks. This is a different model from the
telephone system’s circuit network, where each conversation has a
dedicated circuit, conceptually a private wire between the two talking
parties.

The Internet assigns a unique IP address to each host that is
currently connected, and hosts on the same network share a common
IP address prefix. Mobile hosts like laptops and phones will likely have
a different IP address each time they are connected, and the IP address
might change as the host moves around. The Domain Name System is
a large distributed database that converts names to IP addresses and
vice versa.

Networks are connected by gateways, specialized computers that
route packets from one network to the next as the packets make their
way to their destination. Gateways exchange routing information, using
routing protocols, so they always know how to forward a packet to get it
closer to where it is bound, even as network topology changes and
connections come and go.

The Internet lives and breathes by protocols and standards. IP is the
common mechanism, the lingua franca for exchange of information.
Specific hardware technologies like Ethernet and wireless systems
encapsulate IP packets, but the details of how any particular piece of



hardware works, or even that it’s involved, are not visible at the IP level.
TCP uses IP to create a reliable stream connected to a specific port at a
host. Higher-level protocols use TCP/IP to create services.

Protocols divide the system into layers. Each layer uses the services
provided by the layer immediately below it and provides services to the
layer directly above it; no layer tries to do everything. This layering of
protocols is fundamental to the operation of the Internet; it’s a way to
organize and control complexity while hiding irrelevant details of
implementation. Each layer sticks to what it knows how to do—
hardware networks move bytes from one computer on a network to
another, IP moves individual packets across the Internet, TCP
synthesizes a reliable stream from IP, and application protocols send
data back and forth on the stream. The programming interfaces that
each layer presents are fine examples of the APIs we talked about in
Chapter 5.

What these protocols have in common is that they move information
between computer programs, using the Internet as a dumb network that
copies bytes efficiently from one computer to another without trying to
interpret or process them. This is an important property of the Internet:
it’s <dumb= in the sense that it leaves the data alone. Less pejoratively,
this is known as the end-to-end principle: the intelligence lies at the end
points, that is, with the programs that send and receive the data. This
contrasts with traditional telephone networks, where all the intelligence
has been in the network, and the end points, like old-fashioned
telephones, were truly dumb, providing little more than a way to connect
to the network and relay voice.

The <dumb network= model has been highly productive, since it
means that anyone with a good idea can create smart end points and
rely on the network to carry the bytes; waiting for a telephone or cable
company to implement or support the good idea would not work. As
might be expected, carriers would be happier with more control,
especially in the mobile area, where most of the innovation comes from
elsewhere. Smartphones like iPhone and Android are computers that
primarily communicate over the telephone network instead of the
Internet. Carriers would love to make money from telephone services,
but basically can only derive revenue from carrying data. In the early
days, most cell phones had a flat rate per month for data service, but at
least in the US that long ago changed to a structure that charges more
for more usage. For high-volume services like downloading movies,



higher prices and caps for truly abusive use might be reasonable, but it
seems less defensible for services like texting, which costs the carriers
almost nothing since the bandwidth is so tiny.

Finally, notice how the early protocols and programs trusted their
users. Telnet sends passwords in the clear. For a long time, SMTP
would relay mail from anyone to anyone without restricting sender or
receiver in any way. This <open relay= service was great for spammers
—if you don’t need a direct reply, you can lie about your source
address, which makes fraud and denial of service attacks easy. The
Internet protocols and the programs built upon them were designed for
an honest, cooperative and well-meaning community of trusted parties.
That is not remotely what today’s Internet is like, so on a variety of
fronts, we are playing catch-up on information security and
authentication.

Internet privacy and security are hard, as we’ll discuss further in the
following chapters. It feels like an arms race between attackers and
defenders, with the attackers more often on the winning side. Data
passes through shared, unregulated, and diverse media and sites
scattered over the whole world, and it can be logged, inspected and
impeded at any point along the path for government, commercial, and
criminal purposes. It’s hard to control access and to protect information
along the way. Many networking technologies use broadcast, which is
vulnerable to eavesdropping. Attacks on wired Ethernets and fiber
optics require finding a cable and making a physical connection, but
attacks on wireless don’t need physical access to snoop, just proximity.

At a broader level, the overall structure and openness of the Internet
is vulnerable to government control by country firewalls that block or
restrict information flow in and out. There is increasing pressure on
Internet governance as well, a danger that bureaucratic controls might
trump technical considerations. The more that these are imposed, the
greater the risk that the universal network will become balkanized and
thus ultimately much less valuable.





10
The World Wide Web

<The WorldWideWeb (W3) is a wide-area hypermedia information
retrieval initiative aiming to give universal access to a large
universe of documents.=

From the first web page, at
info.cern.ch/hypertext/WWW/TheProject.html, 1990.

The most visible face of the Internet is the World Wide Web or, by
now, just <the web.= There’s a tendency to conflate the Internet and the
web, but they’re different. As we saw in Chapter 9, the Internet is a
communications infrastructure or substrate that lets millions of
computers worldwide easily exchange information with each other. The
web connects computers that provide information—servers—with
computers that ask for it—clients like you and me. The web uses the
Internet to make the connections and carry the information and it
provides an interface for accessing other Internet-enabled services.

Like many great ideas, the web is fundamentally simple. Only four
things matter, given the existence of a pervasive, efficient, open and
basically free underlying network, which is a big proviso.

First is the URL, or Uniform Resource Locator, which specifies a
name for a source of information, like http: //www. amazon. com.

Second is HTTP, the Hypertext Transfer Protocol, which was
mentioned briefly in the last chapter as an example of a higher-level
protocol. An HTTP client makes a request for a specific URL and the
server returns the information that was asked for.

Third is HTML, the Hypertext Markup Language, a language for
describing the format or presentation of information returned by a
server. Again, it’s simple and you need know very little to make basic
use of it.

Finally, there’s a browser, a program like Chrome, Firefox, Safari or
Edge that runs on your computer, makes requests of servers using
URLs and HTTP, retrieves the HTML sent by a server, and displays it.

http://info.cern.ch/hypertext/WWW/TheProject.html


The web began life in 1989, when Tim Berners-Lee, an English
computer scientist working at CERN, the European physics research
center near Geneva, created a system to make scientific literature and
research results more accessible over the Internet. His design included
URLs, HTTP and HTML, and there was a text-only client program for
viewing what was available. There’s a simulation of that first version on
CERN’s web site at line-
mode.cern.ch/www/hypertext/WWW/TheProject.html.

This program was in use by 1990. I saw it in action in October 1992
during a visit to Cornell. It’s embarrassing to admit, but at the time I
didn’t find it all that impressive, and I certainly didn’t know that in less
than six months, the creation of the first graphical browser would
change the world. So much for being able to see the future.

That first browser, Mosaic, was created by students at the University
of Illinois. It took off rapidly after its initial release in February 1993, and
the first commercial browser, Netscape Navigator, became available
only a year later. Netscape Navigator was an early success and the
surge of interest in the Internet caught Microsoft unaware. The
company did wake up and quickly produced a competitor, Internet
Explorer (IE), which became the most widely used browser by a large
margin.

Microsoft’s domination of the PC marketplace raised antitrust
concerns in several areas, and in 1998 the company was sued by the
US Department of Justice. IE was a part of that legal proceeding
because it was alleged that Microsoft was using its dominant position to
drive Netscape out of business. Microsoft lost the case and was forced
to alter some of its business practices.

Today Chrome is the most widely used browser on laptops, desktops
and phones; Safari and Firefox are significantly less popular. In 2015,
Microsoft released a new Windows 10 browser, called Edge, to replace
IE. Edge originally used Microsoft’s own code, but since 2019 it has
been based on Google’s open-source Chromium browser. Edge’s
market share is lower than Firefox’s, and IE is even lower.

The technical evolution of the web is managed, or at least guided, by
the World Wide Web Consortium, or W3C (w3. org), a non-profit
enterprise. Berners-Lee, the founder and current director of W3C, made
no attempt to profit from his invention, generously preferring to make it
free for everyone, though many who jumped on the Internet and web

http://line-mode.cern.ch/www/hypertext/WWW/TheProject.html


bandwagon enabled by his work became very rich. He was knighted by
Queen Elizabeth II in 2004.

10.1 How the Web Works

Let’s take a more careful look at the technical components and
mechanisms of the web, starting with URLs and HTTP.

Imagine viewing a simple web page with your favorite browser. Some
of the text on that page is likely to be in blue and underlined; if you click
on that text, the current page will be replaced by the new page that the
blue text links to. Linking pages like this is called hypertext (<more than
text=); it’s an old idea but the browser has made it part of everyone’s
experience.

Suppose the link says something like <W3C home page.= When you
move the mouse over the link, the status bar at the bottom of your
browser window is likely to display the URL that the link points to,
something like http://w3. org, perhaps with further information after the
domain name.

When you click on the link, the browser opens a TCP/IP connection
to port 80 at the domain w3. org and sends an HTTP request for the
information given by the rest of the URL. If the link is
http://w3.org/index.html, the request is for the file index.html.

When it receives this request, the server at w3. org decides what to
do. If the request is for an existing file on the server, the server sends
that file back, and the client, your browser, displays it. The text that
comes back from the server is almost always in HTML, a form that
combines the real content with information about how to format or
display it.

In real life, it can be this simple, but there is usually more. The
protocol allows the browser to send a few lines of additional information
along with the client request, and the reply from the server will generally
include extra lines that indicate how much data follows and what kind it
is.

The URL itself encodes information. The first part, http, is one of
several possibilities that tell which specific protocol to use. HTTP is
most common but you will see others as well, including file for
information from the local machine (rather than from the web) and

http://w3.org/index.html


increasingly often, https for a secure (encrypted) version of HTTP,
which we’ll talk about shortly.

After :// comes the domain name, which names the server. After the
domain name there can be a slash (/) and a string of characters. That
string is passed verbatim to the server, which can do whatever it likes
with it. In the simplest case, there’s nothing at all, not even the slash,
and the server returns a default page like index.html. If there’s a file
name, its contents are returned as is. A question mark after the initial
part of the file name usually means that the server is supposed to run a
program whose name is the part before the question mark, and pass
the rest of the text to that program. That’s one way that information from
forms on a web page is processed; for example, a Bing search is

https://www.bing.com/search?q=funny+cat+pictures

which you can confirm by typing this directly into the address bar of a
browser.

The text after the domain name is written in a restricted character set
that excludes spaces and most non-alphanumeric characters, so these
must be encoded. A plus sign <+= encodes a space, and other
characters are encoded as a % sign and two hex digits. For example,
the URL fragment 5%2710%22%2D6%273%22 means 5’10"-6’3", since hex
27 is a single quote character, hex 22 is a double quote character, and
hex 2D is a minus sign.

10.2 HTML

The server response is usually in HTML, a combination of content
and formatting information. HTML is so simple that it’s easy to create
web pages with your favorite text editor. (If you use a word processor
like Microsoft Word, you must save web pages in plain text, not the
default format, and with a suffix like html.) The formatting information is
given by tags that describe the content and mark the beginning and
often the end of regions of the page.

The HTML for a minimal web page might look like Figure 10.1. It will
be displayed by a browser as shown in Figure 10.2.

https://www.bing.com/search?q=funny+cat+pictures


Figure 10.1: HTML for a simple web page.

Figure 10.2: Browser display of HTML from Figure 10.1.

The image file by default comes from the same place as the original
file but it could come from anywhere on the web. If the file named in the



<img> image tag is not accessible, the browser will display some
<broken= image in its place. The alt= attribute provides text to be
displayed if the image itself can’t be shown; it’s one small example of a
web-page technique that can help people who might have vision or
hearing problems.

Some tags are self-contained, like <img>; some have a beginning and
end, like <body> and </body>. Others, like <p>, do not need a closing tag
in practice, though a strict definition does require </p>, which we have
used here. Indentation and line breaks are not necessary but make the
text easier to read.

Most HTML documents also contain information in another language
called CSS (Cascading Style Sheets). With CSS one can define style
properties like the format of headings in a single place and have them
apply to all occurrences. For example, we could cause all h2 and h3
headings to display in red italics with this CSS:

h2, h3 { color: red; font-style: italic; }

Both HTML and CSS are languages, but not programming
languages. They have formal grammars and semantics but they don’t
have loops and conditionals, so you can’t express an algorithm in them.

The point of this section is to show just enough of HTML to demystify
how web pages work. Considerable skill is required to create the
polished web pages that you see on commercial sites, but the basics
are so simple that with a few minutes of study you can make your own
more modest pages. A dozen tags will see you through the creation of
most text-only web pages and another dozen are enough to do pretty
much anything that a casual user might care about. It’s easy to create
pages by hand, word processors have a <create HTML= option, and
there are programs specifically aimed at creating professional-looking
web pages. You will need such tools if you’re going to do serious web
design, but it’s always good to understand how things work underneath.

The original design of HTML only handled plain text for the browser
to display. It wasn’t long, however, before browsers added the capability
to display images, including simple artwork like logos and smiley faces
in GIF format and pictures in JPEG format. Web pages offered forms to
be filled in, buttons to push, and new windows that popped up or
replaced the current one. Sound, animations, and movies followed soon



after, generally once there was enough bandwidth to download them
quickly and enough processing power to display them.

There is also a simple mechanism, the unintuitively named CGI or
Common Gateway Interface, for passing information from the client
(your browser) to a server, for example a name and password, or a
search query, or the choices made with radio buttons and dropdown
menus. This mechanism is provided by the HTML <form> ... </form> tag.
Within a <form>, you can include common user interface elements like
text entry areas, buttons, checkboxes, and so on. If there is a <Submit=
button, pushing it causes the data within the form to be sent to the
server, along with a request to run a specific program using that data.

Forms have limitations. They support only a few kinds of interface
elements. Form data can’t be validated except by writing JavaScript
code or sending it to the server for processing. There is a password
input field that replaces typed characters by asterisks, but it provides no
security whatsoever, since the password is transmitted and stored in
logs without encryption. Nevertheless, forms are a crucial part of the
web.

10.3 Cookies

The HTTP protocol is stateless, a bit of jargon which means that an
HTTP server is not required to remember anything about client requests
—it can discard all records of each exchange after it returns the
requested page.

Suppose that the server really does need to remember something,
perhaps the fact that you have already provided a name and password
so there’s no need to keep asking for them on subsequent interactions.
How might that be made to work? The problem is that the interval
between the first visit and the second might be hours or weeks or might
never happen at all, and that’s a long time for a server to retain
information on speculation.

In 1994, Netscape invented a solution that it called a cookie, a cutesy
but well-established programmer word for a small piece of information
passed between programs. When a server sends a web page to a
browser, it can include additional chunks of text (up to about 4,000
bytes each) that the browser is meant to store; each chunk is called a
cookie. When the browser makes a subsequent request to the same



server, it sends those cookies back. In effect the server uses memory
on the client to remember something about the client’s previous visit.
Often the server will assign a unique identification number to a client
and include that in a cookie; permanent information associated with that
identification number is maintained in a database on the server. This
might be login status, shopping cart contents, user preferences, and the
like. Each time the user revisits the site, the server can use the cookie
to identify him or her as someone seen before and set up or restore
information.

I normally disallow all cookies, so when I visit Amazon, the initial
page greets me with <Hello.= But if I want to buy something, I have to
log in and add it to my shopping cart, and that requires me to allow
Amazon to set cookies. Thereafter, each visit says <Hello, Brian= until I
delete those cookies.

Each cookie has a name, and a single server may store multiple
cookies with each visit. A cookie is not a program and it has no active
content. Cookies are entirely passive: they’re just strings of characters
that are stored and subsequently sent back; nothing goes back to the
server that didn’t originate with the server. They are only sent back to
the domain from which they originated. Cookies have an expiration date
after which they are deleted by the browser. There’s no requirement
that the browser accept or return them.

It’s easy to view the cookies on your computer; the browser itself will
show them to you, or you can use other tools. For example, a recent
visit to Amazon deposited half a dozen cookies. Figure 10.3 shows
them as seen through Cookie Quick Manager, a Firefox extension.
Notice that Amazon appears to have detected that I am using an ad
blocker.

Figure 10.3: Cookies from Amazon.



In principle, this all sounds benign and it certainly was intended as
such, but no good deed goes unpunished and cookies have been co-
opted into less desirable uses as well. The most common is to track
people as they browse, to create a record of the sites they have visited
and then to provide targeted advertisements. We’ll talk about how this
works in the next chapter, along with other techniques that track you as
you travel around the web.

10.4 Active Content in Web Pages

The original design of the web took no particular advantage of the
fact that the client is a powerful computer, a general-purpose
programmable device. The first browsers could make server requests
on behalf of the user, send information from forms and, with the aid of
helper programs, display content like pictures and sound that required
special processing. But browsers soon made it possible to download
code from the web and execute it; this is sometimes called active
content. As might be expected, active content has significant
consequences, some good and some definitely not.

Early versions of Netscape Navigator included a way to run Java
programs within the browser. At the time Java was a comparatively new
language. It had been designed to be installed in environments with
modest computing capabilities (like home appliances), so it was
technically feasible to include a Java interpreter along with the browser.
This offered the prospect of being able to do significant computation in
the browser, perhaps replacing conventional programs like word
processors and spreadsheets, and even the operating system itself.
The idea was sufficiently worrisome to Microsoft that it took a series of
actions to undermine the use of Java. In 1997, Sun Microsystems, the
creator of Java, sued Microsoft, a legal process that was settled some
years later with Microsoft paying Sun well over a billion dollars.

For a variety of reasons, Java never took off as the way to extend
browsers. Java itself is widely used but its integration with the browser
is limited and today it is rarely used in that role.

Netscape created a new language specifically for use within its
browsers: JavaScript, which appeared in 1995. In spite of its name,
which was chosen for marketing reasons, JavaScript is unrelated to
Java except that both have a superficial similarity to the C programming



language, as we saw in Chapter 5. Both use a virtual machine
implementation, but with significant technical differences. Java source
code is compiled where it is created and the resulting object code is
sent to the browser for interpretation; you can’t see what the original
Java source code looks like. By contrast, JavaScript source code is
sent to the browser and is compiled there. The recipient can see the
source code that is being executed, and could study and adapt it as well
as run it.

Almost all web pages today include some JavaScript, to provide
graphical effects, validate information in forms, pop up both useful and
irritating windows, and so on. Its use for advertising popups has been
mitigated by popup blockers, now included with browsers, but its use for
sophisticated tracking and monitoring is pervasive. JavaScript is so
ubiquitous that it’s hard to use the web without it, though browser add-
ons like NoScript and Ghostery give us some control over what
JavaScript code will be run. Somewhat ironically, add-ons are
themselves written in JavaScript.

On balance, JavaScript is more good than evil, though there are days
when I might come down on the other side, especially considering how
much it’s used for tracking (which we will discuss in Chapter 11). I
routinely disable JavaScript entirely with NoScript, but then have to
restore it selectively for sites that I care about.

Other languages and contents are also handled by the browser,
either with code in the browser itself or by plug-ins like Apple QuickTime
and Adobe Flash. Plug-ins are programs, usually written by third
parties, that are dynamically loaded into the browser as needed. If you
visit a page that has content in a format that your browser can’t already
handle, you may be offered the chance to <get the plug-in.= What that
means is that you will be downloading a new program to run on your
computer in close cooperation with the browser.

What can a plug-in do? Essentially anything it wants to, so you are
pretty much forced to trust the supplier, or do without the content. A
plug-in is compiled code that executes as part of the browser using an
API presented by the browser and in effect it becomes part of the
browser when it runs. Flash is widely used for video and animations;
Adobe Reader for PDF documents is another common plug-in. The
short story on plug-ins is that if you trust their source, you can use them
with no more than the normal perils of code that will have bugs and can
monitor your behavior. Flash has had a long history of major security



vulnerabilities, however, and its use is now deprecated. HTML5
provides browser facilities that reduce the need for plug-ins, especially
for video and graphics, but plug-ins are likely to be around for a long
time.

As we saw in Chapter 6, browsers are like specialized operating
systems, which can be extended to handle richer and ever more
complicated content <to enhance your browsing experience.= The good
news is that it’s possible to do a lot with a program running in the
browser, and interactions will run faster if computation is performed
locally. The downside is that this requires your browser to execute
programs that someone else wrote and whose properties you almost
surely don’t understand. There are real risks in running code from
unknown sources on your computer. <I have always depended on the
kindness of strangers= is not a prudent security policy. In a Microsoft
article titled 10 Immutable Laws of Security, the first law is <If a bad guy
can persuade you to run his program on your computer, it’s not your
computer any more.= Be conservative in allowing JavaScript and plug-
ins.

10.5 Active Content Elsewhere

Active content can appear in places other than web pages. Consider
email. Once mail has arrived, it will be displayed by a mail-reading
program. Obviously a mail reader has to display text; the question is
how far it goes in interpreting other kinds of content that might be
included, since that has a significant effect on privacy and security.

What about HTML in mail messages? Interpreting size and font tags
is benign: there’s no risk in displaying part of a message in big red
letters, though it might irritate the recipient. Should the mail reader
display images automatically? That makes it easy to view pictures, but
opens up the prospect of more cookies if content comes from other
sources. We could block email cookies, but there’s nothing to prevent a
mail sender from including an image consisting of a 1-by-1 transparent
pixel whose URL encodes something about the message or the
recipient. (These invisible images are sometimes called web beacons;
they are frequent on web pages.) When your HTML-enabled mail
reader requests the image, the site that serves it knows that you are
reading that specific mail message at a particular time. This provides an



easy way to track when mail has been read and potentially reveals
information that you might prefer to keep private.

What happens if a mail message includes JavaScript? What if it
includes a Word or Excel or PowerPoint document? Should the mail
reader automatically run those programs? Should it make it easy for
you to do so by clicking somewhere in the message? Come to think of
it, should it let you click directly on links in messages? That’s a favorite
way to entice victims to do something foolish. PDF documents can
include JavaScript (which surprised me when I first saw it); should that
code be executed automatically by the PDF viewer that is invoked
automatically by the mail reader?

It’s convenient to attach documents, spreadsheets and slide
presentations to email messages and it’s standard operating procedure
in most environments, but such documents can carry viruses, as we
shall see shortly, and blindly clicking on them is one way to propagate
viruses.

It’s even worse if mail messages include executable files, like
Windows .exe files or equivalents. Clicking on one of those launches
the program, which with high probability is something that will damage
you or your system. The bad guys use a variety of tricks to get you to
run such programs. I once got mail that claimed to include a picture of
Anna Kournikova, the Russian tennis player, and encouraged me to
click on it. The file name was kournikova.jpg.vbs, but the .vbs
extension was hidden (a misguided feature of Windows), concealing the
fact that it was not a picture but a Visual Basic program. Fortunately,
since I was using an antiquated text-only mail program on a Unix
system, clicking was not an option, so I saved the <picture= in a file for
later inspection.

10.6 Viruses, Worms and Trojan Horses

The Anna Kournikova <picture= was in fact a virus. Let’s talk a bit
about viruses and worms. Both of these terms refer to (often malicious)
code that propagates from one system to another. The technical
distinction, not very important, is that a virus needs help with
propagation—it can only get to another system if you do something to
enable it—while a worm can propagate without your assistance.

http://kournikova.jpg.vbs/


Although the potential for such programs had been known for a long
time, the first example that made the evening news was the <Internet
worm= launched by Robert T. Morris in November 1988, well before
what we would call the modern Internet era. Morris’s worm used two
different mechanisms to copy itself from one system to another, relying
on bugs in widely used programs, together with a dictionary attack
(trying common words as potential passwords) so it could log itself in.

Morris had no malicious intent; he was a computer science graduate
student at Cornell and had been planning an experiment to measure the
size of the Internet. Unfortunately a programming error made the worm
propagate much faster than he expected, with the result that many
machines were infected multiple times, couldn’t cope with the volume of
traffic, and had to be disconnected from the Internet. Morris was
convicted of a felony under the then-new Computer Fraud and Abuse
Act, and was required to pay a fine and perform public service.

For some years, it was common for viruses to propagate via infected
floppy disks, which before the widespread use of the Internet were a
standard medium for exchanging programs and data between PCs. An
infected floppy included a program that would run automatically when
the floppy was loaded; the program would copy itself to the local
machine in such a way that the virus would be passed on whenever a
subsequent floppy disk was written.

Virus propagation became much easier with the arrival in 1991 of
Visual Basic in Microsoft Office programs, especially Word. Most
versions of Word include a VB interpreter and Word documents (.doc
files) can contain VB programs, as can Excel and PowerPoint files,
among others. It is dead simple to write a VB program that will take
control when a document is opened, and because VB provides access
to the entire Windows operating system, the program can do anything it
wants. The usual sequence is for the virus to install itself locally if it’s
not already present, and then arrange to propagate itself to other
systems. In one common mode of propagation, when an infected
document is opened, the virus mails a copy of itself, along with some
innocuous or appealing message, to every entry in the current victim’s
email address book. (The Anna Kournikova virus used this method.) If
the recipient opens the document, the virus installs itself on the new
system and the process repeats.

In the mid to late 1990s, there were many such VB viruses. Because
the default setting for Word at the time was to blindly run VB programs



without asking for permission, infections spread rapidly and large
corporations had to turn off all their computers and clean them up
individually to stamp out the virus. VB viruses are still around but merely
changing the default behavior of Word and similar programs has greatly
reduced their impact. In addition, most mail systems now strip out VB
programs and other suspicious content from incoming mail before the
mail reaches a human reader.

VB viruses are so easy to create that they could even be written by
inexperienced programmers, who were called <script kiddies.= Making a
virus or worm that does its job without getting caught is harder. In late
2010, a sophisticated worm called Stuxnet was discovered in a number
of process control computers. Its main target was uranium enrichment
equipment in Iran. Its approach was subtle: it caused speed fluctuations
in centrifuge motors that would lead to damage or even destruction that
might seem like normal wear and tear; at the same time, it told
monitoring systems that everything was fine so nobody would notice
problems. No one has stepped forward to take credit for this program,
though it is widely believed to have involved Israel and the US.

A Trojan horse (often shortened to Trojan in this context) is a
program that masquerades as something beneficial or harmless but in
fact does something harmful. The victim is induced to download or
install the Trojan because it appears to do something helpful. One
typical example offers to perform a security analysis on a system, but in
fact installs malware instead.

Most Trojan horses arrive by email. The message in Figure 10.4
(lightly edited) has a Word attachment that, if incautiously opened in
Windows, installs malware known as Dridex. This attack was easy to
spot, of course—I don’t know the sender, I have never heard of the
company, and the sender address is unrelated to that company. Even if
I hadn’t been alert, I use a text-only mail program on Linux so I’m pretty
safe; this attack is targeted at Windows users. (I’ve since received at
least two dozen variants of this message, of varying plausibility.)



Figure 10.4: A Trojan horse attempt.

I mentioned floppy disks as an early vector for propagating viruses.
One modern equivalent is an infected USB flash drive. You might think
that a flash drive is a passive device, since it’s just memory. However,
some systems, notably Windows, provide an <autorun= service that
automatically runs a program from the drive when a CD, DVD or flash
drive is plugged in. If this feature is enabled, malevolent software can
be installed and damage done without any warning or chance to
intervene. It’s not uncommon for corporate systems to be infected in
this fashion, even though most companies have strict policies against
plugging USB drives into company computers. On occasion, brand new
drives have been shipped with viruses already on them, a kind of
<supply chain= attack. An easier attack is to leave a drive with a
company’s logo on it in the company parking lot. If the drive contains a
file with an intriguing name like <ExecutiveSalaries.xls,= autorun may not
even be needed.

10.7 Web Security

The web raises many difficult security issues. Broadly speaking, one
might divide the threats into three categories: attacks on clients (that’s
you), attacks on servers (online stores or your bank, for example), and
attacks on information in transit (like snooping on your wireless or the



NSA grabbing all the traffic on a fiber optic cable). Let’s talk about each
in turn, to see what might go wrong and what can be done to alleviate
the situation.

10.7.1 Attacks on clients

Attacks on you include nuisances like spam and tracking, as well as
more serious concerns, especially the release of private information like
your credit card and bank account numbers or passwords that could let
someone else masquerade as you.

In the next chapter, we will discuss in detail how cookies and other
tracking mechanisms are used to monitor your web activities, ostensibly
to provide you with more relevant and thus less irritating advertising.
Tracking can be reduced by forbidding third-party cookies (that is,
cookies that come from a different web site than the one you went to),
and by using browser add-ons that disable trackers, turn off JavaScript,
and so on. It’s a nuisance to maintain your defenses, since many sites
are unusable when you have your shields all the way up—you have to
lower them temporarily, then remember to reset—but I think it’s worth
the trouble. Browser suppliers are making it easier to block some
cookies and other trackers, though you might have to adjust default
settings, and external blockers are still worthwhile.

Spam—unsolicited mail that offers get-rich schemes, stock tips,
body-part enhancements, performance improvers, and a host of other
unwanted goods and services—has become so voluminous as to
endanger the very use of email. I generally get fifty to a hundred spam
messages per day, more than the number of real messages. Spam is so
common because sending it is almost free. If even the tiniest fraction of
the millions of recipients reply, that’s enough to keep things profitable.

Spam filters try to separate the wheat from the chaff by analyzing the
text for known patterns (<Tasty drink wipes out unwanted extra fat,=
promises a printable one from a recent batch), unlikely names, bizarre
spellings (\/l/-\GR/-\), or addresses that spammers favor. No single
criterion could be sufficient, so a combination of filters is used. Spam
filtering is a major application of machine learning. Given a training set
of examples that have been tagged as spam or not spam, a machine
learning algorithm classifies subsequent inputs based on their similarity
to the characteristics of the training set. We will have more to say about
this in Chapter 12.



Spam is an example of an arms race, since as the defenders learn
how to cope with one kind of spam, the offenders find a new way
around. Spam is hard to stop at the source, because its source is well
hidden. Much spam is sent by compromised personal computers, often
running Windows. Security holes and lax management by users leave
the computers vulnerable to the installation of malware, that is,
malicious software that intends to do damage or otherwise interfere with
the system. One kind of malware will broadcast spam mail upon
command from an upstream control, which might in turn be controlled
from another computer; each step makes it that much harder to find the
originator.

Phishing attacks try to convince the recipient to voluntarily hand over
information that can be used for theft. You’ve almost surely gotten a
<Nigerian= scam letter. (Oddly, the last several to me have been in
French, as in Figure 10.5.) It’s hard to believe that anyone ever
responded to something so implausible, though apparently people still
do.

Most phishing attacks are more subtle. Plausible mail arrives,
ostensibly from a legitimate institution or a friend or co-worker, asking
you to visit a site or read a document or verify some credentials. If you
do, your adversary now has installed something on your computer or he
has information about you; in either case, he can potentially steal your
money or your identity, or attack your employer. Fortunately, grammar
and spelling mistakes may give it away, and mousing over links often
reveals that they lead to somewhere suspicious.



Figure 10.5: Phishing from France.

It’s easy to create a message that looks official since format and
images like a company logo can be copied from the real site. The return
address doesn’t matter because there’s no check that the sender is
legitimate. Like spam, phishing costs almost nothing, so even a tiny
success rate can be profitable.

Figure 10.6 is an edited transcript of a somewhat targeted attack that
began with mail, ostensibly from a colleague who I will call JP. Since I
had seen a similar attack a few weeks earlier, and the actual mail
address was deceptive, a variation on jp.princeton.edu@gmail.com, I
decided to play along.

mailto:jp.princeton.edu@gmail.com


Figure 10.6: A weak phishing attempt.

The perps eventually gave up; they must have been on to me. This
attack was marginally convincing because it was targeted at me and
used the name of a colleague and friend. It’s for this reason that such
precisely targeted attacks are sometimes called spear phishing. Spear
phishing is a kind of social engineering: induce the victim to do
something foolish by pretending to have a personal relationship like a
mutual friend, or claiming to work for the same company. The more of
your life that you reveal in places like Facebook and LinkedIn, the
easier it is for someone to target you. Social networks help social
engineers.

In July 2020, Twitter suffered an embarrassing attack in which the
accounts of a number of high-profile individuals, like Bill Gates, Jeff
Bezos, Elon Musk, Barack Obama and Joe Biden, were used to tweet
variations on <Send us $1,000 in Bitcoin and we will send you back
$2,000.= It’s hard to believe that anyone would fall for this, let alone
someone capable of sending bitcoins, but apparently hundreds of
people did before Twitter managed to shut it down. Twitter subsequently
said

The social engineering that occurred on July 15, 2020, targeted a
small number of employees through a phone spear phishing
attack. A successful attack required the attackers to obtain access



to both our internal network as well as specific employee
credentials that granted them access to our internal support tools.
Not all of the employees that were initially targeted had
permissions to use account management tools, but the attackers
used their credentials to access our internal systems and gain
information about our processes. This knowledge then enabled
them to target additional employees who did have access to our
account support tools.

Notice that the attackers were able to escalate from employees without
sufficient access to ones who did have access.

The primary person behind the attack was quickly identified, a 17-
year-old from Florida; two other young men were also charged.

Spear phishing or social engineering attacks that ostensibly come
from the CEO or other high-level executives seem especially effective.
One popular version in the months before income tax returns are due
asks the target to send tax information on each employee, like the W-2
form in the US. That form includes an accurate name, address, salary
and Social Security number, so it can be used to file for a fraudulent tax
refund. By the time the employees and the tax authorities notice, the
perpetrators have the money and are long gone.

Spyware refers to programs that run on your computer, sending
information about you to somewhere else. Some of this is clearly
malevolent, though sometimes it’s merely commercial snooping. For
instance, most current operating systems check automatically for
updated versions of installed software. One could argue that this is a
good thing, since it encourages you to update software to get bug fixes
for security problems, but it could equally well be called an invasion of
privacy—it’s no one’s business what software you’re running. If the
updates are forced on you, that can be a problem: in too many cases,
newer versions of programs are bigger but not necessarily better, and a
new version can break existing behavior or add new bugs. I try to avoid
updating critical software during a semester because it might change
something I need for a class.

On personal machines, it’s common for an attacker to install a
zombie, that is, a program that waits until it is awakened via the Internet
and told to perform some hostile act like sending spam. Such programs
are often called bots and networks of them with a common control are
called botnets. At any point, there are thousands of known botnets and



millions of bots that can be called into service. Selling bots to potential
attackers is a thriving business.

One can compromise a client computer and steal information at the
source, either by looking for it in the file system or by using a
surreptitiously installed key logger to capture passwords and other data
as they are entered. A key logger is a program that monitors all
keystrokes on the client and thus is able to capture passwords as they
are typed; encryption cannot help here. Malware could also turn on the
microphone and camera in the computer.

It’s possible for malware to encrypt the contents of your computer so
you can’t use it until you pay for a decryption password; naturally this
kind of attack is called ransomware. In June 2020, the medical school at
the University of California, San Francisco (UCSF) was hit by an attack;
in a statement, the university said

The data that was encrypted is important to some of the academic
work we pursue as a university serving the public good. We
therefore made the difficult decision to pay some portion of the
ransom, approximately $1.14 million, to the individuals behind the
malware attack in exchange for a tool to unlock the encrypted data
and the return of the data they obtained.

Not long after this, I received mail from a scientific institution that I
belong to, reporting on a ransomware attack that might well have
included data about me. The institution uses a company called
Blackbaud to provide services (think cloud computing). Here’s part of
the mail:

We were also informed by Blackbaud that in order to protect data
and mitigate potential identity theft, it met the cybercriminal’s
ransomware demand. Black-baud has advised us that it received
assurances from the cybercriminal and third-party experts that the
data was destroyed.

We are continuing to work with Blackbaud to understand why there
was a delay between it finding the breach and notifying us...

The <delay= was about two months, during which time Blackbaud paid
up; the institution in question delayed another two weeks before



informing me and presumably other members. I also wonder about the
<assurances= from the bad guys that they have destroyed the
information. Does that remind you of blackmailers who promise to
destroy the incriminating photographs?

A simpler version of ransomware just pops up a threatening screen
that claims your computer is infected with malware, but you can get rid
of it: don’t touch anything but call this toll-free number and for a modest
fee, you’ll be rescued. This is a kind of scareware. A relative of mine fell
for this fraud and paid several hundred dollars. Fortunately the credit
card company reversed the charges; not everyone is so lucky. If you
pay with bitcoins, you have no recourse at all if the bad guys don’t
honor the agreement.

The risks are exacerbated if your browser or other software has bugs
that make it possible for miscreants to install their software on your
machine. Browsers are large, complicated programs and they have had
numerous bugs that permit attacks on users. Keeping your browser up
to date is a partial defense, as is configuring it so it does not release
unnecessary information or permit random downloading. For example,
set your browser preferences so the browser will ask for confirmation
before opening content types like Word or Excel documents. Be
cautious about what you download; never just click when a web page or
program asks you to do so. We’ll discuss more defenses in a few
pages.

On phones, the most likely risks are downloading apps that will
export your personal information. An app can access all information on
the phone, including contacts, location data and call records, and can
easily use that against you. Phone software is slowly getting better at
helping you defend yourself, for example by giving you more fine-
grained control over permissions, but the emphasis is still on <slowly.=

10.7.2 Attacks on servers

Attacks on servers aren’t your problem directly, in that there isn’t
much you can do about them, but that doesn’t mean that you can’t be
victimized.

Servers have to be carefully programmed and configured so that
client requests, no matter how cleverly crafted, cannot cause the server
to release unauthorized information or permit unauthorized access.
Servers run big complicated programs, so bugs and configuration errors



are common; both can be exploited. Servers are usually supported by
databases that are accessed through a standard interface called SQL
(<structured query language=). One frequent attack is called SQL
injection. If access is not carefully circumscribed, a clever attacker can
submit queries that reveal the database structure, extract unauthorized
information, and even run the attacker’s code on the server, code that
might be able to gain control of the whole system. Such attacks are well
understood, as are defenses against them, but they still occur
surprisingly often.

Once a system has been compromised, there are few limits on the
harm that can be done, especially if the attacker has managed to obtain
<root= access, that is, access at the highest level of administrative
privilege. This is true whether the target is a server or an individual
home computer. At that point, an attacker can vandalize or deface a
web site, post embarrassing material like hate speech, download
destructive programs, or store and distribute illegal content like child
pornography and pirated software. Data can be stolen in bulk from
servers or in modest quantities from individual machines.

Such breaches are now an almost daily event, and sometimes on a
grand scale. In March 2017, terabytes of personally identifiable
information on 150 million people were copied from Equifax, one of
three credit reporting companies in the US. Credit agencies like Equifax
hold a great deal of sensitive information in their databases, so this was
potentially a serious problem. Equifax was derelict in their security
procedures—they had not kept their systems up to date against known
vulnerabilities—and their behavior after the breach wasn’t all that good
either. The company did not publicly reveal the breach until September,
and some high-level executives sold stock before the breach was made
public.

In December 2019, Wawa, a US chain of convenience stores,
announced that information from a large number of credit cards,
perhaps 30 million, had been stolen via malware that found its way onto
Wawa sales terminals; the card information was for sale on the dark
web.

In February 2020, Clearview AI, a company that provides facial
recognition software primarily though not exclusively to law enforcement
agencies, was broken into, and its client database was leaked. The
company claimed that nothing else was stolen, including photographs



and records of searches made, though news stories at the time implied
that the photos were also taken.

Also in February 2020, the Marriott International hotel chain
announced that information on over 5 million guests had been stolen;
the information included contact details and other personal facts like
date of birth.

Servers can also be subject to denial of service attacks, in which an
adversary directs a large amount of traffic at a site to overwhelm it with
sheer volume. This is often orchestrated with botnets; the compromised
machines are told to send requests to a particular site at a particular
time, leading to a coordinated flood. An attack that comes from many
sources simultaneously is called a distributed denial of service (DDoS)
attack. As an example, in February 2020, Amazon’s AWS cloud service
successfully dealt with what it says is the largest DDoS attack ever, with
a peak traffic rate of 2.3 Tbps.

Although denial of service attacks are most often large and aimed at
big servers, small-scale versions are also possible. For instance, my
employer recently replaced a convenient home-grown appointment-
scheduling system with a commercial offering that accesses a user’s
online calendar to find and populate open time slots. The company calls
it <painless scheduling.= Go to a web link with the user’s identification,
click on an open slot, provide a confirmation email address, and you’re
done. But there is no checking of anything, so if I can guess your
identification, I can anonymously fill up all your available slots. There’s
no validation of the email addresses either, so I can use the calendar
system as a vector for sending anonymous nuisance messages to
anyone. I’d be seriously disappointed if one of my student project
groups created such a privacy and security hole; one would expect
better from a pricey commercial product.

10.7.3 Attacks on information in transit

Attacks on information in transit have perhaps been the least of the
concerns, though they are certainly still serious and common enough;
with the spread of wireless systems, this may change, and not for the
better. Someone who wants to steal money could eavesdrop on your
conversation with your bank to collect your account number and
password. If traffic between you and the bank is encrypted, however, it
can’t be understood. Programs can snoop on unencrypted connections



anywhere that offers open wireless access and may allow an attacker to
pretend to be you, quite undetectably. One large theft of credit card data
involved listening to unencrypted wireless communications between
terminals in stores; the thieves parked outside the stores and captured
credit card information as it went by.

HTTPS is a version of HTTP that encrypts TCP/IP traffic in both
directions, which makes it impossible for an eavesdropper to read
contents or to masquerade as one of the parties. HTTPS use is growing
quickly, though it is not yet universal.

It’s also possible to mount a man-in-the-middle attack, in which the
attacker intercepts messages, modifies them, and sends them along as
if they had come directly from their original source. (The Count of Monte
Cristo story mentioned in Chapter 8 is an instance.) Proper encryption
prevents this kind of attack as well. Country fire-walls are another kind
of man-in-the-middle attack, where traffic is slowed or search results are
altered.

A virtual private network (VPN) establishes an encrypted path
between two computers, and thus generally secures information flow in
both directions. Corporations often use VPNs to enable employees to
work from home or in countries where the security of communication
networks can’t be trusted. Individuals can use VPNs to work more
safely from coffee shops and other sites that offer open Wi-Fi. But
beware of who runs the VPN and how much they will stand up to
government pressures to reveal information about their users.

Indeed, beware of their basic honesty and competence. In July 2020,
a number of free VPN services that claimed not to log connections
suffered a breach that revealed over a terabyte of logging information
about their users, along with dates, times, IP addresses and even
unencrypted passwords.

Secure messaging apps like Signal, WhatsApp and iMessage
provide encrypted voice, video and text connections between their
users. All communication is encrypted end to end, that is, it is encrypted
at the source and decrypted at the receiver, using keys that exist only at
the end points, not in the hands of a service provider, so in principle no
one else can eavesdrop or do a man-in-the-middle attack. Facebook
Messenger, another messaging app, is not end-to-end encrypted at the
moment, though the option exists. Unless it is encrypted, it is more
vulnerable to attack.



Signal is open source software, while WhatsApp is a Facebook
product and iMessage comes from Apple. Edward Snowden has
endorsed Signal as the preferred system for secure communications,
and uses it himself.

The Zoom video conferencing system that many of us now use
claimed to provide end-to-end encryption of meetings, using 256-bit
AES. But a complaint filed by the US Federal Trade Commission in
2020 alleged that in fact Zoom actually retained the encryption keys,
only used AES-128 encryption, and quietly installed software that
bypassed a Safari browser security mechanism.

10.8 Defending Yourself

Defense is tough. You need to defend against all possible attacks,
but attackers only need to find one weakness; the advantage lies with
the attackers. Nevertheless, you can improve your odds, especially if
you are realistic in your assessments of potential threats.

What can you do in your own defense? When someone asks me for
advice, this is what I tell them. I divide defenses into three categories:
ones that are very important, ones that are prudent and cautious, and
ones that depend on how paranoid you are. (Just so you know, I’m well
out on the paranoid end; most people won’t go so far.)
Important:

Choose passwords thoughtfully so that no one can guess them and
using a computer to try a bunch of possibilities isn’t likely to reveal them
quickly. You need something stronger than single words, your birthday,
names of family or pets or significant others, and especially variants of
<password= itself, which are chosen amazingly often. A phrase of
several words that includes upper and lower case letters, numbers and
special characters is a decent compromise between safety and ease of
use. There are a number of sites that will estimate the strength of a
proposed password. The conventional wisdom is that you should
change your passwords from time to time, though I’m not convinced.
Frequent changes may be counter-productive, especially if forced on
you at an inconvenient time, since that encourages obviously formulaic
changes like incrementing a final digit.

Never use the same password for critical sites like your bank and
email as you do for throwaways like online news and social media sites.



Never use the same passwords at work as you do for personal
accounts. Don’t use a single site like Facebook or Google for signing in
to other sites: it’s a single point of failure if something goes wrong, and
of course you’re just giving away information about yourself. You can
check whether a particular password has already been cracked at
haveibeenpwned.com, which collects information from breaches.

Password managers like Last Pass generate and store safe random
passwords for all your sites; you only have to remember one master
password. Of course this is a single point of failure if you forget your
password, or if the company or software holding the passwords is
compromised or coerced.

Use two-factor authentication if it’s available. Two-factor
authentication requires both a password and a physical device in the
possession of the user; it’s safer than a password alone since it
requires the user to know something (password) and to have something
(a device). The device can be a cell phone app that generates a
number which has to match a number generated at the server end by
the same algorithm. It could be a message sent to your phone. Or it
could be a special-purpose device like the one in Figure 10.7 that
displays a freshly generated random number that you have to provide
along with your password.

Figure 10.7: RSA SecurID 2-factor device.

Ironically, RSA, a company that makes a widely used two-factor
authentication device called SecurID (Figure 10.7), was hacked in
March 2011. Security information was stolen, rendering some SecurID
devices vulnerable.

http://haveibeenpwned.com/


Don’t open attachments from strangers and don’t open unexpected
attachments from friends or co-workers. Disallow Visual Basic macros
in Microsoft Office programs. Never automatically accept, click or install
when requested. Don’t download programs of dubious provenance; be
wary about downloading and installing any software, including the
defensive add-ons of this section, unless it comes from a trusted
source. This is just as true for your phone as it is for your computer!

Don’t do anything important at places that offer open Wi-Fi—don’t do
your banking at Starbucks. Make sure that connections use HTTPS, but
don’t forget that HTTPS only encrypts the contents. Everyone on the
path knows the sender and receiver; such metadata can be very useful
in identifying people.

Use anti-virus software and keep it up to date. Don’t click on popups
that offer to run a security check on your computer. Keep software like
browsers and the operating system up to date, since security fixes are
frequent.

Back up your information to a safe place regularly, automatically with
a service like Apple’s Time Machine or manually if you are diligent.
Making regular backups is a wise practice anyway, and it will make you
a lot happier if a drive dies or if mal-ware trashes a disk or encrypts it
for ransom. If you use a cloud service to store precious documents and
pictures, make your own backup copies too, in case you get locked out
or they go out of business.

Prudent and Cautious:
Turn off third-party cookies. It’s a nuisance that cookies are stored on

a perbrowser basis, so you have to set up defenses for each browser
you use, and the details of how to enable them are different, but it’s
worth the effort.

Use add-ons like Adblock Plus, uBlock Origin, and Privacy Badger to
reject advertising and the tracking and potential malware they enable.
Use Ghostery to eliminate most JavaScript tracking. Adblock and
similar add-ons work by filtering out HTTP requests to URLs in long lists
of advertising sites. Advertisers claim that users of ad blockers are
somehow cheating or stealing, but as long as advertisements are one of
the major vectors by which malware is delivered, it’s just good hygiene
to disable them, and you’ll discover that your browser seems faster too.

Turn on private browsing or incognito mode and remove cookies at
the end of each session, though this only affects your own computer;



you can still be tracked online. The Do Not Track setting doesn’t do
much good and can make you more identifiable.

Turn off location services on your phone unless you need a map or
navigation.

Disable HTML and JavaScript in your mail reader.
Turn off operating system services that you don’t use. For example,

my Mac offers to let me share printers, files and devices, and to allow
other computers to log in and manage my computer remotely. Windows
has analogous settings. I turn them all off.

A firewall is a program that monitors incoming and outgoing network
connections and blocks those that violate access rules. Turn on the
firewall on your computer.

Use passwords to lock your phone and your laptop. If there’s a
fingerprint reader, use it.

Paranoid:
Use NoScript in your browser to curtail JavaScript.
Turn off all cookies except for sites that you explicitly whitelist.
Use a fake email address for temporary signups. I use mailinator.com

or yopmail.com when some site insists on an email address before they
will let me access some service or information.

Turn off your phone when you’re not using it. Encrypt your phone;
this is automatic on newer versions of iOS and available on Android.
Encrypt your laptop too.

Use the Tor browser for anonymous browsing. (More on this in
Chapter 13.)

Use Signal, WhatsApp or iMessage for secure communication, but
note that these may still pass along malware if you’re not careful.

As cell phones become more of a target, increased precautions are
necessary for them; be especially careful of apps and other content that
you download. In May 2018, Jeff Bezos, founder of Amazon, appears to
have had his cell phone hacked by agents of the Saudi government, via
a malicious video that was included in a WhatsApp message.

You can also be assured that the Internet of Things (IoT) has similar
problems, for which the precautions will be harder to take because you
have little control over such devices. Bruce Schneier’s book Click Here
to Kill Everybody is an excellent survey of the perils of the IoT.

http://mailinator.com/
http://yopmail.com/


10.9 Summary

The web has grown from nothing in 1990 to an essential part of our
lives today. It has changed the face of business, especially at the
consumer level, with search, online shopping, ratings systems, price
comparison and product evaluation sites. It has changed our behavior
as well, from how we find friends, people with shared interests, and
even mates. It determines how we learn about the world and where we
get our news; if we get our news and opinions from a focused set of
sources that adapt to our interests, that’s not good. Indeed, the term
filter bubble reflects just how influential the web is in shaping our
thoughts and opinions.

Along with myriad opportunities and benefits, the web has brought
problems and risks because it enables action at a distance—we are
visible and vulnerable to faraway people that we have never met.

The web raises unresolved jurisdictional issues. For instance, in the
US, many states charge sales tax on purchases within their borders, but
online stores often do not collect sales tax from purchasers, on the
theory that if they have no physical presence in a state, they are not
required to act as an agent of that state’s tax authorities. Purchasers
are supposed to report out-of-state purchases and pay tax on them, but
no one does.

Libel is another area where jurisdiction is uncertain. In some
countries it is possible to bring a libel suit merely because a web site
(hosted elsewhere) is visible in that country even though the person
allegedly doing the libel has never been in the country where the suit is
filed.

Some activities are legal in one country but not in another;
pornography, online gambling, and criticizing the government are
common examples. How does a government enforce its rules on its
citizens when they are using the Internet and the web for activities that
are illegal within its borders? Some countries provide only a limited
number of Internet pathways into and out of the country and can use
those to block, filter or slow down traffic that they do not approve of; the
Great Firewall of China is the best known example, but certainly not the
only one.

Requiring people to identify themselves on the Internet is another
approach. It sounds like a good way to prevent anonymous abuse and



harassment but it also has a chilling effect on activism and dissent. How
do we limit traffic from anonymous trolls and bots while providing
anonymity when appropriate?

Attempts by companies like Facebook and Google to force their
users to use real names have met with strong resistance, for good
reasons. Although there are many drawbacks to online anonymity—
hate speech, bullying, and trolling are compelling examples—it’s also
important for people to be able to express themselves freely without
fear of reprisal. We have not found the right balance yet, if indeed one
even exists.

There will always be tension between the legitimate interests of
individuals, governments (whether they have the support of their
citizens or not), and corporations (whose interests often transcend
national boundaries). Of course criminals don’t worry much about
jurisdiction or the legitimate interests of other parties. The Internet
makes all of these concerns more pressing.





Part IV
Data

Data is the fourth part of the book. The previous edition was
divided into three parts, and data was lumped in with
communications. In the past few years, however, data has become
so important that it warrants a separate section.

The word <data= often comes qualified—big data, data mining,
data science, and a new job title, data scientist. There are books,
tutorials, online courses, even university degrees in these topics.
Let’s take a moment to explain them informally.

Big data means only that we are dealing with a lot of data, which
is certainly true enough. Estimates of how much data there is in the
world grow ever larger. It used to be that estimates could be
conveniently expressed in exabytes (1018) but those days have
passed, and now we need zettabytes (1021). It seems safe to predict
that yottabytes (1024) lie in the near future. Yotta is the largest prefix
in the International System of Units (SI). Eventually, yotta will not be
big enough either, and we will have to add some more prefixes,
something like <On Beyond Yotta,= inspired by Dr. Seuss’s On
Beyond Zebra!.

Data mining is the process of looking for potentially valuable
information and insights that can be extracted from all that big data.
Data science is an interdisciplinary field that applies statistics,
machine learning, and other techniques to try to understand the
data, extract meaning from it, and make predictions based on it.
Naturally a data scientist is a person who does that, and probably
hopes to be handsomely paid for working in such a trendy and
important field.

Where does all this data come from, what can we do with it, and
how can we opt out if we don’t want to contribute data about
ourselves?



In Chapter 11 we will discuss the myriad sources of data: how our
online actions, and our offline actions as well, contribute to what is
sometimes called our <data exhaust,= the enormous amount of
information about us that is produced as we move through the world.

Chapter 12, on artificial intelligence and machine learning, is a
look at one aspect of what is done with all those piles of data. Some
of it is used for our benefit—image recognition and computer vision,
voice recognition and speech processing, language translation, and
other useful applications are all made possible because there is so
much data to learn from. But the downside is that much can be
learned about us as well, often personal information that we don’t
want anyone to know, or at least to be able to take advantage of.

Extensive use of machine learning raises serious concerns about
inferences from data that might support racism, discrimination and
other ethical problems. It’s tempting to think that machine learning is
an objective guide, but in many cases its conclusions merely cloak
implicit biases with a veneer of authority.

Chapter 13 discusses defenses: what we can do to limit the data
we unwittingly provide and reduce the use that is made of it. It’s not
possible to be completely invisible or completely safe, but you can
significantly improve your personal privacy and security.





11
Data and Information

<When you look at the Internet, the Internet looks back at you.=
with apologies to Friedrich Nietzsche, Beyond Good and Evil,
1886.

Almost everything you do with your computer, your phone or your
credit card generates data about you that is carefully collected,
analyzed, saved forever, and often sold to organizations that you know
nothing of.

Think about a typical interaction. You use your computer or your
phone to search for something to buy, a place to visit or a topic to learn
more about. Search engines record what you searched for and when,
where you were, and what results you clicked on, and if possible they
associate it with you specifically. Advertisers use that information to
send you targeted messages about their offerings.

All of us search, shop, and entertain ourselves with online movies
and TV shows. We communicate with friends and family by mail and
text or even occasionally a voice call. We use Facebook or Instagram to
stay in touch with friends and acquaintances, LinkedIn to maintain
potential job connections, and perhaps dating sites to find romance. We
read Reddit, Twitter and online news to keep up with the world around
us. We manage our money and pay our bills online. We move around
constantly with a phone that knows exactly where we are at all times.
Our cars know where we are and relay that information to others. Of
course ubiquitous cameras also know where our cars are. Home
systems like networked thermostats, security systems and smart
appliances watch our every move, and know whether we9re at home,
and what we9re doing when we are.

Every bit of this stream of personal data is collected. A 2018
prediction by Cisco, the dominant manufacturer of network hardware,
says that annual global Internet traffic will exceed 3 zettabytes in 2021.
The prefix zetta is 1021, which is a lot of bytes by any measure. Where
does all this data come from and what9s being done with it? The



answers are sobering, since most of that data is not for us but about us.
The more data there is, the more that strangers can learn about us and
the more that our privacy and security are decreased.

I9ll start with web search, since a significant amount of data collection
begins with search engines. That leads to a discussion of tracking4
what sites you have visited and what you did while visiting them. Next,
I9ll talk about the personal information people willingly give away or
trade for entertainment or a convenient service. Where is all that data
kept? That leads to databases4collections of data that have been
gathered by all kinds of parties4and to data aggregation and mining,
because much of the value of data comes when it is combined with
other data to give new insights. That9s also where major privacy
problems arise, since combining data about us from multiple sources
makes it all too easy to learn things that are no one else9s business.
Finally, I9ll discuss cloud computing, where we hand over everything to
companies that provide storage and processing on their servers instead
of on our own computers.

11.1 Search

Web search began in 1995 when the web was tiny by today9s
standards. The number of web pages and the number of queries both
rose rapidly over the next few years. The original paper on Google,
<The anatomy of a large-scale hypertextual web search engine,= by
Sergey Brin and Larry Page, was published in early 1998. It said that
AltaVista, one of the most successful of the early search engines, was
handling 20 million queries per day late in 1997, and accurately
predicted a web of a billion pages and hundreds of millions of queries a
day by 2000. One estimate is that in 2017 there were 5 billion queries a
day.

Search is big business, going from nothing to a major industry in less
than 20 years. For example, Google was founded in 1998, went public
in 2004, and had a market capitalization of a trillion dollars in fall 2020,
way behind Apple (over $2 trillion) but far ahead of long-established
businesses like Exxon Mobil and AT&T, both under $200 billion. Google
is highly profitable but there9s plenty of competition, so who knows what
might happen. (A disclosure is in order here: I am a part-time Google



employee and I have many friends at the company. Naturally, nothing in
this book should be taken as Google9s position on anything.)

How does a search engine work? From a user9s perspective, a query
is typed into a form on a web page and sent to a server, which almost
instantly returns a list of links and text snippets. From the server side,
it9s more complicated. The server creates a list of pages that contain the
word or words of the query, sorts them into order of relevance, wraps
snippets of the pages in HTML, and sends them back.

The web is far too big for each user query to trigger a new search
over the web, however, so a major part of a search engine9s task is to
be prepared for queries by already having page information stored and
organized at the server. This is done by a crawl of the web, which scans
pages and stores relevant contents in a database so that subsequent
queries can be answered quickly. Crawling is a giant-scale example of
caching: search results are based on a pre-computed index of cached
page information, not a real-time search of Internet pages.

Figure 11.1 shows approximately what the structure is, including the
insertion of advertising into the result page.

The problem is scale. There are billions of users and many billions of
web pages. Google used to report how many pages it was crawling to
build its index, but stopped doing that sometime after the number of
pages went past 10 billion. If a typical web page is 100 KB, storing a
hundred billion pages requires 10 petabytes of disk space. Although
some of the web is static pages that don9t change for months or even
years, a significant fraction changes rapidly (news sites, blogs, Twitter
feeds), so the crawl has to be ongoing and highly efficient; there9s no
chance to rest, lest the indexed information become dated. Search
engines handle billions of queries a day; each of those requires
scanning a database, finding the relevant pages, and sorting them into
the right order. It also includes choosing advertisements to accompany
the search results and, in the background, logging everything so there9s
data to improve search quality, keep ahead of competitors, and sell
more advertising.



Figure 11.1: Organization of a search engine.

From our standpoint, a search engine is a great example of
algorithms in action, though the volume of traffic means that no simple
search or sort algorithm is going to be fast enough.

One family of algorithms deals with the crawl: deciding what page to
look at next, extracting the indexable information from it (words, links,
images, and so on), and delivering those to the index builder. URLs are
extracted, duplicates and irrelevancies are eliminated, and the survivors
are added to a list to be examined in their turn. Complicating this is the
fact that a crawler can9t visit a site too often, because that could add a
significant load and thus become a nuisance; the crawler might even be
denied access. Since the rate of change of pages varies widely, there is
also a payoff from algorithms that can accurately assess how frequently
pages change, and visit the rapid changers more often than the slow
changers.

Index-building is the next component. This takes pages from the
crawler, extracts the relevant parts of each page, and indexes each part
along with its URL and location in the page. The specifics of this
process depend on the content to be indexed: text, images,
spreadsheets, PDFs, videos and so on all require their own processing.
In effect, indexing creates a list of pages and locations for each word or
other indexable item that has occurred in some web page, stored in a
form that makes it possible to quickly retrieve the list of pages for any
specific item.



The final task is formulating a response to the query. The basic idea
is to take all the words of the query, use the indexing lists to quickly find
URLs that match, then (also quickly) select the URLs that match best.
The details of this process are the crown jewels for search engine
operators, and you won9t find out much about specific techniques by
looking on the web. Again, scale dominates: any given word might
appear in millions of pages, a pair of words might still be in a million
pages, and those potential responses have to be rapidly winnowed
down to the best ten or so. The better that the search engine brings
accurate hits to the top and the more rapidly it responds, the more it will
be used in preference to its competitors.

The first search engines merely displayed a list of pages containing
the search terms, but as the web grew, search results were a jumble of
largely irrelevant pages. Google9s original PageRank algorithm
assigned a quality measure to each page. PageRank gave more weight
to pages that other pages link to or that are linked to by pages that
themselves are highly ranked, on the theory that those are the most
likely to be relevant to the query. As Brin and Page say, <Intuitively,
pages that are well cited from many places around the web are worth
looking at.= Naturally there9s far more than this to producing high-quality
search results, and search engine companies are continuously trying to
improve their results in comparison to their competitors.

It takes enormous computing resources to provide a search service
at full scale4 millions of processors, terabytes of primary memory,
petabytes of secondary storage, gigabits per second of bandwidth,
gigawatts of electrical power, and of course lots of people. These all
have to be paid for somehow, usually by advertising revenue.

At the most basic level, advertisers pay to display an advertisement
on a web page, with the price determined by some measure of how
many people, and what kind of people, view the page. The price might
be in terms of page views (<impressions,= which count only that the ad
appeared on the page), clicks (the viewer clicked on the ad), or
<conversions,= where the viewer eventually bought something. Viewers
who might be interested in whatever is being advertised are clearly
valuable, so in the most common model, the search engine company
runs a real-time auction for search terms. Advertisers bid for the right to
display advertisements beside the results for specific search terms, and
the company that serves the ad makes money when a viewer clicks on
it.



Google Ads (formerly AdWords) makes it easy to experiment with a
proposed advertising campaign. For instance, their estimation tool
(Figure 11.2) says that the likely cost for the search terms <kernighan=
and some related ones like <unix= and <c programming= will be 5 cents
per click, that is, every time someone searches for one of these terms
and then clicks on my advertisement, I will pay Google 5 cents. Google
also estimates that for my selection of search terms there will be 194
clicks per day with a daily budget of ten dollars (averaged over a
month), though of course neither of us knows how many people would
click on my advertisement and thus cost me money. I9ve never done the
experiment to see what would happen.

Could advertisers pay to bias the search results in favor of
themselves? This was a concern for Brin and Page, who wrote in the
same paper, <We expect that advertising funded search engines will be
inherently biased towards the advertisers and away from the needs of
the consumers.= Google derives most of its revenue from advertising.
Though it maintains a separation between search results and
advertisements, as do the other major search engines, numerous legal
challenges have claimed unfairness or bias towards Google9s own
products. Google9s response is that search results are not biased
against competitors but are based entirely on algorithms that reflect
what people find most useful.



Figure 11.2: Google Ads estimates for <kernighan= and related
terms.

Another possible form of bias occurs when nominally neutral
advertising results are subtly biased towards particular groups based on
possible profiling for race, religion, or ethnicity. For instance, some
names are predictive of racial or ethnic background, so advertisers
could aim towards or away from such groups when the names are
searched for.

In the US, some kinds of advertisements are illegal if they indicate a
preference based on race, religion, or gender. Facebook, which also
derives almost all of its revenue from advertising, provides advertisers
with tools to target their advertisements using a large set of criteria,
most of which are straightforward4income, education4 but some are
explicitly illegal and others are proxies for potentially discriminatory
targeting. In 2019, Facebook settled a suit that alleged that its
advertising platform permitted advertisements that enabled
discrimination.

Is it possible to search the web without being tracked in such detail?
The Duck-DuckGo search engine promises that it does not maintain
your personal search history and does not deliver personalized
advertisements. It does some of its own searching and aggregates
results from a large number of search engines and other sources. It
makes money from advertising, but that can be removed by Adblock
and the like. DuckDuckGo also offers several useful guides for more
private and secure browsing and phone use.

11.2 Tracking

The discussion above is phrased in terms of search, but of course
the same kinds of considerations apply for any kind of advertising: the
more accurately it can be targeted, the more likely it is to cause the
viewer to respond favorably and thus the more an advertiser is willing to
pay. Tracking you online4what you search for, what sites you visit, and
what you do while visiting them4can reveal a remarkable amount
about who you are and what you do. For the most part, the goal of
today9s tracking is to sell to you more effectively, but it9s not hard to
imagine other uses of such detailed information. In any case, the focus



in this section is primarily on tracking mechanisms: cookies, web bugs,
JavaScript, and browser fingerprinting.

It9s inevitable that information about us is collected as we use the
Internet; it9s hard to do anything without leaving tracks. The same is true
when we use other systems, especially cell phones, which know our
physical location whenever they are turned on. A GPS-enabled phone,
which includes all smartphones, generally knows where you are to
within about 10 meters when you9re outside, and can report your
position at any time. Some digital cameras include GPS as well, which
lets them encode the geographic location in each picture they take; this
is called geo-tagging. Cameras can use Wi-Fi or Bluetooth for
uploading pictures; there9s no reason your camera couldn9t be used for
tracking as well.

When tracks like these are collected from multiple sources, they paint
a detailed picture of our activities, interests, finances, associates, and
many other aspects of our lives. In the most benign setting, that
information is used to help advertisers target us more accurately, so we
will see advertisements that we are likely to respond to. But the tracking
need not stop there and its results can be used for much less innocent
purposes, including discrimination, financial loss, identity theft,
surveillance, and even physical harm.

In 2019 and 2020, the New York Times published an extended series
of articles on privacy and tracking. One of the most revealing and
disturbing was a study of a database of 50 billion cell phone location
records from the phones of 12 million people in several large American
cities. The data was provided by anonymous sources, most likely
someone working at a data broker. To quote the Times,

The companies that collect all this information on your movements
justify their business on the basis of three claims: People consent
to be tracked, the data is anonymous and the data is secure.
None of those claims hold up.

The Times was able to identify a significant number of individuals by
correlating with events, home and work addresses, and the like. The
Times was working with 50 billion records, but says that location data
companies collect orders of magnitude more information than that every
day, including a great deal of demographic data, so correlations and
identifications are easier. In theory, there is no personally identifiable



information in this <anonymous= data, but in practice, it is easy to make
connections that identify individuals, especially when data sources are
combined. The article is seriously worrying, as is the whole series.

How is information collected? Some information is sent automatically
with every request from your browser, including your IP address, the
page that you were viewing (the <referrer=), the type and version of your
browser (the <user agent=), the operating system, and your language
preference. You have only limited control over this. Figure 11.3 shows
some of the information that is sent, edited for space.

In addition, if there are cookies from the server9s domain, those are
sent as well. As discussed in the last chapter, cookies only go back to
the domain from which they originated, so how could one site use
cookies to track visits to other sites?

Figure 11.3: Some of the information sent by a browser.

The answer is implicit in how links work. Web pages contain links to
other pages4that9s the essence of hyperlinking4and we9re familiar
with links that must be explicitly clicked before they9re followed. But
image and script links do not need to be clicked; they are loaded
automatically from their sources as the page is being loaded. If a web
page contains a reference to an image, that image is loaded from
whatever domain is specified. Normally the image URL will encode the
identity of the page making the request so that when my browser
fetches the image, the domain that provides the image knows which
page I have accessed and it too can deposit cookies on my computer or



phone and retrieve cookies from previous visits. The same is true of
JavaScript scripts.

This is the heart of tracking, so let9s make it more specific. As an
experiment I turned off all my defenses and used Safari to visit
toyota.com. The initial visit downloaded cookies from over 25 different
sites, along with 45 images from a wide variety of sites and over 50
JavaScript programs, totaling more than 10 megabytes.

The page continued to make network requests for as long as I
remained on it, and in fact was doing so much background computing
that Safari warned me about it (Figure 11.4).

Figure 11.4: The web page that keeps on computing.

This explains why when I ask my students to count cookies, they
report that they have thousands. It also explains why such pages might
load slowly. (You can do your own experiments; this information comes
from places like the browser9s history and privacy settings.) I didn9t try
the experiment on a phone, since it would make a measurable dent in
my modest data plan.

With my normal defenses enabled4Ghostery, Adblock Plus, uBlock
Origin, NoScript, no cookies, no local data storage4I get no cookies or
scripts at all.

A significant number of the images in the page were like the one
highlighted in Figure 11.5. The Toyota web page includes a link to
Facebook that fetches an image. The image is 1 pixel wide by 1 pixel
high and is transparent, so it9s completely invisible.

http://toyota.com/


Figure 11.5: A single pixel image for tracking.

Single-pixel images like this are often called web bugs or web
beacons; their sole purpose is tracking. When my browser requests the
image from Facebook, Facebook knows that I am looking at a particular
Toyota page and (if I allow it) can store a cookie. As I visit other sites,
each tracking company can build up a picture of what I9m looking at. If
it9s mostly about cars, they can tell prospective advertisers and I9ll start
to see advertisements for car dealers, loans, and automotive
accessories. If it9s about accidents and pain relief, I might see more
from repair services, lawyers and therapists.

Companies like Google, Facebook, and myriad others collect
information about sites that people have visited and then use that to sell
advertising space to customers like Toyota, who can in turn use it for
targeted advertising and (perhaps) correlation with other information
about me beyond my IP address. As I visit more web pages, tracking
companies create ever more detailed databases of my presumed
characteristics and interests, and may eventually deduce that I9m male,
married, over 60, own a couple of cars, live in central New Jersey and
work at Princeton University. The more they know about me, the more
accurately their customers can target their advertisements. Of course
targeting per se is not the same as identification, but at some point it
should be easy to identify me personally, though most such companies
say that they don9t do that. If I do give my name or email address on
some web page, however, there9s no guarantee that it won9t be passed
around.



In 2016, the Washington Post published a series of stories on
privacy. One article was entitled <98 personal data points that Facebook
uses to target ads to you.= The 98 data points include obvious things
like location, age, gender, language, education level, income and net
worth, but also touchier ones like <ethnic affinity= that could be used for
illegal discrimination.

Internet advertising is a sophisticated marketplace. When you
request a web page, the web page publisher notifies an advertising
exchange like Google Ad Exchange or AppNexus that space on that
page is available, and provides information about the likely viewer,
perhaps a 25340-year-old single woman in San Francisco who likes
technology and good restaurants. Advertisers bid for the ad space and
the winner9s advertisement is inserted into the page, all in a few
hundred milliseconds.

If being tracked does not appeal to you, it can be significantly
reduced, though not without some cost. Browsers allow you to reject
cookies entirely or to disable third-party cookies. You can remove
cookies explicitly any time and they can be removed automatically when
the browser is closed. Major tracking companies provide an optout
mechanism: if they encounter a specific cookie on your computer, they
will not track your interactions for targeted advertising, though it9s highly
likely that they will still track you on their own sites.

There is a quasi-official Do Not Track mechanism that promises more
than it delivers. Browsers have a checkbox, usually within the privacy
and security menu, called <Do Not Track,= which if set causes an extra
HTTP header to be sent with requests. (Figure 11.3 includes an
example.) A web site that honors DNT will not pass on information
about you to other sites, though it9s free to retain information for its own
use. In any case, respecting the visitor9s wishes is entirely voluntary and
most sites ignore the preference. For instance, Netflix says <At this time,
we do not respond to Web browser 8do not track9 signals.=

Private browsing or incognito mode is a client-side mechanism that
tells the browser to clear history, cookies, and other browsing data
when the browser session terminates. That prevents other users of your
computer from knowing what you have been doing (which is why it9s
informally known as <porn mode=), but it has no effect whatsoever on
what is remembered at the sites you have visited, which with high
probability can recognize you again anyway. In spite of that, some sites



refuse to provide content if they detect that you are using incognito
mode.

Defense mechanisms are not standardized across browsers or even
across different versions of the same browser, and the defaults are
usually set so you are defenseless.

Unfortunately, many sites don9t work without cookies, though most
work fine without third-party cookies, so you should always turn those
off. Some uses of cookies are legitimate4a web site needs to know
that you have logged in already or wants to keep track of your shopping
cart4but often cookies are used for tracking. This irritates me enough
that I prefer not to patronize such places.

JavaScript is a major tracking tool. A browser will run any JavaScript
code found in the original HTML file or loaded from a URL with
src="name.js" within a <script> tag. This is heavily used for <analytics=
that watch how particular pages are viewed. For example, when I visit
Slashdot.org, a technology news site, my browser downloads 150 KB
for the page itself, but it also downloads another 115 KB of JavaScript
analytics scripts from three other sites, including this one from Google:

<script>
   src="https://google-analytics. com/ga.js">
</script>

(None of these analytic scripts are actually downloaded when I
personally visit Slashdot, since I use extensions like Adblock and
Ghostery to block them.)

JavaScript code can set and retrieve cookies from the site that the
JavaScript itself came from, and can access other information like the
browser9s history of pages visited. It can also monitor the position of
your mouse continuously and report that back to a server, which can
infer what parts of the web page might be interesting or not; it can also
monitor places where you clicked or highlighted even if they weren9t
sensitive areas like links.

Figure 11.6 shows a couple of lines of JavaScript that will display the
position of the mouse as you move it. A few more lines would send that
same information to the supplier of whatever web page you were
viewing, along with other events like where you typed, clicked or
dragged. The site clickclickclick.click is a much more polished and
highly entertaining version of the same idea.

http://slashdot.org/
http://clickclickclick.click/


Figure 11.6: JavaScript to display coordinates as the mouse
moves.

Browser fingerprinting uses individual characteristics of your browser
to identify you, often uniquely, without cookies. The combination of
operating system, browser, version, language preference, installed fonts
and plug-ins provides a lot of distinctive information. Using new facilities
in HTML5, it9s possible to see how an individual browser renders
specific character sequences, using a technique called canvas finger-
printing. A handful of these identifying signals is enough to distinguish
and recognize individual users regardless of their cookie settings.
Naturally advertisers and other organizations would love to have
pinpoint identification of individuals whether they disable cookies or not.

The Electronic Frontier Foundation (EFF) offers an instructive service
called Panopticlick, after Jeremy Bentham9s <Panopticon,= a prison
designed so that inmates could be continuously monitored without their
knowing when they were being watched. Visiting panopticlick.eff.org will
tell you approximately how unique you are among other recent visitors.
Even with good defenses, you are likely to be uniquely identifiable or at
least close to it. With high probability, you will be recognized when they
see you the next time.

Blacklight, which you can find at themarkup.org/blacklight, simulates
a defenseless browser and reports back on trackers (including those
that are trying to evade ad-blockers), third-party cookies, mouse and
keyboard monitoring, and other devious practices. It9s sometimes scary
to see how much tracking goes on, and it can be entertaining to try to

http://panopticlick.eff.org/
http://themarkup.org/blacklight


find the worst offenders. For example, the cooking site epicurious.com
loaded 136 third-party cookies and 44 ad trackers, while monitoring
keystrokes and mouse clicks, and reporting the visit to Facebook and
Google.

Tracking mechanisms are not restricted to browsers, but can be used
by mail readers and other systems. If your mail reader interprets HTML,
then it9s going to <display= those single-pixel images that let someone
track you. Apple TV, Chromecast, Roku, TiVo, and Amazon9s Fire TV
stick all know what you9re watching. So-called <smart TVs= know that
too, but may also send your voice back to the manufacturer, and even
images from their cameras. Speech-enabled devices like Amazon Echo
send what you say off for analysis.

As we saw earlier, every IP packet travels through 15 to 20 gateways
on its way from your computer to its destination, and the same is true of
packets coming back. Each gateway along that path can inspect each
packet to see what it contains and even modify the packet in some way.
This is called deep packet inspection because it looks not just at the
headers of information but the actual contents. Usually this happens at
your ISP, since that9s the place where you are most easily identifiable.
It9s not limited to web browsing, but includes all traffic between you and
the Internet.

Deep packet inspection can be used for valid purposes, like weeding
out malware, but it can also be used to better aim targeted advertising,
or to monitor or interfere with traffic into and out of a country, like the
Great Firewall of China, or the taps that the NSA placed on traffic in the
US.

The only defense against deep packet inspection is end-to-end
encryption with HTTPS, which protects the contents from inspection
and modification as it travels, though it does not hide metadata like
source and destination.

The rules governing what personally identifiable information can be
collected and how it can be used vary from country to country. As an
over-simplification, in the US, anything goes4any company or
organization can collect and distribute information about you, without
notice and without offering you a chance to opt out.

In the European Union (again, over-simplified), privacy is taken more
seriously: companies cannot legally collect or use data about an
individual without the individual9s explicit permission. The relevant part
of the General Data Protection Regulation, or GDPR, which went into

http://epicurious.com/


effect in mid-2018, says that individual personal data cannot be
processed unless consent has explicitly been given. Even an online
form with opt-out as default is not deemed sufficient consent. People
also have the right to access their personal information and to see how
it is being used. Consent can be withdrawn at anytime.

The US and the EU set up an agreement in 2016 to govern how data
could be moved between the two regions while protecting the privacy
rights of EU citizens. In July 2020, however, the top EU court ruled that
the agreement did not comply with EU privacy rights, leaving the current
situation unclear.

The California Consumer Privacy Act (CCPA) went into effect at the
beginning of 2020, with goals and properties similar to the GDPR. It
includes an explicit <do not sell my data= option. Although it applies only
to residents of California, one might hope that it will have wider effects
in the US. California has over 10 percent of the US population, and is
often ahead of the curve in social issues.

It9s still too early, however, to know whether the GDPR and the CCPA
are working well.

11.3 Social Networks

Tracking the web sites we visit is not the only way that information
about us can be gathered. Indeed, users of social networks voluntarily
give up a remarkable amount of personal privacy in return for
entertainment and keeping in touch with other people.

Years ago, I came across a web post that went something like this:
<In a job interview, they asked me questions about things that weren9t
mentioned in my resume. They had been looking at my Facebook page,
which is outrageous because Facebook is about my private life and has
nothing to do with them.= This is touchingly naive and innocent, but one
suspects that at least some Facebook users would feel similarly
violated even though it9s well known that employers and college
admissions offices routinely use search engines, social networking and
similar sources to learn more about applicants. In the US, it9s illegal to
ask a job applicant about age, ethnicity, religion, sexual orientation,
marital status, and a variety of other personal information, but those can
be readily, and quietly, determined by searching social networks.



Search engines and social networks provide useful services, and
they are free; what9s not to like? But they have to make money
somehow, and you should remember that if you are not paying for a
product, you are the product. The business model of social networking
sites is to collect a great deal of information about their users and sell it
to advertisers. Accordingly, almost by definition, they are going to have
privacy problems.

In the short time they have existed, social networks have grown
dramatically in size and influence. Facebook was founded in 2004 and
in 2020 claimed over 2.5 billion active users each month, about one
third of the world9s population. (Facebook also owns Instagram and
WhatsApp, and information is shared among the operations.) Its annual
revenues of $70 billion come almost entirely from advertising. That
growth rate doesn9t allow much time for careful consideration of
policies, nor does it allow for leisurely development of robust computer
programs. Every social networking site has had problems with divulging
private information through ill-considered features, user confusion about
privacy settings (which change frequently), software errors, and data
disclosures that are inherent in the overall system.

As the largest and most successful social network, Facebook9s
issues have been most visible. Some have come about because
Facebook provides an API for third parties to write applications that run
in the context of a Facebook user, and those can reveal private
information contrary to the company9s privacy policies. Again, none of
this is unique to Facebook.

Geolocation services display users9 locations on cell phones, which
makes it easy to meet friends in person or to play location-based
games. Targeted advertising can be especially effective when a
potential customer9s physical location is known; you9re more likely to
respond to an offer from a restaurant when you9re standing outside its
door than reading about it in a newspaper. On the other hand, it9s a bit
creepy when you realize that your phone is being used to track you
around the interior of a store. Nevertheless, stores are beginning to use
in-store beacons. If you opt in to the system, usually by downloading a
specific app and implicitly agreeing to be tracked, the beacons, which
use Bluetooth to communicate with the app on your phone, monitor
your location within the store and will offer you deals if it looks like you
might be tempted by something specific. To quote one company that



makes beacon systems, <beacons are ushering in the indoor mobile
marketing revolution.=

Location privacy4the right to have your location remain private4is
compromised by systems like credit cards, toll payment systems on
highways and public transport, and of course cell phones. It9s harder
and harder to avoid leaving a trail of every place you9ve ever been. Cell
phone apps are the worst offenders, often requesting access to
essentially everything that the phone knows about you, including call
data, physical location, and so on. Does a flashlight app really need my
location, contacts and call log?

Intelligence agencies have known for a long time that they can learn
a great deal by analyzing who communicates with whom, without
knowing what the parties said. It9s for this reason that the NSA has
been collecting metadata on all telephone calls in the US4phone
numbers, time and duration. The initial collection was authorized as one
of the hasty responses to the terrorist attacks on September 11, 2001,
but the extent of data collection was not appreciated until the release of
Snowden9s documents in 2013. Even if one accepts the claim that <it9s
just metadata, not the conversations,= metadata can be exceptionally
revealing. In testimony before a Senate Judiciary Committee hearing in
October 2013, Ed Felten of Princeton University explained how
metadata can make a private story completely public:

Although this metadata might, on first impression, seem to be
little more than 8information concerning the numbers dialed,9
analysis of telephony metadata often reveals information that
could traditionally only be obtained by examining the contents of
communications. That is, metadata is often a proxy for content.

In the simplest example, certain telephone numbers are used for
a single purpose, such that any contact reveals basic and often
sensitive information about the caller. Examples include support
hotlines for victims of domestic violence and rape. Similarly,
numerous hotlines exist for people considering suicide, including
specific services for first responders, veterans, and gay and
lesbian teenagers. Hotlines exist for sufferers of various forms of
addiction, such as alcohol, drugs, and gambling.



Similarly, inspectors general at practically every federal agency4
including the NSA4have hotlines through which misconduct,
waste, and fraud can be reported, while numerous state tax
agencies have dedicated hotlines for reporting tax fraud. Hotlines
have also been established to report hate crimes, arson, illegal
firearms and child abuse. In all these cases, the metadata alone
conveys a great deal about the content of the call, even without
any further information.

The phone records indicating that someone called a sexual
assault hotline or a tax fraud reporting hotline will of course not
reveal the exact words that were spoken during those calls, but
phone records indicating a 30-minute call to one of these
numbers will still reveal information that virtually everyone would
consider extremely private.

The same is true of the explicit and implicit connections in social
networks. It9s much easier to make linkages among people when the
people provide the links explicitly. For example, Facebook <Likes= can
be used to accurately predict characteristics like gender, ethnic
background, sexual orientation and political leaning. This indicates the
kind of inferences that can be made from information freely given away
by users of social networks.

Facebook <Like= buttons and similar ones from Twitter, LinkedIn,
YouTube and other networks make tracking and association much
easier. Clicking on a social icon on a page reveals that you are looking
at the page4it9s in effect an advertising image, though visible instead of
hidden, and it gives the supplier a chance to send a cookie.

Personal information leaks from social networking and other sites
even for non-users. For instance, when I get an electronic invitation (an
<e-vite=) to a party from a well-meaning friend, the company that runs
the invitation service now has a guaranteed email address for me, even
though I do not respond to the invitation or in any way give permission
to use my address.

If a friend tags me in a picture that is posted on Facebook, my
privacy has been compromised without my consent. Facebook offers
face recognition so that friends can tag each other more easily, and the
default allows tagging without the taggee9s permission. It appears that



my only control is that I can opt out of having Facebook suggest that I
be tagged but not out of tagging itself; according to Facebook:

When you turn your face recognition setting on, we9ll use face
recognition technology to analyze photos and videos we think
you9re in, such as your profile picture and photos you9ve already
been tagged in, to create a template for you. We use your
template to recognize you in other photos, videos and other
places where the camera is used (like live video) on Facebook.

When you turn this setting off: [...] We won9t use face
recognition to suggest that people tag you in photos. This means
that you9ll still be able to be tagged in photos, but we won9t
suggest tags based on a face recognition template.

I don9t use Facebook at all and thus was surprised to find that I
<have= a Facebook page, apparently generated automatically from
Wikipedia. This irritates me but there9s little that I can do about it, other
than hoping that people don9t think I endorse it.

It9s easy for any system with a large user population to create a
<social graph= of interactions among its direct users and to include those
who are brought in indirectly without their consent or even knowledge.
In all of these cases, there9s no way for an individual to avoid the
problem ahead of time and it9s hard to remove the information once it
has been created.

Think hard about what you tell the world about yourself. Before
sending mail or posting or tweeting, pause a moment and ask whether
you would be comfortable if your words or pictures appeared on the
front page of the New York Times or as the lead story on a TV news
program. Your mail, texts and tweets are likely to be stored forever and
could potentially reappear in some embarrassing context years later.

11.4 Data Mining and Aggregation

The Internet and the web have caused a revolution in how people
collect, store and present information. Search engines and databases
are of enormous value to everyone, to the point where it9s hard to
remember how we managed before the Internet. Massive amounts of
data (<big data=) provide the raw material for speech recognition,



language translation, credit card fraud detection, recommendation
systems, real-time traffic information, and many other invaluable
services.

But there are also major downsides to the proliferation of online data,
especially for information that might reveal more about ourselves than is
comfortable.

Some information is clearly public and some collections of
information are meant to be searched and indexed. If I create a web
page for this book, it9s definitely to my advantage to have it easily found
by search engines.

What about public records? Legally, certain kinds of information are
available to any member of the public upon application. In the United
States, this includes court proceedings, mortgage documents, house
prices, local property taxes, birth and death records, marriage licenses,
voter rolls, political contributions, and the like. (Note that birth records
reveal date of birth and are likely to expose the <mother9s maiden
name,= which are often used as part of verifying one9s identity.)

In olden times it required a trip to a local government office to get this
information, so although the records were technically <public,= they were
not accessible without some effort; the person seeking the data had to
show up in person, perhaps identify himself or herself, and maybe pay
for each physical copy. Today the data is often available online and I
can examine public records anonymously from the comfort of my home.
I might even be able to run a business by collecting them in volume and
combining them with other information. The popular site zillow. com
combines maps, real estate advertisements, and public data on
properties and transactions to display house prices on a map. This is a
valuable service if one is looking to buy or sell, but otherwise might be
thought intrusive. Similar sites add information on current and past
residents, their voter registration information, and as a teaser, hint at
potential criminal records. The Federal Election Commission database
of election contributions at fec.gov shows which candidates have been
supported by friends and notables, and can reveal information like
home addresses. This strikes an uneasy balance that leans more
towards the public9s right to know than to the individual9s right to privacy.

Questions about what information should be so accessible are hard
to answer. Political contributions should be public but home addresses
of contributors should probably be redacted. Personal identifiers like US
Social Security numbers should never be put on the web since they are



too readily used for identity theft. Arrest records and photographs are
sometimes public and there are sites that display that information; their
business model is to charge individuals for removing the pictures!
Existing laws don9t always prevent the release of such information and
the horse has left the barn in many cases4once on the web,
information is likely to always be on the web.

Concerns about freely available information become more serious
when data is combined from multiple sources that might seem
independent of each other. For instance, companies that provide web
services record a great deal of information about their users. Search
engines log all queries, along with the IP address from which the query
came and cookies from a previous visit.

In August 2006, with the best of intentions, AOL released a large
sample of search logs for research. The logs of 20 million queries by
650,000 users over three months had been anonymized, so that in
theory anything that could have identified individual users was
completely removed. Good intentions notwithstanding, it rapidly became
clear that in practice the logs were not nearly as anonymized as AOL
had thought. Each user had been assigned a random but unique
identification number, and this made it possible to find sequences of
queries made by the same person, which in turn made it possible to
identify at least a few individuals uniquely. People had searched for
their own names, addresses, Social Security numbers, and other
personal information. Correlation of searches revealed more than AOL
had believed and certainly much more than the original users would
have wanted. AOL quickly removed the query logs from its web site, but
of course that was far too late; the data had spread all over the world.

Query logs contain valuable information for running a business and
improving the service, but clearly they also contain potentially sensitive
personal information. How long should search engines retain such
information? There are conflicting external pressures here: a short
period for privacy reasons versus a long period for law enforcement
purposes. How much should they process the data internally to make it
more anonymous? Some companies claim to remove part of the IP
address for each query, typically the rightmost byte, but that may not be
enough to de-identify users. What access should government agencies
have to this information? How much would be discoverable in a civil
action? The answers to these questions are far from clear. Some of the
queries in the AOL logs were scary4questions about how to kill one9s



spouse, for example4so it might be desirable to make logs available to
law enforcement in restricted situations, but where to draw the lines is
most uncertain. Meanwhile, there are a handful of search engines that
say they do not keep query logs; DuckDuckGo is the most widely used.

The AOL story illustrates a general problem: it9s hard to truly
anonymize data. Attempts to remove identifying information tend to take
a narrow view: there9s nothing in this particular data that could identify a
specific person so it must be harmless. However, in the real world there
are other sources of information, and it is often possible to make
deductions by combining facts from multiple sources that might have
been completely unknown to the original providers and perhaps did not
even exist until later.

A famous early example brought this re-identification problem to the
surface vividly. In 1997, Latanya Sweeney, at the time a PhD student at
MIT, analyzed ostensibly de-identified medical records for 135,000
Massachusetts state employees. The data had been released by the
state9s insurance commission for research and was even sold to a
private company. Among many other things, each record included birth
date, gender and current ZIP code. Sweeney found six people born on
July 31, 1945; three were male, and only one lived in Cambridge.
Combining this information with public voter registration lists, she was
able to identify that person as William Weld, the governor of
Massachusetts at the time.

These are not isolated incidents. In 2014, the New York City Taxi and
Limousine Commission released an anonymized dataset of all 173
million taxi rides in the city in 2013. But this wasn9t done well, so it was
possible to reverse-engineer the process and thus re-attach the
information about which cab matched each trip, based on the cab9s
medallion number. At this point, an enterprising data science intern
discovered that he could find pictures of famous people getting into
taxis where the medallion number was visible. This was enough to
reconstruct details of about a dozen trips, right down to the amount
tipped.

It9s tempting to believe that no one can figure out some secret
because they don9t know enough. These examples illustrate that it9s
often possible to learn a great deal by combining datasets that were
never meant to be examined together. Adversaries may already know
more than you think, and even if they don9t today, more information will
become available overtime.



11.5 Cloud Computing

Think back to the model of computation described in Chapter 6. You
have a personal computer, or several. You run separate application
programs for different tasks, like Word for creating documents, Quicken
or Excel for personal finance, and iPhoto for managing your pictures.
The programs run on your own computer, though they might contact the
Internet for some services. Every so often you can download a new
version that fixes bugs, and occasionally you might have to buy an
upgrade to get new features.

The essence of this model is that the programs and their data live on
your own computers. If you change a file on one computer and then
need it on another, you have to transfer it yourself. If you need a file
that9s stored on a computer at home while you9re in your office or away
on a trip, you9re out of luck. If you need Excel or PowerPoint on both a
Windows PC and a Mac, you have to buy the program for each. And
your phone isn9t part of this at all.

A different model is now the norm: using a browser or a phone to
access and manipulate information that is stored on Internet servers.
Mail services like Gmail or Outlook are the most widespread example.
Mail can be accessed from any computer or phone. It9s possible to
upload a mail message that was composed locally or to download
messages to a local file system, but mostly you just leave the
information with whoever provides the service. There9s no notion of
software update, though from time to time new features appear.
Keeping up with friends and looking at their pictures is often done with
Facebook; the conversations and pictures are stored at Facebook, not
on your own computer. These services are free; the only visible <cost= is
that you might see advertisements as you read your mail or check in to
see what your friends are doing.

This model is often called cloud computing, because of the metaphor
that the Internet is a <cloud= (Figure 11.7) with no particular physical
location, and information is stored somewhere <in the cloud.= Mail and
social networks are the most common cloud services, but there are
plenty of others, like Dropbox, Twitter, LinkedIn, YouTube, and online
calendars. Data is not stored locally but in the cloud, that is, by the
service provider4your mail and your calendar are on Google servers,



your pictures are on Dropbox or Facebook servers, your resume is at
LinkedIn, and so on.

Figure 11.7: The cloud.

Cloud computing is made possible by the alignment of a number of
factors. As personal computers have become more powerful, so have
browsers; browsers can now efficiently run large programs with
intensive display requirements, even though the programming language
is interpreted JavaScript. Bandwidth and latency between client and
server are much better now for most people than they were ten years
ago, and this makes it possible to send and receive data quickly, even
responding to individual keystrokes for suggesting search terms as you
type. As a result, a browser can handle most of the user interface
operations that would have required a standalone program in the past,
while using a server to hold the bulk of the data and do any heavy
computing. This organization also works well for phones: there9s no
need to download an app.

A browser-based system can be nearly as responsive as a desktop
system, while providing access to data from anywhere. Consider the
cloud-based <office= tools from Google, which provides a word
processor, spreadsheet, and presentation program that allow
simultaneous access and update by multiple users.

One of the interesting issues is whether these cloud tools will
ultimately run well enough to cut the ground out from under desktop
versions. As might be imagined, Microsoft is concerned because Office
provides a significant fraction of the company9s revenue, and because
Office runs primarily on Windows, which provides much of the rest of



the revenue. Browser-based word processors and spreadsheets do not
need anything from Microsoft and thus threaten both core businesses.
At the moment, Google Docs and similar systems do not provide all the
features of Word, Excel and PowerPoint, but the history of technological
advance is replete with examples where a clearly inferior system
appeared, picked up new users for whom it was good enough, and
gradually ate away at the incumbent. Microsoft is obviously well aware
of the issue and in fact offers a cloud version called Office 365.

Web-based services appeal to Microsoft and other vendors because
it9s easy to impose a subscription pricing model, where users have to
pay an ongoing fee for access. Consumers, however, may prefer to buy
the software once, and pay for upgrades if necessary. I9m still using a
2008 version of Microsoft Office on my older Macs. It works fine and (to
Microsoft9s credit) it still gets occasional security updates, so I9m in no
hurry to upgrade.

Cloud computing relies on fast processing and lots of memory on the
client, and high bandwidth to the server. Client side code is written in
JavaScript and is usually intricate. The JavaScript code makes heavy
demands on the browser to update and display graphical material
quickly, responding to user actions like dragging and server actions like
updated content. This is hard enough, but it9s made worse by
incompatibilities among browsers and versions of JavaScript, which
require the supplier to figure out the best way to send the right code to
the client. These are improving, however, as computers get faster and
standards are more closely adhered to.

Cloud computing can trade off where computation is performed
against where information resides during processing. For example, one
way to make JavaScript code independent of the particular browser is
to include tests in the code itself, like <if the browser is Firefox version
75 do this, else if it9s Safari 12 do that, else do something different.=
Such code is bulky, which means that it requires more bandwidth to
send the JavaScript program to the client, and the extra tests might
make the browser run more slowly. As an alternative, the server can ask
the client what browser is being used and then send code that has been
tailored to that specific browser. That code is likely to be more compact
and to run more quickly, though for a small program it might not make
much difference.

Web page contents can be sent uncompressed, which requires less
processing at both ends but more bandwidth; the alternative is to



compress, which takes less bandwidth but requires processing on each
end. Sometimes the compression is on one end only; large JavaScript
programs are routinely squeezed by removing all unnecessary spaces
and by using one- or two-letter names for variables and functions. The
results are inscrutable to human readers but the client computer doesn9t
care.

In spite of technical challenges, cloud computing has much to offer,
assuming you always have access to the Internet. Software is always
up to date, information is stored on professionally managed servers with
plenty of capacity, and client data is backed up all the time so there9s
little chance of losing anything. There9s only one copy of a document,
not multiple potentially inconsistent copies on different computers. It9s
easy to share documents and to collaborate on them in real time. The
price is hard to beat, often free for individual consumers, though
business customers may have to pay.

On the other hand, cloud computing raises difficult privacy and
security questions. Who owns data stored in the cloud? Who has
access to it and under what circumstances? Is there any liability if
information is accidentally released? What happens to the accounts of
people who have died? Who could force the release of data? For
instance, in what situations would your email provider voluntarily or
under threat of legal action release your correspondence to a
government agency or to a court as part of a lawsuit? Would you find
out if it did? In the US, companies can be forbidden, by a so-called
<National Security Letter,= from telling customers that they are the
subject of a government request for information. How does the answer
depend on where you live? What if you9re a resident of the European
Union, with its relatively strict rules about the privacy of personal data,
but your cloud data is stored on servers in the US and subject to laws
like the Patriot Act?

These are not hypothetical questions. As a university professor, I
necessarily have access to private information about students4grades,
of course, but occasionally sensitive personal and family information4
that arrives by email and is stored on university computers. Would it be
legal for me to use Microsoft9s cloud services for my grade files and
correspondence? If some accident on my part caused this information
to be shared with the world, what could happen? What if Microsoft were
subpoenaed by a government agency seeking information about a
student or a bunch of them? I9m not a lawyer and I don9t know the



answers, but I worry about this, so I try to avoid cloud services for
student records and communications. I keep all such material on
computers provided by the school, so if something private leaks out
through their negligence or error, I should be somewhat protected from
liability claims. Of course, if I screw up personally, it probably doesn9t
matter where the data was kept.

Who can read your mail and under what circumstances? This is
partly a technical question and partly a legal one, and the answer to the
legal part depends on what jurisdiction you live in. In the United States,
my understanding is that if you are an employee of a company, your
employer can read your mail on company accounts at will and without
notice to you, period. That9s true whether the mail is business related or
not, on the theory that since the employer provides the facilities, it has
the right to make sure that they are being used for business purposes
and in accordance with company and legal requirements.

My mail is usually not very interesting, but it would bother me a lot if
my employers were to read it without a serious reason even if they have
the legal right to do so. If you9re a student, most universities take the
position that student email is private in the same way that student paper
mail is. In my experience, students don9t use their university mail
accounts except as relays; they forward everything to Gmail. In tacit
acknowledgment of this fact, many universities, including my own,
outsource student mail to external services. These accounts are
intended to be separate from the general services, subject to
regulations about student privacy, and free of advertising, but the data
still resides with the provider.

If you use an ISP or a cloud service for your personal mail, as most
people do (for instance Gmail, Outlook, Yahoo and many others),
privacy is between you and them. In general, such services take the
public position that their customers9 email is private and no human will
look at it or reveal it short of legal requests, but they usually don9t
discuss how firmly they will resist subpoenas that seem too broad or
informal requests that come cloaked as <national security.= You9re
relying on the willingness of your provider to stand up to powerful
pressures. The US government wants easier access to email, in the
interests of fighting organized crime before 9/11 and terrorism after. The
pressure for this kind of access increases steadily, and sharply after any
terrorist incident.



As an example, in 2013, a small company called Lavabit that
provided secure mail for its clients was ordered to install surveillance on
the company network so the US government could access mail. The
government also ordered the surrender of the encryption keys and told
the owner, Ladar Levison, that he could not tell his clients that this was
happening. Levison refused, arguing that he had been denied due
process. Ultimately he chose to shut down his company rather than
enable access to his customers9 mail. It eventually became evident that
the government was after information about a single account, that of
Edward Snowden.

Today one might use ProtonMail as an alternative. It9s based in
Switzerland, promises privacy, and is certainly well-positioned to ignore
requests for information that come from other countries. But any
company can find itself squeezed by government agencies and
commercial financial pressures, no matter where it is.

Leaving aside privacy and security concerns, what liability does
Amazon or another cloud provider have? Suppose that some
configuration error causes AWS service to be unacceptably slow for a
day. What recourse does an AWS customer have? Service-level
agreements are the standard way of spelling this out in contracts, but a
contract doesn9t ensure good service; it only provides a basis for legal
action when something goes seriously wrong.

What responsibilities does a service provider have to its customers?
When will it stand up and fight, and when is it likely to yield to legal
threats or quiet requests from <the authorities=? There9s no limit to the
number of such questions, and few clear answers. Governments and
individuals are always going to want more information about others
while trying to curtail the amount of information available about
themselves. A number of big players, including Amazon, Facebook and
Google, now publish <transparency reports= that give a rough count of
government requests to remove information, provide information about
users, take down a copyright violation, and similar actions. Among other
things, these reports give tantalizing hints of how often major
commercial entities push back and on what grounds. For instance, in
2019 Google received more than 160,000 requests by governments for
information on about 350,000 user accounts. It disclosed <some
information= in about 70 percent of those. Facebook reports similar
numbers of requests and disclosures.



11.6 Summary

We create voluminous and detailed streams of data as we use
technology, much larger than we think. It9s all captured for commercial
use: shared, combined, studied, and sold, far more than we realize.
This is the quid pro quo for the valuable free services that we take for
granted, like search, social networks, phone apps and unlimited online
storage. There is increasing public awareness (though not nearly
enough) about the extent of data collection. Ad blockers are now being
used by enough people that advertisers are starting to take notice.
Given that advertising networks are often inadvertent suppliers of
malware, blocking advertisements is prudent, but it9s not clear what
would happen if everyone started using Ghostery and Adblock Plus.
Would the web as we know it come to a halt, or would someone invent
alternative business models to support Google, Facebook and Twitter?

Data is also captured for government use, which seems more
pernicious in the long run. Governments have powers that commercial
enterprises do not and are accordingly harder to resist. How one tries to
change governmental behavior varies greatly from country to country,
but in all cases, being informed is a good first step.

A very effective AT&T advertising slogan of the early 1980s said
<Reach out and touch someone.= The web, email, texting, social
networks, and cloud computing all make that easy. Sometimes this is
just fine; you can make friends and share interests in a far larger
community than you could ever meet in person. At the same time, the
act of reaching out makes you visible and accessible throughout the
world, where not everyone has your best interests at heart. That opens
the door to spam, scams, spy-ware, viruses, tracking, surveillance,
identity theft, and loss of your privacy and even your money. It9s wise to
be wary.





12
Artificial Intelligence and Machine Learning

<If a computer thinks, learns, and creates, it will be by virtue of a
program that endows it with these capacities. [...] It will be a
program that analyzes, by some means, its own performance,
diagnoses its failures, and makes changes that enhance its future
effectiveness.=

Herbert A. Simon, The New Science of Management Decision,
1960.

<My colleagues, they study artificial intelligence; me, I study natural
stupidity.= Amos Tversky (193731996), a founder of modern
behavioral economics; quoted in Nature, April 2019.

If we apply steadily increasing computing power and memory to a
huge amount of data, and stir in some sophisticated mathematics, it
becomes possible to attack many long-standing problems of artificial
intelligence: getting computers to behave in ways that we would
normally think of as the sole province of humans.

Effective artificial intelligence is comparatively new, though there are
historical roots going back to the 1950s. Today the field is an amalgam
of buzzwords, hype, wishful thinking, and quite a few real
accomplishments. Artificial intelligence, machine learning, and natural
language processing (AI, ML, NLP) have been very successful for
games (programs that play chess and Go are better than the best
human players), speech recognition and synthesis (think Alexa and
Siri), machine translation, image recognition and computer vision, and
robotics systems like self-driving cars. Recommendation systems like
those used by Netflix and Goodreads aim people at new movies and
books, and Amazon9s listings of related items surely contribute to the
company9s bottom line. Spam detection systems do a decent job,
though keeping up with spammer techniques is an endless task.

Image recognition systems are remarkably effective at isolating
components of pictures, then figuring out what those are, though they
are often fooled. Medical image processing for identifying cancerous



cells, retinal disease, and the like is sometimes as good as average
clinicians, though not yet as good as the most expert. Face recognition
is good enough for unlocking phones and doors, though it can be (and
often is) abused for both commercial and government purposes.

There9s a lot of jargon in the field and distinctly different things are
sometimes blurred together. To set the stage, here are some brief
explanations of terminology.

Artificial intelligence is the broad category of using a computer to do
something that we normally think that only humans can do: the
<intelligence= is what we credit ourselves with, and <artificial= means that
a computer is doing it too.

Machine learning is a subset of artificial intelligence, a large family of
techniques that are used to train algorithms so that they can make their
own decisions and thus perform some of the tasks that we call AI.

Machine learning is not the same as statistics, though there is
overlap. To greatly over-simplify, in a statistical analysis, we assume a
model of the mechanism that produced some data, then try to find the
parameters of that model that best fit the data. By contrast, a machine
learning system does not assume a model, but tries to find relationships
in the data. Normally ML systems are applied to larger datasets. Both
statistics and machine learning are probabilistic: they give answers that
have some probability of being correct, but offer no guarantees.

Deep learning is a specific form of machine learning that uses
computational models that, at least metaphorically, are similar to the
neural networks in our own brains. Deep learning implementations
(very!) loosely mimic the kind of processing that the human brain
appears to do: a set of neurons detects low-level features; their outputs
provide inputs to other neurons that recognize higher-level features
based on the lower level; and so on. As the system learns, some
connections are strengthened while others are weakened.

Deep learning has been a highly productive approach, especially for
computer vision. It is one of the most active areas of ML research, and
there are a large number of different models.

There are zillions of books, scientific papers, popular articles, blogs
and tutorials on these topics, and it9s hard to keep up, even if one does
nothing else in life. This chapter is a quick overview of machine learning
that I hope will help you to understand some of the terminology, what
ML is used for, how major systems work, how well they work, and,
importantly, where they may fail.



12.1 Historical Background

Early in the development of computers in the mid-20th century,
people began to think about how computers could be used to perform
tasks that normally could only be done by a human being. One obvious
target was playing games like checkers and chess, which have the
advantage that the rules are completely specified, and there is a large
population of humans who are interested and qualified as experts.
Another target, translation from one language to another, was clearly
more difficult, but more important. For example, machine translation
from Russian to English was a critical matter during the Cold War era.
Other applications included speech recognition and generation,
mathematical and logical reasoning, decision making, and learning
processes.

Funding for research on these topics was readily available, often
from government agencies like the US Department of Defense. We9ve
already seen the value of DoD funding for the early networking research
that led to the development of the Internet. Research in artificial
intelligence was similarly motivated and generously supported.

I think that it9s fair to characterize AI research during the 1950s and
1960s as naively optimistic. Scientists felt that breakthroughs were right
around the corner. In another five or ten years, computers would be
translating languages accurately, and winning chess matches against
the best human players.

I was just an undergraduate at the time, but I found the area and the
potential results fascinating, and I wrote my senior thesis on artificial
intelligence. Sadly, I no longer have a copy4it went missing
somewhere along the way4and I don9t recall how much of the
prevailing optimism that I shared.

But almost every AI application proved to be much harder than was
thought, and <another five or ten years= was always true. Results were
sparse, funding ran out, and the field lay fallow for a decade or two, a
period later referred to as the <AI winter.= Then in the 1980s and 1990s
work began on a different approach, expert or rule-based systems.

In an expert system, domain experts write down lots of rules,
programmers convert the rules into code, and then computers apply
them to perform some task. Medical diagnosis was one popular
application area. Doctors would create rules for deciding what was



wrong with a patient, and then programs could perform diagnoses, to
support, complement, or in theory even replace real doctors. For
example, MYCIN, one of the early examples, was designed to diagnose
blood infections. It used about 600 rules, and was at least as good as
general practitioners. MYCIN was developed by Edward Feigenbaum,
one of the pioneers of expert systems; he shared the 1994 Turing
Award for his work on artificial intelligence.

Expert systems had some real successes, including customer
support, maintenance and repair of mechanical systems, and other
focused areas, but it eventually became clear that there were major
limitations as well. In practice, it9s hard to collect a comprehensive set of
rules, and there are too many exceptions. The technique doesn9t scale
well to large topics or to new problem domains. Rules need to be
updated as conditions change or understanding improves. For example,
think about how decision rules changed in 2020 for doctors who
encountered a patient with an elevated temperature, a sore throat, and
a bad cough. What might have once been the common cold, perhaps
with minor complications, could easily be Covid-19, a highly contagious
disease with serious risks for patients and health-care providers.

12.2 Classical Machine Learning

The basic idea of machine learning is to give an algorithm a large
number of examples and let it <learn= for itself, without being given rules
and without being explicitly programmed to solve specific problems. In
the simplest form, we provide the program with a training set of
examples that have been labeled with their correct values. For example,
rather than trying to invent rules for how to recognize handwritten digits,
we instead train a learning algorithm with a large number of sample
digits, each labeled with its numeric value. The algorithm uses its
successes and failures on the training data to learn how to combine
features of the training data to get the best results. Of course, <best= is
not a certainty: ML algorithms try to improve the probability of getting
good results, but do not guarantee perfection.

After training, the algorithm classifies new items or predicts their
values, based on what it learned from the training set.

Learning based on labeled data is called supervised learning. Most
supervised learning algorithms have a common structure. They process



a large number of examples that are labeled with the correct category,
for example, whether some text is spam or not, or what kind of animal
appears in a picture, or the likely price of a house. The algorithm
determines parameter values that enable it to make the best
classifications or predictions based on this training set. In effect, it
learns how to generalize from examples.

We still have to tell the algorithm what <features= are relevant to
making correct decisions, though not how to weight or combine those
features. For instance, if we are trying to filter email, we need features
that in some way relate to spam content, like spammy words (<free!=),
known spam topics, weird characters, spelling mistakes, incorrect
grammar, and so on. None of these features are individually definitive,
but with enough tagged data, an algorithm can begin to separate spam
from notspam, at least until spammers adapt.

Handwritten digit recognition is a well-understood problem. NIST, the
National Institute of Standards and Technology, provides a public test
suite with 60,000 training images and 10,000 testing images; Figure
12.1 shows a small sample. Machine learning systems do well on this
data: error rates in public competitions are below 0.25%, that is, about
one mistakein400 characters.

Figure 12.1: NIST sample of handwritten digits (Wikipedia).

ML algorithms can fail in many ways4for example, <over-fitting,= in
which the algorithm does well on its training data but much less well on



new data. We may not have enough training data, or we may have the
wrong set of features. Or the algorithm may produce results that confirm
biases in the training data. This is an especially sensitive issue in
criminal justice applications like sentencing or predicting recidivism, but
also in any situation where an algorithm is making decisions about
people: credit scoring, mortgage applications, and resumes.

Spam detection and digit recognition are examples of classification:
putting items into the right class. Prediction algorithms try to predict
some numeric value, like house prices, sports scores, or stock market
trends. For example, we might try to predict house prices based on core
features like location, age, living area and number of rooms; more
complex models, such as those used by Zillow, would add features
such as previous sale prices of similar houses, neighborhood
characteristics, real estate taxes, and quality of local schools.

By contrast with supervised learning, unsupervised learning uses
unlabeled training data, that is, data that isn9t labeled or tagged with
anything. An unsupervised learning algorithm tries to find patterns or
structure in the data, grouping items based on their features. In one
popular algorithm, k-means clustering, the algorithm does its best to
assign the data to k groups in a way that maximizes similarities of items
in the same group while minimizing similarities from one group to
another. For example, to determine authorship of documents, we might
hypothesize that there are two authors. We choose potentially relevant
features like sentence length, vocabulary size, punctuation style, and so
on, and let the clustering algorithm divide the documents into two
groups as best it can.

Unsupervised learning is also useful for identifying outliers in some
group of data items. If most items cluster in some obvious way but there
are a handful that don9t, they may represent data to be examined
further. For example, suppose that the artificial data in Figure 12.2
represents some aspect of credit card usage. Most of the data points
fall into one of the two big clusters, but a few points do not. They could
be fine4the clustering need not be perfect4but they could also be
instances of fraud or error.



Figure 12.2: Clustering to identify anomalies.

Unsupervised learning has the advantage that there9s no need for
potentially expensive tagged or labeled training data, but it is not
applicable to all situations. It requires figuring out a set of useful
features that relate to clusters, and of course having a decent idea of
how many clusters there might be. As a personal example, I once did
an experiment to see what would happen if I used a standard k-means
clustering algorithm to divide roughly 5,000 face images into two
clusters. My naive hope was that this might group the population by
gender. Empirically, it appeared to be correct 90 percent of the time, but
I have no idea what it was basing its conclusions on, and I could see no
obvious patterns in the errors.

12.3 Neural Networks and Deep Learning

If computers could simulate how the human brain works, they could
perform as well as humans on intellectual tasks. That9s sort of a holy
grail for artificial intelligence, and people have tried that approach for
many years.



Brain function is based on connections of neurons, which are special
kinds of cells that respond to stimuli like touch, sound, light or inputs
from other neurons. When its input stimuli are strong enough, a neuron
<fires= and sends a signal on its outputs, which in turn may cause other
neurons to react. (This is of course grossly over-simplified.)

Computer neural networks are simplified versions of such
connections based on artificial neurons connected in regular patterns,
as sketched schematically in Figure 12.3. Each neuron has a rule for
how it combines its inputs, and each edge has a weight that is applied
to data that passes along it.

Figure 12.3: Artificial neural network with 4 layers.



Neural networks are not a new idea, but early work with them did not
produce enough useful results, and they fell out of favor. Nevertheless,
in the 1980s and 1990s, a handful of researchers continued to study
them, and contrary to expectations, by the early 2000s, artificial neural
networks were producing better results on tasks like image recognition
than the best existing techniques. Most recent progress in machine
learning is based on neural nets. The 2018 Turing Award was given to
three of these persistent scientists: Yoshua Bengio, Geoffrey Hinton,
and Yann LeCun.

The core idea of such networks is that early layers identify low-level
features, for example recognizing patterns of pixels that might be edges
in an image. Later layers identify higher-level features, like objects or
regions of color, and ultimately the final layers identify entities like cats
or faces. The word <deep= in deep learning refers to the fact that there
are multiple layers of neurons; depending on the particular algorithm,
this might be only a couple, or it might be a dozen or more.

The diagram in Figure 12.3 doesn9t reveal the complexity of the
computation done within the network, nor the fact that information flows
backwards as well as forward, so that by iterating its processing and
updating the weights at each node, the network improvesits recognition
at each layer.

The network learns by repeatedly processing the inputs and
generating the output, for a very large number of iterations. At each
iteration, the algorithm measures the error between what the neural
network does and what we want it to do, and modifies the weights to try
to reduce the error on the next iteration. It stops when we run out of
training time, or the weights are not changing much.

One critical observation about neural networks is that they do not
need to be given a set of features to look for. Rather, they find their own
features, whatever those might happen to be, as part of the learning
process. This leads to a potential downside of neural networks: they do
not explain what <features= they have identified, and thus provide no
specific explanation or understanding of their results. That9s one reason
why we must be cautious about blindly relying on them.

Deep learning has been especially successful for tasks related to
computer vision, that is, getting computers to identify objects in images
and sometimes to recognize specific instances, like human faces. For
instance, Google Maps recognizes and blurs faces, license plates and
sometimes house numbers in Street View. This is a much easier version



of the general problem of recognizing a specific face, since there is little
downside to blurring something that isn9t a face.

Computer vision is central to a number of robotics applications,
especially self-driving cars, which clearly have to be able to interpret the
world around them, and do so quickly.

At the same time, face recognition in particular raises a large number
of concerns. The potential for greatly increased surveillance is the most
obvious, but face recognition enables subtle discrimination as well.
Most face recognition systems do not work as accurately for people of
color, because there is not enough diversity in the training images. In
2020, amid worldwide protests against racism, major companies
announced plans to leave the field entirely (IBM) or to have a
moratorium on supplying facial recognition technology to law
enforcement (Amazon, Microsoft). None of these companies were big
players in the area, so there was not much business effect, but perhaps
the symbolism is a sign of deeper commitment.

One of the most dramatic successes of deep learning has been the
creation of algorithms that play the most difficult human games, like
chess and Go, better than the best human players. Not only are they
better than humans, but they learned how to do this in a matter of hours
by playing against themselves.

AlphaGo, a program developed by the company DeepMind (later
acquired by Google) was the first program to defeat a professional Go
player. It was quickly followed by AlphaGo Zero, which played
substantially better, and then by AlphaZero, which played not only Go
but also chess and the Japanese board game shogi, which is similarly
difficult. AlphaZero taught itself how to play by playing games against
itself, and with a day of training was able to beat the best conventional
chess program, Stockfish, which it defeated in a 100-game match with
28 wins, no losses and 72 draws.

AlphaZero is based on a form of deep learning called reinforcement
learning, which uses feedback from the external environment (in the
case of games, whether it wins or loses) to continuously improve its
performance. It needs no training data, because the environment tells it
whether it9s doing the right thing or at least heading in the right
direction.

If you want to do some of your own experiments with machine
learning, Google9s teachablemachine.withgoogle.com makes it easy to
experiment with tasks like image and sound recognition.

http://teachablemachine.withgoogle.com/


12.4 Natural Language Processing

Natural language processing (NLP) is a sub-area of machine learning
that deals with how to make computers process human languages4
how to understand what some text means, summarize it, translate it into
another language, convert it into speech (or convert speech into text),
or even generate meaningful text that appears to have come from a
human. Today we see NLP in action with voice-actuated systems like
Siri and Alexa, which recognize speech and turn it into text, figure out
what the question is, search for relevant answers, and then synthesize
a natural-sounding response.

Can a computer tell us what a document is about, what it means, or
how it is germane to what we are working on? Can a computer create
an accurate summary or synopsis of a long document? Can a computer
find relevant or related texts, like the same news story from different
perspectives, or legal cases that might be germane? Can it reliably
detect plagiarism? These are all questions that could be addressed if
computers were better at understanding language.

Sentiment analysis is one interesting special case of understanding,
trying to determine whether a piece of text is fundamentally positive or
negative. This has applications in assessing customer feedback and
reviews, survey responses, news stories, and the like.

Naively, one might suppose that it would be sufficient to count the
positive words (<wonderful=, <great=, <stable=, <genius=) and the negative
words (<awful=, <dumb=) and display the difference. But this approach
doesn9t begin to capture the subtlety of language. Even simple
negations are challenging (<He9s neither stable nor a genius=) and irony
or sarcasm (<He9s hardly wonderful=) is much harder.

Another AI challenge is to carry on a conversation at a level that
appears to be human. This harks back to Turing9s test for computer
intelligence, which we described at the end of Chapter 3. Intelligent
conversation requires understanding what is said, and being able to
generate appropriate responses.

One of the first attempts at using natural language to interact with a
computer was a program called Eliza, which simulated a conversation
between a patient and a Rogerian psychologist. Eliza was created by
MIT professor Joseph Weizenbaum in 1966, and was surprisingly
effective, at least when first encountered. There are plenty of Eliza



simulators on the web; it9s entertaining to play with them for a few
minutes, though their weaknesses quickly become evident. Figure 12.4
is a sample conversation with one.

Figure 12.4: A <conversation= with Eliza.

Chatbots have improved since 1966, but again one doesn9t need a
lot of experience to discover their limitations. How often have you called
some company and gotten into a dialog with a recorded voice that goes
like this?

<In a few words, tell me how I can help you. You can say billing,
repairs, orders, or 8something else.9=

Speech recognition software looks for keywords in your response, then
sends you to the next step in this frustrating process. There9s no real
understanding, however, so if your problem doesn9t match one of the
keywords, it doesn9t converge. Most times I don9t even try, and attempt
to bypass the whole sequence by repeatedly pushing zero. That
generally gets me to a real person, who is much more likely to be
helpful.

More sophisticated systems, based on language models trained on a
large body of text, can generate better output, though not in response to
specific human interactions. One interesting example is Talk to
Transformer, which generates plausible continuations of an initial
phrase provided by the user. It9s based on a database of 8 million web
pages; it tries to predict the next words based on patterns derived from
all previous words. The result is usually at least plausible, and
sometimes very good. Here are two results, where I provided the initial
sentence <Writing a book is hard work.=



Writing a book is hard work. Try to come up with something that
makes sense, be unique, and that has your name and your vision
on it. The copyright holder can argue that you9re copying their book
without their permission and even going as far as filing a lawsuit.
You have to be able to handle all that and still write the best book
possible.

Writing a book is hard work. And it9s important to do this right. So
many writers don9t get it. I spent years of my life trying to produce
The Book I Want To Write. Over the last year, my new book,
Getting It Right the First Time, has been a passionate success. I9ve
received notes from my editors and readers with gratitude and
encouragement.

Through a strange combination of circumstances, in the spring of
2020 I co-taught a course on poetry and computation. One of the
questions we debated was whether computers could write poetry as
well as humans could, a kind of Turing test in a narrow domain. The
answer depends on any number of ill-defined terms, so I can9t say
definitively, but for fun Figure 12.5 contains three poems for you to
assess: human or program? The authors are revealed at the end of this
chapter.



Figure 12.5: Three poems4which were written by program and
which by human?

Computer translation of one human language into another is an old
problem. Back in the 1950s, people confidently predicted that it would
be a solved problem in the 1960s, and in the 1960s the expectation was
the 1970s. Sadly, we9re not there yet, though the situation is
enormously better than it was, thanks to lots of computing power and
large collections of text that can be used to train machine-learning
algorithms.

The classic challenge is to translate the English expression <the spirit
is willing but the flesh is weak= into Russian, then back to English. At
least in legend, this came out as <the vodka is strong but the meat is
rotten.= Today, Google Translate provides the sequence seen in Figure
12.6. It9s better but hardly perfect, a clear indication that machine
translation is not yet a solved problem. (Google9s algorithm changes
frequently, so your results may well differ by the time you try it.)



Today machine translation is useful for getting a rough idea of what
some text is about, especially if it is in a language or character set
where you have no knowledge at all. But details are often wrong, and
nuance escapes entirely.

Figure 12.6: Translation from English to Russian and back.

12.5 Summary

Machine learning is not a panacea, and there are many open
questions about how well it works, and especially about how to explain
the results that it comes up with. The xkcd cartoon in Figure 12.7
captures this perfectly.



Figure 12.7: xkcd.com/1838 on Machine Learning.

Artificial intelligence and machine learning have brought us
breakthroughs in computer vision, speech recognition and generation,
natural language processing, robotics, and many other areas. At the
same time, they raise serious concerns about fairness, bias,
accountability, and appropriate ethical uses for the technology. Perhaps
the most important issue is that answers from ML systems may <look
right= but only because they reflect biases in the data they started with.

It is possible to be led astray by artifacts of the training data. For
instance, there9s an old story that one study did an excellent job of
detecting tanks in training pictures, but failed badly in practice. The

http://xkcd.com/1838


reason: most of the training pictures were taken on sunny days, so the
algorithm had learned to recognize nice weather, not tanks.
Unfortunately, this is just an appealing urban legend, as documented by
Gwern Branwen at www.gwern.net/Tanks. But there is a useful caution
even if the story isn9t true: be sure you9re not being misled by some
irrelevant artifact.

Can ML algorithms be better than their data? Amazon scrapped an
internal tool that it used for recruiting, because it clearly showed bias
against female applicants. Amazon9s models assessed candidates by
observing patterns in resumes submitted to the company over a 10-year
period. But most of those applicants had been male, so the training data
was not representative of the current applicant pool. The effect was that
the system learned to prefer male applicants. In short, no AI or ML
system can be better than its input data, and there is a serious
probability that such systems will merely confirm the biases inherent in
their data.

For example, computer vision systems are able to identify faces,
sometimes with reasonably high accuracy. That can be used for positive
good, like unlocking your phone or your office, but it can also be put to
more troubling uses. Smart doorbell systems like Amazon Ring can
monitor what9s going on near your house, and send alerts to you and to
the local police when something suspicious happens. If the system
starts to flag people of color in a predominantly white neighborhood as
<suspicious,= however, that seems like mechanization of racism.

Concerns about such issues led Amazon to suspend police use of its
Rekognition software in mid-2020; the action was taken at a time of
widespread protests over police brutality and racial bias in the US.
Shortly thereafter, several suits were filed against Clearview AI, the
company that has created a face database from billions of web photos
and makes that data available to law enforcement agencies. Clearview
argues that collecting publicly available information is protected by the
free-speech provisions of the First Amendment.

Computer vision systems are used in a variety of surveillance
settings. What are the limits? Should a military system for locating
potential terrorist leaders call in drone strikes when such a person is
apparently identified? How far should we go in mechanizing decisions
like this? More generally, how should we deal with machine learning in
safety-critical systems like self-driving cars, autopilots, industrial control
systems, and many others? When there is no deterministic behavior to

http://www.gwern.net/Tanks


review or audit, how do we ensure that there are no circumstances in
which a model will choose a disastrous course of action, for example,
suddenly accelerating a self-driving car, or firing a missile into a crowd?

Machine learning models are sometimes used in the criminal justice
system to predict whether someone accused of a crime is at risk of
recividism; this can affect bail and sentencing decisions. The problem is
that training data reflects the current situation, which may well reflect
systemic injustice based on race, gender and other characteristics that
are in the data. Unbiasing such data is a difficult problem.

In many ways, we are still in the early days of artificial intelligence
and machine learning. It seems likely that the benefits will continue, but
so will the drawbacks, and we will have to be vigilant about recognizing
and controlling the latter.

The first and last poems of Figure 12.5 are by humans, respectively
Paul Celan and Gertrude Stein; the middle one was generated by Ray
Kurzweil9s Cybernetic Poet program, accessed through botpoet.com.

http://botpoet.com/




13
Privacy and Security

<You have zero privacy anyway. Get over it.=
Scott McNealy, CEO of Sun Microsystems, 1999.

<Technology has now enabled a type of ubiquitous surveillance
that had previously been the province of only the most imaginative
science fiction writers.=

Glenn Greenwald, No Place to Hide, 2014.

Digital technology has brought us an enormous number of benefits,
and our lives would be much poorer without it. At the same time, it has
had a large negative effect on personal privacy and security, and (in my
editorial opinion) this is getting worse. Some of the erosion of privacy is
related to the Internet and the applications it supports, while some is
merely a by-product of digital devices getting smaller, cheaper, and
faster. Increased processing power, storage capacity and
communications bandwidth combine to make it easy to capture and
preserve personal information from many sources, aggregate and
analyze it efficiently, and disseminate it widely, all at minimal expense.

One interpretation of privacy is the right and ability to keep aspects of
one’s personal life unknown to others. I don’t want the government or
the companies that I deal with to know everything about what I buy, who
I communicate with, where I travel, what books I read, what
entertainment I enjoy. All of those things are my private business, and
they should be revealed to others only when I explicitly approve. It’s not
that I have deep embarrassing secrets, at least no more than the
average person does, but I should be secure in the knowledge that my
life and habits are not shared with others, and especially not shared
with commercial interests that want to sell me more things nor with
government agencies no matter how well-intentioned.

People sometimes say <I don’t care; I have nothing to hide.= This is
naive and silly. Would you like any random person to be able to see
your home address, phone numbers, tax returns, emails, credit reports,
medical records, all the places you’ve walked or driven, who you’ve



exchanged phone calls and texts with? Not likely, but with the possible
exception of your tax returns and medical records, all of that information
is potentially available to data brokers, who can sell it on to others.

Governments use the word security in the sense of <national
security,= that is, protecting the country as a whole against threats like
terrorist attacks and the actions of other countries. Corporations use the
word to refer to protection of their assets from criminals and other
companies. For individuals, security is often lumped with privacy, since
it’s hard to feel safe and secure if most aspects of your personal life are
widely known or easy to find out. The Internet in particular has had a
significant effect on our individual personal security—more financial
than physical—since it has made it easy for private information to be
gathered from many places, and it has opened up our lives to electronic
intruders.

If you care about your personal privacy and online security, it’s
imperative to be more tech-savvy than most people are. If you learn the
basics, you’ll be a great deal better off than your less-informed friends.
In Chapter 10 we looked at specific ways to manage browsing and
phone use. In this chapter, we will look at broader countermeasures that
individuals can take to slow down the invasions of their privacy and
improve their security. This is a big subject, however, so this is a
sample, not the whole story.

13.1 Cryptography

Cryptography, the art of <secret writing,= is in many ways our best
defense against attacks on our privacy. Properly done, cryptography is
wonderfully flexible and powerful. Unfortunately, good cryptography is
also difficult and subtle, and all too often defeated by human error.

Cryptography has been used for thousands of years to exchange
private information with other parties. Julius Caesar used a simple
encryption scheme (coincidentally called the Caesar cipher) of shifting
the letters in his secret messages over by three positions, so A became
D, B became E, and so on. Thus the message <HI JULIUS= would be
encoded as <KL MXOLXV.= This algorithm lives on in a program called
rot13 that shifts by 13 places. It’s used on newsgroups to hide spoilers
and offensive material from accidental viewing, not for any



cryptographic purpose. (You might think about why shifting by 13 is
convenient for English text.)

Cryptography has a long history, often colorful and sometimes
dangerous to those who thought encryption would keep their secrets
safe. Mary, Queen of Scots, lost her head in 1587 because of bad
cryptography. She was exchanging messages with conspirators who
wanted to depose Elizabeth I and put Mary on the throne. The
cryptographic system was cracked, and a man-in-the-middle attack
exposed the plot and the names of the collaborators; their fates make
beheading seem humane. Admiral Isoroku Yamamoto, commander-in-
chief of the Japanese Combined Fleet, was killed in 1943 because the
Japanese encryption system was not secure. American intelligence
learned Yamamoto’s flight plans, and American pilots were able to
shoot down his plane. And it is claimed, though not universally
accepted, that World War II was significantly shortened because the
British were able to decode German military communications encrypted
with the Enigma machine (Figure 13.1), using computing techniques
and expertise from Alan Turing.



Figure 13.1: German Enigma cipher machine.

The basic idea of cryptography is that Alice and Bob want to
exchange messages, keeping the contents private, even though
adversaries can read the messages that are being exchanged. To do
this, Alice and Bob need some kind of shared secret that can be used to
scramble and unscramble messages, making them intelligible to each
other but unintelligible to everyone else. This secret is called the key. In
the Caesar cipher, for example, the key would be the distance that the



alphabet is shifted, that is, three for replacing A by D, and so on. For a
complicated mechanical encryption device like the Enigma, the key is a
combination of the settings of several code wheels and the wiring of a
set of plugs. For modern computer-based encryption systems, the key
is a large secret number used by an algorithm that transforms the bits of
a message in a way that is infeasible to unscramble without knowing
the secret number.

Cryptographic algorithms can be attacked in a variety of ways.
Frequency analysis—counting the occurrences of each symbol—works
well against the Caesar cipher and the simple substitution ciphers of
newspaper puzzles. To defend against frequency analysis, algorithms
must arrange that all symbols are equally likely and there are no
patterns to analyze in the encrypted form. Another attack might be to
exploit known plaintext, that is, a message known to have been
encrypted with the target key, or to exploit chosen plaintext, running
chosen messages through the algorithm with the target key. A good
algorithm has to be immune to all such attacks.

It must be assumed that the cryptographic system is known and
perfectly understood by adversaries, so that all of the security resides in
the key. The alternative, assuming that adversaries don’t know what
scheme is being used or how it works, is called security by obscurity,
and it never works for long, if at all. Indeed, if someone tells you that
their cryptosystem is perfectly secure but they won’t tell you how it
works, you can be certain that it’s not secure.

Open development of cryptographic systems is vital. Cryptosystems
need the experience of as many experts as possible, probing for
vulnerabilities. Even then it’s tough to be sure that systems work.
Algorithmic weaknesses can show up long after initial development and
analysis. Bugs occur in code, inserted accidentally or malevolently. In
addition there can be conscious attempts to weaken cryptographic
systems, which seems to have been the case when the NSA tried to
define critical parameters of one random number generator used in an
important cryptographic standard.

13.1.1 Secret-key cryptography

Two fundamentally different kinds of cryptographic systems are used
today. The older is usually called secret-key cryptography or symmetric-
key cryptography. <Symmetric-key= is more descriptive because the



same key is used for encryption and decryption, but <secret-key=
contrasts better with the name of the newer kind, public-key
cryptography, which is covered in the next section.

In secret-key cryptography, a message is encrypted and decrypted
with the same secret key, which must be shared by all the parties who
want to exchange messages. Assuming that the algorithm is entirely
understood and has no flaws or weaknesses, the only way to decrypt a
message is a brute force attack: try all possible secret keys, looking for
the one that was used for encryption. This can take a long time; if the
key has N bits, the effort is roughly proportional to 2N . Brute force does
not mean dumb, however. An attacker will try short keys before long
ones and likely keys before unlikely ones, for example a dictionary
attack based on common words and number patterns like <password=
and <12345.= If people are lazy or careless about choosing keys, such
attacks can be very successful.

Until the early 2000s, the most widely used secret-key cryptographic
algorithm was the Data Encryption Standard, or DES, which was
developed by IBM and the NSA in the early 1970s. There was some
suspicion that the NSA had arranged a secret backdoor mechanism so
that DES-encoded messages could be easily decoded, but this was
never confirmed. In any case, DES had a 56-bit key, and as computers
became faster, 56 bits proved to be too short; by 1999, a DES key could
be cracked by brute force in a day of computing by a fairly inexpensive
special-purpose computer. This led to the creation of new algorithms
with longer keys.

The most widely used of these is the Advanced Encryption Standard,
or AES, which was developed as part of a worldwide open competition
sponsored by the US National Institute of Standards and Technology
(NIST). Several dozen algorithms were submitted from all over the
world and were subjected to intense public testing and critique.
Rijndael, created by the Belgian cryptographers Joan Daemen and
Vincent Rijmen, was the winner, and became an official US government
standard in 2002. The algorithm is in the public domain and anyone can
use it without licenses or fees. AES supports three key lengths—128,
192, and 256 bits—so there are a lot of potential keys and a brute force
attack will not likely be feasible for many years unless some weakness
is discovered.



We can even put numbers on this. If a specialized processor like a
GPU can perform 1013 operations per second, a million GPUs could do
1019 operations per second, or about 3 × 1026 per year, which is roughly
290. That’s a long way from 2128, so even AES-128 should be safe from
a brute-force attack.

The big problem with AES and other secret key systems is key
distribution: each communicating party must know the key, so there
must be a secure way to get the key to each of them. That could be as
easy as having everyone over to your house for dinner, but if some
participants are spies or dissidents in hostile environments, there might
not be any safe and secure channel for sending a secret key. Another
problem is key proliferation: to have independent secret conversations
with unrelated parties, you need a separate key for each group, making
the distribution issue even harder. Considerations like these led to the
development of public-key cryptography, our next topic.

13.1.2 Public-key cryptography

Public-key cryptography is a completely different idea, invented in
1976 by Whit-field Diffie and Martin Hellman at Stanford, using some
ideas from Ralph Merkle. Diffie and Hellman shared the 2015 Turing
Award for this work. The idea had been independently discovered a few
years earlier by James Ellis and Clifford Cocks, two cryptographers at
the British intelligence agency GCHQ, but their work was kept secret
until 1997, so they were unable to publish and thus missed out on most
of the credit.

In a public-key cryptosystem, each person has a key pair, consisting
of a public key and a private key. The keys of the pair are
mathematically related and have the property that a message encrypted
with one key of the pair can only be decrypted with the other key, and
vice versa. If the keys are sufficiently long, it is computationally
infeasible for an attacker to decrypt the secret message or deduce the
private key from the public key. The best known algorithms that an
attacker can use require run time that grows exponentially with the key
length.

In use, the public key is truly public: it is available to everyone, often
posted on a web page. The private key must be kept strictly private, a
secret known only to the owner of this pair of keys.



Suppose that Alice wants to send a message to Bob, encrypted so
that only Bob can read it. She goes to Bob’s web page and gets his
public key, which she uses to encrypt her message to him. When she
sends the encrypted message, an eavesdropper Eve might be able to
see that Alice is sending a message to Bob, but since it’s encrypted,
Eve can’t tell what the message says.

Bob decrypts Alice’s message with his private key, which only he
knows, and which is the only way to decrypt a message that was
encrypted with his public key. (See Figure 13.2.) If he wants to send an
encrypted reply to Alice, he encrypts it with Alice’s public key. Again,
Eve can see the reply but only in its encrypted form, which she can’t
understand. Alice decrypts Bob’s reply with her private key, which only
she knows.

Figure 13.2: Alice sends Bob an encrypted message.

This scheme solves the key distribution problem, since there are no
shared secrets to distribute. Alice and Bob have their respective public
keys on their web pages, and anyone can carry on a private
conversation with either one of them without pre-arrangement or the
exchange of any secrets. There is no need for the parties to have ever
met. Of course, if Alice wants to send the same encrypted message to
Bob, Carol, and others, she has to encrypt it separately for each
recipient, using the right public key for each one.

Public-key cryptography is a critical component of secure
communication on the Internet. Suppose that I want to buy a book
online. I have to tell Amazon my credit card number, but I don’t want to
send that in the clear so we need an encrypted communication channel.
Amazon and I can’t use AES directly because we don’t have a shared



key. To arrange a shared key, my browser generates a random
temporary key. It then uses Amazon’s public key to encrypt the
temporary key and sends it securely to Amazon. Amazon uses its
private key to decrypt the temporary key. Amazon and my browser now
use that shared temporary key to encrypt information like my credit card
number with AES.

One drawback of public-key cryptography is that its algorithms tend
to be slow, perhaps several orders of magnitude slower than a secret-
key algorithm like AES. Thus, rather than encrypting everything with
public-key, there’s a two-step sequence: use public-key to agree on a
temporary secret key and then use AES for transferring data in quantity.

The communication is secure at each stage, initially with public-key
to set up the temporary key and then with AES for exchange of bulk
data. If you visit a web store, an online mail service, and most other
sites, you are using this technique. You can see it in action, because
your browser will show that you are connecting with the HTTPS protocol
(HTTP with security) and will display an icon of a closed lock to indicate
that the link is encrypted:

Most web sites now use HTTPS by default. This might make
transactions a bit slower but not by much, and the added security is
important even if the specific use has no immediate reason to require a
secure communication.

Public-key cryptography has other useful properties. For instance, it
can be used to implement a digital signature scheme. Suppose Alice
wants to sign a message so the recipient can be sure that it came from
her and not from an impostor. If she encrypts the message with her
private key and sends the result, then anyone can decrypt it with her
public key. Assuming that Alice is the only one who knows her private
key, the message must have been encrypted by Alice. Clearly this only
works if Alice’s private key has not been compromised.

You can also see how Alice could sign a private message to Bob, so
that no one else can read it and Bob can be sure it came from Alice.
Alice first signs the message to Bob with her own private key, then



encrypts the result with Bob’s public key. Eve can see that Alice sent
something to Bob, but only Bob can decrypt it. He decrypts the outer
message with his own private key, and then decrypts the inner message
with Alice’s public key to verify that it came from her.

Public-key cryptography doesn’t solve everything, of course. If Alice’s
private key is revealed, all past messages to her can be read and all of
her past signatures are suspect. It’s hard to revoke a key, that is, to say
that a particular key is no longer valid, though most key-creation
schemes include information about when the key was created and
when it is meant to expire. A technique called forward secrecy helps.
Each individual message is encrypted with a one-time password as
above and then the password is discarded. If the one-time passwords
are generated in such a way that an adversary can’t recreate them,
then knowing the password for one message is of no help for decrypting
previous or future messages even if the private key is compromised.

The most widely used public-key algorithm is called RSA, after
Ronald Rivest, Adi Shamir and Leonard Adleman, the computer
scientists who invented it at MIT in 1978. The RSA algorithm is based
on the difficulty of factoring large composite numbers. RSA works by
generating a large integer, at least 500 decimal digits long, that is the
product of two large prime numbers each about half as long as the
product, and uses these as the basis of the public and private keys.
Someone who knows the factors (the holder of the private key) can
quickly decrypt an encrypted message, while everyone else in effect
has to factor the large integer, and this is believed to be computationally
infeasible. Rivest, Shamir and Adleman won the 2002 Turing Award for
their invention of the RSA algorithm.

The length of the key is important. So far as we know, the
computational effort required to factor a big integer that is the product of
two primes of about the same size grows rapidly with its length and
factoring is infeasible. RSA Laboratories, the company that held the
rights to the RSA patent, ran a factoring challenge from 1991 until 2007.
It published a list of composite numbers of increasing lengths and
offered cash prizes for the first person to factor each one. The smallest
numbers were about 100 decimal digits long and were factored fairly
quickly. When the challenge ended in 2007, the largest number factored
had 193 digits (640 bits) and a prize of $20,000; in 2019, RSA-240 (240
digits, 795 bits) was factored. The list can still be found online if you
want to try your hand.



Because public-key algorithms are slow, documents are often signed
indirectly, using a much smaller value derived from the original in a way
that can’t be forged. This short value is called a message digest or
cryptographic hash. It is created by an algorithm that scrambles the bits
of any input into a fixed-length sequence of bits— the digest or hash—
with the property that it’s computationally infeasible to find another input
with the same digest. Furthermore, the slightest change to the input
changes approximately half the bits in the digest. Thus, any tampering
with a document can be efficiently detected by comparing its digest or
hash with the original digest.

To illustrate, in ASCII the letters x and X differ by a single bit; in hex
they are 78 and 58, and in binary 01111000 and 01011000. Here are their
cryptographic hashes using an algorithm called MD5. The first row is
the first half of the hash of x and the second row is the first half of the
hash of X; the third and fourth rows are the second halves. It’s easy to
count how many bits differ (66 of 128) by hand, though I used a
program.

10011101 11010100 11100100 01100001 00100110 10001100
10000000 00110100
00000010 00010010 10011011 10111000 01100001 00000110
00011101 00011010

11110101 11001000 01010110 01001110 00010101 01011100
01100111 10100110
00000101 00101100 01011001 00101110 00101101 11000110
10110011 10000011

It is computationally infeasible to find another input that has the same
hash value as either of these, and there’s no way to go back from the
hash to the original input.

Several message digest algorithms are in widespread use. MD5,
illustrated above, was developed by Ron Rivest; it produces a 128-bit
result. SHA-1, from NIST, has 160 bits. Both MD5 and SHA-1 have
been shown to have weaknesses and their use is deprecated. SHA-2, a
family of algorithms developed by the NSA, has no known weaknesses.
Nevertheless, NIST ran an open competition, analogous to the one that
produced AES, to create a new message digest algorithm; the winner,
now known as SHA-3, was selected in 2015. SHA-2 and SHA-3 provide
a range of digest sizes from 224 to 512 bits.



Although modern cryptography has amazing properties, in practice it
still requires the existence of trusted third parties. For example, when I
order a book, how can I be sure that I am talking to Amazon and not a
sophisticated impostor? When I visit, Amazon verifies its identity by
sending me a certificate, a digitally signed collection of information from
an independent certificate authority that can be used to verify Amazon’s
identity. My browser checks this with the certificate authority’s public key
to verify that it belongs to Amazon and not someone else. In theory I
can be sure that if the authority says it’s Amazon’s certificate, it really is.

But I have to trust the certificate authority; if that’s a fraud, then I
can’t trust anyone who uses it. In 2011 a hacker compromised
DigiNotar, a certificate authority in Holland, and was able to create
fraudulent certificates for a number of sites, including Google. If an
impostor had sent me a certificate signed by DigiNotar, I would have
accepted the impostor as the real Google.

A typical browser knows about an astonishing number of certificate
authorities— nearly 80 in my version of Firefox and over 200 for
Chrome—and the majority are organizations that I’ve never heard of
and are located in faraway places.

Let’s Encrypt is a non-profit certificate authority that provides free
certificates to anyone, with the idea that if it’s easy to get a certificate,
eventually all web sites will work with HTTPS, and all traffic will be
encrypted. By early 2020, Let’s Encrypt had issued a billion certificates.

13.2 Anonymity

Using the Internet reveals a lot about you. At the lowest level, your IP
address is a necessary part of every interaction, and that reveals your
ISP and lets anyone make a guess about where you are. Depending on
how you connect to the Internet, that guess might be accurate if you’re
a student at a small college, for example, or unrevealing if you’re inside
a large corporate network.

Using a browser, which is the most common case for most people,
more is revealed (Figure 11.3). The browser sends the URL of the
referring page and detailed information about what kind of browser it is
and what kinds of responses it can handle (compressed data or not, for
example, or what kinds of images it will accept). With suitable
JavaScript code, browsers will report what fonts are loaded and other



properties that, taken together, may make it possible to identify the
specific user within a population of literally millions. This kind of browser
fingerprinting is becoming common, and it’s hard to defeat.

As we saw in Chapter 11, panopticlick.eff.org lets you estimate
just how unique you are. In my experiments with one laptop, I am
unique among over 280,000 recent users when I access the site with
Chrome. One other person has the same Firefox settings as I do, and
one other when I use Safari. These values vary depending on defenses
like ad blockers, but most of the discrimination comes from the User
Agent header (Figure 11.3) that is sent automatically and the fonts and
plug-ins that have been installed, over which I have almost no control.
Browser suppliers could send less of this potential tracking information,
but little seems to have been done to improve the situation. Somewhat
discouragingly, if I disable cookies or enable Do Not Track, that makes
me a little more distinctive and thus easier to identify specifically.

Some web sites promise anonymity. For instance, Snapchat users
can send messages, pictures and videos to friends, with the promise
that the content will disappear within a specified short time. How much
can Snapchat resist the threat of legal action? Snapchat’s privacy policy
says <We may share information about you if we reasonably believe
that disclosing the information is needed to comply with any valid legal
process, governmental request, or applicable law, rule, or regulation.=
This kind of language is common in all privacy policies, of course, and
suggests that your anonymity is not very strong, and it will vary
depending on what country you are in.

13.2.1 Tor and the Tor Browser

Suppose you’re a whistleblower who wants to publicize some
malfeasance without being identified. (Think Edward Snowden.) What if
you’re a dissident in a repressive regime, or a gay person in a country
where gays are persecuted, or perhaps an adherent of the wrong
religion? Or maybe, like me, you just want to use the Internet without
being watched all the time. What can you do to make yourself less
identifiable? The suggestions at the end of Chapter 10 will help, but one
other technique is effective, though not without modest cost.

It’s possible to use cryptography to conceal a conversation
sufficiently well that the ultimate recipient of a connection does not
know where that connection originated. The most widely used such
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system is called Tor, which originally stood for <The Onion Router,= a
metaphorical play on the layers of encryption that surround a
conversation as it passes from one place to another. The Tor logo in
Figure 13.3 hints at the etymology.

Figure 13.3: The Tor logo.

Tor uses cryptography to send Internet traffic through a series of
relays so that each relay only knows the identities of the immediately
adjacent relays on the path and no others. The first relay on the path
knows who the originator is but not the ultimate destination. The last
relay on the path (the <exit node=) knows the destination but does not
know who originated the connection. A relay in the middle knows only
the relay that provided the information and the relay to which it is being
sent, but no more. The actual content is encrypted at every step.

The message is wrapped in multiple layers of encryption, one for
each relay. Each relay removes one layer as it sends the message
onward (hence the onion metaphor). The same technique is used in the
reverse direction. Normally three relays are used, so the one in the
middle knows nothing about the origin or destination.

At any given time, there are about 7,000 relays worldwide. The Tor
application picks a random set of relays and sets up the path, which is
changed from time to time, even during a single session.

The most common way to use Tor is through the Tor Browser, a
version of Firefox that has been configured to use Tor for transport; it
also sets Firefox privacy settings appropriately. Download it from



torproject.org, install it and use it like any other browser, though pay
attention to the warnings about how to use it securely.

The browsing experience is pretty much identical to Firefox, though
perhaps a bit slower because it does take time to go through the extra
routers and layers of encryption. Some web sites also discriminate
against Tor users, sometimes in self-defense, since attackers
appreciate anonymity as much as good people do.

As an example of how anonymization might appear to a casual user,
Figure 13.4 is a view of the weather in Princeton as seen from Tor (on
the left) and Firefox (on the right). For each, I visited weather.yahoo.com.
Yahoo thinks it knows where I am, but it’s wrong when I use Tor. Almost
every time I have tried the experiment, the exit node is somewhere in
Europe; reloading the page an hour later moved me from Latvia to
Luxembourg. The only thing that gives me a bit of pause is that the
temperatures are always reported in Fahrenheit, which is not much
used outside of the US. How did Yahoo decide? Other weather sites do
report in Celsius.

According to Panopticlick, when I use the Tor browser, about 3,200
other people in their sample of 280,000 recent visitors have the same
characteristics as I do, so I’m harder to identify by browser fingerprinting
and certainly less distinctive than when using a direct browser
connection. That said, Tor is by no means a perfect solution to all
privacy issues. If you use it carelessly your anonymity could be
compromised. Browsers and exit nodes can be attacked and a
compromised relay would be a problem. It’s also true that if you’re using
Tor you will stand out in a crowd, which may be a problem, though that
gets better as more people use Tor.

http://torproject.org/
http://weather.yahoo.com/


Figure 13.4: Tor Browser in action.

Is Tor secure from the NSA or a similarly capable organization? One
of the Snowden documents was a 2007 NSA presentation in which one
slide (Figure 13.5) says <We will never be able to de-anonymize all Tor
users all the time.= Of course the NSA won’t just give up, but so far Tor
seems to be the best privacy tool that ordinary folk can use. (It is mildly
ironic that Tor was originally developed by a US government agency,
the Naval Research Laboratory, to help secure US intelligence
communications.)

If you’re feeling especially paranoid, try a system called TAILS, <The
Amnesic Incognito Live System,= a flavor of Linux that runs from a
bootable device like a DVD, a USB drive, or an SD card. It runs Tor and
the Tor browser, and it leaves no trace on the computer that it runs on.
Software running under TAILS uses Tor for connecting to the Internet,
so you should be anonymous. It also stores nothing on local secondary



storage, just in primary memory; when the computer is shut down after
a TAILS session, the memory is cleared. That lets you work on
documents without leaving any record on the host computer. TAILS also
provides a suite of other cryptographic tools, including OpenPGP, which
lets you encrypt mail, files, and anything else. TAILS is open source and
can be downloaded from the web.

Figure 13.5: NSA presentation on Tor (2007).

13.2.2 Bitcoin

Sending and receiving money is another domain where anonymity is
valued highly. Cash is anonymous: if you pay in cash, there’s no record
and no way to identify the parties involved. It’s increasingly difficult to
use cash today except for small local purchases like gas and groceries.
Car rentals, plane tickets, hotels, and of course online shopping all
require the use of credit or debit cards, which identify the purchaser.
Plastic is convenient, but when you use a card or shop online, you
leave a trail.

It turns out that clever cryptography can be used to create
anonymous currency. The most successful example is called Bitcoin, a
scheme invented by Satoshi Nakamoto and released as open-source
software in 2009. (Nakamoto’s real identity is unknown, an unusual
example of successful anonymity.)



Bitcoin is a decentralized digital currency or cryptocurrency; it is not
issued or controlled by any government or other party and it has no
physical form, unlike the bills and coins of conventional money. Its value
does not come from fiat, as money issued by governments does, nor is
it based on some scarce natural resource like gold. Like gold, however,
its value depends on how much of it users are willing to pay or accept
for goods and services.

Bitcoin uses a peer-to-peer protocol that lets two parties exchange
bitcoins without using an intermediary or trusted third party, in a way
that emulates cash. The Bit-coin protocol ensures that the bitcoins are
truly exchanged, that is, ownership transfers, no coins are created or
lost in the transaction, and the transaction can’t be reversed, yet the
parties can remain anonymous both to each other and to the rest of the
world.

Bitcoin maintains a public ledger of all transactions, called the
blockchain, though the parties behind transactions are anonymous,
identified only by an address that is in effect a cryptographic public key.
Bitcoins are created (<mined=) by doing a certain amount of
computationally difficult work to verify and store payment information in
the public ledger. Blocks in the blockchain are digitally signed and refer
back to earlier blocks, so earlier transactions can’t be modified without
redoing all the work that went into creating the blocks originally. Thus
the state of all transactions from the beginning of time is implicit in the
blockchain and could in principle be recreated. No one could fake a new
blockchain without redoing all the work, which would be computationally
infeasible.



Figure 13.6: Bitcoin prices (finance.yahoo.com).

It’s important to note that the blockchain is totally public. Thus Bitcoin
anonymity is more like <pseudonymity=: everyone knows everything
about all transactions associated with a specific address but they don’t
know that the address is yours. However, you could become linked to
your transactions if you do not manage your addresses properly. You
could also lose your bitcoins forever if you lose a private key.

Because the parties behind transactions can remain anonymous if
they are careful, Bitcoin is a favored currency for drug deals,
ransomware payoffs and other illegal activities. An online marketplace
called Silk Road was widely used for illegal drug sales, paid for in
bitcoins. Its proprietor was eventually identified not because of any
flaws in anonymity software, but because he had left a sparse trail of
online comments that a diligent IRS agent was able to track back to a
real-world identity. Operations security (<opsec= in intelligence jargon) is
difficult to do right, and it only takes one slipup to give the game away.

Bitcoins are a <virtual currency= but they can be converted to and
from conventional currency. Historical exchange rates have been
volatile; a bitcoin’s value against the US dollar has wandered up and
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down by significant factors. Figure 13.6 shows prices for a multi-year
period.

Big players like banks and even companies like Facebook have
dipped their toes into the cryptocurrency world, by offering services or
even their own version of a blockchain currency. Tax authorities are also
interested in bitcoins, of course, since one use of anonymous
exchanges is to escape taxation. In the US, virtual currencies like
Bitcoin are treated as property for federal income tax purposes, and
thus there can be taxable capital gains on transactions.

It’s easy to experiment with bitcoin technology; bitcoin.org is a good
place to start, and coindesk. com has excellent tutorial information. There
are also books and online courses.

13.3 Summary

Cryptography is a vital part of modern technology; it’s the basic
mechanism that protects our privacy and security as we use the
Internet. The unfortunate fact, however, is that cryptography helps
everyone, not just the good guys. That means that criminals, terrorists,
child pornographers, drug cartels and governments are all going to use
cryptographic techniques to further their interests at the expense of
yours.

There’s no way to put the cryptographic genie back in the bottle.
World-class cryptographers are few in number and scattered all over;
no country has a monopoly on them. Furthermore, cryptographic code
is mostly open source, available to anyone. Thus trying to outlaw strong
cryptography in any given country is unlikely to prevent its use.

There are regular heated debates about whether encryption
technology helps terrorists and criminals and thus should be outlawed
or, more realistically, cryptosystems should have a <backdoor= through
which suitably authorized government agencies can decrypt whatever
the adversaries have encrypted.

Experts uniformly believe that this is a bad idea. In 2015, one
especially qualified group published a report called <Keys under
doormats: Mandating insecurity by requiring government access to all
data and communications=; the title hints at their considered opinion.

Cryptography is exceedingly difficult to get right in the first place;
adding intentional weaknesses, however carefully designed, is a recipe
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for larger failures. As we have seen repeatedly, governments (mine and
yours) are terrible at keeping secrets— think about Snowden and the
NSA. So relying on a government agency to keep backdoor keys safe
and used appropriately is a priori a bad idea, even assuming good faith,
which is a big assumption.

The fundamental problem is that we can’t weaken the encryption that
we want terrorists to use without weakening it for everyone. As Tim
Cook, the CEO of Apple, said, <The reality is, if you put a backdoor in,
that backdoor’s for everybody, for good guys and bad guys.= And of
course crooks, terrorists, and other governments won’t use the
weakened version anyway, so we wind up worse off.

Apple software encrypts all the contents of iPhones running iOS,
using a key provided by the user and unknown to Apple. If a
government agency or a judge tells Apple to decrypt the phone, Apple
can truthfully say that it is not able to do so. Apple’s stand has not won
it friends among politicians or law enforcement, but it is a defensible
position. It also makes commercial sense, since savvy customers would
be reluctant to buy phones where government agencies could easily
snoop on contents and conversations.

In late 2015, two terrorists killed 14 people in San Bernardino,
California, before being killed themselves. The FBI tried to force Apple
to break the encryption on one of the terrorist’s iPhones. Apple
contended that creating even a special-purpose mechanism to access
the information would create a precedent that would gravely weaken all
phone security.

The San Bernardino incident eventually became moot when the FBI
claimed to have found an alternate way to recover the information, but
the issue returned after another shooting in Florida in late 2019. The
FBI requested help. Apple says that it has provided all the information
that it has; it does not have passwords.

The debate is intense, with both sides having valid concerns. My
personal position is that strong encryption is one of the few defenses
that ordinary people have against government over-reaching and
criminal invasion, and we must not give it up. As noted when we talked
about metadata earlier, there are plenty of other ways in which law
enforcement agencies can obtain information, requiring only that a
decent case be made. It should not be necessary to weaken everyone’s
encryption to investigate a small number of people. These are difficult
issues, however, and they often arise in politically and emotionally



charged situations like the aftermath of some violent event. We are not
likely to see a satisfactory resolution in the short run.

In any security system, the weakest link is the people involved, who
will accidentally or intentionally subvert systems that are too
complicated or hard to use. Think about what you do when you are
forced to change your password, especially when the new one has to
be invented right now and must satisfy weird requirements like both
upper and lower case letters, at least one digit, and some special
characters but not others. Most people resort to formulas and writing it
down, both of which potentially compromise security. Ask yourself: if an
adversary saw two or three of your passwords, could he or she guess
others? Think about spear phishing. How many times have you gotten
almost plausible email that asked you to click or download or open?
Were you tempted?

Even if everyone tries hard to be secure, a determined adversary can
always use the four B’s (bribery, blackmail, burglary, brutality) to gain
access. Governments can use the threat of jail for people who refuse to
divulge their passwords when asked. Nevertheless, if you are careful,
you can do a decent job of protecting yourself, not from all threats all
the time, but enough that you can function in the modern world.





14
What Comes Next?

<Making predictions is hard, especially about the future.=
Attributed to Yogi Berra, Niels Bohr, Samuel Goldwyn, and
Mark Twain, among others.

<Teachers should prepare the student for the student’s future,
not for the teacher’s past.=

Richard Hamming, The Art of Doing Science and
Engineering: Learning to Learn, 1996.

We’ve covered a lot of ground. What should you have learned
along the way? What’s likely to matter in the future? What computing
issues will we still be wrestling with in five or ten years? What will
have become passé or irrelevant?

Superficial details change all the time, and many of the technical
minutiae that I’ve talked about aren’t terribly important except as a
concrete way to help you understand how things work—most people
learn better from specific instances than from abstractions, and
computing has altogether too many abstract ideas.

On the hardware side, it’s helpful to understand how computers
are organized, how they represent and process information, what
some of the jargon and numbers mean, and how they have changed
overtime.

For software, it’s important to know how one defines
computational processes precisely, both as abstract algorithms (with
some sense of how their computation time grows with the amount of
data) and as concrete computer programs. Knowing how software
systems are organized, how they are created with programs in a
variety of languages and often built from components, helps you to
understand what is behind the major pieces of software that we all
use. With luck, the bit of programming in a couple of chapters is
enough that you could reasonably think about writing more code



yourself, and even if you never do so, it’s good to know what’s
involved.

Communications systems operate both locally and across the
world. It’s important to understand how information flows, who has
access to it, and how it’s all controlled. Protocols—rules for how
systems interact—are important as well, since their properties can
have profound effects, as seen in the problems of authentication in
the Internet today.

Some computing ideas are useful ways of thinking about the
world. For example, I have frequently made the distinction between
logical structure and physical implementation. This central idea
shows up in myriad guises. Computers are a fine example: how
computers are constructed changes rapidly but the architecture has
remained much the same for a long time. More generally, digital
computers all have the same logical properties—in principle they can
all compute the same things. In software, code provides an
abstraction that hides implementation; implementations can be
changed without changing things that use them. Virtual machines,
virtual operating systems, and indeed even real operating systems
are all examples of the use of interfaces to separate logical structure
from actual implementation. Arguably, programming languages also
serve this function, since they make it possible for us to talk to
computers as if they all spoke the same language and it was one
that we understood too.

Computer systems are good examples of engineering tradeoffs, a
reminder that one never gets something for nothing—there is no free
lunch. As we saw, a desktop, a laptop, a tablet and a cell phone are
equivalent computing devices, but they differ markedly in how they
deal with constraints on size, weight, power consumption, and cost.

Computer systems are also good examples of how to divide large
and complicated systems into smaller and more manageable pieces
that can be created independently. Layering of software, APIs,
protocols and standards are all illustrations.

The four <universals= that I mentioned in the introduction will
remain important for understanding digital technology. To
recapitulate:



First is the universal digital representation of information.
Chemistry has more than 100 elements. Physics has well over a
dozen elementary particles. Digital computers have two elements,
zero and one, and everything else is built of those. Bits represent
arbitrary kinds of information, from the simplest binary choices like
true and false or yes and no, through numbers and letters, to
anything at all. Large entities—say the record of your life derived
from your browsing and shopping, your phone calls, and ubiquitous
surveillance cameras—are collections of simpler data items, and so
on, down to the level of individual bits.

Second is the universal digital processor. A computer is a digital
device that manipulates bits. The instructions that tell the processor
what to do are encoded as bits and are generally stored in the same
memory as data; changing the instructions causes the computer to
do something different, which is the reason why computers are
general-purpose machines. The meaning of bits depends on context
—one person’s instructions are another person’s data. Processes
like copying, encryption, compression and error detection can be
performed on bits independent of what they represent, though
specific techniques may work better on known kinds of data. The
trend to replacing specialized devices with general-purpose
computers that run general-purpose operating systems will continue.
The future may well bring other kinds of processors based on
biological computing or quantum computers or something yet to be
invented, but digital computers will be with us for a long while.

Third is the universal digital network, which carries the bits, both
data and instructions, from one processor to another, anywhere in
the world. It’s likely that the Internet and the telephone network will
blend together into a universal network, mimicking the convergence
of computing and communications that we see in cell phones today.
The Internet is sure to evolve, though it remains an open question
whether it will retain much of the free-wheeling wild-west character
that was so productive in its early years. It might become more
constrained and controlled by business and government, a set of
<walled gardens=—attractive, to be sure, but walled nevertheless. My
bet is the latter, unfortunately; we’ve already seen examples where



entire countries routinely restrict Internet access or cut it off entirely
in times of unrest.

Finally, the universal availability of digital systems. Digital devices
will continue to get smaller, cheaper, faster and more pervasive as
they incorporate technological improvements. Improvements in a
single technology like storage density often have an effect on all
digital devices. The Internet of Things will be all around us as more
and more of our devices contain computers and are networked; this
will make security problems worse.

The core limitations and likely problems of digital technology will
remain operative, and you should be aware of them. Technology
contributes many positive things, but it raises new forms of difficult
issues and exacerbates existing ones. Here are some of the most
important.

Misinformation, disinformation, and fake news of all sorts are a
rapidly growing concern on the Internet. False and misleading news
stories, images, videos, and the like are rampant on social media
sites, which have been entirely too passive about reining in
dangerously wrong content. There is certainly a valid concern about
censorship and interference with free speech, but in my opinion the
pendulum is too far to one side. As one random example, in one 3-
month period during the Covid-19 pandemic in 2020, Facebook
removed seven million posts that offered <fake preventative
measures or exaggerated cures that the CDC and other health
experts tell us are dangerous.= It also put warnings on nearly 100
million other posts.

Privacy is under continuous threat from attempts to subvert it for
commercial, governmental and criminal purposes. Extensive
collection of our personal data will continue apace; personal privacy
is likely to diminish even further than it already has. The Internet
originally made it too easy to be anonymous, especially for bad
practices, but today it is almost impossible to remain anonymous
even with good intentions. Attempts by governments to control their
citizens’ access to the Internet and to weaken cryptography will not
help the good guys, but they will provide the bad guys with aid,
comfort, and a single point of failure to exploit. One might cynically



say that governments want their own citizens to be easy to identify
and monitor, but support the privacy and anonymity of dissidents in
other countries. Businesses are eager to know as much as possible
about current and potential customers. Once information is on the
web, it’s there forever; there’s no practical way to call it back.

Surveillance, from ubiquitous cameras to web tracking to
recording where our phones are, continues to increase, and the
exponentially decreasing cost of storage and processing makes it
more and more feasible to keep complete digital records of our entire
lives. How much disk space would it take to record everything you
have heard and said so far in your life, and how much would that
storage cost? If you’re 20 years old, the answer is about 10 TB,
which in 2021 would cost less than $200. A complete video record
would not be more than a factor of 10 or 20 larger.

Security for individuals, corporations and governments is also an
ongoing problem. I’m not sure that terms like cyber-warfare, or
indeed cyber-anything, are helpful, but it is certain that individuals
and larger groups are potentially and often actually under some kind
of cyber-attack by nation states and organized criminals. Poor
security practices make us all vulnerable to theft of information from
government and commercial databases.

Copyright is difficult in a world where it is possible to make
unlimited copies of digital material and distribute them throughout the
world at zero cost. Traditional copyright functioned acceptably well
for creative works before the digital era, because manufacturing and
distribution of books, music, movies and TV shows required
expertise and specialized equipment. Those days are gone.
Copyright and fair use are being replaced by licensing and digital
rights management, which don’t impede true pirates, though they do
inconvenience ordinary people. How do we prevent manufacturers
from using copyright to reduce competition and create customer
lock-in? How do we protect the rights of authors, composers,
performers, film makers, and programmers, while ensuring that their
works are not restricted forever?

Patents are also a difficult issue. As more and more devices
contain general-purpose computers controlled by software, how do
we protect the legitimate interests of innovators while preventing



extortion by the holders of too broad or inadequately researched
patents?

Resource allocation, particularly of scarce but valuable resources
like spectrum, is always going to be contentious. Incumbents—those
who already have the allocation, like big telecom companies—have
a great advantage here, and they can use their position to maintain it
through money, lobbying and natural network effects.

Antitrust is a significant issue in the EU and the US. Companies
like Amazon, Facebook and Google dominate their markets, and this
gives them outsize concentrated power. Google is perhaps the most
vulnerable to antitrust actions; the US Department of Justice
announced an antitrust suit against Google late in 2020. At least 70
percent of worldwide searches are made through Google (90 percent
in the US). It is the most important company in advertising, which
provides most of its income. The large majority of phones run
Google’s Android operating system. Facebook dominates social
media, both directly and through subsidiaries like Instagram. Both
Facebook and Google regularly buy small companies to acquire
technology and expertise, but also to eliminate potential competition
before it grows. Large tech companies argue that they are
successful because they provide better services than their
competitors do, and their success is a result. But it’s also possible to
argue that they have too much power, whether legitimately or not. It
appears that both the EU and the US are starting to worry about this,
and in some cases even take action to control the power of such
companies.

Jurisdiction is also difficult in a world where information can travel
everywhere. Business and social practices that are legal in one
jurisdiction may be illegal in others. Legal systems have not caught
up with this at all. The problem is seen in issues like taxes across
state borders in the US, and in conflicting data privacy rules in the
EU and the US. It’s also seen in forum shopping, where plaintiffs
start legal actions like patent or libel suits in jurisdictions where they
expect favorable outcomes, regardless of where the offense may
have occurred or where the defendants might be. Internet jurisdiction
itself is under threat from entities that want more control for their own
interests.



Control is perhaps the largest issue of all. Governments want to
control what their citizens can say and do on the Internet, which of
course is increasingly a synonym for all media; country firewalls are
likely to become more common and harder to evade. Countries will
impose more and more restrictions on what companies must do to
stay in business within the country. Companies want their customers
confined to walled gardens that are difficult to escape. Think of how
many of the devices you use are locked down by their suppliers so
you can’t run your own software on them or even be sure of what
they do. Individuals would like to limit the reach of both governments
and corporations, but the playing fields are far from level. The
defenses discussed above are a help but in no way sufficient.

Finally, one must always remember that although technology is
changing rapidly, people are not. In most respects we’re the same as
we were thousands of years ago, with similar proportions of good
and bad people operating from good and bad motives. Social, legal
and political mechanisms do adapt to technological changes, but it
can be a slow process and it moves at different speeds and comes
to different solutions in different parts of the world. I don’t know how
things will evolve over the next few years, but I hope that this book
will help you to anticipate, cope with, and positively influence some
of the inevitable changes.





Notes

<Your organization is sound, your selection of material judicious,
and your writing is good. You have not quite grasped the
essentials of footnoting. C+.=

Grader’s comments on an essay I wrote as a junior in
university, 1963.

This section collects notes on sources (though by no means
complete), including books that I have enjoyed and think you might
also like. As always, Wikipedia is an excellent source for a quick
survey and basic facts for almost any topic. Search engines do a fine
job of locating related material. I have not tried to provide direct links
for information that is readily found online. Links were correct at time
of publication but may have suffered link-rot.

xi: The IBM 7094 had about 150 KB of RAM, a clock speed of 500
KHz, and cost nearly $3 million: en.wikipedia.org/wiki/IBM_7090.
xiii: Richard Muller, Physics for Future Presidents, Norton, 2008. An
excellent book, and one of the inspirations for this one.
xiii: Hal Abelson, Ken Ledeen, Harry Lewis, Wendy Seltzer, Blown to
Bits: Your Life, Liberty, and Happiness After the Digital Explosion,
Second edition, Addison-Wesley, 2020. Touches on many important
social and political topics, especially about the Internet. Bits and
pieces, so to speak, would make good material for my Princeton
course, and it derives from an analogous course at Harvard.
2: Zoom’s stock price took a significant hit when the FTC accused it
of lying about end-to-end encryption, though it subsequently
recovered most of the loss.
3: China’s Covid app: www.nytimes.com/2020/03/01/business/china-
coronavirus-surveillance.html
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3: Bruce Schneier’s take on the in efficacy of contract-tracing apps:
www.schneier.com/blog/archives/2020/05/me_on_covad-19_.html.
3: Snowden’s story is told in Glenn Greenwald’s No Place to Hide
(2014), Laura Poitras’s prize-winning documentary Citizenfour
(2015), Snowden’s own Permanent Record (2019), and Bart
Gellman’s Dark Mirror (2020).
3: www.npr.org/sections/thetwo-way/2014/03/18/291165247/report-
nsa-can-record-store-phone-conversations-of-whole-countries.
4: James Gleick, The Information: A History, A Theory, A Flood,
Pantheon, 2011. Interesting material on communications systems,
focusing on Claude Shannon, the father of information theory. The
historical parts are especially intriguing.
5: NSA advice on limiting location data:
media.defense.gov/2020/Aug/04/2002469874/-1/-1/0/CSI_LIMITING
_LOCATION_DATA_EXPOSURE_FINAL.PDF
6: Bruce Schneier, Data and Goliath: The Hidden Battles to Collect
Your Data and Control Your World, Norton, 2015 (p. 127).
Authoritative, disturbing, well written. It’s likely to make you justifiably
angry.
7: James Essinger, Jacquard’s Web: How a Hand-loom Led to the
Birth of the Information Age, Oxford University Press, 2004. Follows
Jacquard’s loom through Babbage, Hollerith and Aiken.
7: The Difference Engine picture is a public domain image from
Wikipedia:
commons.wikimedia.org/wiki/File:Babbage_Difference_Engine_(1).jp
g.
8: Doron Swade, The Difference Engine: Charles Babbage and the
Quest to Build the First Computer, Penguin, 2002. Swade also
describes the construction of one of Babbage’s machines in 1991,
now housed in London’s Science Museum; a 2008 clone (Figure I.1,
page 8) is in the Computer History Museum in Mountain View,
California. See also www.computerhistory.org/babbage.
8: The quotation about music composition is from Ada Lovelace’s
translation and notes on Luigi Menabrea’s <Sketch of the Analytical
Engine,= 1843.
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9: Stephen Wolfram, creator of Mathematica, wrote a long and
informative blog post on Lovelace’s his-tory:
writings.stephenwolfram.com/2015/12/untangling-the-tale-of-ada-
lovelace.
9: The Ada Lovelace portrait is a public domain image from
Wikipedia:
commons.wikimedia.org/wiki/File:Carpenter_portrait_of_Ada_Lovela
ce_-_detail.png.
9: Scott McCartney, ENIAC: The Triumphs and Tragedies of the
World’s First Computer, Walker & Company, 1999.
11: Burks, Goldstine and von Neumann, <Preliminary discussion of
the logical design of an electronic computing instrument,=
www.cs.unc.edu/~adyilie/comp265/vonNeumann.html.
11: macOS is the current name for Apple’s operating system,
previously known as Mac OS X.
17: Online copy of Pride and Prejudice:
www.gutenberg.org/ebooks/1342.
20: Charles Petzold, Code: The Hidden Language of Computer
Hardware and Software, Microsoft Press, 2000. How computers are
built from logic gates; it covers a level or two below what this book
does.
22: Gordon Moore, <Cramming more components onto integrated
circuits,=
newsroom.intel.com/wpcontent/uploads/sites/11/2018/05/moores-
law-electronics.pdf.
27: Excellent explanation of how digital cameras work:
www.irregularwebcomic.net/3359.html
37: Leibnitz explored binary and even hexa decimal in the 1670s; he
used musical notes (ut, re, mi, fa, sol, la) for the six extra digits.
37: colornames.org is a fun site that illustrates just how many colors
16 million is.
38: In 2020, Apple’s Catalina version of macOS no longer supports
32-bit programs.
38: Donald Knuth, The Art of Computer Programming, Vol 2:
Seminumerical Algorithms, Section 4.1, Addison-Wesley, 1997.
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50: A Turing machine is an abstract model of computation; there’s a
marvelous concrete implementation at www.youtube.com/watch?
v=E3keLeMwfHY.
51: Alan Turing, <Computing machinery and intelligence.= The
Atlantic has an informative and entertaining article on the Turing test
at www.theatlantic.com/magazine/archive/2011/03/mind-vs-
machine/8386.
51: The CAPTCHA is a public domain image from
en.wikipedia.org/wiki/File:Modern-captcha.jpg.
51: Turing home page maintained by Andrew Hodges:
www.turing.org.uk/turing. Hodges is the author of the definitive
biography Alan Turing: The Enigma. Updated edition, Princeton
University Press, 2014.
51: ACM Turing Award: amturing.acm.org/.
51: A 1944 Enigma used by the German navy was sold at auction for
$437,000 in 2020: www.zdnet.com/article/rare-and-hardest-to-crack-
enigma-code-machine-sells-for-437000.
53: One of many articles on the end of Moore’s Law:
https://www.technologyreview.com/2020/02/24/905789/were-not-
prepared-for-the-end-of-moores-law/.
56: A description of the 737 MAX situation from a software
perspective: spectrum.ieee.org/aerospace/aviation/how-the-boeing-
737-max-disaster-looks-to-a-software-developer.
56: The Iowa Democratic primary fiasco:
www.nytimes.com/2020/02/09/us/politics/iowa-democratic-
caucuses.html.
56: The perils of Internet voting, triggered by coronavirus concerns:
www.politico.com/news/2020/06/08/online-voting-304013
56: www.cnn.com/2016/02/03/politics/cyberattack-ukraine-power-
grid.
57: en.wikipedia.org/wiki/WannaCry_ransomware_attack.
57: thehill.com/policy/national-security/507744-russian-hackers-
return-to-spotlight-with-vaccine-research-attack
59: James Gleick on Richard Feynman: <Part Showman, All Genius,=
www.nytimes.com/1992/09/20/magazine/part-showman-all-
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genius.html.
59: The River Cafe Cookbook, <The best chocolate cake ever,=
books.google.com/books?id=INFnzXj81-QC&pg=PT512.
68: William Cook’s In Pursuit of the Traveling Salesman, Princeton
University Press, 2011, is an engaging description of the history and
the state of the art.
69: A 2013 episode of the series Elementary centers on P=NP:
www.imdb.com/title/tt3125780/.
70: John MacCormick’s Nine Algorithms That Changed the Future:
The Ingenious Ideas That Drive Today’s Computers, Princeton
University Press, 2011, provides an accessible description of some
major algorithms, including search, compression, error correction
and cryptography.
77: Kurt Beyer, Grace Hopper and the Invention of the Information
Age, MIT Press, 2009. Hopper was are markable figure, a computing
pioneer of great influence, and at her retirement at 79, the oldest
commissioned officer in the US Navy. One of her set pieces in
speeches was to hold out her hands a foot apart and say <That’s a
nanosecond.=
82: NASA Mars Climate Orbiter report:
llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf.
82: www.wired.com/2015/09/google-2-billion-lines-codeand-one-
place.
84: The bug picture is a public domain image from
www.history.navy.mil/our-collections/photography/numerical-list-of-
images/nhhc-series/nh-series/NH-96000/NH-96566-KN.html.
85:
www.theregister.co.uk/2015/09/04/nsa_explains_handling_zerodays.
87: Supreme Court decision confirming the constitutionality of the
1998 Sonny Bono Copyright Term Extension Act, sarcastically
known as the Mickey Mouse Protection Act, because it extended the
already long copyright protection of Mickey Mouse and other Disney
characters. en.wikipedia.org/wiki/Eldred_v._Ashcroft.
88: Amazon 1-click patent: www.google.com/patents?
id=O2YXAAAAEBAJ.
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88: Wikipedia has a good discussion of patent trolls:
en.wikipedia.org/wiki/Patent_troll.
89: The EULA comes from About this Mac / Support / Important
Information... / Software License Agreement. It’s about 12 pages
long.
89: From the macOS Mojave EULA: <You also agree that you will not
use the Apple Software for any purposes prohibited by United States
law, including, without limitation, the development, design,
manufacture or production of missiles, nuclear, chemical or biological
weapons.=
91: en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc.
93: Code for my car: www.fujitsu-ten.com/support/source/oem/14f.
96: Unix: A History and a Memoir (Kindle Direct Publishing, 2019) is
my personal take on Unix history, from the perspective of someone
present at the creation, though not responsible for it.
99: The original Linux code can be found at
www.kernel.org/pub/linux/kernel/Historic.
108: Windows file recovery tool: www.microsoft.com/en-
us/p/windows-file-recovery/9n26s50ln705.
109: One example from 65 million returned by a Google search:
<Leaked White House emails reveal behind-the-scenes battle over
chloroquine in coronavirus response=.
113: Microsoft Windows on ARM processors: docs.microsoft.com/en-
us/windows/uwp/porting/appson-arm.
114: Court’s Findings of Fact, paragraph 154, 1999, at
www.justice.gov/atr/cases/f3800/msjudgex.htm. The case finally
ended in 2011 when the last oversight of Microsoft’s compliance
ended.
115: Obama’s exhortation, on YouTube, was part of a Computer
Science Education Week campaign:
www.whitehouse.gov/blog/2013/12/09/don-t-just-play-your-phone-
program-it.
124: jsfiddle.net and w3schools.com are two of many useful sites for
learning JavaScript.
125: You can download Python from python.org.
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125: Colab is accessible at colab.research.google.com.
125: A Jupyter notebook is <an open-source web application that
allows you to create and share documents that contain live code,
equations, visualizations and narrative text.= See jupyter.org.
136: Gerard Holzmann and Bjorn Pehrson, The Early History of Data
Networks, IEEE Press, 1994. Detailed and interesting history of the
optical telegraph.
136: The optical telegraph drawing is a public domain image from
en.wikipedia.org/wiki/File:Telegraph_Chappe_1.jpg.
137: Tom Standage, The Victorian Internet: The Remarkable Story of
the Telegraph and the Nineteenth Century’s On-Line Pioneers,
Walker, 1998. Fascinating and entertaining reading.
137: I’m not the only one who misses life before cell phones:
www.theatlantic.com/technology/archive/2015/08/why-people-hate-
making-phone-calls/401114.
141: The papers of Alexander Graham Bell are online; the quotation
comes from memory.loc.gov/mss/magbell/253/25300201/0022.jpg.
142: www.10stripe.com/articles/why-is-56k-the-fastest-dialup-
modem-speed.php.
143: A good description of DSL: broadbandnow.com/DSL.
148: Guy Klemens, Cellphone: The History and Technology of the
Gadget that Changed the World, McFarland, 2010. Detailed history
and technical facts on the evolution of cell phones. Some parts are
heavy going, but much is accessible; it gives a good picture of the
remarkable complexity of a system we take for granted.
149: A US federal judge suppressed evidence from a stingray:
www.reuters.com/article/us-usa-crime-stingray-idUSKCN0ZS2VI.
151: For a good explanation of 4G and LTE, see
www.digitaltrends.com/mobile/4g-vs-lte.
153: Interactive explanation of how JPEG works:
parametric.press/issue-01/unraveling-the-jpeg/
159: NSA and GCHQ are both tapping fiber optic cables where they
make landfall:
www.theatlantic.com/international/archive/2013/07/the-creepy-long-
standing-practice-of-undersea-cable-tapping/277855.
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161: RFC on Avian carriers: tools.ietf.org/html/rfc1149. You might
also enjoyRFC-2324.
162: The current list of top-level domains is at
www.iana.org/domains/root/db; there are nearly 1,600.
162: Law enforcement often fails to realize that an IP address does
not definitively identify an individual:
www.eff.org/files/2016/09/22/2016.09.20_final_formatted_ip_address
_white_paper.pdf.
165: DE-CIX, like many IXPs, provides extensive traffic graphs; see
www.de-cix.net.
166: traceroute was created by Van Jacobson in 1987.
172: SMTP was originally defined by Jon Postel in RFC 788 in 1981.
172: SMTP session at technet.microsoft.com/en-
us/library/bb123686.aspx.
176: In2015, Keurig tried to enforce DRM on pods for its coffee
makers; users were not happy, and sales went down dramatically:
boingboing.net/2015/05/08/keurig-ceo-blames-disastrous-f.html
176: Devices call home: www.digitaltrends.com/news/china-spying-
iot-devices.
177: arstechnica.com/security/2016/01/how-to-search-the-internet-
of-things-for-photos-of-sleeping-babies.
177: Gordon Chu, Noah Apthorpe, Nick Feamster, <Security and
Privacy Analyses of Internet of Things Children’s Toys,= 2019.
177: Using Telnet to access IoT devices:
www.schneier.com/blog/archives/2020/07/half_a_million.html.
177: Attacks on wind turbines: news.softpedia.com/news/script-
kiddies-can-now-launch-xss-attacks-against-iot-wind-turbines-
497331.shtml.
184: Accessibility for visually impaired: www.afb.org/about-afb/what-
we-do/afb-consulting/afb-accessibility-resources/improving-your-
web-site.
188: Microsoft’s 10 Immutable Laws of Security:
docs.microsoft.com/en-us/archive/blogs/rhalbheer/ten-immutable-
laws-of-security-version-2-0.
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190: Kim Zetter, Countdown to Zero Day, Crown, 2014, is a gripping
description of Stuxnet.
194: blog.twitter.com/en_us/topics/company/2020/an-update-on-our-
security-incident.html.
194: CEO phishing gave away W-2s on all employees at Seagate in
2016: krebsonsecurity.com/2016/03/seagate-phish-exposes-all-
employee-w-2s.
195: www.ucsf.edu/news/2020/06/417911/update-it-security-incident-
ucsf
196: epic.org/privacy/data-breach/equifax/
197: Wawa’s statement on their security breach:
www.wawa.com/alerts/data-security.
197: Data breach at ClearviewAI:
www.cnn.com/2020/02/26/tech/clearview-ai-hack/index.html.
197: news.marriott.com/news/2020/03/31/marriott-international-
notifies-guests-of-property-system-incident
197: Amazon DDoS attack:
www.theverge.com/2020/6/18/21295337/amazon-aws-biggest-ddos-
attack-ever-2-3-tbps-shield-github-netscout-arbor
198: Breach of free <no-logging= VPNs:
www.theregister.com/2020/07/17/ufo_vpn_database/
198: The FTC complaint and proposed settlement with Zoom:
www.ftc.gov/news-events/press-releases/2020/11/ftc-requires-zoom-
enhance-its-security-practices-part-settlement.
198: Steve Bellovin’s Thinking Security, Addison-Wesley, 2015, has
an extensive discussion of threat models.
199: There’s a famous xkcd comic on choosing passwords:
xkcd.com/936.
200: help.getadblock.com/support/solutions/articles/6000087914-
how-does-adblock-work-
201: www.theguardian.com/technology/2020/jan/21/amazon-boss-
jeff-bezoss-phone-hacked-by-saudi-crown-prince
201: Click Here to Kill Everybody, Bruce Schneier, Norton, 2018.
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201: Eli Pariser, The Filter Bubble: What the Internet Is Hiding from
You, Penguin, 2011.
203: Dr. Seuss’s1955 children’s book On Beyond Zebra! describes a
fanciful extended alphabet.
205: Cisco’s prediction is one of several that anticipate greatly
increased Internet traffic:
www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.
206: The original Google paper:
infolab.stanford.edu/~backrub/google.html. The system really was
called <BackRub= in its first incarnation.
206: Two sites with big numbers: www.domo.com/learn/data-never-
sleeps-5, www.forbes.com/sites/bernardmarr/2018/05/21/how-much-
data-do-we-create-every-day-the-mind-blowing-stats-everyone-
should-read.
209: Latanya Sweeney discovered that searches for names
<generated ads suggestive of an arrest= significantly more often for
names that are <racially associated.= See
papers.ssrn.com/sol3/papers.cfm?abstract_id=2208240.
209: www.reuters.com/article/us-facebook-advertisers/hud-charges-
facebook-with-housing-discrimination-in-targeted-ads-on-its-
platform-idUSKCN1R91E8.
209: www.propublica.org/article/facebook-ads-can-still-discriminate-
against-women-and-older-workers-despite-a-civil-rights-settlement
209: DuckDuckGo’s privacy advice can be found at
spreadprivacy.com.
210: www.nytimes.com/series/new-york-times-privacy-project
210: www.nytimes.com/interactive/2019/12/19/opinion/location-
tracking-cell-phone.html
212: www.washingtonpost.com/news/the-
intersect/wp/2016/08/19/98-personal-data-points-that-face-book-
uses-to-target-ads-to-you/
212: 98 things that Facebook uses to target you:
www.washingtonpost.com/technology/2020/01/28/offfacebook-
activity-page.

http://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://infolab.stanford.edu/~backrub/google.html
http://www.domo.com/learn/data-never-sleeps-5
http://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2208240
http://www.reuters.com/article/us-facebook-advertisers/hud-charges-facebook-with-housing-discrimination-in-targeted-ads-on-its-platform-idUSKCN1R91E8
http://www.propublica.org/article/facebook-ads-can-still-discriminate-against-women-and-older-workers-despite-a-civil-rights-settlement
http://spreadprivacy.com/
http://www.nytimes.com/series/new-york-times-privacy-project
http://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
http://www.washingtonpost.com/news/the-intersect/wp/2016/08/19/98-personal-data-points-that-face-book-uses-to-target-ads-to-you/
http://www.washingtonpost.com/technology/2020/01/28/offfacebook-activity-page


213: Netflix privacy policy: help.netflix.com/legal/privacy, June 2020.
214: Canvasfingerprinting:
en.wikipedia.org/wiki/Canvas_fingerprinting.
215: How to turn off speech-enabled <smart= TVs:
www.consumerreports.org/privacy/how-to-turn-off-smart-tv-snooping-
features/.
215: www.nytimes.com/2020/07/16/business/eu-data-transfer-pact-
rejected.html
216: www.pewresearch.org/internet/2019/01/16/facebook-
algorithms-and-personal-data.
216: In 2019, the New York Times analyzed 150 privacy policies.
<They were an incomprehensible disaster.=
www.nytimes.com/interactive/2019/06/12/opinion/facebook-google-
privacy-policies.html
216: www.swirl.com/products/beacons.
217: Locational privacy: www.eff.org/wp/locational-privacy. The
Electronic Frontier Foundation at eff.org is a good source for privacy
and security policy information.
217: fas.org/irp/congress/2013_hr/100213felten.pdf.
218: Kosinski et al., <Private traits and attributes are predictable from
digital records of human behavior,=
www.pnas.org/content/early/2013/03/06/1218772110.full.pdf+html.
218: Facebook tagging help:
www.facebook.com/help/187272841323203 (June 2020)
221: Simson L. Garfinkel, De-Identification of Personal Information,
dx.doi.org/10.6028/NIST.IR.8053
221: georgetownlawtechreview.org/re-identification-of-anonymized-
data/GLTR-04-2017.
221: Cloud image courtesy of clipartion.com/free-clipart-549.
223: In April 2016, Microsoft sued the Department of Justice over
this kind of requirement: blogs.microsoft.com/on-the-
issues/2016/04/14/keeping-secrecy-exception-not-rule-issue-
consumers-businesses.
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http://clipartion.com/free-clipart-549
http://blogs.microsoft.com/on-the-issues/2016/04/14/keeping-secrecy-exception-not-rule-issue-consumers-businesses


224: www.theguardian.com/commentisfree/2014/may/20/why-did-
lavabit-shut-down-snowden-email.
224: A government redaction error revealed that Snowden was the
target: www.wired.com/2016/03/government-error-just-revealed-
snowden-target-lavabit-case.
225: Transparency reports: www.google.com/transparencyreport,
govtrequests.facebook.com, aws.amazon. com/compliance/amazon-
information-requests.
228: On the relationship of ML to statistics: www.svds.com/machine-
learning-vs-statistics
228: <vas3k.com/blog/machine_learning= by Vasily Zubarev is an
excellent informal introduction with good illustrations and no
mathematics.
229: Computer History Museum retrospective on expert systems
(2018): www.computerhistory.org/collections/catalog/102781121.
232: The Turing Award page on Bengio, Hinton and LeCun is at
awards.acm.org/about/2018-turing
233: www.nytimes.com/2020/06/24/technology/facial-recognition-
arrest.html
233: IBM abandons facial recognition:
www.ibm.com/blogs/policy/facial-recognition-susset-racial-justice-
reforms.
233: Amazon suspends facial recognition:
yro.slashdot.org/story/20/06/10/2336230/amazon-pauses-police-use-
of-facial-recognition-tech-for-a-year.
235: The Eliza dialog comes from www.masswerk.at/elizabot.
235: Talk to Transformer can be accessed at inferkit.com.
238: Amazon Rekognition:
www.nytimes.com/2020/06/10/technology/amazon-facial-recognition-
back-lash.html.
238: Clear view AI suit:
/www.nytimes.com/2020/08/11/technology/clearview-floyd-
abrams.html.
238: Significant ideas for this section come from Fairness and
Machine Learning: Limitations and Opportunities, a book by
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Barocas, Hardt and Narayanan (fairmlbook.org).
238: Botpoet.com is an entertaining online Turing test for poetry.
240: Simon Singh, The Code Book, Anchor, 2000. A delightful
history of cryptography for the general reader. The Babington Plot
(the attempt to put Mary, Queen of Scots, on the throne) is
fascinating.
241: The Enigma machine photograph is a public domain image
from Wikipedia:
commons.wikimedia.org/wiki/File:EnigmaMachine.jpg.
242: Bruce Schneier has several essays on why amateur
cryptography doesn’t work; this one points to earlier ones as well:
www.schneier.com/blog/archives/2015/05/amateurs_produc.html.
242: Ronald Rivest says that <It seems highly likely that this standard
was designed by the NSA to explicitly leak users’ key information to
the NSA (and to no one else). The Dual-EC-DRBG standard
apparently (and I would suggest, almost certainly) contains a <back-
door= enabling the NSA to have surreptitious access.=
www.nist.gov/public_affairs/releases/upload/VCAT-Report-on-NIST-
Cryptographic-Standards-and-Guidelines-Process.pdf.
243: Alice, Bob and Eve at xkcd.com/177.
245: When signing and encryption are combined, the inner crypto
layer must somehow depend on the outer layer, so as to reveal any
tampering with the outer layer.
world.std.com/~dtd/sign_encrypt/sign_encrypt7.html
247: Snapchat privacy policy: www.snapchat.com/privacy.
249: A list of things not to do when using Tor:
www.whonix.org/wiki/DoNot.
249: www.washingtonpost.com/news/the-
switch/wp/2013/10/04/everything-you-need-to-know-about-the-nsa-
and-tor-in-one-faq.
249: The Snowden documents can be found at www.aclu.org/nsa-
documents-search and www.cjfe.org/snowden, among others.
249: TAILS web site: tails.boum.org.
250: Bitcoin historical prices are from Yahoo Finance.
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251: Some people whose identities were found on the hacked
Ashley Madison site for extramarital affairs received blackmail
demands for $2000 in bitcoins:
www.grahamcluley.com/2016/01/ashley-madison-blackmail-letter.
252: www.irs.gov/individuals/international-taxpayers/frequently-
asked-questions-on-virtual-currency-transactions
252: Arvind Narayanan et al., Bitcoin and Cryptocurrency
Technologies, Princeton University Press, 2016.
252: <Keys under doormats=: dspace.mit.edu/handle/1721.1/97690.
The authors are a truly knowledgeable group of cryptography
experts. I know half of these people personally, and trust their
expertise and motives.
253: www.nytimes.com/2020/01/07/technology/apple-fbi-iphone-
encryption.html
257: www.msn.com/en-us/news/technology/facebook-says-it-
removed-over-7m-pieces-of-wrong-covid-19-content-in-quarter/ar-
BB17Q4qu.
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Glossary

<Some words there are which I cannot explain, because I do not
understand them.=

Samuel Johnson, A Dictionary of the English Language,
1755.

The glossary provides brief definitions or explanations of
important terms that appear in the book, focusing on ones that use
ordinary words but with special meanings, and that you are likely to
see frequently.

Computers and communications systems like the Internet deal
with very large numbers, often expressed in terms of unfamiliar units.
The table below defines all the units that appear in the book, along
with the others of the International System of Units. As technology
advances, you’ll see more of the ones that represent big numbers.
The table also shows the nearest powers of two. The error is only 21
percent at 1024;that is, 280 is about 1. 21 × 1024.

SI name power of 10 common name nearest power of 2
yocto 10−24 2−80

zepto 10−21 2−70

atto 10−18 2−60

femto 10−15 2−50

pico 10−12 trillionth 2−40

nano 10−9 billionth 2−30

micro 10−6 millionth 2−20

milli 10−3 thousandth 2−10

-



100 20

kilo 103 thousand 210

mega 106 million 220

giga 109 billion 230

tera 1012 trillion 240

peta 1015 quadrillion 250

exa 1018 quintillion 260

zetta 1021 270

yotta 1024 280

4G Fourth generation, a somewhat imprecise term characterizing the
technology used in smartphones, roughly 2010 onward; the
successor to 3G.
5G Fifth generation, newer and more precisely defined, roughly 2020
onward; the replacement for 4G.
802.11 The standard for wireless systems like those used in laptops
and home routers; also Wi-Fi.
add-on A small JavaScript program added to a browser for extra
features or convenience; privacy add-ons like Adblock Plus and
NoScript are examples. Also called extension.
AES Advanced Encryption Standard, the most widely used secret-
key encryption algorithm.
algorithm A precise and complete specification of a computational
process, but abstract and not directly executable by a computer, in
contrast to a program.
AM Amplitude Modulation, a mechanism for adding information like
voice or data to a signal by modifying the signal amplitude; usually
seen in the context of AM radio. See FM.
analog Generic term for representation of information that uses a
physical property that varies smoothly in proportion, such as the
level of liquid in a thermometer; contrast with digital.



API Application Programming Interface, a description for
programmers of services provided by a library or other collection of
software; for instance the Google Maps API describes how to control
map displays with JavaScript.
app, application A program or family of programs that perform
some task, for example Word or iPhoto; app is most often used for
cell phone applications like calendars and games. <Killer app= is an
earlier use.
architecture An imprecise word for the organization or structure of a
computer program, system or hardware.
ASCII American Standard Code for Information Interchange, a 7-bit
encoding of letters, digits, and punctuation; almost always stored as
8-bit bytes.
assembler A program that translates instructions in the processor’s
repertoire into bits for loading directly into the memory of a computer;
assembly language is the corresponding level of programming
language.
backdoor In cryptography, an intentional weakness that permits
someone with additional knowledge to break or circumvent
encryption.
bandwidth How fast a communications path can carry information,
measured in bits per second (bps), for instance 56 Kbps for a
telephone modem or 100 Mbps for Ethernet.
base station Radio equipment that connects wireless devices (cell
phones, laptops) to a network (telephone network, computer
network).
binary Having only two states or possible values; also binary
number for numbers in base 2.
binary search An algorithm that searches a sorted list, by
repeatedly dividing the part to be searched next into two equal
halves.
bit A binary digit (0 or 1) that represents the information in a binary
choice like on or off.
Bitcoin A digital or cryptocurrency that allows anonymous online
transactions using peer-to-peer networking.



BitTorrent Peer-to-peer protocol for distributing large popular files
efficiently; downloaders also upload.
blockchain The distributed ledger of all previous transactions used
by the Bitcoin protocol.
Bluetooth Short-range low-power radio for hands-free phones,
games, keyboards, and the like.
bot, botnet A computer running a program under the control of a
bad guy; a botnet is a collection of bots under a common control.
From robot.
browser A program like Chrome, Firefox, Internet Explorer, Edge or
Safari that provides the primary interface to web services for most
people.
browser fingerprinting A technique by which a server can use
properties of a user’s browser to identify that user more or less
uniquely. Canvas fingerprinting is one mechanism.
bug An error in a program or other system.
bus A set of wires used to connect electronic devices; also see USB.
byte Eight bits, enough to store a letter, a small number, or part of a
larger quantity; treated as a unit in modern computers.
cable modem A device for sending and receiving digital data on a
cable television network.
cache Local storage that provides fast access to information that
has been used recently.
CAPTCHA Test to distinguish humans from computers; intended to
detect bots.
certificate Digitally signed cryptographic data that can be used to
verify the authenticity of a web site.
chip Small electronic circuit, manufactured on a flat silicon surface
and mounted in a ceramic package; also integrated circuit,
microchip.
Chrome OS An operating system from Google on which applications
and user data primarily live in the cloud rather than on a local
machine, and are accessed by a browser.



client A program, often a browser, that makes requests of a server,
as in client-server.
cloud computing Computing performed on a server, with data
stored on a server, replacing a desktop application; mail, calendar
and photo sharing sites are examples.
code Text of a program in a programming language, as in source
code; an encoding, as in ASCII.
compiler A program that translates programs written in a high-level
language like C or Fortran into a lower-level form like assembly
language.
complexity A measure of the difficulty of a computational task or
algorithm, expressed in terms of how long it takes to process N data
items, like N or log N.
compression Squeezing a digital representation into fewer bits, as
in MP3 compression of digital music or JPEG compression of
images.
cookie Text sent by a server, stored by the browser on your
computer, and then returned by your browser on your next access to
that server; widely used for tracking visits to web sites.
CPU Central Processing Unit; see processor.
cryptocurrency Digital currency (like Bitcoin) based on
cryptographic techniques, not physical assets or government fiat.
dark web Part of the World Wide Web that is accessible only with
special software and/or access information; largely associated with
illegal activities.
declaration A programming language construct that states the name
and properties of some part of a computer program, for example a
variable that will store information during a computation.
deep learning Machine learning technique based on networks of
artificial neurons.
deprecated In computing, indicates a technology that is going to be
replaced or made obsolete and thus should be avoided.
DES Data Encryption Standard, the first widely used digital
encryption algorithm; superseded by AES.



digital Representation of information that takes on only discrete
numeric values; contrast to analog.
directory Same as folder.
DMCA Digital Millennium Copyright Act (1998), the US law that
protects copyrighted digital material.
DNS Domain Name System, the Internet service that translates
domain names into IP addresses.
domain name A hierarchical naming scheme for computers
connected to the Internet, such as www.cs.nott.ac.uk.
driver Software that controls a particular hardware device like a
printer; usually loaded into the operating system as necessary.
DRM Digital Rights Management, techniques for preventing illegal
copying of copyrighted material; generally unsuccessful.
DSL Digital Subscriber Loop, a technique of sending digital data
over telephone lines. Comparable to cable, but less often used.
Ethernet The most common local area network technology, used in
most home and office wireless networks.
EULA End User License Agreement, the long legal document in tiny
print that restricts what you can do with software and other digital
information.
exponential Growing by a fixed proportion each fixed step size or
time period, for example, growing by 6 percent a month; often used
carelessly for <growing quickly.=
fiber, optical fiber Fine strand of extremely pure glass used to carry
light signals over long distances; the signals encode digital
information. Most long-distance digital traffic is carried on fiber optic
cables.
file system The part of an operating system that organizes and
accesses information on disks and other secondary storage media.
filter bubble The narrowing of sources and information that results
from relying on restricted sources of online information.
firewall A program and perhaps hardware that controls or blocks
incoming and outgoing network connections from a computer or a
network.

http://www.cs.nott.ac.uk/


Flash Adobe software system for displaying video and animation on
web pages; deprecated.
flash memory Integrated-circuit memory technology that preserves
data without consuming power; used in cameras, phones, USB
memory sticks and as a replacement for disk drives.
FM Frequency Modulation, a technique for sending information by
changing the frequency of a radio signal; usually seen in the context
of FM radio. See AM.
folder A file that holds information about files and folders, including
size, date, permissions, and location; same as directory.
function Component of a program that performs a specific focused
computational task, for instance computing a square root or popping
up a dialog box, like the prompt function in JavaScript.
gateway A computer that connects one network to another; often
called a router.
GDPR General Data Protection Regulation, a European Union law to
give individuals control over their online data.
GIF Graphics Interchange Format, a compression algorithm for
simple images with blocks of color, but not photographs. See JPEG,
PNG.
GNU GPL GNU General Public License, a copyright license that
protects open-source code by requiring free access to source code,
thus preventing it from being taken private.
GPS Global Positioning System; uses time signals from satellites to
compute position on the surface of the earth. It’s one-way; GPS
devices like car navigators do not broadcast to the satellites.
GSM Global System for Mobile Communications, a cell phone
system used in much of the world.
hard disk Device that stores data on rotating disks of magnetic
material; also hard drive. Contrast with floppy disk.
hexadecimal Base 16 notation, most often seen in Unicode tables,
URLs and color specifications.
HTML Hypertext Markup Language; used to describe the contents
and format of a web page.



HTTP, HTTPS Hypertext Transfer Protocol; used between clients like
browsers and servers; HTTPS is encrypted end to end and thus
comparatively secure against snooping and man-in-the-middle
attacks.
IC, integrated circuit Electronic circuit component fabricated on a
flat surface, mounted in a sealed package, and connected to other
devices in a circuit. Most digital devices are made up mostly of IC’s.
ICANN Internet Corporation for Assigned Names and Numbers, the
organization that allocates Internet resources that must be unique,
like domain names and protocol numbers.
intellectual property The product of creative or inventive acts,
protectable by copyright and patents; it includes software and digital
media. Sometimes confusingly abbreviated IP.
interface Vague general term for the boundary between two
independent entities. See API for programming interfaces. Another
use is (graphical) user interface or GUI, the part of a computer
program that a human interacts with directly.
interpreter Program that interprets instructions for a computer,
whether real or not, thus simulating its behavior; JavaScript
programs in a browser are processed by an interpreter. See also
virtual machine.
IP Internet Protocol, the fundamental protocol for sending packets
through the Internet; may instead refer to intellectual property.
IP address Internet Protocol address, the unique numeric address
currently associated with a computer on the Internet; loosely
analogous to a telephone number.
IPv4, IPv6 The two versions of the IP protocol; IPv4 uses 32-bit
addresses, IPv6 uses 128. There are no other versions.
ISP Internet Service Provider, an entity that provides connections to
the Internet; examples include universities, and cable and telephone
companies.
IXP Internet Exchange Point, a physical site where multiple networks
meet and data is exchanged between them.
JavaScript A programming language primarily used on web pages
for visual effects and tracking.



JPEG A standard compression algorithm and representation for
digital images, named after the Joint Photographic Experts Group.
kernel The central part of an operating system, responsible for
controlling operation and resources.
key logger Software that records all keystrokes on a computer,
usually for nefarious purposes.
library A collection of related software components in a form that
can be used as parts of a program, for example the standard
functions that JavaScript provides for accessing the browser.
Linux An open-source Unix-like operating system, widely used on
servers.
logarithm Given a number N, the power to which the base is raised
to produce N. In this book, the base is 2 and the logarithms are
integers.
loop A part of a program that repeats a sequence of instructions; an
infinite loop repeats them a lot of times.
malware Software with malicious properties and intent.
man-in-the-middle attack An attack where an adversary intercepts
and modifies communications between two other parties.
microchip Another word for chip or integrated circuit.
modem Modulator / demodulator, a device that converts bits into an
analog representation (like sound) and back.
MD5 A message digest or cryptographic hash algorithm; deprecated.
MP3 A compression algorithm and representation for digital audio,
part of the MPEG standard for video.
MPEG A standard compression algorithm and representation for
digital video, names after the Moving Picture Experts Group.
net neutrality The general principle that Internet service providers
should treat all traffic the same way (except perhaps in cases of
overload), rather than biasing treatment for economic or other non-
technical reasons.
neural network Network of artificial neurons loosely like neurons in
the brain, used in machine learning algorithms.



object code Instructions and data in binary form that can be loaded
into primary memory for execution; the result of compilation and
assembly. Contrast with source code.
open source Source code (that is, readable by programmers) that is
freely available, usually under a license like the GNU GPL that keeps
it freely available on the same terms.
operating system Program that controls the resources of a
computer, including processor, file system, devices, and external
connections; examples include Windows, macOS, Unix, Linux.
packet A collection of information in a specified format, such as an
IP packet; loosely analogous to a standard envelope or shipping
container.
PDF Portable Document Format, a standard representation for
printable documents, originally created by Adobe.
peer-to-peer Exchange of information between peers, that is, a
symmetric relationship, in contrast to client-server. Used for file-
sharing networks and bitcoin.
peripheral Hardware device connected to a computer, like an
external disk, printer or scanner.
phishing, spear phishing Attempt, usually by email, to obtain
personal information or induce the target to download malware or
reveal credentials by pretending to have some kind of relationship
with the target; spear phishing is more precisely targeted.
pixel Picture element; a single point in a digital image.
platform Vague term for a software system, like an operating
system, that provides services that can be built upon.
plug-in A program that runs in the context of a browser; Flash and
QuickTime are common examples.
PNG Portable Network Graphics, a lossless compression algorithm,
a non-patented replacement for GIF, supporting many more colors;
used for text, line art, and images with large areas of solid color.
processor The part of the computer that does arithmetic and logic,
and controls the rest of the computer; also CPU. Intel and AMD
processors are widely used in laptops; ARM processors are used in
most phones.



program A set of instructions that causes a computer to do a task;
written in a programming language.
programming language Notation for expressing sequences of
operations for a computer, translated ultimately into bits to be loaded
into RAM; examples include assembler, C, C++, Java, JavaScript.
protocol An agreement on how systems interact; most often seen in
the Internet, which has a large number of protocols for exchanging
information over networks.
quadratic Numeric growth proportional to the square of a variable or
parameter, for instance how the running time of selection sort varies
with the number of items to be sorted, or the area of a circle with the
radius.
RAM Random Access Memory; the primary memory in a computer.
ransomware An attack that encrypts data on the victim’s computer,
requiring a payment to recover it.
registrar A company that has the authority (from ICANN) to sell
domain names to individuals and companies.
reinforcement learning Machine learning that uses performance on
a real world task to guide learning; used in computer games like
chess.
representation General word for how information is expressed in
digital form.
RFID Radio-Frequency Identification, a low power wireless system
used in electronic door locks, pet identification chips, and the like.
RGB Red, Green, Blue, the standard way that colors are
represented in computer displays as the combination of three basic
colors.
router Another word for gateway: a computer that passes
information from one network to another; also wireless router.
RSA The most widely used public-key encryption algorithm, named
after its inventors Ron Rivest, Adi Shamir and Leonard Adleman.
SDK Software Development Kit, a collection of tools to help
programmers write programs for some device or environment, for
example cell phones and game consoles.



search engine Server like Bing or Google that collects web pages
and answers queries about them.
server Computer or computers that provide access to data upon
request from a client; search engines, shopping sites, and social
networks are examples.
SHA-1, SHA-2, SHA-3 Secure hash algorithms, for making
cryptographic digests of arbitrary input; SHA-1 is deprecated.
simulator Program that simulates (acts like) a device or other
system.
smartphone Phone like iPhone and Android with the capability of
downloading and running programs (apps).
social engineering Technique of deceiving a victim into releasing
information or doing some action by pretending to have a
relationship like a mutual friend or the same employer.
solid state disk/drive, SSD Non-volatile secondary storage that
uses flash memory; a replacement for hard disk drives based on
rotating machinery.
source code Program text written in a language comprehensible by
programmers, to be compiled into object code.
spectrum Frequency range for a system or device, for example
phone service or a radio station.
spyware Software that reports back to home on what happens on
the computer where it is installed.
stingray Device that simulates a cell phone base station so phones
will communicate with it instead of the regular phone system.
supervised learning Machine learning based on learning from a set
of labeled or tagged examples.
system call Mechanism by which an operating system makes its
services available to programmers; a system call looks much like a
function call.
standard Formal specification or description of how something
works or is built or is controlled, precise enough to permit
interoperability and independent implementations. Examples include
character sets like ASCII and Unicode, plugs and sockets like USB,
and programming language definitions.



TCP Transmission Control Protocol, a protocol that uses IP to create
two-way streams. TCP/IP is the combination of TCP and IP.
tracking Recording the sites that a web user visits and what he or
she does there.
Trojan horse A program that promises to do one thing but in fact
does something different and usually malicious.
troll Intentionally disruptive in the Internet; both noun and verb. Also
patent troll, who seeks to exploit sketchy patents.
Turing machine Abstract computer, conceived by Alan Turing, that
is capable of performing any digital computation; a universal Turing
machine can simulate any other Turing machine and thus any digital
computer.
Unicode A standard encoding for all of the characters in all of the
world’s writing systems. UTF-8 is an 8-bit variable-width encoding for
transferring Unicode data.
Unix An operating system developed at Bell Labs that forms the
base of many of today’s operating systems; Linux is a look a like that
provides the same services but with a different implementation.
unsupervised learning Machine learning based on learning without
labeled or tagged examples.
URL Uniform Resource Locator, the standard form of a web address,
like http: //www. amazon. com
USB Universal Serial Bus, a standard connector for plugging devices
like external disk drives, cameras, displays and phones into
computers. USB-C is a newer and physically incompatible version.
variable A RAM location that stores information; a variable
declaration names the variable and may provide other information
about it, like an initial value or the type of data it holds.
virtual machine A program that simulates a computer; also
interpreter.
virtual memory Software and hardware that give the illusion of
unlimited primary memory.
virus A program, usually malicious, that infects a computer; a virus
needs help propagating from one system to another, in contrast to a
worm.



VoIP Voice over IP, a method of using the Internet for voice
conversations, often with a way to access the regular telephone
system.
VPN Virtual Private Network, an encrypted path among computers
that secures information flow in both directions.
walled garden A software ecosystem that confines its users to
facilities of that system, making it hard to access or use anything
outside the system.
web beacon A small and usually invisible image used for tracking
the fact that a particular web page has been downloaded.
web server A server focused on web applications.
Wi-Fi Wireless Fidelity, the marketing name for 802.11 wireless.
wireless router A radio device that connects wireless devices like
computers to a wired network.
worm A program, usually malicious, that infects a computer; a worm
can propagate from one system to another without help, in contrast
to a virus.
zero-day A software vulnerability which defenders have zero days to
fix or defend against.





Index

<Any inaccuracies in this index may be explained by the fact
that it has been sorted with the help of a computer.=

Donald E. Knuth, The Art of Computer Programming,
Volume 3, Searching and Sorting, 1973.
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