

2

3

Addison-Wesley Professional Computing
Series

Brian W. Kernighan, Consulting Editor

Matthew H. Austern, Generic Programming and the STL: Using and
Extending the C++ Standard Template Library

David R. Butenhof, Programming with POSIX® Threads

Brent Callaghan, NFS Illustrated

Tom Cargill, C++ Programming Style

William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls
and Internet Security, Second Edition: Repelling the Wily Hacker

David A. Curry, UNIX® System Security: A Guide for Users and
System Administrators

Stephen C. Dewhurst, C++ Gotchas: Avoiding Common Problems in
Coding and Design

Dan Farmer/Wietse Venema, Forensic Discovery

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software

Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design
Patterns CD: Elements of Reusable Object-Oriented Software

4

Peter Haggar, Practical Java™ Programming Language Guide

David R. Hanson, C Interfaces and Implementations: Techniques for
Creating Reusable Software

Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming:
Writing Better Programs with Tcl and Tk

Michi Henning/Steve Vinoski, Advanced CORBA® Programming with
C++

Brian W. Kernighan/Rob Pike, The Practice of Programming

S. Keshav, An Engineering Approach to Computer Networking: ATM
Networks, the Internet, and the Telephone Network

John Lakos, Large-Scale C++ Software Design

Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your
Programs and Designs

Scott Meyers, Effective C++, Third Edition: 55 Specific Ways to
Improve Your Programs and Designs

Scott Meyers, More Effective C++: 35 New Ways to Improve Your
Programs and Designs

Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of
the Standard Template Library

5

Robert B. Murray, C++ Strategies and Tactics

David R. Musser/Gillmer J. Derge/Atul Saini, STL Tutorial and
Reference Guide, Second Edition: C++ Programming with the
Standard Template Library

John K. Ousterhout, Tcl and the Tk Toolkit

Craig Partridge, Gigabit Networking

Radia Perlman, Interconnections, Second Edition: Bridges, Routers,
Switches, and Internetworking Protocols

Stephen A. Rago, UNIX® System V Network Programming

Eric S. Raymond, The Art of UNIX Programming

Marc J. Rochkind, Advanced UNIX Programming, Second Edition

Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric
Multiprocessing and Caching for Kernel Programmers

W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols

W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for
Transactions, HTTP, NNTP, and the UNIX® Domain Protocols

W. Richard Stevens/Bill Fenner/Andrew M. Rudoff, UNIX Network
Programming Volume 1, Third Edition: The Sockets Networking
API

6

W. Richard Stevens/Stephen A. Rago, Advanced Programming in the
UNIX® Environment, Second Edition

W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3
Boxed Set

John Viega/Gary McGraw, Building Secure Software: How to Avoid
Security Problems the Right Way

Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2:
The Implementation

Ruixi Yuan/W. Timothy Strayer, Virtual Private Networks:
Technologies and Solutions

Visit www.awprofessional.com/series/professionalcomputing for more
information about these titles.

7

http://www.awprofessional.com/series/professionalcomputing

8

Tcl and the Tk Toolkit

Second Edition

John K. Ousterhout
Ken Jones

With contributions by
Eric Foster-Johnson, Donal Fellows, Brian Griffin, and David Welton

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

9

Capetown • Sydney • Tokyo • Singapore • Mexico City

10

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

Excerpts from the Tcl/Tk reference documentation are used under the terms
of the Tcl/Tk license (http://www.tcl.tk/software/tcltk/license.html).

The open source icon set used in Figures 22-1, 22-2, and 22-3 are from the
Tango Desktop Project
(http://tango.freedesktop.org/Tango_Desktop_Project).

The authors and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales, which may include electronic
versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
 international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Ousterhout, John K.
 Tcl and the Tk toolkit / John Ousterhout, Ken Jones ; with contributions by
Eric Foster-Johnson . . . [et al.]. — 2nd ed.

11

http://www.tcl.tk/software/tcltk/license.html
http://tango.freedesktop.org/Tango_Desktop_Project
mailto:corpsales@pearsontechgroup.com
mailto:international@pearson.com
http://informit.com/aw

 p. cm.
 Includes index.
 ISBN 978-0-321-33633-0 (pbk. : alk. paper)
 1. Tcl (Computer program language) 2. Tk toolkit. I. Jones,
Ken. II. Title.
 QA76.73.T44O97 2009
 005.13'3—dc22
 2009022005

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This
publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
 Rights and Contracts Department
 501 Boylston Street, Suite 900
 Boston, MA 02116
 Fax: (617) 671-3447

ISBN-13: 978-0-321-33633-0
ISBN-10: 0-321-33633-X
Text printed in the United States on recycled paper at Edwards Brothers in
Ann Arbor, Michigan.
First printing, August 2009

12

13

Contents

Preface

Preface to the First Edition

Introduction

PART I The Tcl Language

Chapter 1 An Overview of Tcl and Tk
1.1 Getting Started
1.2 “Hello, World!” with Tk
1.3 Script Files

1.3.1 Executable Scripts on Unix and Mac OS X
1.3.2 Executable Scripts on Windows
1.3.3 Executing Scripts in an Interactive Interpreter

1.4 Variables and Substitutions
1.5 Control Structures
1.6 On the Tcl Language
1.7 Event Bindings
1.8 Additional Features of Tcl and Tk

Chapter 2 Tcl Language Syntax
2.1 Scripts, Commands, and Words
2.2 Evaluating a Command
2.3 Variable Substitution
2.4 Command Substitution
2.5 Backslash Substitution
2.6 Quoting with Double Quotes
2.7 Quoting with Braces
2.8 Argument Expansion
2.9 Comments
2.10 Normal and Exceptional Returns

14

2.11 More on Substitutions

Chapter 3 Variables
3.1 Commands Presented in This Chapter
3.2 Simple Variables and the set Command
3.3 Tcl’s Internal Storage of Data
3.4 Arrays
3.5 Variable Substitution
3.6 Multidimensional Arrays
3.7 Querying the Elements of an Array
3.8 The incr and append Commands
3.9 Removing Variables: unset and array unset
3.10 Predefined Variables
3.11 Preview of Other Variable Facilities

Chapter 4 Expressions
4.1 Commands Presented in This Chapter
4.2 Numeric Operands
4.3 Operators and Precedence

4.3.1 Arithmetic Operators
4.3.2 Relational Operators
4.3.3 Logical Operators
4.3.4 Bit-wise Operators
4.3.5 Choice Operator

4.4 Math Functions
4.5 Substitutions
4.6 String Manipulation
4.7 List Manipulation
4.8 Types and Conversions
4.9 Precision

Chapter 5 String Manipulation
5.1 Commands Presented in This Chapter
5.2 Extracting Characters: string index and string range
5.3 Length, Case Conversion, Trimming, and Repeating
5.4 Simple Searching
5.5 String Comparisons
5.6 String Replacements
5.7 Determining String Types
5.8 Generating Strings with format

15

5.9 Parsing Strings with scan
5.10 Glob-Style Pattern Matching
5.11 Pattern Matching with Regular Expressions

5.11.1 Regular Expression Atoms
5.11.2 Regular Expression Branches and Quantifiers
5.11.3 Back References
5.11.4 Non-capturing Subexpressions
5.11.5 The regexp Command

5.12 Using Regular Expressions for Substitutions
5.13 Character Set Issues

5.13.1 Character Encodings and the Operating System
5.13.2 Encodings and Channel Input/output
5.13.3 Converting Strings to Different Encodings

5.14 Message Catalogs
5.14.1 Using Message Catalogs
5.14.2 Creating Localized Message Files
5.14.3 Using Conversion Specifiers in Source and

Translation Strings
5.14.4 Using Message Catalogs with Namespaces

5.15 Binary Strings

Chapter 6 Lists
6.1 Commands Presented in This Chapter
6.2 Basic List Structure and the lindex and llength Commands
6.3 Creating Lists: list, concat, and lrepeat
6.4 Modifying Lists: lrange, linsert, lreplace, lset, and lappend
6.5 Extracting List Elements: lassign
6.6 Searching Lists: lsearch
6.7 Sorting Lists: lsort
6.8 Converting between Strings and Lists: split and join
6.9 Creating Commands as Lists

Chapter 7 Dictionaries
7.1 Commands Presented in This Chapter
7.2 Basic Dictionary Structure and the dict get Command
7.3 Creating and Updating Dictionaries
7.4 Examining Dictionaries: The size, exists, keys, and for

Subcommands
7.5 Updating Dictionary Values
7.6 Working with Nested Dictionaries

16

Chapter 8 Control Flow
8.1 Commands Presented in This Chapter
8.2 The if Command
8.3 The switch Command
8.4 Looping Commands: while, for, and foreach
8.5 Loop Control: break and continue
8.6 The eval Command
8.7 Executing from Files: source

Chapter 9 Procedures
9.1 Commands Presented in This Chapter
9.2 Procedure Basics: proc and return
9.3 Local and Global Variables
9.4 Defaults and Variable Numbers of Arguments
9.5 Call by Reference: upvar
9.6 Creating New Control Structures: uplevel
9.7 Applying Anonymous Procedures

Chapter 10 Namespaces
10.1 Commands Presented in This Chapter
10.2 Evaluating Tcl Code in a Namespace
10.3 Manipulating Qualified Names
10.4 Exporting and Importing Namespace Commands
10.5 Inspecting Namespaces
10.6 Working with Ensemble Commands

10.6.1 Basic Ensembles
10.6.2 Placing Ensembles Inside Ensembles
10.6.3 Controlling the Ensemble Configuration
10.6.4 Handling Unknown Ensemble Subcommands

10.7 Accessing Variables from Other Namespaces
10.8 Controlling the Name Resolution Path

Chapter 11 Accessing Files
11.1 Commands Presented in This Chapter
11.2 Manipulating File and Directory Names
11.3 The Current Working Directory
11.4 Listing Directory Contents
11.5 Working with Files on Disk

11.5.1 Creating Directories
11.5.2 Deleting Files

17

11.5.3 Copying Files
11.5.4 Renaming and Moving Files
11.5.5 File Information Commands
11.5.6 Dealing with Oddly Named Files

11.6 Reading and Writing Files
11.6.1 Basic File I/O
11.6.2 Output Buffering
11.6.3 Handling Platform End-of-Line Conventions
11.6.4 Handling Character Set Encoding
11.6.5 Working with Binary Files
11.6.6 Random Access to Files
11.6.7 Copying File Content

11.7 Virtual File Systems
11.8 Errors in System Calls

Chapter 12 Processes and Interprocess Communication
12.1 Commands Presented in This Chapter
12.2 Terminating the Tcl Process with exit
12.3 Invoking Subprocesses with exec
12.4 I/O to and from a Command Pipeline
12.5 Configuring Channel Options

12.5.1 Channel Blocking Mode
12.5.2 Channel Buffering Mode

12.6 Event-Driven Channel Interaction
12.6.1 Entering the Tcl Event Loop with vwait
12.6.2 Registering File Event Handlers

12.7 Process IDs
12.8 Environment Variables
12.9 TCP/IP Socket Communication

12.9.1 Creating Client Communication Sockets
12.9.2 Creating Server Sockets

12.10 Sending Commands to Tcl Programs
12.10.1 Basics of send
12.10.2 Application Names
12.10.3 Security Issues with send

Chapter 13 Errors and Exceptions
13.1 Commands Presented in This Chapter
13.2 What Happens after an Error?
13.3 Generating Errors from Tcl Scripts

18

13.4 Trapping Errors with catch
13.5 Exceptions in General
13.6 Background Errors and bgerror

Chapter 14 Creating and Using Tcl Script Libraries
14.1 Commands Presented in This Chapter
14.2 The load Command
14.3 Using Libraries
14.4 Autoloading
14.5 Packages

14.5.1 Using Packages
14.5.2 Creating Packages
14.5.3 Using ::pkg::create
14.5.4 Installing Packages
14.5.5 Utility Package Commands

14.6 Tcl Modules
14.6.1 Using Tcl Modules
14.6.2 Installing Tcl Modules

14.7 Packaging Your Scripts as Starkits
14.7.1 Installing a Tclkit
14.7.2 Creating Starkits
14.7.3 Creating a Platform-Specific Executable

Chapter 15 Managing Tcl Internals
15.1 Commands Presented in This Chapter
15.2 Time Delays
15.3 Time and Date Manipulation

15.3.1 Generating Human-Readable Time and Date Strings
15.3.2 Scanning Human-Readable Time and Date Strings
15.3.3 Performing Clock Arithmetic

15.4 Timing Command Execution
15.5 The info Command

15.5.1 Information about Variables
15.5.2 Information about Procedures
15.5.3 Information about Commands
15.5.4 The Tcl Interpreter Version and Other Runtime

Environment Information
15.6 Tracing Operations on Simple Variables
15.7 Tracing Array Variables
15.8 Renaming and Deleting Commands

19

15.9 Tracing Commands
15.10 Unknown Commands
15.11 Slave Interpreters

15.11.1 Command Aliases
15.11.2 Safe Slave Interpreters and Hidden Commands
15.11.3 Transferring Channels between Interpreters
15.11.4 Placing Limits on an Interpreter

Chapter 16 History
16.1 Commands Presented in This Chapter
16.2 The History List
16.3 Specifying Events
16.4 Re-executing Commands from the History List
16.5 Shortcuts Implemented by unknown
16.6 Current Event Number: history nextid

PART II Writing Scripts for Tk

Chapter 17 An Introduction to Tk
17.1 A Brief Introduction to Windowing Systems
17.2 Widgets
17.3 Applications, Toplevel Widgets, and Screens
17.4 Scripts and Events
17.5 Creating and Destroying Widgets
17.6 Geometry Managers
17.7 Widget Commands
17.8 Commands for Interconnection

Chapter 18 A Tour of the Tk Widgets
18.1 Widget Basics
18.2 Frames

18.2.1 Relief Options
18.2.2 Screen Distance Options

18.3 Color Options
18.3.1 Synonyms

18.4 Toplevels
18.5 Labels

18.5.1 Text Options
18.5.2 Font Options
18.5.3 Image Options

20

18.5.4 Compound Options
18.6 Labelframes
18.7 Buttons

18.7.1 Checkbuttons
18.7.2 Radiobuttons
18.7.3 Menubuttons

18.8 Listboxes
18.9 Scrollbars

18.9.1 Scrolling a Single Widget
18.9.2 Synchronized Scrolling of Multiple Widgets

18.10 Scales
18.11 Entries

18.11.1 Entry Widget
18.11.2 Spinbox
18.11.3 The show Option
18.11.4 Validation

18.12 Menus
18.12.1 Pull-Down Menus
18.12.2 Cascaded Menus
18.12.3 Keyboard Traversal and Shortcuts
18.12.4 Platform-Specific Menus
18.12.5 Pop-up Menus

18.13 Panedwindow
18.14 Standard Dialogs
18.15 Other Common Options

18.15.1 Widget State
18.15.2 Widget Size Options
18.15.3 Anchor Options
18.15.4 Internal Padding
18.15.5 Cursor Options

Chapter 19 Themed Widgets
19.1 Comparing Classic and Themed Widgets
19.2 Combobox
19.3 Notebook
19.4 Progressbar
19.5 Separator
19.6 Sizegrip
19.7 Treeview

19.7.1 Manipulating Treeview Items

21

19.7.2 Managing Treeview Columns and Headings
19.7.3 Treeview Item Selection Management
19.7.4 Treeview Item Tags

19.8 Themed Widget States
19.9 Themed Widget Styles

19.9.1 Using Themes
19.9.2 The Elements of Style
19.9.3 Creating and Configuring Styles

19.10 Other Standard Themed Widget Options

Chapter 20 Fonts, Bitmaps, and Images
20.1 Commands Presented in This Chapter
20.2 The font Command

20.2.1 Manipulating and Using Named Fonts
20.2.2 Other Font Utilities
20.2.3 Font Descriptions

20.3 The image Command
20.3.1 Bitmap Images
20.3.2 Photo Images
20.3.3 Images and Namespaces

Chapter 21 Geometry Managers
21.1 Commands Presented in This Chapter
21.2 An Overview of Geometry Management
21.3 The Gridder

21.3.1 The grid Command and the -sticky Options
21.3.2 Spanning Rows and Columns
21.3.3 Stretch Behavior and the -weight and -uniform Options
21.3.4 Relative Placement Characters

21.4 The Packer
21.4.1 The pack Command and -side Options
21.4.2 Filling
21.4.3 Expansion
21.4.4 Anchors
21.4.5 Packing Order

21.5 Padding
21.6 The Placer
21.7 Hierarchical Geometry Management
21.8 Widget Stacking Order
21.9 Other Geometry Manager Options

22

21.10 Other Geometry Managers in Tk

Chapter 22 Events and Bindings
22.1 Commands Presented in This Chapter
22.2 Events
22.3 An Overview of the bind Command
22.4 Event Patterns
22.5 Sequences of Events
22.6 Substitutions in Scripts
22.7 Conflict Resolution
22.8 Event-Binding Hierarchy
22.9 When Are Events Processed?
22.10 Named Virtual Events
22.11 Generating Events
22.12 Logical Actions
22.13 Other Uses of Bindings

Chapter 23 The Canvas Widget
23.1 Canvas Basics: Items and Types
23.2 Manipulating Items with Identifiers and Tags
23.3 Bindings
23.4 Canvas Scrolling
23.5 PostScript Generation

Chapter 24 The Text Widget
24.1 Text Widget Basics
24.2 Text Indices and Marks
24.3 Search and Replace
24.4 Text Tags

24.4.1 Tag Options
24.4.2 Tag Priorities
24.4.3 Tag Bindings

24.5 Virtual Events
24.6 Embedded Windows
24.7 Embedded Images
24.8 Undo
24.9 Peer Text Widgets

Chapter 25 Selection and the Clipboard
25.1 Commands Presented in This Chapter
25.2 Selections, Retrievals, and Types

23

25.3 Locating and Clearing the Selection
25.4 Supplying the Selection with Tcl Scripts
25.5 The clipboard Command
25.6 Drag and Drop

Chapter 26 Window Managers
26.1 Commands Presented in This Chapter
26.2 Window Sizes
26.3 Window Positions
26.4 Gridded Windows
26.5 Window States
26.6 Decorations
26.7 Special Handling: Transients, Groups, and Override-

Redirect
26.8 System-Specific Window Attributes
26.9 Dockable Windows
26.10 Window Close
26.11 Session Management

Chapter 27 Focus, Modal Interaction, and Custom Dialogs
27.1 Commands Presented in This Chapter
27.2 Input Focus

27.2.1 Focus Model: Explicit versus Implicit
27.2.2 Setting the Input Focus
27.2.3 Querying the Input Focus

27.3 Modal Interactions
27.3.1 Grabs
27.3.2 Local versus Global Grabs
27.3.3 Keyboard Handling during Grabs
27.3.4 Waiting: The tkwait Command

27.4 Custom Dialogs

Chapter 28 More on Configuration Options
28.1 Commands Presented in This Chapter
28.2 The Option Database
28.3 Option Database Entries
28.4 The RESOURCE_MANAGER Property and .Xdefaults File
28.5 Priorities in the Option Database
28.6 The option Command
28.7 The configure Widget Command

24

28.8 The cget Widget Command

Chapter 29 Odds and Ends
29.1 Commands Presented in This Chapter
29.2 Destroying Widgets
29.3 The update Command
29.4 Information about Widgets
29.5 The tk Command
29.6 Variables Managed by Tk
29.7 Ringing the Bell

PART III Writing Tcl Applications in C

Chapter 30 Tcl and C Integration Philosophy
30.1 Tcl versus C: Where to Draw the Line
30.2 Resource Names—Connecting C Constructs to Tcl
30.3 “Action-Oriented” versus “Object-Oriented”
30.4 Representing Information

Chapter 31 Interpreters
31.1 Functions Presented in This Chapter
31.2 Interpreters
31.3 A Simple Tcl Application
31.4 Deleting Interpreters
31.5 Multiple Interpreters

Chapter 32 Tcl Objects
32.1 Functions Presented in This Chapter
32.2 String Objects
32.3 Numerical Objects
32.4 Fetching C Values from Objects
32.5 The Dynamic Nature of a Tcl Object
32.6 Byte Arrays
32.7 Composite Objects
32.8 Reference Counting
32.9 Shared Objects
32.10 New Object Types
32.11 Parsing Strings
32.12 Memory Allocation

25

Chapter 33 Evaluating Tcl Code
33.1 Functions Presented in This Chapter
33.2 Evaluating Tcl Code
33.3 Dynamically Building Scripts
33.4 Tcl Expressions

Chapter 34 Accessing Tcl Variables
34.1 Functions Presented in This Chapter
34.2 Setting Variable Values
34.3 Reading Variables
34.4 Unsetting Variables
34.5 Linking Tcl and C Variables
34.6 Setting and Unsetting Variable Traces
34.7 Trace Callbacks
34.8 Whole-Array Traces
34.9 Multiple Traces
34.10 Unset Callbacks

Chapter 35 Creating New Tcl Commands
35.1 Functions Presented in This Chapter
35.2 Command Functions
35.3 Registering Commands
35.4 The Result Protocol
35.5 Tcl_AppendResult
35.6 Tcl_SetResult and interp->result
35.7 clientData and Deletion Callbacks
35.8 Deleting Commands
35.9 Fetching and Setting Command Parameters
35.10 How Tcl Procedures Work
35.11 Command Traces

Chapter 36 Extensions
36.1 Functions Presented in This Chapter
36.2 The Init Function
36.3 Packages
36.4 Namespaces
36.5 Tcl Stubs
36.6 The ifconfig Extension

Chapter 37 Embedding Tcl
37.1 Functions Presented in This Chapter

26

37.2 Adding Tcl to an Application
37.3 Initialize Tcl
37.4 Creating New Tcl Shells

Chapter 38 Exceptions
38.1 Functions Presented in This Chapter
38.2 Completion Codes
38.3 Setting errorCode
38.4 Managing the Return Options Dictionary
38.5 Adding to the Stack Trace in errorInfo
38.6 Tcl_Panic

Chapter 39 String Utilities
39.1 Functions Presented in This Chapter
39.2 Dynamic Strings
39.3 String Matching
39.4 Regular Expression Matching
39.5 Working with Character Encodings
39.6 Handling Unicode and UTF-8 Strings
39.7 Command Completeness

Chapter 40 Hash Tables
40.1 Functions Presented in This Chapter
40.2 Keys and Values
40.3 Creating and Deleting Hash Tables
40.4 Creating Entries
40.5 Finding Existing Entries
40.6 Searching
40.7 Deleting Entries
40.8 Statistics

Chapter 41 List and Dictionary Objects
41.1 Functions Presented in This Chapter
41.2 Lists
41.3 Dictionaries

Chapter 42 Channels
42.1 Functions Presented in This Chapter

42.1.1 Basic Channel Operations
42.1.2 Channel Registration Functions
42.1.3 Channel Attribute Functions

27

42.1.4 Channel Query Functions
42.1.5 Channel Type Definition Functions

42.2 Channel Operations
42.3 Registering Channels
42.4 Standard Channels
42.5 Creating a New Channel Type

42.5.1 Creating a Custom Channel Instance
42.5.2 Stacked Channels
42.5.3 ROT13 Channel

Chapter 43 Handling Events
43.1 Functions Presented in This Chapter
43.2 Channel Events
43.3 Timer Events
43.4 Idle Callbacks
43.5 Invoking the Event Dispatcher

Chapter 44 File System Interaction
44.1 Tcl File System Functions
44.2 Virtual File Systems

Chapter 45 Operating System Utilities
45.1 Functions Presented in This Chapter
45.2 Processes
45.3 Reaping Child Processes
45.4 Asynchronous Events
45.5 Signal Names
45.6 Exiting and Cleanup
45.7 Miscellaneous

Chapter 46 Threads
46.1 Functions Presented in This Chapter
46.2 Thread Safety
46.3 Building Threaded Tcl
46.4 Creating Threads
46.5 Terminating Threads
46.6 Mutexes
46.7 Condition Variables
46.8 Miscellaneous

Chapter 47 Building Tcl and Extensions

28

47.1 Building Tcl and Tk
47.1.1 Building Tcl and Tk on Unix
47.1.2 Building Tcl and Tk on Mac OS
47.1.3 Building Tcl and Tk on Windows

47.2 The Tcl Extension Architecture (TEA)
47.2.1 TEA Standard Configure Options
47.2.2 Directory Layout for TEA Extensions
47.2.3 Customizing the aclocal.m4 File
47.2.4 Customizing the configure.in File
47.2.5 Customizing the Makefile.in File
47.2.6 Building an Extension on Windows

47.3 Building Embedded Tcl

Appendixes

Appendix A Installing Tcl and Tk

A.1 Versions
A.2 Bundled Tcl Distributions
A.3 ActiveTcl
A.4 Tclkits
A.5 Compiling Tcl/Tk from Source Distributions

Appendix B Extensions and Applications

B.1 Obtaining and Installing Extensions
B.1.1 Installing Extensions Manually
B.1.2 Installing Extensions from ActiveState TEApot

Repositories
B.2 TkCon Extended Console
B.3 The Standard Tcl Library, Tcllib
B.4 Additional Image Formats with Img
B.5 Sound Support with Snack
B.6 Object-Oriented Tcl
B.7 Multithreaded Tcl Scripting
B.8 XML Programming
B.9 Database Programming
B.10 Integrating Tcl and Java
B.11 SWIG
B.12 Expect

29

B.13 Extended Tcl

Appendix C Tcl Resources

C.1 Online Resources
C.2 Books

Appendix D Tcl Source Distribution License

Index

30

31

Preface

Tcl and Tk have evolved tremendously since John wrote the first edition of
this book. In a “History of Tcl” that John wrote several years ago
(http://www.tcl.tk/about/history.html), he documented several significant
enhancements that occurred:

I joined Sun in May of 1994 and began building a team of Tcl
developers . . . The additional resources provided by Sun allowed us
to make major improvements to Tcl and Tk. Scott Stanton and Ray
Johnson ported Tcl and Tk to Windows and the Macintosh, so that Tcl
became an outstanding cross-platform development environment . . .
Jacob Levy and Scott Stanton overhauled the I/O system and added
socket support, so that Tcl could easily be used for a variety of
network applications. Brian Lewis built a bytecode compiler for Tcl
scripts, which provided speedups of as much as a factor of 10x. Jacob
Levy implemented Safe-Tcl, a powerful security model that allows
untrusted scripts to be evaluated safely. Jacob Levy and Laurent
Demailly built a Tcl plugin, so that Tcl scripts can be evaluated in a
web browser, and we created Jacl and TclBlend, which allow Tcl and
Java to work closely together. We added many other smaller
improvements, such as dynamic loading, namespaces, time and date
support, binary I/O, additional file manipulation commands, and an
improved font mechanism.

John went on to found the company Scriptics in 1997 to create development
tools and provide training and support for Tcl on a commercial basis. I
joined Scriptics shortly after its founding and had the pleasure of working
with John and many other talented people responsible for the success of Tcl
and Tk. During that time, Tcl became the first dynamic language with native
Unicode support (for internationalization), thread safety (for multithreaded
applications), and an all-new regular expression package by Henry Spencer
that included many new features as well as Unicode support. In 1998, John
was recognized for his work on Tcl/Tk with the ACM Software System
Award, conferred each year for “a software system that has had a lasting
influence.”
After many years of serving as the “benevolent dictator” of Tcl/Tk
development, John was ready to focus on other ventures. In 2000, he turned
control of Tcl/Tk over to the Tcl Core Team (TCT), a group of Tcl experts

32

http://www.tcl.tk/about/history.html

who collectively manage the development of Tcl/Tk. The TCT organizes its
activities with Tcl Improvement Proposals (TIPs). Each TIP is a short
document that describes a particular project, activity, or process. Anyone
can write a TIP; the TIP then gets circulated among the Tcl Core Team for
discussion and approval. You can learn more about the process at
http://www.tcl.tk/community/coreteam. The TCT welcomes community
involvement in shaping the future of Tcl/Tk.
One of the most exciting developments in recent years is a technology
supporting single-file distribution of Tcl runtime environments and Tcl/Tk-
based applications through Starkits and Starpacks; Chapter 14 shows you
how to take advantage of this method of distributing your applications.
Starkits are based on another powerful innovation, virtual file systems,
which allows your applications to treat such entities as ZIP archives, FTP
sites, HTTP sites, and WebDAV shares as mountable file systems; Chapter
11 describes using this technology. And Tk 8.5 introduced a new set of
themed widgets, which provide a more modern appearance and consistent
look and feel than the classic Tk widgets; Chapter 19 introduces the
capabilities of the new themed widgets.
In addition to my coauthors, many other people have contributed to the
success of this second edition. Clif Flynt, Jeff Hobbs, Brian Kernighan,
Steve Landers, and Mark Roseman all spent significant time and effort on
critiquing and improving the technical content. Joe English, Jeff Hobbs, and
Don Porter provided valuable insight into several nooks and crannies of Tcl
and Tk. Mark Roseman and his TkDocs site (http://www.tkdocs.com) provided
invaluable insight into themed widgets, styles, and themes. Cameron Laird
served as a sounding board for the initial shaping and restructuring of the
second edition. At Addison-Wesley, long-suffering Mark Taub and Debra
Williams Cauley kept working with me to bring this book to publication,
and Michael Thurston helped make my inconsistencies more consistent.
Finally, Dean Akamine spent many a long hour on the thankless job of
converting files from format to format and helping me to tame FrameMaker.
To them and all the others I’ve negligently forgotten to name, I give my
thanks for their help.
Ken Jones
San Francisco, California
April 2009

33

http://www.tcl.tk/community/coreteam
http://www.tkdocs.com

34

Preface to the First Edition

Tcl was born of frustration. In the early 1980s my students and I developed
a number of interactive tools at the University of California at Berkeley,
mostly for integrated circuit design, and we found ourselves spending a lot
of time building bad command languages. Each tool needed to have a
command language of some sort, but our main interest was in the tool rather
than its command language. We spent as little time as possible on the
command language and always ended up with a language that was weak and
quirky. Furthermore, the command language for one tool was never quite
right for the next tool, so we ended up building a new bad command
language for each tool. This became increasingly frustrating.
In the fall of 1987 it occurred to me that the solution was to build a reusable
command language. If a general-purpose scripting language could be built as
a C library package, then perhaps it could be reused for many different
purposes in many different applications. Of course, the language would need
to be extensible so that each application could add its own specific features
to the core provided by the library. In the spring of 1988 I decided to
implement such a language, and the result was Tcl.
Tk was also born of frustration. The basic idea for Tk arose in response to
Apple’s announcement of HyperCard in the fall of 1987. HyperCard
generated tremendous excitement because of the power of the system and the
way in which it allowed many different interactive elements to be scripted
and work together. However, I was discouraged. The HyperCard system had
obviously taken a large development effort, and it seemed unlikely to me
that a small group such as a university research project could ever mount
such a massive effort. This suggested that we would not be able to
participate in the development of new forms of interactive software in the
future.
I concluded that the only hope for us was a component approach. Rather
than building a new application as a self-contained monolith with hundreds
of thousands of lines of code, we needed to find a way to divide
applications into many smaller reusable components. Ideally each
component would be small enough to be implemented by a small group, and
interesting applications could be created by assembling components. In this
environment it should be possible to create an exciting new application by
developing one new component and then combining it with existing

35

components.
The component-based approach requires a powerful and flexible “glue” for
assembling the components, and it occurred to me that perhaps a shared
scripting language could provide that glue. Out of this thinking grew Tk, an
X11 toolkit based on Tcl. Tk allows components to be either individual
user-interface controls or entire applications; in either case components can
be developed independently and Tcl can be used to assemble the
components and communicate between them.
I started writing Tcl and Tk as a hobby in my spare time. As other people
began to use the systems I found myself spending more and more time on
them, to the point where today they occupy almost all of my waking hours
and many of my sleeping ones.
Tcl and Tk have succeeded beyond my wildest dreams. The Tcl/Tk
developer community now numbers in the tens of thousands and there are
thousands of Tcl applications in existence or under development. The
application areas for Tcl and Tk cover virtually the entire spectrum of
graphical and engineering applications, including computer-aided design,
software development, testing, instrument control, scientific visualization,
and multimedia. Tcl is used by itself in many applications, and Tcl and Tk
are used together in many others. Tcl and Tk are being used by hundreds of
companies, large and small, as well as universities and research
laboratories.
One benefit that came as a surprise to me is that it is possible to create
interesting graphical user interfaces (GUIs) entirely as Tcl scripts. I had
always assumed that every Tcl application would contain some new C code
that implements new Tcl commands, plus some Tcl scripts that combine the
new commands with the built-in facilities provided by Tcl. However, once a
simple Tcl/Tk application called wish became available, many people began
creating user interfaces by writing Tcl scripts for it, without writing any C
code at all! It turned out that the Tcl and Tk commands provide a high-level
interface to GUI programming that hides many of the details faced by a C
programmer. As a result, it is much easier to learn how to use wish than a C-
based toolkit, and user interfaces can be written with much less code. Most
Tcl/Tk users never write any C code at all and most of the Tcl/Tk
applications consist solely of Tcl scripts.
This book is intended as an introduction to Tcl and Tk for programmers who
plan to write or modify Tcl/Tk applications. I assume that readers have
programmed in C and have at least passing familiarity with a shell such as
sh or csh or ksh. I also assume that readers have used the X Window System
and are familiar with basic ideas such as using the mouse, resizing

36

windows, etc. No prior experience with Tcl or Tk is needed in order to read
this book, and you need not have written X applications using other toolkits
such as Motif.
The book is organized so that you can learn Tcl without learning Tk if you
wish. Also, the discussion of how to write Tcl scripts is separate from the
discussion of how to use the C library interfaces provided by Tcl and Tk.
The first two parts of the book describe Tcl and Tk at the level of writing
scripts, and the last part describes the C interfaces for Tcl; if you are like
the majority of Tcl/Tk users who only write scripts, you can stop after
reading the first two parts.
In spite of my best efforts, I’m sure that there are errors in this edition of the
book. I’m interested in hearing about any problems that you encounter,
whether they are typos, formatting errors, sections or ideas that are hard to
understand, or bugs in the examples. I’ll attempt to correct the problems in
future printings of the book.
Many people have helped in the creation of this book. First and foremost I
would like to thank Brian Kernighan, who reviewed several drafts of the
manuscript with almost terrifying thoroughness and uncovered numerous
problems both large and small. I am also grateful for the detailed comments
provided by the other Addison-Wesley technical reviewers: Richard
Blevins, Gerard Holzmann, Curt Horkey, Ron Hutchins, Stephen Johnson,
Oliver Jones, David Korn, Bill Leggett, Don Libes, Kent Margraf, Stuart
McRobert, David Richardson, Alexei Rodrigues, Gerald Rosenberg, John
Slater, and Win Treese. Thanks also to Bob Sproull, who read the next-to-
last draft from cover to cover and provided countless bug fixes and
suggestions.
I made early drafts of the manuscript available to the Tcl/Tk community via
the Internet and received countless comments and suggestions from all over
the world in return. I’m afraid that I didn’t keep careful enough records to
acknowledge all the people who contributed in this way, but the list of
contributors includes at least the following people: Marvin Aguero, Miriam
Amos Nihart, Jim Anderson, Frederik Anheuser, Jeff Blaine, John Boller,
David Boyce, Terry Brannon, Richard Campbell, J. Cazander, Wen Chen,
Richard Cheung, Peter Chubb, De Clarke, Peter Collinson, Peter
Costantinidis, Alistair Crooks, Peter Davies, Tal Dayan, Akim Demaille,
Mark Diekhans, Matthew Dillon, Tuan Doan, Tony Duarte, Paul DuBois,
Anton Eliens, Marc R. Ewing, Luis Fernandes, Martin Forssen, Ben Fried,
Matteo Frigo, Andrej Gabara, Steve Gaede, Sanjay Ghemawat, Bob
Gibson, Michael Halle, Jun Hamano, Stephen Hansen, Brian Harrison,
Marti Hearst, Fergus Henderson, Kevin Hendrix, David Herron, Patrick

37

Hertel, Carsten Heyl, Leszek Holenderski, Jamie Honan, Rob W.W. Hooft,
Nick Hounsome, Christopher Hylands, Jonathan Jowett, Poul-Henning
Kamp, Karen L. Karavanic, Sunil Khatri, Vivek Khera, Jon Knight, Roger
Knopf, Ramkumar Krishnan, Dave Kristol, Peter LaBelle, Tor-Erik Larsen,
Tom Legrady, Will E. Leland, Kim Lester, Joshua Levy, Don Libes, Oscar
Linares, David C.P. Linden, Toumas J. Lukka, Steve Lord, Steve Lumetta,
Earlin Lutz, David J. Mackenzie, B.G. Mahesh, John Maline, Graham Mark,
Stuart McRobert, George Moon, Michael Morris, Russell Nelson, Dale K.
Newby, Richard Newton, Peter Nguyen, David Nichols, Marty Olevitch,
Rita Ousterhout, John Pierce, Stephen Pietrowicz, Anna Pluzhnikov, Nico
Poppelier, M.V.S. Ramanath, Cary D. Renzema, Mark Roseman, Samir
Tiongson Saxena, Jay Schmidgall, Dan M. Serachitopol, Hume Smith, Frank
Stajano, Larry Streepy, John E. Stump, Michael Sullivan, Holger Teutsch,
Bennett E. Todd, Glenn Trewitt, D.A. Vaughan-Pope, Richard Vieregge,
Larry W. Virden, David Waitzman, Matt Wartell, Glenn Waters, Wally
Wedel, Juergen Weigert, Mark Weiser, Brent Welch, Alex Woo, Su-Lin Wu,
Kawata Yasuro, Chut Ngeow Yee, Richard Yen, Stephen Ching-SingYen,
and Mike Young.
Many many people have made significant contributions to the development
of Tcl and Tk. Without all of their efforts there would have been nothing of
interest to write about in this book. Although I cannot hope to acknowledge
all the people who helped to make Tcl and Tk what they are today, I would
like to thank the following people specially: Don Libes, for writing the first
widely used Tcl application; Mark Diekhans and Karl Lehenbauer, for TclX;
Alastair Fyfe, for supporting the early development of Tcl; Mary Ann May-
Pumphrey, for developing the original Tcl test suite; George Howlett,
Michael McLennan, and Sani Nassif, for the BLT extensions; Kevin Kenny,
for showing that Tcl can be used to communicate with almost any
imaginable program; Joel Bartlett, for many challenging conversations and
for inspiring Tk’s canvas widget with his ezd program; Larry Rowe, for
developing Tcl-DP and for providing general advice and support; Sven
Delmas, for developing the XF application builder based on Tk; and Andrew
Payne, for the widget tour and for meritorious Tcl evangelism.
Several companies have provided financial support for the development of
Tcl and Tk, including Digital Equipment Corporation, Hewlett-Packard
Corporation, Sun Microsystems, and Computerized Processes Unlimited. I
am particularly grateful to Digital’s Western Research Laboratory and its
director, Richard Swan, for providing me with a one-day-per-week
hideaway where I could go to gather my thoughts and work on Tcl and Tk.
Terry Lessard-Smith and Bob Miller have provided fabulous administrative

38

support for this and all my other projects. I don’t know how I would get
anything done without them.
Finally, I owe a special debt to my colleague and friend Dave Patterson,
whose humor and sage advice have inspired and shaped much of my
professional career, and to my wife, Rita, and daughters, Kay and Amy, who
have tolerated my workaholic tendencies with more cheer and affection than
I deserve.
John Ousterhout
Berkeley, California
February 1994

39

40

Introduction

This book is about two software packages called Tcl and Tk.1 Tcl is a
dynamic language (also known as a scripting language) for controlling
and extending applications; its name stands for “tool command language.”
Tcl provides general programming facilities sufficient for most applications.
Furthermore, Tcl is both embeddable and extensible. Its interpreter is a
library of C functions that can easily be incorporated into applications, and
each application can extend the core Tcl features with additional commands
either unique to the application or provided by add-on libraries (referred to
as extensions in the Tcl community).

1. The official pronunciation for Tcl is “tickle,” although “tee-see-ell” is
also used frequently. Tk is pronounced “tee-kay.”

One of the most useful extensions to Tcl is Tk, which is a toolkit for
developing graphical user interface (GUI) applications. Tk extends the core
Tcl facilities with commands for building user interfaces, so that you can
construct GUIs by writing Tcl scripts instead of C code. Like Tcl, Tk is
implemented as a library of C functions so it can be used in many different
applications.

Note

This book corresponds to Tcl/Tk version 8.5. The release notes for
each version of Tcl/Tk describe the changes and new features in each
release. The Tcler’s Wiki web site (http://wiki.tcl.tk) also compiles
change lists for each release; you can find them by searching for pages
that contain Changes in in the title.

I.1 Benefits of Tcl/Tk

Together, Tcl and Tk provide several benefits to application developers and
users. The first benefit is rapid development. Many interesting applications

41

http://wiki.tcl.tk

can be written entirely as Tcl scripts. This allows you to program at a much
higher level than you would in C/C++ or Java, and Tk hides many of the
details that C or Java programmers must address. Compared to low-level
toolkits, there is much less to learn in order to use Tcl and Tk, and much less
code to write. New Tcl/Tk users often can create interesting user interfaces
after just a few hours of learning, and many people have reported tenfold
reductions in code size and development time when they switched from
other toolkits to Tcl and Tk.
Another reason for rapid development with Tcl and Tk is that Tcl is an
interpreted language. When you use a Tcl application, you can generate and
execute new scripts on the fly without recompiling or restarting the
application. This allows you to test out new ideas and fix bugs rapidly.
Since Tcl is interpreted, it executes more slowly than compiled C code; but
internal optimizations, such as bytecode compilation coupled with ever-
increasing processor power, have erased most of the perceived performance
advantages of compiled languages. For example, you can execute scripts
with hundreds of Tcl commands on each movement of the mouse with no
perceptible delay. In the rare cases where performance becomes an issue,
you can reimplement the performance-critical parts of your Tcl scripts in C.
A second benefit is that Tcl is a cross-platform language, as are most of its
extensions, including Tk. This means that an application developed on one
platform, such as Linux, in most cases can be run without change on another
platform, such as Macintosh or Windows.
Tcl was also the first dynamic language to have native Unicode support. As
a result, Tcl applications can handle text in virtually any of the world’s
written languages. Tcl requires no extensions to process text in any of the
Unicode-supported scripts, and standard extensions such as msgcat provide
simple localization support.
Another significant benefit is that Tcl and most of its extensions are freely
available as open source. Tcl and Tk follow the so-called BSD license,
which allows anyone to download, inspect, modify, and redistribute Tcl/Tk
without charge.
Tcl is an excellent “glue language.” A Tcl application can include many
different extensions, each of which provides an interesting set of Tcl
commands. Tk is one example of a library package; many other packages
have been developed by the Tcl/Tk community, and you can also write your
own packages. Tcl scripts for such applications can include commands from
any of the packages.
Additionally, Tcl makes it easy for applications to have powerful scripting
languages. For example, to add scripting capability to an existing

42

application, all you need do is implement a few new Tcl commands that
provide the basic features of the application. Then you can link your new
commands with the Tcl library to produce a full-function scripting language
that includes both the commands provided by Tcl (called the Tcl core) and
those that you wrote.
Tcl also provides user convenience. Once you learn Tcl and Tk, you will be
able to write scripts for any Tcl and Tk application merely by learning the
few application-specific commands for the new application. This should
make it possible for more users to personalize and enhance their
applications.

I.2 Organization of the Book

Chapter 1 uses several simple scripts to provide a quick overview of the
most important features of Tcl and Tk. It is intended to give you the flavor of
the systems and convince you that they are useful, without explaining
anything in detail. The remainder of the book goes through everything again
in a more comprehensive fashion. It is divided into three parts:

• Part I introduces the Tcl scripting language. After reading this
section, you will be able to write scripts for Tcl applications. You
will need to know at least some of the information in this part in
order to write Tk applications.

• Part II describes the additional Tcl commands provided by Tk,
which allow you to create user-interface widgets such as menus and
scrollbars and arrange them in GUI applications. After reading this
section, you will be able to create new GUI applications and write
scripts to enhance existing Tk applications.

• Part III discusses the C functions in the Tcl library and how to use
them to create new Tcl commands. After reading this section, you
will be able to write new Tcl packages and applications in C.
However, you will be able to do a great deal (perhaps everything
you need) without this information.

Each of these parts contains about a dozen short chapters. Each chapter is
intended to be a self-contained description of a piece of the system, and you
need not necessarily read the chapters in order.
Not every feature of Tcl and Tk is covered here, and the explanations are
organized to provide a smooth introduction rather than a complete reference
source. A separate set of reference manual entries, referred to as the

43

reference documentation, is available with the Tcl and Tk distributions.
These are much more terse but they cover absolutely every feature of both
systems. Appendix A describes how to retrieve the Tcl and Tk distributions,
including reference documentation, via the Internet. Appendix B provides a
survey of some popular Tcl extensions. Appendix C lists additional online
and printed resources for Tcl and Tk. The full Tcl Source Distribution
License is included in Appendix D.
This book assumes that you already know how to use your operating system,
including interacting with applications from the command line. Part III of
this book assumes that you are familiar with the C programming language as
defined by the ANSI C standard; a basic knowledge of C is helpful for Parts
I and II but not required. You need not know anything about either Tcl or Tk
before reading this book; both are introduced from scratch.

I.3 Notation

This book uses a monospace font for anything that might be typed to a computer,
such as Tcl scripts, C code, and names of variables, procedures, and
commands. The examples of Tcl scripts use notation like the following:

 set a 44
⇒44

Tcl commands, such as set a 44 in the example, appear in monospace; their
results, such as 44 in the example, appear in italicized monospace. The ⇒
symbol before the result indicates that this is a normal return value. If an
error occurs in a Tcl command, the error message appears in italicized
monospace, preceded by a Ø symbol to indicate that this is an error rather than
a normal return:

 set a 44 55
Ø wrong # args: should be "set varName ?newValue?"

When describing the syntax of Tcl commands, italicized Courier is used for
formal argument names. An argument or group of arguments enclosed in
question marks indicates that the arguments are optional. For example, the
syntax of the set command is as follows:

set varName ?newValue?

44

This means that the word set must be entered verbatim to invoke the
command, and varName and newValue are the names of set’s arguments; when
invoking the command, you type a variable name instead of varName and a
new value for the variable instead of newValue. The newValue argument is
optional.

45

46

Part I. The Tcl Language

• Chapter 1: An Overview of Tcl and Tk
• Chapter 2: Tcl Language Syntax
• Chapter 3: Variables
• Chapter 4: Expressions
• Chapter 5: String Manipulation
• Chapter 6: Lists
• Chapter 7: Dictionaries
• Chapter 8: Control Flow
• Chapter 9: Procedures
• Chapter 10: Namespaces
• Chapter 11: Accessing Files
• Chapter 12: Processes and Interprocess Communication
• Chapter 13: Errors and Exceptions
• Chapter 14: Creating and Using Tcl Script Libraries
• Chapter 15: Managing Tcl Internals
• Chapter 16: History

47

48

1. An Overview of Tcl and Tk

This chapter introduces Tcl and Tk with a series of scripts illustrating their
main features. Although you should be able to start writing simple scripts
after reading this chapter, the explanations here are not complete. The
purpose of this chapter is to show you the overall structure of Tcl and Tk
and the kinds of things they can do, so that when individual features are
discussed in detail you’ll be able to see why they are useful. All of the
information in this chapter is revisited in more detail in later chapters, and
several important aspects, such as the Tcl C interfaces, are not discussed at
all in this chapter.

1.1 Getting Started

To invoke Tcl scripts, you must run a Tcl application. If Tcl is installed on
your system, there should exist a simple Tcl shell application called tclsh,
which you can use to try out some of the examples in this chapter. If Tcl has
not been installed on your system, refer to Appendix A for information on
how to obtain and install it.

Note

It’s common practice to install tclsh with its version number as part of
the name (for example, tclsh8.5 on Unix or tclsh85 on Windows). This
has the advantage of allowing multiple versions of Tcl to exist on the
same system at once, but also the disadvantage of making it harder to
write scripts that start uniformly across different versions of Tcl.
Therefore, most installers also commonly link or alias tclsh to the most
recent version installed on the system. The same is true for the wish
interpreter, described later. Therefore, unless you want to use a
specific version of a Tcl application installed on your system, you
should simply use tclsh or wish.

You can start the tclsh application by opening a terminal window on a
Macintosh or Unix system, or a command prompt window on a Windows

49

system, and then entering the command

tclsh

This causes tclsh to start in interactive mode, reading Tcl commands from
the keyboard and passing them to the Tcl interpreter for evaluation. For
starters, enter the following command at the tclsh prompt:

expr 2 + 2

tclsh prints the result (4) and then prompts you for another command.
This example illustrates several features of Tcl. Each command consists of
one or more words separated by spaces or tabs (referred to as whitespace
characters). In the example there are four words: expr, 2, +, and 2. The first
word of each command is the name of the command to execute. The other
words are arguments that are passed to the command for processing. expr is
one of the core commands provided by the Tcl library, so it exists in every
Tcl application. It concatenates its arguments into a single string and
evaluates the string as an arithmetic expression.
Each Tcl command returns a result. If a command has no meaningful result,
it returns an empty string. For the expr command the result is the value of the
expression.
All values in Tcl have a string representation and may also have a more
efficient internal representation. In this example, expr’s result is a numerical
value that would have a binary integer or floating-point internal
representation. The internal representation allows faster and more efficient
processing of information. If the value simply is assigned to a variable or if
it is used by another command expecting a numerical value, this is done
very efficiently as no string conversion is required. Tcl automatically
generates a string representation of a value on an as-needed basis—for
example, when the value is displayed on the console.

Note

At the script development level, you can treat all values as strings; Tcl
converts between the string and the internal representation
automatically as needed. As you grow more familiar with Tcl,
understanding what can cause conversions can help you avoid them,
resulting in more efficient and faster code. In general, always being

50

consistent in your treatment of a value (e.g., always using list
commands to process lists, always using dictionary commands to
process dictionaries, etc.) and avoiding unnecessary printing and other
string manipulation of numeric, list, and dictionary values can go a
long way in speeding up your code. For more information on the
internal representation of values at the C language level, see Chapter
32.

From now on, we will use notation such as the following to describe
examples:

 expr 2 + 2
⇒ 4

The first line is the command you enter and the second line is the result
returned by the command. The ⇒ symbol indicates that the line contains a
return value; the ⇒ is not actually printed out by tclsh. We will omit return
values in cases where they aren’t important, such as sequences of commands
where only the last command’s result matters.
Commands are normally terminated by newlines (typically the Enter or
Return key on your keyboard), so each line that you enter in tclsh normally
becomes a separate command. Semicolons also act as command separators,
in case you wish to enter multiple commands on a single line. It is also
possible for a single command to span multiple lines; you’ll see how to do
this later.
The expr command supports an expression syntax similar to that of
expressions in ANSI C, including the same precedence rules and most of the
C operators. Here are a few examples that you could enter in tclsh:

The first example shows the multiplication operator and how it has a higher
precedence than subtraction. The second shows that expressions can contain
real values as well as integer values. The next examples show some of the

51

built-in functions supported by expr, including the rand() function for
generating random numbers between 0 and 1. The last example shows the
use of the relational operators > and <= and the logical OR operator ||. As in
C, Boolean results are represented numerically with 1 for true and 0 for
false.
To leave tclsh, invoke the exit command:

exit

This command terminates the application and returns you to your shell.

1.2 “Hello, World!” with Tk

Tcl provides a full set of programming features such as variables, loops,
and procedures. It can be used by itself or with extensions that implement
their own Tcl commands in addition to those in the Tcl core.
One of the more interesting extensions to Tcl is the set of windowing
commands provided by the Tk toolkit. Tk’s commands allow you to create
graphical user interfaces. Many of the examples in this book use an
application called wish (“windowing shell”), which is similar to tclsh except
that it also includes the commands defined by Tk. If Tcl and Tk have been
installed on your system, you can invoke wish from your terminal or
command prompt window just as you did for tclsh; it displays a small empty
window on your screen and then reads commands from the console.
Alternatively, if you have Tcl/Tk version 8.4 or later installed, you can
invoke the tclsh application, and then use the command package require Tk to
dynamically load the Tk extension.

Note

On Windows, invoking an interactive wish session displays both the
empty window and a separate console window. The console window
is a replacement for a real console to allow input and output on the
standard I/O channels. The console window normally is hidden when a
script file is executing, as described later, although you can display it
by executing the console show command. Consult the console reference
documentation for more information.

52

Here is a simple Tk script that you could run with wish:

If you enter these two Tcl commands in wish, the window’s appearance
changes to that shown in Figure 1.1. If you move the pointer over the “Hello,
world!” text and click the main mouse button (the leftmost button in most
configurations), the window disappears and wish exits.

Figure 1.1 The “Hello, world!” application

Several things about this example need explanation. First let us deal with
the syntactic issues. The example contains two commands, button and grid,
both of which are implemented by Tk. Although these commands do not look
like the expr command in the previous section, they have the same basic
structure as all Tcl commands: one or more words separated by whitespace
characters. The button command contains six words, and the grid command
contains two words.
The fourth word of the button command is enclosed in double quotes. This
allows the word to include whitespace characters; without the quotes, Hello,
and world! would be separate words. The double quotes are delimiters, not
part of the word itself; they are removed by the Tcl interpreter before the
command is executed.
For the expr command the word structure doesn’t matter much since expr
concatenates all its arguments. However, for the button and grid commands,
and for most Tcl commands, the word structure is important. The button
command expects its first argument to be the name of a new window to
create. Additional arguments to this command must come in pairs, where the
first argument of each pair is the name of a configuration option and the
second argument is a value for that option. Thus if the double quotes were
omitted, the value of the -text option would be Hello, and world! would be
treated as the name of a separate configuration option. Since there is no
option defined with the name world! the command would return an error.
Now let us move on to the behavior of the commands. The basic building
block for a graphical user interface in Tk is a widget. A widget is a window
with a particular appearance and behavior (the terms widget and window
are used synonymously in Tk). Widgets are divided into classes such as

53

buttons, menus, and scrollbars. All the widgets in the same class have the
same general appearance and behavior. For example, all button widgets
display a text string, bitmap, or image and execute a Tcl script when the user
clicks the button.
Widgets are organized hierarchically in Tk, with names that reflect their
positions in the hierarchy. The main widget, which appeared on the screen
when you started wish, has the name . and .b refers to a child b of the main
widget. Widget names in Tk are like file name paths except that they use . as
a separator character instead of / or \. Thus, .a.b.c refers to a widget that is
a child of widget .a.b, which in turn is a child of .a, which is a child of the
main widget.
Tk provides one command for each class of widgets, called a class
command, which you invoke to create widgets of that class. For example,
the button command creates button widgets. This is similar to standard
object-oriented programming principles, though Tk doesn’t support direct
subclassing of the widget classes. All of the class commands have the same
form: the first argument is the name of a new widget to create, and
additional arguments specify configuration options. Different widget classes
support different sets of options. Widgets typically have many options, with
default values for the options that you don’t specify. When a class command
like button is invoked, it creates a new widget with the given name and
configures it as specified by the options.
The button command in the example specifies two options: -text, which is a
string to display in the button, and -command, which is a Tcl script to execute
when the user invokes the button. In this example the -command option is exit.
Here are a few other button options that you can experiment with:

• -background—the background color for the button, such as blue
• -foreground—the color of the text in the button, such as black
• -font—the font to use for the button, such as "times 12" for a 12-point

Times Roman font
Creating a widget does not automatically cause it to be displayed. The grid
command causes the button widget to appear on the screen. Independent
entities called geometry managers are responsible for computing the sizes
and locations of widgets and making them appear on the screen. The
separation of widget creation and geometry management provides
significant flexibility in arranging widgets on the screen to design your
application. The grid command in the example asks a geometry manager
called the gridder to manage .b. The gridder arranges widgets in a grid of
columns and rows. In this case, the command placed .b in the first column of
the first row of the grid and sized the grid to just large enough to

54

accommodate the widget; furthermore, if the parent has more space than
needed by the grid, as in the example, the parent is shrunk so that it is just
large enough to hold the child. Thus, when you entered the grid command,
the main window (.) shrank from its original size to the size that appears in
Figure 1.1.

1.3 Script Files

In the examples so far, you have entered Tcl commands interactively to tclsh
or wish. You can also place commands into script files and invoke the script
files just like shell scripts. To do this for the “Hello, world!” example,
place the following text in a file named hello.tcl:

You can execute this script by invoking the wish interpreter and passing the
script file name as a command-line argument:

wish hello.tcl

This causes wish to display the same window as shown in Figure 1.1 and
wait for you to interact with it. In this case you will not be able to type
commands interactively to wish; all you can do is click on the button.

1.3.1 Executable Scripts on Unix and Mac OS X

The script just shown is the same as the one you typed earlier except for the
first line. As far as wish is concerned, this line is a comment, but on Unix
systems if you make the file executable (for example, by executing chmod +x
hello.tcl in your shell), you can then invoke the file directly by typing
hello.tcl to your shell. (This requires the directory containing your hello.tcl
script to be listed in your PATH environment variable.) When you do this, the
system invokes wish, passing it the file as a script to interpret.
As written, this script works as an executable script only if wish is installed
in /usr/local/bin, although you could still run it by invoking wish with the
script file name as a command-line argument. If wish has been installed
somewhere else, you need to change the first line to reflect its location on

55

your system. Some systems misbehave in confusing ways if the first line of
the script file is longer than 32 characters, so beware if the full path name of
the wish binary is longer than 27 characters.
To work around these limitations, a common technique for scripts on Unix
has been to start script files with the following three lines:

or the more arcane but more robust version:

In most modern Unix implementations, though, the following will work
correctly, as long as wish appears in one of the directories in your PATH
environment variable:

#!/usr/bin/env wish

1.3.2 Executable Scripts on Windows

On Windows, you can use the standard system tools to associate the wish
interpreter with a file extension (.tcl by convention) so that double-clicking
on the icon for a Tcl/Tk script automatically invokes the wish interpreter,
passing it the name of the file as a script to interpret. Most Windows
installers for Tcl/Tk automatically create this association for you. wish is
typically selected as the default association because most Windows-based
Tcl/Tk programs are GUI-based. However, if the majority of your Tcl
scripts don’t use Tk commands, you could change the default association to
invoke tclsh.
If you plan to distribute your scripts on multiple platforms, you should
include the appropriate #! header as discussed in the previous section for
Unix executable scripts so that they can be directly executable on Unix
systems. On the other hand, Windows doesn’t follow the #! convention, and
the #! line is treated as a comment by the wish interpreter, so the net effect is
that the line is ignored when the script is run on a Windows system.

1.3.3 Executing Scripts in an Interactive Interpreter

56

In practice, users of Tk applications rarely type Tcl commands; they interact
with the applications using the mouse and keyboard in the usual ways you
would expect for graphical applications. Tcl works behind the scenes where
users don’t normally see it. The hello.tcl script behaves just the same as an
application that has been coded in C with a GUI toolkit and compiled into a
binary executable file.
During debugging, though, it is common for application developers to type
Tcl commands interactively. For example, you could test the hello.tcl script
by starting wish interactively (type wish to your shell instead of hello.tcl).
Then enter the following Tcl command:

source hello.tcl

source is a Tcl command that takes a file name as an argument. It reads the
file and evaluates it as a Tcl script. This generates the same user interface as
if you had invoked hello.tcl directly from your shell, but you can now enter
Tcl commands interactively, too. For example, you could edit the script file
to change the -command option to

-command "puts Good-bye!; exit"

then enter the following commands interactively to wish without restarting the
program:

destroy .b
source hello.tcl

The first command deletes the existing button, and the second command re-
creates the button with the new -command option. Now when you click on the
button, the puts command prints a message on standard output before wish
exits.

1.4 Variables and Substitutions

Tcl allows you to store values in variables and use those values in
commands. For example, consider the following script, which you could
enter in either tclsh or wish:

 set a 44
⇒ 44

57

 expr $a*4
⇒ 176

The first command assigns the value 44 to the variable a and returns the
variable’s value. In the second command, the $ causes Tcl to perform
variable substitution: the Tcl interpreter replaces the dollar sign and the
variable name following it with the value of the variable, so that the actual
argument received by expr is 44*4. Variables need not be declared in Tcl; they
are created automatically when set. Variable values can always be
represented as strings but may be maintained in a native binary format.
Strings may contain binary data and may be of any length. Of course, in this
example an error occurs in expr if the value of a doesn’t make sense as an
integer or real number.
Tcl also provides command substitution, which allows you to use the result
of one command in an argument to another command:

 set a 44
 set b [expr $a*4]
⇒ 176

Square brackets invoke command substitution: everything inside the
brackets is evaluated as a separate Tcl script, and the result of that script is
substituted into the word in place of the bracketed command. In this example
the second argument of the second set command is 176.
The final form of substitution in Tcl is backslash substitution, which either
adds special meaning to a normal character or takes it away from a special
character, as in the following examples:

set x \$a
set newline \n

The first command sets the variable x to the string $a (the characters \$ are
replaced with a dollar sign and no variable substitution occurs). The second
command sets the variable newline to hold a string consisting of the newline
character (the characters \n are replaced with a newline character).

1.5 Control Structures

The next example uses variables and substitutions along with some simple
control structures to create a Tcl procedure called factorial, which computes
the factorial of a given non-negative integer value:

58

If you enter the preceding lines in wish or tclsh, or if you enter them into a file
and then source the file, a new command factorial becomes available. The
command takes one non-negative integer argument, and its result is the
factorial of that number:

This example uses one additional piece of Tcl syntax: braces. Braces are
like double quotes in that they can be placed around a word that contains
embedded spaces. However, braces are different from double quotes in two
respects. First, braces nest. The last word of the proc command starts after
the open brace on the first line and contains everything up to the close brace
on the last line. The Tcl interpreter removes the outer braces and passes
everything between them, including several nested pairs of braces, to proc as
an argument. The second difference between braces and double quotes is
that no substitutions occur inside braces, whereas they do inside quotes. All
of the characters between the braces are passed verbatim to proc without any
special processing.
The proc command takes three arguments: the name of a procedure, a list of
argument names separated by whitespace, and the body of the procedure,
which is a Tcl script. proc enters the procedure name into the Tcl interpreter
as a new command. Whenever the command is invoked, the body of the
procedure is evaluated. While the procedure body is executing, it can
access its arguments as variables: val holds the first and only argument.
The body of the factorial procedure contains three Tcl commands: set, while,
and return. The while command does most of the work of the procedure. It
takes two arguments, an expression, $val>0, and a body, which is another Tcl
script. The while command evaluates its expression argument and if the result
is nonzero, it evaluates the body as a Tcl script. It repeats this process over
and over until eventually the expression evaluates to zero. In the example,

59

the body of the while command multiplies the result by val and then uses the
incr command to add the specified integer increment (-1 in this case) to the
value contained in val. When val reaches zero, result contains the desired
factorial.
The return command causes the procedure to exit with the value of the
variable result as the procedure’s result. If a return command is omitted, the
return value of a procedure is the result of the last command executed in the
procedure’s body. In the case of factorial this would be the result of while,
which is always an empty string.
The use of braces in this example is crucial. The single most difficult issue
in writing Tcl scripts is managing substitutions: making them happen when
you want them and preventing them when you don’t. The body of the
procedure must be enclosed in braces because we don’t want variable and
command substitutions to occur at the time the body is passed to proc as an
argument; we want the substitutions to occur later, when the body is
evaluated as a Tcl script. The body of the while command is enclosed in
braces for the same reason: rather than performing the substitutions once,
while parsing the while command, we want the substitutions to be performed
over and over, each time the body is evaluated. Braces are also needed in
the {$val>0} argument to while. Without them the value of the variable val
would be substituted when the while command is parsed; the expression
would have a constant value and while would loop forever. Try replacing
some of the braces in the example with double quotes to see what happens.
The examples in this book use a style in which the open brace for an
argument that is a Tcl script appears at the end of one line, the script follows
on successive indented lines, and the close brace is on a line by itself after
the script. Although this makes for readable scripts, Tcl doesn’t require this
particular syntax. Arguments that are scripts are subject to the same syntax
rules as any other arguments; in fact, the Tcl interpreter doesn’t even know
that an argument is a script at the time it parses it. One consequence is that
the open brace must be on the same line as the preceding portion of the
command. If the open brace is moved to a line by itself, the newline before
the open brace terminates the command.
The variables in a procedure are normally local to that procedure and are
not visible outside the procedure. In the factorial example the local
variables include the argument val as well as the variable result. A fresh set
of local variables is created for each call to a procedure (arguments are
passed by copying their values), and when a procedure returns, its local
variables are deleted. Variables named outside any procedure are called
global variables; they last forever unless explicitly deleted. You’ll find out

60

later how a procedure can access global variables and the local variables
of other active procedures. Additionally, persistent variables can be created
within specific namespaces to prevent naming conflicts; Chapter 10
discusses the use of namespaces.

1.6 On the Tcl Language

As a programming language, Tcl is defined quite differently from most other
languages. Most languages have a grammar that defines the entire language.
For example, consider the following statement in C:

The grammar for C defines the structure of this statement in terms of a
reserved word while, an expression, and a substatement to execute
repeatedly until the expression evaluates to zero. The C grammar defines
both the overall structure of the while statement and the internal structure of
its expression and substatement.
In Tcl no fixed grammar explains the entire language. Instead, Tcl is defined
by an interpreter that parses single Tcl commands, plus a collection of
procedures that execute individual commands. The interpreter and its
substitution rules are fixed, but new commands can be defined at any time
and existing commands can be replaced. Features such as control flow,
procedures, and expressions are implemented as commands; they are not
understood directly by the Tcl interpreter. For example, consider the Tcl
command that is equivalent to the preceding while loop:

When this command is evaluated, the Tcl interpreter knows nothing about
the command except that it has three words, the first of which is a command
name. The Tcl interpreter has no idea that the first argument to while is an
expression and the second is a Tcl script. Once the command has been
parsed, the Tcl interpreter passes the words of the command to while, which
treats its first argument as an expression and the second as a Tcl script. If the

61

expression evaluates to nonzero, while passes its second argument back to
the Tcl interpreter for evaluation. At this point the interpreter treats the
contents of the argument as a script (i.e., it performs command and variable
substitutions and invokes the expr, set, and incr commands).
Now consider the following command:

set {$val>0} {
 set result [expr $result*$val]
 incr val -1
}

As far as the Tcl interpreter is concerned, the set command is identical to the
while command except that it has a different command name. The interpreter
handles this command in exactly the same way as the while command, except
that it invokes a different procedure to execute the command. The set
command treats its first argument as a variable name and its second
argument as a new value for that variable, so it will set a variable with the
rather unusual name of $val>0.
The most common mistake made by new Tcl users is to try to understand Tcl
scripts in terms of a grammar; this leads people to expect much more
sophisticated behavior from the interpreter than actually exists. For
example, a C programmer using Tcl for the first time might think that the first
pair of braces in the while command serves a different purpose from the
second pair. In reality, there is no difference. In each case the braces are
present so that the Tcl interpreter passes the characters between the braces
to the command without performing any substitutions.
Thus the entire Tcl “language” consists of about a dozen simple rules for
parsing arguments and performing substitutions. The actual behavior of a Tcl
script is determined by the commands executed. The commands determine
whether to treat an argument as a literal value, the name of a variable, a
code block to execute, and so on. An interesting consequence of this is that a
script can define commands implementing entirely new control structures,
which is a feature not available in most other languages.

1.7 Event Bindings

The next example provides a graphical front end for the factorial procedure.
In addition to demonstrating two new widget classes, it illustrates Tk’s
binding mechanism. A binding causes a particular Tcl script to be evaluated
whenever a particular event occurs in a particular window. The -command

62

option for buttons is an example of a simple binding implemented by a
particular widget class. Tk also includes a more general mechanism that can
be used to extend the behavior of widgets in nearly arbitrary ways.
To run the example, copy the following script into a file factorial.tcl and
invoke the file from your shell.

This script produces a screen display like that in Figure 1.2. There is an
entry widget in which you can click with the mouse and type a number. If
you click the button labeled “Calculate,” the result appears on the right side
of the window; the same occurs if you press the Return key in the entry.

Figure 1.2 A graphical user interface that computes a factorial

This application consists of four widgets: one entry, one button, and two
labels. Entries are widgets that display one-line text strings that you can edit
interactively. The entry is configured with a -width of 6, which means it is
large enough to display about six digits, and a -relief of sunken, which makes
the entry appear sunken into the window. The -textvariable option for each
entry specifies the name of a global variable to hold the entry’s text—any

63

changes you make in the entry are reflected in the variable and vice versa.
The .description label widget holds decorative text, and the .result label
holds the result of the power computation. The -textvariable option for .result
causes it to display whatever string is in the global variable result and to
update itself whenever the variable changes. In contrast, .description displays
a constant string.
The first grid command arranges the entry and two label widgets in a row
from left to right. The -padx and -pady options make the display a bit more
attractive by arranging for 1 millimeter of extra space on the left and right
sides of each widget, and 1 millimeter of extra space above and below each
widget. The m suffix specifies millimeters; you could also use c for
centimeters, i for inches, p for points, or no suffix for pixels.
The second grid command arranges the button in a second row. Because the
widget name occurs as the first argument, the gridder allocates the first
column of the row to the button. The two - arguments following the widget
name indicate to the gridder that the space allocated to the button widget
should span two additional columns. The gridder then centers the button
widget inside its allocated space.
The command creating the .calculate button occupies two lines in the script;
the backslash at the end of the first line is a line-continuation character,
which causes the newline to be treated as a space. The button’s -command
script connects the user interface to the factorial procedure. The script
invokes factorial, passing it the values in the entry and storing the result in
the result variable so that it is displayed in the .result widget.
The bind command has three arguments: the name of a widget, an event
specification, and a Tcl script to invoke when the given event occurs in the
given widget. <Return> specifies an event consisting of the user pressing the
return key on the keyboard (which is still labeled “Return” on Mac
keyboards but typically labeled “Enter” on most other English keyboards
these days). Table 1.1 shows a few other event specifiers that you might find
useful.

Table 1.1 Event Specifiers

64

The script for a binding has access to several pieces of information about
the event, such as the location of the pointer when the event occurred. For an
example, start up wish interactively and enter the following command in it:

bind . <Motion> {puts "pointer at %x,%y"}

Now move the pointer over the window. Each time the pointer moves, a
message is printed on standard output giving its new location. When the
pointer motion event occurs, Tk scans the script for % sequences and
replaces them with information about the event before passing the script to
Tcl for evaluation. %x is replaced with the pointer’s x-coordinate and %y is
replaced with the pointer’s y-coordinate.
The intent of a binding is to extend the generic built-in behavior of the entry
(editing text strings) with an application-specific behavior. In this script, as
a convenience we would like to allow the user to request the factorial
calculation by pressing the Return key as an alternative to clicking the
“Calculate” button. We could simply duplicate the button’s command script,
but if we were to modify the command script later, we’d need to remember
to replicate the change in the binding script as well. Instead, we provide a
binding script that “programmatically clicks” the button.
The binding script executes two commands called widget commands.
Whenever a new widget is created, a new Tcl command is also created with
the same name as the widget, and you can invoke this command to
communicate with the widget. The first argument to a widget command
selects one of several operations, and additional arguments are used as
parameters for that operation. In this binding script, the first widget
command flashes the button. (Depending on your system’s color scheme, you
might not see the button flash.) The second widget command causes the
button widget to invoke its -command option just as if you had clicked the
mouse button on it.

65

Each class of widget supports a different set of operations in its widget
commands, but many of the operations are similar from class to class. For
example, every widget class supports a configure widget command that can
be used to modify any of the configuration options for the widget. If you run
the factorial.tcl script interactively, you could type the following command
to change the background of the entry widget to yellow:

.value configure -background yellow

Or you could type

.calculate configure -state disabled

to make the button unresponsive to user interaction.

1.8 Additional Features of Tcl and Tk

The examples in this chapter have used almost every aspect of the Tcl
language syntax, and they illustrated many features of Tcl and Tk. However,
Tcl and Tk contain many other facilities that are not used in this chapter; all
of these are described later in the book. Here is a sample of some of the
most useful features that haven’t been mentioned yet:

• Arrays, dictionaries, and lists—Tcl provides associative arrays and
dictionaries for storing key-value pairs efficiently and lists for
managing aggregates of data.

• More control structures—Tcl provides several additional
commands for controlling the flow of execution, such as eval, for,
foreach, and switch.

• String manipulation—Tcl contains a number of commands for
manipulating strings, such as measuring their length, regular
expression pattern matching and substitution, and format conversion.

• File access—You can read and write files from Tcl scripts and
retrieve directory information and file attributes such as size and
creation time.

• More widgets—Tk contains many widget classes besides those
shown here, such as menus, scrollbars, a drawing widget called a
canvas, and a text widget that makes it easy to achieve hypertext
effects.

• Access to other windowing features—Tk provides commands for

66

accessing all of the major windowing facilities, such as a command
for communicating with the window manager (to set the window’s
title, for example), a command for retrieving the selection, and a
command to manage the input focus.

• Interapplication communication—Tcl includes the ability to
communicate between applications through interprocess pipes and
TCP/IP sockets.

• C interfaces—Tcl provides C library procedures that you can use to
define new Tcl commands in C. (Tk provides a library that you can
use to create new widget classes and geometry managers in C, but
this capability is rarely used and so is not covered in this book.)

67

68

2. Tcl Language Syntax

To write Tcl scripts, you must learn two things. First, you must learn the Tcl
syntax, which consists of a dozen rules that determine how commands are
parsed. The Tcl syntax is the same for every command. Second, you must
learn about the individual commands that you use in your scripts. Tcl
provides about 100 built-in commands, Tk adds several dozen more, and
any application based on Tcl or Tk will add a few more of its own. You’ll
need to know all of the syntax rules right away, but you can learn about the
commands more gradually as you need them.
This chapter describes the Tcl language syntax. The remaining chapters in
Part I describe the built-in Tcl commands, and Part II describes Tk’s
commands.

2.1 Scripts, Commands, and Words

A Tcl script consists of one or more commands. Commands are separated
by newlines or semicolons. For example,

set a 24
set b 15

is a script with two commands separated by a newline character. The same
script could be written on a single line using a semicolon separator:

set a 24; set b 15

Each command consists of one or more words, where the first word is the
name of a command and additional words are arguments to that command.
Words are separated by spaces or tabs, which are generally referred to as
either whitespace characters or just whitespace. Each of the commands in
the preceding examples has three words. There may be any number of
words in a command, and each word may have an arbitrary string value.
The whitespace that separates words is not part of the words, nor are the
newlines and semicolons that terminate commands.

2.2 Evaluating a Command

69

Tcl evaluates a command in two steps as shown in Figure 2.1: parsing and
execution. In the parsing step the Tcl interpreter applies the rules described
in this chapter to divide the command up into words and perform
substitutions. Parsing is done in exactly the same way for every command.
During the parsing step, the Tcl interpreter does not apply any meaning to
the values of the words. Tcl just performs a set of simple string operations
such as replacing the characters $input with the string stored in the variable
input; Tcl does not know or care whether the resulting word is a number or
the name of a widget or anything else.

Figure 2.1 The parsing and execution of Tcl commands

In the execution step, meaning is applied to the words of the command. Tcl
treats the first word as a command name, checking to see if the command is
defined and locating a command procedure to carry out its function. If the
command is defined, the Tcl interpreter invokes its command procedure,
passing all of the words of the command to the command procedure. The
command procedure assigns meaning to these words according to its own

70

needs; because each command does something different, each command
applies different meaning to its arguments.

Note

The Tcl community uses the terms word and argument interchangeably
to refer to the values passed to command procedures. The only
difference between these two terms is that the first argument is the
second word.

The following commands illustrate some of the meanings that are commonly
applied to arguments:

• set a 122
In many cases, such as the set command, arguments may take any form
whatsoever. The set command simply treats the first argument as a variable
name and the second argument as a value for the variable. The command set
122 a is valid, too: it creates a variable whose name is 122 and whose value
is a.

• expr 24 / 3.2
The expr command concatenates its arguments, and the result must be an
arithmetic expression that follows the rules described in Chapter 4. Several
other commands also take expressions as arguments.

• lindex {red green blue purple} 2
The first argument to lindex is a list consisting of four values separated by
spaces. This command returns the value of the element at index 2 in the list
(actually the third element, blue, as elements are numbered starting at 0).
Tcl’s commands for manipulating lists are described in Chapter 6.

• string length abracadabra
Some commands, like string and the Tk widget commands, are actually
several commands rolled into one. The first argument of the command
selects one of several operations to perform and determines the meaning of
the remaining arguments. For example, string length requires one additional
argument and computes its length, whereas string compare requires two
additional arguments. Such a collection of commands is sometimes referred
to as an ensemble.

• button .b -text Hello -fg red
The arguments after .b are option-value pairs that allow you to specify the
options you care about and use default values for the others.
When writing Tcl scripts, one of the most important things to remember is

71

that the Tcl parser doesn’t apply any meaning to the words of a command
while it parses them. All of the preceding meanings are applied by
individual command procedures, not by the Tcl parser. This approach is
similar to that of most shell languages but different from most programming
languages. For example, consider the following C program code:

x = 4;
y = x+10;

In the first statement C stores the integer value 4 in variable x. In the second
statement C evaluates the expression x+10, fetching the value of variable x
and adding 10, and stores the result in variable y. At the end of execution, y
has the integer value 14. If you want to use a literal string in C without
evaluation, you must enclose it in quotes. Now consider a similar-looking
program written in Tcl:

set x 4
set y x+10

The first command assigns the string 4 to variable x. The value of the
variable need not have any particular form. The second command simply
takes the string x+10 and stores it as the new value for y. At the end of the
script, y has the string value x+10, not the integer value 14. In Tcl, if you want
evaluation you must ask for it explicitly:

set x 4
set y [expr $x+10]

Evaluation is requested twice in the second command. First, the second
word of the command is enclosed in brackets, which tells the Tcl parser to
evaluate the characters between the brackets as a Tcl script and use the
result as the value of the word. Second, a dollar sign has been placed before
x. When Tcl parses the expr command, it substitutes the value of variable x
for the $x. If the dollar sign were omitted, expr’s argument would contain the
string x, resulting in a syntax error. At the end of the script, y has the string
value 14.

2.3 Variable Substitution

Tcl provides three forms of substitution: variables, commands, and
backslashes. Each substitution causes some of the original characters of a

72

word to be replaced with some other value. The Tcl interpreter performs the
substitutions before executing the command procedure. Substitutions may
occur in any word of a command, including the command name itself, and
there may be any number of substitutions within a single word.

Note

Substitutions do not affect the word boundaries of a command, even if
the characters substituted contain whitespace characters such as
spaces, tabs, or newlines.

The first form of substitution is variable substitution. It is triggered by a
dollar sign character, and it causes the value of a Tcl variable to be inserted
into a word. For example, consider the following commands:

 set kgrams 20
 expr $kgrams*2.2046
⇒ 44.092

The first command sets the value of the variable kgrams to 20. The second
command computes the corresponding weight in pounds by multiplying the
value of kgrams by 2.2046. It does this using variable substitution: the string
$kgrams is replaced with the value of the variable kgrams, so that the actual
argument received by the expr command procedure is 20*2.2046.
Variable substitution can occur anywhere within a word and any number of
times, as in the following command:

expr $result*$base

The variable name consists of all of the numbers, letters, and underscores
following the dollar sign. Thus the first variable name (result) extends up to
the * and the second variable name (base) extends to the end of the word.
Variable substitution can be used for many purposes, such as generating new
names:

foreach num {1 2 3 4 5} {
 button .b$num
}

This example creates five button widgets, with names .b1, .b2, .b3, .b4, and
.b5.

73

These examples show only the simplest form of variable substitution. Two
other forms of variable substitution are used for associative array
references and to provide more explicit control over the extent of a variable
name (e.g., so that there can be a letter or number immediately following the
variable name). These other forms are discussed in Chapter 3.

2.4 Command Substitution

The second form of substitution provided by Tcl is command substitution.
Command substitution causes part or all of a word to be replaced with the
result of a Tcl command. Command substitution is invoked by enclosing a
command in brackets:

The characters between the brackets must constitute a valid Tcl script. The
script may contain any number of commands separated by newlines or
semicolons in the usual fashion. The brackets and all of the characters
between them are replaced with the result of the script. Thus in the
foregoing example the expr command is executed while the words for set are
parsed; its result, the string 44.092, becomes the second argument to set. As
with variable substitution, command substitution can occur anywhere in a
word, and there may be more than one command substitution within a single
word.

2.5 Backslash Substitution

The final form of substitution in Tcl is backslash substitution. It is used to
insert special characters such as newlines into words and also to insert
characters such as [and $ without their being treated specially by the Tcl
parser. For example, consider the following command:

There are two sequences of a backslash followed by a space; each of these

74

sequences is replaced in the word by a single space, and the space
characters are not treated as word separators. There are also two sequences
of a backslash followed by a dollar sign; each of these is replaced in the
word with a single dollar sign, and the dollar signs are treated like ordinary
characters (they do not trigger variable substitution). The backslash
followed by n is replaced with a newline character.
Table 2.1 lists all of the backslash sequences supported by Tcl. These
include all of the sequences defined for ANSI C, such as \t to insert a tab
character and \x7d to insert the character whose hexadecimal value is
0x007d in the Unicode character encoding. (Chapter 5 describes the
Unicode encoding in greater depth.) If a backslash is followed by any
character not listed in the table, as in \$ or \[, the backslash is dropped from
the word and the following character is included in the word as an ordinary
character. This allows you to include any of the Tcl special characters in a
word without the characters being treated specially by the Tcl parser. The
sequence \\ inserts a single backslash into a word. And a backslash
followed by a space character inserts a space as a literal character, rather
than treating it as word-delimiting whitespace.

Table 2.1 Backslash Substitutions Supported by Tcl

The sequence backslash-newline can be used to spread a long command
across multiple lines, as in the following example:

75

The backslash and newline, plus any leading whitespace on the next line,
are replaced by a single space character in the word. Thus the two lines
together form a single command.

Note

Backslash-newline sequences are unusual in that they are replaced in a
separate preprocessing step before the Tcl interpreter parses the
command. This means, for example, that the space character that
replaces backslash-newline will be treated as a word separator unless
it is between double quotes or braces.

2.6 Quoting with Double Quotes

Tcl provides several ways for you to prevent the parser from giving special
interpretation to characters such as $ and the semicolon. These techniques
are called quoting. You have already seen one form of quoting in backslash
substitution. For example, \$ causes a dollar sign to be inserted into a word
without triggering variable substitution. In addition to backslash
substitution, Tcl provides two other forms of quoting: double quotes and
braces. Double quotes disable word and command separators, and braces
disable all special characters.
If the first character of a word is a double quote, the word is terminated by
the next double-quote character. Note that the double quotes themselves are
not part of the word; they are simply delimiters. If a word is enclosed in
double quotes, then spaces, tabs, newlines, and semicolons are treated as
ordinary characters within the word. The example from the previous section
can be rewritten more cleanly with double quotes as follows:

The \n in the example could also be replaced with an actual newline
character, as in

76

set msg "Eggs: \$2.18/dozen
Gasoline: \$1.49/gallon"

but many consider the script more readable with \n.
If the word does not start with a double-quote character, any double-quote
character within the word is treated as a literal character, not a delimiter.
For example, the following is a legal, but highly discouraged, usage of
literal double-quote characters in Tcl:

 puts This"is"poor"usage
⇒ This"is"poor"usage

Variable substitutions, command substitutions, and backslash substitutions
all occur as usual inside double quotes. For example, the following script
sets msg to a string containing the name of a variable, its value, and the
square of its value:

If you would like to include a double quote in a word enclosed in double
quotes, use backlash substitution:

2.7 Quoting with Braces

Braces provide a more radical form of quoting where all the special
characters lose their meaning. If a word starts with an open brace, all the
characters between it and the matching close brace are the value of the
word, verbatim. No substitutions are performed on the word, and spaces,
tabs, newlines, and semicolons are treated as ordinary characters. The
example from Section 2.5 can be rewritten with braces as follows:

set msg {Eggs: $2.18/dozen
Gasoline: $1.49/gallon}

The dollar signs in the word do not trigger variable substitution, and the
newline does not act as a command separator. In this case \n cannot be used

77

to insert a newline into the word, because the \n would be included in the
argument as is without triggering backslash substitution:

Note

The only form of substitution that occurs between braces is for
backslash-newline. As discussed in Section 2.5, backslash-newline
sequences are actually removed in a preprocessing step before the
command is parsed.

Unlike double quotes, braces can be nested. This is very common for
procedure definitions and control flow commands, where one or more of the
arguments are scripts to evaluate. Because the script must appear as a single
argument, it must be quoted. In turn the script argument might contain other
control flow commands with their own script arguments.

Note

If a brace is backslashed, it does not count in finding the matching
close brace for a word enclosed in braces. The backslash is not
removed when the word is parsed.

One of the most important uses for braces is to defer evaluation. Deferred
evaluation means that special characters aren’t processed immediately by
the Tcl parser. Instead they are passed to the command procedure as part of
its argument. The command procedure then processes the special characters
itself, often by passing the argument back to the Tcl interpreter for
evaluation. For example, consider the following procedure, which counts
the number of occurrences of a particular value in a list:

78

The body of the procedure is enclosed in braces so that it is passed
verbatim to proc. Thus the value of the variable list is not substituted at the
time the proc command is parsed. This is necessary if the procedure is to
work correctly: a different value must be substituted for $list each time the
procedure is invoked. Note that braces nest, so that the last argument to proc
extends up to the matching close brace. Figure 2.2 illustrates what happens
when the following Tcl script is subsequently evaluated:

occur 18 {1 34 18 16 18 72 1994 -3}

Figure 2.2 A snapshot of nested scripts being evaluated

79

The braces around the second argument to occur cause the entire list of
numbers to be passed to occur as a single word. The Tcl procedure
mechanism then passes the procedure’s body to the Tcl interpreter for
evaluation. When Tcl parses the foreach command in the body, the value of
the variable list is substituted, but the last argument to foreach (the loop
body) is enclosed in braces so no substitutions are performed on it. The
foreach command procedure sets the variable el to each element of the list in
turn and calls the Tcl interpreter to evaluate the loop body for each element.
As part of this evaluation, Tcl parses the if command, substituting the values
of the variables el and value. In the snapshot shown in Figure 2.2, the if test
succeeded, so if evaluates the incr command.

80

2.8 Argument Expansion

The example in Section 2.7 demonstrated passing a list as an argument to a
procedure. In that case the list appeared literally on the command line.
Commonly, the list value might be the result of a variable or command
substitution. But because the Tcl interpreter makes substitutions in a single
pass from left to right, the list value is treated as a single word; the spaces
embedded in the list value are not regarded as word separators.
In some situations the single-layer-of-substitutions rule can be a hindrance
rather than a help. For example, the following script is an erroneous attempt
to delete all files with names ending in .o:

file delete [glob *.o]

The glob command returns a list of all file names that match the pattern *.o,
such as a.o b.o c.o. However, the entire list of files is passed to file delete as
a single argument; file delete silently fails because it cannot find a file
named a.o b.o c.o. For file delete to work correctly, the result of glob must be
split into multiple words. You can accomplish this through argument
expansion.
If a word starts with the string {*} followed by a non-whitespace character,
Tcl removes the leading {*} and parses and substitutes the rest of the word
as it would any other word. After substitution, Tcl parses the word again,
but without substitution, to verify that the content consists of one or more
syntactically complete words. If this is the case, the words are added
individually to the command being evaluated; otherwise, Tcl raises a syntax
error. Thus,

file delete {*}[glob *.o]

would be equivalent to

file delete a.o b.o c.o

after the Tcl interpreter performs substitution and expansion of the argument.
The {*} syntax first appeared in Tcl 8.5. Prior versions require you to add
layers of parsing explicitly if you want them. Remember that Tcl commands
are evaluated in two phases: parsing and execution. The substitution rules
apply only to the parsing phase. Once Tcl passes the words of a command to
a command procedure for execution, the command procedure can do

81

anything it likes with them. Some commands reparse their words—for
example, by passing them back to the Tcl interpreter. eval is an example of
such a command, and it provides an alternate solution to the problems with
file delete:

eval file delete [glob *.o]

eval concatenates all of its arguments with spaces in between and then
evaluates the result as a Tcl script, at which point another round of parsing
and evaluation occurs. In this example eval receives three arguments: file,
delete, and a.o b.o c.o. It concatenates them to form the string file delete a.o
b.o c.o. When this string is parsed as a Tcl script, it yields five words. Each
of the file names is passed to file delete as a separate argument, so the files
are all removed successfully. See Section 8.6 for more details on the proper
use of the eval command.

2.9 Comments

If the first nonblank character of a command is #, the # and all the characters
following it up through the next newline are treated as a comment and
discarded. Note that the hashmark must occur in a position where Tcl is
expecting the first character of a command. If a hashmark occurs anywhere
else, it is treated as an ordinary character that forms part of a command
word:

The # on the second line is not treated as a comment character because it
occurs in the middle of a command. As a result, the first set command
receives six arguments and generates an error. The last # is treated as a
comment character, since it occurs just after a command was terminated
with a semicolon.
Tcl’s simple, consistent syntax rules can have some unexpected
consequences. The requirement that the hashmark starting a comment must
occur in a position where Tcl is expecting a command implies that the
following example is not a comment:

82

set example {
 # This is not a comment
}

Instead, all of the characters occurring between the braces are treated as a
single argument and are used as the string value assigned to the variable by
the set command. In contrast, consider the following example:

In this case, the Tcl parser identifies two brace-quoted arguments that it
passes to the if command. The if command evaluates its first argument as a
Boolean expression, and if the result is true, it invokes the Tcl interpreter
recursively to execute the second argument as a Tcl script. It is during this
recursive invocation of the Tcl interpreter that the line beginning with the
hashmark is identified as a comment.
Another consequence of Tcl’s consistent syntax rules is that braces that
appear inside a comment often cause errors when you execute the code.
Consider the following example:

When the Tcl interpreter parses this command, the { at the end of the first
line marks the beginning of a word. The matching } marking the end of the
word occurs on the last line. The fact that the word contains a script is
irrelevant; Tcl is only parsing the command line into a set of words at this
point, and so it follows a simple process of finding the matching brace,
taking into account any and all nested braces contained within the word. Tcl
then passes the word to the proc command, which stores it as the script
implementing the countdown procedure.
It’s when you attempt to execute the countdown procedure that Tcl then parses
and executes the script. After executing the first puts command, Tcl ignores
the entire second line—including the brace—as a comment. The while
command is well formed, with its script argument terminated by the }

83

following the incr command. Because Tcl then expects to find another
command on the following line, the } character at the beginning of the line is
interpreted as being the name of the command to execute, resulting in the
following error:

Note

In general, try to avoid including brace characters in comments. If you
do include braces in comments, make sure that they are balanced; for
every opening brace, have a corresponding close brace in the
comment.

The following example shows a code block correctly commented out. The
braces are balanced within the comments:

A common alternative for commenting out a well-formed, parsable block of
code is to enclose it within an if command with a false condition:

84

2.10 Normal and Exceptional Returns

A Tcl command can complete in several different ways. A normal return is
the most common case; it means that the command completed successfully
and the return includes a string result. Tcl also supports exceptional returns
from commands. An error is the most frequent form of exceptional return.
When an error return occurs, it means that the command could not complete
its intended function. The command is aborted and any commands that
follow it in the script are skipped. An error return includes a string
identifying what went wrong; the string normally is displayed by the
application. For example, the following set command generates an error
because it has too many arguments:

Different commands generate errors under different conditions. For
example, expr accepts any number of arguments but requires the arguments to
have a particular syntax; it generates an error if, for example, parentheses
aren’t matched:

The complete exceptional return mechanism for Tcl is discussed in Chapter
13. Tcl supports a number of exceptional returns other than errors, provides
additional information about errors besides the error message mentioned
previously, and allows errors to be “caught” so that the effects of the error
can be contained within a piece of Tcl code. For now, though, all you need
to know is that commands normally return string results, but they sometimes
return errors that cause Tcl command interpretation to be aborted.

Note

You may also find the global errorInfo variable useful. After an error
Tcl sets errorInfo to hold a stack trace indicating exactly where the error

85

occurred. You can print out this variable with the command puts
$errorInfo.

2.11 More on Substitutions

The most common difficulty for new Tcl users is understanding when
substitutions do and do not occur. A typical scenario is for a user to be
surprised at the behavior of a script because a substitution didn’t occur
when the user expected it to happen, or a substitution occurred when it
wasn’t expected. However, you should find Tcl’s substitution mechanism to
be simple and predictable if you just remember two related rules:

1. Tcl parses a command and makes substitutions in a single pass from
left to right. Each character is scanned exactly once.

2. At most a single layer of substitution occurs for each character; the
result of one substitution is not scanned for further substitutions.

Tcl’s substitutions are simpler and more regular than you may be used to if
you’ve programmed with Unix shells. When new users run into problems
with Tcl substitutions, it is often because they have assumed a more complex
model than actually exists.
For example, consider the following command:

The characters between [] are scanned exactly once, during command
substitution, and the value of the earnings variable is substituted at that time.
It is not the case that Tcl first scans the whole set command to substitute
variables, then makes another pass to perform command substitution;
everything happens in a single scan. The result of the format command is
passed verbatim to set as its second argument without any additional
scanning (for example, the dollar sign in format’s result does not trigger
variable substitution).
One consequence of the substitution rules is that unless you use the {*}
syntax described in Section 2.8, all the word boundaries within a command
are immediately evident and are not affected by substitutions. For example,
consider the following script:

set city "Los Angeles"
set bigCity $city

86

The second set command is guaranteed to have exactly three words
regardless of the value of the variable city. In this case city contains a space
character but the space is not treated as a word separator.
One final note: It is possible to use substitutions in very complex ways, but
you should avoid doing so whenever possible. Substitutions work best when
used in very simple ways such as set a $b. If you use too many substitutions
in a single command, and particularly if you use many backslashes, your
code will be unreadable and unreliable. In situations like these, it’s usually
clearer and safer to break up the offending command into several commands
that build up the arguments in simple stages. Tcl provides several
commands, such as format, subst, and list, to help manage complex
substitution scenarios. Another approach to consider is creating procedures
to isolate complex processing; the result is often more readable and
maintainable than trying to do all processing “inline.”

87

88

3. Variables

Tcl supports two kinds of variables: simple variables (often referred to as
scalar variables) and associative arrays. This chapter describes the basic
Tcl commands for manipulating variables and arrays, and it also provides a
more complete description of variable substitution.

3.1 Commands Presented in This Chapter

This chapter discusses the following basic commands for manipulating
variables:

• append varName value ?value ...?
Appends each of the value arguments to the variable varName, in order. If
varName doesn’t exist, it is created with an empty value before appending
occurs. The return value is the new value of varName.

• incr varName ?increment?
Adds increment to the value of the variable varName. Both increment and the old
value of varName must be integer strings (decimal, hexadecimal, or octal). If
the argument is omitted, increment defaults to 1. The new value is stored in
varName as a decimal string and returned as the result of the command. As of
Tcl 8.5, incrementing a nonexistent variable creates the variable and sets it
to the increment value.

• set varName ?value?
If value is specified, sets the value of the variable varName to value. In any case
the command returns the (new) value of the variable.

• unset ?-nocomplain? ?--? varName ?varName varName ...?
Deletes the variables given by the varName arguments. Returns an empty
string. Raises an error if any of the variables doesn’t exist, unless the -
nocomplain option is included.

• array exists arrayName
Returns a Boolean value indicating whether the array called arrayName exists.

• array get arrayName ?pattern?
Returns a dictionary containing the contents of the array called arrayName. If
pattern is specified, it restricts what elements are present in the dictionary to
those whose keys match the pattern according to the rules of string match.

• array names arrayName ?mode? ?pattern?

89

Returns a list of the names of elements within the array called arrayName. If
pattern is specified, it restricts what element names are returned by forming
a glob pattern in the style of string match. If mode is also given, it should be
either -exact, -glob, or -regexp meaning that exact matching (like string equal),
glob matching (like string match, the default matching rule), or regular
expression matching (like regexp) should be used to interpret pattern when
selecting the element names.

• array set arrayName dictionary
Merges the contents of dictionary into the array called arrayName. Returns the
empty string.

• array size arrayName
Returns the number of elements in the array called arrayName.

• array statistics arrayName
Returns a description of the internal configuration of the array named
arrayName.

• array unset arrayName ?pattern?
Removes all elements that match pattern (according to the rules of string
match) from the array named arrayName and returns the empty string. If pattern is
absent, the whole array is unset.

3.2 Simple Variables and the set Command

A simple Tcl variable has a name and a value. Both the name and the value
may be arbitrary strings of characters. For example, it is possible to have a
variable named xyz !# 22 or March earnings: $100,472. In practice, variable
names usually start with a letter and consist of a combination of letters,
digits, and underscores, since that makes it easier to use variable
substitution. Variable names, like all names in Tcl, are case-sensitive:
numwords refers to a different variable than NumWords.
Variables may be created, read, and modified with the set command, which
takes either one or two arguments. The first argument is the name of a
variable, and the second, if present, is a new value for the variable:

90

Tcl variables are created automatically when they are assigned values. In
this example, the first command creates a new variable a if it doesn’t
already exist and sets its value to the character sequence Four score and seven
years ago. The result of the command is the new value of the variable. The
second set command has only one argument: a. In this form it simply returns
the current value of the variable. The third set command changes the value
of a to 12.6 and returns that new value.

3.3 Tcl’s Internal Storage of Data

Tcl variables can be used to represent many things, such as integers, real
numbers, names, lists, and Tcl scripts, and many of these types of values
have a very efficient internal representation. But all values have a string
representation as well. The Tcl interpreter automatically converts the value
between its internal and string representations on an as-needed basis. For
example, if we create the variable a with the following command, Tcl stores
only the string representation initially:

set a 12.6

During execution of the expr subcommand in the following command, Tcl
parses the string value to generate an internal floating-point representation
of the value in addition to the string value:

set a [expr $a + 1.2]

When the set command then assigns the return value of expr to a, only the
floating-point internal representation exists. However, if you then use puts to
print the value of a or otherwise treat the value of a as a string, Tcl generates
a string representation of the value while maintaining the internal
representation:

puts $a

Finally, if you modify the string representation of a, such as using append to
append characters to the end of the value, Tcl updates the string
representation and discards the internal floating-point representation (even
if the resulting string could be interpreted as a number):

append a 32

91

The internal representation enables efficient handling of the value, and the
string representation allows different values to be manipulated in the same
way and communicated easily. Additionally, because all values appear to be
strings at the scripting level, and the Tcl interpreter automatically manages
memory allocation for values, there is no need for variable declarations.
But by converting between string and internal representations only as
needed, Tcl gains significant performance improvement.

Note

Most Tcl programs benefit from this automatic conversion between a
value’s internal and string formats. However, if your program
frequently changes a value while also executing commands that
alternate between the internal and string representations of the value,
the conversion overhead can be noticeable. This effect, which is called
“shimmering,” is most pronounced when manipulating large lists,
particularly in tight loops. To minimize shimmering, try to manipulate
the value with commands that do not modify the internal representation
(e.g., use list commands to manipulate lists, arithmetic commands to
manipulate numbers, etc.) and avoid forcing a string representation
wherever possible.

3.4 Arrays

In addition to simple variables, Tcl also provides arrays. An array is a
collection of elements, each of which is a variable with its own name and
value. The name of an array element has two parts: the name of the array
and the name of the element within that array. Both array names and element
names may be arbitrary strings. For this reason Tcl arrays are sometimes
called associative arrays to distinguish them from arrays in other languages
where the element names must be integers.
Array elements are referenced using notation like earnings(January), where the
array name (earnings in this case) is followed by the element name in
parentheses (January in this case). Arrays may be used wherever simple
variables may be used, such as in the set command:

92

The first command creates an array named earnings, if it doesn’t already
exist. Then it creates an element January within the array, if it doesn’t already
exist, and assigns it the value 87966. The second command assigns a value to
the February element of the array, and the third command returns the value of
the January element.

Note

Don’t put quotes around the element name. If you do, the quote
characters are interpreted as part of the element name, rather than as
delimiting the element name.

Although you can use array element names such as 0, 1, 2, etc., the names are
still interpreted as strings rather than integer values. Therefore, an element
name of 1 is not the same as 1.0.
In Tcl, arrays are unordered data structures. (Internally, Tcl stores the array
elements in a hash table.) Of course, you can assign element names that you
can traverse in a particular order, using commands described later in this
chapter. But if your intent is to design an ordered data structure, so that
values maintain a given sequence, Tcl lists typically provide a better
solution. See Chapter 6 for more information on Tcl lists.

3.5 Variable Substitution

Chapter 2 introduced the use of $ notation for substituting variable values
into Tcl commands. This section describes the mechanism in more detail.
Variable substitution is triggered by the presence of an unescaped $
character in a Tcl word. The characters following the $ are treated as a
variable name, and the $ and name are replaced in the word by the value of
the variable. Tcl provides three forms of variable substitution. So far you
have seen only the simplest form, which is used like this:

93

expr $a+2

In this form the $ is followed by a variable name consisting of letters, digits,
and underscores. The first character that is not a letter, digit, or underscore
(+ in the example) terminates the name. If the character immediately
following a $ is not a letter, digit, or underscore, the $ is treated as a literal
character.
The second form of variable substitution allows array elements to be
substituted. This form is like the first one except that the variable name is
followed immediately by an element name enclosed in parentheses.
Variable, command, and backslash substitutions are performed on the
element name in the same way as a command word in double quotes. For
example, consider the following script:

In the expr command, $earnings($month) is replaced with the value of an
element of the array earnings. The element’s name is given by the value of the
month variable, which varies from iteration to iteration.
An element name may contain whitespace characters, but the parentheses
are not Tcl quoting characters, and so any unescaped whitespace characters
are treated as word separators:

The second example results in an error because the quote character doesn’t
appear as the first character of the word, and so Tcl treats it as a literal
character rather than a word delimiter. As a result, capital("New is one word
and Jersey") another, and the set command receives too many arguments.
To include a whitespace character in an element name, either escape the
whitespace character or quote the entire variable reference:

94

Another option is to use substitution for the element name. This works
because substitutions do not affect the word boundaries of a command, even
if the characters substituted contain whitespace characters; for example:

The last form of substitution is used for simple variables in places where
the variable name is followed by a letter or number or underscore. For
example, suppose that you wish to pass a value such as 1.5m to a command as
an argument, but the number is in a variable size (in Tk you might do this to
specify a size in millimeters). If you try to substitute the variable value with
a form like $sizem, Tcl will treat the m as part of the variable name. To get
around this problem, you can enclose the variable name in braces as in the
following command:

.canvas configure -width ${size}m

You can also use braces to specify variable names containing characters
other than letters or numbers or underscores.

Note

Braces can be used to delimit only simple variables; there is no way to
specify an element of an array with brace notation.

Tcl’s variable substitution mechanism is intended to handle only the most
common situations; there exist scenarios where none of the preceding forms
of substitution achieves the desired effect. More complicated situations can
be handled with a sequence of commands. For example, the format command
can be used to generate a variable name of almost any imaginable form, set
can be used to read or write the variable with that name, and command
substitution can be used to substitute the value of the variable into other
commands.

Note

95

In general, restrict variable names to sequences of letters, digits, and
underscore characters to make your code easier to write and read.

3.6 Multidimensional Arrays

Tcl implements only one-dimensional arrays, but multidimensional arrays
can be simulated by concatenating multiple indices into a single element
name. The following program simulates a two-dimensional array indexed
with integers:

matrix is an array with three elements whose names are 1,1 and 1,2 and 1,3.
However, the array behaves just as if it were a two-dimensional array; in
particular, variable substitution occurs while the element name is scanned in
the set command, so that the values of i and j get combined into an
appropriate element name.

Note

Spaces are significant in this example: matrix(1,1) refers to a different
variable than matrix(1, 1). The best practice is to leave out the spaces,
since they can also cause confusion during the parsing of commands.
For example, the command

set matrix(1, 1) 140

is a command with four words, of which the third is 1). This results in
three arguments to set, which then causes an error. The entire variable
name would have to be enclosed in double quotes to get around this
problem.

96

3.7 Querying the Elements of an Array

The array command provides information about the elements currently
defined for an array variable, as well as selected operations upon the whole
array. It provides this information in several different ways, depending on
the first argument passed to it. The command array size returns a number
indicating how many elements are defined for a given array variable, and
the command array names returns a list whose entries are the names of the
elements of a given array variable:

For each of these commands, the second argument must be the name of an
array variable. Optionally, you can provide an additional pattern argument,
in which case the return value contains only those element names that match
the pattern using the matching rules of the string match command (as
described in Section 5.10). The list returned by array names does not have any
particular order.
The array names command can be used in conjunction with foreach to iterate
through the elements of an array. For example, this code deletes all elements
of an array with values that are 0 or empty:

Note

The array command also provides a second way to search through the
elements of an array, using the startsearch, anymore, nextelement, and
donesearch options. This approach is more general than the foreach

97

approach just given, and in some cases it is more efficient, but it is
more verbose than the foreach approach and isn’t needed very often. See
the reference documentation for details.

The array exists command can also be used to test whether a particular
variable is an array, and the array get and array set commands can be used to
convert between arrays and dictionaries:

3.8 The incr and append Commands

incr and append provide simple ways to change the value of a variable. incr
takes two arguments, which are the name of a variable and an integer. incr
adds the integer to the variable’s value, stores the result back into the
variable, and returns the variable’s new value as the result:

 set x 43
 incr x 12
⇒ 55

The number can have either a positive or a negative value. It can also be
omitted, in which case it defaults to 1:

 set x 43
 incr x
⇒ 44

Both the variable’s original value and the increment must be integer strings,
in either decimal, octal (indicated by a leading 0), or hexadecimal
(indicated by a leading 0x).

98

Prior to Tcl 8.5, attempting to increment a variable that didn’t exist raised
an error. As of Tcl 8.5, the behavior of incr changed to create the variable
and set its value to the increment:

 incr y
⇒ 1
 incr z 42
⇒ 42

The append command adds text to the end of a variable. It takes two or more
arguments, the first of which is the name of the variable; the remaining
arguments are new text strings to add to the variable. It appends the new text
to the variable and returns the variable’s new value. The following example
uses append to compute a table of squares:

Note

The append command does not automatically insert space characters
between the text strings appended to the variable’s value. If you want a
space character, you must explicitly include it as part of the text strings
you provide as arguments.

Neither incr nor append adds any new functionality to Tcl, since the effects of
these commands can be achieved in other ways. However, they provide
simple ways to do common operations. In addition, append is implemented in
a fashion that avoids character copying. If you need to construct a very large
string incrementally from pieces, it is much more efficient to use a command
such as

append x $piece

99

than a command such as

set x "xpiece"

3.9 Removing Variables: unset and array unset

The unset command destroys variables. It takes any number of arguments,
each of which is a variable name, and removes all of the variables. Future
attempts to read the variables result in errors just as if the variables had
never been set in the first place. The arguments to unset may be either simple
variables, elements of arrays, or whole arrays, as in the following example:

unset a earnings(January) b

In this case the variables a and b are removed entirely and the January element
of the earnings array is removed. The earnings array continues to exist after the
unset command. If a or b is an array, all of the elements of that array are
removed along with the array itself.
You can also delete elements from an array using the array unset command,
which accepts the name of an array variable and a pattern as arguments.
Those element names that match the pattern using the matching rules of the
string match command (as described in Section 5.10) are deleted from the
array.

3.10 Predefined Variables

The Tcl library automatically creates and manages several global variables.
The reference documentation for tclvars describes all of these variables, but
we’ll examine the more frequently used ones in this section.
When you invoke a tclsh or wish script file, the name of the script file is
stored in the variable argv0, the command-line arguments are stored as a list
in the variable argv, and the number of command-line arguments is stored in
the variable argc. Consider the following tclsh script:

100

If you place this script in a file named printargs, make the file executable,
and then invoke it from your shell, it will print out information about its
arguments:

The variable env is predefined by Tcl. It is an array variable whose elements
are all of the process’s environment variables. For example, the following
command prints out the user’s home directory, as determined by the HOME
environment variable:

puts "Your home directory is $env(HOME)"

The variable tcl_platform is an array variable that contains several elements
describing the platform on which the application is running, such as the
name of the operating system, its current release number, and the machine’s
instruction set:

This array can be quite useful when you are writing scripts that must run
without change on both Windows and Unix. Based on the values in the array,
you could execute any platform-specific code required for that platform.

Note

For versions of Mac OS prior to Mac OS X, the value of
tcl_platform(platform) was macintosh. Starting with Mac OS X, the value is
unix and the value of tcl_platform(os) is Darwin, as shown above. For
scripts that use Tk, you might have dependencies on the windowing
system (for example, X11 versus Mac OS Aqua), in which case you
can use the tk windowingsystem command described in Chapter 29 to query
the windowing system of the computer running the script.

101

3.11 Preview of Other Variable Facilities

Tcl provides a number of other commands for manipulating variables. These
commands will be introduced in full after you’ve learned more about the Tcl
language, but this section contains a short preview of some of the facilities.
The trace command ensemble can be used to monitor a variable so that a Tcl
script gets invoked whenever the variable is set, read, or unset. Variable
tracing is sometimes useful during debugging, and it allows you to create
read-only variables. You can also use traces for propagation so that, for
example, a database or screen display gets updated whenever the value of a
variable changes. Variable tracing is discussed in Section 15.6.
The global and upvar commands can be used by a procedure to access
variables other than its own local variables. These commands are discussed
in Chapter 9.
The namespace command ensemble creates and manages namespaces, which
are named collections of commands and variables. Namespaces encapsulate
the commands and variables to ensure that they don’t interfere with the
commands and variables in other namespaces. Namespaces are discussed in
Chapter 10.

102

103

4. Expressions

Expressions combine values (or operands) with operators to produce new
values. For example, the expression 4+2 contains two operands, 4 and 2, and
one operator, +; it evaluates to 6. Many Tcl commands expect one or more of
their arguments to be expressions. The simplest such command is expr,
which just evaluates its arguments as an expression and returns the result as
a string:

 expr (8+4) * 6.2
⇒ 74.4

Another example is if, which evaluates its first argument as an expression
and uses the result to determine whether or not to evaluate its second
argument as a Tcl script:

if {$x < 2} {set x 2}

This chapter uses the expr command for all of its examples, but the same
syntax, substitution, and evaluation rules apply to all other uses of
expressions as well.

4.1 Commands Presented in This Chapter

This chapter discusses the expr command:

• expr arg ?arg arg ...?
Concatenates all the arg values (with spaces between), evaluates the result
as an expression, and returns the expression’s value.

4.2 Numeric Operands

Expression operands are normally integers or real numbers. Integer values
may be specified in decimal (the normal case), in binary (if the first two
characters of the operand are 0b), in octal (if the first two characters of the
operand are 0o), or in hexadecimal (if the first two characters of the operand
are 0x). For example, these are all ways of expressing the same integer

104

value: 335 (decimal), 0o517 (octal), 0x14f (hexadecimal), 0b101001111 (binary).
The octal and binary prefixes were added in Tcl 8.5.

Note

For compatibility with older Tcl releases, an octal integer value is also
indicated when the first character of the operand is simply 0, whether
or not the second character is also o. Therefore, 0517 is also equivalent
to decimal 335. But 092 is not a valid integer: the leading 0 causes the
number to be read in octal, but 9 is not a valid octal digit. The safest
way to force numeric values with possible leading zeros to be treated
as decimal integers is with the scan command, discussed in Section 5.9.
The page http://wiki.tcl.tk/498 on the Tcler’s Wiki shows some
strategies for handling this, including the following procedure:

You can specify real operands using most of the forms defined for ANSI C,
including the following examples:

2.1
7.91e+16
6E4
3.

Note

These same forms are allowable not just in expressions but anywhere
in Tcl that an integer or real value is required.

Expression operands can also be non-numeric strings. String operands are
discussed in Section 4.6.

105

http://wiki.tcl.tk/498

4.3 Operators and Precedence

Table 4.1 lists all of the operators supported in Tcl expressions; they are
similar to the operators for expressions in ANSI C. Black horizontal lines
separate groups of operators with the same precedence, and operators with
higher precedence appear in the table above operators with lower
precedence. For example, 4*2<7 evaluates to 0 because the * operator has
higher precedence than <. Except in the simplest and most obvious cases you
should use parentheses to indicate the way operators should be grouped; this
helps prevent errors by you or by others who modify your programs.

Table 4.1 Summary of Operators Allowed in Tcl Expressions

106

Operators with the same precedence group from left to right. For example,
10-4-3 is the same as (10-4)-3; both evaluate to 3.

4.3.1 Arithmetic Operators

Tcl expressions support the arithmetic operators +, -, *, /, %, and **. The -
operator may be used either as a binary operator for subtraction, as in 4-2, or
as a unary operator for negation, as in -(6*$i). The / operator truncates its
result to an integer value if both operands are integers. % is the modulus
operator; its result is the remainder when its first operand is divided by the
second. Both of the operands for % must be integers. ** is the exponentiation

107

operator, introduced in Tcl 8.5, which raises the first operand to the power
of the second operand.

Note

The / and % operators have a more consistent behavior in Tcl than in
ANSI C. In Tcl the remainder is always greater than or equal to zero
and it has an absolute value less than the absolute value of the divisor.
ANSI C guarantees only the second property. In both ANSI C and Tcl,
the quotient will always have the property that (x/y)*y + x%y is x for all x
and y.

4.3.2 Relational Operators

The operators < (less than), <= (less than or equal), >= (greater than or equal),
> (greater than), == (equal), and != (not equal) are used for comparing two
values. Each operator produces a result of 1 (true) if its operands meet the
condition and 0 (false) if they don’t. These operators can be used for string
as well as numeric comparisons; however, see Section 4.6 for more
information on string comparison.

4.3.3 Logical Operators

The logical operators &&, ||, and ! are typically used for combining the
results of relational operators, as in the expression

($x > 4) && ($x < 10)

Each operator produces a 0 or 1 result. && (logical AND) produces a 1 result
if both its operands are nonzero, || (logical OR) produces a 1 result if either
of its operands is nonzero, and ! (NOT) produces a 1 result if its single
operand is zero.
In Tcl, as in ANSI C, a zero value is treated as false and anything other than
zero is treated as true. Tcl also accepts string representations of Boolean
values: false, no, or off for false, and true, yes, or on for true. These string
representations are case-insensitive and may be unambiguously abbreviated.

108

Whenever Tcl generates a true/false value, though, it always uses 1 for true
and 0 for false.
As in C, the operands of && and || are evaluated sequentially: if the first
operand of && evaluates to 0, or if the first operand of || evaluates to 1, then
the second operand is not evaluated.

4.3.4 Bit-wise Operators

Tcl provides six operators that manipulate the individual bits of integers: &,
|, ^, <<, >>, and ~. These operators require their operands to be integers. The
&, |, and ^ operators perform bit-wise AND, OR, and exclusive OR: each bit
of the result is generated by applying the given operation to the
corresponding bits of the left and right operands. Note that & and | do not
always produce the same results as && and ||:

 expr 8&&2
⇒ 1
 expr 8&2
⇒ 0

The operators << and >> use the right operand as a shift count and produce a
result consisting of the left operand shifted left or right by that number of
bits. During left shifts zeros are shifted into the low-order bits. Right-
shifting is always “arithmetic right shift,” meaning that it shifts in zeros for
positive numbers and ones for negative numbers. This behavior is different
from right-shifting in ANSI C, which is machine-dependent.
The ~ operand (“ones complement”) takes only a single operand and
produces a result whose bits are the opposite of those in the operand: zeros
replace ones and vice versa.

4.3.5 Choice Operator

The ternary operator ?: may be used to select one of two results:

expr {($a < $b) ? $a : $b}

This expression returns the smaller of $a and $b. The choice operator checks
the value of its first operand for truth or falsehood. If it is true (nonzero), the
argument following the ? is the result; if the first operand is false (zero), the
third operand is the result. Only one of the second and third arguments is

109

evaluated.

4.4 Math Functions

Tcl expressions support mathematical functions, such as sin and exp. Math
functions are invoked using standard functional notation:

expr 2*sin($x)
expr hypot($x, $y) + $z

The arguments to math functions may be arbitrary expressions, and multiple
arguments are separated by commas. See Table 4.2 for a list of all the built-
in functions.

Table 4.2 Predefined Mathematical Functions Supported in Tcl Expressions

110

As of Tcl 8.5, when the expression parser encounters a mathematical
function such as sin($x), it replaces the function internally with a call to an
ordinary Tcl command in the tcl::mathfunc namespace. (Tcl’s namespace
feature is discussed in Chapter 10.) If the mathematical function contains
comma-separated arguments, they are evaluated by expr and passed as
separate arguments to the implementing procedure. Thus, the processing of
an expression such as

expr {sin($x+$y)}

is the same in every way as the processing of

expr {[tcl::mathfunc::sin [expr {$x+$y}]]}

111

and

expr {atan2($y-0.3, $x/2)}

is equivalent to

expr {[tcl::mathfunc::atan2 [expr {$y-0.3}] [expr {$x/2}]]}

Note

The mechanism that maps functions to commands uses a relative
namespace reference. If a namespace defines a command [namespace
current]::tcl:: mathfunc::sin, calls to sin in expressions evaluated in that
namespace resolve to it in preference to Tcl’s predefined
::tcl::mathfunc::sin.

This capability allows you to define your own mathematical functions
simply by creating new commands in the tcl::mathfunc namespace. For
example, to define a function to calculate the average of one or more
numbers:

4.5 Substitutions

Substitutions can occur in two ways for expression operands. The first way
is through the normal Tcl parser mechanisms, as in the following command:

112

expr 2*sin($x)

In this case the Tcl parser substitutes the value of the variable x before
executing the command, so the first argument to expr will have a value such
as 2*sin(0.8). The second way is through the expression evaluator, which
performs an additional round of variable and command substitution on the
expression while evaluating it. For example, consider the command

expr {2*sin($x)}

In this case the braces prevent the Tcl parser from substituting the value of x,
so the argument to expr is 2*sin($x). When the expression evaluator
encounters the dollar sign, it performs variable substitution itself, using the
value of the variable x as the argument to sin.

Note

When the expression evaluator performs variable or command
substitution, the value substituted must be an integer or real number (or
a string, as described next). It cannot be an arbitrary expression.

Having two layers of substitution doesn’t usually make any difference to the
operation of the expr command, but it is vitally important for other
commands such as while that evaluate an expression repeatedly and expect to
get different results each time. For example, consider the following script,
which finds the smallest power of 2 greater than a given number:

set pow 1
while {$pow<$num} {
 set pow [expr $pow*2]
}

The expression $pow<$num gets evaluated by while at the beginning of each
iteration to decide whether or not to terminate the loop. It is essential that
the expression evaluator use a new value of pow each time. If the braces were
omitted so that variable substitution is performed while parsing the while
command—for example, while $pow<$num . . .—then while’s argument would be
a constant expression such as 1<44; either the loop would never execute, or it
would execute forever.

113

Note

Always quote your expressions with braces, even when using the expr
command. Tcl is able to evaluate a braced expression much more
efficiently than an unbraced expression. Quoting the expression with
braces also prevents subtle security holes in your code. Consider a
situation where a program prompts the user for a value, and then uses
the value in an expression, such as

set x [expr $input + 2]

If a malicious user on a Windows system were to enter [format C:\], the
Tcl interpreter would substitute this string as the value of the input
variable, and the expression evaluator would then execute the
subcommand—formatting the C: drive. With the expression braced, the
expression evaluator substitutes the value of the input variable; the
result does not look like a valid arithmetic expression and so results in
an error.

4.6 String Manipulation

Unlike expressions in ANSI C, Tcl expressions allow string operands for
some operators, as in the following command:

if {$x eq "New York"} {
 ...
}

In this example, the expression evaluator compares the value of the variable
x to the string New York using the string equality operator; the body of the if is
executed if they are identical. Strings are compared lexicographically. The
sorting order may vary from system to system.
To specify a string operand, you must either enclose it in quotes or braces or
use variable or command substitution. It is important to enclose the entire
expression in the preceding example in braces so that the expression
evaluator substitutes the value of x. Consider the command

set result [expr $x eq "New York"]

114

If the braces are left out, the arguments to expr are concatenated, resulting in
the expression

Los Angeles eq New York

The expression parser is not able to parse Los (it isn’t a number, it doesn’t
make sense as a function name, and it can’t be interpreted as a string
because it doesn’t have quotes around it), so a syntax error occurs.
If a string is enclosed in quotes, the expression evaluator performs
command, variable, and backslash substitution on the characters between
the quotes. If a string is enclosed in braces, no substitutions are performed.
Braces nest for strings in expressions in the same way that they nest for
words of a command.
In addition to eq and ne, which explicitly test for string equality and
inequality, you can perform string comparisons with the <, >, <=, >=, ==, and !=
operators. However, these other operators do string comparisons only if one
or both of the operands cannot be parsed as a number. For example,
consider the following script:

 set x 8
 set y 010
 expr {$x == $y}
⇒ 1

Arithmetic comparison is used for the expr test, so the test evaluates to 1.

Note

If you want to compare two values as strings in a situation where they
may both look like numbers (e.g., the values are stored in variables so
you don’t know what their values are), you must use the string
comparison operators or a command such as string compare, as
described in Chapter 5.

4.7 List Manipulation

Tcl expressions also support two operators for list manipulation. (Chapter 6

115

discusses list manipulation in detail.) The in operator returns 1 if a
particular string is an element in a list and 0 otherwise; the ni operator
returns 1 if the string is not an element in the list and 0 otherwise. For
example, the following tests whether Los Angeles appears as an element in the
list stored in cities:

if {"Los Angeles" in $cities} {
 ...
}

The in and ni operators perform exact string comparison of the string against
the list elements; they do no substring or pattern matching. Thus, the
expression above is exactly equivalent to the following lsearch -exact test:

4.8 Types and Conversions

Tcl evaluates expressions numerically whenever possible. String operations
are performed only for the string comparison operators and for the
relational operators if one or both of the operands doesn’t make sense as a
number. Most operators permit either integer or real operands, but a few,
such as << and &, allow only integers.
Tcl supports arbitrarily large integers, but for performance reasons integers
are usually stored internally with the C type long, which provides at least 32
bits of precision on most machines. Tcl automatically uses an arbitrary-
precision integer data type internally for integer values unable to fit in a long
value. Real numbers are represented with the C type double, which is usually
represented with 64-bit values (about 15 decimal digits of precision) using
the IEEE Standard for Binary Floating-Point Arithmetic.
If the operands for an operator have different types, Tcl automatically
converts one of them to the type of the other. If one operand is an integer and
the other is a real, the integer operand is converted to real. If one operand is
a non-numeric string and the other is an integer or real, the integer or real
operand is converted to a string.
Comparison operators always return a Boolean 0/1 result. The result of an
arithmetic operation is a double if at least one of the operands is a double.

116

Integer arithmetic operations result in a native long integer if possible, or an
arbitrary-precision integer otherwise. You can use the math function double to
promote an integer to a real explicitly, and int, wide, entier, and round to
convert a real value back to integer by truncation or rounding. The int
function always returns a non-wide integer (converting by dropping the high
bits). The wide function always returns a wide integer (converting by sign
extending if the argument is a 32-bit number, or dropping the high bits if the
argument is larger than a 64-bit number). The entier function coerces its
argument to an integer of appropriate size. entier is distinguished from int
and wide in that int results in an integer limited to the low-order bits of the
machine word size and wide is limited to 64 bits, whereas entier results in
whatever size of integer is needed to hold the full value.

4.9 Precision

Numbers are kept in internal form throughout the evaluation of an expression
and are converted back to strings only when necessary. Integers are
converted to signed decimal strings without any loss of precision. Real
numbers are converted using as few digits as possible while still
distinguishing any floating-point number from its nearest neighbors.

117

118

5. String Manipulation

This chapter describes Tcl’s facilities for manipulating strings. Internally,
Tcl stores strings as Unicode characters, but Tcl supports a variety of other
character sets and can translate between character sets automatically and on
demand. Tcl also supports handling binary strings. Tcl’s string manipulation
commands include pattern matching in two different forms: one that mimics
the rules used by shells for file name expansion and another that uses regular
expressions as patterns. Tcl also has commands for formatted input and
output in a style similar to the C procedures scanf and printf. Finally, there
are several utility commands for computing the length of a string, extracting
characters from a string, case conversion, and other tasks.

5.1 Commands Presented in This Chapter

This chapter discusses the following commands for string manipulation:

• binary format format ?value value ...?
Returns a binary string whose layout is specified by format and whose
contents come from the additional arguments.

• binary scan string format varName ?varName varName ...?
Parses fields from a binary string, returning the number of conversions
performed. string is the input to be parsed, and format indicates how to parse
it. Each varName gives the name of a variable; when a field is scanned from
string, the result is assigned to the corresponding variable.

• encoding convertfrom ?encoding? string
Converts string to UTF-8 Unicode from the specified encoding. If you omit
encoding, the system encoding is used.

• encoding convertto ?encoding? string
Converts string from UTF-8 Unicode to the specified encoding. If you omit
encoding, the system encoding is used.

• encoding names
Returns a list of recognized encoding names.

• encoding system ?encoding?
Sets the system encoding to encoding. If you omit encoding, the command
returns the current system encoding.

• format format ?value value ...?

119

Returns a result equal to format except that the value arguments have been
substituted in place of % sequences in format.

• regexp ?options? exp string ?matchVar? ?subVar subVar ...?
Determines whether the regular expression exp matches part or all of string
and returns 1 if it does, 0 if it doesn’t. If there is a match, information about
matching range(s) is placed in the variables named by matchVar and the
subVars, if they are specified. See the reference documentation for a complete
list of options.

• regsub ?options? exp string subSpec ?varName?
Matches exp against string as for regexp and returns 1 if there is a match, 0 if
there is none. Also copies string to the variable named by varName, making
substitutions for the matching portion(s) as specified by subSpec. If you omit
varName, the return value is the result of substitutions. See the reference
documentation for a complete list of options.

• scan string format varName ?varName varName ...?
Parses fields from string as specified by format, places the values that match
% sequences into variables named by the varName arguments, and returns the
number of fields successfully parsed. Alternatively, if no varName arguments
are provided, the values matched are returned as a list.

• source ?-encoding encoding? fileName
Reads and executes the script contained in the file fileName. Tcl reads the file
using the system encoding unless you use -encoding to specify the encoding.

• string bytelength string
Returns the number of bytes used to represent the string internally. In most
cases, you should use string length instead.

• string compare ?-nocase? ?-length num? string1 string2
Returns -1, 0, or 1 if string1 is lexicographically less than, equal to, or greater
than string2. To ignore case, include the -nocase option. If you include -length,
then only the first num characters are used for comparison.

• string equal ?-nocase? ?-length num? string1 string2
Returns 1 if string1 and string2 are identical, 0 otherwise. To ignore case,
include the -nocase option. If you include -length, then only the first num

characters are used for comparison.
• string first string1 string2 ?startIndex?

Returns the index in string2 of the first character in the leftmost substring that
exactly matches string1, or -1 if there is no match. If startIndex is specified,
then the search is constrained to start with the character in string2 specified
by the index.

• string index string charIndex
Returns the charIndexth character of string, or an empty string if there is no

120

such character. The first character in string has index 0.
• string is class ?-strict? ?-failindex varname? string

Returns 1 if string is a valid member of the specified character class;
otherwise returns 0. An empty string always returns 1 unless you include -
strict, in which case it returns 0. If you include -failindex, varname is assigned
the index of the first character in string that was invalid for the specified
class. The varname is not set if the command returns 1. See the reference
documentation for a list of recognized classes.

• string last string1 string2 ?lastIndex?
Returns the index in string2 of the first character in the rightmost substring
that exactly matches string1, or -1 if there is no match. If lastIndex is
specified, only the characters in string2 at or before the specified lastIndex
will be considered by the search.

• string length string
Returns the number of characters in string.

• string map ?-nocase? mapping string
Returns the new string created by replacing substrings in string based on the
mapping dictionary. Each instance of a mapping key in the string is replaced with
the corresponding mapping value. The -nocase option causes case-insensitive
matching.

• string match ?-nocase? pattern string
Returns 1 if pattern matches string using glob-style matching rules (*, ?, [],
and \) and 0 if it doesn’t. The -nocase option causes case-insensitive
matching.

• string range string first last
Returns the substring of string that lies between the indices given by first
and last, inclusive.

• string repeat string count
Returns string repeated count number of times.

• string replace string first last ?newstring?
Returns the new string created by removing from string the range of
characters from the first through last indices inclusively, replacing them
with newstring, if specified.

• string tolower string ?first? ?last?
Returns a value identical to string except that all uppercase characters have
been converted to lowercase. The entire string is converted unless you
specify the index of the first and/or last characters to include in the
conversion.

• string totitle string ?first? ?last?
Returns a value identical to string except that the first character is converted

121

to title case and the rest are converted to lowercase. The entire string is
converted unless you specify the index of the first and/or last characters to
include in the conversion.

• string toupper string ?first? ?last?
Returns a value identical to string except that all lowercase characters have
been converted to uppercase. The entire string is converted unless you
specify the index of the first and/or last characters to include in the
conversion.

• string trim string ?chars?
Returns a value identical to string except that any leading or trailing
characters that appear in chars are removed. chars defaults to the whitespace
characters.

• string trimleft string ?chars?
Same as string trim except that only leading characters are removed.

• string trimright string ?chars?
Same as string trim except that only trailing characters are removed.

• string wordend string charIndex
Returns the index of the character just after the last one in the word
containing character charIndex of string. A word is either any contiguous
range of letter, digit, and underscore characters, or any single character
other than these.

• string wordstart string charIndex
Same as string wordend except returns the index of the first character in the
word containing character charIndex of string.

5.2 Extracting Characters: string index and string range

Many string manipulation commands are implemented as options of the
string command. For example, string index extracts a character from a string:

 string index "Sample string" 3
⇒ p

The argument after index is a string, and the last argument gives the index of
the desired character in the string. For all string commands, an index of 0
corresponds to the first character of the string, 1 corresponds to the second
character, and so on. The index end refers to the last character of the string,
end-1 the next-to-last character, and so on. As of Tcl 8.5, you can also
express an index by adding or subtracting two integer values. When using

122

the end±integer or integer±integer format, you cannot include any whitespace
characters in the index argument, even if you quote the argument. If the index
is outside the range of the string, string index returns an empty string:

The string range command is similar to string index except that it takes two
indices and returns all the characters from the first index to the second,
inclusive:

5.3 Length, Case Conversion, Trimming, and
Repeating

The string length command counts the number of characters in a string and
returns that number:

 string length "sample string"
⇒ 13

The string toupper command converts all lowercase characters in a string to
uppercase, and the string tolower command converts all uppercase characters
in its argument to lowercase:

The string command provides three options for trimming: trim, trimleft, and
trimright. Each option takes two additional arguments: a string to trim and an
optional set of trim characters. The string trim command removes all

123

instances of the trim characters from both the beginning and the end of its
argument string, returning the trimmed string as result:

 string trim aaxxxbab abc
⇒ xxx

The trimleft and trimright options work in the same way, except that they
remove the trim characters only from the beginning or the end of the string,
respectively. The trim commands are most commonly used to remove excess
whitespace; if no trim characters are specified, they default to the
whitespace characters (space, tab, newline, carriage return, and form feed).
Another utility string command is string repeat, which returns a new string
given an existing string and a repeat count:

5.4 Simple Searching

The command string first takes two additional string arguments as in the
following example:

It searches the second string to see if there is a substring that is identical to
the first string. If so, it returns the index of the first character in the leftmost
matching substring; if not, it returns -1. The search starts from the beginning
of the second string unless you also provide an argument specifying the
character index where the search should start.
The command string last is similar except it returns the starting index of the
rightmost matching substring:

 string last th "There is the tub where I bathed today"
⇒ 27

124

Note

You can perform more complex searches using regular expressions, as
discussed in Section 5.11.

5.5 String Comparisons

The command string compare takes two additional string arguments and
compares them, returning 0 if the strings are identical, -1 if the first string
sorts before the second, and 1 if the first string is after the second in sorting
order:

The string equal command does a simple string comparison of two strings,
returning 1 if they are exactly the same and 0 if they aren’t. Both string compare
and string equal are case-sensitive unless you specify the -nocase option. You
can also provide an optional -length option to specify that only the first length
characters be used in the comparison:

5.6 String Replacements

You can perform a simple string replacement with the string replace
command. It accepts a string as an argument along with the beginning and
ending indices of a sequence of characters to delete, as well as an optional

125

string argument to insert in their place:

The string map command maps values within a dictionary to string sequences
within your text, replacing the sequences with the values from the
dictionary. This can be useful as a general templating facility. The basic
syntax is

string map dictionary string

The string map command replaces all instances of the dictionary keys in the
string with their corresponding values to return a new string. Replacement is
done in an ordered manner, so the key appearing first in the list is checked
first, and so on. The string is iterated over only once, so earlier key
replacements have no effect on later matches; for example:

With the -nocase option, the keys are replaced regardless of case; for
example:

Note

You can perform more complex replacements using regular
expressions, as discussed in Section 5.12.

126

5.7 Determining String Types

When manipulating strings, you often need to determine whether the value is
in an appropriate format, such as whether it is numeric. To do so, use the
string is command, which analyzes a string and returns 1 if the string is a
member of a given class of characters and 0 otherwise; for example:

By default, string is returns 1 for all character classes if the string is empty.
Use the -strict option to force string is to return 0 if the string is empty:

The -failindex option allows you to specify a variable that gets set if the test
fails. In this case, the command sets the variable to the index in the string of
the first character that fails the test; for example:

Table 5.1 lists the character classes supported by the string is command.

Table 5.1 Character Classes Supported by the string is Command

127

Note

The string is command tests against the Unicode definition of
characters. For example, Unicode digits include more than the ASCII
characters 0 through 9.

5.8 Generating Strings with format

Tcl’s format command provides facilities like those of the sprintf procedure
from the ANSI C library. For example, consider the following command:

128

The first argument to format is a format string, which may contain any number
of conversion specifiers such as %.3f. For each conversion specifier, format
generates a replacement string by reformatting the next argument according
to the conversion specifier. The result of the format command consists of the
format string with each conversion specifier replaced by the corresponding
replacement string. In the preceding example, %.3f specifies that the next
argument (the result of the expr command) is to be formatted as a real number
with three digits after the decimal point. format supports almost all of the
conversion specifiers defined for ANSI C sprintf, such as %d for a decimal
integer, %x for a hexadecimal integer, and %e for real numbers in mantissa-
exponent form. See the reference documentation for a complete list.
The format command plays a less significant role in Tcl than printf and sprintf
play in C. Many of the uses of printf and sprintf are simply for conversion
from binary to string format or for string substitution. Binary-to-string
conversion isn’t needed in Tcl because values are already stored as strings,
and substitution is already available through the Tcl parser. For example, the
command

set msg [format "%s is %d years old" $name $age]

can be written more simply as

set msg "$name is $age years old"

The %d conversion specifier in the format command could be written just as
well as %s; with %d, format converts the value of age to a binary integer, then it
converts the integer back to a string again.
format is typically used in Tcl to reformat a value to improve its appearance,
or to convert from one representation to another (for example, from decimal
to hexadecimal). As an example of reformatting, here is a script that prints
the first ten powers of e in a table:

This script generates the following output on standard output:

129

The conversion specifier %4d causes the integers in the first column of the
table to be printed right-justified in a field 4 digits wide, so that they line up
under their column header. The conversion specifier %12.3f causes each of
the real values to be printed right-justified in a field 12 digits wide, so that
the values line up; it also sets the precision at 3 digits to the right of the
decimal point.
The second main use for format, changing the representation of a value, is
illustrated by the following script, which prints a table showing the ASCII
characters that correspond to particular integer values:

This script generates the following output on standard output:

The value of i is used twice in the format command, once with %4d and once
with %c. The %c specifier takes an integer argument and generates a
replacement string consisting of the ASCII character represented by the
integer.
An alternative to repeating the value of i in the preceding example is to use
positional specifiers in the format string. If the % of a conversion specifier is
followed by a decimal number and a $, as in %2$d, then the value to convert is

130

not taken from the next sequential argument. Instead, it is taken from the
argument indicated by the number, where 1 corresponds to the first argument.
With positional specifiers you can use the same argument as many times as
desired. However, if there are any positional specifiers in the format string,
all of the specifiers must be positional. So the following produces the same
output as the previous script:

5.9 Parsing Strings with scan

The scan command provides almost exactly the same facilities as the sscanf
procedure from the ANSI C library. scan is roughly the inverse of format. It
starts with a formatted string, parses the string under the control of a format
string, extracts fields corresponding to % conversion specifiers in the format
string, and places the extracted values in Tcl variables. For example, after
the following command is executed, variable a has the value 16 and variable
b has the value 24.2:

 scan "16 units, 24.2% margin" "%d units, %f" a b
⇒ 2

The first argument to scan is the string to parse, the second is a format string
that controls the parsing, and any additional arguments are names of
variables to fill in with converted values. The return value of 2 indicates
that two conversions were completed successfully.
scan operates by scanning the string and the format together. Each character
in the format must match the corresponding character in the string, except for
blanks and tabs, which are ignored, and % characters. A % encountered in the
format indicates the start of a conversion specifier: scan converts the next
input characters according to the conversion specifier and stores the result
in the variable given by the next argument to scan. Whitespace in the string is
skipped except in the case of a few conversion specifiers such as %c. See the
reference documentation for a complete description of conversion specifier
syntax.
One common use for scan is for simple string parsing, as in the preceding

131

example. Another common use is for converting ASCII characters to their
integer values, which is done with the %c specifier. The following procedure
uses this feature to return the character that follows a given character in
lexicographic ordering:

The scan command converts the value of the c argument from an ASCII
character to the integer used to represent that character, then the integer is
incremented and converted back to an ASCII character with the format
command.
Yet another typical use of scan is to force a string of digits with optional
leading 0s to be interpreted as decimal integers, as the leading 0s usually
cause Tcl to convert the string as an octal integer for arithmetic use. The
following procedure forces a decimal interpretation of a numeric string:

The format argument of the scan command in the forceDecimal implementation is
designed to detect any nondigit characters after the digits. If you were to use
only %d as the format argument, the scan command would match the 123 in the
string 123xyz. The ll in the %lld conversion specifier is a size modifier
supporting integers of unlimited precision. Without the ll modifier, the
converted value would be constrained to the machine word size of the
system on which the script executes:

132

5.10 Glob-Style Pattern Matching

The simpler of Tcl’s two forms of pattern matching is called “glob” style. It
is named after the mechanism for file name expansion in Unix shells, which
is called “globbing.” Glob-style matching is easier to learn and use than the
regular expressions described in the next two sections, but it works well
only for simple cases. For more complex pattern matching you probably
need to use regular expressions.
The command string match implements glob-style pattern matching:

string match ?-nocase? pattern string

The string match command returns 1 if the pattern matches the string, and 0 if it
doesn’t. For the pattern to match the string, each character of the pattern
must be the same as the corresponding character of the string, except that a
few pattern characters are interpreted specially. For example, a * in the
pattern matches a substring of any length, so Tcl* matches any string whose
first three characters are Tcl. Table 5.2 lists the special characters supported
in glob-style matching. The match is case-sensitive unless you provide the -
nocase option.

Table 5.2 Special Characters for Glob-Style Matching with the string match
Command

The following examples illustrate the use of the string match command:

133

Many simple things can be done easily with glob-style patterns. For
example, *.[ch] matches all strings that end with either .c or .h. However,
many interesting forms of pattern matching cannot be expressed at all with
glob-style patterns. For example, there is no way to use a glob-style pattern
to test whether a string consists entirely of digits: the pattern [0-9] tests for a
single digit, but there is no way to specify that there may be more than one
digit.

5.11 Pattern Matching with Regular Expressions

Tcl’s second form of pattern matching uses regular expressions, which are
more complex than glob-style patterns but also more powerful. Tcl’s regular
expressions are based on Henry Spencer’s publicly available
implementation, and parts of the following description are copied from
Spencer’s documentation.
Tcl supports three flavors of regular expressions called basic regular
expressions (BREs), extended regular expressions (EREs), and advanced
regular expressions (AREs). BREs and EREs exist mostly for backward
compatibility. The EREs are defined in POSIX, and the AREs are inspired
at least a bit by Perl. Ever since Tcl 8.1, all Tcl commands support the ARE
syntax by default; therefore, the rest of this book describes the use of the
ARE syntax. See the reference documentation for more information on BREs
and EREs.

Note

134

Regular expression syntax can be quite complex. This book presents
elementary regular expression syntax and use in Tcl. You should read
the reference documentation for a complete description of Tcl’s regular
expression syntax. You can also learn more on web sites such as
http://www.regular-expressions.info and http://regexlib.com.
Additionally, the book Mastering Regular Expressions, Third Edition
by Jeffrey E. F. Friedl (ISBN 0-596-52812-4) provides an indepth
examination of regular expression syntax and use.

5.11.1 Regular Expression Atoms

A regular expression pattern can have several layers of structure. The basic
building blocks are called atoms, and the simplest form of a regular
expression consists of one or more atoms. For a regular expression to match
an input string, there must be a substring of the input where each of the
regular expression’s atoms (or other components, as you’ll see later)
matches the corresponding part of the substring. In most cases atoms are
single characters, each of which matches itself. Thus the regular expression
abc matches any string containing abc, such as abcdef or xabcy.
A number of characters have special meanings in regular expressions; they
are summarized in Table 5.3. The characters ^ and $ are atoms known as
constraints that match the position at the beginning and end of the input
string, respectively. Thus ^abc matches any string that starts with abc, abc$
matches any string that ends in abc, and ^abc$ matches abc and nothing else.
Similarly, the escape sequences \m and \M are constraints that match the
beginning and end of a word, respectively. So \mcat\M matches only the word
cat and not the cat in catalog or concatenate.

Table 5.3 Special Characters Permitted in Regular Expression Patterns

135

http://www.regular-expressions.info
http://regexlib.com

The atom . matches any single character, and the atom \x, where x is any
single character, matches x. For example, the regular expression .\$ matches
any string that contains a dollar sign, as long as the dollar sign isn’t the first
character, and \.$ matches any string that ends with a period.
Tcl’s advanced regular expressions include an additional set of character-
entry escapes, which also use the backslash character as a prefix. You can
use these escape sequences as a means to specify otherwise hard-to-enter
characters. Table 5.4 lists these special escapes.

Table 5.4 Regular Expression Character-Entry Escape Sequences

136

Besides the atoms already described, there are two other forms for atoms in
regular expressions. The first form consists of any regular expression
enclosed in parentheses, such as (a.b). Parentheses are used for grouping,
and a regular expression contained within a set of parentheses is often
referred to as a subexpression or subpattern. They allow operators such as
* to be applied to entire subexpressions as well as to atoms. They are also
used to identify pieces of the matching substring for special processing.
Both of these uses are described in more detail later.
The final form for an atom is a range, which is a collection of characters
between square brackets. A range matches any single character that is one of
the ones between the brackets. Furthermore, if there is a sequence of the
form a - b among the characters, all of the ASCII characters between a and b
are treated as acceptable. Thus, the regular expression [0-9a-fA-F] matches
any string that contains a hexadecimal digit. If the character after the [is a ^,
the sense of the range is reversed: it matches only characters not among
those specified between the ^ and the].
Within the square brackets of a range, you also can use character class
identifiers to represent all characters of a given class. For example, [:alpha:]
within a range represents all alphabetic characters. Note that this goes
beyond the idea of the ASCII letters [A-Za-z] and encompasses all alphabetic

137

Unicode characters. Table 5.5 lists the available classes of characters. Note
that you can combine an explicit set of characters with one or more
character classes within a range definition, as in

Table 5.5 Regular Expression Character Classes

[[:alpha:][:blank:],;.!?]

As a convenience, you can also use one of the special escape sequences
listed in Table 5.6 as a shorthand for various character classes. Note that the
\w “word character” and its inverse \W escape sequences include _ as well as
alphanumeric characters in their definitions.

Table 5.6 Regular Expression Character Class Escape Sequences

138

5.11.2 Regular Expression Branches and Quantifiers

Regular expressions may be joined with the | operator. The resulting regular
expression matches anything that matches any of the regular expressions
separated by the |, which are referred to as branches. For example, the
following pattern matches a string containing this, that, or other:

this|that|other

Note that each branch may be any regular expression, including
subexpressions, so it is possible to build quite complex structures. If two or
more branches can match, Tcl prefers the longer match. To limit the extent of
the branch definitions, you can enclose the set of branches within
parentheses. For example, the following matches the string this or the string
that car:

this|that car

In comparison, the following matches the string this or that followed by car:

(this|that) car

The operators *, +, and ? are known as quantifiers and may follow an atom
to specify repetition. An atom followed by * matches a sequence of zero or
more matches of that atom. An atom followed by + matches a sequence of
one or more matches of the atom. An atom followed by ? matches either an
empty string or a match of the atom. For example, ^(0x)?[0-9a-fA-F]+$ matches
strings that are proper hexadecimal numbers, that is, those consisting of an
optional 0x followed by one or more hexadecimal digits.
Another set of quantifiers, known as bounds, allows you to specify exactly
how many occurrences of an atom to match. Within a set of braces, you can
specify the minimum and optionally the maximum number of occurrences,
expressed as integers ranging from 0 to 255. {num} matches exactly num

occurrences of an atom, {min,} matches at least min occurrences, and {min, max}
matches at least min but no more than max occurrences.
When a regular expression can match more than one substring of a given
string, the regular expression matches the one starting earliest in the string.
Starting from that point, it then matches either the longest or the shortest
substring possible, depending on the regular expression preference. By

139

default, the regular expression quantifiers are greedy, matching as many
characters as possible. Any quantifier can be made non-greedy, and prefer
the shortest substring possible, by following the quantifier with the ?
character. Thus, + and {3,7} are greedy quantifiers, whereas +? and {3,7}? are
non-greedy quantifiers.

Note:

In Tcl, you cannot mix greedy and non-greedy behavior within a single
regular expression. The preference for the entire regular expression is
determined by the preference of the first quantifier within the
expression. Processing ambiguities can arise if mixed greediness is
allowed, and so Tcl’s regular expression implementation was designed
intentionally to disallow it.

5.11.3 Back References

In a regular expression, a back reference matches the same set of characters
as matched by a previous subexpression. The syntax for a back reference is
a \ followed by the number of the preceding subexpression. Subexpressions
are numbered in order of their opening (left) parentheses. For example, the
expression ([ab])\1 matches the string aa or bb, but not ab or ba. To illustrate,
consider writing a regular expression that would match a string quoted in
either single or double quotes. One approach would be to use two branches:

'.*?'|".*?"

Alternatively, you can “capture” the first quoting character with a
subexpression, then use a back reference to match the corresponding close
quote:

(['"]).*?\1

Another example is that of finding accidentally repeated words, such as the
the:

\m(\w+)\M\s+\m\1\M

140

5.11.4 Non-capturing Subexpressions

Often you need subexpressions purely for “structural” purposes, such as
delimiting branches or applying a quantifier to a sequence, but don’t need to
use the subexpression for a back reference or for parsing, as discussed in
the following sections. In these situations, you can use what’s often called a
non-capturing subexpression, which has the form (?: expression). For
example, the two following regular expressions match strings in the same
way:

((ab){1,3}|(cd)+) xyz
(?:(?:ab){1,3}|(?:cd)+) xyz

The advantage of non-capturing subexpressions is that the regular
expression evaluates faster. The disadvantages are that a back reference
cannot refer to a non-capturing subexpression, and the substring matching
the non-capturing subexpression cannot be extracted into a separate match
variable, as described in the next section.

5.11.5 The regexp Command

The regexp command invokes regular expression matching. In its simplest
form it takes two arguments: the regular expression pattern and an input
string. It returns 0 or 1 to indicate whether or not the pattern matches the
input string:

Note

The pattern is enclosed in braces so that the characters $, [, and] are
passed through to the regexp command instead of triggering variable and
command substitution. It is almost always a good idea to enclose
regular expression patterns in braces.

141

If regexp is invoked with additional arguments after the input string, each
additional argument is treated as the name of a variable. The first variable
is filled in with the substring that matches the entire regular expression. The
second variable is filled in with the portion of the substring that matches the
first capturing subexpression within the pattern; the third variable is filled in
with the match for the next capturing subexpression; and so on. If there are
more variable names than capturing subexpressions, the extra variables are
set to empty strings. For example, after executing the command

regexp {([0-9]+) *([a-z]+)} "Walk 10 km" a b c

variable a has the value 10 km, b has the value 10, and c has the value km. This
ability to extract portions of the matching substrings allows regexp to be used
for parsing.
It is also possible to specify additional options to regexp before the regular
expression argument. You can use the -start option followed by a character
index into the string to instruct regexp to start looking for a match from that
location. The -all option tells regexp to match the pattern as many times as
possible in the string and return the total number of matches. A -nocase option
specifies that alphabetic atoms in the pattern should match either uppercase
or lowercase letters in the string.
The -indices option specifies that the additional variables should not be
filled in with the values of matching substrings. Instead, each should be
filled in with a list giving the first and last indices of the substring’s range
within the input string. After the command

regexp -indices {([0-9]+) *([a-z]+)} "Walk 10 km" \
 a b c

the variable a has the value 5 9, b has the value 5 6, and c has the value 8 9.
The -inline option causes regexp to return as a list the data that it would
otherwise place in match variables. For example, the following command
returns a three-element list, where the first element contains the characters
matching the entire expression and subsequent elements contain the
characters matching each capturing subexpression:

 regexp {([0-9]+) *([a-z]+)} "Walk 10 km"
⇒ {10 km} 10 km

The -line option enables newline-sensitive matching. With this option, [^
bracket expressions and . never match newlines, the ^ atom matches an

142

empty string after any newline in addition to its normal function, and the $
atom matches an empty string before any newline in addition to its normal
function. As an example, the following command returns a count of all lines
beginning with optional spaces or tabs followed by the string ERROR:

regexp -all -line -- { [̂[:blank:]]*ERROR:} $text

Note

The regexp command also supports a -- option to explicitly mark the end
of options. It is a good practice to always use the -- option; otherwise
your pattern could mistakenly be interpreted as another option if its
first character is a -.

5.12 Using Regular Expressions for Substitutions

Regular expressions can also be used to perform substitutions using the
regsub command. Consider the following example:

 regsub there "They live there lives" their x
⇒ 1

The first argument to regsub is a regular expression pattern, and the second
argument is an input string, just as for regexp. Also, like regexp, regsub returns 1
if the pattern matches the string, 0 if it doesn’t. However, regsub does more
than just check for a match: it creates a new string by substituting a
replacement value for the matching substring. The replacement value is
contained in the third argument to regsub, and the new string is stored in the
variable named by the final argument to regsub. Thus, after the preceding
command completes, x has the value They live their lives. If the pattern had
not matched the string, 0 would have been returned and x would have the
value They live there lives (the variable is set whether or not substitution took
place).
You can also provide one or more options preceding the regular expression
argument, and many of the same options supported by regexp are also
available for use with regsub. Normally regsub makes only a single

143

substitution, for the first match found in the input string. However, if -all is
specified, regsub continues searching for additional matches and makes
substitutions for all of the matches found. It then returns the number of
substitutions made. For example, after the command

regsub -all a ababa zz x

x has the value zzbzzbzz. If -all were omitted, x would be set to zzbaba.
The -nocase option requests a case-insensitive match of alphabetic atoms in
the pattern. The -start option specifies a character index offset into the string
where the pattern matching begins. The -line option enables newline-
sensitive matching, as with regexp. And you can use the -- option to explicitly
mark the end of options to the command.
In the preceding examples, the replacement string is a simple literal value.
However, if the replacement string contains a & or \0, the & or \0 is replaced
in the substitution with the substring that matches the regular expression. If a
sequence of the form \n appears in the replacement string, where n is a
decimal number, the substring that matches the nth capturing subexpression
is substituted instead of the \n. For example, the command

regsub -all -- a|b axaab && x

doubles all of the a’s and b’s in the input string. In this case it sets x to
aaxaaaabb. Alternatively, the command

regsub -all -- (a+)(ba*) aabaabxab {z\2} x

replaces sequences of a’s with a single z if they precede a b but don’t also
follow a b. In this case x is set to zbaabxzb. Backslashes may be used in the
replacement string to allow &, \0, \n, or backslash characters to be
substituted verbatim without any special interpretation.

Note

It’s usually a good idea to enclose complex replacement strings in
braces as in the preceding example; otherwise the Tcl parser will
process backslash sequences, and the replacement string received by
regsub may not contain backslashes that are needed.

144

5.13 Character Set Issues

A character encoding is simply a mapping of characters and symbols used
in written language into a binary format used by computers. For example, in
the standard ASCII encoding, the uppercase A character from the Latin
character set is represented by the byte value 0x41 in hexadecimal. Other
widely used character encodings include ISO 8859-1, used by many
European languages, Shift-JIS and EUC-JP for Japanese characters, and
Big5 for Chinese characters.
The Unicode Standard is a uniform encoding scheme for virtually all
characters used in the world’s major written languages. The text elements
include letters such as w or M, characters such as those used in Japanese
Hiragana to represent syllables, and ideographs such as those used in
Chinese to represent full words or concepts. For more information on the
Unicode Standard, visit the Unicode web site at http://www.unicode.org.
UTF-8 is a standard transformation format for Unicode characters. It is a
method of transforming all Unicode characters into a variable-length
encoding of bytes; a single Unicode character can be represented by 1 or
more bytes. The advantage of the UTF-8 standard is that it and the Unicode
Standard were designed so that Unicode characters corresponding to the
standard 7-bit ASCII set (up to ASCII value 0x7F in hexadecimal) have the
same byte values in both UTF-8 and ASCII encoding. In other words, an
uppercase A character is represented by the singlebyte value 0x41 in both
UTF-8 and ASCII encoding.
As of version 8.1, Tcl represents all strings internally as Unicode characters
in UTF-8 format. Tcl also ships with built-in support for several dozen
common character encoding standards and can convert strings from one
encoding to another. The encoding names command returns a list of recognized
encodings. The reference documentation describes how to add support for
additional encodings.

5.13.1 Character Encodings and the Operating System

The system encoding is the character encoding used by the operating system
for items such as file names and environment variables. Text files used by
text editors and other applications are usually encoded in the system
encoding as well, unless the application that produced them explicitly saves
them in another format (for example, if you use a Shift-JIS text editor on an

145

http://www.unicode.org

ISO 8859-1 system).
Tcl’s built-in commands automatically convert strings from UTF-8 format to
the system encoding and vice versa whenever they communicate with the
operating system. For example, Tcl automatically handles any encoding
conversion needed if you execute commands such as

glob *
set fd [open "Español.txt" w]
exec myprog << "¡Bienvenido a Tcl!\n"

By default, the Tcl source command reads files using the system encoding. If
you have a script file stored in a character encoding other than the system
encoding, you can use the source -encoding option to provide the encoding
name:

source -encoding shiftjis script.tcl

Tcl attempts to determine the system encoding during initialization, based on
the platform and locale settings. Tcl usually can determine a reasonable
default system encoding based on these settings, but if for some reason it
cannot, it uses ISO 8859-1 as the default.

Note

You can override the default system encoding used by Tcl with the
encoding system command, but you should avoid using this command if at
all possible. If you set Tcl’s default system encoding to anything other
than the actual encoding used by your operating system, Tcl will likely
find it impossible to communicate properly with your operating system.

5.13.2 Encodings and Channel Input/output

When reading and writing data on a channel, you need to ensure that Tcl
uses the proper character encoding for that channel. The default encoding
for all newly opened channels is the same as the system encoding. In most
cases, you don’t need to do anything special to read or write data because
most text files are created in the system encoding. You need to take special
steps only when accessing files in an encoding other than the system

146

encoding (for example, reading a file encoded in Shift-JIS format when your
system encoding is ISO 8859-1).
The fconfigure -encoding option allows you to specify the encoding for a
channel. Thus, to read from a file encoded in Shift-JIS format, you should
execute the following commands:

set fd [open $file r]
fconfigure $fd -encoding shiftjis

Tcl then automatically converts any text read from the file into standard
UTF-8 format. Similarly, if you are writing to a channel, you can use
fconfigure -encoding to specify the target character encoding, and Tcl will
automatically convert strings from UTF-8 to that encoding on output.

5.13.3 Converting Strings to Different Encodings

You can convert a string to a different encoding using the encoding convertfrom
and encoding convertto commands. The encoding convertfrom command converts a
string from a specified encoding into UTF-8 Unicode characters; the encoding
convertto command converts a string from UTF-8 Unicode into a specified
encoding. In either case, if you omit the encoding argument, the command
uses the current system encoding.
As an example, the following command converts a string representing the
Hiragana character HA from EUC-JP encoding into a UTF-8 string:

set ha [encoding convertfrom euc-jp "\xA4\xCF"]

5.14 Message Catalogs

In addition to the issue of handling different character set encodings, another
challenge faced in the development of internationalized applications is that
of presenting localized interfaces to users and other applications. To assist
in creating localized applications, Tcl ships with a msgcat package, which
provides a set of functions for managing multilingual user interfaces. It
allows you to define strings in a message catalog, which is independent
from your application or package and which you can edit or localize without
modifying the application source code.
The basic principle of the msgcat package is that you create a set of message

147

files, one for each supported language, containing localized versions of all
the strings your application or package can display. Then in your application
or package, instead of using a string directly, you call the ::msgcat::mc
command to return a localized version of the string you want.

5.14.1 Using Message Catalogs

To use message catalogs from within your application or package, you must
first load the msgcat package with the command

package require msgcat

By default, Tcl attempts to determine the locale according to the user’s
environment, as discussed in the msgcat reference documentation. If Tcl can’t
determine the locale based on the user’s environment, the locale defaults to
C. Optionally, you can call the ::msgcat::mclocale command to explicitly set
the locale:

::msgcat::mclocale ? newLocale?

If you omit the newLocale argument, mclocale returns the current locale. A locale
string consists of a language code, an optional country code, then an
optional modifier, all separated with _ characters. The country and language
codes are specified in standards ISO-639 and ISO-3166. For example, the
locale en specifies English, whereas en_US specifies U.S. English and en_GB
specifies U.K. English.

Note

The mclocale command can be useful for implementing features such as a
language menu, where users can select the language they want your
application to display.

The next step is to call ::msgcat::mcload to load the appropriate message files.
The mcload command requires as an argument a directory containing your
message files. The format of the messages files is described in the next
section.
After loading the message files, wherever in your script you would typically
specify a string to display, use the ::msgcat::mc command instead. The mc

148

command takes as an argument a source string and returns the translation of
that string in the current locale.
The following code fragment demonstrates how you could use the msgcat
package in a script:

In this example, instead of directly displaying the message Welcome to Tcl!, the
application calls mc to retrieve a localized version of the string. The string
returned by mc depends on the current locale. For example, in the es locale mc
could return the Spanish-language greeting ¡Bienvenido a Tcl!
The mc command performs a “best match” search to return a translation
string. If it doesn’t find an exact match in the locale specified in the user’s
environment or by the mclocale command, it checks successively more
general locales for a match. For example, if the locale is en_GB_Funky, the
locales en_GB_Funky, en_GB, en, and "" (the empty string, corresponding to the
ROOT locale) are searched in order until a matching translation string is found.
If no match is found in any of those locales for the current namespace, mc
checks the same set of locales for a match in the parent namespace, and so
on until the global namespace is reached. This allows child namespaces to
“inherit” messages from their parent namespace. (Tcl namespaces are
discussed in Chapter 10.)
If a translation string doesn’t exist for any of the locales in any of the
namespaces, mc executes the procedure ::msgcat::mcunknown. The default
behavior of mcunknown is to return the original string (Welcome to Tcl! in this
case), but you can redefine it to perform any action you want.

5.14.2 Creating Localized Message Files

149

To use the msgcat package, you need to prepare a set of message files for your
package or application, all contained within the same directory. The name
of each message file is a locale specifier followed by the extension .msg (for
example, es.msg for a Spanish message file or en_gb.msg for a U.K. English
message file). These file names must be all lowercase. The only exception
is if you provide a message file for the root locale "", in which case it must
be named ROOT.msg.

Note

Defining a ROOT.msg message file provides a fallback translation for all
locales in the event one is not found in a more specific locale message
file. This can be especially useful if you use symbolic source strings
like file_notfound in your calls to mc.

Each message file contains a series of calls to ::msgcat::mcset and/or
::msgcat::mcmset to set the translation strings for that language. The format of
the mcset command is

::msgcat::mcset locale src-string ?translation-string?

The mcset command defines a locale-specific translation for the given src-
string. If no translation-string argument is present, then the value of src-string
is also used as the locale-specific translation string.
So, if American English is the “source language” for your application, an
en_gb.msg file might contain commands such as

Note that no translation string is provided for the first line, so the resulting
“translation” for the en_GB locale is the same as the American source string,
Welcome to Tcl! If you omitted this entry in the message file, then calling mc
with the source string Welcome to Tcl! in the en_GB locale would result in
mcunknown being called if no other translation were available using the “best
match” process described in Section 5.14.1. Although the default behavior
of mcunknown would produce the desired results (returning Welcome to Tcl!), you
could run into problems if you override the behavior of mcunknown. Therefore,
it is always safest to include a mapping for every source string in your

150

application, even if a particular locale doesn’t require a “translation” for
that string.
An equivalent Spanish-language message file, es.msg, might contain

An alternative to using multiple mcset commands is to use the ::msgcat::mcmset
command:

::msgcat::mcmset locale translation-dict

The translation-dict is a Tcl dictionary structure, which is a whitespace-
separated sequence of keys and associated values. (See Chapter 7 for more
information on Tcl dictionaries.) The keys in the dictionary are your source
strings, and the values are the translation strings for the locale. Keys and
values containing whitespace characters should be quoted. The advantage of
mcmset is that it can be significantly faster than a sequence of mcset calls. So,
the preceding Spanish-language message file could be equivalently
specified as

5.14.3 Using Conversion Specifiers in Source and Translation Strings

Sometimes you would like to insert one or more arguments into a localized
string. In support of this, msgcat allows you to include conversion specifiers
in the source and translation strings that are interpreted exactly as with the
format command described in Section 5.8. You can then pass values for these
conversion specifiers as additional arguments to the mc command.
As an example, consider an entry like this in a fr.msg message file:

You could then use the translation in your application like this:

puts [::msgcat::mc "Directory contains %d files" $num]

151

Note:

Positional specifiers can be especially useful with message files, as
the order in which values are used might differ from language to
language.

5.14.4 Using Message Catalogs with Namespaces

As discussed in Section 5.14.1, when you execute mc, it performs a “best
match” search to return a translation string, for example, searching for a
matching translation in the en_GB locale before searching the en locale. It’s
important to note that namespaces come into play during the lookup as well.
If no matching translation is found in the current namespace, mc checks the
same set of locales for a match in the parent namespace, and so on until the
global namespace is reached. This allows child namespaces to “inherit”
messages from their parent namespace. It also allows you to provide a set of
translations specific to the library or module that you are developing if it is
encapsulated in a namespace. (Tcl namespaces are discussed in Chapter
10.)
Translations in a message file that you register with mcset and mcmset are
associated with the global namespace unless you explicitly execute those
commands within a namespace eval script. For example, if you are developing
a library that uses the Mylib namespace, you could register Spanish-language
translations associated with that namespace in an es.msg file with code such
as

A corresponding U.K. English message file, en_gb.msg, would contain code
such as

152

5.15 Binary Strings

Tcl was designed to handle primarily textual data. The original assumption
was that manipulation of structured binary data could be achieved by
writing custom C functions that could then be exposed as custom Tcl
commands. However, working with binary data is common enough that the
binary command was added to Tcl to manage binary data.
The binary format command creates a binary string in a Tcl variable. In most
cases, you then write the binary string to a channel, either to a file or to a
network socket. With the binary format command, you specify a formatting
string followed by the data to format:

binary format formatString ?arg arg ...?

The formatString consists of a sequence of field specifiers, optionally
separated by any number of spaces. Each field specifier consists of a
character describing the type of data to format, optionally followed by a
count of how many items of that type to format. The count defaults to 1 if
omitted. For most types, a count of * indicates that all items in the associated
argument should be used.
Table 5.7 lists the different format types supported by the binary format
command. Most of the types pertain to storing numerical information; for
example:

binary format c3 {1 2 120}

Table 5.7 Format Types for the binary format and binary scan Commands

153

This command returns a binary string with the bytes \x01\x02\x80. The c3
format string means to format three 8-bit signed integers. If you provide
additional formats, each value passed is expected to provide the data for a
given format; for example:

binary format I2a {1 -32 412534} E

154

The first format specifier, I2, takes only the first two numbers from the first
argument, {1 -32 41234}, because of the count of 2, and stores them as 32-bit
signed integers in big-endian order (most significant byte first). Following
that, the second format specifier, a, takes one character from the second
value and stores it as an 8-bit Latin-1 character.
The binary scan command extracts data from a binary string:

binary scan binaryString formatString ?varName varName ...?

The formatString consists of a sequence of field specifiers, optionally
separated by any number of spaces. Each binary scan field specifier has the
same format as with binary format, except that an optional u modifier can
appear after the type character. The u indicates an unsigned value for integer
fields; it’s ignored for noninteger fields. For each field specifier that
consumes values from the binary string, you must provide the name of a
variable to store the results of the conversion; otherwise the command
raises an error. If you provide more variable name arguments than required,
the excess variables are left untouched by binary scan. If a field specifier
includes a count, that number of values of the specified type are read from
the binary string and stored as a list in the corresponding variable (except
for character-oriented types). If there are not enough bytes of data in the
binary string to fulfill all of the field specifiers, the corresponding variables
are left untouched. The return value of binary scan is the number of variables
set by the command.
Here are some examples of extracting data from a binary string:

155

156

157

6. Lists

Lists are used in Tcl to deal with collections of things, such as all the users
in a group or all the files in a directory or all the options for a widget. Lists
allow you to gather together any number of values in one place, pass around
the collection as a single entity, and later get the component values back
again. A list is an ordered collection of elements where each element can
have any string value, such as a number, a person’s name, the name of a
window, or a word of a Tcl command. Lists are represented as strings with
a particular structure; this means that you can store lists in variables, type
them to commands, and nest them as elements of other lists.

6.1 Commands Presented in This Chapter

This chapter describes the structure of lists and presents more than a dozen
basic commands for manipulating lists. The commands perform operations
like creating lists, inserting and extracting elements, and searching for
particular elements. Later chapters describe additional commands that take
lists as arguments or return them as results.

• concat ?list list ...?
Joins multiple lists into a single list (each element of each list becomes an
element of the result list) and returns the new list.

• join list ?joinString?
Concatenates list elements with joinString as the separator and returns the
result. joinString defaults to a space.

• lappend varName value ?value ...?
Appends each value to the variable varName as a list element and returns the
new value of the variable. Creates the variable if it doesn’t already exist.

• lassign list varName ?varName ...?
Assigns successive elements from list to the variables given by the varName
arguments in order. If there are more variable names than list elements, the
remaining variables are set to the empty string. If there are more list
elements than variables, a list of unassigned elements is returned.

• lindex list ?index ...?
Returns the indexth element from list (0 refers to the first element). With
multiple index values, either as separate arguments or as a list, each index

158

in turn selects an element from the previous indexing operation, allowing
access to nested list elements.

• linsert list index value ?value ...?
Returns a new list formed by inserting all of the value arguments as list
elements before the indexth element of list (0 refers to the first element).

• list ?value value ...?
Returns a list whose elements are the value arguments.

• llength list
Returns the number of elements in list.

• lrange list first last
Returns a list consisting of elements first through last of list.

• lrepeat number value ?value ...?
Returns a list created by repeating the value arguments as elements for number
occurrences.

• lreplace list first last ?value value ...?
Returns a new list formed by replacing elements first through last of list
with zero or more new elements, each formed from one value argument.

• lsearch ?option ...? list pattern
Searches for one or more elements in list that match pattern. The option
arguments control the pattern-matching style (-exact, -glob, -regexp), whether
to return element values (-inline) or indices, whether to match all (-all) or
only the first occurrence in the list, and other behaviors. By default,
performs glob matching, returning the index of the first match or -1 if no
element matches.

• lset varName ?index ...? newValue
Sets the element specified by index of the list stored in varName to newValue.
Returns the new list stored in varName.

• lsort ?option ...? list
Returns a new list formed by sorting the elements of list. The switches
determine the comparison function and sorted order (default: -ascii -
increasing).

• split string ?splitChars?
Returns a list formed by splitting string at instances of splitChars and turning
the characters between these instances into list elements.

6.2 Basic List Structure and the lindex and llength

Commands

159

In its simplest form a list is a string containing any number of elements
separated by any number of spaces, tabs, or newlines in any combination.
For example, the string

John Anne Mary Jim

is a list with four elements. There can be any number of elements in a list,
and each element can be an arbitrary string. In this simple form, elements
cannot contain spaces, but there is additional list syntax that allows spaces
within elements, as discussed later.
The lindex command extracts an element from a list:

lindex {John Anne Mary Jim} 1
⇒ Anne

lindex takes at least two arguments, a list and an index, and returns the
selected element of the list. For all list commands, an index of 0
corresponds to the first element of the list, 1 corresponds to the second
element, and so on; the index end refers to the last element of the list, end-1 to
the next-to-last element, and so on. As of Tcl 8.5, you can also express an
index by adding or subtracting two integer values. When using the end±integer
or integer±integer format, you cannot include any whitespace characters in the
index argument, even if you quote the argument. If the index is outside the
range of the list, lindex returns an empty string.
The llength command returns the number of elements in a list:

As you can see from the examples, a simple string like a is a proper list with
one element, and an empty string is a proper list with zero elements.
When a literal list value is entered in a Tcl command, the list is usually
enclosed in braces, as in the previous example. The braces are not part of
the list; they are needed on the command line to pass the entire list to the
command as a single word. When lists are stored in variables or printed
out, there are no braces around them:

 set x {John Anne Mary Jim}
⇒ John Anne Mary Jim

160

Braces and backslashes within list elements are handled by the list
commands in the same way that the Tcl command parser treats them in
words. This means that you can enclose a list element in braces if it contains
spaces, and you can use backslash substitution to get special characters such
as braces into list elements; for example:

Note

When building a list whose elements contain unusual characters, the
list command, discussed in the next section, is the safest way to ensure
that the special characters receive proper quoting and escaping.

Braces are often used to nest lists within lists, as in the following example:

 lindex {a b {c d e} f} 2
⇒ c d e

In this case element 2 of the list is itself a list with three elements. There is
no intrinsic limit on how deeply lists may be nested.
When manipulating nested lists, the lindex command allows you to specify
one or more indices, either as separate arguments or as a list, to extract
elements from sublists; for example:

161

The first example is equivalent to

lindex [lindex [lindex $elements 1] 1] 2
⇒ f

though obviously shorter and less prone to errors.

6.3 Creating Lists: list, concat, and lrepeat

Tcl provides three commands that combine strings to produce lists: list,
concat, and lrepeat. Each of these commands accepts an arbitrary number of
arguments, and each produces a list as a result. However, they differ in the
way they combine their arguments.
The list command joins its arguments so that each argument becomes a
distinct element of the resulting list:

 list {a b c} {d e} f {g h i}
⇒ {a b c} {d e} f {g h i}

In this case, the result list contains only four elements. The list command
always produces a list with proper structure, regardless of the structure of
its arguments (it adds braces or backslashes as needed), and the lindex
command can always be used to extract the original elements of a list
created with list. The arguments to list need not themselves be well-formed
lists.

Note

The list command is the safe way to create a list if you don’t know
what the element values are (for example, if you’ve prompted the user
for input or are reading a value from a file).

The concat command takes any number of lists as arguments and joins all of
the elements of the argument lists into a single large list. If any of the

162

elements in a list argument is a nested list, the element retains its nesting
structure:

concat expects its arguments to have proper list structure; if the arguments are
not well-formed lists, the result may not be a well-formed list either. In fact,
all that concat does is to trim any leading and trailing whitespace characters
from each of its argument strings and concatenate the result into one large
string with space characters between the arguments. The same effect as
concat can be achieved using double quotes:

The lrepeat command creates a list by repeating a set of elements, each
occurring as a separate argument, a specified number of times; for example:

6.4 Modifying Lists: lrange, linsert, lreplace, lset, and lappend

The lrange command returns a range of elements from a list. It takes as
arguments a list and two indices, and it returns a new list consisting of the
range of elements that lie between the two indices (inclusive):

163

The linsert command forms a new list by adding one or more elements to an
existing list:

linsert takes three or more arguments. The first is a list, the second is the
index of an element within that list, and the third and additional arguments
are new elements to insert into the list. The return value from linsert is a list
formed by inserting the new elements just before the element indicated by
the index. If the index is 0, the new elements go at the beginning of the list; if
it is 1, the new elements go after the first element in the old list; and so on. If
the index is greater than or equal to the number of elements in the original
list, the new elements are inserted at the end of the list.
The lreplace command deletes elements from a list and optionally adds new
elements in their place. It takes three or more arguments. The first argument
is a list and the second and third arguments give the indices of the first and
last elements to be deleted. If only three arguments are specified, the result
is a new list produced by deleting the given range of elements from the
original list:

 lreplace {a b {c d} e} 3 3
⇒ a b {c d}

If additional arguments are specified to lreplace, as in the following
example, they are inserted into the list in place of the elements that were
deleted:

 lreplace {a b {c d} e} 1 2 {W X} Y Z
⇒ a {W X} Y Z e

Note

Tcl doesn’t have an explicit command for deleting elements from a list,
as the lreplace command provides this functionality if you don’t provide
any replacement element arguments.

164

A common operation is to update a list value stored in a variable by
changing one of its elements. Historically, lreplace has been used for this
purpose, as in

Because lreplace does not modify the value of a variable directly, you must
perform command substitution to execute it, and then assign the result as the
new value of the variable. Not only is this verbose, it is also inefficient, as
lreplace must copy the elements of the original list when creating the new
list. This overhead can be pronounced when large lists are frequently
updated.
The lset command is an efficient and concise method for changing the value
of an element when the list is stored in a variable. It accepts the name of a
variable, an index to an existing element—or a series of indices to an
element in a nested sublist—and the new value to assign to the element. lset
returns the variable’s new value:

Note

You cannot use the lset command to create new list elements. It can
only modify existing elements. lset returns an error if the index refers
to a nonexistent element.

The lappend command provides an efficient way to append new elements to a
list stored in a variable. It takes as arguments the name of a variable and any
number of additional arguments. Each of the additional arguments is
appended to the variable’s value as a new list element, and lappend returns
the variable’s new value:

165

lappend is similar to append except that it enforces proper list structure. As
with append, it isn’t strictly necessary. For example, the command

lappend x $a $b $c

could be written instead as

set x [concat $x [list $a $b $c]]

However, as with append, lappend is implemented to optimize performance.
For large lists, this can make a big difference.

Note

lappend and lset differ from other list commands such as lreplace in that
the list is not included directly in the command; instead, you specify the
name of a variable containing the list.

6.5 Extracting List Elements: lassign

The lassign command is a convenience for distributing the values of a list
among one or more variables. The first argument is a list, and all subsequent
arguments are the names of variables. lassign assigns successive elements
from the list to the variables in order. If there are more variable names than
list elements, the remaining variables are set to the empty string. If there are
more list elements than variables, a list of unassigned elements is returned.

166

Of course, similar results could be achieved with a series of lindex
commands, though not as concisely:

The behavior of lassign makes it easy to emulate the “shift” command of
some languages:

set argv [lassign $argv nextArg]

Prior to Tcl 8.5, the foreach command was often used for its side effect of
distributing list elements to individual variables. For example, to distribute
the first three elements of the variable coords to three separate variables:

foreach {x y z} $coords { break }

The break command in this example serves as a “fail-safe” in case the list
stored in coords consists of more than three elements.

6.6 Searching Lists: lsearch

The lsearch command searches a list for an element with a particular value.
It takes two arguments, the first of which is a list and the second of which is
a pattern:

lsearch returns the index of the first element in the list that matches the

167

pattern, or -1 if there is no matching element.
One of three different pattern-matching techniques can be selected by
specifying one of the switches -exact, -glob, or -regexp before the list
argument:

 lsearch -glob $x A*
⇒ 1

The -glob switch causes matching to occur with the rules of the string match
command described in Section 5.10. A -regexp switch causes matching to
occur with regular expression rules as described in Section 5.11, and -exact
insists on an exact match only. If no switch is specified, -glob is assumed by
default. You can also negate the sense of the match with the -not option.
By default, lsearch finds only the first matching element. However, you can
include the -all option to return all matching elements in the list:

The -inline option returns element values rather than indices. This is
particularly useful when searching with patterns, as you then don’t need to
use lindex to extract the values in a separate step:

Note

Remember that if you want to detect the presence or absence of an
exact string value as an element in a list, you can use the in and ni
operators respectively in an expression. See Section 4.7 for more
information.

6.7 Sorting Lists: lsort

The lsort command takes a list as an argument and returns a new list with the
same elements, but sorted by default in increasing lexicographic order:

168

 lsort {John Anne Mary Jim}
⇒ Anne Jim John Mary

You can precede the list with any of several switches to control the sort. For
example, -decreasing specifies that the result should have the “largest”
element first; -integer and -real specify that the elements should be treated as
integers or real numbers respectively and sorted according to value; -
dictionary performs case-insensitive sorting and compares embedded digits
as non-negative integers; and -unique discards all but the last occurrence of
duplicated elements:

If you have a nested list structure, the -index option allows you to specify the
index of a sublist element on which to sort, rather than sorting on the entire
subelement value:

Additionally, for lists containing data that can’t be sorted lexicographically
or numerically, you can use the -command option to specify your own sorting
function (see the reference documentation for details).

6.8 Converting between Strings and Lists: split and join

The split command breaks a string into component pieces so that you can
process the pieces independently. It creates a list whose elements are the
pieces, so that you can use any of the list commands to process the pieces.
For example, suppose a variable contains comma-separated values, and you

169

want to convert it to a list with one element for each component:

The first argument to split is the string to be split up, and the second
argument contains one or more split characters. split locates all instances
of any of the split characters in the string. It then creates a list whose
elements consist of the substrings between the split characters. The ends of
the string are also treated as split characters. If there are consecutive split
characters, or if the string starts or ends with a split character as in the
second example, empty elements are generated in the results. The split
characters themselves are discarded.

Note

In practice, character-separated-value (CSV) data requires more
careful handling, as the separator character might appear escaped as
part of a value. Tcllib, the standard Tcl library, includes a csv package
to handle CSV data properly. See Appendix B for more information on
tcllib.

Several split characters can be specified, as in the following example:

 split xbaybz ab
⇒ x {} y z

If an empty string is specified for the split characters, each character of the
string is made into a separate list element:

 split {a b c} {}
⇒ a { } b { } c

The join command is approximately the inverse of split. It concatenates list
elements with a given separator string between them:

170

join takes two arguments: a list and a separator string. It extracts all of the
elements from the list and concatenates them with the separator string
between each pair of elements. The separator string can contain any number
of characters, including 0. In the first example here, a Unix-style path name
is generated by joining the list elements with /. (The file join command
described in Chapter 11 is a better way to create paths in this manner, as it
is platform-independent.) In the second example, a Tcl expression is
generated by joining the list elements with +.

6.9 Creating Commands as Lists

A very important relationship exists between lists and commands in Tcl. A
well-formed Tcl command has the same structure as a list. A list evaluated
as a Tcl script consists of a single command whose words are the list
elements. In other words, the Tcl parser performs no substitutions
whatsoever. It simply extracts the list elements, and each element becomes
one word of the command. This property is very important because it
allows you to generate Tcl commands that are guaranteed to parse in a
particular fashion even if some of the command’s words contain special
characters such as spaces or $.
For example, suppose you are creating a button widget in Tk, and when the
user clicks on the widget you would like to reset a variable to a particular
value. You might create such a widget with the following command:

button .b -text Reset -command {set x 0}

The Tcl script set x 0 is evaluated whenever the user clicks on the button.
Now suppose that the value to be stored in the variable is not constant but
instead is computed just before the button command and must be taken from a
variable initValue. Furthermore, suppose that initValue could contain any
string whatsoever. You might rewrite the command as

button .b -text Reset -command {set x $initValue}

The script set x $initValue is evaluated when the user clicks on the button.

171

However, this script uses the value of the global initValue variable at the
time the user clicks on the button, which may not be the same as the value
when the button was created. For example, the same variable might be used
to create several buttons, each with a different intended reset value. Or, if
the code to create the button were contained within a procedure, initValue
might be a local variable that would not even exist at the time the user clicks
the button, which would result in an error.
To solve this problem, you must generate a Tcl command that contains the
value of the initValue variable, not its name, and use this as part of the -
command option for the button command. Unfortunately, a simple approach like

button .b -text Reset -command "set x $initValue"

doesn’t work in general. If the value of initValue is something simple like 47,
this works fine. The resulting command is set x 47, which produces the
desired result. However, what if initValue contains New York? In this case the
resulting command is set x New York, which has four words; set generates an
error because there are too many arguments. Even worse, what if initValue
contains special characters such as $ or [? These characters could cause
unwanted substitutions to occur when the command is evaluated.
The only solution that is guaranteed to work for any value of initValue is to
use list commands to generate the command, as in the following example:

button .b -text Reset -command [list set x $initValue]

The result of the list command is a Tcl command whose first word is set,
whose second word is x, and whose third word is the value of the initValue
variable in scope at the time the button is created (not when it is pressed).
For example, suppose that the value of initValue is New York. The command
generated by list is

set x {New York}

which parses and executes correctly. Whatever value is present in initValue
when the button command is invoked is assigned to x when the button is
pressed, and this is guaranteed to work regardless of the contents of
initValue. Any of the Tcl special characters are handled correctly by list:

172

173

174

7. Dictionaries

When you have a collection of things like a list but you wish to give each
item a unique name and then access those items by their names, it is best to
arrange the values into a dictionary. Like lists, dictionaries can contain any
number of values, such as numbers, people’s names, window names,
channels, or command names. Dictionaries collect these values into a single
entity that you can pass around like any other value, or nest inside other
dictionaries or lists, and then you can retrieve those component values again
by looking them up by their key name.
Dictionaries represent an ordered collection; dictionaries preserve the
order of insertion of their keys and will iterate over them in that order.
Dictionaries are represented as strings with a particular structure, looking
just like a list with an even number of elements, and this means that you can
store them in variables (including in array elements), type them into
commands, and nest them inside themselves or lists. You can also put lists
inside a dictionary, of course.
Dictionaries differ from arrays in several fundamental ways. Arrays are
unordered collections of variables, not values, and may not be nested. This
means that only arrays can have traces set on elements, and only dictionaries
can be reliably iterated over in the same order or passed as values to other
commands (in particular, non-global arrays require the use of upvar or
explicit packing and unpacking).

Note

The dictionary data type was introduced in Tcl 8.5 as a formalization
of existing good practice that was present in the strings managed by the
array command’s get and set subcommands, Tk widget options, and so
on. The third-party dict extension provides a back port of most features
of the dict command to Tcl 8.4, and earlier versions of Tcl can be
supported through suitable scripts, though only 8.5 and later support
efficient order-preserving dictionaries.

7.1 Commands Presented in This Chapter

175

This chapter describes the structure of dictionaries and presents the dict
command, which manipulates dictionaries. The subcommands of dict can
look up particular elements; insert, replace, and remove them; and list the
names in the dictionary, among other things. Later chapters describe
additional commands that use dictionaries as arguments or return them as
results.

• dict append varName key value ?value ...?
Appends the given string values to the value associated with the key in the
dictionary contained in varName.

• dict create key value ?key value ...?
Creates a dictionary from the given keys and values. If a key occurs twice or
more in the list of arguments, the value associated with the last instance of
the key is used.

• dict exists dictionary key ?key ...?
Tests whether the key exists in the dictionary. Multiple keys may be given to
test whether all the keys on a path through a group of nested dictionaries
exist.

• dict filter dictionary filterType ...
Returns a new dictionary that is created from the supplied dictionary by
applying the given filter. Filtering may be performed by matching (using
string match rules) against keys or values or by using a script.

• dict for {keyVar valueVar} dictionary body
Iterates over the keys and values of the dictionary, setting the given variables
to each of the keys and its associated value in turn, and then executing the
body argument for each of them.

• dict get dictionary key ?key ...?
Returns the value in the dictionary with the given key. Multiple keys may be
given to allow retrieval of a value from within nested dictionaries.

• dict incr varName key ?increment?
Increments the value in the dictionary in varName with the given key. If the
increment is not given, it is 1. If the key is not in the dictionary first, it is
treated as if its value is 0.

• dict keys dictionary ?pattern?
Returns a list of all the keys in the dictionary. If the pattern argument is
specified, it returns only those keys that match the pattern according to the
rules of string match.

• dict lappend varName key value ?value ...?
Appends the given list items to the value associated with the key in the
dictionary contained in varName.

176

• dict merge ?dictionary dictionary ...?
Returns a new dictionary that is the combination of all the given
dictionaries. Later key pairs override earlier key pairs when the keys
correspond.

• dict remove dictionary ?key ...?
Returns a new dictionary that is the same as the supplied dictionary, except
that each of the listed keys is not present in it. It is not an error if a key is
given that is not present in the original dictionary.

• dict replace dictionary ?key value ...?
Returns a new dictionary that is the same as the supplied dictionary, except
that the given set of key pairs will also form part of it (overriding any
existing keys with the same names).

• dict set varName key ?key ...? value
Writes a new dictionary into the variable varName that is the same as the
current contents of the variable, except that the given key will map to the
given value. Multiple keys may be given to allow update of a value within a
nested dictionary.

• dict size dictionary
Returns the size (number of keys) of the given dictionary.

• dict unset varName key ?key ...?
Removes the mapping for the given key from the dictionary in the variable
varName. Multiple keys may be given to allow removal of a value within a
nested dictionary. If the mapping is not present, no error will be generated.

• dict update varName key localVar ?key localVar ...? body
For each of the listed keys from the dictionary in varName, binds its value to
varName while the body is being executed. When the body finishes executing, the
variable contents are written back to the dictionary.

• dict values dictionary ?pattern?
Returns a list of values from the dictionary. If pattern is given, only those
values that match it (according to the rules of string match) are returned.

• dict with varName ?key ...? body
Binds each of the keys in the dictionary in varName (or a subdictionary of it if a
path of keys is given) to a local variable with the same name while body is
being executed. When body finishes executing, the variable contents are
written back to the dictionary.

7.2 Basic Dictionary Structure and the dict get

Command

177

A dictionary is a structured value that looks just like a list with an even
number of elements where the first, third, fifth (and so on) elements (the
keys) are all distinct from each other. It is used to represent any collection
of values that are indexed by strings, as opposed to lists, which are indexed
by position. Dictionaries are used to represent structures (where the set of
names is fixed) and maps (where the set of names is arbitrary). For
example, the string

firstname Joe surname Schmoe title Mr

is a dictionary with three values (Joe, Schmoe, and Mr) named by the keys
firstname, surname, and title respectively; it acts as a map from each of the
keys to the value following it. There can be any number of elements in the
dictionary, but each value must have a unique key. Both keys and values can
be any arbitrary value.
The dict get command extracts an element from a dictionary:

dict get takes two arguments, a dictionary and a key to look up in the
dictionary, and returns the value associated with that key; the command
raises an error if the key does not have a value associated with it. The
lookup of a value in a dictionary is very fast; behind the scenes, dictionaries
are implemented as ordered hash tables, meaning that lookups are normally
performed in nearly constant time.
Just as with lists, when a dictionary is entered in a Tcl script, it is usually
enclosed in braces. For a complicated dictionary, it is often easier to use
line breaks to separate key-value pairs:

In this case, the dictionary has three values (if it were a list, it would have
six). You can also put dictionaries and lists inside each other as much as you
wish; there is no limit imposed by the Tcl language. The next example maps

178

from employee numbers to structures containing the details of the
employees; both the map and the structures are dictionaries:

This example could have been implemented using arrays with structured
keys. But when arrays are used in that way, either the record relating to each
employee would have been a list (requiring special caution when extracting
or updating), or there would have been no record representing the employee
data as a whole; whenever you would need such a record (for example, to
pass to a procedure), you would have to extract it from the overall array,
which would require much greater overhead. By contrast, nested
dictionaries provide a much more flexible and efficient solution.
Indeed, there is a shortcut for getting a value out of a nested dictionary since
the dict get command actually takes multiple keys as arguments, going along
a path of nested dictionaries rather like a path name from a file system, like
this:

 puts [dict get $employees 1234 firstname]
⇒ Ann

The handling of nested dictionaries (including how to efficiently update
them) is discussed in more depth in Section 7.6.
For comparison, here is an equivalent implementaton using arrays with
structured keys, the most common method before Tcl 8.5:

179

That seems simpler right up until you want to get Ann’s records together,
which is much easier, clearer, and quicker with dictionaries:

As the complexity of record processing increases, the filtering of the extra
information from the element names can become seriously annoying. And
because arrays are unordered, producing that output requires checking every
element name in the whole array.

7.3 Creating and Updating Dictionaries

Tcl provides a command to help create dictionaries: dict create. This
command is the analog of list (the constructor for lists); it takes an arbitrary
number of key-value pairs and produces a dictionary with those key-value
pairs in it. When a key occurs multiple times, the value last associated with
the key is used. This is useful in situations when you want to create a
dictionary in which either the keys or the values are not fixed at the time you
execute the command.

As you can see, the order of keys is the order in which they first appear in
the list of arguments, but the value that is used is the last for a particular key
in the sequence; earlier values for a duplicated key are dropped. This rule is
applied when using dict replace to create a new dictionary based on the old
one but with different values:

180

As you can see, dict replace can also add to the collection of keys. If instead
you want to produce a dictionary with some keys removed, use the dict
remove command. Note that removing a key that did not previously exist is not
an error.

The dict merge command creates a new dictionary by merging two or more
dictionaries, each provided as separate arguments. When two or more of the
dictionaries have the same key, the resulting dictionary maps that key to the
value according to the last dictionary on the command line containing a
mapping for that key:

When you have a dictionary in a variable, you can update it directly to add
keys, change what those keys map to, or remove keys. The first two
operations are done with the dict set command, and the third operation is
done with the dict unset command. The dict set command takes the name of
the variable to update, the key to create or update, and the value that the key
is to be set to and returns the resulting dictionary that it wrote back to the
variable. The dict unset command takes the same arguments except for the
value:

181

7.4 Examining Dictionaries: The size, exists, keys, and for
Subcommands

Once you have a dictionary, there are a number of operations you may
perform to examine it. One of the simplest is determining the number of
elements in the dictionary. This is done using the dict size command:

You can check whether a particular key is in a dictionary with the dict exists
subcommand. This returns 1 when the dict get command can be used on the
same dictionary and key to retrieve a value successfully, and 0 when dict get
will fail because the dictionary doesn’t contain the key:

182

To get a list of all the keys in the dictionary (in order), use the dict keys
command. This command lists the keys of a dictionary value, optionally
filtering them by a string match–style pattern. Continuing with the previous
example:

Similarly, the values from a dictionary can be retrieved in order using dict
values, which also takes an optional pattern:

To loop over all the keys and values of a dictionary and execute some code
for each of them, use the dict for command. This takes an argument listing a
pair of variables (one for the key and one for the value associated with that
key), a dictionary, and a Tcl script that forms the body of the loop. It returns
the empty string. Just as with the foreach command, you can use break and
continue to stop looping early or skip to the next key-value pair in the
dictionary.
For example, to print out the contents of a dictionary neatly:

It is possible to produce a sorted dictionary by taking advantage of the fact
that dictionaries preserve the order of their keys. You do this by creating a
second dictionary from the first that has the keys in sorted order, and then

183

merging the values from the original dictionary with the dict merge
subcommand:

7.5 Updating Dictionary Values

Sometimes it is necessary to update the values in a dictionary by changing
them based on their current values rather than just replacing them with new
ones. The dict command provides a number of convenience subcommands
(based on other Tcl commands) to make this easier, so there is no need to
get the value out of the dictionary into a variable, update the value in the
variable, and then write that value back.
The easiest way to append a string or strings to a value in a dictionary is to
use the dict append subcommand. This takes the name of a variable holding
the dictionary you want to update, the key whose value you want to update,
and one or more strings to append to the value and returns the updated
dictionary as well as writing it back to the variable:

Similarly, when you want to build up a list in a dictionary value, you can
use the dict lappend subcommand:

184

Another updating operation supported by the dict command is dict incr. This
takes a variable containing a dictionary, a key whose value will be
incremented, and an optional value by which to increment the value. The
result of the command is the updated dictionary, which is also written back
to the variable. Analogously to the variable passed to the normal incr
command (in Tcl 8.5 and later), the key does not have to exist previously in
the dictionary, as it is assumed to have a value of 0 if absent. This is
particularly useful when computing things like frequency histograms of
words within a piece of text. An example is this procedure:

Obviously, the dict command cannot supply a command for every kind of
complex update that anyone might want to do. Instead, it supplies a general
command for temporarily associating variables with selected keys of a
dictionary, which you can use to build any kind of updating scheme at all.
This is done using the dict update subcommand, which takes the name of a
variable containing a dictionary, a list of keys in the dictionary and
variables to associate with them, and a Tcl script that describes an
operation that updates those variables. The result of the script is also the
result of the overall dict update command. Upon completion of the script, the
state of the variables is written back into the dictionary, thus allowing for
arbitrarily complex updates of the dictionary.

Note

If a named key does not exist in the dictionary at the start of the dict
update command, its corresponding variable is unset at the start of
execution of the body script. At the end of the script, named keys that
do not have their variables set are removed from the modified
dictionary; that is, nonexistence of keys corresponds to nonexistence of

185

variables.

Many different kinds of updates are possible using this mechanism. For
example, here is how to reimplement the dict unset command:

More complex updates are also possible. Here is an example that switches
the values between two keys:

This example shows how to make a square-a-value operation:

One tricky feature is that updates to the variable containing the dictionary
happen only when the body of the dict update command finishes, and the key-
value pairs not mapped by this subcommand are left untouched. This makes
the behavior of the system much easier to understand when a complex
update is being performed:

186

Note that although the s variable was removed during the body of the dict
update, it was not until after the command had finished that the alterations
were reincorporated back into the dictionary and the key surname was
removed. Similarly, the key initial did not exist in the dictionary at the start
and so the variable i was unset.

7.6 Working with Nested Dictionaries

Many of the dict subcommands have extra support for working with nested
dictionaries. This allows you to specify multiple keys to the command and
have the command go through the nested dictionaries to the point specified
and work there, rather like a directory path name in a file system. The
subcommands that support this method of working are dict get, dict exists,
dict set, dict unset, and dict with.
The dict get command has the simplest nested dictionary behavior. When
you ask for a value from a nested dictionary, it just goes through the nested
dictionaries in order, using earlier keys to select the dictionaries where the
later keys may be found. Thus, the command

dict get $dictionary keyOne keyTwo

is exactly the same as

dict get [dict get $dictionary keyOne] keyTwo

187

The dict exists command corresponds to the preceding line. It checks for the
existence of all the keys along the path, and that all the steps along the path
through the nested dictionaries are themselves dictionaries; it is an error if
they exist but are not dictionaries. Thus, the following two commands are
equivalent:

As you can see, the multikey versions of both dict get and dict exists are
much simpler to use when you have nested dictionaries.
The nested versions of the dict set and dict unset commands have even more
complex equivalences to simple dict usage, enough that they are not
described here in code. It is worth noting that the dict set command will
create dictionaries along the path if necessary, though dict unset will only
delete the key from the innermost dictionary on the path of keys; it does not
delete the dictionaries forming the structure of the path, even if those
dictionaries become empty.

The other command designed for working with nested dictionaries is the dict
with subcommand. This allows the “opening out” of a dictionary into
variables in a manner similar to the dict update command, but with a few
differences. Instead of giving you control over which keys to work with and
what variables they are to be bound to, dict with allows the selected
dictionary or any subdictionary (as specified by the path of keys) to open
out in its entirety.

188

The dict with command can be used to allow the stowing of some persistent
procedure state in a global variable without polluting the global namespace
with lots of different variables or requiring every use of the global state to
be encapsulated within array syntax, which is the other solution. The use of
this is illustrated within the stepCounter procedure in this example:

189

When used, this makes for a very simple stateful counter system that can
count in steps of any size desired with an arbitrary offset applied at each
stage, and all at a cost of exactly one global variable. A sample of this
simple-to-extend mechanism is shown below, where two counters are first
created and then used in an interleaved fashion:

Another key usage of dictionaries and the dict with subcommand is for
representing the results of a database query. Each column from the row of
results can be given a unique name (e.g., the name of the table column) with
the contents of that column being the dictionary value1, and the iteration

190

order of the dictionary being the order of the columns. For well-behaved
query results (i.e., almost all) the dictionary is then trivial to map into
variables using dict with.

1. Null columns are best represented as absent keys, since the NULL value
actually represents an absence of a value for a particular column in that row.
Of course, a database interface might also provide other options for
handling Nulls in particular columns (e.g., particular strings). This is all
outside the scope of dictionaries, though. They provide mechanisms; they do
not define interface policy.

191

192

8. Control Flow

This chapter describes the Tcl commands for controlling the flow of
execution in a script. Tcl’s control flow commands are similar to the control
flow statements in the C programming language and the Unix shell csh,
including if, while, for, foreach, switch, and eval.

8.1 Commands Presented in This Chapter

You can use the following commands to control the flow of execution in a
Tcl script:

• break
Terminates the innermost nested looping command.

• continue
Terminates the current iteration of the innermost looping command and goes
on to the next iteration of that command.

• eval arg ?arg arg ...?
Concatenates all of the args with separator spaces, then evaluates the result
as a Tcl script and returns its result.

• for init test reinit body
Executes init as a Tcl script, then evaluates test as an expression. If it
evaluates to true, it executes body as a Tcl script, executes reinit as a Tcl
script, and reevaluates test as an expression. Repeats until test evaluates to
false. Returns an empty string.

• foreach varName list body
foreach varlist1 list1 ?varlist2 list2 ...? body

For each element of list, in order, sets the variable varName to that value and
executes body as a Tcl script. Returns an empty string. list must be a valid
Tcl list. In the general case, foreach can iterate over multiple lists as well as
process multiple elements from a list in each iteration.

• if test1 body1 ?elseif test2 body2 elseif ...? ?else bodyn?
Evaluates test1 as an expression. If its value is true, it executes body1 as a Tcl
script and returns its value. Otherwise it evaluates test2 as an expression; if
its value is true, it executes body2 as a script and returns its value. If no test
succeeds, it executes bodyn as a Tcl script and returns its result.

• source ?-encoding encodingName? fileName

193

Reads the file whose name is fileName and evaluates its contents as a Tcl
script. Returns the result of the script. Tcl reads the file using the operating
system’s default character set encoding unless you provide the -encoding
option.

• switch ?options? string {pattern body ?pattern body ...?}
switch ?options? string pattern body ?pattern body ...?

Matches string against each pattern in order until a match is found, then
executes the body corresponding to the matching pattern. If the last pattern is
default, it matches anything. Returns the result of the body executed, or an
empty string if no pattern matches. options may be -exact, -glob, -regexp, or -- to
indicate the end of options. When using -regexp matching, -matchvar and -
indexvar can be used to access matching regular expression subpatterns.

• while test body
Evaluates test as an expression. If its value is true, it executes body as a Tcl
script and reevaluates test. Repeats until test evaluates to false. Returns an
empty string.

8.2 The if Command

The if command evaluates an expression, tests its result, and conditionally
executes a script based on the result. For example, consider the following
command, which sets variable x to 0 if it was previously negative:

if {$x < 0} {
 set x 0
}

In this case if receives two arguments. The first is an expression and the
second is a Tcl script. The expression can have any of the forms for
expressions described in Chapter 4. The if command evaluates the
expression and tests the result; if it is true, if evaluates the Tcl script. If the
value is false, if returns without taking any further action.
if commands can also include one or more elseif clauses with additional
tests and scripts, plus a final else clause with a script to evaluate if no test
succeeds:

194

This command will execute one of the four scripts indicated by ...,
depending on the value of x. The result of the command will be the result of
whichever script is executed. If an if command has no else clause and none
of its tests succeeds, it executes no script and returns an empty string.
Remember that the expressions and scripts for if and other control structures
are parsed using the same approach as all arguments to all Tcl commands. It
is almost always a good idea to enclose the expressions and scripts in
braces so that substitutions are deferred until the command is executed.
Furthermore, each open brace must be on the same line as the preceding
word or else the newline will be treated as a command separator. The
following script is parsed as two commands, which results in an error as
there are not enough arguments for the if command:

if {$x < 0}
{
 set x 0
}

8.3 The switch Command

The switch command tests a value against a number of patterns and executes
one of several Tcl scripts depending on which pattern matches. The same
effect as switch can be achieved with an if command that has lots of elseif
clauses, but switch provides a more compact way of expressing the structure.
Tcl’s switch command has two forms; here is an example of the first:

switch $x {a {incr t1} b {incr t2} c {incr t3}}

The first argument to switch is the value to be tested (the contents of variable
x in the example). The second argument is a list containing one or more
pairs of elements. The first argument in each pair is a pattern to compare

195

against the value, and the second is a script to execute if the pattern matches.
The switch command steps through these pairs in order, comparing the pattern
against the value. As soon as it finds a match, it executes the corresponding
script and returns the value of that script as its value. If no pattern matches,
no script is executed and switch returns an empty string. This particular
command increments variable t1 if x has the value a, t2 if x has the value b or
t3 if x has the value c and does nothing otherwise.
The second form spreads out the patterns and scripts into separate
arguments rather than combining them all into one list:

switch $x a {incr t1} b {incr t2} c {incr t3}

This form has the advantage that you can invoke substitutions on the pattern
arguments more easily, but most people prefer the first form because you
can easily spread the patterns and scripts across multiple lines like this:

The outer braces keep the newlines from being treated as command
separators. With the second form you would have to use backslash-newlines
like this:

The switch command supports three forms of pattern matching. You can
precede the value to test with a switch that selects the form you want: -exact
selects exact string comparison, -glob selects pattern matching as in the string
match command (see Section 5.10 for details), and -regexp selects regular
expression matching as described in Section 5.11. The default behavior is -
exact.
For regular expression matching, you can also provide a -matchvar argument
followed by a variable name. The switch command stores a list in the
variable where the first element is the string that matches the entire regular
expression, the second element consists of the characters that match the first
capturing subpattern, and so on. If the regular expression matches no
characters, the value of the match variable is an empty list. The -indexvar

196

option is similar to -matchvar, but instead of the actual characters matched,
the index variable specified receives a list of character indices referring to
the matching substrings. The first element of the index variable is a two-
element sublist specifying the indices within the test string of the first and
last characters matching the regular expression; the second element is a
sublist specifying the indices of the characters matching the first capturing
subpattern; and so on.

Note

If the test value starts with a - character, the switch command can
mistake it for an option, causing an error. In general, you should always
use the -- option to mark the end of options and ensure that switch
correctly identifies the test string in all circumstances.

If the last pattern in a switch command is default, it matches any value; thus
switch executes the default script if no other patterns match. For example, the
following script examines a list and produces three counters. The first, t1,
counts the number of elements in the list that contain an a. The second, t2,
counts the number of elements that are unsigned decimal integers. The third,
t3, counts all of the other elements:

If a script in a switch command is -, switch uses the script for the next pattern
instead. This makes it easy to have several patterns that execute the same
script, as in the following example:

197

This script increments variable t1 if x is a, b, or c, and it increments t2 if x is
d.

Note

A common error for newcomers to Tcl is improper placement of
comments in a switch statement. You can place a comment only where
the Tcl interpreter expects to find a Tcl command. In a switch statement,
that means that you must place comments inside the scripts:

8.4 Looping Commands: while, for, and foreach

Tcl provides three commands for looping: while, for, and foreach. Each of
these commands executes a script over and over again; they differ in the
kinds of setup they do before each iteration and in the ways they decide to
terminate the loop.
The while command takes two arguments: an expression and a Tcl script. It
evaluates the expression and if the result is nonzero, it executes the Tcl
script. This process repeats over and over until the expression evaluates to
false, at which point the while command terminates and returns an empty
string. For example, the following script copies a list from variable a to
variable b, reversing the order of the elements along the way:

198

The for command is similar to while except that it provides more explicit
loop control. The program to reverse the elements of a list can be rewritten
using for as follows:

The first argument to for is an initialization script; the second is an
expression that determines when to terminate the loop; the third is a re-
initialization script, which is evaluated after each execution of the loop
body before the test is evaluated again; and the fourth argument is a script
that forms the body of the loop. for executes its first argument (the
initialization script) as a Tcl command, then evaluates the expression. If the
expression evaluates to true, for executes the body followed by the re-
initialization script and reevaluates the expression. It repeats this sequence
over and over again until the expression evaluates to false. If the expression
evaluates to false on the first test, neither the body script nor the re-
initialization script is executed. Like while, for returns an empty string as the
result.
for and while are equivalent in that anything you can write using one
command you can also write using the other command. However, for has the
advantage of placing all of the loop control information in one place where
it is easy to see. Of course, in some situations the loop initialization or re-
initializaion either is more complex or is nonexistent, and in these cases a
while loop may make more sense.
The foreach command iterates over all of the elements of a list. For example,
the following script provides yet another implementation of list reversal:

The simplest form of foreach takes three arguments. The first is the name of a
variable, the second is a list, and the third is a Tcl script that forms the body

199

of the loop. foreach executes the body script once for each element of the list,
in order. Before executing the body in each iteration, foreach sets the variable
to hold the next element of the list. Thus, if variable a has the value first
second third in the preceding example, the body is executed three times. In the
first iteration i has the value first, in the second iteration it has the value
second, and in the third iteration it has the value third. At the end of the loop, b
has the value third second first and i has the value third. As with the other
looping commands, foreach always returns an empty string.
In addition to a single variable name, the foreach command can accept a list
of variable names. In this case, each iteration of the loop assigns
consecutive element values to the corresponding variable names, so if you
provide three variable names, foreach processes the list three elements at a
time. The loop iterates until all elements have been used; if a value list
doesn’t contain enough elements for each loop variable on the last iteration,
empty strings are used for the missing elements:

The foreach command also can process multiple lists in parallel, with a
separate set of variables for each list:

8.5 Loop Control: break and continue

Tcl provides two commands that can be used to abort part or all of a
looping command: break and continue. These commands have the same
behavior as the corresponding statements in C. Neither takes any arguments.
The break command causes the innermost enclosing looping command to
terminate immediately. For example, suppose that in the list reversal

200

example in the preceding section we want to stop as soon as an element
equal to ZZZ is found in the source list. In other words, the result list should
consist of a reversal of only those source elements up to (but not including)
a ZZZ element. This can be accomplished with break as follows:

The continue command causes only the current iteration of the innermost loop
to be terminated; the loop continues with its next iteration. In the case of
while, this means skipping out of the body and reevaluating the expression
that determines when the loop terminates; in for loops, the re-initialization
script is executed before the termination condition is reevaluated. For
example, the following program is another variant of the list reversal
example, where ZZZ elements are simply skipped without being copied to the
result list:

8.6 The eval Command

eval is a general-purpose building block for creating and executing Tcl
scripts. It accepts any number of arguments, concatenates them with
separator spaces, and then executes the result as a Tcl script. All Tcl parsing
rules apply to the script, so the script can contain multiple commands, span
multiple lines, include comments, and so on.
One use of eval is for generating commands, saving them in variables, and
then later evaluating the variables as Tcl scripts. For example, the script

201

clears variables a, b, and c to 0 when the eval command is invoked. In this
case, there is no advantage to assigning the script to a variable only to
execute it with eval; it makes much more sense to execute the three set
commands directly. But if you are writing an application in which the script
is created as a result of dynamic processing, eval is an appropriate way to
execute the script.
Historically the most important use for eval has been to force another level
of parsing. The Tcl parser performs only one level of parsing and
substitution when parsing a command; the results of one substitution are not
reparsed for other substitutions. However, there are times when another
level of parsing is necessary, and eval provides the mechanism to achieve
this.
Most commonly, this situation arises when you have a list of values, stored
in either a variable or the return value of a command, and you need to pass
the list to a command as separate values. For example, suppose that a
variable vars contains a list of variables and that you wish to unset each of
these variables. One solution is to use the following script:

This script works just fine, but the unset command takes any number of
arguments so it should be possible to unset all of the variables with a single
command. Unfortunately the following script does not work:

set vars {a b c d}
unset $vars

The problem with this script is that all of the variable names are passed to
unset as a single argument, instead of there being a separate argument for
each name. Thus unset tries to unset a variable named a b c d.
As of Tcl 8.5, the preferred solution is to use the {*} syntax for argument
expansion, as described in Section 2.8:

202

set vars {a b c d}
unset {*}$vars

Prior to Tcl 8.5, the only solution was to use eval, as with the following
command:

set vars {a b c d}
eval unset $vars

eval concatenates its arguments to form a new command unset a b c d, which
it then passes to Tcl for evaluation. The command string gets reparsed, so
each variable name ends up in a different argument to unset.

Note

As long as the variable names in this example are provided in a well-
formed Tcl list with only space and tab characters as element
delimiters, this approach works even if some of the variable names
contain spaces or special characters such as $. The command

eval unset $vars

is identical to the command

eval [concat unset $vars]

In either case, the script evaluated by eval is a proper list whose first
element is unset and whose other elements are the elements of vars.

8.7 Executing from Files: source

The source command reads a file and executes the contents of the file as a Tcl
script. source takes a single argument that specifies the name of the file. For
example, the command

source init.tcl

executes the contents of the file init.tcl. You can specify the file using either
an absolute path or a path relative to the present working directory of the

203

script currently executing.
The return value from source is the value returned when the file contents are
executed, which is the return value from the last command in the file. In
addition, source allows the return command to be used in the file’s script to
terminate the processing of the file. See Section 9.2 for more information on
return.
Using the source command, you can break a large script into smaller
modules, and then have one main script source the other script modules. You
can create libraries of reusable procedures by placing the procedure
definitions in a file that you can source from multiple applications. For
information on creating more elaborate script libraries, see Chapter 14.

204

205

9. Procedures

A Tcl procedure is a command that you define with a Tcl script. You can
define new procedures at any time with the proc command described in this
chapter. Procedures make it easy for you to package solutions to problems
so that they can be reused easily.
Tcl also provides special commands for dealing with variable scopes.
Among other things, these commands allow you to pass arguments by
reference instead of by value and to implement new Tcl control structures as
procedures.

9.1 Commands Presented in This Chapter

The following Tcl commands relate to procedures and variable scoping:

• proc name argList body
Defines a procedure whose name is name, replacing any existing command by
that name. argList is a list with one element for each of the procedure’s
arguments, and body contains a Tcl script that is the procedure’s body.
Returns an empty string.

• apply {argList body ?namespace?} ?arg1 arg2 ...?
Applies the anonymous procedure to the arguments and returns the result.
The procedure definition consists of a two- or three-element list. The argList
and body elements are specified as with proc. The optional namespace element
specifies a namespace in which to evaluate the procedure.

• return ?options? ?value?
Returns from the innermost nested procedure or source command with value
as the result of the procedure. value defaults to an empty string. Additional
options may be used to trigger an exceptional return (see Section 13.5).

• global name1 ?name2 ...?
Binds variable names name1, name2, etc. to global variables. References to
these names will refer to global variables instead of local variables for the
duration of the current procedure. Returns an empty string.

• upvar ?level? otherVar1 myVar1 ?otherVar2 myVar2 ...?
Binds the local variable named myVar1 to the variable at stack level level
whose name is otherVar1. For the duration of the current procedure, variable
references to myVar1 will be directed to otherVar1 instead. Additional bindings

206

may be specified with otherVar2 and myVar2, etc. level has the same syntax and
meaning as uplevel and defaults to 1. Returns an empty string.

• uplevel ?level? arg ?arg arg ...?
Concatenates all of the args with spaces as separators, then executes the
resulting Tcl script in the variable context of stack level level. level consists
of a number or a number preceded by # and defaults to 1. Returns the result
of the script.

9.2 Procedure Basics: proc and return

Procedures are created with the proc command, as in the following example:

proc plus {a b} { expr {$a+$b} }

The first argument to proc is the name of the procedure to create, plus in this
case. The second argument is a list of names of arguments to the procedure
(a and b in the example). The third argument to proc is a Tcl script that forms
the body of the new procedure. After the proc command completes, a new
command, plus, exists, which can be invoked just like any other Tcl
command. When plus is invoked, Tcl arranges for the procedure’s body to be
evaluated with the variables a and b set to the values of the arguments. plus
must always be invoked with exactly two arguments; the Tcl interpreter
raises an error if you invoke a procedure with the wrong number of
arguments. The return value for the plus command is the value returned by
the last command in plus’s body. Here are some correct and incorrect
invocations of plus:

It is important to realize that proc is just an ordinary Tcl command. It is not a
declaration with special syntax, as you might see in other languages such as
C. The arguments to proc are processed in the same way as for any other Tcl
command. For example, the braces in the argument {a b} are not a special
syntactic construct for this command; they are used in the normal fashion to
pass both of plus’s argument names to proc as a single list of argument names.
Technically, if a procedure has only a single argument, the braces aren’t

207

needed around its name, though most Tcl programmers still use them for
consistency. Similarly, the braces around proc’s last argument are used to
pass the entire script body to proc as a single argument without performing
substitutions on its contents.
If you would like a procedure to return early without executing its entire
script, you can invoke the return command: it causes the enclosing procedure
to return immediately, and the argument to return is the result of the
procedure. Here is an implementation of a factorial function that uses return:

If the argument to fac is less than or equal to 1, fac invokes return to return
immediately. Otherwise fac executes the expr command, which recursively
calls fac and returns the result.

Note

In this example you could invoke the expr command without the
“enclosing” return command. The expr command would be the last
command in the procedure’s body, so its result would be returned as
the result of the procedure. However, using the return command in
cases like this makes your intention clear to programmers maintaining
your code, so it is less likely that someone will add commands to the
end of the procedure definition and inadvertently change its behavior.

9.3 Local and Global Variables

When the body of a Tcl procedure is evaluated, it uses a different set of
variables from its caller. These variables are called local variables, since
they are accessible only within the procedure and are deleted when the

208

procedure returns. Variables defined outside of a procedure are called
global variables. Global variables are persistent, existing until explicitly
deleted. Tcl also supports namespace variables, which are persistent
variables existing in the context of a particular namespace. Chapter 10
discusses namespaces and the use of namespace variables. It is possible to
have a local variable with the same name as a global variable, namespace
variable, or a local variable in another active procedure, but these are
different variables: changes to one do not affect any of the others. If a
procedure is invoked recursively, each recursive invocation has a distinct
set of local variables.
The arguments to a procedure are just local variables whose values are set
from the words of the command that invoked the procedure. When execution
begins in a procedure, the only local variables with values are those
corresponding to the arguments passed to the procedure. Other local
variables are created automatically when they are set.
A procedure can reference global variables with the global command. For
example, the following command makes the global variables x and y
accessible inside a procedure:

global x y

The global command treats each of its arguments as the name of a global
variable and arranges for references to those names within the procedure to
be directed to global variables instead of local ones. global can be invoked
at any time during a procedure; once it has been invoked, it remains in effect
until the procedure returns.

Note

Tcl does not provide a form of variables equivalent to static variables
in C, which are limited in scope to a given procedure but have values
that persist across calls to the procedure. In Tcl you must use global or
namespace variables for purposes like this. In general, you should
prefer using namespace variables to avoid name conflicts with other
such variables.

9.4 Defaults and Variable Numbers of Arguments

209

In the examples so far, the second argument to proc (which describes the
arguments to the procedure) has taken a simple form consisting of the names
of the arguments. Three additional features are available for specifying
arguments. First, the argument list may be specified as an empty string. In
this case the procedure takes no arguments, and trying to invoke it with
arguments results in an error. For example, the following command defines
a procedure that prints out two global variables:

The second additional feature is that defaults may be specified for some or
all of the arguments. The argument list is actually a list of lists, in which
each sublist corresponds to a single argument. If a sublist has only a single
element (which has been the case in the previous examples), that element is
the name of the argument. If a sublist has two arguments, the first is the
argument’s name and the second is a default value for it. For example, here
is a procedure that increments a given value by a given amount, where the
amount defaults to 1:

The first element in the argument list, value, specifies a name with no default
value. The second element specifies an argument with the name increment and
a default value of 1. This means that inc can be invoked with either one or
two arguments:

If a default isn’t specified for an argument in the proc command, the argument
must be supplied whenever the procedure is invoked. The defaulted
arguments, if any, must be the last arguments for the procedure. This is true
both in the proc command and when invoking a procedure. If a default is
specified for a particular argument, defaults must be provided for all the
arguments following that one; similarly, if an argument is omitted when the

210

procedure is invoked, all the arguments after it must also be omitted.
The third special feature in argument lists is support for variable numbers of
arguments. If the last argument in the argument list has the special name args,
the procedure may be called with varying numbers of arguments. Arguments
before args in the argument list are handled as before, but any number of
additional arguments may be specified. The procedure’s local variable args
is set to a list whose elements are all of the extra arguments. If there are no
extra arguments, args is set to an empty string. For example, the following
procedure takes any number of arguments and returns their sum:

If a procedure’s argument list contains additional arguments before args, they
may be defaulted as just described. No default value may be specified for
args—the empty string is its default.

9.5 Call by Reference: upvar

Tcl supports call-by-value argument passing only. When you invoke a Tcl
command, copies of the argument values are passed to the command. This is
true even if the value came from a variable, because the Tcl interpreter
substitutes the value of the variable before executing the command. Thus, in
the following example, all the sum command receives are copies of the
values that are stored in the a and b variables:

sum $a $b

Tcl does not support true pointer or reference types, either, so it would seem
at first impossible to write a procedure that could modify the value of an
existing variable. However, the name of a variable is simply a string value,
which can in turn be stored in another variable. Therefore, by requesting

211

additional rounds of substitution, we can emulate the behavior of a
reference, like so:

In this example, the Tcl interpreter substitutes $y with its string value, x. The
set command then executes, interprets its argument as the name of a variable,
and returns the value stored in the variable. This concept, in combination
with a Tcl command called upvar, allows us to implement the equivalent of
call-by-reference behavior.
The upvar command provides a general mechanism for accessing variables
outside the context of a procedure. It can be used to access global variables,
namespace variables, or local variables in some other active procedure.
Most often it is used to implement the equivalent of call-by-reference
argument passing, which is particularly useful for arrays. If a is an array, you
cannot pass it to a procedure myproc with a command like myproc $a, because
there is no value for an array as a whole; there are values only for the
individual elements. Instead, you can pass the name of the array to the
procedure, as in myproc a, and use the upvar command to access the array’s
elements from the procedure.
Here is a simple example of upvar in a procedure that prints out the contents
of an array:

When printArray is invoked, it is given the name of an array as an argument.
The upvar command then makes this array accessible through the local
variable a in the procedure. The first argument to upvar is the name of a
variable accessible to the procedure’s caller. This may be a global variable,
as in the example, a namespace variable, or a local variable in a calling

212

procedure. The second argument is the name of a local variable. upvar
arranges things so that accesses to the local variable a actually refer to the
variable in the caller whose name is given by the variable name. In the
example this means that when printArray reads elements of a, it is actually
reading elements of the info global variable. If printArray were to write a, it
would modify info. printArray uses the array names command to retrieve a list
of all the elements in the array. Then it sorts them with lsort and prints each
of the elements in order.

Note

In the example it appears as if the output is returned as the procedure’s
result; in fact, it is printed by the procedure directly to standard output,
and the result of the procedure is an empty string.

The first variable name in an upvar command by default refers to the context
of the current procedure’s caller. However, it is also possible to access
variables from any level on the call stack, including the global level. For
example,

upvar #0 other x

makes the global variable other accessible via the local variable x (the #0
argument specifies that other should be interpreted as a global variable,
regardless of how many nested procedure calls are active), and

upvar 2 other x

makes the variable other in the caller of the caller of the current procedure
accessible as the local variable x (2 specifies that the context of other is two
levels up the call stack). The level 0 (as opposed to #0) refers to the current
context. See the reference documentation for more information on specifying
a level in upvar.

Note

Although omitting the level argument causes upvar to default to the
context of the procedure’s caller, the best practice is to explicitly

213

provide a level argument of 1 in this case. This prevents upvar from
raising an error if the first variable name begins with a # or digit.

9.6 Creating New Control Structures: uplevel

The uplevel command is a cross between eval and upvar. It evaluates its
argument(s) as a script, just like eval, but the script is evaluated in the
variable context of a different call stack level, like upvar. With uplevel you
can define new control structures as Tcl procedures. For example, here is a
new control flow command called do:

The first argument to do is the name of a variable. do sets that variable to
consecutive integer values in the range between its second and third
arguments and executes the fourth argument as a Tcl command once for each
setting. Given this definition of do, the following script creates a list of
squares of the first five integers:

The do procedure uses upvar to access the loop variable (i in the example) as
its local variable v. Then do uses the for command to increment the loop
variable through the desired range. For each value, it invokes uplevel to
execute the loop body in the variable context of the caller; this causes
references to the variables squares and i in the body of the loop to refer to
variables in do’s caller. If eval were used instead of uplevel, squares and i
would be treated as local variables in do, which would not produce the
desired effect.

214

Note

This implementation of do does not handle exceptional conditions
properly. For example, if the body of the loop contains a return
command, it causes only the do procedure to return, which is more like
the behavior of break. A return that occurs in the body of a built-in
control flow command such as for or while causes the procedure that
invoked the command to return. In Chapter 13 you will see how to
implement this behavior for do.

As with upvar, uplevel takes an optional initial argument that specifies an
explicit stack level. In the common case where the script should be
evaluated in the context of the caller, the best practice is to explicitly
indicate a level of 1. Otherwise, a script argument beginning with a #
character or digit would be misinterpreted as the level argument. See the
reference documentation for details.

9.7 Applying Anonymous Procedures

Not only do procedures provide a mechanism for modular programming, but
they also have performance advantages in Tcl. Internally, the body of a
procedure is transformed into an efficient bytecode representation.
Procedures also offer a local scope, allowing for the creation of transient
variables without potential naming conflicts with existing variables. There
are occasions when you might desire the efficiency or encapsulation of a
procedure but require the procedure for a single purpose or a limited time.
Code callbacks, such as for widget commands and file event handlers, and
one-shot transformational functions are typical examples.
The apply command, introduced in Tcl 8.5, provides the ability to apply an
anonymous function to a set of arguments:

apply {argList body ?namespace?} ?arg1 arg2 ...?

The first argument to apply is a procedure definition, consisting of a two- or
three-element list. The first element is the formal procedure argument,
defined in the same way as for proc. The second element is a Tcl script
implementing the body of the procedure. The third element is optional; if
provided, it specifies a namespace in which to evaluate the procedure. (See

215

Chapter 10 for a discussion of namespaces.) Subsequent arguments to apply
are the actual values assigned to the procedure arguments.
As an example, consider the following anonymous procedure that calculates
the sum of several numbers:

In this case, the numbers 1 through 7 are assigned as a list to the anonymous
procedure’s formal argument args, just as they would be for a named
procedure created with proc. The anonymous procedure then calculates and
returns the sum of the values. Note that in this example the variable total is
local to the procedure and is automatically deleted on the procedure’s
termination.
As a more representative example, consider the task of sorting a list based
on the string length of each element. The lsort command (discussed in
Chapter 6) doesn’t have an option for sorting by element length, but you can
use the -command option to specify your own sorting procedure. The procedure
must accept two elements, returning an integer less than, equal to, or greater
than zero if the first element is to be considered less than, equal to, or
greater than the second, respectively. Although you could define a named
procedure to implement the comparison, you can also employ an anonymous
procedure:

Another use of an anonymous procedure is to implement a callback, such as
for variable tracing. (See Chapter 15 for more information on tracing
variable access.) Variable trace procedures are called with three values,
describing the variable and the type of access. In this example, an
anonymous procedure reports the new value of the traced variable on the

216

console:

Additionally, apply can be used as a building block for implementing various
functional programming constructs. You can find several examples of this on
the Tcler’s Wiki (http://wiki.tcl.tk). The following demonstrates the
implementation of a map command, which accepts a list and returns a new list
generated by applying a transformation to each element of the original list:

217

http://wiki.tcl.tk

218

10. Namespaces

The Tcl interpreter collects all commands and global variables into groups
called namespaces, so that commands and variables within one namespace
don’t interfere with commands in another. These namespaces themselves are
arranged in a tree, and commands in one namespace can be imported into
another. The root of the tree is the global namespace, and it contains all
commands and variables that are not created explicitly within some other
namespace.
Commands and variables may be created within or used from out of any
existing namespace. This is done by prefixing the name of the namespace to
the command or variable name, separated by the namespace separator, a
double colon. The name of the global namespace is an empty string, but a
double colon is usually used in-stead as a synonym.
One of the main uses of namespaces is as a mechanism for building a
package of related commands. Namespaces provide assistance for this in
the form of ensembles, which are used to group the public API of a
namespace together and present it in the common command and
subcommand style.

10.1 Commands Presented in This Chapter

• namespace children ?namespace? ?pattern?

Returns a list of all child namespaces of the given namespace, or the current
namespace if no namespace argument is present. If pattern is specified, it
returns only those child namespaces whose (unqualified) name matches the
glob pattern.

• namespace code script
Returns script in a form that, when evaluated, will cause script to be
evaluated in the current namespace. This is ideally suited to callback script
generation, because if the script callback has any arguments appended to it
at callback time, those arguments will be passed correctly as extra
arguments to the command in script after allowing for namespace handling.

• namespace current
Returns the fully qualified name of the current namespace.

• namespace delete ?namespace ...?

219

Deletes each of the named namespaces.
• namespace ensemble create ?option value ...?

Creates an ensemble bound to the current namespace and returns the fully
qualified name of the ensemble.

• namespace ensemble configure ensemble ?option? ?value ...?
Configures the ensemble named ensemble. If no option is specified, it returns a
dictionary of all options and their values. If option is present but no value, it
returns the current value of that option. Otherwise there should be a list of
options and the values to set those options to, and the result is the empty
string.

• namespace ensemble exists ensemble
Returns 1 if ensemble is an ensemble command, 0 otherwise.

• namespace eval namespace body
Executes a script inside the namespace called namespace, creating the
namespace if it does not already exist. The result of the command is the
result of the last command executed in body.

• namespace exists namespace
Returns 1 if the named namespace exists, 0 otherwise.

• namespace export ?-clear? ?pattern ...?
If one or more string match–style patterns are specified, appends them to the
current namespace’s list of command export patterns. If -clear is also
specified, it clears the list of export patterns first. If no patterns are present,
it returns the current list of export patterns.

• namespace forget ?pattern ...?
Each command previously imported into the current namespace that matches
any of the supplied string match-style patterns is “forgotten”; that is, it is
deleted from the current namespace. Commands that were not imported and
the original exported commands are unaffected.

• namespace import ?-force? ?pattern ...?
Imports commands matching one or more string match–style patterns into the
current namespace. The commands must also match one of their source
namespace’s export patterns. Each pattern is a qualified glob pattern,
consisting of a literal namespace name prefix and a glob pattern suffix. The
local name in the current namespace of each imported command will be the
same as the local name of the command in the namespace from which it was
imported. It is an error to import a command over an existing command
other than a previous import of the same command unless the -force option is
specified, when the existing command is silently replaced instead.

• namespace origin command
Returns the fully qualified name of the command that implements command. If

220

command was imported from another namespace, it returns the qualified name
of the real implementation.

• namespace parent ?namespace?
Returns the name of the parent namespace of namespace, or the parent
namespace of the current namespace if no namespace is supplied.

• namespace path ?list?
Sets or returns the current namespace’s name resolution path. If list is
present, the name resolution path is set to the list of namespaces named in it.
If list is absent, the current name resolution path is returned.

• namespace qualifiers string
Returns everything up to the last namespace separator in string. If string does
not contain any namespace separators, it returns the empty string. Note that
this command does not check whether any namespaces exist.

• namespace tail string
Returns everything after the last namespace separator in string. If string does
not contain any namespace separators, it returns string unchanged. Note that
this command does not check whether any namespaces exist.

• namespace unknown ?script?
Returns the current namespace’s unknown command handler script, or sets it
to script if that is supplied. The default unknown command handler for all
namespaces is ::unknown.

• namespace upvar namespace otherVar localVar
\?otherVar localVar ...?

Maps each of the variables named otherVar in the namespace namespace to a
local variable, localVar. The variables are linked; any change to one results
in a change to the other.

• namespace which ?-command|-variable? name
Returns the fully qualified name of the entity called name. If -command is given,
and by default, name is assumed to refer to a command. If -variable is given,
name is assumed to refer to a variable.

• variable varName ?value? ?varName value ...?
Creates and refers to, and optionally initializes, variables in the current
namespace.

10.2 Evaluating Tcl Code in a Namespace

To execute a script in a namespace, use the namespace eval command. This
takes the name of a namespace in which to execute and a Tcl script to
evaluate in that namespace, and it returns the result of executing the script. It

221

also creates the namespace if it does not already exist. The proc command
always creates commands relative to the current namespace unless they are
fully specified. Note that all commands in the script that are not found in the
namespace itself are looked up in the global namespace; for example:

You can also declare a procedure within any namespace by giving a fully
qualified name to the proc command, such as ns::newCmd.
To delete a namespace, as opposed to a command within it, use the namespace
delete command. This takes a list of namespaces to delete.
Access to variables within a namespace is set up using the variable
command. This takes the name of a variable to set up within the current
namespace and an optional value to set the variable to. If evaluated within a
procedure, it also arranges for the namespace variable with the given name
to be available within the procedure without qualification.

222

Note

Always declare variables using the variable command. Within a
namespace, if you access a variable that hasn’t explicitly been
declared as a namespace variable, Tcl first checks to see whether there
exists a global variable with that name. If an existing global variable is
found, Tcl uses that in favor of creating a namespace variable.
Although this behavior might seem unexpected at first, it was designed
for easy access to predefined global variables such as argv, env, etc.,
from within a namespace.

The variable command cannot initialize array values, but it can set the
variables up within the namespace or grant access to them from a
procedure. This means that arrays should be initialized in a separate step.

223

When you need to generate a script for handling a callback, such as when
working with the lsort command’s -command option, widget -command options, or
the after or trace commands discussed later in this book, it is best to generate
that script using namespace code. This wraps additional code around the script
to ensure that it gets evaluated in the current namespace rather than in the
namespace in which it was invoked. For example, we could extend the
previous example with the ability to save the catalog to a file so that it does
not get lost when we quit the interpreter, and we could then set it up so that
the catalog gets saved automatically every 10 seconds:

224

10.3 Manipulating Qualified Names

Everything in a namespace can be accessed via its qualified name. This
consists of the name of the namespace with :: and the local name of the
command, variable, or subnamespace appended. These qualified names may
be either absolute, being specified with a :: at the front referring to the
global namespace, or relative to the current namespace (without the double
colon). This is analogous to working with absolute versus relative paths on
a file system.
For the purpose of creating qualified paths, the global namespace itself can
be referenced with just the :: prefix. Thus, ::set refers to the set command in
the global namespace, and ::env refers to the global env array. The catalog
namespace from the previous section was created as a direct child of the
global namespace. Therefore, in the global namespace you can invoke the
add procedure using a relative qualified name of counter::add. From any other
namespace you would need to use the absolute qualified name, ::counter::add.
To work with such qualified names, Tcl provides a number of tools. To get
the namespace part of a qualified name, use the namespace qualifiers command.
It returns the namespace part of the name. The local part of the qualified
name can be obtained using the namespace tail command.

225

To construct a qualified name from parts, just put them together with a literal
::. Note that if you are holding the namespace name in a variable, you
should use one of the alternative forms when substituting the variable
because the :: is otherwise interpreted by the $ variable substitution.

10.4 Exporting and Importing Namespace
Commands

If a namespace presents a public API of some form, it should be exported
from the namespace using the namespace export command. This command
adjusts and inspects a list of glob patterns associated with the namespace
that specify which commands defined within the namespace form its public
API.
Given a public API exported by some namespace, you can import
commands from that API into another namespace so that you can use them
without needing the fully qualified name of the command. This is managed
by the namespace import command, which takes a list of glob patterns that
specify the commands to import (out of the set exported by the other
namespace):

226

Note

The global namespace does not export any commands by default, and
this namespace is left to the application script to manage by
convention. Library packages should not export commands from or
import commands into the global namespace.

The namespace import command has snapshot semantics; it imports only those
commands that are exported at the time when it is called. Also, it does not
overwrite any existing commands, including preexisting imports, by default.
This behavior can be overridden by the -force option. If you wish to remove
previously imported commands from a namespace without the risk of
deleting other commands you may have created, you should use the namespace
forget command.

10.5 Inspecting Namespaces

Tcl provides a number of tools for inspecting namespaces. You can discover
what the current namespace is with the namespace current command, what the
name of its parent namespace is with namespace parent, and what the child
namespaces of the current namespace are with namespace children (which takes
optional namespace and glob pattern arguments for specifying the
namespace to inspect and for constraining the list of returned namespaces
respectively):

227

To discover the commands and variables defined in a namespace, use the
normal info subcommands, and qualify the pattern argument with the name of
the namespace that you wish to inspect:

On the other hand, if you know the unqualified name of a command or
variable, you can get its fully qualified name using namespace which:

The current list of export patterns can be obtained by using the namespace
export command with no arguments.

228

To discover which namespace originally exported a potentially imported
command, use the namespace origin command. This command returns the fully
qualified name of the command from which the argument command came; if
the command was defined in the local namespace, this is just the fully
qualified name of the command.

Note that namespace origin can discover the origin of a command even if it has
been renamed:

 rename eg2 example2
 namespace origin example2
⇒ ::example::eg2

10.6 Working with Ensemble Commands

A very common system of representing a collection of related commands is
as a group of subcommands within an ensemble. This is a common pattern
within Tcl—for example, the string, namespace, and clock commands all follow
it—and it is also common in Tk and many extensions. Tcl provides an
ensemble mechanism to allow script programmers to create their own
groups of related commands with minimal effort. This is done through the
namespace ensemble command.

10.6.1 Basic Ensembles

The easiest way to create an ensemble is to use namespace export (as described
in the preceding section) to publish the commands in a namespace that form
the API. Using namespace ensemble create without any extra arguments in that
namespace creates an ensemble based on the public API with the same fully
qualified name as the namespace itself. You can also test whether a
command is an ensemble using namespace ensemble exists, which returns true if

229

the argument given is the name of a command that is an ensemble:

The subcommands of a namespace may be abbreviated uniquely in use; the
ensemble command invokes the correct subcommand or, if the abbreviation
is not unique, throws a suitable error:

Note that procedures placed inside an ensemble generate an ensemble-
aware error message when they are invoked with an incorrect number of
arguments:

10.6.2 Placing Ensembles Inside Ensembles

You can nest ensembles inside ensembles. This is useful when the ensemble
is modeling a complex API, which is fairly common in situations like Tk
widgets. In the following example, the compute command has two general
subcommands doing computations of the area of shapes and the volume of
solids. These subcommands in turn have their own specialized sub-
subcommands for each of the types of shapes or solids that they support:

230

10.6.3 Controlling the Ensemble Configuration

The namespace ensemble command create takes a number of option-value pairs,
most of which can also be controlled by using the namespace ensemble configure
subcommand. You can define the list of subcommands explicitly using the -
subcommands option. This is useful in situations where you are not defining an
ensemble to have exactly the publicly exported commands of a namespace,
such as when using the global namespace. You can also specify whether
unambiguous prefixes of commands are permitted by using the -prefix option
(true by default), or what the command created by the namespace ensemble create
subcommand is by using the -command option. The namespace that the
ensemble is bound to is readable by fetching the -namespace option, though this

231

cannot be set and is determined automatically at creation time.
There are two other configurable options: -map and -unknown. The -map option
contains a dictionary that maps subcommand names to lists of words. Each
of these lists gives a replacement for the first two words of the command
(that is, the ensemble command name and the subcommand name), and the
overall command created is executed to implement the subcommand being
executed. This provides a general rewriting scheme that allows additional
arguments to be passed to any subcommand implementation, which can be
extremely useful.

As you can see, the -map option allows for the construction of very complex
behavior with a minimum of effort.

10.6.4 Handling Unknown Ensemble Subcommands

The -unknown option is a list of words that forms a command prefix that is
used whenever a subcommand cannot be resolved to one of the existing
subcommands of an ensemble. When an unknown subcommand is
encountered, all the arguments to the ensemble (including the name of the
ensemble itself) are appended to the command prefix (after proper quoting),
and the resulting command is executed. If the returned list is empty, the
ensemble reparses the subcommand name and dispatches to the command
that now implements the subcommand (that is, if the unknown handler
updated at least one of the -map or -subcommand options of the ensemble) or
generates an error. If the returned list is non-empty, it consists of the full list
of arguments (including the command name) to execute for the subcommand,

232

which allows for one-off mappings.
The -unknown option is useful when you are creating an overloading of one of
the core Tcl commands, as it allows you to do so without having to
enumerate the whole list of subcommands that the core Tcl command
supports. For example, the string command does not have a subcommand to
reverse a string, but it is easy to add one like this:

All the unknown handler (unknownStrCmd) does is write an informative message
and hand subcommands through to the (renamed) core version of the string
command. Note that the repeat and replace subcommands have been explicitly
added to the ensemble subcommand map so that unambiguous subcommand
prefixing works as expected.

For performance reasons, it is often better for unknown handlers to update
the ensemble with the subcommand mapping, like this:

233

Note that the messages about the length and index subcommands are printed
only the first time they are used in the ensemble. After that, the ensemble
contains a dynamically built cache of the mapping.

10.7 Accessing Variables from Other Namespaces

Sometimes you need to access variables from a namespace other than the
current one, either because the variable represents some shared state, or
because it has some special properties. There are several ways to do this.
First, you can use the fully qualified name of the variable. This is useful
mainly when the variable is accessed from one place in the code or when it
is a special variable such as the ::env array.
Second, you can use the fully qualified name with global, upvar, or variable to
import the variable into the current namespace. This is often used when only
a limited number of variables are required and their names are fixed.
Third, you can use namespace upvar to import a group of variables from a
single namespace. This is particularly useful when that namespace
represents a context for some operation and the names of the variables
within that potentially variable namespace are static.

234

10.8 Controlling the Name Resolution Path

When a command is invoked within a namespace, the command is looked up
from the name in a process known as resolution. Names starting with the
namespace separator :: are always looked up from the global namespace,
but names containing a namespace separator that is not at the front of the
name are resolved relative to either the current namespace or, if that fails,
relative to the global namespace.
When a name does not contain a namespace separator at all, it is resolved
using the namespace’s resolution path. This path is a list of namespaces that
is controlled using the namespace path command, and it always behaves as if

235

the current namespace is at the front of the list and the global namespace is
on the end. The command is looked up by checking each namespace on the
path in order to see if the command is defined there. The namespace path
command sets the path to the given list or returns the current path if no list is
given.
For example, this allows a service namespace to be spliced in, which
allows result generation to be done using the puts command. This makes
going from interactive testing to deployment extremely easy.

The namespace path command can also be used to make a namespace system
that functions very much like objects and classes:

236

This works by creating a new namespace for every command and setting
that namespace up to resolve its commands using the class namespace
before the global namespace. It then creates a command that just evaluates
its arguments in the namespace, which has the effect of resolving the
subcommand in the class as there are no commands in the object namespace.
The class method procedures should use the upvar 1 command to access the
object namespace; the original caller’s stack frame can be reached using the
upvar 2 command, and the class’s namespace should be accessed using the
variable command:

Notice that it is easy to work with variables in the object, just by using
normal Tcl commands with the object name prefixed:

 $o1 set x 0
⇒ 0

Also note that the preceding variable is created in the object’s namespace
and not in the class’s namespace. The variables in the class are unrelated
unless explicitly synchronized.

237

238

239

11. Accessing Files

This chapter describes Tcl’s commands for dealing with files and
directories. The commands allow you to read and write files sequentially or
in a random-access fashion. They also allow you to retrieve information
kept by the system about files, such as the time of last access. You can
rename, copy, and delete files. Last, these commands can be used to
manipulate file names; for example, you can remove the extension from a
file name or find the names of all files that match a particular pattern.

11.1 Commands Presented in This Chapter

This chapter describes the following commands for manipulating files and
directories. Most of these commands also work with interprocess pipes and
network sockets, covered in Chapter 12. In Tcl terminology, files, pipes, and
network sockets are considered channels. All of the I/O-related commands
work on any channel.

• cd ?dirName?
Changes the current working directory to dirName, or to the home directory
(as given by the HOME environment variable) if dirName isn’t given. Returns an
empty string.

• glob ?option ...? ?--? pattern ?pattern ...?
Returns a list of the names of all files that match any of the pattern arguments
(special characters ?, *, [], {}, and \). The optional -- argument signals the
end of options. See the reference documentation for more information on
allowed options.

• pwd
Returns the full path name of the current working directory.

• chan close channelID
close channelID

Closes the channel given by channelID. Returns an empty string. The chan close
command, introduced in Tcl 8.5, simply incorporates the close functionality
into the chan ensemble.

• chan eof channelID
eof channelID

Returns 1 if an end-of-file condition has occurred during the most recent

240

read from channelID, 0 otherwise. Starting with Tcl 8.5, eof is deprecated in
favor of chan eof.

• file option name ?arg arg ...?
Performs one of several operations on the file name given by name or on the
file to which it refers, depending on option. See this chapter and the
reference documentation for more information.

• chan flush channelID
flush channelID

Writes out any buffered output that has been generated for channelID. Returns
an empty string. Starting with Tcl 8.5, flush is deprecated in favor of chan
flush.

• chan gets channelID ?varName?
gets channelID ?varName?

Reads the next line from channelID and discards its terminating end-of-line
character(s). If varName is specified, it places the line in that variable and
returns a count of characters in the line (or -1 for end of file). If varName isn’t
specified, it returns the line of characters read (or an empty string for end of
file). The chan gets command, introduced in Tcl 8.5, simply incorporates the
gets functionality into the chan ensemble.

• open name ?access?
Opens the file name in the mode given by access. access may be r, r+, w, w+, a, or
a+ or a list of flags such as RDONLY; it defaults to r. Returns a file identifier for
use in other commands like gets and close. If the first character of name is |, a
command pipeline is invoked instead of a file being opened (see Section
12.4 for more information).

• chan puts ?-nonewline? ?channelID?string
puts ?-nonewline? ?channelID?string

Writes string to channelID, appending a newline character unless -nonewline is
specified. channelID defaults to stdout. Returns an empty string. The chan puts
command, introduced in Tcl 8.5, simply incorporates the puts functionality
into the chan ensemble.

• chan read ?-nonewline? channelID
chan read channelID numChars
read ?-nonewline? channelID
read channelID numChars

Reads and returns the next numChars characters from channelID (or up to the end
of the file, if fewer than numChars characters are left). If numChars is omitted, it
reads and returns the remaining characters of the file; when combined with -
nonewline, the final newline, if any, is dropped. The chan read command,
introduced in Tcl 8.5, simply incorporates the read functionality into the chan

241

ensemble.
• chan seek channelID offset ?origin?

seek channelID offset ?origin?
Positions channelID so that the next access starts at offset bytes from origin.
origin may be start, current, or end and defaults to start. Returns an empty
string. Starting with Tcl 8.5, seek is deprecated in favor of chan seek.

• chan tell channelID
tell channelID

Returns the byte offset from the start of the file of the current access position
for channelID. Starting with Tcl 8.5, tell is deprecated in favor of chan tell.

• chan configure channelID ?optionName? ?value?
 ?optionName value ...?
fconfigure channelID ?optionName? ?value?
 ?optionName value ...?

Queries or sets the configuration options of the channel channelID. If no
optionName or value arguments are supplied, the command returns a dictionary
of all configuration options and their values. If optionName is supplied but no
value, the command returns the current value of the given option. If one or
more pairs of optionName and value are supplied, the command sets each of the
named options to the corresponding value; in this case the return value is an
empty string. See the text and the reference documentation for a description
of the supported options. Starting with Tcl 8.5, fconfigure is deprecated in
favor of chan configure.

• chan copy inputChan outputChan ?-size size?
 ?-command callback?
fcopy inputChan outputChan ?-size size?
 ?-command callback?

Copies data from the channel inputChan, which must have been opened for
reading, to the channel outputChan, which must have been opened for writing.
The chan copy command transfers data from inputChan until either the end of
file or the maximum of size bytes has been transferred, if specified. By
default, the command blocks transfer takes place in the foreground, and it
returns the number of bytes written to outputChan. If you provide the -command
option, chan copy returns immediately, and once the copy is completed,
callback is invoked with one or two additional arguments that indicate how
many bytes were written to outputChan. If an error occurred during the
background copy, the second argument is the error string associated with the
error. Starting with Tcl 8.5, fcopy is deprecated in favor of chan copy.

11.2 Manipulating File and Directory Names

242

Every file has a name. File names are specified in Tcl using the normal Unix
syntax. For example, the file name x/y/z refers to a file named z that is
located in a directory named y, which in turn is located in a directory named
x, which must be in the current working directory. The file name /top refers
to a file top in the root directory. You can also use tilde notation to specify a
file name relative to a particular user’s home directory. For example, the
name ~ouster/mbox refers to a file named mbox in the home directory of user
ouster, and ~/mbox refers to a file named mbox in the home directory of the user
running the Tcl script. These conventions (and the availability of tilde
notation in particular) apply to all Tcl commands that take file names as
arguments.
Windows systems differ from these Unix conventions. For Windows
systems, a backslash separates directories, rather than a forward slash. The
backslash, \, can be problematic in Tcl and other languages based on C
programming conventions. You normally need to escape a backslash with a
second backslash in a context where Tcl can perform substitutions on the
path (for example, \\apps\tcl), or else protect the path from substitution (for
example, {\apps\tcl}). This gets more complicated with network shares,
when there are two backslashes that must be escaped, as in \\\\host\\share. In
addition, Windows disk drives do not get mounted under one root directory
(as on Unix, Linux, and Mac OS X platforms). Instead, Windows uses a
drive letter, such as C:, to indicate the disk drive.
To handle the file-naming differences, use the Tcl file join and file split
commands to properly combine file names with directory names in a cross-
platform manner. file is a general-purpose command with many options that
can be used both to manipulate file names and to retrieve information about
files. The commands in this section operate purely on file names. They make
no system calls and do not check to see if the names correspond to actual
files.
Consider the following example, which generates a full path name to a file
relative to the user’s home directory:

Notice that the file join command returns a Unix-style path that contains /
characters for directory delimiters, no matter the original format of the
individual path components. You can use a “Tcl-native” path format like this

243

with all Tcl commands that access the file system, as well as paths with the
platform-specific directory delimiter. In addition, if any component starts at
the root level, such as with a leading /, the file join command discards all
the previous components.

Note

Use the file join command so that your scripts are not inadvertently tied
to just one platform, such as Unix or Windows.

Note that some directory names include spaces. Tcl commands use spaces
as separators, so you need to properly group the arguments to the file join
command; for example:

Use the file split command to break a file name path into its component
parts; for example:

 file split x/y/z
⇒ x y z

The file nativename command returns a file name formatted for native usage.
This is especially useful when you call the exec command, covered in
Chapter 12, or when writing the path to disk or presenting the path to the
user. With the exec command, you need to pass file names in the expected, or
native, format. For example, the file nativename command expands the tilde
character to identify a person’s home directory:

file dirname removes the last component from a file name, which ostensibly
produces the name of the directory containing the file:

However, the file command does not check to be sure that there really is a
file or directory corresponding to the name.

244

file extension returns the extension for a file name (all the characters starting
with the last . in the name), or an empty string if the name contains no
extension:

 file extension src/main.c
⇒ .c

file rootname returns everything in a file name except the extension:

file tail returns the last component of a file name (that is, the name of the
file within its directory):

The file normalize command returns a unique normalized path representation
for the file or directory, whose string value can be used as a unique
identifier for it. A normalized path is an absolute path that has all ../ and ./
removed. Additionally, on Unix and Mac OS systems the segments leading
up to the path must be free of symbolic links/aliases, and on Windows
systems it provides the long form with that form’s case dependence; for
example:

The file pathtype command tells you information about a file name, such as
whether it has an absolute or a relative path. This command returns either
absolute, relative, or volumerelative, depending on the type of the file name
passed to the command. Relative files have names relative to the current
working directory. Similarly, volumerelative indicates a name relative to a
given mounted volume or disk. You will find many volumerelative files on
Windows systems. Use the following commands as a guide to file pathtype:

245

Finally, the file volumes command lists all mounted volumes. On Unix and
Mac OS X systems, it should return / for the root directory. On Windows, it
returns a Tcl version of all mounted drives, such as c:/.

11.3 The Current Working Directory

With Tcl, you can provide file names that either are absolute paths or are
named relative to the current working directory. Thus, it is often important
to know which directory is the current working directory.
Tcl provides two commands that help to manage the current working
directory: pwd and cd. pwd takes no arguments and returns the full path name of
the current working directory. cd takes a single argument and changes the
current working directory to the value of that argument. If cd is invoked with
no arguments, it changes the current working directory to the home directory
of the user running the Tcl script (cd uses the value of the HOME environment
variable as the path name of the home directory).

11.4 Listing Directory Contents

The glob command takes one or more patterns as arguments and returns a list
of all the file names that match the pattern(s):

 glob *.c *.h
⇒ main.c hash.c hash.h

glob uses the matching rules of the string match command (see Chapter 5). In
the preceding example glob returns the names of all files in the current
directory that end in .c or .h. glob also allows patterns to contain comma-
separated lists of alternatives between braces, as in the following example:

glob treats this pattern as if it were actually multiple patterns, each
containing one of the strings, as in the following example:

glob {src/*.[ch]} {backup/*.[ch]}

246

Note

The extra braces around the patterns in these examples are needed to
keep the brackets inside the patterns from triggering command
substitution. They are removed by the Tcl parser in the usual fashion
before the command procedure for glob.

If a glob pattern ends in a slash, it matches only directory names. For
example, the command

glob */

returns a list of all the subdirectories of the current directory.
You can specify that the glob command return only particular types of files
with the -types option. As an argument to -types, provide a list of one or more
of the following: b for block-special devices, c for character devices, d for
directory, f for plain file (not directory), l (“ell”) for symbolic links, p for
named pipes, and s for sockets. You can also provide flags for file access
permissions—r for read permission, w for write permission, x for execute
permission—as well as hidden for hidden files and readonly for files with only
read permission. You can combine more than one item, but any name
returned by glob needs to match at least one of the file type items and all of
the file permission items. For example, to find all files (but not directories)
for which you have both read and write permission, use a command like the
following:

 glob -types { f r w } *
⇒ b.txt c.txt

If you have just one type of item to look for, you can use a simpler syntax:

 glob -types f *
⇒ b.txt c.txt

The -directory option tells glob to start in a given directory; for example:

In this case, the * passed to glob gets interpreted inside the given directory,
/usr/local. This option is useful if the directory name contains characters that
would otherwise be treated as wildcards or other metacharacters in the glob

247

pattern.
The -path option tells the glob command to search for files with names that
start with the value given to -path. This is mostly useful when you have file
names that somehow interfere with the glob command. You cannot use the -
path option with the -directory option. The main difference is that the -
directory option tells glob to start in a given directory, whereas -path tells glob
to use names starting with the given prefix. The value passed to -path can
include a directory name as well as characters that start file names. The -
directory option accepts only the name of a directory.
The -tails option tells the glob command to return only the part of the names
that comes after the values specified in the -directory or -path options. For
example, compare the following:

The special -join option tells glob to treat all the remaining options as one
large pattern, using a directory separator to join the elements. This basically
works like the file join command but uses the results as the glob path.
By default, glob raises an error if no files match the patterns you provide.
You can suppress the error condition by supplying the -nocomplain option to
glob, in which case it simply returns an empty list if no files match.

11.5 Working with Files on Disk

Tcl provides a variety of commands for performing operations such as
moving, renaming, copying, and deleting files on disk. These commands
directly invoke operating system function calls to perform their actions, so
they are efficient as well as platform-independent. Your scripts should
always use these Tcl commands to perform these actions rather than using
exec to execute platform-specific commands.

11.5.1 Creating Directories

Create new directories with the file mkdir command, short for “make
directory” (and named after a Unix and DOS command); for example:

248

11.5.2 Deleting Files

Delete files with the file delete command:

file delete a.txt

You must list each file as a separate argument, such as

file delete a.txt b.txt

This command deletes two files. The file delete command does not perform
wildcard expansion, so the following example would delete only a file
named *.tmp:

file delete *.tmp

The proper way to handle such a case is to use the glob command to return a
list of files matching the pattern, then use Tcl’s argument expansion syntax to
provide the list elements as separate arguments to file delete:

file delete {*}[glob *.tmp]

You can use file delete to delete a directory simply by providing the
directory’s name as an argument. However, file delete raises an error if the
directory is not empty:

Use the -force option to delete the non-empty directory. This option also
recursively deletes all files and directories stored under the deleted
directory, so use it with care.

11.5.3 Copying Files

While you can write Tcl procedures to read in the contents of a file and

249

write the output to another file, it is far easier to use the Tcl file copy
command to copy files. The file copy command copies one file, the source,
to another, the destination; for example:

The file copy command copies the file a.txt to b.txt. The glob command then
verifies that the new file, b.txt, now exists.
The file copy command raises an error if the target file already exists, as in
the following example:

You can tell the file copy command to overwrite the target file with the -force
option:

file copy -force a.txt b.txt

You can also copy a number of files to a target directory. For example:

file copy a.txt b.txt Documents

This command copies two files, a.txt and b.txt, to the target directory,
Documents. In this case, the target must be a directory, not a regular file.

11.5.4 Renaming and Moving Files

Use the file rename command to give a new name to a file or directory. You
need to provide the name of the source file or directory as well as the new
name; for example:

file rename b.txt c.txt

This command renames b.txt to its rather original new name, c.txt. If the
target already exists, you need to provide the -force option to cause file
rename to overwrite the target; otherwise it raises an error.
If the target name refers to another directory, the file rename command moves
the file to its new location. You can also specify a directory as a source, in

250

which case the directory is either renamed or moved.

11.5.5 File Information Commands

In addition to the options already discussed, the file command provides
many other options that can be used to retrieve information about files. Each
of these options except stat and lstat has the form

file option name

where option specifies the information desired, such as exists or readable or
size, and name is the name of the file.
The exists, isfile, isdirectory, and type options return information about the
nature of a file. file exists returns 1 if a file by the given name exists and 0 if
there is no such file or the current user doesn’t have search permission for
the directories leading to it. file isfile returns 1 if the file is an ordinary disk
file and 0 if it is something else, such as a directory or device file. file
isdirectory returns 1 if the file is a directory and 0 otherwise. file type returns
a string such as file, directory, or socket that identifies the file type.
The readable, writable, and executable options return 0 or 1 to indicate whether
the file exists, and if so whether the current user is permitted to carry out the
indicated action on the file. The owned option returns 1 if the current user is
the file’s owner and 0 otherwise.
The size option returns a decimal string giving the size of the file in bytes.
filemtime returns the time when the file was last modified. The time value is
returned in the standard POSIX form for times, namely, a signed integer
giving the number of seconds since January 1, 1970, 00:00 UTC, otherwise
known as the epoch time. The atime option is similar to mtime except that it
returns the time when the file was last accessed. See Chapter 15 for more
information on Tcl’s facilities for manipulating epoch time.
The stat option provides a simple way to get many pieces of information
about a file at one time. Using stat can be significantly faster than invoking
file many times to get the pieces of information individually. file stat also
provides additional information that isn’t accessible with any other file
options. It takes two additional arguments, which are the name of a file and
the name of a variable, as in the following example:

file stat main.c info

In this case the name of the file is main.c and the variable name is info. The

251

variable is treated as an array, and the elements shown in Table 11.1 are set,
each as a decimal string.

Table 11.1 Array Elements Returned by the file stat Command

The atime, mtime, and size elements have the same values as produced by the
corresponding file options discussed earlier. For more information on the
other elements, refer to your system documentation for the stat system call;
each of the elements is taken directly from the corresponding field of the
structure returned by stat.
The lstat and readlink options are useful when dealing with symbolic links,
and they can be used only on systems that support symbolic links. file lstat
is identical to file stat for ordinary files, but when it is applied to a
symbolic link, it returns information about the symbolic link itself, whereas
file stat returns information about the file to which the link points. file
readlink returns the contents of a symbolic link, that is, the name of the file to
which it refers; it may be used only on symbolic links. For all of the other
file commands, if the name refers to a symbolic link, the command operates
on the target of the link, not the link itself.

11.5.6 Dealing with Oddly Named Files

Tcl commands use a leading dash to indicate an option to the command. For
example, the file copy command accepts a -force option. You’ll face
problems, though, if the files you need to work with have names starting
with dashes. That’s because the Tcl commands assume the names starting

252

with dashes are options, not file names.
To handle cases like this, put a double dash, --, after the command and prior
to the names of the files. For example, to copy a file named -force, use a
command like the following:

file copy -force -- -force b.txt

This command forces the copy with the -force option, and then separates the
command-line options from the file names with the --.

11.6 Reading and Writing Files

Tcl’s history as a scripting language led to an emphasis on working with text
files. Tcl was originally created on Unix systems where most information,
including application data and system configuration settings, is stored in
plain text files. Thus, most Tcl file commands assume that the content of the
files you work on is text. However, Tcl provides the capability to read,
write, and manipulate data in binary format as well.

11.6.1 Basic File I/O

The Tcl commands for file I/O are similar to the procedures in the C
standard I/O library, both in their names and in their behavior. Here is a
script called tgrep that illustrates most of the basic features of file I/O:

This script behaves much like the Unix grep program, which searches files
for text that matches a given pattern. You can invoke it from your shell with
two arguments, a regular expression pattern and a file name, and it prints out

253

all of the lines in the file that match the pattern.
After making sure that it received enough arguments, the script invokes the
open command on the file to search, which is the second argument to the
script. open takes two arguments: the name of a file and an access mode. The
access mode provides information such as whether you’ll be reading the file
or writing it, and whether you want to append it to the end of file or access
it from the beginning. The access mode may have one of the following
values:

• r—open for reading only. The file must already exist. This is the
default if the access mode isn’t specified.

• r+—open for reading and writing; the file must already exist.
• w—open for writing only. Truncates the file (deletes all existing

content) if it already exists; otherwise creates a new empty file.
• w+—open for reading and writing. Truncates the file (deletes all

existing content) if it already exists; otherwise creates a new empty
file.

• a—open for writing only. Sets the initial access position to the end of
the file. Thus, writing appends to the end of the existing content
unless you reset the access position. If the file doesn’t exist, creates
a new empty file.

• a+—open the file for reading and writing. Sets the initial access
position to the end of the file. If the file doesn’t exist, creates a new
empty file.

The access mode may also be specified as a list of POSIX flags like RDONLY,
CREAT, and TRUNC. See the reference documentation for more information about
these flags.
The open command returns a string such as file3 that identifies the open file.
This file identifier is used when invoking other commands to manipulate the
open file, such as gets, puts, and close. Normally you save the file identifier
in a variable when you open a file, and then use that variable to refer to the
open file. You should not expect the identifiers returned by open to have any
particular format.
Three file identifiers have well-defined names and are always available to
you, even if you haven’t explicitly opened any files. These are stdin, stdout,
and stderr; they refer to the standard input, output, and error channels for the
process in which the Tcl script is executing.

Note

254

On Windows, these default channels work only for console
applications, not windowed applications.

The file channels command lists all open channels. For example, unless you
have explicitly opened additional channels, this command typically returns
only the standard I/O channels:

 file channels
⇒ stdin stdout stderr

After opening the file to search, the tgrep script reads the file one line at a
time with the gets command. gets normally takes two arguments: a file
identifier and the name of a variable. It reads the next line from the open
file, discards the terminating end-of-line character or characters, stores the
line in the named variable, and returns a count of the number of characters
stored into the variable, not including the end-of-line sequence. If the end of
the file is reached before any characters are read, gets stores an empty string
in the variable and returns -1.

Note

Tcl also provides a second form of gets where the line is returned as
the result of the command, and a read command for non-line-oriented
input.

The tgrep script matches each line in the file against the pattern and prints it
with puts if it matches. The puts command takes two arguments, which are a
file identifier and a string to print. puts adds a newline character to the string
and outputs the line on the given file. The script doesn’t specify the output
file identifier, so it uses the default stdout and the line is printed on standard
output.
When tgrep reaches the end of the file, gets returns -1, which ends the while
loop. The script then closes the file with the close command; this releases the
resources associated with the open file. In most systems there is a limit on
how many files may be open at one time in an application, so it is important
to close files as soon as you are finished reading or writing to them. In this
example the close is unnecessary, since the file is closed automatically when
the application exits, but a good practice.

255

11.6.2 Output Buffering

The puts command uses the buffering scheme of the C standard I/O library.
This means that information passed to puts may not appear immediately in
the target file. In many cases (particularly if the file isn’t a terminal device)
output is buffered in the application’s memory until a large amount of data
has accumulated for the file, at which point all of the data will be written
out in a single operation; 4KB buffers are common on many operating
systems. (See Chapter 12 for more on buffering options.) If you need data to
appear in a file immediately, you should invoke the flush command:

flush $f

The flush command takes a file identifier as its argument and forces any
buffered output data for that file to be written to the file. flush doesn’t return
until the data has been written. Buffered data is also flushed when a file is
closed.

11.6.3 Handling Platform End-of-Line Conventions

On Unix and Linux systems each line of text in a file ends with a newline
character (ASCII decimal 10). Old Macintosh systems (predating Mac OS
X) used a single carriage return character (ASCII decimal 13) instead;
modern Macintosh systems follow Unix conventions. Windows systems,
though, use two characters: a carriage return followed by a newline. Just
accessing text files quickly becomes an exercise in operating system
differences.
For the most part, Tcl handles these differences automatically. When writing
to a file, the puts command automatically translates a newline character into
the proper one- or two-character sequence, depending on the platform.
Thus, you can always use \n in your Tcl scripts to indicate the end of a line.

Note

Remember that the puts command automatically appends an end-of-line
sequence to the end of the string it writes. You can use the -nonewline
option to suppress the end-of-line sequence.

256

By default, the gets command accepts any of the supported end-of-line
conventions to determine the end of a line. The end-of-line convention can
even change from line to line in the file. The read command functions the
same way by default, and any end-of-line sequence read from the input is
translated into a newline character in the string returned. Additionally, the -
nonewline option tells the read command to discard the trailing newline in the
string returned if the last character (or characters) consists of an end-of-line
sequence.
You can use the chan configure command (or fconfigure, for compatibility with
older versions of Tcl) to query or modify the default end-of-line behavior
for any given channel or file; for example:

 chan configure stdin -translation
⇒ auto

With no additional argument, this command returns the end-of-line
translation mode for the channel. You can also provide an additional
argument to set the translation mode of the channel. A single-element list
sets the translation for both input and output, if the channel is bidirectional.
You can also provide a two-element list where the first element specifies
the input translation and the second element specifies the output translation.
By default, channels have a translation of auto. For input channels, auto
means that all end-of-line sequences are treated as newlines; for output
channels, the platform-specific convention is used automatically. A value of
cr, lf, or crlf indicates to use only a newline, a carriage return, or a carriage
return–newline sequence respectively for the end-of-line convention for the
channel. For example, setting the translation to crlf on an output channel
indicates that all newline characters should be translated to carriage return–
newline sequences when written. In contrast, setting the translation to cr on
an input channel indicates that only a carriage return character should be
treated as an end of line, and when read it is translated into a newline
character for use by Tcl. You can use a translation of binary to indicate that
no end-of-line translations should take place; this also automatically sets the
-encoding for the channel to binary (see Section 11.6.4).
Taking advantage of Tcl’s automatic conversion of line endings, you can use
the read command to create an alternate implementation of the previous tgrep
script:

257

Note the use of the split command to split the string returned by read at each
newline character. This results in a list of lines over which the foreach
command can iterate. Through the use of read, this script can be much more
efficient than the previous tgrep script, which used the gets command to
access the file system for each line. With read the script loads the entire
contents of the file into memory and then checks for the matching patterns.
This is much more efficient for files that are not too large. But using this
technique for very large files can use too much memory, which then can
result in paging memory out to disk, significantly slowing your system.

11.6.4 Handling Character Set Encoding

As discussed in Chapter 5, Tcl represents all strings internally as Unicode
characters in UTF-8 format. However, Tcl automatically converts strings
from the internal UTF-8 format to the system encoding and vice versa
whenever writing and reading text on a channel. So if you are working with
a text file that uses the same encoding as the system encoding, you don’t
need to take any special steps for Tcl to handle the file correctly.
On the other hand, if the file doesn’t use the same encoding as the system
encoding (or you’d like to create a file with an encoding other than the
system encoding), you can use the -encoding option to chan configure (or
fconfigure, for compatibility with older versions of Tcl) to specify the
encoding for Tcl to use for the file; for example:

chan configure $fid -encoding shiftjis

258

Note

To prevent Tcl from performing any character encoding translation
when working with binary files, you should use chan configure to set the
-translation to binary. Not only does this prevent platform-specific end-
of-line character translation, but it also automatically sets the -encoding
option on the channel to binary to prevent character encoding
translation.

11.6.5 Working with Binary Files

Tcl assumes by default that all files are text files. As discussed in the
previous section, if the file you are manipulating contains binary
information, you should use chan configure to set the -translation to binary:

chan configure $fid -translation binary

To read from the file, you would then typically use the read command,
specifying the number of bytes of data to read. You could then use the binary
scan command, described in Chapter 5, to “unpack” the binary information
into Tcl variables:

Conversely, to write binary data to a file, you would typically “pack” the
values into a binary string with the binary format command, described in
Chapter 5, and write the string to the file using the puts command. In most
cases you should use the -nonewline option to puts to prevent it from
automatically adding a newline character after the bytes written:

11.6.6 Random Access to Files

File I/O is sequential by default—each gets or read command returns the next

259

bytes after the previous gets or read command, and each puts command writes
its data immediately following the data written by the previous puts
command. However, you can use the chan seek, chan tell, and chan eof
commands to access files nonsequentially. (Equivalent seek, tell, and eof
commands are available for compatibility with older versions of Tcl.)
Each open file has an access position, which is the location in the file
where the next read or write will occur. When a file is opened, the access
position is set to the beginning or the end of the file, depending on the
access mode you specified to open. After each read or write operation the
access position increments by the number of bytes transferred. You can use
the chan seek command to change the current access position. In its simplest
form chan seek takes two arguments, a file identifier and an integer offset
within the file. For example, the command

chan seek $f 2000

changes the access position for the file so that the next read or write will
start at byte number 2000 in the file.

Note

The offset value is defined in terms of bytes, not characters. Thus, it
may place the access position in the middle of a multibyte character
sequence.

chan seek can also take a third argument that specifies an origin for the offset.
The third argument must be either start, current, or end. start produces the
same effect as if the argument were omitted: the offset is measured relative
to the start of the file. current means that the offset is measured relative to the
file’s current access position, and end means that the offset is measured
relative to the end of the file. For example, the following command sets the
access position to 100 bytes before the end of the file:

chan seek $f -100 end

If the origin is current or end, the offset may be either positive or negative; for
start the offset must be positive.

Note

260

It is possible to seek past the current end of the file, in which case the
file may contain a hole. Check the documentation for your operating
system for more information on what this means.

The chan tell command returns the current access position (in bytes, not
characters) for a particular file identifier:

 chan tell $f
⇒ 186

This allows you to record a position and return to it later.
The chan eof command takes a file identifier as argument and returns 0 or 1 to
indicate whether the most recent gets or read command for the file attempted
to read past the end of the file:

 chan eof $f
⇒ 0

In most cases you’ll use the chan eof command to detect the end of a file
when using non-blocking channels. See Chapter 12 for more on this.

11.6.7 Copying File Content

Section 11.5.3 discussed the file copy command, which duplicates a file on
disk. The file copy command is easy to use, but it does have its limitations: it
creates a byte-for-byte duplicate of the original file and works only for on-
disk files. A more flexible alternative is the chan copy command (or fcopy, for
compatibility with older versions of Tcl), which allows transformations,
such as changing the character encoding, and works with any supported Tcl
channel type, such as pipes and sockets as well as on-disk files.
In its simplest form, the chan copy command accepts an input channel opened
for reading and an output channel opened for writing as arguments. The
input channel is read until an end of file is encountered, and the content is
written to the output channel. Alternatively, you can use the -size option to
specify a maximum number of bytes to read from the input channel. As an
example, the following copies the contents of a file, translating from EUC-
JP to Shift_JIS encoding:

261

By default, the chan copy command blocks, not returning until the copy is
complete; its return value is the number of bytes written to the output
channel. You have the option of specifying a callback with the -command
option, in which case the chan copy command returns immediately. The copy
takes place in the background, and upon completion Tcl invokes the
callback, appending one or two arguments. The first argument is the number
of bytes written to the output channel. The second is present only if an error
took place during the copy, in which case it consists of the error message.

Note

The background copy takes place only while Tcl’s event loop is
running. If the event loop is not already running, you’ll need to start it
with a command such as vwait. Additionally, you should not have any
channel event handlers, as registered with the chan event or fileevent
commands, active during the background copy. Chapter 12 has more
information on the event loop, the vwait command, and channel event
handlers.

The following code shows an example of a background copy:

262

The copyComplete procedure implements the callback to execute once the file
copy is complete. If only one argument is passed to it, the copy completed
successfully; if more than one argument is provided, an error occurred
during the copy, and the procedure prints the error message to the console.
After the input and output channels are opened and configured, the chan copy
command initiates the background copy. The vwait command starts the event
loop; the vwait command waits until the global variable enter_loop is set
(which is done during execution of the copyComplete callback script), at which
point the event loop terminates and the vwait command returns. At this point,
the two channels are closed.

11.7 Virtual File Systems

Starting with Tcl 8.4, Tcl’s file commands support virtual file systems. This
means that Tcl extensions can add support for other services to appear to Tcl
as if they were file systems. For example, FTP network file access can
appear to Tcl commands such as glob or file as if the remote files were
really local on your hard disk, or files within a ZIP archive can be accessed
as though they were individual files on the file system. Using such a virtual
file system makes writing Tcl scripts a lot easier. You merely use the normal

263

file commands in Tcl and let the Tcl extension perform all the difficult work.
And, if the mapped file system supports it, you can create new files or edit
existing ones on the mounted virtual file system, even if the underlying data
is not a file. Some of the most exciting developments in Tcl, Starpacks and
Starkits in particular, use virtual file systems. See Chapter 14 for more on
these.
The tclvfs extension provides a set of bindings to virtual file systems that
you can access from Tcl commands. These include ZIP archives, FTP
network access, Metakit files (used by Starkits and Starpacks), as well as
WebDAV and HTTP network protocols. One of the most common uses,
though, is mounting compressed files as if they were file systems. This
allows you to browse the contents of a ZIP archive, for example, or read
individual files from it.
The following code mounts a ZIP file as if it were under a virtual directory
named zip within the current working directory:

This example uses the ZIP file of Tcl 8.5 sources downloaded from
http://tcl.sourceforge.net; you can use any ZIP files you have handy instead.
Once it is mounted, you can access a virtual file system as if it were a
normal file system. For example, to list the top-level files in the Tcl source
distribution just mounted, you could use a command like the following:

In this example, the glob command returns all files underneath the directory
zip/tcl8.5.2. The zip part comes from where we mounted the virtual file
system. The tcl8.5.2 part comes from the top-level directory inside the ZIP
file.

Note

If the package require command fails, you need to install the tclvfs
extension. The easiest way to do this is to download the ActiveTcl
release, which includes a precompiled version of tclvfs. You can also

264

http://tcl.sourceforge.net

download the source code for tclvfs from
http://sourceforge.net/projects/tclvfs.

Once you have mounted virtual file systems, you can use the vfs::filesystem
info command to get a list of all mounted ones; for example:

 puts [vfs::filesystem info]
⇒ {/Users/ericfj/Documents/tcl/zip}

When you’re finished with a virtual file system, use the vfs::filesystem unmount
command to unmount it:

vfs::filesystem unmount zip

As another example, consider mounting an mk4, or Metakit, file as a virtual
file system. Tcl Starkits and Starpacks are Metakit files. You can download
a Starkit file, such as tclhttpd.kit (an HTTP server written in Tcl), from sites
such as http://tcl.tk/starkits. This file provides a good example of a Metakit
file, along with a nice Tcl source code example that shows how to build an
HTTP (web) server.
You can access the contents of a Starkit file similarly to a ZIP file; for
example:

When you run this script, you’ll see output such as the following:

See the reference documentation on vfs and vfs-filesystems for more
information on how to use virtual file systems.

11.8 Errors in System Calls

265

http://sourceforge.net/projects/tclvfs
http://tcl.tk/starkits

Most of the commands described in this chapter invoke calls on the
operating system, and in many cases the system calls can return errors. This
can happen, for example, if you invoke open or file stat on a file that doesn’t
exist, or if an I/O error occurs in reading a file. The Tcl commands detect
these system call errors and in most cases return errors themselves. The
error message identifies the error that occurred:

When an error occurs in a system call, Tcl also sets the errorCode global
variable and the -errorCode key in the return options dictionary to provide
additional information about the error. The value is typically a three-
element list, where the first element is the string POSIX, the second element is
a symbolic error name such as ENOENT, and the last element is a human-
readable error message. See Chapter 13 for more information on error
handling.

266

267

12. Processes and Interprocess
Communication

Tcl provides several commands for dealing with processes. You can create
new processes with the exec command, or you can create new processes
with open and then use file I/O commands to communicate with them. Tcl
also supports interprocess communication via TCP/IP sockets. You can
access process identifiers with the pid command. You can read and write
environment variables using the env variable, and you can terminate the
current process with the exit command.

12.1 Commands Presented in This Chapter

This chapter discusses the following commands related to process control
and interprocess communication:

• exec ?-keepnewline? ?-ignorestderr? ?--? arg ?arg ...?
Executes the command pipeline specified by args using one or more
subprocesses and returns the pipeline’s standard output or an empty string if
output is redirected (the trailing newline, if any, is dropped unless -
keepnewline is specified). I/O redirection and pipes may be specified. If the
last arg is &, the pipeline is executed in background and the return value is a
list of its process IDs. If any process writes to its standard error channel
and that output is not explicitly redirected, exec raises an error unless the -
ignorestderr option is specified.

• exit ?code?
Terminates a process, returning code to the parent as the exit status. code must
be an integer and defaults to 0.

• open |command ?access?
Treats command as a list with the same structure as arguments to exec and
creates subprocess(es) to execute command(s). Depending on access, it
creates pipes for writing input to a pipeline and/or reading output from it.
Returns a file identifier for communicating with the subprocesses.

• pid ?fileID?
If fileID is omitted, returns the process identifier for the current process.
Otherwise it returns a list of all the process IDs in the pipeline associated

268

with fileID (which must have been opened using |).
• socket ?options? host port

Opens a client-side TCP/IP socket connection to the host and port indicated,
returning a channel identifier for the socket connection created. The host may
be either a domain-style host name or a numerical IP address. The port may
be an integer port number (or a service name, where supported and
understood by the host operating system). See the following sections and the
reference documentation for a description of the supported options.

• socket -server command ?options? port
Opens a TCP/IP server socket for the port, returning the channel identifier of
the server socket created. The port may be an integer port number (or a
service name, where supported and understood by the host operating
system); a value of 0 causes the operating system to allocate an unused port
for the server socket. When a client connects to the server port, Tcl
automatically creates a new channel to use for communication with that
client, then invokes the specified command with three additional arguments: the
new client communication channel, the client IP address, and the client port
number. Closing the server channel shuts down the server so that no new
connections are accepted. See the following sections and the reference
documentation for a description of the supported options.

• chan configure channelID ?optionName? ?value?
 ?optionName value ...?
fconfigure channelID ?optionName? ?value?
 ?optionName value ...?

Queries or sets the configuration options of the channel channelID. If no
optionName or value arguments are supplied, the command returns a dictionary
of all configuration options and their values. If optionName is supplied but no
value, the command returns the current value of the given option. If one or
more pairs of optionName and value are supplied, the command sets each of the
named options to the corresponding value; in this case the return value is an
empty string. See the following sections and the reference documentation for
a description of the supported options. Starting with Tcl 8.5, fconfigure is
deprecated in favor of chan configure.

• chan event channelID event ?script?
fileevent channelID event ?script?

Installs the Tcl script script as a file event handler to be called whenever
channelID enters the state described by event (which must be either readable or
writable). Only one such handler may be installed per event per channel at a
time. If script is an empty string, the current handler is deleted. If script is
omitted, the currently installed script is returned (or an empty string if no

269

such handler is installed). Starting with Tcl 8.5, fileevent is deprecated in
favor of chan event.

• vwait variableName
Enters the Tcl event loop, and continues to process all events received until
some event handler sets the value of the variable specified by variableName.
At that point, once the event handler that set the variable completes, the vwait
command finally returns.

12.2 Terminating the Tcl Process with exit

Invoking the exit command terminates the process in which the command
was executed. exit takes an optional integer argument. If this argument is
provided, it is used as the exit status to return to the parent process. 0
indicates a normal exit, and nonzero values correspond to abnormal exits;
values other than 0 and 1 are rare. If no argument is given to exit, it exits with
a status of 0. Since exit terminates the process, it doesn’t have any return
value.

12.3 Invoking Subprocesses with exec

The exec command creates one or more subprocesses and waits until they
complete before returning. For example,

exec rm main.o

executes rm as a subprocess, passes it the argument main.o, and returns after rm
completes. The arguments to exec are similar to what you would type as a
command line to a shell program such as sh or csh. The first argument to exec
is the name of a program to execute, and each additional argument forms one
argument to that subprocess.

Note

The preceding example is for illustration only. If your goal is to delete
a file, copy a file, list the contents of a directory, etc., Tcl’s built-in
commands such as file delete are a better choice for two reasons. First,

270

by avoiding platform-specific commands, such as rm on Unix and del on
Windows, you can run your script on any operating system where Tcl is
supported. Second, the built-in Tcl command deletes the file by
invoking a system function call, rather than incurring the expense of
starting another process.

To execute a subprocess, exec looks for an executable file with a name equal
to exec’s first argument. If the name contains a / or starts with ~, exec checks
the single file indicated by the name. Otherwise exec checks each of the
directories in the PATH environment variable to see if the command name
refers to an executable file in that directory. exec uses the first executable
that it finds.
exec collects all of the information written to standard output by the
subprocess and returns that information as its result, as in the following
example:

 exec wc /usr/include/stdio.h
⇒ 71 230 1732 /usr/include/stdio.h

If the last character of output is a newline, exec removes it. This behavior
may seem strange, but it makes exec consistent with other Tcl commands,
which don’t normally terminate the last line of the result; you can retain the
newline by specifying -keepnewline as the first argument to exec.
exec supports I/O redirection in a fashion similar to the Unix shells. For
example, if one of the arguments to exec is >foo, output from the process is
placed in the file foo instead of returning to Tcl as exec’s result. In this case
exec’s result will be an empty string. Many other forms of input and output
redirection are supported as well, as listed in Table 12.1.

Table 12.1 Subprocess I/O Redirection Syntax

271

Note

The @fileID syntax is not supported on Windows. Additionally, not all
Windows applications work well with the exec command.

In each of the cases shown in the table, file or value or fileID may follow the
redirection symbol in a single argument, or it may be in a separate argument.
As an example of using redirection, consider the following command:

exec cat << "test data" > foo

This command overwrites the file foo with the string test data. The string is
passed to cat as its standard input; cat copies the string to its standard output,
which has been redirected to file foo. If no input redirection is specified, the
subprocess inherits the standard input channel from the Tcl application; if no
output redirection is specified, the standard output from the subprocess is

272

returned as exec’s result.
You can also invoke a pipeline of processes instead of a single process, as
in the following example:

 exec grep #include tclInt.h | wc
⇒ 8 25 212

The grep program extracts all the lines containing the string #include from the
file tclInt.h. These lines are then piped to the wc program, which computes
the number of lines, words, and characters in the grep output and prints this
information on its standard output. The wc output is returned as the result of
exec.
If the last argument to exec is &, the subprocess(es) will be executed in
background. exec returns immediately, without waiting for the subprocesses
to complete. It returns a list containing the process identifiers for all of the
processes in the pipeline; standard output and standard error from the
subprocesses go to the standard output and standard error of the Tcl
application unless redirected.
The exec command raises an error if a subprocess is suspended or exits
abnormally (for example, it is killed or returns a nonzero exit status). exec
also raises an error if a subprocess generates output on its standard error
channel and standard error was not redirected; you can suppress this
condition by providing the -ignorestderr option to exec. The error message
consists of the output generated by the last subprocess (unless it was
redirected with >), followed by an error message for each process that
exited abnormally, followed by the information generated on standard error
by the processes, if any. In addition, exec sets the errorCode variable and the -
errorcode key in the return options dictionary to hold information about the
last process that terminated abnormally, if any (see Section 13.2 and the
reference documentation for details).

Note

Many Unix programs are careless about the exit status that they return.
If you invoke such a program with exec and it accidentally returns a
nonzero status, the exec command generates a false error. To prevent
these errors from aborting your scripts, invoke exec inside a catch
command as described in Chapter 13.

273

Although exec’s features are similar to those of the Unix shells, there is one
important difference: exec does not perform any file name expansion. For
example, suppose you invoke the following command with the goal of
removing all .o files in the current directory:

 exec rm *.o
Ø rm: *.o nonexistent

rm receives *.o as its argument and exits with an error when it cannot find a
file by this name. If you want file name expansion to occur, you can use the
glob command to get it, but not in the obvious way. For example, the
following command will not work:

 exec rm [glob *.o]
Ø rm: a.o b.o nonexistent

This fails because the list of file names that glob returns is passed to rm as a
single argument. If, for example, there exist two .o files, a.o and b.o, rm’s
argument will be a.o b.o; since there is no file by that name, rm returns an
error. The recommended way to handle this situation is to use Tcl’s
argument expansion syntax to provide the list elements as separate
arguments:

exec rm {*}[glob *.tmp]

As discussed in Section 2.8, versions of Tcl prior to 8.5 used the eval
command to similar effect:

eval exec rm [glob *.o]

12.4 I/O to and from a Command Pipeline

You can also create subprocesses using the open command; once you’ve done
this, you can use commands like gets and puts to interact with the pipeline.
Here are two simple examples:

set f1 [open {|sort -k 2 > newfile.txt} w]
set f2 [open |prog r+]

If the first character of the “file name” passed to open is the pipe symbol |,
the argument isn’t really a file name at all. Instead, it specifies a command

274

pipeline. The remainder of the argument after the | is treated as a list whose
elements have exactly the same meaning as the arguments to the exec
command. open creates a pipeline of subprocesses just as for exec, and it
returns an identifier that you can use to transfer data to and from the
pipeline. In the first example the pipeline is opened for writing, so a pipe is
used for standard input to the Unix sort program, and you can invoke puts to
write data on that pipe; the output from sort is redirected to a file named
newfile.txt. The second example opens a pipeline for both reading and
writing, so separate pipes are created for prog’s standard input and standard
output. Commands like puts can be used to write data to prog, and commands
like gets and read can be used to read the output from prog. In general, any of
the I/O-related commands discussed in Chapter 11 can be used to interact
with a pipeline channel.

Note

When writing data to a pipeline, don’t forget that output is buffered. It
probably will not be sent to the child process until you invoke the chan
flush command to force the buffered data to be written. You can change
the channel’s buffering using the chan configure command, as discussed
in Section 12.5.2.

When you close a file identifier that corresponds to a command pipeline, the
close command flushes any buffered output to the pipeline, closes the pipes
leading to and from the pipeline, if any, and waits for all of the processes in
the pipeline to exit. If any of the processes exits abnormally, close returns an
error in the same way as exec.

12.5 Configuring Channel Options

As discussed in Chapter 11, the chan configure command sets channel options
(as does the fconfigure command, for compatibility with older versions of
Tcl). Chapter 11 discussed the use of this command to configure character
encoding and end-of-line translations for file I/O. You can use chan configure
to configure these settings for command pipelines and socket channels as
well. This section describes some additional chan configure settings of
particular interest to command pipelines and socket channels.

275

12.5.1 Channel Blocking Mode

By default, when you call gets or read on a channel, Tcl blocks until data is
available to read. gets blocks until it has received a complete line of data,
and read blocks until it has read the specified number of characters or it
encounters the end of file. Similarly, the puts command buffers the output,
and if the buffers fill, puts blocks until the output gets sent. This is called
blocking mode. Blocking forms the proper option for many uses and
simplifies programming. For example, your program may read in the
contents of a file, process the data, and output the results. Blocking works
fine in most cases for this usage.
However, if your application opens a process pipeline or network socket,
data might arrive at sporadic intervals, and blocking I/O commands could
pause the process for an indeterminate amount of time. If your application
has a graphical user interface, Tcl can’t service key presses, button clicks,
window refreshes, and other interactions while an I/O command is blocked;
your application is frozen until the I/O command finally returns. In these
types of applications, using non-blocking channels is usually preferable.
Similarly, network servers usually need to run in non-blocking mode to be
able to handle multiple clients at once. A server cannot wait until one client
sends data before servicing the remaining clients, especially if the client the
server waits for is not currently sending data; other clients are then starved
for service in blocking mode.
The -blocking option of chan configure indicates whether or not the channel is
configured for blocking mode. You can change the option by providing a
Boolean value. For example, to set a channel to non-blocking mode:

chan configure $chan -blocking 0

If you do not pass a value to chan configure, the command returns the current
value for an option. For example, to determine if a channel is set to blocking
mode, issue the following command:

chan configure $socketid -blocking

When a channel is set to non-blocking mode, a read on the channel returns all
characters available on the channel, up to the maximum number of
characters requested, if specified. A gets on a non-blocking channel returns
characters only if there is a complete line to read. If there is not a complete
line, gets does not consume any characters. If you didn’t provide a variable

276

name as an argument, gets returns an empty string; if you did provide a
variable name, gets sets the variable to an empty string and returns -1. This
is actually the same result that gets provides in the case of an end-of-file
condition, so Tcl provides two additional commands to distinguish between
these cases.
The chan eof command returns 1 if the last input operation on a channel
encounters an end-of-file condition, and 0 otherwise. The chan blocked
command returns 1 if the most recent input operation on a channel returns
less information than requested because all available input is exhausted, and
0 otherwise. (The eof and fblocked commands are also available for
compatibility with older versions of Tcl.)

12.5.2 Channel Buffering Mode

Tcl automatically buffers all channel I/O for efficiency. The channel’s input
and output buffers have the same size, typically defaulting to 4KB. You can
view or change the buffer size for a channel using the -buffersize option of
chan configure. You can change the buffer size to any value from 1 byte to
1MB currently; values requested outside of this range are appropriately
adjusted to the minimum or maximum supported.
The buffer size is the only configurable parameter for input buffering. If
there is not sufficient data in an input buffer to fulfill a read request on a
channel, Tcl reads as much data as is currently available from the underlying
source (e.g., file, pipeline, socket, etc.) up to the maximum buffer size.
The behavior of output buffering on a channel is also controlled by the -
buffering option to chan configure, which determines when Tcl should
automatically flush a channel. The -buffering option supports values of none
(flush on every output), line (flush after every line), or full (flush when the
buffer fills or the script calls the chan flush command). The -buffering option
defaults to full except for channels that connects to “terminal-like” devices;
for these channels the initial setting is line. Additionally, stdin and stdout are
initially set to line, and stderr is set to none.

12.6 Event-Driven Channel Interaction

The default blocking behavior of channels described in Section 12.5.1 is
usually not a problem for many applications. If the application is driven
from the console rather than a graphical user interface, or if the application

277

doesn’t interact with the user at all, it usually doesn’t matter if an I/O
operation on the channel is blocked for seconds or even minutes at a time.
On the other hand, if the application must present a responsive user
interface, must interact with several channels simultaneously, or needs to
perform other operations in parallel with the channel access, having the
entire application freeze while an I/O operation blocks is unacceptable.
Changing the channels to non-blocking helps to address this issue. But even
then, attempts to read from the channels might return with no data if there is
no data available from the underlying source. Repeatedly attempting to read
from the channel until data is available would waste processing time.
Many other languages use threads to address this issue of interacting with
blocking channels. If one thread is blocking by an I/O operation, other
threads are free to continue execution. Multithreaded programs have their
own issues, though, such as managing resource contention and
synchronization. Although Tcl does have a Thread extension, which exposes
multithreaded programming at the scripting level (see Appendix B),
traditionally Tcl has taken a different approach: event-driven programming.
In an event-driven programming model, an application registers scripts as
event handlers that are triggered in response to various events that take
place during its execution. Chapter 1 has already introduced the concept of
event handlers to implement widget action in response to user interaction.
Using these event bindings in Tk to associate actions with user interaction
and other windowing events is further discussed in Chapter 17 and Chapter
22. Tcl also supports timer-related events through a command called after,
which is discussed in Chapter 15.
Tcl supports another set of bindings to respond to events that take place on
channels, which are referred to as file events or channel events. For
example, you can register a script to be invoked whenever data arrives on a
pipeline or socket channel. If your application needs to interact with
multiple channels, each can have its own file event handlers to process
those events in whatever way is appropriate. At the same time, Tcl can also
monitor windowing and timer events and invoke any event handlers
associated with those events as well.

12.6.1 Entering the Tcl Event Loop with vwait

To be able to detect events occurring and to invoke any registered handlers,
Tcl must be in its event loop. When an application is invoked with the wish
interpreter or has the Tk package loaded, it automatically enters the event

278

loop after executing all of the commands in the script file. For applications
that don’t use Tk, you must explicitly enter the Tcl event loop with a
command.
Typically the vwait command is used to invoke the event loop. vwait accepts
one argument, the name of a global or persistent namespace variable, as in

vwait enter_loop

The vwait command enters the Tcl event loop and continues to process all
events received until some event handler sets the value of the variable
specified (enter_loop in this example). At that point, once the event handler
that set the variable completes, the vwait command finally returns.

12.6.2 Registering File Event Handlers

You register a file event handler with the chan event command. (The fileevent
command is also available for compatibility with older versions of Tcl.) In
addition to specifying the channel identifier and a script to invoke when the
event occurs, you indicate whether you are registering a handler for a
readable or writable event on the channel. For example, the following
arranges to call the command ReadLine whenever there is data to read on the
channel whose identifier is stored in the variable pipe:

chan event $pipe readable ReadLine

You can create at most one readable and one writable event handler for a
given channel. Invoking chan event to install an event handler of a given type
on a channel replaces any existing handler of that same type on the channel.
If you omit the script argument, chan event returns the currently installed
handler, if any.
The Tcl event loop must be active for Tcl to be able to detect and handle file
events. Additionally, you normally should use the chan configure command to
place the channel in non-blocking mode. Otherwise, the handler could block
when attempting to read from or write to the channel.
A channel is considered to be writable if at least 1 byte of data can be
written to the underlying file or device without blocking, or if an error
condition is present on the underlying file or device. Writable file event
handlers are used most frequently to detect when a client socket opened in
asynchronous mode becomes connected or if the connection fails. This is
discussed in Section 12.9.

279

A channel is considered to be readable if there is unread data available on
the underlying device. A channel is also considered to be readable if there
is unread data in an input buffer, except in the special case where the most
recent attempt to read from the channel was a gets call that could not find a
complete line in the input buffer. This feature allows a file to be read a line
at a time in non-blocking mode using events. A channel is also considered to
be readable if an end-of-file or error condition is present on the underlying
file or device.

Note

It is important for an event handler to check for these conditions and
handle them appropriately. For example, if there is no special check
for end of file, an infinite loop may occur when the handler reads no
data, returns, and is invoked again immediately.

The following script is a simple example of using file events to process the
output of a process pipeline. It illustrates several features of handling
asynchronous communication on a channel in a safe and robust manner.

280

The first line of the script opens a process pipeline for read access. In this
case, it starts the Unix du command, which recursively reports disk usage for
a directory. The script then configures the channel for non-blocking access.
If this were a bidirectional channel where you were writing to the channel
to send data to the process pipeline, you might also want to configure the
buffering on the channel, perhaps to line mode so that each line would be
written to the pipe immediately.
The script then registers a file event handler to invoke whenever data is
available to read on the channel. In this case, the script is a well-formed list
consisting of the ReadLine command and the channel identifier as an argument.
For a simple handler such as this, we could have just quoted the handler
script in double quotes to allow substitution of the variable, because
channel identifiers don’t include whitespace or other special characters.
However, if we had tried to pass other variable values as arguments that
could be arbitrary strings, simple double quoting could produce malformed
commands. When registering callbacks, it’s safest to use techniques such as
the list command to ensure that the resulting script argument is a well-
formed Tcl command. After defining the event handler procedure, the script

281

finally executes vwait to enter the event loop. Tcl continues to process events
in the event loop until a handler sets the variable done to any value, at which
point the vwait command returns and the script terminates.
The ReadLine handler itself first tries to read a complete line of data from the
channel. The gets command could fail if the channel shuts down abnormally,
so it’s safest to execute it in a catch statement. If catch reports an error, or if
an end-of-file condition is detected on the channel, we’ve read all data
possible from the channel. The handler closes the channel (using a catch to
silently discard any errors), sets the global variable done to 1, and returns to
the event loop. Because the vwait command is waiting for done to be set, this
terminates the event loop.
On the other hand, if an error or end of file is not detected, Readline checks
the return value of the gets command. If it was -1, gets was not able to read a
complete line, and so it consumed no characters from the channel. (The
other situation in which gets would return -1, an end of file, was tested for
previously.) In this case, ReadLine simply returns to the event loop to wait for
more data to arrive. But if gets was able to read a complete line, the
characters read are now contained in the variable line and can be processed
as desired.

12.7 Process IDs

Tcl provides three ways to access process identifiers. First, invoking a
pipeline in background using exec returns a list containing the process
identifiers for all of the subprocesses in the pipeline. You can use these
identifiers, for example, if you wish to kill the processes. Second, you can
invoke the pid command with no arguments and it returns the process
identifier for the current process. Third, you can invoke pid with a file
identifier as an argument, as in the following example:

If there is a pipeline corresponding to the open file, as in the example, the
pid command returns a list of identifiers for the processes in the pipeline.

12.8 Environment Variables

282

As mentioned in Chapter 3, the global array variable env contains all of the
environment variables as elements, where the name of the element in env
corresponds to the name of the environment variable. If you modify the env
array, the changes are reflected in the process’s environment variables and
the new values are also passed to any child process created with exec or
open.

12.9 TCP/IP Socket Communication

Sockets link applications using network protocols such as TCP/IP, the
Internet’s transmission control protocol/Internet protocol. Because socket-
based networking is standardized, Tcl’s support for sockets enables another
avenue for integrating your Tcl applications with other, non-Tcl,
applications.
Sockets are identified by a host name or IP address and a port number. A
port is sort of like a channel number on a television. The port numbers for
most network services, such as HTTP, are standardized (port 80 for HTTP,
for example). Normally, port numbers under 1024 are restricted for use by
privileged applications. In addition, many port numbers between 1024 and
49151 inclusive are standardized, such as 6000 and 6001 for the X Window
System, and are often registered with the Internet Assigned Numbers
Authority (IANA). Port numbers higher than this are not standardized but
may be in use by other applications installed on your system. On Unix
systems, look at the file /etc/services for a listing of predefined port numbers.
Unlike most systems, Tcl’s communications channels are driven by events.
Typical servers written in other languages either fork (clone) the current
process to handle an incoming connection or spawn a new thread. Tcl
servers, on the other hand, typically use event handler procedures to process
network requests. See Section 12.6 for more on this subject.

12.9.1 Creating Client Communication Sockets

To create a socket, use the socket command. You can use this command to
create a socket either for a client application to connect to a server, or for a
server application that awaits client requests. To create a client socket you
need to provide the host name or IP address and port number as arguments:

283

set sockid [socket localhost 12345]

This command opens a client-side socket on the local system on port 12345.
The returned channel identifier gets stored in sockid.

Note

Use localhost to refer to the computer where your Tcl program executes.

With client sockets, you can use the -myaddr option to specify the Internet
address of a network interface on the local system to use, which is handy for
systems with more than one network interface (or network adapter card).
Use -myport to specify the client-side port, if needed; if this option is omitted,
the client’s port number is chosen at random by the system software, which
is typical for client-side sockets.
Once you have established the socket connection, you can then configure the
channel and interact with it using I/O commands just as with process
pipelines. For example, you could configure it to non-blocking mode and
register a file event handler to read data from the socket as it arrives, just as
in the process pipeline example shown in Section 12.6.2. By default, socket
channels are configured for blocking and full buffering. The -translation
defaults to {auto crlf} and the -encoding defaults to the system encoding. See
Section 11.6 for more information on these settings and using the chan
configure command to change them.
For a socket channel, the chan configure command supports two additional
read-only options to report information about the socket connection. The
value of the -sockname is a three-element list consisting of the IP address, the
host name, and the port number for the socket. The value of the -peername
option contains a three-element list with the same information for the peer
socket.
By default, the socket command doesn’t return until the socket connection is
established. You can also specify -async to create a connection
asynchronously. This means the socket command returns before the
connection has been established. If the socket is configured for blocking
mode, the next gets, read, or chan flush command waits until the socket is
connected. If the socket is not in blocking mode, the next gets, read, or chan
flush returns immediately, and a subsequent call to chan blocked would return
1. Any error establishing the socket connection is reflected as an error when
these commands are invoked on the channel. You can use the chan event

284

command to register a writable event handler to detect when the connection
has been established; client sockets opened in asynchronous mode become
writable when they become connected or if the connection fails. You can then
test for the presence of the -peername option in the channel’s configuration to
determine if the connection was successful, as shown here:

12.9.2 Creating Server Sockets

To create a server socket, call socket with the -server option:

socket -server command ?options? port

This command establishes a server socket, also known as a listening
socket, on the current host at the given port number. You can also pass a
service name in place of a port number, whose value is dependent on your
operating system. For systems with multiple network interfaces, you might
also find the -myaddr option useful to specify the host name or IP address of a
specific network interface to use; otherwise the server socket is bound so
that it can accept connections from any interface.
When the server socket detects a client connection, Tcl creates a channel for
reading and writing to the client and calls the command you provided with
three additional arguments: the new socket identifier, the client’s address,
and the client’s port number. (Tcl’s event loop must be running for the server

285

socket to detect connection requests.) Once the client is connected, you can
use normal channel commands, such as those described in Section 12.9.1, to
configure the channel and communicate with the client. Because each client
connection is assigned a unique socket channel identifier, the server can
manage multiple client connections simultaneously. You can use arrays,
dictionaries, or other data structures to store information related to each
client; the socket’s channel identifier makes an excellent unique key in this
case.
The following script shows a complete implementation of a simple
multiclient echo server:

286

The script creates a listening socket on port 9001 of the local system.
Whenever a client connection request is detected, Tcl calls the ClientConnect
procedure, which configures the communication channel with the client,
registers a readable file event handler for the channel, and then sends a
connection confirmation message to the client. Note that the socket’s channel
identifier is included as an argument to the ReadLine procedure registered as
the event handler. As a result, the ReadLine procedure knows which channel
has data available to read when it is invoked, and we can use the same
procedure for all channels.
The ReadLine procedure is very similar to the event handler presented in
Section 12.6.2 for process pipeline channels. It closes the communication
socket if the client disconnects or an error occurs while reading from the
channel. Otherwise, it checks whether it read a complete line from the
channel, and if so it passes the line read off to the EchoLine procedure for
processing; otherwise, ReadLine returns to the event loop to wait for more
data to arrive on the channel.
The EchoLine procedure checks to see if the line just read is a special control
message. A line consisting of just the string exit terminates the echo server
by setting the vwait variable and returning. A line consisting of quit causes
the echo server to send an acknowledgment to the client and closes the
client’s socket channel, disconnecting the client. Any other line received is
simply echoed back to the client.
The SendMessage procedure is a helper procedure to send messages to a client
safely. If an error is detected sending the message, the socket is dead. The

287

procedure logs a message to the standard error channel, then closes the
socket channel.

Note

The extensive use of catch commands in this example is a good practice
when writing multiclient servers. You don’t want a communication
glitch with one client to bring down the entire server. Use the catch
command to guard against errors when opening channels and in all I/O
operations with the channels.

12.10 Sending Commands to Tcl Programs

TCP/IP sockets let you send data between applications, and the Tk package
also allows you to send commands directly from one Tk-based application
to another on most Unix systems. With the send command, any Tk application
can invoke arbitrary Tcl scripts in any other Tk application on the display;
these commands can both retrieve information and take actions that modify
the state of the target application.

Note

The send command is part of Tk, not the base Tcl language.

The send command is built on top of data-transfer facilities in the X Window
System, used on most Unix systems for graphics. send is not available on
systems that don’t use the X Window System.

Note

In most cases, you should use sockets to pass data between
applications. Not only are sockets safer, but Tcl’s sockets work on
multiple operating systems.

288

12.10.1 Basics of send

To use send, all you have to do is give the name of an application and a Tcl
script to execute in the application. For example, consider the following
command:

send myapp {selectLine 200}

The first argument to send is the name of the target application, and the
second argument is a Tcl script to execute in that application. Tk locates the
named application, forwards the script to that application, and arranges for
the script to be executed in the application’s interpreter. The result or error
generated by the script is passed back to the originating application and
returned by the send command.
send is synchronous: it doesn’t complete until the script has been executed in
the remote application and the result has been returned. send defers the
processing of X events while it waits for the remote application to respond,
so the application does not respond to its user interface during this time.
After the send command completes and the application returns to normal
event processing, any waiting events are processed. A sending application
will respond to send requests from other applications while waiting for its
own send to complete. This means, for example, that the target of the send can
send a command back to the initiator while processing the script, without
danger of deadlock. In addition, you can use the -async option with send to tell
the send command to work asynchronously and not wait for a response to the
commands sent.
One of the most common uses of send is to try simple experiments in Tk
applications that are already running, such as changing a color or modifying
the command associated with a button. Most Tk applications don’t present
an interface for typing Tcl commands directly to the application. However,
you can always issue commands to such applications by starting an
interactive wish application and then invoking send. For example, the
following command changes the background color of a particular window in
an application named scan:

send scan {.menubar.file configure -bg blue}

289

12.10.2 Application Names

To send to an application, you have to know its name. Each application on
the display has a unique name, which it can choose in any way it pleases as
long as it is unique. In many cases the application name is just the name of
the program that created the application. For example, wish uses the
application name wish by default; or, if it is running under the control of a
script file, it uses the name of the script file as its application name. In
programs like editors that are associated with a file or object, the
application name typically has two parts: the name of the application and
the name of the file or object on which it is operating. For example, if an
editor named mx is displaying a file named tk.h, the application’s name is
likely to be mx tk.h.
If an application requests a name that is already in use, Tk adds a number to
the end of the new name to keep it from conflicting with the existing name.
For example, if you start up wish twice on the same display, the first instance
will have the name wish and the second instance will have the name wish #2.
Similarly, if you open a second editor window on the same file, it will end
up with a name like mx tk.h #2.
Tk provides three commands that return information about the names of
applications. First, the command

 winfo name .
⇒ wish #2

returns the name of the invoking application. Second, the command

 winfo interps
⇒ wish {wish #2} {mx tk.h}

returns a list whose elements are the names of all the applications defined
on the display. Third, the command

selection get APPLICATION

returns the name of the Tk application that currently owns the selection; if no
Tk application currently owns the selection, the command generates an
error.

Note

290

Use the tk appname command to change an application name.

Use the -displayof option to specify a different X Window display. Pass the
path to a window that Tk can then use to identify the display.

12.10.3 Security Issues with send

The send command is potentially a major security loophole. Any application
that uses your display can send scripts to any Tk application on that display,
and the scripts can use the full power of Tcl to read and write your files or
invoke subprocesses with the authority of your account. Ultimately this
security problem must be solved in the X display server, since even
applications that don’t use Tk can be tricked into abusing your account by
sufficiently sophisticated applications on the same display. However,
without Tk it is relatively difficult to create invasive applications; with Tk
and send it is trivial.
You can protect yourself fairly well if you employ a key-based protection
scheme for your display like xauth instead of a host-based scheme like xhost.
xauth generates an obscure authorization string and tells the server not to
allow an application to use the display unless it can produce the string.
Typically the string is stored in a file that can be read only by a particular
user, so this restricts use of the display to the one user.
In order to provide at least a small amount of security, Tk checks the access
control being used by the server and rejects incoming sends unless xhost-
style access control is enabled (that is, only certain hosts can establish
connections) and the list of enabled hosts is empty. This means that
applications cannot connect to your server unless they use some other form
of authorization such as that provided by xauth.

291

292

13. Errors and Exceptions

A Tcl command can return errors for a variety of reasons, such as when it
doesn’t receive the right number of arguments, or if the arguments have the
wrong form, or because some other problem occurs in executing the
command, such as an error in a system call for file I/O. In most cases errors
represent severe problems that make it impossible for the application to
complete the script it is processing. Tcl’s error facilities are intended to
make it easy for the application to unwind the work in progress and display
an error message to the user that indicates what went wrong. Presumably the
user will fix the problem and retry the operation.
Errors are just one example of a more general phenomenon called
exceptions. Exceptions are events that cause scripts to be aborted; they
include the break, continue, and return commands as well as errors. Tcl allows
exceptions to be “caught” by scripts so that only part of the work in progress
is unwound. After catching an exception, the script can ignore it or take
steps to recover from it. If the script can’t recover, it can reissue the
exception.

13.1 Commands Presented in This Chapter

The following Tcl commands are related to exceptions:

• catch command ?returnVar? ?optionsVar?
Evaluates command as a Tcl script and returns an integer code that identifies
the completion status of the command. If returnVar is specified, it gives the
name of a variable that will be set to the return value or error message
generated by command. If optionsVar is specified, it gives the name of a variable
that will be set to the return options dictionary.

• error message ?info? ?code?
Generates an error with message as the error message. If info is specified and
is not an empty string, it is used to initialize the errorInfo variable. If code is
specified, it is stored in the errorCode variable.

• return ?option value ...? ?result?
Causes the current procedure to return an exceptional condition. If used, -
code specifies the return condition and its value must be ok, error, return, break,
continue, or an integer. The -errorinfo option may be used to specify a starting

293

value for the errorInfo variable, and -errorcode may be used to specify a value
for the errorCode variable. result gives the return value or error message
associated with the return; it defaults to an empty string. In support of
constructing advanced, custom control structures, you can also provide any
number of option value pairs, with arbitrary option names, which become
entries in the return options dictionary. Also, you can include an explicit -
options argument, whose value must be a valid dictionary, the entries of
which become additional option value pairs in the return options dictionary.

• interp bgerror path ?cmdPrefix?
Registers cmdPrefix as the background error handler for the interpreter
specified by path. The cmdPrefix is a command name optionally followed by
any number of arguments. When a background error occurs, the command is
invoked with the specified arguments and two additional ones: an error
message and a return options dictionary. If cmdPrefix is not provided, interp
bgerror returns the command prefix currently registered for the interpreter.

13.2 What Happens after an Error?

When a Tcl error occurs, the Tcl interpreter aborts execution of the current
command and raises an error condition. If the command is part of a larger
script, the error condition also aborts the script execution. If the error
occurs while a Tcl procedure is executing, the procedure is aborted, along
with the procedure that called it, and so on until all the active procedures
have aborted. After all Tcl activity has been unwound in this way, control
eventually returns to the application executing the Tcl code, along with an
indication that an error occurred and a message describing the error. It is up
to the application to decide how to handle this situation, but most interactive
applications, such as tclsh running in interactive mode, display the error
message for the user and continue processing user input. In a batch-oriented
application, such as when tclsh is invoked with the name of a script file to
execute, applications often print the error message to the console and exit.
For example, consider the following script, which is intended to sum the
elements of a list:

294

This script is incorrect because there is no variable element: the variable
name element in the expr command should have been el to match the loop
variable for the foreach command. When the script is executed, an error
occurs as Tcl parses the expr command: Tcl attempts to substitute the value
of variable element but can’t find a variable by that name, so it signals an
error. This error indication is returned to the foreach command, which
invoked the Tcl interpreter to evaluate the loop body. When foreach sees that
an error has occurred, it aborts its loop and returns the same error
indication as its own result. This in turn aborts the overall script. The error
message

can't read "element": no such variable

is returned along with the error condition, which is displayed for the user.
In many cases the error message provides enough information for you to fix
the problem. However, if the error occurred in a deeply nested set of
procedure calls, you might not be able to figure out where it occurred from
the message alone. To help pinpoint the location of the error, Tcl creates a
stack trace as it unwinds the commands that were in progress, and it stores
the stack trace in the global variable errorInfo. The stack trace describes
each of the nested calls to the Tcl interpreter. For example, after the
preceding error, errorInfo contains the following value:

Tcl provides one other piece of information about error conditions in the
global variable errorCode. errorCode has a format that is easy to process with
Tcl scripts; it is most commonly used in Tcl scripts that attempt to recover
from errors using the catch command, described later. The errorCode variable
consists of a list with one or more elements. The first element identifies a
general class of errors, and the remaining elements provide more
information in a class-dependent fashion. For example, if the first element of
errorCode is POSIX, it means that an error occurred in a POSIX system call.
errorCode then contains two additional elements giving the POSIX name for
the error, such as ENOENT, and a human-readable message describing the error.

295

Other error codes indicate arithmetic, file access, and child process
exceptions. Not all Tcl commands set the error code explicitly. If a
command generates an error without setting errorCode, Tcl fills it in with the
value NONE. See the reference documentation for a complete description of all
the forms errorCode can take.

13.3 Generating Errors from Tcl Scripts

Tcl errors may be generated by the C code that implements the Tcl
interpreter and built-in commands, or by scripts using the Tcl error command
as in the following example:

The error command generates an error and uses its argument as the error
message.
As a matter of programming style, you should use the error command only in
situations where the correct action is to abort the script being executed. If
you think that an error is likely to be recovered from without aborting the
entire script, it is probably better to use the normal return value mechanism
to indicate success or failure (e.g., return one value from a command if it
succeeded and another if it failed, or set variables to indicate success or
failure). Although it is possible to recover from errors (you’ll see how in
Section 13.4), the recovery mechanism is more complicated than the normal
return value mechanism. Thus, you should generate errors only when
recovery is unlikely.

13.4 Trapping Errors with catch

Errors generally cause all active Tcl commands to abort execution, but there
are some situations where it is useful to continue executing a script after an
error has occurred. For example, suppose that you want to use the open
command to open a file to read its contents. (Tcl commands for manipulating
files are discussed in Chapter 11.) Although Tcl provides the file readable
command to test whether a file exists and your process has permission to
read its contents, another process on your system could delete the file before

296

you get the opportunity to open it. If the file does not exist, open generates an
error:

You can use the catch command to ignore the error in this situation:

 catch {open msg.txt}
⇒ 1

The argument to catch is a Tcl script, which catch evaluates. If the script
completes normally, catch returns 0. If an error occurs in the script, catch
traps the error (so that the catch command itself is not aborted by the error)
and returns 1 to indicate that an error occurred. This example ignores any
errors in open. However, we would still need to test the return value of catch
to determine if the open was successful or not.
The catch command can also take a second argument. If the argument is
provided, it is the name of a variable, and catch modifies the variable to
hold either the script’s return value (if it returns normally) or the error
message (if the script generates an error):

In this case, the open command generates an error, so fid is set to contain the
error message. If the file had existed, open would have returned successfully,
so the return value from catch would have been 0 and fid would have
contained the return value from the open command, which is the channel
identifier of the file opened. This longer form of catch is useful if you need
access to the return value when the script completes successfully. It’s also
useful if you need to do something with the error message after an error,
such as logging it to a file.
You can also provide a variable name as an optional third argument to
capture the return options dictionary, which is described in the next section.

13.5 Exceptions in General

Errors are not the only things in Tcl that cause work in progress to be

297

aborted. Errors are just one example of a set of events called exceptions. In
addition to errors, there are three other kinds of exceptions in Tcl, which are
generated by the break, continue, and return commands. All exceptions cause
active scripts to be aborted in the same way, except for two differences.
First, the errorInfo and errorCode variables are set only during error
exceptions. Second, the exceptions other than errors are almost always
caught by an enclosing command, whereas errors usually unwind all the
work in progress. For example, the break and continue commands are
normally invoked inside a looping command such as foreach; foreach catches
break and continue exceptions and terminates the loop or skips to the next
iteration. Similarly, return is normally invoked only inside a procedure or a
file being sourced. Both the procedure implementation and the source
command catch return exceptions.

Note

If a break or continue command is invoked outside any loop, active
scripts are unwound until the outermost script for a procedure is
reached or all scripts in progress have been unwound. At this point Tcl
turns the break or continue exception into an error with an appropriate
message.

All exceptions are accompanied by a string value. In the case of an error,
the string is the error message. In the case of return, the string is the return
value for the procedure or script. In the case of break and continue, the string
is always empty.
The catch command actually catches all exceptions, not just errors. The
return value from catch indicates what kind of exception occurred, and the
variable specified in catch’s second argument is set to hold the string
associated with the exception.
Table 13.1 describes the standard exception types. The first column
indicates the value returned by catch in each instance. The second column
describes when the exception occurs and the meaning of the string
associated with the exception. The last column lists the commands that catch
exceptions of that type (“procedures” means that the exception is caught by a
Tcl procedure when its entire body has been aborted). The top row refers to
normal returns where there is no exception.

Table 13.1 Summary of Tcl Exceptions

298

In the following example, the catch command has a return value of 2, which
indicates that it encountered a return condition while executing its script
argument. catch stores the string associated with the exception in the variable
string.

Whereas catch provides a general mechanism for catching exceptions of all
types, return provides a general mechanism for generating exceptions of all
types. If its first argument consists of the keyword -code, as in

return -code return 42

its second argument is the name of an exception (return in this case), and the
third argument is the string associated with the exception. The enclosing
procedure returns immediately, but instead of a normal return it returns with
the exception described by the return command’s arguments. In the preceding
example, the procedure generates a return exception, which then causes the
calling procedure to return as well.
Additionally, the return command allows any number of option-value pairs,
where you can select any name desired for the options. Some option names,
which are listed in Table 13.2, receive special treatment. All option-value
pairs become entries in the return options dictionary, which the catch
command can capture by specifying a variable name as an optional third
argument. This allows you to pass any arbitrary information desired when

299

raising an exception. Typically this feature is used only when implementing
advanced control structures.

Table 13.2 Significant Option Names for the return Command

In Section 9.6 you saw how a new looping command, do, could be
implemented as a Tcl procedure using upvar and uplevel. However, the
example in Section 9.6 did not properly handle exceptions within the loop
body. Here is a new implementation of do that uses catch and return to deal
with exceptions properly:

This new implementation handles exceptions in much the same way as built-
in looping commands such as foreach and while. It evaluates the loop body

300

inside a catch command and then checks to see how the body terminates. If
no exception occurs (code is 0) or if the exception is a continue (code is 4), do
goes on to the next iteration. If a break exception occurs (code is 3), do returns
to its caller normally, ending the loop. If an error, return, or any other
completion code occurs, do simply reflects that exception back to its caller.
When do reflects an exception to its caller, for the most part all it needs to do
is pass the entire return options dictionary to its caller. The only change it
needs to make in the return options dictionary is to increment the value of
the -level option by 1. In typical execution, this causes the exception to
appear in the context of caller, rather than in the context of the do procedure.
But it also handles situations properly where the exception had its -level set
explicitly in the body of code executed.

13.6 Background Errors and bgerror

A background error is one that occurs in an event handler. For example, if
an error occurs while executing a command specified with the after
command or the -command option of a widget, it is a background error. For a
non-background error, the error simply can be returned up through nested
Tcl command evaluations until it reaches the top-level code in the
application or is caught and handled with a catch command, as described in
previous sections. On the other hand, when a background error occurs, the
unwinding ends in the Tcl library and there is no obvious way for Tcl to
report the error.
When a Tcl interpreter detects a background error, it saves information
about the error and invokes a handler command. You can register a
background error handler with the interp bgerror command; each interpreter
in your application can have its own background error handler. If you don’t
explicitly register a background error handler, Tcl uses a default handler.
For compatibility with versions of Tcl prior to 8.5, the default handler
checks to see whether a command called bgerror is defined in the interpreter.
If so, it invokes bgerror and passes a single argument consisting of the error
message generated; the global errorCode and errorInfo variables are also set to
their values at the time the error occurred. If you have not registered a
bgerror command, or an error occurs during the execution of bgerror, Tcl
reports the error itself by writing a message to the stderr channel.
Starting with Tcl 8.5, you can use interp bgerror to register more advanced
background error handlers. The first argument to interp bgerror is a path to
the interpreter, as defined in Chapter 15; the path {} refers to the current

301

interpreter. Following that, you can provide additional arguments specifying
a command and any explicit arguments that you want to pass to that
command when invoked as the background error handler. When the
command is invoked, two additional arguments are provided, consisting of
the error message and a return options dictionary for the error, as discussed
in Section 13.5. The result is executed in the interpreter’s global
namespace. Executing interp bgerror with no arguments following the
interpreter path returns the command prefix currently registered as the
background error handler.
The following demonstrates an example of registering a background error
handler that simply sends the error message and return options dictionary to
the standard error channel:

302

303

14. Creating and Using Tcl Script
Libraries

Like any other modern programming language, Tcl allows you to group
commonly used procedure definitions into libraries that can be used by
many applications. A Tcl library can be as simple as a single script file
defining a few utility procedures. Or you can combine multiple library
script files into a single package that you can distribute. Packages also have
version numbers associated with them, so applications can distinguish
among different historic versions of a package and require specific ones.
Additionally, Tcl allows you to bundle entire Tcl applications or libraries
into single-file packs called Starkits. Combined with the Tclkit single-file
Tcl interpreter, this gives you a handy means of distributing your Tcl
applications. You can even create a single-file application executable called
a Starpack, which combines a Tclkit for a particular platform with a Starkit
of your software.
Modern extensions should be implemented as modules or packages and
make use of autoloading, where the Tcl interpreter automatically loads
modules or packages as needed. To support autoloading, the Tcl interpreter
makes use of a few simple conventions, which grew out of the libraries that
shipped with early versions of Tcl.
The following sections show how modern packages and modules are built
on top of Tcl’s support for libraries of procedures, automatically loading
scripts as needed. The final section shows how you can use Tclkit and
Starkits or Starpacks to distribute your applications easily on multiple target
platforms.

14.1 Commands Presented in This Chapter

• auto_mkindex dir ?pattern ...?

Generates an index suitable for use by Tcl’s autoloading mechanism. The
command searches dir for all files whose names match any of the pattern
arguments (matching is done with the glob command), generates an index of
all the Tcl command procedures defined in all the matching files, and stores
the index information in a file named tclIndex in dir. If no pattern is given, a

304

pattern of *.tcl is assumed.
• info library

Returns the name of the library directory in which standard Tcl scripts are
stored. This is actually the value of the tcl_library global variable and may
be changed by setting tcl_library.

• info loaded ?interp?
Returns a list describing all of the packages that have been loaded into interp
with the load command. Each list element is a sublist with two elements,
consisting of the name of the file from which the package was loaded and
the name of the package. For statically loaded packages the file name is an
empty string. If interp is omitted, information is returned for all packages
loaded in any interpreter in the process. To get a list of just the packages in
the current interpreter, specify an empty string for the interp argument.

• info sharedlibextension
Returns the file extension used on this platform for shared libraries.

• package ifneeded package version script
Used in a pkgIndex.tcl file to indicate that the specified version of a package is
available if needed. The optional script argument executed automatically by
Tcl in the package is later requested with a package require command.

• package names
Returns a list of the names of all packages in the interpreter for which a
version has been provided (via package provide) or for which a package ifneeded
script is available.

• package prefer ?latest|stable?
Sets which type of package is preferred: latest, which matches the latest
version of a package present even if it is an alpha or beta release; or stable,
which matches an alpha or beta version of a package only if no stable
version fulfills the requirements. Once an interpreter’s preference is set to
latest, attempts to set it back to stable are ignored. Without an argument,
package prefer returns the current preference.

• package provide package ?version?
Indicates that version version of package package is now present in the
interpreter. It is typically invoked once as part of a package ifneeded script and
again by the package itself when it is finally loaded. If the version argument
is omitted, the command returns the version number that is currently
provided, or an empty string if no package provide command has been invoked
for package in this interpreter.

• package require package ?requirement?
package require -exact package requirement

Loads the package specified, ensuring that the version requirement is met. The

305

first version loads the latest version of package available on the system, as
long as it meets the minimum version requirement and its major version
number is the same as requirement. With the -exact option, only the version of
package specified by requirement is accepted. The command returns the version
of package loaded, or an error if a package meeting requirement is not available.

• package vcompare version1 version2
Compares the two version numbers given by version1 and version2. Returns -1
if version1 is an earlier version than version2, 0 if they are equal, and 1 if
version1 is later than version2.

• package versions package
Returns a list of all the version numbers of package for which information has
been provided by package ifneeded commands.

• pkg_mkIndex ?options? dir ?pattern ...?
Generates a pkgIndex.tcl index suitable for use by Tcl’s package mechanism.
The command searches dir for all files whose names match any of the pattern
arguments (matching is done with the glob command), generates an index of
all the Tcl command procedures defined in all the matching files, and stores
the index information in a file named pkgIndex.tcl in dir. If no pattern is given,
the default patterns of *.tcl and *.[info sharedlibextension] are used. See the
reference documentation and Section 14.5.2 for more information on the
supported options.

• ::tcl::tm::path list
Returns a list containing all registered Tcl module paths, in the order in
which they are searched for modules.

14.2 The load Command

The load command allows you to load precompiled libraries, typically
written in C or C++, into the Tcl interpreter. To do so, your binary file must
be created as a shared library on Unix or a Dynamic Link Library (DLL) on
Windows. Because different platforms use different extensions to identify
shared library files, Tcl provides the info sharedlibextension command, which
returns the shared library extension used by the current system. Thus, a
shared library is often loaded like this:

load myextension[info sharedlibextension]

Your C or C++ code must also follow certain Tcl conventions. Once the
shared library implementing the package is loaded, the Tcl interpreter calls

306

the initialization function for the package. The name of this function is
based on the name of the package. For example, with a package named star1,
the initialization method would be Star1_Init. If the binary file is loaded by a
safe Tcl interpreter, the initialization function name would be Star1_SafeInit.
See Chapter 36 for more information on writing packages in C.
Once you load a binary file, you can use the info loaded command to list all
packages loaded with the load command.

14.3 Using Libraries

A Tcl library is a directory containing one or more Tcl script files
implementing a related set of procedures. Tcl ships with a standard library
of procedures that implement some of its default behavior. Understanding
how the Tcl library works is a good way to learn how to add your own
libraries and packages.
The command info library returns the full path name of the Tcl library
directory, such as

 info library
⇒ C:/Program Files/Tcl8.5/lib/tcl8.5

In addition, the global variable tcl_library holds the same value:

 puts $tcl_library
⇒ C:/Program Files/Tcl8.5/lib/tcl8.5

This directory is used to hold standard scripts used by Tcl, such as a default
definition for the unknown procedure described next.

14.4 Autoloading

Section 15.10 describes how Tcl handles processing unknown commands by
invoking a procedure called unknown. Tcl has a default implementation of the
unknown command, but you can define your own to implement custom
functionality. One of the most useful functions performed by the default
unknown procedure is autoloading. Autoloading allows you to write
collections of Tcl procedures and place them in script files in library
directories. You can then use these procedures in your Tcl applications

307

without having to source the files that define them explicitly; you simply
invoke the procedures. The first time that you invoke a library procedure it
doesn’t exist, so unknown is called. unknown finds the file that defines the
procedure, sources the file to define the procedure, and then re-invokes the
original command. The next time the procedure is invoked it exists, so the
autoloading mechanism isn’t triggered.
Autoloading provides two benefits. First, it makes it easy to build large
libraries of useful procedures and use them in Tcl scripts. You need not
know exactly which files to source to define which procedures, since the
autoloader takes care of that for you. The second benefit of autoloading is
efficiency. Without autoloading, an application must source all of its script
files when it starts. Autoloading allows an application to start up without
loading any script files at all; the files are loaded later when their
procedures are needed, and some files may never be loaded at all. Thus
autoloading reduces startup time and saves memory.
The autoloader is straightforward to use. First, create a library as a set of
script files in a single directory. Normally these files have names that end in
.tcl, for example, db.tcl or stretch.tcl. Each file can contain any number of
procedure definitions. It’s a good practice to keep the files relatively small,
with just a few related procedures in each one. In order for the autoloader to
handle the files properly, the proc command for each procedure definition
must be at the beginning of a line with no leading space, and it must be
followed immediately by whitespace and the procedure’s name on the same
line. Other than this, the format of the script files doesn’t matter as long as
they are valid Tcl scripts.
The second step in using the autoloader is to build an index. To do this, start
a Tcl application such as tclsh and invoke the auto_mkindex command as in the
following example:

auto_mkindex . *.tcl

auto_mkindex isn’t a built-in command but rather a procedure in Tcl’s script
library. Its first argument is a directory name, and the second argument is a
glob-style pattern that selects one or more script files in the directory.
auto_mkindex scans all of the files whose names match the pattern and builds
an index that indicates which procedures are defined in which files. It stores
the index in a file called tclIndex in the directory. If you modify the files to
add or delete procedures, you should regenerate the index.
The final step is to set the variable auto_path in the applications that wish to
use the library. The auto_path variable contains a list of directory names.

308

When the autoloader is invoked, it searches the directories in auto_path in
order, looking in their tclIndex files for the desired procedure. If the same
procedure is defined in several libraries, the autoloader uses the one from
the earliest directory in auto_path. Typically, auto_path is set as part of an
application’s startup script. For example, if an application uses a library in
the directory /usr/local/lib/shapes, it might include the following command in
its startup script:

This adds /usr/local/lib/shapes to the beginning of the path, retaining all the
existing directories in the path such as those for the Tcl and Tk script
libraries but giving higher priority to procedures defined in
/usr/local/lib/shapes. Once a directory has been properly indexed and added
to auto_path, all of its procedures become available through autoloading.

Note

More complex libraries—especially those involving an integrated
mixture of Tcl scripts and C extensions, or where there is a need to
maintain multiple versions of a library—are better implemented as
packages. Packages are also strongly preferred when libraries are
distributed to other people, since they are considerably easier to
manage and install.

14.5 Packages

Creating libraries gives you the ability to collect useful utility procedures
and build libraries of code for reuse. With autoloading, your Tcl programs
gain efficiencies by loading only what is needed. Even so, Tcl libraries
don’t provide a number of useful features such as versioning and better code
separation. For example, if you have two procedures with the same name,
the first one found in the library path, auto_path, gets called.

Note

309

You can alleviate some of this problem by using namespaces, covered
in Chapter 10.

By creating a Tcl package, you can add versioning and provide a better
organization to your library code.

14.5.1 Using Packages

Tcl already comes with a number of packages, but you can also download
many more. (Appendix B describes some of the popular Tcl packages
available that extend Tcl’s functionality.) To use a package, specify the
package name and version with the package require command; for example:

package require platform 1.0.3

This command attempts to load the required package. Once it is loaded, you
can call on the functionality of the package within your Tcl program.
By convention, versions with the same major number are considered
compatible; that is, if your code asks for platform at version 1.0, then 1.0.3,
1.1, 1.2, or other higher minor versions would satisfy the requirement. In
this case, a package at version 1.0.4 would satisfy the requirement, but 1.0.2
would not. In addition, a version of 2.0 would not satisfy the requirement.
The Tcl package mechanism selects the highest-numbered compatible
version of the package that satisfies the requirement.
If you are not concerned with the version number, use a command like the
following:

package require platform

This command loads the highest version of the package installed on your
system. Or, if you require an exact version, use the -exact option:

package require -exact platform 1.0.3

Note

Version numbers can also include an a for alpha or a b for beta, such as

310

1.3b1. These letters indicate unstable packages. Package versions
without letters indicate stable versions. Tcl normally prefers stable
over unstable versions. You can change the preference to load the latest
available version of a package, even if it is alpha or beta, with the
command

package prefer latest

14.5.2 Creating Packages

A Tcl package is a directory of one or more Tcl scripts and/or binary shared
libraries. Each Tcl script in the package should declare that it provides the
package with the package provide command; for example:

package provide platform 1.0.3

This command specifies that the source in the file provides (or helps to
provide if there is more than one Tcl script in the directory) a package
named platform. The version number is 1.0.3. with the major number of 1 and
a minor number of 0.3. Missing numbers are treated as zeros, so 1.0.3 is the
same as 1.0.3.0 and 1.0.3.0.0.0. You can make a long version number if
needed, such as 1.0.3.0.3.0.3.0.3.0.3, though this is not necessary in most
cases. You might also use a build number or a timestamp as part of the
version number, such as 1.1.20080829.

Note

The first number, the major number, is the most important. You should
increment your package’s major version number whenever you make a
change that is not backward-compatible with previous versions.

When you create a package, place all your code into a single directory. Then
you need to create a pkgIndex.tcl file, which the Tcl interpreter uses to load
your package. You can create this file by hand, and if you have a complex
case you’ll need to do so. But most packages can use the handy pkg_mkIndex
procedure. pkg_mkIndex creates the index file needed by the Tcl package
system to manage loading your package. As with auto_mkindex, pkg_mkIndex isn’t

311

a built-in command but rather a procedure in Tcl’s script library.

Note

Even if you write your own pkgIndex.tcl script, you can use the
pkg_mkIndex procedure as a guide that defines what the Tcl interpreter
expects in a pkgIndex.tcl script.

The basic format of the command is

pkg_mkIndex . *.tcl

This command looks at all files with names ending in .tcl in the current
directory and creates the package index in the file pkgIndex.tcl in the
directory indexed. The pkgIndex.tcl holds one or more package ifneeded
commands, along with the scripts needed to load the packages; for example:

This command specifies a package named app-star1 at version 1.0. The
command to load the package is to source in the Tcl script file, star1.tcl. The
value $dir gets passed in by the Tcl interpreter when loading the package.
The first time a package require command gets executed, the Tcl interpreter
executes the package unknown script. This script sources all the pkgIndex.tcl files
found in the directories listed in the auto_path global variable and their
immediate subdirectories.

Note

Any platform-specific binary files must be set up to be loaded with the
load command, described in Section 14.2. In addition, the binary file
must contain a call to the C function Tcl_PkgProvide.

pkg_mkIndex supports a number of options, including -direct, to specify loading
the package files when a package require command is executed, which is the
default. The -lazy option is discouraged, but it sets up the package to get
loaded only when one of the procedures in the package is first called. The -
verbose option tells pkg_mkIndex to output status information as it works. A

312

special option, -load, specifies which packages to preload using a pattern.
This is to help index packages containing binary files that in turn depend on
other packages.

14.5.3 Using ::pkg::create

The ::pkg::create procedure creates the package ifneeded command used in the
pkgIndex.tcl files. You can also use ::pkg::create when creating your
pkgIndex.tcl files by hand. Normally you can simply use pkg_mkIndex to create a
package index script. The basic syntax is

The -source parameter takes a list with the first element being a file name and
the second an optional list of commands provided in the file; for example:

If you have a binary file, use the -load option:

The -load parameter takes a list whose first element is a file name and the
second is an optional list of commands provided in the binary file.

14.5.4 Installing Packages

To install your new package, install the package’s directory as a
subdirectory of any directory listed in the ::tcl_pkgPath variable. Once your
package is installed, the package require command can find it.

Note

By convention, if the ::tcl_pkgPath variable contains more than one
directory, you should place platform-specific packages into the first
directory in the list. Place platform-agnostic packages in the second

313

directory in the list.

If you need to install your package in another location (that is, not under the
directories listed in the ::tcl_pkgPath variable)—or if the ::tcl_pkgPath
variable is not set on your system—you must place your directory under one
of the directories listed in the ::auto_path variable. Typically, the directory in
which Tcl looks for its initialization scripts is one of the directories listed in
the ::auto_path variable; the info library command returns the name of this
directory. When in doubt, this directory is often a reasonable target
directory for installing your package.
You can also add the directory name where you installed your package to
the ::auto_path variable. You need to do this only if you install your package
to a nonstandard location.

14.5.5 Utility Package Commands

The package names command lists all packages installed:

Note

This example shows packages installed with ActiveTcl.

The package versions command returns a list of all versions of a package that
are available on the system:

 package versions mypackage
⇒ 1.0 1.1

When the package provide command is executed without a version number, it
returns the version number that is currently provided, or an empty string if
no package provide command has been invoked for the package in this
interpreter:

 package provide Trf
⇒ 2.1.2

314

14.6 Tcl Modules

The historical mechanism for locating and loading packages employed by
the Tcl core is very flexible, but it suffers from drawbacks as well. The
primary problems with the historical mechanism are that it extensively
searches the file system for packages, and that it has to actually read a file
(pkgIndex.tcl) to get the full information for a prospective package. All of
these operations take time. The fact that “index scripts” are able to extend
the list of paths searched tends to heighten this cost, as it forces rescans of
the file system. Installations where directories in the auto_path are large or
mounted from remote hosts are hit especially hard by this (especially
network delays). All of this together causes a slow startup of tclsh and Tcl-
based applications, especially for systems with an extensive collection of
packages located on remote hosts.
Tcl 8.5 added support for Tcl modules, which are less flexible than
traditional packages but require far less file system access by the Tcl
interpreter when it is searching for available packages and modules. Tcl
modules are the recommended method for creating and distributing
extensions in Tcl 8.5 and beyond.
The main simplification is that each module must be stored in a single file, a
file that is read with the Tcl source command. Inside the file, the module may
define one or more Tcl packages, as described in Section 14.5. Typically,
each module file defines a single Tcl package. You can store binary data
within the same file after a Control-z, which ends the reading of Tcl
commands. The other simplification is that there is no index file for the
module (that is, you don’t create a tclIndex or pkgIndex.tcl file to accompany
the module). The name of the module file and its location are enough to tell
the Tcl interpreter what package and version the module provides.

Note

For more information on creating modules containing binary data,
embedded ZIP archives, and other more complex structures, see the
documentation for TIP 190 at http://tip.tcl.tk/189.html and search for
related articles on the Tcler’s Wiki at http://wiki.tcl.tk/.

315

http://tip.tcl.tk/189.html
http://wiki.tcl.tk/

14.6.1 Using Tcl Modules

To use packages defined in Tcl modules, place a package require command
within your Tcl program, just as for any package; for example:

package require platform::shell 1.1.3

The Tcl interpreter looks first for packages within Tcl module files. Tcl
searches a list of directories known as the module path, which is
completely independent of the auto_path list of directories described in
Section 14.5.4. Only if an appropriate Tcl module is not found does Tcl fall
back to using the traditional method of scanning the directories listed in
auto_path for a package meeting the requirements.

14.6.2 Installing Tcl Modules

When creating modules, you must store them in a file whose name matches
the regular expression

([[:alpha:]][:[:alnum:]]*)-([[:digit:]].*)\.tm

The first part of the file name specifies the name of the package, such as
myutils. The portion of the file name following the - is the version number.
Module file names must end in a .tm extension. For example, the following
are valid module file names:

The directory tree for storing Tcl modules is independent of auto_path. Tcl
modules are searched for in all directories listed in the result of the
command ::tcl::tm::path list. This is called the module path. Neither the
auto_path nor the tcl_pkgPath variable is used.
When an application requests a package, before the search is started, the
name of the requested package is translated into a partial path, where all
occurrences of :: in the package name are replaced by the appropriate

316

directory separator character for the platform. Thus on Unix each :: in the
requested package name is translated to a /. For example,

package require encoding::base64

results in a partial path of encoding/base64. After this translation, Tcl joins this
partial path to the end of each directory in Tcl’s module path list—which
consists of a set of directories where Tcl looks for modules—to form a set
of search patterns. The patterns are tested in the order of the module paths to
search for a matching module file.
The default module path list is computed by tclsh based on the major and
minor versions of the Tcl interpreter. So, using X to indicate the major
version and Y to indicate each minor version less than or equal to the current
minor version, the default path list consists of the following:

• file normalize [info library]/../tclX/X. Y
file normalize [info nameofexecutable]/../lib/tclX/ X. Y

Thus, a version 8.5 Tcl interpreter would include a set of directories
tcl8/8.5, tcl8/8.4, tcl8/8.3, tcl8/8.2, tcl8/8.1, and tcl8/8.0, where the tcl8
directory is at the same level as the Tcl library directory returned by info
library.

• file normalize [info library]/../tclX/site-tcl
Note that this is always a single entry, because X is the specific current
major Tcl version.

• $::env(TCLX_Y_TM_PATH)
A list of paths, separated by either : on Unix or ; on Windows. Note that X
and Y follow the general rules mentioned above, so for Tcl 8.5, this would
mean that six different environment variables would be looked for:
TCL8_5_TM_PATH through TCL8_0_TM_PATH.
The command ::tcl::tm::path list returns the current module path list. You
can add directories to the list and remove them by using ::tcl::tm::path add
and ::tcl::tm::path remove. See the tm reference documentation for more
information.
As an example, consider the case where you’ve created the first version of a
package that people would load into their application with the command

package require struct::btree

Further assume that you designed the package using features of Tcl 8.4, and
it does not require any 8.5 features. If this were a module for your own
personal use, you might put it in a subdirectory of your home directory.
Assuming that your home directory is /Users/ken, the complete path name for

317

the module might be

/Users/ken/modules/struct/btree-1.0.tm

You could create an environment variable named TCL8_4_TM_PATH and include
the directory /Users/ken/modules as one of its values.
On the other hand, if your module were for general use by all users of your
system, and Tcl is installed such that info library returns C:\Tcl8.5\lib, the
complete path name for the module might be

C:\Tcl8.5\lib\tcl8\site-tcl\struct\btree-1.0.tm

If you plan to distribute the module, you could create a simple installation
script that would query the info library command, and then install your
module as

file normalize [info library]/../tcl8/8.4/struct/btree-1.0.tm

14.7 Packaging Your Scripts as Starkits

A Starkit provides a single-file distribution of your Tcl procedures,
application data, and, if needed, platform-specific compiled code. This
allows you to bundle an entire Tcl application as a single file.

Note

The name comes from an abbreviation for “stand-alone runtime.”

The Starkit itself uses Tcl’s virtual file system support to present your
application with a common directory structure for locating code, application
data, and other files. The files within the Starkit appear to your application
as normal files, shielding your application from the bundling format.
To run the application within a Starkit, you need to use a special Tcl
interpreter, called a Tclkit. A Tclkit is a platform-specific Tcl interpreter,
built with a known set of Tcl extensions—extensions needed to extract and
run your application from the virtual file system used by the Starkit. While a
normal Tcl installation consists of hundreds of files, with a Tclkit you get a
single-file executable with the entire Tcl distribution.

318

Note

As a single-file distribution mechanism, a Starkit is similar to a Java
Jar file, and Tclkit is similar to the Java Runtime Engine, or JRE. The
main difference is that you execute your Starkit directly using the Tclkit
interpreter for a particular platform.

The Tclkit/Starkit combination mostly provides convenience for bundling
and distribution—convenience for the end users of your Tcl programs.
Without a facility like Tclkit and Starkits, you need several items to be able
to deploy a Tcl program:

• A Tcl interpreter
• Platform-specific compiled libraries
• Tcl scripts that make up the Tcl standard library
• Any Tcl extensions needed by your application
• Any Tcl library code not part of the standard distribution but needed

by your application
• Your application scripts
• Any platform-specific compiled code needed by your application
• Any data files needed by your application

The Starkit system divides these items into two bundles. The Tclkit provides
the Tcl interpreter and a set of Tcl extensions, including everything
necessary to run Starkit applications. The Starkit, which you create, contains
your application scripts, any platform-specific compiled code needed, and
your application data.
The next sections show how to create and work with Starkits. To create a
Starkit, you first need to install a Tclkit interpreter.

14.7.1 Installing a Tclkit

Download a Tclkit interpreter for your platform from
http://www.equi4.com/tclkit/download.html. Each Tclkit interpreter includes Tcl,
Tk, IncrTcl, Metakit (a small embedded database library), and TclVFS
support for virtual file systems.

Note

319

http://www.equi4.com/tclkit/download.html

Find out more about Tclkits at http://www.equi4.com/tclkit/.

Normally, you just need to uncompress the downloaded file and you have a
complete Tcl interpreter. You can invoke the Tclkit interpreter just as you
would a tclsh and use it to run normal Tcl script applications as well as
Starkit applications. Running a Starkit with a Tclkit is much like running a
standard Tcl script:

tclkit starkitfile ?arguments_to_starkit ...?

14.7.2 Creating Starkits

The next step to creating Starkits is to download the sdx Starkit. sdx is a
Starkit designed to help you create your own Starkits, allowing you to wrap
your application as a Starkit, unwrap a Starkit, or show information on the
contents of a Starkit. Download sdx from http://www.equi4.com/pub/sk/sdx.kit and
find out more information at http://wiki.tcl.tk/sdx.

Note

Keep the sdx.kit available when working with Starkits.

To get started quickly, you can use the sdx qwrap command to create a Starkit
from a single Tcl script. For example, create a Tcl script like the following
and name the file star1.tcl:

puts "Hello from a Starkit."

Then run the following command to create a Starkit from this short Tcl
script:

tclkit sdx.kit qwrap star1.tcl

This command creates a small file named star1.kit. Run the new Starkit with
a command like the following:

 tclkit star1.kit
⇒ Hello from a Starkit.

320

http://www.equi4.com/tclkit/
http://www.equi4.com/pub/sk/sdx.kit
http://wiki.tcl.tk/sdx

Run the sdx lsk command to view the directory structure within the Starkit
file:

You can extract these files with the sdx unwrap command:

 tclkit sdx.kit unwrap star1.kit
⇒ 5 updates applied

This command creates a local file copy of the virtual file system in the
Starkit file stored under the star1.vfs directory. Inside this directory, you see
a file structure like the following:

All references to the name star1 come from the name of the original source
file, star1.tcl. Following Starkit conventions, the package created for your
application uses the prefix app-.
To run an expanded Starkit, use a command like the following:

 tclkit star1.vfs/main.tcl
⇒ Hello from a Starkit.

The main.tcl script contains the following code:

package require starkit
starkit::startup
package require app-star1

The starkit package provides the necessary code to initialize the Starkit
virtual file system. The starkit::startup procedure adds the internal Starkit lib

321

directory to the Tcl auto_path variable. This makes all packages within the
Starkit available to your application. You can add packages to the lib
directory and then access these packages in your scripts normally. The final
package require command sources your program’s script.
The pkgIndex.tcl script defines the package index:

And the sdx qwrap command modifies your original Tcl script to include a
package provide command:

package provide app-star1 1.0
puts "Hello from a Starkit."

Creating Starkits from an application consisting of multiple Tcl scripts and
other extensions, encodings, image files, data files, and other auxiliary files
is not much more difficult. You need to first create a directory structure
similar to what the sdx unwrap command creates when unwrapping a Starkit.
The top-level directory name is your application name followed by .vfs.
Within it should be a file called main.tcl, which is executed automatically
when the Starkit is run. This file should have the same content as previously
shown, except the final package require specifies the name of your application
“package.” The main script of your application needs to have an appropriate
package provide command, and you must also have a minimal pkgIndex.tcl file
that describes how to source the main script. Beyond that, your script can use
source, package require, and other Tcl commands to load scripts and other
auxiliary files from your .vfs directory structure. Once you have completed
development of your application, you can use the sdx wrap command to wrap
all of the files within the .vfs directory into a Starkit:

tclkit sdx.kit wrap star1.kit

Note

You can also bundle platform-specific C extensions inside your
Starkits. For more information on including additional files, including
C-based extensions, read the documentation available at
http://www.equi4.com/tclkit/.

322

http://www.equi4.com/tclkit/

14.7.3 Creating a Platform-Specific Executable

With Starkits, you need the separate platform-specific Tclkit interpreter to
run your application. A Starpack is a combination of a platform-specific
Tclkit interpreter and a Starkit, allowing you to provide your users with a
single-file application. An advantage of this is that your users no longer
need to know that you used Tcl to create the application, as the platform-
specific executable hides the underlying technology from users.
To create a Starpack, use the sdx wrap command with the -runtime option:

In this command, star1 names the output executable. Use a name like star1.exe
on Windows. The -runtime option specifies the Tclkit interpreter to use to
create the new executable. You cannot create your Starpack using the Tclkit
interpreter that is running the sdx command; of course, you can simply make
a copy of the Tclkit interpreter.
When you’re done, you can run your new command; for example:

 ./star1
⇒ Hello from a Starkit.

On Unix systems, you can use the file command to verify what you built; for
example:

In this case, for Mac OS X, the built executable runs on both PowerPC and
Intel platforms under Mac OS X.
For more on Starkits, see http://www.equi4.com/papers/skpaper1.html. You can also
download other Starkits and use the sdx unwrap command to see what lies
inside.

323

http://www.equi4.com/papers/skpaper1.html

324

15. Managing Tcl Internals

This chapter describes a collection of introspection commands that allow
you to query and manipulate the internal state of the Tcl interpreter and to
create helper interpreters for specialized tasks. For example, you can use
these commands to see if a variable exists, to monitor all uses of a variable
or command, to rename or delete a command, to handle references to
undefined commands, or to create an interpreter suited to executing scripts
dealing with data from untrusted sources. This chapter also discusses Tcl’s
features for time and date manipulation, measuring how long code execution
takes, temporarily pausing script execution, and scheduling actions to take
place after a delay.

15.1 Commands Presented in This Chapter

This chapter discusses the following Tcl commands for managing interpreter
internals:

• after ms
Sleeps for ms milliseconds and then returns.

• after ms ?script script ...?
Concatenates the script arguments in the same fashion as the concat command,
and then arranges to execute the resulting script in the global scope after ms
milliseconds. Returns a unique token identifying the registered script.

• after cancel id
Cancels the execution of a delayed script previously registered with after. id
is the unique identifier returned by after when the script was registered. If
the script has already been executed, the after cancel command has no effect.

• after idle script ?script ...?
Concatenates the script arguments in the same fashion as the concat command,
and then arranges to execute the resulting script in the global scope as an
idle callback. The script is run exactly once, the next time the event loop is
entered and there are no events to process. Returns a unique token
identifying the registered script.

• clock seconds
clock microseconds
clock milliseconds

Returns the current time as an integer number of seconds, milliseconds, or

325

microseconds since the epoch (see Section 15.3).
• clock format timeVal ?-option value ...?

Accepts a timeVal expressed as an integer number of seconds since the
epoch, and returns a time and date string intended for consumption by users
or external programs. See the text and the reference documentation for more
details.

• clock scan inputString ?-option value ...?
Accepts a time and date string intended for users or external programs and
returns a time expressed as an integer number of seconds since the epoch.
Raises an error if the string cannot be converted. See the text and the
reference documentation for more details.

• clock add timeVal ?count unit ...? ?-option value ...?
Accepts a timeVal expressed as an integer number of seconds since the epoch
and adds (possibly negative) count units of time to the value, returning the
resulting time as an integer. See the text and the reference documentation for
more details.

• info args procName
Returns a list whose elements are the names of the arguments to the
procedure called procName, in order.

• info body procName
Returns the body of the procedure called procName.

• info cmdcount
Returns a count of the total number of Tcl commands that have been
executed in this interpreter.

• info commands ?pattern?
Returns a list of all the commands that are visible in the current or specified
namespace, including built-in commands, application-defined commands,
procedures, ensembles, and aliases. If pattern is specified, only the
command names matching pattern are returned; matching is determined using
the same rules as string match. If the pattern includes an absolute or relative
namespace reference, only the commands from the specified namespace
matching the pattern are listed.

• info complete script
Returns 1 if script is a syntactically complete sequence of one or more Tcl
commands, 0 if not. This only determines whether the commands in the
script have correctly balanced braces, closed quotes, etc.; it does not ensure
that the commands have the correct argument formats.

• info default procName argName varName
Checks to see if the argument argName to the procedure procName has a default
value. If so, it stores the default value in the variable varName and returns 1.

326

Otherwise, it returns 0 and puts the empty string in varName.
• info exists varName

Returns 1 if there exists a variable named varName in the current context, 0 if
no such variable is currently accessible.

• info globals ?pattern?
Returns a list of all the global variables currently defined. If pattern is
specified, only the global variable names matching pattern are returned,
using string match’s rules for matching.

• info hostname
Returns the host name of the machine on which the Tcl interpreter is running.

• info level ?number?
If number is not specified, returns a number giving the current stack level (0
corresponds to the top-level, 1 to the first level of procedure call, and so
on). If number is specified, it returns a list whose elements are the name and
arguments for the procedure call at level number.

• info library
Returns the full path name of the library directory in which standard Tcl
scripts are stored.

• info locals ?pattern?
Returns a list of all the local variables defined for the current procedure, or
an empty list if no procedure is active. If pattern is specified, only the local
variable names matching pattern are returned, using string match’s rules for
matching.

• info nameofexecutable
Returns the full name of the executable containing the Tcl interpreter.

• info patchlevel
Returns the current release version of the Tcl interpreter.

• info procs ?pattern?
Returns a list of the names of all procedures currently defined in the current
namespace. If pattern is specified, only the procedure names matching pattern
are returned, using string match’s rules for matching. If the pattern includes an
absolute or relative namespace reference, only the procedures from the
specified namespace matching the pattern are listed.

• info script ?filename?
If filename is not specified, returns the name of the script file currently being
evaluated or the empty string if no script file is being executed. If filename is
specified, the value to be returned by info script (without arguments) is set to
be filename until the enclosing procedure call terminates.

• info sharedlibextension
Returns the platform’s default file name extension for shared libraries.

327

• info tclversion
Returns the version number for the Tcl interpreter in the form major.minor.

• info vars ?pattern?
Returns a list of the names of all variables that are currently accessible. If
pattern is specified, only the variable names matching pattern are returned,
using string match’s rules for matching.

• interp alias srcPath srcCmd ?targetPath? ?targetCmd?
 ?arg arg ...?

Creates, deletes, and manipulates command aliases between and within
interpreters. If the targetPath and later arguments are omitted, it returns the
current definition of the command alias with the name srcCmd in the
interpreter srcPath (which may be empty to refer to the current interpreter). If
targetPath is present as the empty string but no further arguments are present,
the alias called srcCmd in the interpreter srcPath is deleted. If targetCmd and any
optional extra arguments are present, the alias called srcCmd in the interpreter
srcPath is defined to indicate the command targetCmd in the interpreter
targetPath with the extra arguments all prefixed before any caller-supplied
arguments.

• interp create ?-safe? ?--? ?path?
Creates the interpreter referred to by path and returns the name of the
interpreter created. The optional argument -- indicates the end of the
optional arguments and should be used if path could start with a hyphen. The
optional -safe argument results in a safe interpreter with all unsafe core Tcl
commands hidden. If path is omitted, the interp command creates a direct
child of the current interpreter with an automatically generated name.

• interp delete path
Deletes the interpreter referred to by path and any slave interpreters it has.

• interp eval path arg ?arg ...?
Evaluates in the interpreter referred to by path the script formed by
concatenating the given arg arguments.

• interp expose path hiddenName ?cmdName?
Exposes the hidden command called hiddenName in the interpreter path. If
cmdName is present, the command is exposed as that; otherwise it is exposed
with the name it had when hidden.

• interp hide path cmdName ?hiddenName?
Hides the command called cmdName in the interpreter path. If hiddenName is
present, the command is hidden as that; otherwise it is hidden with the name
it had when exposed.

• interp invokehidden path ?-global? hiddenName ?arg ...?
Invokes the hidden command called hiddenName in the interpreter path, passing

328

in all following arg values as arguments to the hidden command itself.
• interp limit path limitType ?option? ?value? ...

Configures the execution limit on the interpreter path of type limitType.
• interp recursionlimit path ?newLimit?

Queries or sets the recursion limit (maximum depth of nested command
calling) for the interpreter path. Omitting newLimit queries the current limit,
and providing newLimit sets the limit. Note that Tcl independently imposes a
hard limit based on the amount of stack space available.

• interp share srcPath channelID targetPath
Arranges for the channel called channelID in the interpreter srcPath to be also
available with the same name in the interpreter targetPath.

• interp transfer srcPath channelID targetPath
Arranges for the channel called channelID in the interpreter srcPath to be
available with the same name in the interpreter targetPath. The channel is not
subsequently available in the interpreter srcPath.

• rename old new
Renames the command old to new, or deletes old if new is an empty string.
Returns an empty string.

• time script ?count?
Executes script count times and returns a string giving the average elapsed
time per execution, in microseconds. count defaults to 1.

• trace add command name ops scriptPrefix
Establishes a trace on the command name such that scriptPrefix is invoked
whenever one of the operations given by ops is performed on name. ops must
consist of a list of one or both of the following words: delete, rename. Returns
an empty string.

• trace add execution name ops scriptPrefix
Establishes a trace on the command name such that scriptPrefix is invoked
whenever one of the operations given by ops is performed during the
execution of name. ops must consist of a list of one or more of the following
words: enter, leave, enterstep, leavestep. Returns an empty string.

• trace add variable name ops scriptPrefix
Establishes a trace on the variable name such that scriptPrefix is invoked
whenever one of the operations given by ops is performed on name. ops must
consist of a list of one or more of the following words: array, read, write,
unset. Returns an empty string.

• trace info command name
trace info execution name
trace info variable name

Returns a list describing each of the traces set on the command or variable

329

name. Each element is itself a two-element list; the first element is the list of
operations that the trace watches, and the second element is the script prefix
used by the trace.

• trace remove command name ops scriptPrefix
trace remove execution name ops scriptPrefix
trace remove variable name ops scriptPrefix

If there is a trace of the indicated type set on the command or variable name
with the operations and script prefix given by ops and scriptPrefix, the trace is
removed, so that scriptPrefix is never again invoked. Returns the empty
string. If name does not exist, an error is thrown.

• unknown cmd ?arg arg ...?
This command is invoked by the Tcl interpreter whenever an unknown
command name is encountered. cmd is the unknown command name, and the
args are the fully substituted arguments to the command. The result returned
by unknown is returned as the result of the unknown command.

15.2 Time Delays

The after command allows you to incorporate timing into your applications.
It has two forms. If you invoke after with a single argument, the argument
specifies a delay in milliseconds, and the command delays for that number
of milliseconds before returning. For example,

after 500

delays for 500 milliseconds before returning. This form of the after
command blocks, so your application cannot respond to events while the
command is sleeping. In contrast, if you specify additional arguments, as in
the command

after 5000 {puts "Time's up!"}

the after command returns immediately without any delay. However, it
concatenates all of the additional arguments exactly like the concat command
and arranges for the resulting script to be evaluated after the specified
delay. The script is evaluated in the global scope as an event handler, just
like the scripts for widget bindings and file events. In the previous example,
a message is printed on the standard output after 5 seconds. There may be
any number of after scripts pending at once.

330

The after idle command registers an idle callback:

after idle script ?script ...?

In this form, the script arguments are concatenated in the same manner as
with concat, and the resulting script is run exactly once, the next time the
event loop is entered and there are no events to process. This form of the
after command also immediately returns.
The return value of the last two forms of the after command is a unique
identifier representing the registered script. You can pass it as an argument
to the after cancel command to cancel the pending script if it has not yet
executed.

Note

The last forms of the after command require the event loop to be active
to invoke the registered handlers. See Section 12.6 for more
information on the event loop and event-driven programming.

As an example of using the after command in event-driven applications, this
script uses after to build a general-purpose blinking utility:

The blink procedure takes five arguments, which are the name of a widget,
the name of an option for that widget, two values for that option, and a blink
interval in milliseconds. The procedure arranges for the option to switch
back and forth between the two values at the given blink interval. It does
this by immediately setting the option to the first value and arranging for
itself to be invoked again at the end of the next interval with the two option
values reversed, so that option is set to the other value. The procedure
reschedules itself each time it is called, so it executes periodically forever.
blink runs “in background”: it always returns immediately, then gets re-
invoked by Tk’s timer code after the next interval expires. This allows the
application to do other things while the blinking occurs.

331

15.3 Time and Date Manipulation

Tcl’s clock command provides a variety of time and date manipulation
utilities. Many of Tcl’s time-related commands express time relative to the
epoch time, which is defined as January 1, 1970, 00:00 UTC.
The clock seconds command returns the current time expressed as a signed
integer number of seconds since the epoch time, which is the most common
representation of epoch-based time in Tcl. The clock milliseconds and clock
microseconds commands return the current epoch-based time in milliseconds
and microseconds respectively.

15.3.1 Generating Human-Readable Time and Date Strings

The clock format command accepts an integer number of seconds since the
epoch time and returns a human-readable time and date string:

clock format time ?-option value ...?

clock format has a default format for the return value:

 clock format [clock seconds]
⇒ Fri Aug 29 13:05:00 PDT 2008

If you include a -format option, the argument that follows is a string that
specifies how the date and time are to be formatted. The string consists of
any number of characters other than the percent sign (%) interspersed with
any number of format groups, which are two-character sequences beginning
with the percent sign. Tcl supports a large number of format groups, many of
them added in Tcl 8.5 for localization support. Table 15.1 lists the meanings
of some of the more commonly used format groups. See the clock reference
documentation for a complete list.

Table 15.1 Common clock Format Groups

332

Here are some examples:

Starting in Tcl 8.5, you can also provide a -timezone option to request the time

333

zone in which the date and time are to be formatted. The time zone can be
expressed in several standard formats; see the clock reference documentation
for details.

Tcl 8.5 also introduced localization of the time and date strings. By default,
clock format returns a time and date string localized according to the current
system locale. By supplying the -locale option, you can specify a different
locale, and clock format generates a localized time and date string
appropriate to that locale. Many locales are supported by default; see the
clock reference documentation for information on supplying your own
localizations if they are not already provided by Tcl.

15.3.2 Scanning Human-Readable Time and Date Strings

The clock scan command accepts a human-readable time and date string and
returns an integer value representing the number of seconds since the epoch:

clock format inputString ?-option value ...?

For compatibility with versions of Tcl prior to 8.5, the clock scan command
applies some heuristics to attempt to parse the string without guidance; for
example:

334

However, to reduce ambiguity in Tcl 8.5 and later, you should provide the -
format option to clock scan followed by a string describing the expected
format of the input. The string can consist of any number of characters other
than the percent sign (%), interspersed with any number of format groups.
The format groups are the same as supported for the clock format command
described in the previous section. clock scan raises an error if the string does
not match the specified format:

Note

In general, the clock scan format group interpretation is more generous
than that of clock format. For example, %d results in a two-digit day of the
month, with a leading 0 if necessary, with clock format; in contrast, it
matches a one- or two-digit day, with optional leading space, with clock
scan. Similarly, %B produces the full month name with clock format,
whereas clock scan allows the month name in abbreviated or full form,
or any unique prefix of either form.

The clock scan command in Tcl 8.5 and later also supports localized time and
date representations. By default, the time and date string is interpreted
according to the system locale. However, you can use the -locale option in
combination with -format to specify an alternate locale for parsing the string:

15.3.3 Performing Clock Arithmetic

335

For compatibility with versions of Tcl prior to 8.5, the clock scan command
supports simple clock arithmetic. In addition to a small set of keywords
such as now, today, yesterday, and tomorrow, you can specify any combination of
units of time to add or subtract; for example:

Tcl 8.5 introduced the clock add command to eliminate the ambiguity of the
clock scan command in clock arithmetic:

clock add timeVal ?count unit ...? ?-option value ...?

The first argument to clock add is an integer number of seconds relative to the
epoch time. The remaining arguments are integers and keywords in
alternation, where the keywords are chosen from seconds, minutes, hours, days,
weeks, months, or years or any unique prefix of such a word. The integers
specify the number of units to add to—or subtract from, in the case of a
negative integer—the base time:

Note

336

The clock add command attempts to handle gracefully situations such as
the start or end of Daylight Savings Time and the change from Julian to
Gregorian calendars. See the clock reference documentation for
complete information.

15.4 Timing Command Execution

The time command is used to measure the performance of Tcl scripts. It takes
two arguments, a script and an optional repetition count:

 time {format "%d%s%f" 123 xyz 4.56} 100000
⇒ 3.85866 microseconds per iteration

time executes the given script the number of times given by the repetition
count (which defaults to 1), divides the total elapsed time by the repetition
count, and returns a message similar to the preceding example, giving the
average number of microseconds per iteration. The repetition count allows
reasonably accurate measurements even when the clock resolution is less
than ideal.

Note

In general, to make accurate timing measurements, experiment with the
repetition count until the total time for the time command to run is a
second or so.

15.5 The info Command

The info command provides information about the state of the Tcl interpreter
through introspection. It has a rich set of options, which are discussed in the
following sections.

15.5.1 Information about Variables

337

Several of the info options provide information about variables. info exists
returns a 1 or 0 value, indicating whether or not there exists a variable
(including an array element) with a given name:

The options vars, globals, and locals return lists of variable names that meet
certain criteria. info vars returns the names of all variables accessible at the
current level of procedure call; info globals returns the names of all global
variables, regardless of whether or not they are accessible; and info locals
returns the names of local variables, including arguments to the current
procedure, if any, but not global variables. In each of these commands, an
additional pattern argument may be supplied. If the pattern is supplied, only
variable names matching that pattern (using the rules of string match) are
returned.
For example, suppose that the global variables global1 and global2 have been
defined and that the following procedure is being executed:

Executing the following commands within the procedure would produce the
following results:

In addition, the pattern argument to info vars may be preceded by a

338

namespace to list the variables defined in that namespace:

15.5.2 Information about Procedures

Another group of info options provides information about procedures. The
command info procs returns a list of all the Tcl procedures that are defined in
the current namespace. Like info vars, it takes an optional pattern argument
that restricts the names returned to those that match a given pattern or selects
another namespace to examine. info body, info args, and info default return
information about the definition of a procedure:

info body returns the procedure’s body exactly as it was specified to the proc
command. info args returns a list of the procedure’s argument names, in the
same order in which they were specified to proc. info default returns
information about an argument’s default value. It takes three arguments: the
name of a procedure, the name of an argument to that procedure, and the

339

name of a variable. If the given argument has no default value (for example,
a in the preceding example), info default returns 0. If the argument has a
default value (c in the preceding example), info default returns 1 and sets the
variable to hold the default value for the argument.
As an example of how you might use the commands from the previous
paragraph, here is a Tcl procedure that writes a Tcl script file. The script
contains Tcl code in the form of proc commands that re-create all of the
procedures in the global namespace of the interpreter. The file can then be
sourced in some other interpreter to duplicate the procedure state of the
original interpreter. The procedure takes a single argument, which is the
name of the file to write:

info provides one other option related to procedures: info level. If info level
is invoked with no additional arguments, it returns the current procedure
invocation level: 0 if no procedure is currently active, 1 if the current
procedure was called from the top level, and so on. If info level is given an
additional argument, the argument indicates a procedure level, and info level
returns a list whose elements are the name and actual arguments for the
procedure at that level. For example, the following procedure prints out the
current call stack, showing the name and arguments for each active
procedure:

340

15.5.3 Information about Commands

The info commands subcommand is similar to info procs except that it returns
information about all currently visible commands, not just procedures. If
invoked with no arguments, it returns a list of the names of all commands
visible in the current namespace context. If an argument is provided, it is a
pattern in the sense of string match with an optional namespace prefix (just as
with info procs and info vars), and only command names matching that pattern
(in the given namespace if the prefix is there) will be returned.

The command info cmdcount returns a number indicating how many commands
have been executed in this Tcl interpreter. It may be useful during
performance tuning to see how many Tcl commands are being executed to
carry out various functions, and it is also a value that may be controlled
using an interpreter resource limit (as discussed in Section 15.11.4).
The command info script indicates whether a script file is currently being
processed. If so, the command returns the name of the innermost nested
script file that is active. If there is no active script file, info script returns an
empty string. This command is used mostly for working out the location of
files that are placed in the same directory as the script file, like this:

set otherFile [file dirname [info script]]/other.tcl

Note

You can also override the current script file name up until the end of
the currently executing procedure by passing the new script file name
as an argument to info script, which is used when writing customized

341

replacements for the source command. This is the way to perform
preprocessing of a script before evaluation, but it is only rarely useful.

The command info complete is used when parsing input from a channel (such
as stdin) to determine whether a string represents a syntactically complete
sequence of Tcl commands. This is used mainly when writing a handler that
allows the execution of interactive scripts as part of the processing of a
program; when tclsh is executing without a script argument, its main read-
evaluate loop uses info complete to determine when to pass a string to the Tcl
interpreter for evaluation.

15.5.4 The Tcl Interpreter Version and Other Runtime Environment
Information

The info tclversion command returns the version number for the Tcl
interpreter in the form major.minor, such as 8.5. Both major and minor are
decimal strings. If a new release of Tcl contains only backward-compatible
changes such as bug fixes and new features, its minor version number
increments and the major version number stays the same. If a new release
contains changes that are not backward-compatible, so that existing Tcl
scripts or C code that invokes Tcl’s library procedures will have to be
modified, the major version number increments and the minor version
number resets to 0. The command info patchlevel returns more detailed
version information that indicates the exact patch level of the Tcl interpreter,
such as 8.5.3; this is usually useful only when submitting bug reports or
determining whether to upgrade.
The command info library returns the full path name of the Tcl library
directory. This directory holds standard scripts used by Tcl, such as a
default definition for the unknown procedure described in Section 15.10.
The command info hostname returns the host name of the machine on which the
Tcl interpreter is running. Note that this command returns only the primary
name of the machine. Some machines (especially server systems with
multiple network connections) may have multiple names, and a more
sophisticated approach to obtaining the name may be needed.
The commands info nameofexecutable and info sharedlibextension respectively
return the name of the executable that was used to invoke the Tcl interpreter
and the standard shared library file name extension used on the platform on
which the Tcl interpreter is running. info nameofexecutable is useful in
situations where you want to invoke another Tcl interpreter as a separate

342

process via exec or open, and info sharedlibextension is useful when creating
cross-platform Tcl scripts that use load to access extension modules written
in programming languages like C.

15.6 Tracing Operations on Simple Variables

The trace command allows you to monitor the usage of a number of aspects
of the Tcl interpreter, including variables. Such monitoring is called
tracing. If a trace has been established on a variable, a Tcl command is
invoked whenever the variable is read, written, or unset. Traces can be used
for a variety of purposes, such as

• Monitoring the variable’s usage (for example, by printing a message
for each read or write operation)

• Propagating changes in the variable to other parts of the system (for
example, to ensure that a particular widget always displays the
picture of a person named in a given variable)

• Restricting usage of the variable by rejecting certain operations (for
example, generating an error on any attempt to change the variable’s
value to anything other than a decimal string) or by overriding
certain operations (for example, re-creating the variable whenever it
is unset)

Here is a simple example that prints a message when either of two variables
is modified:

In this example, the trace command arranges to invoke the procedure pvar
whenever the variable color is written. The argument variable specifies that a
variable trace is being created, color gives the name of the variable, write
specifies a set of operations to trace (a list of any combination of read, write,
and unset), and the last argument is a command to invoke.
Whenever color is modified, Tcl invokes pvar with three additional arguments
appended: the variable’s name; the variable’s element name if it is an array
element, or an empty string otherwise (the pvar procedure ignores this
argument); and an argument indicating what operation was actually invoked.
The operation argument is read when the variable is read, write when it is

343

written, and unset when the variable is deleted. For example, if the command
set color purple is executed, Tcl evaluates the command pvar color {} write
because of the trace.
The pvar procedure does two things. First, the procedure uses upvar to make
the variable’s value accessible inside the procedure as local variable x.
Then it prints out the variable’s name and value on standard output. For the
access in the preceding paragraph the following message would be printed:

Variable color set to purple

Write traces are invoked after the variable’s value has been modified but
before returning the new value as the result of the write. The trace command
can write a new value into the variable to override the value specified in
the original write, and this value is returned as the result of the traced write
operation. Read traces are invoked just before the variable’s result is read.
The trace command can modify the variable to affect the result returned by
the read operation. Tracing is temporarily disabled for a variable during the
execution of read and write trace commands. This means that a trace
command can access the variable without causing traces to be invoked
recursively.
If a read or write trace returns an error of any sort, the traced operation is
aborted. This can be used to implement read-only variables, for example.
Here is a script that forces a variable to have a positive integer value and
rejects any attempts to set the variable to a non-integer value:

By the time the trace command is invoked, the variable has already been
modified, so if forceInt wants to reject a write, it must restore the old value
of the variable. To do this, it keeps a shadow variable with the suffix _old to
hold the previous value of the variable. If an illegal value is stored in the
variable, forceInt restores the variable to its old value and generates an
error:

344

You can use traces to create a read-only variable. The simplest way to
implement this is to store the value to which the variable is to be reset as
part of the trace callback itself; this is possible because the trace callback is
really a script fragment and not just a command name. The additional
argument provided when registering the trace becomes an additional
argument to the callback procedure; for example:

Note

When generating script fragments for callbacks and other deferred
evaluations, it is highly advisable to use the list command to do the
generation as was just demonstrated. This applies the correct amount
of quoting to ensure that the value is relayed to the callback procedure
exactly as it was provided at the creation of the callback, without
interference from the Tcl interpreter.

It is legal to set a trace on a nonexistent variable; the variable continues to
appear to be unset even though the trace exists. For example, you can set a
read trace on an array, and then use it to create new array elements
automatically the first time they are read. Unsetting a variable removes the
variable and any traces associated with the variable, then invokes any unset
traces for the variable. It is legal, and not unusual, for an unset trace to
immediately reestablish itself on the same variable so that it can monitor the
variable if it should be re-created in the future.

345

To delete a trace, invoke trace remove variable with the same arguments passed
to trace add variable. For example, the trace on color in the earlier example
can be deleted with the following command:

trace remove variable color write pvar

If the arguments to trace remove variable do not match the information for any
existing trace exactly, the command has no effect.
The command trace info variable returns information about the traces
currently set for a variable. It is invoked with an argument consisting of a
variable name, as in the following example:

 trace info variable color
⇒ {write pvar}

The return value of trace info variable is a list, each of whose elements
describes one trace on the variable. Each element is itself a list with two
elements, which give the list of operations traces and the command for each
trace. The traces appear in the result list in the order in which they are
invoked. If the variable specified to trace info variable is an element of an
array, only traces on that element are returned; traces on the array as a
whole are not returned.

Note

It is possible to use traces to create very unclear code, such as making
the whole world change when you read or write a variable. This is
considered very poor style. If an operation may have significant side
effects, it should (usually) be implemented as a command invocation.

15.7 Tracing Array Variables

With trace you can trace not only normal variables, but also array elements
and whole arrays. Tracing an array element is exactly the same as tracing a
simple variable, except that the variable name is split into two parts (the
array name and the element name) when passed to the trace callback
command; for example:

346

When tracing whole arrays, there are finer nuances. First, the read, write,
and unset traces fire when any element of the array is accessed (according
to the type of access), except for the case where the upvar command was
used to create a link to an element of the traced array. Second, an additional
type of trace is available to handle accesses that need to know the whole set
of elements, such as when processing the array get or array names commands:
the array trace type. This fires whenever the array is accessed as a whole;
when it triggers, it never passes the name of an element.

Note

Array traces are used to implement the global env array. Those traces
cause the array to be rebuilt every time it is written to or read from.
This means that you are strongly advised to avoid using upvar to link a
local variable to any element of the env array; always use global to bring

347

the whole array into scope. This re-creation behavior is also why
accesses to env are slow; it is always more efficient to use some other
mechanism when you do not actually need access to the environment
variables.

15.8 Renaming and Deleting Commands

The rename command is used to change the command structure of an
application. It takes two arguments:

rename old new

rename does just what its name implies: it renames the command that used to
have the name old so that it now has the name new. It is an error if new already
exists as a command when you invoke rename.
You can also use rename to delete a command by invoking it with an empty
string as the new name. For example, the following script removes event loop
processing from an interpreter by deleting the relevant commands:

Any Tcl command may be renamed or deleted, including the built-in
commands as well as procedures and commands defined by an application.
Take care when renaming or deleting a built-in command, since it will break
scripts that depend on the command (possibly including some other built-in
commands), but in some situations it can be useful. For example, the exit
command as defined by Tcl exits the process immediately. If an application
wants to have a chance to clean up its internal state before exiting, it can
create a “wrapper” around exit by redefining it:

In this example, the exit command is renamed exit.old and a new exit
procedure is defined, which performs the cleanup required by the

348

application and then calls the renamed command to exit the process. This
allows existing scripts that call exit to be used without change, while still
giving the application an opportunity to clean up its state.

15.9 Tracing Commands

The trace command may be used to trace command-related events as well as
variable-related events. By using trace add command, you can track changes to a
command’s name (using the rename operation) and detect when the command
is deleted (the delete operation). This is particularly useful in situations
where the command has associated with it some resources that should be
deleted at the same time as the command. For example, the following
procedure implements a simple logging system that closes the log file when
the logging command is deleted:

In this example, the log command creates a new command that logs to the
given file by creating an interpreter alias (see Section 15.11.1 for more
details) to the logCommand command that implements the logging command. To
ensure that the file is closed in a timely fashion, the log command then adds a
delete trace that ensures that the logging channel is disposed of when the
command to write to it is destroyed. The command trace callback,
implemented by logDone, is invoked whenever the command is either deleted
or renamed, as selected in the trace add command invocation. The callback is
invoked with three extra arguments: what the command was renamed from,
what it is being renamed to (or the empty string in the case of deletion), and
what operation is being performed. The following illustrates the command

349

in use:

This example also illustrates another important technique for working with
traces: adding user-defined arguments to the trace callback. These
additional arguments always come before the arguments added by the trace
callback process. This is how logDone discovers what channel to close.
Commands may also have their execution behavior traced using trace add
execution, which is particularly useful for debugging complex scripts. Four
kinds of execution events may be traced; to receive notification of when a
command is invoked, you should put an enter trace on it, and to find out what
the command’s result is, you should put a leave trace on it. Finer-grained
information about the execution of a command is also available. With the
enterstep and leavestep execution traces it is possible to find out about all the
command entry and completion behavior that happens during the execution
of a command (this is most obvious during the processing of a procedure,
but it can be applied to any other Tcl command as well).
With enter and enterstep traces, two arguments are added to the callback
command. The first is the list of fully substituted arguments to the command,
and the second is the operation that triggered the trace callback. With leave
and leavestep traces, four arguments are appended; as with enter traces, the
first argument is the list of fully substituted arguments, and the last argument
is the operation name. However, the second argument is the return code just
as would be seen by catch at that point (0 for success, 1 for error, etc.), and
the third argument is the result of the command.

350

Like variable traces, trace info is used to discover information about
command and execution traces, and trace remove can be used to delete them.

 trace info execution demo
⇒ {{enterstep leavestep} tracer}

15.10 Unknown Commands

The Tcl interpreter provides a special mechanism for dealing with unknown
commands. If the interpreter discovers that the command name specified in a
Tcl command does not exist, it checks for the existence of a command named
unknown. If there is such a command, the interpreter invokes unknown instead of
the original command, passing the name and arguments for the nonexistent
command to unknown. For example, suppose that you type the following
commands:

set x 24

351

createDatabase library $x

If there is no command called createDatabase, the following command is
invoked:

unknown createDatabase library 24

Notice that substitutions are performed on the arguments to the original
command before unknown is invoked. Each argument to unknown consists of one
fully substituted word from the original command.
The unknown procedure can do anything it likes to carry out the actions of the
command, and whatever it returns is returned as the result of the original
command. For example, the following procedure checks to see if the
command name is an unambiguous abbreviation for an existing command; if
so, it invokes the corresponding command:

Note that when the command is re-invoked with an expanded name, it must
be invoked using uplevel so that the command executes in the same variable
context as the original command.
The Tcl script library includes a default version of unknown that performs the
following functions, in order:

1. If the command is a procedure that is defined in a library file, source
the file to define the procedure, then re-invoke the command. This is
called autoloading, described in Chapter 14.

2. If a program exists with the name of the command, use the exec
command to invoke the program. This feature is called autoexec.
For example, on a Unix system you can type ls as a command, and
unknown will invoke exec ls to list the contents of the current directory.
If the command does not specify redirection, autoexec arranges for
the command’s standard input, standard output, and standard error to
be redirected to the corresponding channels of the Tcl application.
This is different from the normal behavior of exec, but it allows
interactive programs such as more and vi to be invoked directly from
a Tcl application.

352

3. If the command name has one of several special forms such as !!,
compute a new command using history substitution and invoke it. If,
for example, the command is !!, the previous command is invoked
again. See Chapter 16 for more information on history substitution.

4. If the command name is a unique abbreviation for an existing
command, the abbreviated command name is expanded and the
command is invoked again.

Note

The last three actions are intended as conveniences for interactive use,
and they occur only if the command was invoked interactively. You
should not depend on these features when writing scripts. For example,
you should never use autoexec in scripts; always use the exec command
explicitly.

If you do not like the default behavior of the unknown procedure, you can write
your own version or modify the library version to provide additional
functions; the apparent nature of the Tcl language can be greatly changed
through this. If you do not want any special actions to be taken for unknown
commands, you can just delete the unknown procedure, in which case errors
occur whenever unknown commands are invoked.

Note

The one feature of the autoexec system that is generally useful is the
command auto_execok, which takes the name of an external command that
you might want to run with exec and returns a list of words to use with
exec that describe how to actually do it. This includes searching the PATH
for the program, adding suitable code for invoking the shell if it was a
shell internal command rather than a program, and so on. For example,
on Windows the start command is actually a shell internal, but it is
extremely useful for opening many different types of files, just as in
Windows Explorer. So you could use it like this to open a saved web
page:

exec {*}[auto_execok start] example.html

353

15.11 Slave Interpreters

Slave interpreters are Tcl interpreters that are children of some other
interpreter (called the master). They are used in cases where there is a need
to evaluate a Tcl script in a context that is substantially different from that of
the main Tcl program, such as

• Processing untrusted code
• Handling a plugin mechanism for a larger program that does not

expose the details of the main body of the application
• Creating a friendlier API for configuring an application
• Isolating executions of some code from each other
• Limiting the resources that may be used for a particular operation

Slave interpreters’ variables are independent of the variables of the master
interpreter or any other slave interpreters, with the notable exception of the
shared global env array. This makes it easier to keep different spaces of
variables apart.
For example, you could have a configuration file format for your program
without any danger that temporary variables used in the configuration file
will interfere with the operation of the main program. Or you could have a
chess game system where the state of the board and the rules of the game are
enforced by the master interpreter, but each player’s code is in an
independent slave interpreter, making it easy to show that the players are not
interfering with each other.
Slave interpreters are manipulated using the interp command. It is possible
to nest slave interpreters within other slave interpreters, and the
subcommands of the interp command indicate what interpreter they are
manipulating by giving a path as a list of interpreter names, starting at the
current interpreter. The slave interpreters are all completely independent
from each other except for the global env array, which is normally shared.
A slave interpreter is created (in the current thread if threading is enabled)
using the interp create command, which takes an optional interpreter name.
Scripts may then be evaluated in this interpreter using interp eval, and the
interpreter can then be deleted with interp delete.

Note

354

Using interp eval does not start a separate thread of execution. You can
have multiple interpreters per thread, just as you can have multiple
threads per OS process. Interpreters provide script-level isolation and
different execution and global variable contexts. Parallel execution can
be added through the use of multiple threads, which requires a threaded
build of Tcl and the use of the Thread extension. Full isolation requires
the use of multiple processes and interprocess communication, with all
the overhead that implies.

As you can see from the following example, a slave interpreter makes
creating an application-specific language easy:

When you create a slave interpreter, a command with the same name is also
created. This allows you to invoke many operations directly, and to delete
the interpreter by deleting the command. This means that the previous
example could have been written like this:

15.11.1 Command Aliases

355

Sometimes it is necessary for scripts running in slave interpreters to be able
to trigger the running of commands in their masters. For example, a network
server configuration script will want to tell the server how to configure
itself, even if it does not have the power to directly run the configuration
code itself. This powerful feature is enabled by setting up an alias command
in the slave that triggers the running of a command in the master using interp
alias. You can get the list of aliases defined on an interpreter by using the
interp aliases command, and individual alias configurations can be obtained
by using interp alias with fewer arguments than would be necessary to define
an alias.

As a convenience, the per-slave command created when you create the
slave interpreter has an alias subcommand, though this allows only the
definition of aliases from the slave interpreter into the master. (The full
interp alias command has a wider repertoire, including allowing aliases to
be defined from one slave interpreter to another.) This means that the
definition of the service, usePort, and dump aliases from the previous example
could have been done like this:

356

Aliases can even be defined within an interpreter by using an empty string
for the interpreter name, which is useful for defining one command in terms
of another:

15.11.2 Safe Slave Interpreters and Hidden Commands

One of the most important uses for slave interpreters is the parsing of Tcl
scripts that are not trusted by the master interpreter. Examples of this
include the parsing of Tcl code that is embedded within a web page, e-mail
message, or some other context where the creator of the code is not
necessarily known. Tcl provides a mechanism for handling this situation
called a safe interpreter. Safe interpreters are slave interpreters that have a
special flag set at creation time and that hide all their unsafe commands (for
example, exec, open, socket, source) so that they may not be called unless
explicitly authorized to do so by the master interpreter. This mechanism,
analogous to the way that an operating system handles the security of
processes, is a very strong mechanism because there is no way to perform
any state-changing operation within the Tcl language without executing a
command. Although a safe interpreter can change its internal state, such as
by creating procedures or setting variables, by default no commands are
exposed in the safe interpreter for interacting with its master or the system
executing the application. And unlike normal slave interpreters, safe slaves
do not have access to the env variable and do not have a predefined unknown
command (described in Section 15.10).
You create safe interpreters by passing the -safe flag to interp create. You then
use them exactly like any other slave interpreter, though the default set of
commands is somewhat more restricted:

357

A master interpreter should expose more dangerous behavior only in a
controlled fashion to the safe interpreter using aliases. This allows access
to specific parts of the behavior of a command without opening up access to
all parts of it:

Another common example of selectively exposing access to prohibited
commands within a safe interpreter is controlled access to the source
command. You very well might want to source files or load packages from a
safe interpreter, but by default the source command is not exposed in a safe
interpreter.
When the unsafe functionality is removed from a safe interpreter during its
creation, the unsafe commands are not actually deleted. Instead, the
interpreter hides them. The master interpreter may invoke hidden commands
using the interp invokehidden command, as can be seen in the following
example. This implements a safer version of the source command that checks
to see whether the file that is to be sourced is really a Tcl script file in the Tcl
library, otherwise refusing and claiming that the file does not exist:

358

The master interpreter may use the interp hide and interp expose commands to
manipulate the set of commands hidden and exposed by a slave interpreter,
modifying the profile of code that may run successfully within that safe
interpreter. In the following example the pwd command has been exposed so
that code executing in the safe slave can discover its current directory, and
the vwait and update commands have been hidden so the event loop cannot be
entered:

Note

While safe interpreters may create their own slave interpreters by
default, all the interpreters that they create are forced to be safe
interpreters, and many of the subcommands of the interp command are
not available. Many extensions to Tcl also restrict themselves in safe
interpreters. For example, Tk permits the use of only some of its

359

widgets from within a safe interpreter, blocking access to anything that
could be used to obscure the enclosing application, and it also prevents
the script from having access to things like system-wide configuration
options or the clipboard.

15.11.3 Transferring Channels between Interpreters

By default, slave interpreters do not have access to their parents’ I/O
channels. If an interpreter wishes to give access to a channel to one of its
slaves, it should use interp share or interp transfer. interp share allows a
second interpreter to use a channel at the same time as the interpreter that
created the channel (both interpreters must close the channel for the file,
socket, or pipeline to actually be closed), and interp transfer gives access to
a channel from one interpreter to another without keeping it in the source
interpreter. In both cases, the channel has the same name in the target
interpreter as in the source interpreter.
This can be useful in cases where you want to allow the script running in the
child interpreter to open a file, but you do not want the script to know where
that file is, or even that it is necessarily a file at all:

15.11.4 Placing Limits on an Interpreter

Every interpreter has a limit on the depth of recursive evaluations it can
perform.1 This is so that procedures that accidentally call themselves in an
unbounded fashion do not cause the interpreter to crash, but instead fail

360

gracefully with a catchable error and have an informative stack trace
available:

1. Note that there is a separate hard limit on the depth of recursion that is
imposed by the underlying size of the process’s stack.

The default limit is usually large enough for most programs, but some highly
recursive programs require a much larger limit, and highly paranoid
programmers dealing with safe interpreters may wish to set a much smaller
limit. The limit can be queried and set using the interp recursionlimit
command:

A number of other limits on execution can also be enabled through the interp
limit command, allowing a master interpreter to guarantee that a slave
spends only a limited amount of effort carrying out some operation. The
interp limit command also provides a framework for setting up traps that
trigger when the limits are exceeded so that a master interpreter can decide
whether to permit the slave to execute further. See the reference
documentation for the interp command for more details. Still other things can
be controlled relatively easily through the master interpreter, such as the

361

number of open sockets and the total size of files being written to.

362

363

16. History

This chapter describes Tcl’s history mechanism. In applications where you
type commands interactively, the history mechanism keeps track of recent
commands and makes it easy for you to re-execute them without having to
retype them from scratch. You can also create new commands that are slight
variations on old commands without having to completely retype the old
commands—to fix typographical errors, for example. Tcl’s history
mechanism provides many of the features available in the Unix csh, but not
with the same syntax in all cases.

Note

TkCon is a replacement for the standard console that comes with Tk.
Among its many features is a sophisticated command history and
editing functionality. You can use the arrow keys to cycle between
commands in the history, interactively edit retrieved commands, and
execute the result. TkCon also retains the command history across
multiple sessions. See Appendix B for more information on TkCon and
how to obtain it.

16.1 Commands Presented in This Chapter

History is implemented by the history command. Only a few of the most
commonly used history features are described in this chapter; see the
reference documentation for more complete information.

• history
A shortcut for history info.

• history clear
Erases the history list, resetting the event numbers. The current keep limit is
retained.

• history info ?count?
Returns a formatted string giving the event number and command for each
event on the history list. If count is specified, only the most recent count

364

events are returned.
• history keep count

Changes the size of the history list so that the count most recent events will
be retained. The initial size of the list is 20 events.

• history nextid
Returns the number of the next event that will be recorded in the history list.

• history redo ?event?
Re-executes the command recorded for event and returns its result.

16.2 The History List

Each command that you type interactively is entered into a history list. Each
entry in the history list is called an event; it contains the text of a command
plus a serial number identifying the command. The command text consists of
exactly the characters you typed, before the Tcl parser performs
substitutions for $, [], and so on. The serial number starts at 1 for the first
command you type and increments for each successive command.
Suppose you type the following sequence of commands to an interactive Tcl
program:

At this point, the history list contains three events. You can examine the
contents of the history list by invoking history with no arguments:

The value returned by history is a human-readable string describing what’s
on the history list, which also includes the history command itself. The result
of history is intended to be printed out, not to be processed in Tcl scripts; if
you want to write scripts that process the history list, you’ll probably find it
more convenient to use other history options described in the reference
documentation, such as history event.
The history list has a fixed size, which is initially 20. If more commands
than that have been typed, only the most recent commands are retained. You
can change the size of the history list with the history keep command:

365

history keep 100

This command changes the size of the history list so that in the future the 100
most recent commands are retained.

16.3 Specifying Events

Several of the options of the history command require you to select an event
from the history list. Events are specified as strings with one of the
following forms:

• Positive number—selects the event with that serial number.
• Negative number—selects an event relative to the current event. -1

refers to the last command, -2 refers to the one before that, and so on.
• Anything else—selects the most recent event that matches the string.

The string matches an event either if it is the same as the first
characters of the event’s command or if it matches the event’s
command using the matching rules for string match.

Suppose that you had just typed the three commands from Section 16.2. The
command incr x can be referred to as event -1 or 3 or inc, and set y [expr
{$x*2.6}] can be referred to as event -2 or 2 or *2*. If an event specifier is
omitted, the default is -1.

16.4 Re-executing Commands from the History List

The history redo command retrieves a command and re-executes it just as if
you had retyped the entire command. For example, after just the first three
commands from Section 16.2 are typed, the command

history redo

replays the most recent command, which is incr x; it increments the value of
variable x and returns its new value (26). If an additional argument is
provided for history redo, it selects an event as described in Section 16.3; for
example,

 history redo 1
⇒ 24

replays the first command, set x 24.

366

16.5 Shortcuts Implemented by unknown

The basic history commands are quite bulky; in the previous example, it took
more keystrokes to type the history command than to retype the command
being replayed. Fortunately there are several shortcuts that allow the same
functions to be implemented with fewer keystrokes:

• !!
Replays the last command; same as history redo.

• !event
Replays the command given by event; same as history redo event.

• ^old^new
Retrieves the last command, replaces all occurrences of old with new, and
executes the resulting command.
The last shortcut is convenient for correcting typographical errors:

Keep in mind that Tcl’s substitution shortcut replaces all occurrences of the
old string:

All of these shortcuts are implemented by the unknown procedure described in
Section 15.10. unknown detects commands that have the forms described here
and invokes the corresponding history commands to carry them out.

Note

If your system doesn’t use the default version of unknown provided by
Tcl, these shortcuts may not be available.

16.6 Current Event Number: history nextid

367

The command history nextid returns the number of the next event to be
entered into the history list:

 history nextid
⇒ 3

It is most commonly used in interactive applications to generate prompts
that contain the event number.

368

369

Part II. Writing Scripts for Tk

• Chapter 17: An Introduction to Tk
• Chapter 18: A Tour of the Tk Widgets
• Chapter 19: Themed Widgets
• Chapter 20: Fonts, Bitmaps, and Images
• Chapter 21: Geometry Managers
• Chapter 22: Events and Bindings
• Chapter 23: The Canvas Widget
• Chapter 24: The Text Widget
• Chapter 25: Selection and the Clipboard
• Chapter 26: Window Managers
• Chapter 27: Focus, Modal Interaction, and Custom Dialogs
• Chapter 28: More on Configuration Options
• Chapter 29: Odds and Ends

370

371

17. An Introduction to Tk

Tk is a toolkit package that allows you to create graphical user interfaces by
writing Tcl scripts. Tk extends the built-in Tcl command set described in
Part I with additional commands for creating user interface elements called
widgets, arranging them into interesting layouts on the screen using
geometry managers, and connecting them to each other with the enclosing
application. Although Tk was developed to work with Tcl, other dynamic
languages such as Perl, Python, and Ruby have adapted Tk to give these
languages the ability to create graphical user interfaces. The commands and
descriptions here apply to those languages as well, but the syntax is
different. This part of the book describes Tk’s Tcl commands.
Like Tcl, Tk is implemented as a C library package that can be included in
C applications, and it provides a collection of functions that can be invoked
from an application to implement new widgets and geometry managers in C.
The library functions are discussed in the reference documentation.
This chapter introduces the basic structures used for creating user interfaces
with Tk, including the hierarchical arrangements of widgets that make up
interfaces and the main groups of Tcl commands provided by Tk. Later
chapters go over the individual facilities in more detail. All of the examples
in this part can be run with wish, the windowing shell that was introduced in
Chapter 1, or with any Tcl-based application by including the command
package require Tk.

17.1 A Brief Introduction to Windowing Systems

Windowing systems provide facilities for manipulating windows on
displays using a keyboard and mouse. The mouse is used to move a pointer
around on the screen, and it also contains one or more buttons and possibly
a scroll wheel for invoking actions. Each screen displays a hierarchical
collection of rectangular windows, starting with a root window (usually
called a desktop) that covers the entire area of the screen, as shown in
Figure 17.1. The root window may have any number of child windows, each
of which is called a toplevel window. An application typically manages
several toplevel windows, one for each of the application’s major panels
and dialogs. Toplevel windows may have children of their own, which may

372

also have children, and so on. The descendants of toplevel windows are
called widgets or internal windows, and they may be nested to any depth.
Widgets are used for individual controls such as buttons, scrollbars, or text
entries and for grouping other widgets together.

Figure 17.1 Each screen contains a hierarchical collection of overlapping
windows.

Events are sent to notify applications of user actions such as key presses,
pointer motions, and button presses. Each event identifies what occurred
(for example, the pointer just passed into a window) and provides
additional information about the event such as the window where the event
occurred, the time when it occurred, the position of the pointer, and the state
of the mouse buttons. Events are also generated for structural changes, such
as window resizes and deletions, and to notify applications that they must
redraw windows, such as when one window moves so that it no longer
obscures another window.
Windowing systems do not require windows to have any particular
appearance or behavior. An application can draw anything it likes in any
window, and it can respond to events in any way that it pleases. Thus, it is
possible to implement many different appearances and modes of interaction.
The lowest-level interface with a windowing system provides no support

373

for any particular look and feel, nor does it provide built-in controls such as
buttons or menus. It is up to application-level toolkits to provide these
features. The Tk toolkit implements a portable library of configurable
widgets that can fit into any look-and-feel environment. In this regard, Tk is
unique in that it uses the native toolkit where appropriate. This allows an
application to be written once in Tcl/Tk and run on multiple platforms,
taking on the look and feel of the local environment.
A common element of all windowing systems is a window manager, also
called a desktop environment. The window manager allows the user to
manipulate toplevel windows in a uniform way for all applications. It
displays a decorative frame around each toplevel window and provides
controls within the frame so that users can interactively move, resize,
iconify, and deiconify windows. The decorative frame also displays a title
for the toplevel window. Many different window managers exist. On some
systems, like Mac OS X and Microsoft Windows, there is only one by
default, but on Unix and Linux systems, there are many to choose from. Each
window manager may have different decorations and controls, but only one
window manager exists for a given display at a given time. The examples in
this book use a variety of window managers or desktop environments to
demonstrate Tk’s versatility and portability in all these environments.
Applications must communicate with both the windowing system and the
window manager. The application communicates with the windowing
system to create windows, draw on them, and receive events. It
communicates with the window manager to specify titles, preferred
dimensions, and other information for its toplevel windows.
The three primary windowing systems that Tk supports are X, for Unix and
Linux operating systems; Microsoft Windows; and Apple’s Mac OS X, also
known as Aqua. For additional information on these windowing systems,
search the web for X.org, Microsoft User Interface Design and
Development, or Apple Human Interface Guidelines, respectively.

17.2 Widgets

Tk uses low-level drawing APIs to implement a ready-made set of controls,
which are commonly called widgets. Figure 17.2 shows examples of button,
entry, and scrollbar widgets. Each widget is a member of a class that
determines its appearance and behavior. For example, widgets in the button
class display a text string or image. Different buttons may display their
strings or images in different ways (for example, with different fonts and

374

colors), but each one displays a single string, image, or combination. Each
button also has a Tcl script associated with it, which is invoked if mouse
button 1 (the left button on a three-button mouse) is pressed and released
when the pointer is over the widget. Different button widgets may have
different scripts associated with them to implement different operations.
When you create a widget, you select its class and provide additional class-
specific options, such as a string or image to display or a script to invoke.

Figure 17.2 Examples of widgets: (a) a button widget; (b) an entry widget;
(c) a scrollbar widget

Each Tk widget is implemented using one window.1 As with windows,
widgets are nested in hierarchical structures. A widget can contain any
number of children, and the widget tree can have any depth. Widgets such as
buttons that have meaningful behavior for the user are usually at the leaves
of the widget tree; the non-leaf widgets are usually just containers for
organizing and arranging the leaf widgets.

1. The terms widget and window are used interchangeably in this book and
in the reference documentation.

Each widget or window has a textual name such as .a.b.c. Widget names are
similar to the hierarchical path names for files, except that . is used as the
separator character instead of / or \. The name . refers to the topmost
widget in the hierarchy, which is called the main window. The name .a.b.c
refers to a widget c that is a child of widget .a.b, which in turn is a child of
.a, which is a child of the main window.
Figure 17.3 shows how a window is composed. The window is shown in
(a) as it appears on the screen, with decorations provided by the windowing
system. The hierarchical structure of the widgets is shown in (b). An
exploded view of the screen is shown in (c) to clarify the widget structure.

375

The topmost widget in the hierarchy (.) contains three children: a menu
across the top, a scrollbar along the right side, and a listbox filling the
remainder. The menu bar contains two children of its own, a File menu on
the left and a Help menu on the right. Each widget has a name that reflects
its position in the hierarchy, such as .menu.help for the Help menu.

Figure 17.3 Window composition

17.3 Applications, Toplevel Widgets, and Screens

376

In Tk the term application refers to a single widget hierarchy (a main
widget and its descendants), a single Tcl interpreter associated with the
widget hierarchy, plus all the commands provided by that interpreter. Each
application has its own widget hierarchy, so the name . refers to the main
window or root window within the application. Normally an application
runs in a single process, but Tk also allows a single process to manage
several applications with separate widget hierarchies, one per Tcl
interpreter. Tk does not require or provide any particular support for
multithreading but may be used in a multithreaded environment, provided
that all Tk commands and operations for a given window hierarchy are
handled in a single thread and interpreter.
The main widget for each application occupies a toplevel window, so it is
decorated and managed by the window manager. Most of the other widgets
of an application use internal windows. The toplevel widget class is used to
create additional toplevel windows so that the window manager can
manipulate them independently. A toplevel widget differs from an internal
widget in that its window is a child of the root window for its screen,
whereas the window for an internal widget is a child of the window for the
widget’s parent in the Tk hierarchy. Toplevel widgets are typically used as
containers for panels and dialogs, as shown in Figure 17.4. In this example
the dialog box .dlg is a toplevel widget, as is the main widget. Figure
17.4(a) shows how the widgets appear on the screen, and (b) shows Tk’s
widget hierarchy for the application.

Figure 17.4 Toplevel widgets

377

17.4 Scripts and Events

A Tk application is controlled by two kinds of Tcl scripts: an initialization
script and event handlers. The initialization script is executed when the
application starts. It creates the application’s user interface, loads the
application’s data structures, and performs any other initialization needed
by the application. Once initialization is complete, the application enters an
event loop to wait for user interactions. Whenever an event occurs, such as
the user invoking a menu entry or moving the mouse, a Tcl script is invoked
to process that event. These scripts are called event handlers; they can
invoke application-specific Tcl commands to enter an item into a database,
modify the user interface (for example, by posting a dialog box), and do
many other things. Some event handlers are created by the initialization
script, but event handlers can also be created and modified by other event
handlers; for example, an event handler for a menu might create a new
dialog box along with new event handlers for the dialog.
Most of the Tcl code for a Tk application is in the event handlers. Complex
applications may contain hundreds of event handlers, and the handlers may
create other panels and dialogs that have additional event handlers. Tk
applications are therefore event-driven. There is no well-defined flow of
control within the application’s scripts, since there is no single task for the
application to perform. The application presents a user interface with many
features, and the user decides what to do next. All the application does is
respond to the user’s actions. The event handlers implement the responses;
event handlers tend to be short, and they are mostly independent of each
other.

17.5 Creating and Destroying Widgets

Tk provides four main groups of Tcl commands: for (1) creating and
destroying widgets, (2) arranging widgets on the screen, (3) communicating
with existing widgets, and (4) interconnecting widgets within and between
applications. This section and the three following sections introduce the
groups of commands to give you a general feel for Tk’s features. All of the
commands are discussed in more detail in later chapters.
To create a widget, you invoke a command named after the widget’s class:
button for button widgets, scrollbar for scrollbar widgets, and so on. These

378

commands are called class commands. For example, the following
command creates a button that displays the text Press me:

button .b -text "Press me" -command {puts Ouch!}

All class commands have a form similar to this. The command’s name is the
name of a widget class. The first argument is the path name for the new
widget, .b in this case. The command will create the widget and its
corresponding window. The widget name is followed by any number of
pairs of arguments, where the first argument of each pair specifies the name
of a configuration option for the widget, such as -text or -command, and the
second argument specifies a value for that option, such as Press me or {puts
Ouch!}. Each widget class supports a different set of configuration options,
but many options, such as -foreground, are used in the same way by different
classes. Values need not be specified for every option supported by a
widget; Tk provides defaults for the unspecified options. For example,
buttons support about 35 different options but only 2 were specified in the
preceding example. Chapter 18 describes many of the most common
configuration options.
To delete a widget, you invoke the destroy command:

destroy .menubar

This command destroys the widget named .menubar and all of its descendants,
if there are any.

17.6 Geometry Managers

Widgets don’t determine their own sizes and locations on the screen;
geometry managers carry out this function. Each geometry manager
implements a particular style of layout. Given a collection of widgets to
manage and some controlling information about how to arrange them, a
geometry manager assigns a size and location to each widget. For example,
you might tell a geometry manager to arrange a set of widgets in a vertical
column. The geometry manager then positions the widgets so that they abut
and do not overlap. If a widget should suddenly need more space (for
example, because its font was changed to a larger one), the widget notifies
the geometry manager and the geometry manager moves other widgets to
preserve the column structure.

379

The second of the four main groups of Tk commands consists of those for
communicating with geometry managers. Tk currently contains three
geometry managers plus three widgets that can manage embedded widgets.
The main geometry manager for Tk is the grid manager, which works by
arranging widgets into rows and columns. The other primary geometry
managers in Tk are the packer, which works by packing a series of widgets
sequentially around the edges of a cavity, and the placer, which provides
simple fixed or relative placements. Additionally, the window manager is
used to manage toplevel windows in conjunction with the desktop
environment. The canvas, text, and panedwindow widgets have an internal
geometry manager for embedded widgets. Chapter 21 describes the
geometry managers in more detail.
When you invoke a class command like button, the new widget does not
appear immediately on the screen. It appears only after you ask a geometry
manager to manage it. If you want to experiment with widgets before
reading the full discussion of geometry managers, you can make a widget
appear by invoking the grid command with the widget’s name as its
argument. This sizes the widget’s parent so that it is just large enough to
hold the widget and arranges the widget so that it fills the space of its
parent. If you create other widgets and grid them in a similar fashion, the
grid manager arranges them in a column inside the parent, making the parent
just large enough to accommodate them all, as shown in Figure 17.5. The
following script creates two button widgets and arranges them in a vertical
column with the first widget above the second:

Figure 17.5 Arranging widgets in a window

17.7 Widget Commands

380

Whenever a new widget is created, Tk also creates a new Tcl command
with the same name as the widget. This command is called a widget
command, and the set of all widget commands (one for each widget in the
application) constitutes the third major group of Tk commands. After the
button command was executed in Section 17.5, a widget command whose
name is .b appeared in the application’s interpreter. This command exists as
long as the widget exists; when the widget is deleted, the command is
deleted, too.
Widget commands are used to communicate with existing widgets. Here are
some commands that could be invoked after the button command from
Section 17.5:

.b configure -command runCommand

.b invoke

The first command changes the callback made when the button is pressed,
and the second command invokes the button’s command as if the user had
clicked mouse button 1 over the widget. In widget commands, the command
name is the name of the widget, and the first argument specifies an action to
invoke on the widget. Some actions, like configure, take additional
arguments; the nature of these arguments depends on the specific action.

Note

The terms action, widget command, and widget subcommand are used
interchangeably throughout this book. For example, the phrase “the
configure widget command” really means “the configure action for the
widget command.”

The set of widget commands supported by a given widget is determined by
its class. All widgets in the same class support the same set of widget
commands, but different classes have different command sets. Some
common actions are supported by multiple classes. For example, every
widget class supports a configure widget command, which can be used to
query and change the widget’s configuration options.

17.8 Commands for Interconnection

381

The fourth group of Tk commands is used for interconnection. These
commands are used to make widgets work together, to make them work
cooperatively with the objects defined in the application, and to allow
different applications sharing the same display to work together in
interesting ways.
Some of the interconnection commands are implemented as event handlers.
For example, each button has a -command option that specifies a Tcl script to
invoke whenever mouse button 1 is clicked over the widget. Scrollbars
provide another example of interconnection via event handlers. Each
scrollbar is used to control the view in some other widget. When you click
in the scrollbar or drag its slider, the view in the associated widget should
change. This connection between widgets is implemented by specifying a
Tcl command for the scrollbar to invoke whenever the slider is dragged.
The command invokes a widget command for the associated widget to
change its view. Other kinds of event handlers and event generation are
described in Chapter 22.
Some of the Tk widgets support a model-view-controller paradigm via a
link to a Tcl variable. The value of the variable is used to define the
widget’s text content or state. The checkbutton and radiobutton widgets
actually require it for the widgets to work correctly. This feature is
discussed in more detail in Chapter 18; also see the reference
documentation for information on the -textvariable and -variable options
provided on several widgets.
Another form of interconnection is selection management. The selection is a
highlighted piece of information on the screen, such as a range of text or a
graphic. Tk provides a way to manage the selection in conjunction with the
window manager so that applications can claim ownership of the selection
and retrieve its contents from whichever application owns it. Chapter 25
discusses the selection in more detail and describes Tk’s selection command.
Chapter 26 describes Tk’s window manager command, wm, which is used for
communicating with the window manager. The window manager acts as a
geometry manager for toplevel windows, and the wm command can be used to
make specific geometry requests of the window manager, such as “Don’t let
the user make this window smaller than 80 pixels tall.” In addition, wm can
be used to specify a title to appear in the window’s decorative border, a
title and/or icon to display when the window is iconified, and many other
attributes.
At any given time the keystrokes typed for an application are directed to a
particular widget, regardless of the mouse cursor’s location. This widget is

382

referred to as the focus widget or the widget having focus. Chapter 27
describes the focus command, which is used to query about the current focus
widget or to change the focus. Chapter 27 also describes grabs, which
restrict keyboard and mouse events so that they are processed only in a
subtree of the widget hierarchy. Windows outside the grab subtree are
blocked from receiving any events until the grab is released. Grabs are used
to disable parts of an application and force the user to deal immediately
with a high-priority window such as a dialog box.
Finally, Chapter 12 describes several ways for programs to communicate.
The send command is one way, specific to Tk, providing a general-purpose
means of communication between applications. You can use send to issue an
arbitrary Tcl command to any Tk application on the display.

383

384

18. A Tour of the Tk Widgets

This chapter introduces the classic widget classes implemented by Tk,
which have been around since nearly the beginning of Tcl. They provide a
cross-platform means to create user interfaces for your scripts. In addition,
these classic widgets provide an easy way to add a user interface to an
existing application, whether written in Tcl or not. With the ability to embed
a Tcl interpreter within applications, you can extend your applications with
a graphical user interface. Or you can use Tcl’s commands to drive a
command-line application and use Tk widgets to introduce a user interface.
In addition to the classic Tk widgets, recent years have seen the
development of a set of themed widgets. Themes aim to separate widget
functionality from the visual look of the widgets. In addition, themes allow
for much better-looking widgets. The classic Tk look comes from the early
era of Windows 95 and Motif on Unix; the themed widgets provide a more
modern appearance, as well as a unified and modifiable look and feel. This
chapter introduces the older classic Tk widgets. The next chapter covers the
themed widgets.
The main advantage to using themed widgets is to give a native look to a Tk
application by selecting the style that fits the user’s current desktop
environment. While Tk uses native widgets on Microsoft Windows and Mac
OS X for scrollbars, checkbuttons, and radiobuttons, X-based classic Tk
widgets have the basic Motif look. The themed widgets provide a variety of
styles that match a variety of desktop environments available on Unix
operating systems. New styles can also be added to make a themed
application instantly fit into new desktop environments. The newer themed
widgets are still evolving and don’t yet provide the full functionality of the
older widgets. There are also some classic Tk widgets that don’t have a
themed counterpart. However, you can combine classic and themed widgets
in the implementation of your application’s interface.

Note

As of Tk 8.5, the widget class commands for creating classic Tk
widgets are defined in the ::tk namespace; for example, ::tk::button
creates a classic Tk button widget. In contrast, the widget class

385

commands for creating themed widgets are defined in the ::ttk
namespace. For backward compatibility with existing scripts, the
classic Tk widget class commands are imported automatically into the
global namespace. This may be discontinued in a future release of Tk,
in which case you could add a namespace import command to your existing
scripts to explicitly import the needed widget class commands. See
Chapter 10 for more information on namespaces.

Note

The examples in this chapter use the grid command to arrange widgets,
though you don’t need to understand the operation of the grid commands
yet in order to understand the examples. Chapter 21 discusses the grid
command in detail.

18.1 Widget Basics

Each classic Tk widget class is defined by three things: its configuration
options, its widget commands, and its default bindings. Configuration
options represent most of the state information for most widgets; they
include things such as the colors, fonts, and text to display in a button widget
and the Tcl script to invoke when the user clicks on the widget. All of the
widgets in a class support the same configuration options. Different classes
may have different options, but many options, such as -foreground and -font,
are supported by many different classes. The configuration options for a
widget may be specified when the widget is created and modified later with
the configure widget command. Default values can be specified using the
option database (see Chapter 28).
The second thing that defines a widget class is its widget command. As
described in Section 17.7, one widget command exists for each widget in an
application, and it is used to invoke actions in the widget. The actions
provided by a widget command vary from class to class, but some actions
are supported by several classes. For example, every class supports a
configure action for changing the widget’s configuration options. For more
complex widgets such as menus and listboxes, the widget’s internal state is

386

too complex to represent entirely with configuration options, so additional
actions are provided to manipulate the state. For example, the widget
command for menus provides actions to create and delete entries and to
modify existing entries.
The third thing that defines a widget class is its default bindings. The default
bindings give widgets their behavior by causing Tcl scripts to be evaluated
in response to user actions. Tk creates the default bindings by evaluating an
initialization script stored in the Tk library directory; the script invokes the
bind command described in Chapter 22. This means that the behaviors are
not hard-coded into the widgets; you can modify the behavior of individual
widgets or entire classes using the bind command. The descriptions in this
chapter correspond to the default behaviors.
Tk currently defines the widget classes listed in Table 18.1. In addition to
these classic widgets, the themed widget extension provides 18 themed
widgets (see Chapter 19). The themed widgets provide additional functions
and an updated look and feel, so when there is a choice, these widgets
should be preferred over the classic Tk widgets for new application
development.

Table 18.1 Classic Tk Widget Classes

This chapter gives an overview of most of the classic widget classes along
with the most commonly used configuration options; canvas and text widgets
are described separately in Chapter 23 and Chapter 24, respectively. This
chapter does not explain every feature of every widget; for that you should
refer to the reference documentation for the individual widget classes. If you
wish to see additional examples of widget usage besides those in this
chapter, you should run the demonstration scripts in the Tk distribution. In
particular, the script widget contains examples of various widgets. You can
run the widget demo using the following commands from a wish interpreter:

The widget script creates a window with many links to examples of various

387

Tk widgets. For each example, you can see a live demonstration of the
widget as well as view the example source code.

18.2 Frames

Frames are the simplest widgets; they appear as colored rectangular regions
and can have three-dimensional borders. As you will see later, frames
typically serve as containers for grouping other widgets. Most of the non-
leaf widgets in an application are frames. Frames are particularly important
for building nested layouts with geometry managers; when used in this way,
frames are often invisible to the user. This is discussed in Chapter 21.
Frames are also used to generate decorations such as a block of color or a
raised or sunken border around a group of widgets. Frames have no default
behavior; they do not normally respond to the mouse or keyboard.

18.2.1 Relief Options

Frames support only a few configuration options, and most of these are
supported by all basic widget classes. For example, the -relief and -
borderwidth options can be used to specify a three-dimensional border. The -
relief option determines the appearance of the border and must have one of
the values raised, sunken, flat, groove, or ridge. Tk draws widget borders with
light and dark shadows to produce the different effects. For example, if a
widget’s relief is raised, Tk draws the top and left borders in a lighter color
than the widget’s background and it draws the lower and right borders in a
darker color. This makes the widget appear to protrude from the screen. An
example of each -relief setting is shown in Figure 18.1.

Figure 18.1 Five frames with different relief configurations

The source for this example follows. Each frame sports a darker color to

388

help distinguish the frame boundaries.

The three-dimensional appearance of a theme widget comes from the theme,
so you normally don’t need to set the relief setting on ttk::frame or other
themed widgets.

18.2.2 Screen Distance Options

Several commonly used configuration options take screen distances as
values. For example, the -borderwidth option controls the border width, the -
width and -height options can be used to specify the dimensions of a frame,
and widgets such as text provide an -insertwidth option for specifying the size
of the insertion cursor. Screen distances can be specified either in pixels or
in absolute units independent of the screen resolution. A distance consists of
an integer or floating-point value followed optionally by a single character
giving the units. If no unit is specified, the units are pixels. Otherwise the
unit is designated by one of the following characters:

• c—centimeters
• i—inches
• m—millimeters
• p—printer’s points (1/72 inch)

For example, a distance specified, as 2.2c is rounded to the number of pixels
that most closely approximates 2.2 centimeters; the number of pixels may
vary from screen to screen. The code that produced Figure 18.1 contains
examples of screen distance options specified in millimeters and pixels.
Screen distances are used for other purposes in Tk besides widget
configuration options. One example is the -padx and -pady options to the grid
command, which are used in the code that produced Figure 18.1 to leave
extra space around each of the frame widgets.

18.3 Color Options

389

The -background option determines the background color of a widget and also
the shadow colors used in its border. The value of the -background option may
be specified either symbolically or numerically. A symbolic color value is a
name such as white or red or SeaGreen2. Tk defines a large number of symbolic
color values available on all platforms based on standard Unix color
values. Color names are not case-sensitive: black is the same as Black and
bLaCk. Refer to the colors page of the reference documentation for a list of
valid color names. Windows and Mac OS X platforms also support a set of
aliased colors, such as ActiveBorder and systemWindowBody, which refer to user
preference settings in these environments. These symbolic color values are
also documented in the colors reference documentation.
Colors can also be specified numerically in terms of their red, green, and
blue components. Four forms are available, in which the components are
specified with 4-bit, 8-bit, 12-bit, or 16-bit values:

Each R, G, or B in these examples represents one hexadecimal digit of red,
green, or blue intensity, respectively. The first character of the specification
must be #, and the same number of digits must be provided for each
component. If fewer than four digits are given for each component, they
represent the most significant bits of the values. For example, #3a7 is
equivalent to #3000a0007000. A value of all 1s represents “full on” for that
color, and a value of 0 represents “off.” Thus, #000 is black, #f00 is red, #ff0
is yellow, and #fff is white.

Note

If you specify a color other than black or white for a monochrome
display, Tk uses black or white instead, depending on the overall
intensity of the color you requested. Furthermore, if you are using a
color display and all of the entries in its color map are in use (e.g.,
because you’re displaying a complex image on the screen), Tk treats
the display as if it were monochrome.

Virtually every basic widget class supports a -background option, and most
widget classes support additional color options. For example, most widget

390

classes provide a -foreground option that determines the color of the text or
graphics displayed in the widget. For theme widgets, the color options are
defined by the theme.

18.3.1 Synonyms

Tk provides special short forms for a few of the most commonly used
options. For example, -bd is a synonym for -borderwidth, -bg is a synonym for
background, and -fg is a synonym for foreground.

18.4 Toplevels

Toplevel widgets are identical to frames except that they occupy toplevel
windows, whereas frames occupy internal windows. Toplevels are
typically used as the outermost containers for an application’s panels and
dialog boxes. The main widget for an application is also a toplevel. When
creating a new toplevel widget, you can use the -menu option to specify a
menu widget to use as that window’s menu bar. The menu bar is displayed
along the top of the window as part of the window manager’s decoration.
On Mac OS X, the menu bar is displayed across the top of the screen.
Chapter 26 provides more information on managing toplevels.

18.5 Labels

A label widget displays information to the user. A label widget may display
a text string, a bitmap, an image, or a combination of text and a bitmap or
image. Labels provide several additional configuration options for
specifying what to display in the widget; Figure 18.2 is an example of a
compound label generated by the following script:

Figure 18.2 The label widget displaying a bitmap and a text string

391

18.5.1 Text Options

Most widgets that display simple text strings, like labels, provide two
options for specifying the string. If a -text option is specified, as for .label in
the script for Figure 18.2, its value is the string to display in the widget. If
instead you specify the -textvariable option, you can set its value to the name
of a variable referenced from the global namespace. The -textvariable option
causes the widget to display the contents of the variable; whenever the
variable changes, the widget resizes and/or redisplays itself to reflect the
new value.
The text string displayed by the label can contain embedded newline
characters, in which case the label displays multiple lines of text. The -
justify option determines how the lines align with each other, and you can
set it to left, center, or right.

Note

A common practice is to use namespace variables in -textvariable
references to prevent polluting the global namespace with too many
variables. This requires using fully qualified namespace names (e.g.,
::Application::country).

Here is a simple example that uses -textvariable:

392

This procedure will create a new toplevel widget and grid two labels
inside it to display the name of a global variable and its value. For example,
the following script can be invoked to create the panel shown in Figure
18.3(a):

set country Japan
watch country

Figure 18.3 The -textvariable option ties a widget’s value to a variable.

Figure 18.3(b) shows how the display changes if the following command is
invoked to change the variable’s value:

set country "Great Britain"

18.5.2 Font Options

The -font option specifies a font to use when displaying text in a widget. Tk
uses a standard font description of family size style. . ., where size and style
are optional. Some example font descriptions are

Other description formats are supported as well, including standard X11
font descriptions. The Tk font command can be used to create and manage
application fonts; it is discussed in more detail in Chapter 20.

Note

393

For almost all widget classes, all characters within a widget use the
same font and style. The text widget, on the other hand, can display
multiple lines of text and apply different fonts and other display
characteristics to substrings. See Chapter 24 for more information on
the text widget.

18.5.3 Image Options

Labels and many other widgets can display images in the form of bitmaps or
images instead of text. A bitmap is a picture with two colors, foreground
and background. Bitmaps are specified using the -bitmap option, whose
values may have two forms. If the first character of the value is @, the
remainder of the value is the name of a file containing a bitmap in X bitmap
file format. Thus -bitmap @face.xbm specifies a bitmap contained in the file
face.xbm. The script for Figure 18.2 specifies a bitmap as
@$tk_library/demos/images/flagdown.xbm. This refers to one of the bitmaps in the
library of demonstrations that is included with the Tk distribution (the
variable tk_library’s library files).
If the first character of the value isn’t @, the value must be the name of a
bitmap defined internally. Tk defines a few internal bitmaps itself that are
used in message dialogs, and individual applications may define additional
ones.
The -bitmap option determines only the pattern of 1s and 0s that make up the
bitmap. The foreground and background colors used to display the bitmap
are determined by the -foreground and -background options for the widget. This
means that the same bitmap can appear in different colors at different places
in an application, and the colors of a given bitmap may be changed by
modifying the -foreground and -background options.
Images are created using the Tk image create command. Some example images
are shown in Figure 18.4. Images are objects created from image data
directly, or from various file formats. Tk directly supports the XBM, XPM,
GIF, and PPM/PGM formats. Tk extensions such as Img and TkMagick
provide support for just about all other image file formats commonly in use.
Images are specified using the -image option as shown here:

394

Figure 18.4 Sample images using the Tk image command

Images are shared among all widgets that reference them. Any change to an
image is reflected everywhere it appears on the screen. Images are
discussed in more detail in Chapter 20 on fonts and images.

18.5.4 Compound Options

Labels may display both an image and text, as shown in Figure 18.2. The
position of the image relative to the text is specified with the -compound
option. The values top, bottom, left, right, and center will place the image
above, below, left of, right of, and centered on the text respectively. A value
of none displays only the image if an -image or -bitmap option is used;
otherwise only the text is displayed.

18.6 Labelframes

While frames are used to organize widgets into groups, the labelframe
widget provides all the features of the frame widget plus, as the name
suggests, a label and a border ring, as shown in Figure 18.5. The label may
be placed in any of the eight compass directions around the frame using the -
labelanchor option. The labelframe is a common element found in dialogs and
panels. The following script generated the labelframe figure shown:

395

Figure 18.5 An example of a labelframe widget

18.7 Buttons

Buttons, checkbuttons, radiobuttons, and menubuttons make up a family of
widget classes with similar characteristics. These classes have all of the
features of labels, and they also respond to the mouse. When the pointer
moves over a button, the button lights up to indicate that something will
happen if a mouse button is pressed; a button in this state is said to be
active. It is a general property of Tk widgets that they light up if the pointer
passes over them when they are prepared to respond to button presses.
Buttons become inactive when the pointer leaves them.
If mouse button 1 is pressed when a button widget is active, the widget’s
appearance changes to make it look sunken, as if a real button had been
pressed. When the mouse button is released, the widget’s original
appearance is restored. Furthermore, when the mouse button is released, the
widget evaluates its -command option as a Tcl script. Figure 18.6 is an
example that can be created with a script like the following:

Figure 18.6 Four button widgets

396

The procedures ok, apply, cancel, and help are invoked when the user clicks on
one of the buttons with the mouse; the code for these procedures is not
provided here. In this example the -command options are all single words, but
in general they can be arbitrary scripts.

18.7.1 Checkbuttons

Checkbuttons are used for making binary choices such as enabling or
disabling underlining or grid alignment; see Figure 18.7 for an example.
Checkbuttons are similar to buttons except for two things. First, when you
click mouse button 1 over a checkbutton, a global variable toggles in value
between 0 and 1. The variable name is specified to the widget with the -
variable option. Second, the checkbutton displays a rectangular selector to
the left of its text or bitmap. When the variable’s value is 1, the selector is
displayed as a check mark and the checkbutton is said to be selected;
otherwise the selector box appears empty. Each checkbutton monitors the
value of its associated variable, and if the variable’s value changes (e.g.,
because of a set command), the checkbutton updates the selector display.
Checkbuttons provide additional configuration options for specifying the
color of the selector and for specifying “off” and “on” values other than 0
and 1.

Figure 18.7 Three checkbuttons

The buttons in Figure 18.7 are created by the following script. Each
checkbutton toggles a particular variable between 0 and 1, and its selector

397

square indicates the current value of the variable (the variables bold and
underline are currently 1, italic is 0). The -anchor options cause the buttons to
left-justify their text and selectors as described in Section 18.15.3.

In some situations a checkbutton may be used to represent the state of
multiple items. In these cases it is useful for the widget to display a state
that represents both “on” and “off.” Take the preceding example where the
bold, italic, and underline state of some text is represented. If the text had a
mix of bold and normal characters, the button would need to represent both
states. This is done using the tristate value for the widget, as shown in
Figure 18.8. The tristate value causes the widget to display an alternate
mark that represents this “mixed” condition. You specify the tristate value
with the widget’s -tristatevalue option:

.bold configure –tristatevalue 3
set bold 3

Figure 18.8 Example checkbutton in “tristate” or “mixed” state

18.7.2 Radiobuttons

Radiobutton widgets provide a way to select one of several mutually
exclusive options, much as the radio buttons in cars are used to select one of
several stations. Several radiobuttons work together to control a single
global variable. Each radiobutton provides a -variable option to name the
variable and a -value option to specify a value for the variable; when you

398

click on the widget, it sets the variable to the given value. For example,
Figure 18.9 shows a collection of radiobuttons that are used to select a font
family from among several alternatives. Each radiobutton displays a round
selector to the left of its text or bitmap and lights up the selector when it is
selected (i.e., whenever the variable’s value matches its -value option). Each
radiobutton monitors the variable and turns its selector on or off when the
variable value changes. The user can select one of four values for the global
variable font by clicking on a button. In the figure the selector circle for the
.courier widget is marked to indicate that it is selected (the variable
currently has the value courier).

Figure 18.9 Four radiobuttons

The radiobutton also supports a tristate value and display, similarly to the
checkbutton, as shown in Figure 18.10.

Figure 18.10 The tristate appearance of the radiobutton widget

399

18.7.3 Menubuttons

The menubutton widget creates a button that, when pressed, posts a menu.
Menus are discussed in more detail in Section 18.12. Like the other button
widgets, the menubutton can be configured with any combination of text and
image and also has an indicator. Figure 18.11 demonstrates a menubutton
used to select an alignment option by using radiobutton menu entries. The
following script creates this menubutton:

Figure 18.11 Example menubutton as it appears normally (a) and when
posted (b)

400

18.8 Listboxes

A listbox is a widget that displays a collection of strings and allows the user
to select one or more of them. For example, the listbox in Figure 18.12
displays the names of the available font families. If a listbox contains too
many entries to display at once, as in Figure 18.12, it displays as many as
will fit in the window. Scrollbars can be associated with listboxes as
described in Section 18.9, and listboxes can be scrolled horizontally if their
entries are too wide for their windows.

Figure 18.12 A listbox that displays all font families available in the system

The entries in a listbox can be managed in two ways. One way is through the
configure option -listvariable. This option takes the name of a global or
namespace variable that contains a list of values. As the variable is
modified, the listbox updates to display the contents of the list. The listbox
widget command also provides several actions for manipulating entries,
such as insert for adding new entries, delete for deleting entries, and get for
retrieving entries. Modifying the variable value using the variety of Tcl list

401

commands is often easier than using the listbox widget commands directly.
The script implementing the listbox in Figure 18.12 manipulates the
associated list variable to fill the listbox:

Listboxes are usually configured so that the user can select an entry by
clicking on it with mouse button 1. In some cases the user can also select a
range of entries by pressing and dragging with button 1. Both single-select
and multiple-select modes are supported. (See the reference documentation
for more information.) Selected entries appear in a different color or
possibly some other style or effect. Once the desired entries have been
selected, the user typically uses them by invoking another widget, such as a
button or menu. For example, the user might select a font name from the
listbox in Figure 18.12 and then click on a button widget to apply that font to
some object; the Tcl script associated with the button can read out the
selected listbox entry.
It’s also common for a double-click on a listbox entry to invoke an
operation on the selected entry. For example, the script for Figure 18.12
creates a binding for double-clicks that sets the font of the listbox from the
selected font family using the get widget command. The script fills the
listbox by scanning through the list of font family names, sorted
alphabetically, and entering them by storing the list in the listbox’s
associated list variable. A user can click on an entry like “Courier” to select
it. A double-click causes the listbox’s font to change to the selected font.

18.9 Scrollbars

Scrollbars control the views in other widgets. Each scrollbar widget is
associated with some other widget such as a listbox or entry. For example,
Figure 18.13 shows a scrollbar next to a listbox that displays the names of
all the files in a directory. The scrollbar displays arrows, usually at each
end, and a rectangular slider in a trough in the middle. The size and
position of the slider indicate which of the listbox’s entries are currently
visible in its window. In Figure 18.13 the slider covers the bottom 20% of

402

the area of the trough; this means that the listbox is currently displaying the
last 20% of its entries. The user can adjust the view by clicking mouse
button 1 on the arrows, which moves the view a small amount in the
direction of the arrow, or by clicking in the trough on either side of the
slider, which moves the view by one full screen in that direction. The view
can also be changed by pressing on the slider and dragging it. The listbox
displays the file names in a directory, and the scrollbar is used to change the
view in the listbox.

Figure 18.13 A scrollbar and a listbox working together

18.9.1 Scrolling a Single Widget

The scrollbar uses its -command option to notify the listbox when the user
invokes scrolling operations, and the listbox uses its -yscrollcommand option to
notify the scrollbar when it changes its view. For example, Figure 18.13
shows a listbox with a scrollbar, the script for which is as follows:

A scrollbar interacts with its associated widget using Tcl scripts. For

403

example, consider the script for Figure 18.13. The listbox is configured
with a -yscrollcommand option whose value is .scroll set. Whenever the view in
the listbox changes, the listbox appends two numbers to the -yscrollcommand
value to generate a command such as

.scroll set 0.80 1.0

The numbers give the percentage of the whole represented by the slider. The
first fraction indicates the first information in the document that is visible in
the window, and the second fraction indicates the information just after the
last portion that is visible. The preceding command corresponds to the view
in Figure 18.13. Then the listbox evaluates the command. In this case the
command happens to be the widget command for the scrollbar, and it
invokes the set action, which expects two arguments in just the form
provided by the listbox. The set widget command causes the scrollbar to
redraw its slider to correspond to the information in the arguments.
When the user clicks on the scrollbar to change the view in the listbox, the
scrollbar uses its -command option to notify the listbox. For example, suppose
that the user clicks on the up arrow in Figure 18.13. The scrollbar generates
a Tcl command by appending scroll -1 unit to the value of its -command option:

.files yview scroll -1 unit

Then the scrollbar evaluates the command. The widget command for the
listbox has an action that takes exactly this form, and it causes the listbox to
adjust its view so that the entry prior to the current top entry is displayed on
the top line. After adjusting its view, the listbox invokes its -yscrollcommand
option to notify the scrollbar of the new view, and the scrollbar then
redraws its slider. It is up to each widget to define what constitutes a “unit”;
in this case, the listbox defines a unit as one entry. When the slider is
moved, a different command is generated. In this case the command directs
the widget to move to a new fraction offset; for example:

.files yview moveto 0.73

Here, the widget is directed to scroll so that the information at the top of the
display is 73% from the beginning of the document.
This same approach works for all widgets that support scrolling, and it
could support different implementations of scrollbars, too. All that a widget
must do to be scrollable is to provide a yview action for its widget command
and a -yscrollcommand option. Scrollbars are not hard-wired to work with any

404

particular widget or widget class. Instead, the information is provided by
setting the scrollbar’s -command option. Likewise, it is possible to build new
kinds of scrollbar widgets and have them work with any of the existing
widgets as long as they provide a -command option and a set action for their
widget commands.
Tk supports horizontal scrolling as well as vertical scrolling. Scrollbars
have a vertical orientation by default, but they can be oriented horizontally
by specifying the option -orient horizontal. Listboxes have a separate -
xscrollcommand option and an xview action for their widget commands to support
horizontal scrolling.

18.9.2 Synchronized Scrolling of Multiple Widgets

It is not necessary to connect the scrollbar and widget directly. A procedure
can be used in between to do things like scrolling multiple widgets with a
single scrollbar. The trick to getting accurate synchronized scrolling is to
identify a master widget that will control the scrollbar and the slave
widgets. The accuracy comes into play when there are slight rounding errors
in the floating-point calculations performed by each widget. When these
calculations are forced to one widget, the rest stay in sync. In addition, a
number of Tk extensions provide for multicolumn scrolling widgets to deal
with the same problem.
The following script creates what appears to the user as a two-column
scrolled list, as shown in Figure 18.14:

405

Figure 18.14 Scrolling multiple widgets together

18.10 Scales

A scale widget has an appearance similar to that of a scrollbar, but instead
of scrolling another widget, it is used to select a numerical value by moving

406

the slider along the trough. You specify the minimum and maximum values
for the scale with its -from and -to options. Moving the slider changes the
value in increments specified by -resolution, which defaults to 1. The -orient
option determines whether the scale is vertical or horizontal, and you can
control the size of the scale with the -length option to specify the long
dimension and the -width option to specify the narrow dimension of the
trough, both of which accept any screen distance. By default, the scale
displays its current value, but you can disable that by setting -showvalue to
false. You can display an optional text label by providing a string value to
the -label option. You can also request the display of numerical tick marks
by providing the numerical interval to the -tickinterval option.
You can use the -variable option to link the scale to a global or fully qualified
namespace variable so that the value of the scale and the value of the
variable are automatically synchronized. You can also retrieve the value of
the scale with the get subcommand or set it with the set subcommand. The
scale also supports a -command option, which lets you register a command to
execute whenever the value changes; the scale automatically appends the
updated value of the scale as an argument to the command before invoking
it.
The following script creates three horizontal scale widgets, each allowing
integer values ranging from 0 to 5. Each scale has a descriptive text label
and tick marks, but the value is not displayed. Any time a scale changes its
value, it calls the updateScore procedure to update the average value of the
scales, which is displayed through a label widget. Figure 18.15 shows the
result of running the script.

407

Figure 18.15 Examples of scale widgets

408

18.11 Entries

An entry is a widget that allows the user to type in and edit a one-line text
string. Tk provides two different kinds of entry widgets: entry and spinbox.
The spinbox combines an entry with up/down buttons.

18.11.1 Entry Widget

Figure 18.16 shows an entry widget that might be used for entering a file
name. To enter text into an entry widget, the user clicks mouse button 1 in
the entry. This makes a blinking vertical bar appear, called the insertion
cursor. The user can then type characters, which are inserted at the point of
the insertion cursor. The insertion cursor can be moved by clicking
anywhere in the entry’s text. Text in an entry can be selected by pressing and
dragging with mouse button 1, and it can be edited with a variety of
keyboard actions, such as Delete or Backspace to delete the character just
before the insertion cursor; see the reference documentation for details. The
widget command for entries provides actions such as insert for inserting
text, delete for deleting text, icursor for positioning the insertion cursor, and
index for finding the character displayed at a particular position in the
window.

Figure 18.16 An entry widget with an identifying label

Here is the script for the widget shown in Figure 18.16:

The code specifies a -width option for the entry, which indicates how wide
the window should be in characters. If the text becomes too long to fit in this

409

amount of space, only a portion of it is displayed; the view can be adjusted
with an associated scrollbar widget, the arrow keys, the Home key, or the
End key. The script for Figure 18.16 also specifies a -textvariable option,
which ties the text in the entry to the contents of the global variable name.
Whenever the text in the entry is modified, name is updated and vice versa.

18.11.2 Spinbox

A spinbox provides all the features of an entry widget plus a pair of
up/down buttons. Pressing one of the buttons moves or spins through a fixed
set of ascending or descending values such as times, dates, or integers. The
value may be edited directly as in an entry widget unless the readonly state is
set. To spin through a list of months, for example, the -values option is used,
as shown in Figure 18.17. In this example the entry box is not editable:

Figure 18.17 A spinbox allowing selections from a list of values

A spinbox also can be set to spin through a range of numerical values with
the -from, -to, and -increment options. Figure 18.18 shows an example of a
spinbox that can spin through integer values from 6 to 72 in increments of 2.
Because the -state is set to normal, the font size also may be set by typing in a
number directly:

410

Figure 18.18 A spinbox that spins through a range of integer values

18.11.3 The show Option

The -show option on an entry widget causes the entry to hide the typed-in
characters by displaying the -show character instead. This is useful for
accepting secret information such as passwords without displaying them on
the screen. Figure 18.19 demonstrates an entry with the -show option created
with the following code:

Figure 18.19 Example entry widget with the -show option used to hide the
contents

411

18.11.4 Validation

Entry widgets also provide for entry validation through a supplied script.
Using the -validate option, you can specify that the widget perform validation
per keystroke, on a change in focus, or both. Validation is done by a script
specified with the -validationcommand option. The script must return a Boolean
value indicating whether the change is valid and accepted or invalid and
rejected. You can also specify an -invalidcommand option that provides a script
to execute when the validation script returns 0; a typical use is to invoke
bell, which rings the display’s bell.

Note

An uncaught error during the evaluation of the validation script
disables further validation on the entry by automatically setting -
validate to none.

The example in Figure 18.20 validates the entry to allow legal decimal
integer or floating-point values. Notice in the code for this example that the
-validatecommand option has an argument that begins with %. Such arguments are
substituted with appropriate values before evaluation by the entry widget. In
the case of an entry widget, %W is replaced with the name of the widget, %P
with the value of the entry if the edit is allowed, and %S with the text string
being inserted or deleted. This is a convenient way to pass information to
the command about the state of the widget. There are several places
throughout Tk where percent substitutions are performed. See the entry
reference documentation for a complete list of percent substitutions that are
supported for validation.

Figure 18.20 Entry validation

412

This example script validates the entry by using the Tcl string is command to
check if the value can be represented as a double-precision-floating point
value. But because the script is called for each keystroke, it must also
accept some intermediate strings as valid as well, such as if the user has
entered an optional sign character but not yet entered any digits. It does this
by calling regexp if the string is command returns 0. Note that string is returns
1 if its value is an empty string, so this also allows a user to delete all of the
characters from the entry. The script also “echoes” the value entered in a
label beneath the entry:

Note

Validating an entry is very complicated since the value in the entry box
is “invalid” most of the time. These invalid intermediate points must be
allowed or else you will never get to a valid entry. For this reason,
validating on keystrokes is rarely useful. This example illustrates both
the capability of the entry box to perform validation and the complexity
of doing so.

18.12 Menus

413

Tk’s menu widget is a building block that can be used to implement several
varieties of menus, such as pull-down menus, cascading menus, and pop-up
menus. A menu is a toplevel widget that contains a collection of entries
arranged in a column, as shown in Figure 18.21. Menu entries are not
distinct widgets, but they behave much like buttons, checkbuttons, and
radiobuttons. The following types of entries may be used in menus:

• command
Similar to a button widget. Displays a string or image and invokes a Tcl
script when mouse button 1 is released over it.

• checkbutton
Similar to a checkbutton widget. Displays a string or bitmap and toggles a
variable between 0 and 1 when button 1 is released over the entry. Also
displays a check mark selector like a checkbutton widget.

• radiobutton
Similar to a radiobutton widget. Displays a string or image and sets a
variable to a particular associated value when button 1 is released over it.
Also displays a radio selector in the same way as a radiobutton widget.

• cascade
Similar to a menubutton widget. Posts a cascaded submenu when the mouse
passes over it. See below for more details.

• separator
Displays a horizontal line for decoration. Does not respond to the mouse.

Figure 18.21 A menu

Menu entries are created with the add widget command for the menu, and
they have configuration options that are similar to those for buttons,
checkbuttons, and radiobuttons.

414

Menus appear on the screen only for brief periods of time. They spend most
of their time in an invisible state called unposted. For a menu to be invoked,
it must first be posted. This is done with the post action for its widget
command; for example, the menu in Figure 18.21 could be posted with the
command .m post 100 100. Once a menu is posted the user can move the
pointer over one of the menu’s entries and release button 1 to invoke the
entry. After the menu has been invoked, it is usually unposted until it is
needed again.
The following script creates a menu. The add action for the menu’s widget
command is invoked to create the individual entries in the menu.

Menus can be posted and unposted in various ways to achieve different
effects. The next sections describe pull-down menus and cascaded menus,
where posting and unposting are handled automatically. Other approaches
such as pop-up menus and option menus are also possible.

Note

Tk menus support a “tear-off” feature. If enabled, a special separator
appears as the first option; if selected, the menu is displayed as a
separate toplevel window. Tear-off menus were a typical feature of
Motif interfaces, and so they are enabled on Tk menus by default. Tear-
offs are rarely found in modern interfaces, though, so typically you’ll
want to disable the tear-off feature by default. This is accomplished by

415

including the command option add *Menu.tearOff 0 to your script before
creating any menu widgets. This works by setting a value that applies
to all menus in the option database, described in Chapter 28.

18.12.1 Pull-Down Menus

Menus are most commonly used in a pull-down style. In this style the
application displays a menu bar near the top of its main window, as shown
in Figure 18.22. A menu bar is drawn at the top of the window and contains
several entries that act like buttons, each of which is associated with a
menu. (On Mac OS X, the menu bar appears at the top of the screen.) When
a user presses mouse button 1 over a menu entry, the associated menu is
posted underneath the entry (for example, the Edit menu is posted in Figure
18.22). Then the user slides the pointer down over the menu, with the mouse
button still pressed, and releases the mouse button over the desired entry.
When the button is released, the menu entry is invoked and the menu is
unposted. The user can release the mouse button outside the menu to unpost
it without invoking an entry.

Figure 18.22 An example of pull-down menus with one menu posted

The following script creates a menu bar. The menu bar frame (.mbar) has six
children, each of which is a cascaded menu with an associated menu. The

416

definition of the menus is incomplete: only part of the definition for a single
menu is shown.

If the user presses button 1 over a menu entry and then moves the pointer
over another menu entry, the old entry unposts its menu and the new entry
posts its menu. This allows the user to scan all of the menus by sliding the
pointer across the menu bar.
If the user releases the mouse button over an entry, the menu stays posted
and the user is not able to do anything else with the application until the
menu is unposted, which the user does by invoking one of its entries, or
clicking outside the menu without invoking any entry. Situations like this
where a user must respond to a particular part of an application and cannot
do anything with the rest of the application until responding are called
modal user interface elements. Menus and dialog boxes are examples of
modal interface elements, which are implemented using the grab mechanism
described in Chapter 27.
In Tk, menu bars are an integral part of a toplevel window. The toplevel
manages the menu bar placement differently for different platform
environments. A menu bar is created by building a menu and then giving it to
the toplevel for display by configuring the -menu option on the toplevel
window. In the script for Figure 18.22, the -menu and -underline options are
specified for each entry in addition to its label string. The -menu option
identifies the menu associated with the entry. The -underline option gives the
index of a character to underline when displaying the label in the entry. This

417

character is used for keyboard traversal, as described in Section 18.12.3.

18.12.2 Cascaded Menus

A cascaded menu is a menu that is subservient to another menu. It is
associated with a cascade menu entry in its parent menu. Note that the menu
bar is simply a list of cascaded menus. When the pointer passes over a
cascade entry in a menu, the associated menu is posted just to the right of the
cascade entry, as shown in Figure 18.23. The user can then slide the pointer
to the right onto the cascaded menu and invoke an entry in it. After an entry
has been invoked in a cascaded menu, both it and its parent are unposted.
All that is needed to create a cascaded menu is to define the cascaded menu
and create a cascade entry in its parent, using the -menu option in the cascade
entry to specify the name of the cascaded menu. Menus can be cascaded to
any depth, but for best usability it is a good rule of thumb to keep the
maximum depth to three.

Figure 18.23 A cascaded menu

The following example shows the changes to the script for Figure 18.22 that
are needed to create a cascaded menu:

418

18.12.3 Keyboard Traversal and Shortcuts

Pull-down menus can be posted and invoked without the mouse using a
technique called keyboard traversal. One of the letters in each menu entry is
selected as the traversal character for that entry with the -underline option; it
is underlined in the entry’s window. If that letter is typed while the Alt key
is held down, the entry’s menu is posted. Or the user can press the F10 key
to post the leftmost menu in the menu bar. Once a menu has been posted, the
arrow keys can be used to move among the menus and their entries. The left
and right arrow keys move left or right among the toplevel entries, unposting
the menu for the previous entry and posting the menu for the new one. The
up and down arrow keys move among the entries in a menu, activating the
next higher or lower entry. You can press the Return key to invoke the active
menu entry, or Escape to abort the menu traversal without invoking anything.
Traversal characters can also be defined for individual menu entries with
the -underline option, as shown in the code for Figure 18.22. The traversal
character is underlined when the menu entry is displayed, and if it or its
lowercase equivalent is typed at a time when the menu is posted, the entry is
invoked.
In many cases it is possible to invoke the function of a menu entry without
even posting the menu by typing keyboard shortcuts. If there is a shortcut
for a menu entry, the keystroke for the shortcut is displayed at the right side
of the menu entry (for example, you might want to display Ctrl+Z as the
shortcut for an Undo menu entry). This key combination may be typed in the
application to invoke the same function as the menu entry (for example, type
Z while holding the Control key down to invoke the Undo operation without
going through the menu). The -accelerator option for a menu entry specifies a
string to display at the right side of the entry. Common modifiers, which may
be combined, include Control, Ctrl, Shift, Command, Cmd, Option, and Opt.

419

Note

On Mac OS X, these modifiers are mapped automatically to the
corresponding modifier icons that appear in menus.

A key binding must also be defined in order for the shortcut to work. This is
done using the bind command like so:

bind . <Control-Key-z> {.mbar.edit invoke "Undo"}

When the keyboard event is bound to ., the toplevel window, the event is
caught no matter which internal window has the keyboard focus. More
information about the bind command and event propagation can be found in
Chapter 22.

18.12.4 Platform-Specific Menus

Each platform has one or more menus for which Tk provides special
handling. To take advantage of this feature, you must give particular names
to the menu widgets you create in support of these special menus. In all
cases, these menu widgets must be created with the name of the menu bar
menu concatenated with the special name (that is, .menuBar. special for your
application’s main window, or .toplevel.menuBar.special for a secondary
toplevel).
On X11 windowing systems, the Help menu should always appear at the far
right of the window. Tk does this automatically as long as you use .help as
the last component of the name of the menu widget implementing the Help
menu (for example, .mbar.help for your application’s main window, or
.doc1.mbar.help for a secondary toplevel).
On Windows systems, you can access the system menu for a window, which
is the menu posted by clicking on the application’s icon in the window title
bar. Any entries you add appear after the standard Windows entries. To
access the system menu, use .system as the last component of the menu’s name
(for example, .mbar.system).
On Mac OS X, you can append entries to the standard Help menu by
creating a menu widget whose name ends in .help (for example, .mbar.help).
Mac OS X also has what’s known as an application menu, which is the
second menu in the menu bar, the title of which is the same as your

420

application name. To access the application menu, create a menu whose
name ends in .apple (for example, .mbar.apple). Any entries that you add to the
.apple menu appear before the system-standard entries.

Note

The .apple menu really does access the application menu (second from
the left), not the leftmost menu with the apple icon. The name is a
holdover from pre–OS X days when application-specific entries really
did go under the apple (icon) menu.

The Mac OS X application menu also provides a standard “Preferences”
item. This item is disabled unless you define a procedure named ::tk::mac::
ShowPreferences. Typically, you would define this procedure to display any
preferences dialog that you might have implemented.

18.12.5 Pop-up Menus

The tk_popup utility is a convenience procedure that makes it easy to post
pop-up menus. Pop-up menus are typically bound to mouse button 3 on
Windows and Unix systems, corresponding to the right mouse button. On
Mac OS X, they should typically respond to a click of the left (or only)
button while the Control key is held, or the right button on a multibutton
mouse, which maps to mouse button 2. Therefore, in a platform-independent
application, you should use the tk windowingsystem command to determine if
your application is running on the native Mac OS X windowing system,
which is indicated by a return value of aqua.
Pop-up menus also are typically sensitive to the location of the mouse
pointer at the time the button is pressed. This means that the menu that
appears has actions related to the item under the mouse pointer. The tk_popup
utility makes it easy to bind the mouse button to a menu:

When the appropriate mouse button is pressed over the .lbox widget, the %X

421

and %Y arguments are replaced with the x- and y-coordinates of the mouse
pointer. In this example, the tk_popup utility posts .popup_menu at the appropriate
location relative to the mouse pointer location, usually immediately below
and to the right of the pointer. The bind command is discussed in more detail
in Chapter 22.

Note

The platform dependency of the bindings could also be handled through
the definition of virtual events, which are also described in Chapter
22.

18.13 Panedwindow

Several commonly used applications, like e-mail clients and file browsers,
have a window layout similar to that shown in Figure 18.24. The main
window is divided into two or more panes with a movable divider between
them. This is handled in Tk with the panedwindow widget. Panes can be
arranged either horizontally or vertically, depending on whether you set the
panedwindow’s -orient option to horizontal or vertical, respectively. You can
set the -showhandle option to a Boolean value to specify whether or not you
want to display a resize handle on each sash separating panes.

Figure 18.24 The panedwindow manages a list of widgets into a horizontal
row or vertical column.

422

Each pane is a cell that contains another widget. Typically, you arrange the
contents of each pane into a frame widget, then add each frame to the
panedwindow using the add subcommand. (Chapter 21 explains how to
arrange widgets within a frame.) In Figure 18.24 the left pane contains a
listbox showing a list of files, and the right pane contains a text widget to
display the contents of the selected file.
The following script shows how to add existing widgets to a panedwindow:

Each pane that you add is controlled by a set of options. You can set the
option values when you add the pane with add, or afterward with the
paneconfigure subcommand. You can query the value of a pane option with the
panecget subcommand; for example:

The following pane options are supported:

• -after widget
Inserts the widget after the widget specified, which should be the name of a
widget already managed by the panedwindow.

423

• -before widget
Inserts the widget before the widget specified, which should be the name of a
widget already managed by the panedwindow.

• -height size
Specifies a height for the widget, expressed as a screen distance. If size is
an empty string, or if -height is not specified, the height requested internally
by the widget is used initially; the height may later be adjusted by the
movement of sashes in the panedwindow.

• -hide boolean
Controls the visibility of a pane. When boolean is true, the pane is not visible,
but it is still maintained in the list of panes.

• -minsize size
Specifies that the size of the pane cannot be made less than size, expressed
as a screen distance.

• -padx size
Specifies horizontal padding added around the widget, expressed as a
screen distance.

• -pady size
Specifies vertical padding added around the widget, expressed as a screen
distance.

• -sticky style
Controls the position and stretching of a widget if a widget’s pane is larger
than its requested dimensions. style is a string that contains zero or more of
the characters n, s, e, or w. Each letter refers to a side (north, south, east, or
west) to which the widget “sticks.” If both n and s (or e and w) are specified,
the window is stretched to fill the entire height (or width) of its pane.

• -stretch when
Controls how extra space is allocated to each of the panes. You can set the
pane to always or never stretch. Alternatively, you can specify that the pane
stretch only if it is the first, last, or middle pane.

• -width size
Specifies a width for the window, expressed as a screen distance. If size is
an empty string, or if -width is not specified, the width requested internally
by the window is used initially; the width may later be adjusted by the
movement of sashes in the panedwindow.
Widgets previously added to a panedwindow can be removed from it using
the forget subcommand. You can also retrieve a list of widgets managed by
the panedwindow using the panes subcommand; the widgets are returned in
the order in which they are displayed:

424

 .pw panes
⇒ .left .right

Note

The panedwindow is both a widget and a geometry manager. Geometry
management is discussed at length in Chapter 21.

18.14 Standard Dialogs

Tk provides a set of utility procedures and dialogs. Three are described
here, but refer to the documentation for a complete list. You can also create
your own custom dialogs, a topic that is discussed in Chapter 27.
At times in an application it is necessary to report a condition or ask a
question that needs immediate attention. This can be handled easily in Tk
using the tk_messageBox dialog. Calling this procedure presents a dialog box
containing a message and a set of buttons, depending on the -type specified.
An image is displayed next to the message text as defined by the -icon
option. This image is used to help the user identify the importance of the
message, so the possible values are error, info, question, and warning. The
image varies from one platform environment to another, and it is typically
standardized across all applications for that environment. Figure 18.25
demonstrates a simple yesno message box. The -parent option specifies an
application widget that the tk_messageBox uses for positioning the dialog. The
dialog box is centered over the top of the parent widget. The message box
dialog is modal and blocks further execution of the Tcl application until the
user responds by pressing one of the buttons. The return value is a string
indicating which button was pressed, such as yes or no.

Figure 18.25 Example of Tk’s built-in messageBox dialog

425

The following script shows a message box and the response. The function
returns a value based on which button the user presses.

Selecting operating system files for open and save operations is a common
enough task that each platform environment has a standardized way of
presenting a dialog for file selection. These dialogs are common across all
applications, reducing the learning curve for users. Tk provides access to
these common dialogs with the tk_getOpenFile, tk_getSaveFile, and
tk_chooseDirectory procedures. When these procedures are called, the Tk
application waits until the user completes the file selection. The procedure
then returns the selected file or files (or an empty string if the user selected
no files), and the Tcl script continues. In the code for Figure 18.26, the -
initialfile option is used to seed the dialog so that it displays the given file
name. The -filter can be used to limit the files visible to those that make
sense for the application at hand.

Figure 18.26 Invoking the native file navigator dialog boxes

426

The following command creates a file dialog to open an existing file. The
file selected is returned by the call, or an empty string if the dialog box is
canceled. A variety of initial conditions (-initialfile shown here) and filters
can be configured via options to these calls:

tk_getOpenFile -initialfile messagebox.tcl
 -filetypes {{Tcl .tcl} {All *}}

18.15 Other Common Options

The widget descriptions discussed in this chapter introduced most of the
common kinds of options, such as colors and fonts. This section describes a
few other options that are supported by many widgets.

18.15.1 Widget State

Interactive widgets and menu entries have a -state option associated with
them. The default value of -state is normal, in which case the default widget
class bindings make the widget responsive to user interaction. For example,
a button responds to a mouse click by invoking its -command script, a listbox
lets a user scroll through and select its items, an entry widget allows a user

427

to edit its text, and so forth. Setting the -state option to disabled causes the
default widget class bindings to make the widgets unresponsive to user
input; most widgets also change their visual appearance, for example,
appearing “grayed out.” Several interactive widgets also support a value of
active, which is used primarily by the default class bindings to highlight the
widget when the mouse pointer is over the widget.
The most common use of the -state option in an application is to disable
features of an application under certain circumstances and enable them in
others. For example, you might enable a Copy button (set its -state to normal)
if the user has selected some text in your application and disable it (set its -
state to disabled) otherwise.
Other widgets have some additional states, such as readonly for an entry or
spinbox and hidden for a canvas; see the appropriate sections of this book
and the reference documentation for more information about these states.

18.15.2 Widget Size Options

Many widgets support a -width option, and some support a -height option, to
specify a preferred minimum size. If a widget contains text, these values are
usually interpreted in terms of the number of characters wide and the
number of lines tall, so the actual size depends on the font and size of the
text. If a widget contains an image or bitmap, the values are usually
interpreted as pixels. If a widget is not large enough to display all of its
contents, it usually clips the contents subject to the -anchor option discussed
in the next section.
Although you can try to calculate or forecast sizes for your widgets, it’s
usually easiest with widgets such as labels and buttons to leave these
options with their default value, which is 0. In this case, the widgets
automatically size themselves to be just large enough to accommodate their
contents. And in other cases, such as entries or text widgets, you often use
the geometry managers to resize the widgets based on the user resizing the
window, which overrides any values set for -height and -width.

18.15.3 Anchor Options

An anchor position indicates how to attach one object to another. For
example, if the window for a button widget is larger than is needed for the
widget’s text, an anchor option may be specified to indicate where the text

428

should be positioned in the window. Anchor positions are also used for
other purposes, such as telling a canvas widget where to position a bitmap
relative to a point associated with the item, or telling the packer geometry
manager where to position a window in its frame.
Anchor positions are specified using one of the following points of the
compass:

• n—center of the object’s top side
• ne—top right corner of the object
• e—center of the object’s right side
• se—lower right corner of the object
• s—center of the object’s bottom side
• sw—lower left corner of the object
• w—center of the object’s left side
• nw—top left corner of the object
• center—center of the object

The anchor position specifies the point on the object by which it is to be
attached, as if a pushpin were stuck through it at that point, pinning the
object someplace. For example, an -anchor option of w specified for a button
means that the button’s text or bitmap is to be attached by the center of its
left side, and that point is positioned over the corresponding point in the
window. Thus, w means that the text or bitmap is centered vertically and
aligned with the left edge of the window. For bitmap items in canvas
widgets, the -anchor option indicates where the bitmap should be positioned
relative to a point associated with the item; in this case, w means that the
center of the bitmap’s left side should be positioned over the point, so that
the bitmap actually lies to the east of the point. Figure 18.8 and Figure 18.9
show the use of the -anchor option to cause the buttons to align on the left (for
west) side of the window.

18.15.4 Internal Padding

Many widgets support -padx and -pady options, which control internal
padding. The -padx option accepts a screen distance specifying the minimum
amount of space horizontally between the widget’s borders and its content;
the -pady option determines the minimum vertical spacing between the
widget’s borders and its content.

18.15.5 Cursor Options

429

Every widget class in Tk supports a -cursor option that determines the image
to display for the pointer when it is over that widget. If the -cursor option
isn’t specified or if its value is an empty string, the widget uses its parent’s
cursor. Otherwise, the value of the cursor option must be a proper Tcl list
with one of the following forms:

• name fgColor bgColor
• name fgColor
• name
• @sourceFile maskFile fgColor bgColor
• @sourceFile fgColor
• @sourceFile

In the first three forms name refers to one of the predefined cursors. You can
find a complete list of all the predefined names in the cursors reference
documentation.
If name is followed by two additional list elements, as in the command

.f config -cursor {arrow red white}

the second and third elements give the foreground and background colors to
use for the cursor; as with all color values, they may have any of the forms
described in Section 18.3. If only one color value is supplied, it gives the
foreground color for the cursor and the background is transparent. If no
color values are given, black is used for the foreground and white for the
background.
If the first character in the -cursor value is @, the image(s) for the cursor is
taken from files in bitmap format rather than the X cursor font. If two file
names and two colors are specified for the value, as in the following widget
command,

.f config -cursor \
 {@cursors/bits cursors/mask red white}

the first file is a bitmap that contains the cursor’s pattern (1s represent
foreground and 0s background) and the second file is a mask bitmap. The
cursor is transparent everywhere that the mask bitmap has a 0 value; it
displays the foreground or background wherever the mask is 1. If only one
file name and one color are specified, the cursor has a transparent
background. This feature is supported only on the X windowing system.
The final form, which works on Windows systems only, loads a Windows
system cursor (with either a .ani or .cur extension) from the file specified by

430

sourceFile.
On Windows and Macintosh systems, some cursors are mapped to native
cursors. The look of these cursors depends on the user’s preferences. Some
additional cursors are defined that are available only on a Windows or
Macintosh platform. See the cursors reference documentation for a complete
list.

431

432

19. Themed Widgets

Themed widgets take a different approach from the classic Tk widget set.
They separate, to the extent possible, the code implementing a widget’s
behavior from the code implementing its appearance. While classic widgets
are configured through the option database or by directly modifying options
on each widget, the size, shape, color, fonts, and so on of themed widgets
are controlled by their style. Themed widgets allow an application’s look
and feel to be controlled by its environment (e.g., Windows user
preferences) or by centralized application-defined styles. The resulting
appearance is more consistent throughout the application, as well as with
the native look and feel of the user’s windowing system.

19.1 Comparing Classic and Themed Widgets

The main advantage to using themed widgets is to give a native look to an
application by selecting the theme that fits the user’s current desktop
environment. Classic widgets on Microsoft Windows and Mac OS X try to
emulate native widgets for buttons, scrollbars, checkbuttons, and
radiobuttons, but these appearances can become dated with newer versions
of the windowing system. This is especially apparent with X-based classic
widgets, which are still based largely on the look of the Motif widget
toolkit. Figure 19.1 illustrates the classic Tk checkbutton widget along with
its themed variations for each platform. In some cases the difference may be
subtle, but there are small changes that make a big difference, like the
background blending on the Mac OS X checkbutton.

Figure 19.1 Classic and themed checkbutton variations

433

Another benefit to themed widgets is that they are simpler to use than classic
widgets. Themed widgets require much less configuration to give your
application a consistent and attractive appearance, especially if you want
subsets of widgets to have special appearances or behaviors. Customizing
classic widgets throughout your application requires you to either set the
configuration options for each widget individually or through the Tk option
database (described in Chapter 28). For themed widgets, you can define a
new style—usually by inheriting the definitions of an existing style—
customize specific configuration options for the new style, and then assign
the new style to individual widgets as needed. This process is covered in
Section 19.9.
Table 19.1 lists the classic widgets and how they compare to the themed
widgets. Some of these widgets are the same as the basic Tk widget set, and
others provide additional behaviors not found in the classic Tk widgets.
Some classic widgets, such as the canvas and text classes, don’t have a
themed equivalent, and the themed widgets include some new widget types,
such as the combobox, notebook, and treeview classes.

Table 19.1 Classic Widget Classes and Their Corresponding Themed
Widget Classes

434

Widgets that have both a classic Tk class and a themed widget class are
functionally equivalent but not directly interchangeable. The themed widgets
do not have options that control color, borders, and so on; instead, these
aspects of the widget are controlled by the theme. Also, some themed
widgets have different widget commands from their classic counterparts.
Subsequent sections of this chapter focus on the new widget classes added
by the themed widgets.

Note

If you decide to replace classic widgets in an existing Tk application
with themed widgets to update the application’s appearance, you

435

should read the reference documentation carefully to identify the exact
differences between the themed widgets and the classic widgets you
are replacing.

19.2 Combobox

The ttk::combobox widget combines an entry widget with a drop-down
listbox. This widget can be used like the spinbox to select from a fixed set
of values, but it allows the direct selection of a value without incrementing
through the list. Or it can be used to accumulate a history of values that have
been entered directly into the entry box. Figure 19.2 shows a combobox
used for performing searches. In this example, each time a new search string
is typed in, the string is added to the list of values for the combobox.
Pressing the down arrow to the right of the entry field displays a drop-down
box showing the past search values. Selecting one of these values updates
the entry with the new value. The following script creates the combobox
shown in Figure 19.2:

Figure 19.2 Example of a themed combobox widget

436

19.3 Notebook

The ttk::notebook widget provides a way to manage windows by dividing
them into pages, tying each page to a user-selectable tab, and displaying
only one page at a time. This widget is commonly used in complex dialog
boxes, and there are other useful applications for it, such as the simple text
editor shown in Figure 19.3.

Figure 19.3 Example of a themed notebook widget

437

A notebook is somewhat similar to a panedwindow in that it acts as a
manager for other widgets. When a tab is selected (either programmatically
or by a user clicking on it), the notebook displays a window, hiding any
child window that was previously displayed. Typically, you arrange the
contents of each pane into a ttk::frame or frame widget, then add each frame
to the notebook using its add subcommand. (Chapter 21 explains how to
arrange widgets within a frame.)
Tabs are referenced by an identifier. There are several methods of
specifying a tab identifier:

• An integer index starting with 0 for the first tab
• The name of the child widget managed by the notebook
• A screen position of the form @x, y, where x and y are expressed as

pixels relative to the upper-left corner of the notebook widget
• The literal string current, which refers to the currently selected tab

Each child window that you add is controlled by a set of options. You can
set the option values when you add the window with add, or afterward with
the tab subcommand, which accepts a tab identifier as its first argument:

notebook tab tabid ?option? ?value option value ...?

The following tab options are supported:

• -compound style
Specifies how to display the image relative to the text, when both -text and -
image are present. See Section 19.10 for legal values.

• -image image
Specifies the name of an image object to display in the tab.

• -padding space
Specifies the amount of extra space to add around the outside of the tab
window, expressed as a screen distance. The padding is a list of up to four
length specifications: left, top, right, and bottom. If fewer than four elements
are specified, bottom defaults to top, right defaults to left, and top defaults to
left.

• -state state
Indicates the state, which is either normal, disabled, or hidden. If disabled, the tab
is not selectable. If hidden, the tab is not shown.

• -sticky style
Controls the position and stretching of a widget if a widget’s tab window is
larger than its requested dimensions. style is a string that contains zero or
more of the characters n, s, e, or w. Each letter refers to a side (north, south,
east, or west) to which the widget “sticks.” If both n and s (or e and w) are

438

specified, the window is stretched to fill the entire height (or width) of its
window.

• -text string
Specifies a string to be displayed in the tab.

• -underline index
Specifies the integer index (zero-based) of a character to underline in the
text string. The underlined character is used for mnemonic activation if
ttk::notebook::enableTraversal is called.
The insert widget command inserts a tab at a specified position:

notebook insert position widget ?option? \
 ?value option value ...?

The position can be a zero-indexed integer value, or the keyword end to add
the tab to the end. If the widget is already managed by the notebook, it is
moved to the indicated position.
You can hide a tab with the hide widget command, which is equivalent to
setting the -state of that tab to hidden. On the other hand, the forget widget
command removes the tab from the notebook and unmaps and unmanages the
associated child widget.
The index widget command returns an integer index of the tab, given any
supported tab identifier; it returns the number of tabs managed if you
provide end as its argument. And the tabs widget command returns a list of
the widgets managed by the notebook.
The notebook widget generates a <<NotebookTabChanged>> virtual event after a
new tab is selected. See Chapter 22 for a discussion of virtual events. You
can also enable keyboard traversal for a toplevel window containing a
notebook widget with the following command:

ttk::notebook::enableTraversal notebook

This command automatically extends the bindings for the toplevel window
containing the notebook to support the following behaviors:

• Ctrl+Tab selects the tab following the currently selected one
• Shift+Ctrl+Tab selects the tab preceding the currently selected one
• Alt+k, where k is the underlined character specified by the -underline

option for a tab, selects that tab

19.4 Progressbar

439

A ttk::progressbar widget provides some visual feedback to a user of the
status of some long-running operation. The visual appearance of the
progressbar is determined by its -orient option, which can be horizontal or
vertical, and its -length, which is a screen distance specifying the length of its
long axis. Its behavior is determined by its -mode option, which can be set to
determinate if it will indicate incremental progress to a known completion
point, or indeterminate if you can’t predict when the operation will complete.
For a determinate progressbar, the -maximum option is a floating-point value
indicating the completion point of operation. The default value for -maximum is
100.0, which is useful to represent a percentage; you could also provide a
value representing an amount of time, some number of records to process, or
some other benchmark. By setting the -value option, you can then indicate
how much progress your application has made toward the maximum. You
can also accomplish this by invoking the ttk::progressbar’s step
subcommand to increment the value by a given amount (which defaults to
1.0):

progressbar step ?amount?

Additionally, you can use the -variable option to provide the name of a
variable (referenced from the global namespace) with which you want the
progressbar to synchronize its -value option.
With an indeterminate progressbar, you don’t have a predictable completion
point for an operation; in this case the purpose of the progressbar is only to
provide some visual indication to the user that the operation is ongoing and
that the application hasn’t frozen. To use an indeterminate progressbar,
simply invoke its start subcommand at the beginning of the operation and its
stop subcommand at the end.

19.5 Separator

The ttk::separator widget displays a simple horizontal or vertical separator,
as specified by its -orient option. You can use it to provide a visual
demarcation between logical sections in a complex interface. There are no
interactive controls for the separator and no additional options of note.

19.6 Sizegrip

440

The ttk::sizegrip widget implements a bottom right corner resize control. It
allows the user to resize the containing toplevel window by pressing and
dragging the grip. Proper sizegrip behavior is supported for only the bottom
right corner of the toplevel.
You must explicitly grid or pack the sizegrip in the correct position on the
window. For example, if you use pack to position the sizegrip as part of a
status bar at the bottom of a toplevel, you might use code such as

On the other hand, if you use grid, your code might look like this:

Note

On Mac OS X, toplevel windows automatically include a built-in
sizegrip by default. Adding ttk::sizegrip there is harmless, since the
built-in grip just masks the widget.

19.7 Treeview

The ttk::treeview widget is a powerful tool for displaying one or more
columns of information, optionally in a hierarchical arrangement with
dynamic collapse and expand capabilities.

19.7.1 Manipulating Treeview Items

The fundamental building block of a treeview is an item, which represents
one line of information in the treeview. Each item has a textual label, an
optional image, and an optional list of data values that are displayed in
successive columns of the treeview after the label. Each item must also have

441

a unique identifier within the treeview; you can either supply one yourself
when creating the item or have the treeview assign an identifier
automatically on creation.
Items can be nested, so an item might serve as a simple leaf node, or it can
serve as a parent with one or more child items beneath it. Each treeview has
a root item created automatically when the treeview is instantiated; its
identifier is the empty string. The root item itself is not displayed by the
treeview. The direct children of the root item appear at the top of the
hierarchy.
You add items to a treeview widget using its insert subcommand:

treeview insert parent index ?-id id? ?option value ...?

The parent argument is the identifier of the parent item for the new item. The
index is the position of the new item within the parent; it can be a zero-based
integer value, or the keyword end to place the item after all existing children
of the parent. You can explicitly provide a unique string identifier for the
new item with the -id option, or you can omit it to have the treeview
automatically assign an identifier; the identifier is the return value of the
command. Each item also supports a set of options that determine its
appearance. You can set the options when you insert a new item, or
afterward using the treeview’s item subcommand. You can also use the item
subcommand to query one or all of the options for an item:

treeview item id ?option? ?value option value ...?

The supported item options are

• -text—the text string to display for the item in the treeview
• -image—the name of an optional image object to display to the left of

the label
• -values—a list of the values associated with the item
• -open—a Boolean value indicating whether the item’s children should

be displayed (true) or hidden (false)
• -tags—a list of tags associated with the item, as discussed below

For example, the following code creates a treeview and populates it with
three toplevel items. It then creates several child items for each of the
toplevel items:

442

The resulting treeview is shown in Figure 19.4.

Figure 19.4 Example of a treeview widget

443

You can programmatically expand or collapse an item by setting its -open
property to true or false, respectively. Default treeview widget class
bindings automatically implement collapse/expand behavior for user
interaction; clicking the left mouse button on an item toggles the item’s -open
option. The widget also generates <<TreeviewOpen>> and <<TreeviewClose>> virtual
events in response to these actions, and you can implement your own custom
item open/close behaviors. See Chapter 22 for more information on virtual
events and executing scripts in response to events. You can also use the
treeview’s see subcommand to ensure that a specific item is visible; it sets
all of the item’s ancestors to -open true and scrolls the widget if necessary so
that the item is displayed on the screen:

treeview see item

You can use the move subcommand to move an existing item to a new location
in the item hierarchy:

treeview move item parent index

The item argument is the identifier of the existing item to move, and the parent
and index arguments are interpreted as with insert. You cannot move an item
under one of its descendant items.
The delete subcommand takes a list of one or more item identifiers and
deletes each of them and all their descendant items. In contrast, the detach
subcommand takes a list of item identifiers and “unlinks” them from the tree.
The items and their descendants are no longer displayed by the tree, but they
still exist. You can reattach any of them to the tree in any location by using
the move subcommand.
You can determine the integer index of an item within its parent using the
index subcommand. The next and prev subcommands return the identifier of an

444

item’s next or previous sibling; these return an empty string if the item is the
last or first item within a parent, respectively. The parent subcommand
returns the identifier of an item’s parent, or an empty string if the item is at
the top of the hierarchy. The children subcommand returns a list of identifiers
of all of the children of an item in the order in which they appear; you can
also provide a list of item identifiers, in which case the existing children are
detached and the items listed become the new children.

19.7.2 Managing Treeview Columns and Headings

Your treeview can display as many columns of data as you like. The first
column consists of the tree items themselves; that column displays the image
associated with the item followed by its text label, as specified by the
item’s -image and -text properties, respectively. Both of these properties are
optional. Additional columns display elements from the item’s optional -
values property. Columns also have configurable headings.
The treeview widget’s -columns property determines the number of columns
of data contained within the treeview. Its value is a list of logical column
names. The default value for -columns is an empty list, which indicates that
the treeview displays a single column containing the tree items and that the -
values property of the items is ignored. If a list of logical column names is
provided for -columns, the list elements of each item’s -values property are
associated with the corresponding logical column names in order. If the -
values list contains fewer elements than logical columns, an empty string
value is assumed for the remaining columns; if the list contains more
elements than logical columns, the excess elements are ignored. The
example in Section 19.7.1 defined a single logical column named “Capital,”
and each item had a one-element list for its -values property, providing the
value for that column. The following code defines a treeview widget with
three logical columns named country, capital, and currency and defines several
items, each with three corresponding values for its -values property:

The order in which the logical columns are displayed does not have to be
the same as the order in which they appear in -columns. You can also

445

configure the treeview to show only a subset of the logical columns. This
behavior is controlled by the treeview’s -displaycolumns property. You can set
it to a list of the logical column names (or their zero-based indices) in the
order in which they should be displayed. The default value for -displaycolumns
is #all, which indicates that all logical columns should be displayed in the
order in which they were defined.
The tree items always appear in the first display column. You cannot display
them in a different column, but you can choose not to display them. The
treeview’s -show property contains a list specifying which elements of the
treeview to display. The default value is {tree headings}, to display both the
tree items and the column headings.
The column command queries or modifies display column configuration:

treeview column column ?option? ?value option value ...?

You can specify a column by the logical column name if it is displayed; you
can also use the zero-based logical column index identifying the column as
listed in the -columns property. Alternatively, you can indicate a display
column with a string in the form #n, where n is the zero-based column
number counting from the left.

Note

Column #0 always refers to the tree column, even if it is not displayed.

The supported column options are

• -id—a read-only option containing the logical column name
• -anchor—specifies how the text in this column is aligned with respect

to the cell; one of n, ne, e, se, s, sw, w (default), nw, or center
• -minwidth—the minimum width of the column in pixels; defaults to 20
• -stretch—a Boolean specifying whether or not the column’s width

should be adjusted when the widget is resized; defaults to 1 (true)
• -width—the width of the column in pixels; defaults to 200

You query or modify column headings with the heading command:

treeview heading column ?option? ?value option value ...?

The supported heading options are

• -text—the text to display in the column heading
• -image—an image to display to the right of the column heading

446

• -anchor—specifies how the heading text should be aligned; one of n, ne,
e, se, s, sw, w, nw, or center (default)

• -command—a script to evaluate when the heading label is pressed

19.7.3 Treeview Item Selection Management

The default treeview widget class bindings automatically handle selecting
an item when the user clicks on the item. However, the way the bindings
behave depends on the value of the treeview’s -selectmode option:

• extended (default)
Clicking an item selects it and deselects any other items currently selected.
The user may select multiple items, using Control-clicks to toggle an item’s
selection and Shift-clicks to extend the selection.

• browse
Clicking an item selects it and deselects any other items currently selected.
At most one item may be selected by the user.

• none
Clicking items does not affect which items are selected. Thus, this disables
direct user selection of items.
The -selectmode option affects only the user’s ability to manage treeview item
selection. Regardless of the -selectmode value, your application can use the
treeview’s selection subcommand to control item selection:

treeview selection ?selectOp itemList?

Without any additional arguments, the select subcommand returns a list of
selected items. The selection set subcommand causes itemList to be the new
selection; providing an empty itemList removes all items from the selection.
The selection add subcommand adds the items in itemList to the selection; the
selection remove subcommand removes the items in itemList from the selection;
and the selection toggle subcommand toggles the selection state of each item
in itemList.
The treeview widget also generates a <<TreeviewSelect>> virtual event
whenever an item is selected or deselected. See Chapter 22 for more
information on virtual events and executing scripts in response to events.

19.7.4 Treeview Item Tags

The treeview widget allows you to define symbolic tags that you can apply

447

to any number of items. Tags allow you to apply formatting to individual
items in the treeview. You define, query, or modify tag properties with the
tag configure subcommand:

treeview tag configure tag ?option? ?value option value ...?

The supported tag options are

• -background—the background color to use for the cells displaying the
items

• -foreground—the text foreground color for the items
• -font—the text font for the items
• -image—an image to display for the items, but only if an item does not

have its own -image property set
All tag options have a default value of the empty string, which indicates that
the tag does not affect that aspect of an item. As an example, the following
code defines two tags named highlight and important:

To apply tags to an item, you provide a list of tag names as the value of the
item’s -tags property; for example:

.tree item vt -tags {highlight important}

The tags are listed in order from lowest priority to highest priority. If
multiple tags have the same tag option set, the value for the tag with the
highest priority is used. For example, because important is listed after
highlight in the preceding line of code, its foreground color of red is used for
the vt item. But because important does not set a value for its -background
property, the blue value set by the highlight tag is used in this case.
The treeview widget also allows you to associate bindings to tags with the
tag bind subcommand. You can use bindings to make items “active” so that
they respond to mouse, keyboard, or virtual events. (See Chapter 22 for
more information on events and executing scripts in response to events.)
Among other things, this enables you to implement hypertext effects. For
example, the following binding simply prints a message to the console
whenever the user clicks on an item that has the tag important:

448

Keyboard events trigger a tag binding only when the item has focus. At most
one item at a time in a treeview has focus. The default treeview widget
class bindings automatically assign focus to the last item selected by the
user. You can use the focus subcommand to query or set the focus item:

treeview focus ?item?

Called without an item, the command returns the identifier of the current
focus item or an empty string if no item has focus. Called with an item
identifier, the command assigns focus to the specified item.
It is possible for multiple bindings to match a particular event, for example,
if you’ve created bindings for multiple tags and then applied some
combination of those tags to an item. When this occurs, all of the matching
bindings are invoked, in order from lowest-priority to highest-priority tag. If
there are multiple matching bindings for a single tag, only the most specific
binding is invoked. A continue command in a binding script terminates that
script, and a break command terminates that script and skips any remaining
scripts for the event, just as for the bind command.

Note

If bindings have been created for a treeview widget using the bind
command, they are invoked in addition to bindings created for the tags
using the tag bind subcommand. The bindings for tags are invoked
before any of the bindings for the widget as a whole.

19.8 Themed Widget States

The state of a widget controls its appearance and behavior. The state of a
classic widget is determined by the value of its -state option, as described
in Section 18.15.1. Most classic widgets support only the values normal and
disabled, but some widgets, such as the entry and spinbox, support additional
states such as readonly. A classic widget can be in only one state at a time.
Themed widgets also use states, but these differ from classic widgets in two
important ways. First, states consist of several independent flags, each of
which may simultaneously be on or off; the complete state for the widget is

449

therefore equivalent to the particular combination of flags that are on or off.
Second, all themed widgets support states, and all widgets use exactly the
same set of state flags, though as we’ll see, some flags may be ignored by
particular widgets. All themed widgets currently support the following
states:

• active
The mouse cursor is over the widget, and pressing a mouse button will
cause some action to occur.

• disabled
The widget is disabled under program control.

• focus
The widget has keyboard focus.

• pressed
The widget is being pressed.

• selected
The widget is “on,” “true,” or “current” for things like checkbuttons and
radiobuttons.

• background
Windows and Mac OS X have a notion of an “active” or foreground
window. The background state is set for widgets in a background window and
cleared for those in the foreground window.

• readonly
The widget should not allow user modification.

• alternate
This is a widget-specific alternate display format. For example, it is used
for checkbuttons and radiobuttons in the “tristate” or “mixed” state, and for
buttons that have their -default option set to active.

• invalid
The widget’s value is invalid (for example, if an entry widget value fails
validation).
For each themed widget in your application, some of these states might be
“on” or “set,” while the others are “off” or “unset.” Default bindings for
each of the themed widget classes automatically manage the states. For
example, the TButton class (themed button) has default bindings that check
whether the disabled state of a themed button is “off”; if so, they set the active
state to “on” when the mouse enters the button and back to “off” when the
mouse leaves the button. You can programmatically change and query the
state of a themed widget using its state widget command:

widget state ?stateSpec?

450

The stateSpec is a list of states to set or unset. If an element consists of a state
name, the state is set; if an element consists of a state name preceded by a !,
the state is unset. The return value indicates which flags were changed. If
you execute the state widget command with no stateSpec, it returns a list of
the states currently set; for example:

You can test the state of a themed widget using its instate widget command:

widget instate stateSpec ?script?

Without a script argument, the command returns 1 if the widget state matches
the stateSpec, or 0 otherwise; for example:

If you provide a script argument, the script is executed if the widget state
matches the state specification. For example, the following invokes a
themed button, .b, only if it is currently pressed and enabled:

.b instate {pressed !disabled} { .b invoke }

Note

The instate widget command allows you to create widget or even class
bindings implementing state-based behaviors quite easily. As you will
see in Section 19.9.3, the ttk::style map command also allows you to
change the appearance of widgets in particular states. In combination,
this allows significant customization of the out-of-the box widget set

451

with no need to modify the underlying code implementing the widgets.

19.9 Themed Widget Styles

Each themed widget is assigned a style, which specifies the appearance of
the widget under different circumstances. Remember that each widget has a
default class associated with it (e.g., TLabel for all label widgets). The
default style associated with a themed widget has the same name as the
widget class (e.g., a style named TLabel). Thus, all themed widgets of the
same class have the same appearance, unless your application explicitly
overrides the style for a widget.
You can use the winfo class command to determine the class of a particular
widget; for example:

You can override the default style of a themed widget by assigning the style
name as the value of the widget’s -style property. (The default value is an
empty string, which indicates that the widget uses the default style as
defined by the class name.) For example, if you have defined a new style
named AlertLabel.TLabel, you could assign it to a widget as follows:

.l configure -style AlertLabel.TLabel

You will see how to define new styles in the following sections.

19.9.1 Using Themes

A theme is a named collection of styles, designed to provide a consistent
look and feel to all the themed widgets in an application. The ttk::style theme
names command lists the names of themes defined on your current system:

 ttk::style theme names
⇒ aqua clam alt default classic

Tk automatically picks an appropriate theme for your windowing system
when you launch the application. The ttk::currentTheme variable contains the

452

name of the current theme:

 puts $ttk::currentTheme
⇒ aqua

You can switch to a different theme by executing ttk::style theme use:

ttk::style theme use clam

This command updates all styles with the definitions from the new theme
and refreshes all themed widgets to reflect the new theme.

19.9.2 The Elements of Style

A themed widget is implemented internally as a collection of elements. One
function of a style is to control the placement of elements.

Note

In general, application developers rarely modify widget layouts.
However, it can be useful to determine the elements that compose a
particular themed widget when you want to customize its configuration,
as discussed in the next section.

You can use the ttk::style layout command to view or change the layout of
elements for a given style. Here is an example under the Aqua theme:

A layout consists of a list of elements, each followed by one or more
options specifying how to arrange the elements. In the return value above,
Checkbutton.button, Checkbutton.padding, and Checkbutton.label are the elements
composing a themed checkbutton widget under the Aqua theme.
Reformatting the output can make the structure clearer:

453

The elements are arranged in the order listed within the space allocated to
the widget, known as the cavity. The optional -side property determines the
location of the parcel of space allocated to the element, and it can be set to
one of left, right, top, or bottom. If you omit the -side property, the entire cavity
is allocated to the element. The -sticky option specifies where the element
resides in its parcel by indicating the sides of the parcel to which the
element “sticks.” For example, the -sticky nswe option in the preceding
example indicates that the element should fill all of the parcel. The -children
property specifies a list of one or more elements arranged inside the parent
element, following the same rules discussed before.
Note that the layout for a particular style might vary from one theme to
another. This is because some windowing systems use elements on widgets
(such as focus indicators) that aren’t used by other windowing systems. For
example, under the Aqua theme, the TButton layout is defined as follows:

In contrast, the TButton layout has the following definition under the XP
native theme:

19.9.3 Creating and Configuring Styles

As an application developer, you might want to change the appearance of
various widgets in your application, for example, setting the foreground

454

color used to render text in a set of buttons. Rather than requiring you to set
the configuration options on each individual widget, themed widgets allow
you to set the configuration options for the style, which then takes effect
automatically for each widget that uses that style.
Before you can configure the options associated with a style, you need to
know what options are available on that style. Each element that is a
component of a themed widget has a set of options that it uses. You can
retrieve a list of the options associated with a given element using the
ttk::style element options command, like so:

The actual values for element options are supplied by the style containing
the element, or in some cases (for example, -text) by the actual instance of a
themed widget. When configuring a style, you can provide values for any of
the options associated with any of the style’s elements. A single option, such
as -background, might be associated with several elements within a style. In
that case, the value provided by the style would be used by all of the
associated elements. This feature ensures visual consistency in the widget.
The ttk::style configure command queries or modifies the option values of a
style:

ttk::style configure style ?option? ?value option value ...?

For example, you could configure the TLabel style so that every themed button
in your application displays its text in green:

ttk::style configure TLabel -foreground green

More typically, you might want a customization to apply to only some of the
widgets of a particular class in your application. For example, you might
want most of your labels to use the standard colors defined by the theme, but
some labels are special alerts that should use red text. In that case, you can
define a new style derived from the TLabel style, as in the following example:

ttk::style configure AlertLabel.TLabel -foreground red

The style name AlertLabel.TLabel indicates that it is derived from TLabel. If an
element queries the -foreground option, it gets the value red; if it queries any
other option, it gets any value configured in the TLabel base style. You can
create as deep a hierarchy of derived styles as you like, using a . to separate

455

each level. When an element queries an option, it obtains the value from the
first style where it is defined. There is also a base style named . that is used
to provide default option values for all styles. The primary purpose of the .
style is to serve as a fundamental building block for defining the look and
feel of a theme.
The option values you set with the ttk::style configure command are the
default values that apply. However, you can also use the ttk::style map
command to define override values to use depending on the state of the
widget:

ttk::style map style ?option? ?{stateSpec value ...} ...?

The style and option arguments are interpreted as with ttk::style configure. The
next argument is a list of state specifications (expressed in the same format
as described in Section 19.8) and corresponding option values. The actual
state of a particular widget is compared against the state specifications in
the order in which they are listed. The first specification that matches the
widget’s state determines the value to use for the option. State maps are
inherited as well, so if there is no appropriate mapping for an option in the
current style, the style from which it was derived is then checked, and so on.
If none of the state specifications matches, the option gets the default value
as defined by the ttk::style configure definitions described earlier.
The ttk::style lookup command allows you to retrieve the value of a
particular option for a style:

ttk::style lookup style option ?stateSpec ?default??

With no stateSpec or default arguments, the command returns the default value,
as defined by ttk::style configure. For example, to retrieve the default button
font:

 ttk::style lookup TButton -font
⇒ TkDefaultFont

Given a stateSpec, the command returns a value using the standard lookup
rules for element options (that is, checking for a matching ttk::style map state
specification first and falling back to the defaults defined by ttk::style
configure if there is no matching state specification). If the default argument is
present, it is used as a fallback value in case no specification is found for
the option.

456

19.10 Other Standard Themed Widget Options

Like classic widgets, themed widgets support options that control their
appearance and behavior. The configuration options for a themed widget
may be specified when the widget is created and modified later with the
configure widget command; you can query the value of a widget’s
configuration option using the cget widget command.
The standard set of options supported by themed widgets is much smaller
than the set for classic widgets. Unlike classic widgets, most themed
widgets don’t support options such as -background, -relief, or -font for
controlling color, borders, or fonts. Instead, these visual characteristics are
controlled by the widget’s style, which is usually determined by the overall
theme selected for the application. Styles are discussed more in Section
19.9.
Themed widgets support a -cursor option, which controls the appearance of
the mouse cursor when the mouse is over the widget, and it works just as
with classic widgets, as discussed in Section 18.15.5. Scrollable themed
widgets also support -xscrollcommand and -yscrollcommand options and follow the
same scrolling protocols described in Section 18.9.
Labels, buttons, and other button-like themed widgets support -text and -
textvariable options that behave like their classic counterparts. These
widgets also support a -image option for specifying the name of an image
object to display. However, rather than being limited to a single image
name, themed widgets allow you to specify a list of values for the -image
option. The first element is the name of the default image to display.
Subsequent elements are two-element nested lists, where the first element is
a state specification, as defined in Section 19.8, and the second element is
the name of an image to display in that state. The first state specification that
matches the widget’s current state determines the image to display. All
images should have the same size.
The -compound option determines how to position the image relative to the
text, if both have been specified for a widget. The default of none displays
the image if present, otherwise the text. A value of text or image displays only
one or the other type of content. A value of top, bottom, left, or right places the
image in the indicated position relative to the text. A value of center displays
the text centered on top of the image.

457

458

20. Fonts, Bitmaps, and Images

The primary function of any graphical interface is to present text and
pictures, and the resources needed to accomplish this are fonts and images.
Available fonts vary greatly from one platform to another, and even from
one Windows PC to another. Having a way to manage font usage in an
application simplifies supporting multiple platforms and multiple
environments. Tk provides the font command to create named fonts and to
manage font use in applications. Likewise, icons have become as important
as any glyph in any alphabet in today’s applications. These images, some of
which are common and some of which are unique, are necessary in any
application with a graphical user interface. The Tk image command is used to
load, manipulate, and share image data within applications. In this chapter
we present these two commands.

20.1 Commands Presented in This Chapter

This chapter discusses the following commands for manipulating fonts and
images:

• font actual font ?-displayof window? ?option? ?--? ?char?
Returns the actual attribute values for a font. The actual values can vary
from what was specified because of platform limitations. The options are
the same as those supported for font configure.

• font configure fontname ?option? ?value option value ...?
Queries or configures the attributes for a named font. If a single option is
specified with no value, it returns the current value of that attribute. If one or
more option value pairs are specified, the command modifies the given named
font to have the given values. See the text and the reference documentation
for a description of the supported attributes and their values.

• font create ?fontname? ?option value ...?
Creates a new named fontname with the attributes specified by the option value
pairs and returns its name. If fontname is omitted, Tk generates a new name.
The options are the same as those supported for font configure.

• font delete fontname ?fontname ...?
Deletes the specified named fonts.

• font families ?-displayof window?

459

Returns a list of the case-insensitive names of all font families that exist on
window’s display.

• font measure font ?-displayof window? text
Measures the amount of space the string text would use in the given font
when displayed in window. The return value is the total width in pixels of text,
not including the extra pixels used by highly exaggerated characters such as
cursive f. Format control characters like newline and tab are ignored.

• font metrics font ?-displayof window? ?option?
Returns information about the metrics for font when it is used on window’s
display. See the reference documentation for more information.

• font names
Returns a list of all the named fonts currently defined.

• image create type ?name? ?option value ...?
Creates a new image of type bitmap or photo. A name is created automatically
if name is omitted. Returns the name of the image created. Also creates a
command of the same name for further image access. See the text and the
reference documentation for information on the supported options.

• image delete ?name ...?
Deletes each of the named images. Each instance where the image is
displayed retains its size, but the area goes blank. The actual image is not
deleted until all the instances are released.

• image height name
Returns the height of the image in pixels.

• image inuse name
Returns a Boolean value indicating whether the image is in use by any
widgets.

• image names
Returns a list containing the names of all existing images.

• image type name
Returns the type of the image name, for example, bitmap or photo.

• image types
Returns a list whose elements are all the valid values for the type parameter
to the image create command.

• image width name
Returns the width of the image in pixels.

20.2 The font Command

While Mac OS X and Windows specify fonts using the same nomenclature,

460

X-based windowing systems use a distinctly different naming scheme. With
X, the font name specifies a number of parameters, such as

-adobe-times-bold-r-normal--18-180-75-75-p-99-iso8859-1

This font name specifies a Times Bold font from Adobe, at 18 point,
designed for a 75 DPI screen and supporting the Western European ISO-
8859-1 character set. Mac OS X and Windows specify fonts using much
shorter names, like the following:

Times Bold 18

Tk abstracts out this difference by using named fonts. Tk widgets accept
fonts specified in any one of five different forms; however, the best way to
use Tk is with named fonts. In this way, platform variations are easily
isolated.

Note

If the master font that you set for a widget doesn’t contain a glyph for a
particular Unicode character that you want to display, Tk attempts to
locate a font that does. Where possible, Tk attempts to locate a font that
matches as many characteristics of the widget’s master font as possible
(for example, weight, slant, etc.). Once Tk finds a suitable font, it
displays the character in that font. In other words, the widget uses the
master font for all characters it is capable of displaying and alternative
fonts only as needed. In some cases Tk is unable to identify a suitable
font, in which case the widget cannot display the characters. Instead,
the widget displays a system-dependent fallback character such as ?.

Tk comes with a predefined set of named fonts on all platforms that match
appropriate system defaults. You should not change these fonts, as Tk itself
may modify them in response to system changes. The font names and their
default/recommended uses are as follows:

• TkDefaultFont—the default for all GUI items not otherwise specified
• TkTextFont—font used for user text in entry widgets, listboxes, etc.
• TkFixedFont—the standard fixed-width font
• TkMenuFont—font used for menu items
• TkHeadingFont—font used for column headings in lists and tables
• TkCaptionFont—font used for window and dialog caption bars

461

• TkSmallCaptionFont—font used for captions on contained windows or
tool dialogs

• TkIconFont—font used for icon captions
• TkTooltipFont—font used for tooltip windows (transient information

windows)

20.2.1 Manipulating and Using Named Fonts

To use a named font, you first create a new font, giving it the name you want
to use. When you create the font, you specify the font family, size, and so on,
using the font create command:

font create ?fontname? ?option value ...?

You can either provide a specific fontname for the named font, or you can
have font create automatically assign a name consisting of font followed by a
unique integer. The return value is the name of the font created. The option
value pair arguments that follow specify the characteristics of the font. You
can use any of the following options to configure the font:

• -family name
The case-insensitive font family name. Tk guarantees to support the font
families named Courier, Times, and Helvetica. The most closely matching
native font family is substituted automatically when one of these font
families is used. The name may also be the name of a native, platform-
specific font family. If the family is unspecified or unrecognized, a platform-
specific default font is chosen.

• -size size
The desired size of the font. A positive size argument is interpreted as a size
in points. A negative size number is interpreted as a size in pixels. If a font
cannot be displayed at the specified size, a nearby size is chosen. If size is
unspecified or zero, a platform-dependent default size is chosen.

• -weight weight
The nominal thickness of the characters in the font. Valid values are normal to
specify a normal-weight font and bold to specify a bold font.

• -slant slant
The amount the characters in the font are slanted away from the vertical.
Valid values for slant are roman and italic.

• -underline boolean
The value is a Boolean flag that specifies whether characters in this font
should be underlined.

462

• -overstrike boolean
The value is a Boolean flag that specifies whether a horizontal line should
be drawn through the middle of characters in this font.
For example, the following creates a font called LobsterBold based on the
Helvetica font:

font create LobsterBold –family Helvetica \
 -size 12 -slant roman -weight bold

After you have created a named font, you can use it anywhere that Tk
accepts a font, such as the -font attribute of particular widgets or the -font
attribute of tags in a text widget:

.mylabel configure -font LobsterBold

After you have defined a named font, you can later modify its definition
using the font configure command:

font configure fontname ?option? ?value option value ...?

You can change any of the attributes of a named font by providing values for
the specified options. The options supported are the same as for font create.
If you provide the name of only one option with no new value, the font
configure command returns that attribute’s current value. If you provide only
the font name as an argument, the command returns a dictionary of all font
attributes and their values.
When you use font configure to change the definition of a named font, all
widgets in your application that use the named font immediately update to
reflect the change. Thus, the following command would cause all widgets
that use the LobsterBold font to reduce the text they display to 10 points:

font configure LobsterBold -size 10

The font names command returns a list of all named fonts. The font actual
command allows you to determine the actual attributes of the named font.
These might differ from the requested values if, for example, the requested
font family or other font attributes are not available on the local system. The
following example shows how the Arial font was substituted for Helvetica
in the definition of LobsterBold on a Windows system:

463

The font delete command deletes one or more named fonts. If there are
widgets using a named font that has been deleted, the named font isn’t
actually deleted until all the instances are released. Those widgets continue
to display using the last known values for the named font. If a new named
font is created with the same name while there are widgets still using the
former named font, the widgets redisplay using the new attributes of the font.
The following script shows how to create named fonts in Tk as well as
change the size of the font:

464

Figure 20.1 shows the result of running this script, with three different
screen shots reflecting the results of pressing the buttons to change the font
configuration.

Figure 20.1 Examples of changing named font configuration

20.2.2 Other Font Utilities

In addition to manipulating named fonts, the font command provides
additional subcommands for querying information about fonts.
The font families command returns a list of all font families that are
available. For systems with multiple displays, different sets of fonts might

465

be available on different displays, so the command supports the -displayof
option, allowing you to provide a widget name to retrieve the list of font
families available on the display where the widget appears. The command
defaults to using the main display if you don’t provide the -displayof option.
The font families command is useful for creating font selector menus or
dialogs to allow the user to choose a font for use in your application.
The font measure command returns the width in pixels that a string would use
if displayed in a given font:

 font measure times "This is a text"
⇒67

20.2.3 Font Descriptions

As mentioned earlier, fonts have five possible formats in Tk. Any of these
may be used wherever a font may be specified, either in a window property,
in a text or canvas widget tag property, or in the font command. The five
formats are as follows:

• fontname
The name of a named font, created using the font create command. Named
fonts always work without error. If the named font cannot be displayed with
exactly the specified attributes, some other close font is substituted
automatically.

• systemfont
The platform-specific name of a font, interpreted by the windowing system.
This also includes an XLFD under X (see below). Tk provides a set of
predefined named fonts that are mapped to system fonts. See the reference
documentation for details.

• family ?size? ?style? ?style ...?
A properly formed list where the first element is the font family and the
optional second element is the size. The size attribute follows the same rules
described for the -size attribute for font configure. Any additional arguments
following the size are font styles. Possible values for style are normal, bold,
roman, italic, underline, and overstrike.

• X-font names (XLFD)
A Unix-centric font name of the form

-foundry-family-weight-slant-setwidth-addstyle-pixel-point
-resx-resy-spacing-width-charset-encoding

466

The * character may be used to designate default values for a field. There
must be exactly one * for each default field, except that a * at the end of the
XLFD defaults any remaining fields; the shortest valid XLFD is simply *,
signifying all fields as defaults.

• option value ?option value ...?
A properly formed list of option value pairs that specify the attributes of the
font, in the same format as is used with font configure.
When a font is specified, Tk parses it and attempts to identify the font using
the five preceding rules, in order. For the first two cases, the name must
match exactly. For the remaining three cases, the closest available font is
used and, failing that, a system-dependent default is chosen. If a font
description does not match any of these patterns, an error is generated.

20.3 The image Command

The Tk image command is used to create and manage images. It works by
creating an image object, which is then passed to widgets via the -image or -
bitmap options or manipulated through the object’s subcommands. When an
image is created, a new command is created whose name is the same as the
name of the image. This command is then used to manage the pixel data in
the image.

Note

By default, the image command is created in the global namespace. The
newly created image command also overwrites any existing command of
that same name. Be careful when selecting image names not to
overwrite existing commands, or else let image create assign image
names for you. One way to manage image names is to use fully
qualified namespace names for the images, as discussed in Section
20.3.3.

There are two built-in types of images: bitmap, for two-color images, and
photo, for multicolor images. New types can be defined using the
Tk_CreateImageType C API as an extension. The Img extension, for example,
defines a type pixmap for X11 pixmap images. The photo image type can also

467

be extended via the Tk_CreatePhotoImageFormat C API, to provide support of
different data formats. The Img extension does this as well to support a
variety of formats other than those built into Tk.
A bitmap image is defined with a simple bit plane specifying on/off or
foreground/background colors coupled with a mask. The mask defines the
area of the image to be displayed while the rest of the area is transparent,
where the underlying widget shows through. There are a few places in Tk
where only bitmap images can be used, for example, the wm iconbitmap
command. This command defines the icon used in the windowing system
when the window is minimized. (Some windowing systems allow only
simple bitmaps in this situation.)
The second type of image is a photo. The photo image is a full-color (32
bits per pixel) image internally and is displayed using dithering if necessary.
Tk has built-in support for images created from GIF and PPM/PGM file
formats, and extensions add support for other formats. The two built-in
image types are discussed in more detail in the following sections.

20.3.1 Bitmap Images

You create bitmap images with the bitmap type argument to image create:

image create bitmap ?name? ?option value ...?

You can either provide a specific name for the bitmap or have image create
automatically assign a name consisting of image followed by a unique integer.
The return value is the name of the bitmap image created. The option value
pair arguments that follow specify the characteristics of the bitmap. You can
use any of the following options to configure the bitmap:

• -background color
Specifies a background color for the image. If this option is set to an empty
string, the background pixels are transparent. This effect is achieved by
using the source bitmap as the mask bitmap, ignoring any -maskdata or -
maskfile options.

• -data string
Specifies the contents of the source bitmap as a string in the X11 bitmap
format. If both the -data and -file options are specified, the -data option takes
precedence.

• -file fileName
Gives the name of a file whose contents define the source bitmap in the X11
bitmap format.

468

• -foreground color
Specifies a foreground color for the image.

• -maskdata string
Specifies the contents of the mask as a string in the X11 bitmap format. If
both the -maskdata and -maskfile options are specified, the -maskdata option
takes precedence.

• -maskfile fileName
Gives the name of a file whose contents define the mask in the X11 bitmap
format.
For the bitmap type, the image command returned by image create supports
two subcommands, cget and configure. The cget subcommand returns the
current value of the specified option. The configure subcommand queries or
modifies the options specified or returns a list of all the options and their
values if no arguments are given. A bitmap image can be used with any
widget that supports a -bitmap option.

20.3.2 Photo Images

Photo images are full-color images. The image create photo command creates
an image object and a Tcl command for manipulating the image. The image
create command accepts these options for the photo type:

• -data string
Specifies the contents of the image as a string. The string can contain
base64-encoded data or binary data. The format of the string must be one of
those for which there is an image file format handler that accepts string data.

• -format formatName
Specifies the name of the file format for the data specified with the -data or -
file option.

• -file fileName
Gives the name of a file containing data for the photo image. The file format
must be one of those for which there is an image file format handler that can
read data.

• -gamma value
Specifies the gamma correction to apply to the color map for this image.
The value specified must be greater than zero. The default value is 1 (no
correction). In general, values greater than 1 make the image lighter, and
values less than 1 make it darker.

• -height number
Specifies the height of the image, in pixels. A value of 0 (the default) allows

469

the image to expand or shrink vertically to fit the data stored in it.
• -palette paletteSpec

Specifies the color palette to use for this image. The paletteSpec string may
be a single decimal number specifying the number of shades of gray to use,
for a monochrome image. Or the paletteSpec may be three decimal numbers
separated by slashes (/), specifying the number of shades of red, green, and
blue to use, respectively, for a color image.

• -width number
Specifies the width of the image, in pixels. A value of 0 (the default) allows
the image to expand or shrink horizontally to fit the data stored in it.
The image command returned supports a number of subcommands. For those
commands that write data to the image, the image size can be adjusted as
necessary, unless the -width and -height options have been configured with
nonzero values. Several of the subcommands accept additional options.
Some of the options are discussed in the examples that follow; read the
reference documentation for a complete description.

• imageName blank
Erases the image, making it entirely transparent.

• imageName cget option
Returns the current value of the configuration option given by option.

• imageName configure ?option? ?value option value ...?
Queries or modifies the configuration options for the image.

• imageName copy sourceImage ?option value ...?
Copies a region from sourceImage to imageName. You can optionally specify
rectangular subregions of the source and/or destination image, as well as
optionally cropping, subsampling, or zooming, and whether the source
image replaces or overlays the destination.

• imageName data ?option value ...?
Returns image data in the form of a string. You can optionally specify a
rectangular subregion of the image to return, the data format, whether
transparent pixels are replaced with a color, and whether to transform the
data into grayscale.

• imageName get x y
Returns the color of the pixel at coordinates x,y in the image as a list of three
integers between 0 and 255, representing the red, green, and blue
components respectively.

• imageName put data ?option value ...?
Sets pixels in imageName to the data specified in data. You can optionally
specify a rectangular subregion for the target data and the image format of
the data string. The data can also be specified as a Tcl list of scan lines,

470

with each scan line consisting of a list of pixel colors.
• imageName read fileName ?option value ...?

Reads image data from the file named fileName into the image. You can
optionally specify rectangular subregions of the source and/or destination
image, as well as whether imageName is cropped to fit the data read.

• imageName redither
Recalculates the dithered image in each window where the image is
displayed.

• imageName transparency get x y
Returns a Boolean indicating whether the pixel at x,y is transparent.

• imageName transparency set x y boolean
Makes the pixel at x,y transparent if boolean is true and makes that pixel
opaque otherwise.

• imageName write fileName ?option value ...?
Writes image data from imageName to a file named fileName. You can optionally
specify a rectangular subregion of the image to return, the data format,
whether transparent pixels are replaced with a color, and whether to
transform the data into grayscale.
The following examples demonstrate how photo images can be loaded and
manipulated with the image command using the Tcl Powered logo, a handy
sample image found in the Tk library.
The first script reads the Tcl Powered logo image and displays it in a label.
The result is shown in Figure 20.2.

Figure 20.2 The Tcl Powered logo image

471

The second script creates a new image in which the Tcl Powered logo is
rotated 90 degrees. It starts by creating an empty image object. The data
from the original image is then read a pixel at a time with the get
subcommand. The return value is a three-element list of the red, green, and
blue color values for the pixels, ranging from 0 to 255. This is converted
into a standard #RRGGBB color string and written to the appropriate pixels in
the new image using the put subcommand. To handle transparency properly,
the transparency setting of the original pixel is tested and replicated on the
target image if necessary. The result is shown in Figure 20.3.

Figure 20.3 The image rotated clockwise 90 degrees

472

The third script creates a new image that is reduced to half the size of the
original. It does so by creating a new empty image object, then it uses the
copy subcommand to copy the image data from the original to the new image.
The -subsample option accepts two additional arguments indicating that the
copy should use only every xth and yth pixel in the x- and y-coordinates,
respectively. By setting these values to 2 and 2, only every other pixel in the
x and y directions is copied. The result is shown in Figure 20.4. Although
this is fast, it can result in blocky-looking images. A better-looking result
usually is achieved by averaging pixel values, as is shown next.

Figure 20.4 The image reduced to half size using subsample copying

The last script also creates a new half-size image. In this case, it does so by
reading four-pixel blocks using the get subcommand, averaging the color
values, and writing the result to the target image. If three or four of the
pixels are transparent, the result is set to transparent. The result is shown in
Figure 20.5. This averaging technique usually produces a better-looking
result than subsampling, but it takes substantially longer to process.

473

Figure 20.5 The image reduced to half size using pixel averaging

474

Tk has a C language interface to the image command that can be used to
implement support for other image file types. The Img package does just
that, providing support for BMP, ICO, JPEG, PCX, PNG, PPM, PS, SGI,
SUN, TGA, TIFF, XBM, and XPM file types. This extension also has an
option to capture any Tk window as an image.
Another extension is the TkMagick/TclMagick package that supports
approximately 100 types. It also provides extensive image manipulation
capabilities, which can be used in Tcl without Tk. This facilitates image
manipulation in server-side applications.
The examples in this section simply illustrate how the image commands work.
Transformations like the one shown in Figure 20.5 can be performed more
efficiently with an extension like TclMagick. The basic Tk image command
simply provides a standardized interface to extensions like Img and
TkMagick so that complex image manipulation can be controlled easily
from Tcl and the results displayed using Tk.

20.3.3 Images and Namespaces

Because creating image objects also creates image commands with the same
name, you must be careful not to overwrite existing command names. One
solution is to let image create automatically name the images, in which case
they’ll have names like image0, image1, and so on. By default, all image
commands are created in the global namespace.
Another strategy is to create a separate namespace for your image names,
such as ::img, and then create your images with fully qualified namespace
names, such as ::img::logo and ::img::large. With this technique, any images
associated with a particular module or library could also be created within
the library’s namespace. See Chapter 10 for more information on
namespaces.

Note

475

For this technique to work, you should always use fully qualified
namespace references for your image names, such as ::img::logo, not
partially qualified references like img::logo. The image command is
created relative to the current namespace, so if you are not in the
global namespace when you create the image and you use a partially
qualified reference for the image name, the name of the image
command does not match the name of the image itself.

476

477

21. Geometry Managers

Geometry managers determine the sizes and locations of widgets. Tk is
similar to other toolkits in that it does not allow widgets to determine their
own geometries. A widget does not even appear on the screen unless it is
managed by a geometry manager. This separation of geometry management
from internal widget behavior allows multiple geometry managers to exist
simultaneously and permits any widget to be used with any geometry
manager. If widgets controlled their own geometry, this flexibility would be
lost: every existing widget would need to be modified to introduce a new
style of layout.
This chapter describes the overall structure of geometry management and
then presents the three geometry managers. The gridder, which is the most
commonly used geometry manager in Tk, allows you to arrange widgets into
rows and columns. The packer arranges widgets around the edges of an
area. The placer provides simple fixed and “rubber sheet” placement of
widgets. There are also several widget classes that can act as geometry
managers: canvas and text, which are discussed in Chapter 23 and Chapter 24
respectively; panedwindow (and its themed counterpart, ttk::panedwindow), which
is described in Chapter 18; and ttk::notebook, which is described in Chapter
19.

21.1 Commands Presented in This Chapter

All geometry managers have a common set of subcommands, as well as a
set of unique features. The following are the subcommands they have in
common, where gm is one of place, pack, or grid:

• gm slave ?slave ...? option value ?option value ...?
Same as the configure subcommand described below, unless you are querying
geometry manager options.

• gm configure slave ?slave ...? ?option?
 ?value option value ...?

Arranges for the geometry manager to manage the geometry of the widgets
named by the slave arguments. The option and value arguments provide
information that determines the dimensions and positions of the slaves.

• gm forget slave ?slave ...?

478

Causes the geometry manager to stop managing the widgets named by the
slave arguments and unmap them from the screen. Has no effect if slave isn’t
currently managed by this geometry manager.

• gm info slave
Returns a list giving the current configuration of slave. The list consists of
option-value pairs in exactly the same form as might be specified to the
geometry manager’s configure command. Returns an empty string if slave isn’t
currently managed by this geometry manager.

• gm slaves master ?option value?
Returns a list of the slaves on master’s list for this geometry manager.
This chapter also discusses the following commands for managing the
stacking order of widgets:

• lower widget ?belowThis?
Changes widget’s position in the stacking order so that it is just below the
widget given by belowThis. If belowThis is omitted, it moves widget to the bottom
of the stacking order.

• raise widget ?aboveThis?
Changes widget’s position in the stacking order so that it is just above the
widget given by aboveThis. If aboveThis is omitted, it moves widget to the top of
the stacking order.

21.2 An Overview of Geometry Management

A geometry manager’s job is to arrange one or more slave widgets relative
to a master widget. For example, it might arrange three slaves in a row from
left to right across the area of the master, or it might arrange two slaves so
that they split the space of the master, with one slave occupying the top half
and the other occupying the bottom half. Different geometry managers
embody different styles of layout. The master is usually the parent of the
slave, but there are times when it’s convenient to use other windows as
masters (you will see examples of this later).
Masters are usually frame or toplevel widgets but can be any widget. A
master is used to define the geometric bounds for the slave widgets only,
and the widgets’ contents are otherwise unaffected. The slave widgets
normally appear on top of the master but can be arranged to be underneath if
necessary. This stacking order is defined by the order in which the widgets
are created (this is discussed more in Section 21.8).
A geometry manager receives three pieces of information for use in
computing a layout (see Figure 21.1). First, each slave widget requests a

479

particular width and height. These are usually the minimum dimensions the
widget needs to display its information. For example, a button widget
typically requests a size just large enough to display its text or image.
Although geometry managers aren’t obliged to satisfy the requests made by
their slave widgets, they usually do.

Figure 21.1 A geometry manager determines the size and placement of slave
widgets.

The second kind of input for a geometry manager comes from the
application designer and is used to control the layout algorithm. The nature
of this information varies from geometry manager to geometry manager. For
example, the gridder arranges slave widgets in rows and columns, so row
and column numbers are needed to identify where to position the widgets.
The third piece of information used by geometry managers is the geometry
of the master window. For example, the geometry manager might position a
slave at the lower left corner of its master, or it might divide the space of
the master among one or more slaves, or it might refuse to display a slave
altogether if it doesn’t fit within the area of its master.
After it has received all of the preceding information, the geometry manager
executes a layout algorithm to determine the width, height, and position of
each of its slaves. If the geometry manager assigns a slave a size different
from what it requested, the widget must make do in the best way it can.
Geometry managers usually try to give widgets the space they request, but
they may produce more attractive layouts by giving widgets extra space in
some situations. If there isn’t enough space in a master for all of its slaves,
some of the slaves may get less space than they requested. In extreme cases
the geometry manager may choose not to display some slaves at all.

480

The controlling information for geometry management may change while an
application runs. For example, a button might be reconfigured with a
different font or bitmap, in which case it changes its requested dimensions.
In addition, the geometry manager might be told to use a different approach
(for example, arrange a collection of windows from top to bottom instead of
left to right), some of the slave windows might be deleted, or the user might
interactively resize the master window. When any of these things happens,
the geometry manager recomputes the layout.
Some geometry managers set the requested size for the master window. For
example, the gridder computes how much space is needed in the master to
accommodate all of its slaves in the fashion requested by the application
designer. It then sets the requested size for the master to these dimensions,
overriding any request made by the master widget itself. This approach
allows for hierarchical geometry management, where each master is itself
the slave of another higher-level master. Size requests pass up through the
hierarchy from each slave to its master, resulting ultimately in a size request
for a toplevel window, which is passed to the window manager. Then actual
geometry information passes down through the hierarchy, and the geometry
manager at each level uses the geometry of a master to compute the
geometry of one or more slaves. As a result, the entire hierarchy sizes itself
to meet the needs of the lowest-level slaves; the overall effect is that the
master widgets “shrink-wrap” around their slaves.
Each widget can be managed by at most one geometry manager at a time,
although it is possible to switch geometry managers during the life of a
slave. A widget can act as a master to any number of slaves, and a single
geometry manager can simultaneously manage different groups of slaves
associated with different masters. Although it is possible for different
geometry managers to control different groups of slaves within the same
master, it is not recommended.
Only internal widgets may be slaves for geometry management. The
techniques described here do not apply to toplevel widgets since they are
managed by the window manager for the display. See Chapter 26 for
information on how to control the geometry of toplevel widgets.

21.3 The Gridder

The gridder is a straightforward geometry manager that arranges slaves into
rows and columns and allows them to span multiple rows and columns.
Most application layout needs can be satisfied with the gridder options

481

without resorting to additional frames and hierarchical layout techniques
(see Section 21.7).
Each slave for a given master is assigned a row and column location, or
cell, in the grid. The gridder shrink-wraps each column to the width of the
largest slave in the column and correspondingly shrink-wraps each row to
the height of the largest slave in the row, as shown in Figure 21.2. This is
done in three steps:

1. The minimum size is determined for each row and column that
accommodates all the slaves based on each slave’s requested size.
This minimum size then becomes the requested size for the master.

2. The actual size of the master is compared with this requested size,
and then space is added to or removed from the layout as needed.

3. Each slave is positioned within its cell according to its
configuration flags.

Figure 21.2 The gridder geometry manager arranges slave widgets into
rows and columns.

The gridder geometry manager arranges slave widgets into rows and

482

columns, as shown in Figure 21.2(a). Slaves can also span rows or columns
to occupy more than one cell, as shown in Figure 21.2(b). The rows and
columns “shrink-wrap” around the widgets so that the master is only as
large as it needs to be to accommodate all the slaves, as illustrated in Figure
21.2(c).
The grid configure command (the word configure is optional, unless you are
querying grid options) adds one or more widgets to grid control or changes
the gridding options of widgets already under grid control:

There are a number of different configuration options for the gridder that
control slave placement, stretching behavior, cell size, and grid size:

• -column n
Inserts the slave into the nth column.

• -columnspan n
Inserts the slave so that it occupies n columns (see Section 21.3.3).

• -in master
Use master as the master for the slave. master must be the slave’s parent or a
descendant of the slave’s parent. If this option is not specified, the master
defaults to the slave’s parent.

• -ipadx distance
Adds internal horizontal padding between the widget’s border and its
content, expressed as a screen distance.

• -ipady distance
Adds internal vertical padding between the widget’s border and its content,
expressed as a screen distance.

• -padx distance
Adds external horizontal padding around the widget, expressed as a screen
distance; a two-element list can be provided to specify left and right
padding independently (see Section 21.5).

• -pady distance
Adds external vertical padding around the widget, expressed as a screen
distance; a two-element list can be provided to specify top and bottom
padding independently (see Section 21.5).

• -row n
Inserts the slave into the nth row.

• -rowspan n
Inserts the slave so that it occupies n rows (see Section 21.3.3).

483

• -sticky style
Controls the position and stretching of a slave if a slave’s cell is larger than
its requested dimensions (see Section 21.3.1).
The gridder also supports columnconfigure and rowconfigure subcommands for
setting and querying the configuration of columns and rows in the master:

If one or more options are provided, index may be given as a list of column
indices to which the configuration options apply. Indices may be integers,
names of widgets in the grid, or the keyword all. Currently supported
options are

• -minsize amount
The minimum size for a column/row, expressed as a screen distance.

• -pad amount
Adds external padding around each widget in the column/row, expressed as
a screen distance.

• -weight int
The relative weight for apportioning any extra space among columns when
resizing (see Section 21.3.3).

• -uniform groupName
Symbolic name of a group of columns/rows whose resizing is proportionate
(see Section 21.3.3).

21.3.1 The grid Command and the -sticky Options

The grid command is used to communicate with the gridder. In its simplest
form the command takes a list of slaves and options and places each slave
in a subsequent column starting with 0. Each subsequent grid command for
the same master starts a new row. The -row and -column options can be used to
provide a specific cell or starting point.
If a slave does not entirely fill its cell, it is positioned in the center of its
cell by default. The -sticky option is used to anchor or stretch a slave to any
side or direction. This option takes any one or more of the characters n, s, e,
or w. Each character causes the slave to stick to the corresponding side of
the cell; if opposite sides are given, the slave is stretched between those
two sides.

484

The following code demonstrates the effects of different -sticky options
using a label widget surrounded by four checkbuttons in a 3-by-3 grid.
Notice also that some cells, the four corners in this example, may be empty.
In this case the master widget shows through. Figure 21.3 shows some
examples from this application:

Figure 21.3 The label in the center demonstrates different -sticky options.

485

21.3.2 Spanning Rows and Columns

A gridded widget can span multiple rows or columns. In the following code,
the -columnspan option causes the .label widget to use both columns in the first
row. This area is then treated as a single cell, as shown in Figure 21.4.
Likewise, the -rowspan option can be used to span multiple rows.

486

Figure 21.4 A label spanning multiple columns

When the gridder computes the minimum master size, it first looks at all the
slaves with a row and column span of 1. Then the slaves with row and
column spans greater then 1 are examined, and if additional space is needed,
the space is distributed across the spanned rows or columns.

21.3.3 Stretch Behavior and the -weight and -uniform Options

When a master window has more space than the slaves need, such as when a
user interactively stretches a window, the gridder must allocate this extra
space somewhere. There are several options that can control how the space
is distributed. For example, in Figure 21.4 the desired behavior is for all
additional space to be first given to the listbox widget, and then have the
scrollbars stretch as needed. This can be accomplished easily by weighting
the cell that the .listbox widget occupies, column 0 and row 1, with a higher
weight than the others, as shown in Figure 21.5. Weights are assigned to
rows and columns using the -weight option to the grid rowconfigure and grid
columnconfigure commands. With the default weight of 0, when the window
shown in Figure 21.5(a) is resized as in Figure 21.5(b), the widgets do not
expand to fill the space. When a weight of 1 is assigned to row 1, the rows
expands to fill the space, as shown in Figure 21.5(c), and assigning a weight
of 1 to column 0 expands the column to complete the expansion, shown in
Figure 21.5(d).

Figure 21.5 Effect of using weighted rows and columns with the gridder

487

By default the gridder assigns a weight of 0 to all rows and columns. No
additional space is allocated to rows or columns with a weight of 0. Weights
higher than 0 are allocated additional space proportionally, with -weight 2
getting twice as much space as -weight 1.
The -uniform option is used to group rows and columns with similar weights.
This way a set of rows or columns can be configured to always have the
same size. For example, multiple rows configured with -weight 1 -uniform a
all have the same height. See the reference documentation for more
information.

21.3.4 Relative Placement Characters

The grid command provides a shorthand notation for placing slaves without
having to specify explicit row and column numbers. By default, each slave
specified in a grid command is placed in subsequent columns, and each new

488

grid command starts a new row. This creates an organization in the source
code that represents the layout on the screen.
There are three relative placement characters that can be used where a slave
would normally appear in the grid command: -, x, and ^. The - character
extends the previous slave into the next column, and each subsequent -
character continues to increase the column span for the slave. The x
character leaves the cell blank. The ^ character extends the slave in the
previous row down into the current cell, and each ^ in subsequent grid
commands continues to increase the row span for the slave. Figure 21.6
demonstrates the use of each of these relative placement characters using the
following code:

Figure 21.6 Relative placement characters can simplify grid layout
commands.

21.4 The Packer

The packer arranges the slaves for a master by positioning them one at a
time in the master’s window, working from the edges toward the center. The
packer is easy to use in simple cases where a single row or column is
needed, but it is also capable of complex layouts. Although you can achieve
any arrangement of widgets with either the packer or the gridder, complex
layouts are usually easier to create with the gridder.
The packer maintains a list of slaves for a given master window, called the

489

packing list. The packer arranges the slaves by processing the packing list
in order, packing one slave in each step. At the time a particular slave is
processed, part of the area of the master window has already been allocated
to earlier slaves on the list, leaving a rectangular unallocated area for all the
remaining slaves, called the cavity, as shown in Figure 21.7(a). The current
slave is positioned in three steps: allocate a parcel, stretch the slave, and
position it in the parcel.

Figure 21.7 The packer arranges slaves around the edges of the master.

In the first step a rectangular region called a parcel, or packing space, is
allocated from the available space. This is done by “slicing” off a piece
along one side of the available space. For example, in Figure 21.7(b) a
parcel is sliced from the right side of the available space. One dimension of
the parcel is determined by the size of the available space, and the other
dimension is controllable. The controllable dimension is normally taken
from the slave’s requested size in that dimension, but the packer allows you
to request additional space if you wish. In Figure 21.7(b) the width is the
controllable dimension; if the parcel had been sliced from the top or bottom,
the parcel’s height would have been controllable instead of its width.
In the second step the packer chooses the dimensions of the slave. By
default the slave gets the size it requested, but you can specify instead that it
should be stretched in one or both dimensions to fill the space of the parcel.

490

If the slave’s requested size is larger than the parcel, it is reduced to fit the
size of the parcel.
The third step is to position the slave inside its parcel. If the slave is
smaller than the parcel, an anchor position may be given for the slave, such
as n, s, or center. In Figure 21.7(c) the slave has been positioned in the center
of the parcel, which is the default.
Once the slave has been positioned, a smaller rectangular region is left for
the next slave to use, as shown in Figure 21.7(d). If a slave doesn’t use all
of the space in its parcel, as in Figure 21.7, the leftover space is not used
for later slaves. Thus each step in the packing starts with a rectangular
region of available space and ends up with a smaller rectangular region.
Once all of the slaves have been packed, the packer then sizes the master
widget to meet the needs of the lowest-level slaves, with the overall effect
that the master widget “shrink-wraps” around its slaves.
The pack configure command (the word configure is optional, unless you are
querying packer options) adds one or more widgets to packer control or
changes the packing options of widgets already under packer control:

There are a number of different configuration options for the packer that
control slave characteristics such as placement, stretching behavior, cell
size, and positioning:

• -after widget
Use widget’s master as the master for the slave, and insert the slave into the
packing list just after widget.

• -anchor position
Controls the position of a slave if a slave’s cell is larger than its requested
dimensions (see Section 21.4.4). Defaults to center.

• -before window
Use window’s master as the master for the slave and insert the slave into the
packing list just before window.

• -expand boolean
If boolean is a true value, the slave’s parcel grows to absorb any extra space
left over in the master (see Section 21.4.3). Defaults to false.

• -fill style
Specifies whether (and how) to grow the slave if its parcel is larger than the
slave’s requested size (see Section 21.4.2). style must be either none, x, y, or
both. Defaults to none.

491

• -in master
Use master as the master for the slave. master must be the slave’s parent or a
descendant of the slave’s parent. If this option is not specified, the master
defaults to the slave’s parent.

• -ipadx distance
Specifies internal horizontal padding added between the widget’s border
and its content, expressed as a screen distance.

• -ipady distance
Specifies internal vertical padding added between the widget’s border and
its content, expressed as a screen distance.

• -padx distance
Specifies external horizontal padding added around the widget, expressed
as a screen distance; a two-element list can be provided to specify left and
right padding independently (see Section 21.5).

• -pady distance
Specifies external vertical padding added around the widget, expressed as a
screen distance; a two-element list can be provided to specify top and
bottom padding independently (see Section 21.5).

• -side side
side specifies which side of the master the slave should be packed against
(see Section 21.4.1). Must be top, bottom, left, or right. Defaults to top.

21.4.1 The pack Command and -side Options

The pack command is used to communicate with the packer. In its simplest
form it takes one or more widget names as arguments, followed by one or
more pairs of additional arguments that indicate how to manage the widgets.
For example, consider the following script, which creates three buttons and
arranges them in a row:

The pack command asks the packer to manage .ok, .cancel, and .help as slaves
and to pack them in that order. The master for the slaves defaults to their
parent, which is ., the main widget. The option -side left applies to all three
of the widgets; it indicates that the parcel for each slave should be allocated
on the left side of the available space. Because no other options are

492

specified, the parcel for each slave is allocated to be just large enough for
the slave. This causes the slaves to be arranged in a row from left to right
across the master. Furthermore, the packer computes the minimum size
needed by the master to accommodate all of its slaves, and it sets the
master’s requested size to these dimensions. The window manager sets the
main widget’s size as requested, so the master ends up shrink-wrapped
around the slaves, as shown in Figure 21.8(a).

Figure 21.8 Simple packer examples

The packer recomputes the layout whenever any of the relevant information
changes. For example, if you type the command

.cancel configure -text "Cancel Command"

to change the text in the middle button, the button changes its requested size
and the packer changes the layout to make more space for it, as in Figure
21.8(b). If you then type the command

pack .ok .cancel .help -side top

the layout changes so that each slave is allocated at the top of the remaining
space, producing the columnar arrangement shown in Figure 21.8(c). In this
case, the master’s width is chosen to accommodate the largest of the slaves
(.cancel). Each of the other slaves receives a parcel wider than it needs, and
the slave is centered in its parcel.

21.4.2 Filling

If a parcel ends up larger than the size its slave requested, you can use the -
fill option to stretch the slave so that it fills the parcel in one or both
directions. For example, consider the column of widgets in Figure 21.8(c):
each widget is given its requested size, which results in a somewhat ragged
look because the buttons are all different sizes. The -fill option can be used

493

to make all the buttons the same size:

pack .ok .cancel .help -side top -fill x

Figure 21.9 shows the effect produced by this command: each of the slaves
is stretched horizontally to fill its parcel, and since the parcels are as wide
as the master window, all of the slaves end up with the same width.

Figure 21.9 The effect of using -fill

Figure 21.10 shows another simple example of filling. The three windows
are configured differently, so a separate pack command is used for each one.
The order of the pack commands determines the order of the windows in the
packing list:

Figure 21.10 Another packer example using the -fill and -side options

The .label widget is packed first, and it occupies the top part of the master
window. The -fill x option specifies that the window should be stretched
horizontally so that it fills its parcel. The scrollbar widget is packed next, in

494

a similar fashion except that it is arranged against the right side of the
window and stretched vertically. The widget .listbox is packed last. No
options need to be specified for it: it ends up in the same place regardless of
which side it is packed against.
Without the -fill option, the label and scrollbar would simply occupy the
center of the parcel, as Figure 21.10(b) illustrates. Adding -fill causes them
to stretch and occupy the full parcel, as seen in Figure 21.10(c).

21.4.3 Expansion

Sometimes a master window has more space than its slaves need. This can
occur, for example, if a user interactively stretches a window. When this
happens, the default behavior of the packer is to leave the extra space
unused, as in Figure 21.11(a). However, you can use the -expand option to tell
the packer to give any extra space to a particular slave (for example, expand
a text widget to fill all the extra space), or to divide the extra space
uniformly among a collection of slaves (for example, distribute a collection
of buttons uniformly across the available space). The -expand option makes it
possible to produce layouts that are attractive regardless of how the user
resizes the window, so that the user can choose the size he or she prefers. In
each of the examples in Figure 21.11, the size of the main widget was fixed
with the command wm geometry . 232x62 to simulate what would happen if the
user had interactively resized the window.

Figure 21.11 Examples of using -expand and -fill

495

Figure 21.11 shows how -expand works. If you specify -expand for a slave, as
with .help in Figure 21.11(b), the slave’s parcel expands to include any extra
space in the master. In Figure 21.11(b), -fill x has also been specified for
.help, so the slave window is stretched to cover the entire width of the
parcel. Figure 21.11(c) is similar to Figure 21.11(b) except that no filling is
specified, so .help is simply centered in its parcel.
If you specify -expand for multiple slaves, their parcels share the extra space
equally. Figure 21.11(d) shows what happens if all of the windows are
packed with -expand but no filling, and Figure 21.11(e) shows what happens
when the slaves are also filled in both dimensions.

Note

The options -expand and -fill are often confused because of the
similarity of their names. The -expand option determines whether a

496

parcel absorbs extra space in the master, and -fill determines whether
a slave’s window absorbs extra space in its parcel. The options are
often used together so that a slave’s window absorbs all the extra
space in its master.

21.4.4 Anchors

If a parcel has more space than its slave requested (for example, because
you specified -expand for it), and if you choose not to stretch the slave with
the -fill option, the packer normally centers the slave in its parcel. The -
anchor option allows you to request a different position: its value specifies
where the slave should be positioned in the parcel, in one of the forms listed
in Section 18.15.3. For example, -anchor nw specifies that the slave should be
positioned in the upper left corner of its parcel. Figure 21.12(a) shows how
-anchor can be used to left-justify a collection of buttons.

Figure 21.12 Examples of the -anchor option

The -fill and -anchor options preserve external padding requested with -padx
and -pady. For example, Figure 21.12(b) is the same as Figure 21.12(a)
except that external padding has been requested. In this case the buttons
aren’t positioned at the left edges of their parcels, but instead they are inset
by the -padx distance.

21.4.5 Packing Order

497

The -before and -after options allow you to control a slave’s position in the
packing list for its master. If you don’t specify one of these options, each
new slave goes at the end of the packing list. If you specify -before or -after,
its value must be the name of a window that is already packed, and the new
slave(s) are positioned just before or after the given slave, respectively.

21.5 Padding

Both the packer and the gridder provide four options for requesting extra
space for a slave. The extra space is called padding, and it comes in two
forms: external padding and internal padding. External padding is
requested with the -padx and -pady options; these options cause the packer to
allocate a parcel larger than that requested by the slave and leave extra
space around the outside of the slave. For example, the widgets in Figure
21.13(a) are packed with the options

-padx 2m -pady 1m

Figure 21.13 Examples of padding

These options specify that there should be 2 millimeters of extra space on
each side of each of the widgets and 1 millimeter of extra space above and
below each widget. Internal padding is requested with the -ipadx and -ipady

498

options; they also cause a parcel to be larger than what the slave requested,
but in this case the slave window is enlarged to incorporate the extra space,
as in Figure 21.13(b). External and internal padding can be used together, as
in Figure 21.13(c), and different slaves can have different amounts of
padding.

21.6 The Placer

The placer is the most simplistic geometry manager and is used typically in
specialized applications. Slave widgets are placed by the manager
precisely where specified by the place command options; there are no
special algorithms applied to the layout. It is simplistic because it does very
little work, putting the onus on the application to manage the layout. The
placer should be used only in situations where the gridder or packer cannot
perform the required layout. The placer does provide a relative placement
option, which gives a “rubber sheet” effect to the slave widgets. Slave
windows managed by the placer do not affect other slave geometries as is
the case in other geometry managers, nor is size information propagated to
the master.
The place command is used to communicate with the placer. In its simplest
form it takes one or more widget names as arguments, followed by one or
more pairs of additional arguments that indicate how to place the widgets.
Placement is controlled by an exact location (-x, -y) and by an exact size (-
width, -height) and is a position within the master window, or relative
placement may be used where the location (-relx, -rely) and size (-relwidth, -
relheight) are specified as floating-point numbers relative to the master. For
the other options available for the placer, see the reference documentation.

21.7 Hierarchical Geometry Management

Both the packer and the gridder can be used in hierarchical arrangements
where slave windows are also masters for other slaves. Figure 21.14 shows
an example of hierarchical packing. The resulting layout contains a column
of radiobuttons on the left and a column of checkbuttons on the right, and
each group of buttons is centered vertically in its column. To achieve this
effect, two extra frame widgets, .left and .right, are packed side by side in
the main window, then the buttons are packed inside them. The packer sets

499

the requested sizes for .left and .right to provide enough space for the
buttons, then uses this information to set the requested size for the main
widget. The main widget’s geometry is set to the requested size by the
window manager, then the packer arranges .left and .right inside it, and
finally it arranges the buttons inside .left and .right. Here is the code that
produced the layout:

Figure 21.14 An example of hierarchical packing

This code also illustrates a situation where a slave’s master is different
from its parent (by using the -in option to specify a master). It would have
been possible to create the button windows as children of .left and .right
(for example, .left.pts8 instead of .pts8), but it is cleaner to create them as
children of . and then pack them inside .left and .right. The windows .left
and .right serve no purpose in the application except to help in geometry
management; they have the same background color as the main widget, so
they are not even visible on the screen. If the buttons were children of their

500

geometry masters, changes to the geometry management (such as adding
more levels in the packing hierarchy) might require the button windows to
be renamed and would break any code that used the old names. It is better to
give windows names that reflect their logical purpose in the application,
build separate frame hierarchies where needed for geometry management,
and then pack the functional windows into the frames.

Note

In the example in Figure 21.14, the frames .left and .right must be
created before the buttons so that the buttons are stacked on top of the
frames. The most recently created widget is highest in the stacking
order; if .left is created after .pts8, it is on top of .pts8, so .pts8 is not
visible. Alternatively, the raise and lower commands can be used to
adjust the stacking order (see Section 21.8).

A slave’s master must be either its parent or a descendant of its parent. The
reason for this restriction has to do with the clipping rules in some
windowing systems. Each window is clipped to the boundaries of its parent,
so no portion of a child that lies outside of its parent is displayed. Tk’s
restriction on master windows guarantees that a slave is visible and
unclipped if its master is visible and unclipped. Suppose that the restriction
were not enforced, so that window .x.y could have .a as its master. Suppose
also that .a and .x do not overlap at all. If you asked the packer to position
.x.y in .a, the packer would set .x.y’s position as requested, but this would
cause .x.y to be outside the area of .x, so the windowing system would not
display it even though .a is fully visible. This behavior would be confusing
to application designers, so Tk restricts mastership to keep the behavior
from occurring. The restriction applies to all of Tk’s geometry managers.

21.8 Widget Stacking Order

Stacking order determines the layering of widgets on the screen. If two
sibling widgets overlap, the stacking order determines which one appears
on top of the other. Widgets are normally stacked in the order of their
creation: each new widget goes at the top of the stacking order, obscuring
any of its siblings that were created before it. The raise and lower commands

501

allow you to change the stacking order of widgets:

The first command raises .w so that it is at the top of the stacking order (it
obscures all of its siblings). The second places .w just above .x in the
stacking order. The third command lowers .w to the bottom of the stacking
order (it is obscured by all of its siblings), and the last command places .w
just below .x in the stacking order.
Most of the time the stacking order is not important, since most widgets are
positioned without overlap. When the place window manager is used,
widgets can overlap, and when the -in option is used with any of the
window managers, the slave widget must be above the master; otherwise the
slave widget is not visible.

Note

You can use raise and lower for toplevel widgets as well as internal
widgets, but this does not work for all window managers. Some
window managers prevent applications from raising and lowering their
toplevel windows; with these window managers you must raise or
lower toplevel widgets manually using window manager functions.

21.9 Other Geometry Manager Options

So far the geometry manager commands have been discussed in their most
common form, where the first arguments are the names of slave windows
and the last arguments specify configuration options. Section 21.1 shows
several other common forms for the geometry manager commands, where
the first argument selects one of several operations. These commands apply
to all three geometry managers: grid, pack, and place. The grid configure
command, for example, has the same effect as the short form that’s been
used up until now; the remaining arguments specify windows and
configuration options. If, for example, grid configure (or the short form with
no command option) is applied to a window that is already managed by the

502

gridder, the slave’s configuration is modified; configuration options not
specified in the grid command retain their old values.
The command option slaves returns a list of all of the slaves for a given
master window. For the packer, the order of the slaves reflects their order in
the packing list:

 pack slaves .left
⇒.pts8 .pts10 .pts12 .pts18 .pts24

The command option info returns all of the configuration options for a given
slave:

The return value is a list consisting of names and values for configuration
options in exactly the form in which you would specify them to pack configure.
This command can be used to save the state of a slave so that it can be
restored later.
The command option forget causes the geometry manager to stop managing
one or more slaves and forget all of its configuration state for them. It also
unmaps the windows so that they no longer appear on the screen. This
command can be used to transfer control of a window from one geometry
manager to another, or simply to remove a window from the screen. If a
forgotten window is itself a master for other slaves, the information about
those slaves is retained, but the slaves won’t be displayed on the screen
until the master window becomes managed again.

Note

The gridder is unique in having a remove command option. It removes
slaves from the grid and unmaps their windows, just like the forget
command option. However, the configuration options for that window
are remembered, so that if the slave is managed once more by the
gridder, the previous values are retained.

The command option propagate allows you to control whether or not the
packer or gridder sets the requested size for a master window. Normally
these geometry managers set the requested size for each master window to

503

just accommodate the needs of its slaves, and it updates the requested size
as the needs of the slaves change. This feature is called geometry
propagation, and it overrides any size that the master might have requested
for itself. You can disable propagation with one of the following commands,
depending on which geometry manager is controlling the layout of the
master:

pack propagate master 0
grid propagate master 0

where master is the name of the master window. This instructs Tk not to set
the requested size for master, so that the size requested by the master widget
itself is used. You can resume propagation by providing a value of 1 to the
command instead of 0.
Each geometry manager has additional options unique to its algorithm. See
the reference documentation for a complete listing.

21.10 Other Geometry Managers in Tk

As mentioned earlier, there are Tk widgets that can act as geometry
managers; that is, they can map widgets onto the display and control their
size and placement. The text widget is capable of embedding windows into
a text document where each window is treated like a font glyph. The
requested size of the window becomes the glyph size, and the text widget
maps the window accordingly. The canvas widget can also embed windows
and map them to the display. It does this according to its own method of
placing objects onto the canvas. You can find out more information about the
canvas and text widgets in Chapter 23 and Chapter 24, respectively.
The panedwindow (and its themed counterpart, ttk::panedwindow) takes
one or more widgets and displays them in a horizontal row or vertical
column. The widgets are separated by a sash that the user can manipulate
with the mouse. When the sash is moved, each widget on either side of the
sash is resized. Figure 21.15 illustrates a panedwindow with two panes.
The left pane contains a frame with a listbox and a scrollbar. The right pane
contains a frame with a text widget and scrollbars. The sash width and the
handle size are fully configurable.

Figure 21.15 The panedwindow widget has features of a geometry manager.

504

Similarly, the themed notebook widget, ttk::notebook, serves in part as a
geometry manager. When you add more widgets for it to manage, it displays
a set of tabs corresponding to those slaves. All the slaves are unmapped
except for the one whose tab is selected. Selecting a different tab unmaps
the current slave and maps the slave of the tab selection. Figure 21.16
shows an example of a notebook with three tabs. The selected tab has
mapped a slave frame containing a gridded text widget and vertical and
horizontal scrollbars.

Figure 21.16 The notebook widget has features of a geometry manager.

505

Finally, the wm command is used to manage toplevel windows, typically
windows created using the toplevel command, but it can also be used to
“dock” (stop managing a toplevel window) or “undock” (make into a
toplevel window) any widget. See Chapter 26 for more details on the wm
command.

506

507

22. Events and Bindings

You have already seen that Tcl scripts can be associated with widgets such
as buttons or menus so that the scripts are invoked when certain events
occur, such as clicking a mouse button over the widget. These mechanisms
are provided as specific features of specific widget classes. Tk also
provides a more general mechanism called bindings, which allow you to
create handlers for any event in any window. A binding “binds” a Tcl script
to an event or sequence of events in one or more windows so that the script
is evaluated whenever the given event sequence occurs in any of the
windows. You can use bindings to extend the basic functions of a widget,
for example, by defining shortcut keys for common actions. You can also
override or modify the default behaviors of widgets, since they are
implemented with bindings.

22.1 Commands Presented in This Chapter

This chapter discusses the following commands for manipulating events and
bindings:

• bind tag sequence script
Arranges for script to be evaluated each time the event sequence given by
sequence occurs in the window(s) given by tag. If a binding already exists for
tag and sequence, it is replaced. If script is an empty string, the binding for tag
and sequence is removed, if there is one. If the first character of script is +, the
script is appended to any existing script for the binding.

• bind tag sequence
If there is a binding for tag and sequence, returns its script. Otherwise it
returns an empty string.

• bind tag
Returns a list of the sequences for which tag has bindings.

• bindtags widget ?tagList?
Sets the bindings tags associated with widget to tagList. Returns a list of
binding tags currently associated with widget if tagList is omitted.

• event add <<virtual>> sequence ?sequence...?
Associates the virtual event virtual with the physical event sequence(s).

• event delete <<virtual>> ? sequence sequence...?

508

Deletes each sequence from those associated with the virtual event given by
virtual. If no sequence is given, all sequences are removed.

• event generate widget event ?option value option value ...?
Generates a window event and arranges for it to be processed just as if it
had come from the window system. widget gives the path name of the
window for which the event is generated. event may have any of the forms
allowed for the sequence argument of the bind command except that it must
consist of a single event pattern, not a sequence. The option value pairs given
are used in the % substitutions for the event binding.

• event info ?<<virtual>>?
Returns sequences associated with a specified virtual event or a list of
currently defined virtual events if no event is specified.

22.2 Events

An event is a record generated by the windowing system to notify an
application of a potentially interesting occurrence. Each event has a type
that indicates the general sort of thing that occurred. The event types that are
most commonly used in bindings are those for user actions such as key
presses or changes in the pointer position. There are many other event types,
such as those generated when windows change size, when windows are
destroyed, when windows need to be redisplayed, and so on. The following
are the most commonly used event types, but see the reference
documentation for the bind command for details:

• Key or KeyPress—A key was pressed.
• KeyRelease—A key was released.
• Button or ButtonPress—A mouse button was pressed.
• ButtonRelease—A mouse button was released.
• Enter—The mouse pointer moved into a widget (it is now over a

visible portion of the widget).
• Leave—The mouse pointer moved out of a widget.
• Motion—The mouse pointer moved from one point to another within a

single widget.
• MouseWheel—The user moved the mouse wheel.
• FocusIn—A widget received keyboard focus.
• FocusOut—A widget lost keyboard focus.
• Configure—A widget was initially displayed or changed its size,

position, or border width.
• Map—A widget became viewable.

509

• Unmap—A widget is no longer viewable.
• Destroy—A widget has been destroyed.

Note

Commands that reference event types and their modifiers are case-
sensitive. Make sure that you have the exact capitalization for the event
type and its modifiers, or the command will raise an error.

In addition to its type, each event also contains several other fields. For
mouse events, one of them specifies a widget and two others give the x- and
y-coordinates of the pointer within the widget. For <Enter> and <Leave> events,
the widget is the one just entered or left. For <ButtonPress>, <ButtonRelease>, and
<Motion> events, the widget is the one currently under the pointer. For
<KeyPress> and <KeyRelease> events, the widget is the one that has the
application’s input focus (see Chapter 27 for details on the input focus).
Button and key events also contain a field called the detail, which indicates
the particular button or key that was pressed. For <ButtonPress> and
<ButtonRelease> events, the detail is a button number, where 1 usually refers to
the leftmost button on the mouse. For <KeyPress> and <KeyRelease> events the
detail is a keysym (key symbol), which is a textual name describing a
particular key on the keyboard. The keysym for an alphanumeric ASCII
character such as a or A or 2 is just the character itself. Some other examples
of keysyms are Return for the carriage-return key (often labeled “Enter” on
modern keyboards), BackSpace for the Backspace key, Delete for the Delete
key, and Help for the Help key. The keysym for a function key such as F1 is
normally the same as the name that appears on the key. Section 22.6 contains
a script that you can use to find out the keysyms for the keys on your
keyboard.
Certain keys are defined as special modifier keys; these include the Shift
keys, the Control key, the Command and Option keys on standard Mac
keyboards, plus other keys such as Meta and Alt. The events just listed
contain a state field that identifies which of the modifier keys were pressed
at the time of the event and which mouse buttons were pressed. The state
field is useful, for example, to trigger a script when the pointer moves with
button 1 down, or when Ctrl+A is typed on the keyboard.
Events also contain other fields besides the ones described; the exact set of
fields varies from event to event. See the reference documentation for a
complete list of fields available for each event type.

510

22.3 An Overview of the bind Command

The bind command is used to create, modify, query, and remove bindings.
This section illustrates the basic features of bind, and later sections go over
the features in more detail.
Bindings are created with commands like this one:

bind .entry <Control-KeyPress-d> {.entry delete insert}

The first argument to the command specifies the path name of the window to
which the binding applies. It can also be a widget class name such as Entry,
in which case the binding applies to all widgets of that class (such bindings
are called class bindings), or it can be all, in which case the binding
applies to all widgets. You can also create your own symbolic binding tag,
as described in Section 22.8. The second argument specifies a sequence of
one or more events. The example specifies a single event, which is a
keypress of the d character while the Control modifier key is down. The third
argument may be any Tcl script. The script in the example invokes .entry’s
widget command to delete the character just after the insertion cursor. The
script is invoked if Control+d is typed when the application’s input focus is in
.entry. The binding can trigger any number of times. It remains in effect until
.entry is deleted or the binding is explicitly removed by invoking bind with
an empty script:

bind .entry <Control-KeyPress-d> {}

A background error occurs if there is an error during the execution of the
script. The default behavior when a background error occurs in a Tk script
is to post a dialog informing the user of the error. You can change this
behavior, as described in Section 13.6.
The bind command can also be used to retrieve information about bindings.
If bind is invoked with an event sequence but no script, it returns the script
for the given event sequence:

 bind .entry <Control-KeyPress-d>
⇒ .entry delete insert

If bind is invoked with a single argument, it returns a list of all the bound
event sequences for that window or class:

511

The first example returned the bound sequences for .entry, and the second
example returned information about all of the class bindings for button
widgets. The class bindings were created by Tk’s initialization script (the
file button.tcl in the Tk library directory) to establish the default behavior
for button widgets.

22.4 Event Patterns

Event sequences are constructed from basic units called event patterns,
which Tk matches against the stream of events received by the application.
An event sequence can contain any number of patterns, but most sequences
have only a single pattern.
The most general form for a pattern consists of one or more fields between
angle brackets, with the following syntax:

<modifier- modifier...- modifier- type-detail>

Whitespace may be used instead of dashes to separate the various fields,
and most of the fields are optional. The type field identifies the particular
event type, such as KeyPress or Enter. See Section 22.2 for a list of common
event types. For example, the following script causes an entry widget .entry
to change to a light green background whenever the mouse passes over it
and to return to a white background when the button passes out of the widget
again:

For key and button events the event type may be followed by a detail field
that specifies a particular button or keysym. If no detail field is provided, as
in <KeyPress>, the pattern matches any event of the given type. If a detail field
is provided, as in <KeyPress-Escape> or <ButtonPress-2>, the pattern matches only
events for the specific key or button. If a detail is specified, you can omit the
Key or Button event types: <Escape> is equivalent to <KeyPress-Escape>.

Note

512

The pattern <1> is equivalent to <Button-1>, not <KeyPress-1>.

The event type may be preceded by any number of modifiers, each of which
must be one of the values given in Table 22.1. If modifiers are specified, the
pattern matches only events that occur when the specified modifiers are
present. For example, the pattern <Shift-Control-d> requires that both the Shift
and Control keys be held down when d is typed, and <B1-Motion> requires that
the pointer move when mouse button 1 is down.

Table 22.1 Modifier Names for Event Patterns; Comma-Separated
Modifiers Are Equivalent

Not all modifiers are available on all systems. For example, the Command and
Option modifiers are equivalent to Mod1 and Mod2 respectively and correspond
to Macintosh-specific modifier keys. Some non-Macintosh systems might
have keyboards with Meta keys that map to these modifiers, but many
systems may not have keys that generate the Mod1-Mod5 modifiers.
The “modifiers” Double, Triple, and Quadruple are used for specifying double,
triple, and quadruple mouse clicks and other repeated events. They match a
sequence of two, three, or four events, each of which matches the remainder
of the pattern. For example, <Double-1> matches a double-click of mouse
button 1, and <Triple-2> matches any triple-click of button 2.
A special shortcut form is available for patterns that specify key presses of
printing ASCII characters such as a or @. You can specify a pattern for these
events using just the single character. For example,

bind .entry a {.entry insert insert a}

arranges for the character a to be inserted into .entry at the point of the
insertion cursor if it is typed when .entry has the keyboard focus. This
command is identical to the command

513

bind .entry <KeyPress-a> {.entry insert insert a}

22.5 Sequences of Events

An event sequence consists of one or more event patterns optionally
separated by whitespace. For example, the sequence <Escape>a contains two
patterns. It triggers when the Escape key is pressed and then the a key is
pressed.
A sequence need not necessarily match consecutive events. For example, the
sequence <Escape>a matches an event sequence consisting of a KeyPress on
Escape, a KeyRelease of Escape, and then a press of a; the release of Escape is
ignored in determining the match. Tk generally ignores conflicting events in
the input event stream unless they have the same type as the desired event.
Thus, if some other key is pressed between the Escape and the a, the sequence
does not match. As another example, the sequence aB matches a press of the a
key, a release of the a key, a press of the Shift key, and a press of the b key. In
this case, the Shift key press is ignored because it is a modifier key. Also, if
several Motion events occur in a row, only the last one is used for matching
binding sequences.

22.6 Substitutions in Scripts

The script that handles an event often needs to use some of the fields in the
event, such as the pointer coordinates or the particular keysym that was
pressed. Tk provides this access by substituting fields from the event
wherever there are % characters in the script, in a fashion much like the Tcl
format command. Before evaluating the script for a binding, Tk generates a
new script from the original one by replacing each % and the character
following it with information about the event. The character following the %
selects a specific substitution to make. There are about 30 substitutions
defined, but Table 22.2 lists the most commonly used ones. Not all
substitutions are available for each event type. See the reference
documentation for complete details of the substitutions available for
different event types and their meanings.

Table 22.2 Common Event Detail Substitutions

514

As an example of using substitutions, the following script implements a
simple mouse tracker:

If you type these commands in wish, messages are printed as you move the
pointer over the windows of the application. Or you can use the following
script to determine the keysyms for the keys on your keyboard:

bind . <KeyPress> {puts "The keysym is %K"}
focus .

If you type these two commands in wish, the name of the keysym will be
printed for any key that you type. Try typing some normal keys like a, A, and
1, plus special keys like F1, Return, or Shift.

515

Note

When Tk makes % substitutions, it treats the script as an ordinary string
without any special properties. The normal quoting rules for Tcl
commands are not considered, so % sequences are substituted even if
embedded in braces or preceded by backslashes. The only way to
prevent a % substitution is to double the % character.

22.7 Conflict Resolution

It is possible for several bindings to match a single event. For example,
suppose there are bindings for <Button-1> and <Double-Button-1>, and button 1 is
clicked three times. The first button press event matches only the <Button-1>
binding, but the second and third presses match both bindings. The way
conflicts are handled depends on how the bindings were declared. If the
same tag is used for all the matching bindings, as in

bind .b <Button-1> ...
bind .b <Double-Button-1> ...

exactly one binding triggers, and it is the most specific of all the matching
bindings. <Double-Button-1> is more specific than <Button-1>, so its script is
executed on the second and third presses. Similarly, <Escape>a is more
specific than <Key-a>, <Control-Key-d> is more specific than <Key-d>, and <Key-d>
is more specific than <KeyPress>.
If more than one binding matches a particular event and the bindings have
the same tag, the most specific binding is chosen and its script is evaluated.
The following tests are applied, in order, to determine which of several
matching sequences is more specific:

1. An event pattern that specifies a specific button or key is more
specific than one that doesn’t.

2. A longer sequence (in terms of number of events matched) is more
specific than a shorter sequence.

3. If the modifiers specified in one pattern are a subset of the modifiers
in another pattern, the pattern with more modifiers is more specific.

4. If these tests fail to determine a winner, the most recently registered
sequence is the winner.

516

As an example, consider a label widget given only a single binding for the
event <Button-1>:

This event matches a <Button-1> event and a <Shift-Button-1> event. In the
following case, the label is given two bindings, one with the Shift modifier
and one without:

Because this widget has two bindings, event matching distinguishes the two
different cases, and the presence of the more specific binding prevents the
binding without the modifier from triggering if it matches.

22.8 Event-Binding Hierarchy

So far we’ve focused on bindings for a specific window, but actually there
is a hierarchy of bindings that process events. Each window has a list of
bindtags, also known simply as tags. Each bindtag in the list can contain a
set of event bindings. Suppose that there are matching bindings with
different tags, as in the following example:

bind all <Return> ...
bind .b <Any-KeyPress> ...

If the Return key is pressed, both of these bindings match. The different tags
are handled independently, so that the matching binding triggers for each
kind of tag. The order in which these tags are evaluated is defined with the
bindtags command:

bindtags widget ?tagList?

The tagList is a list of tags in the order in which they are searched for event

517

matching. By default, a widget is given four tags in the following order: the
widget itself, the widget’s class name, the toplevel window containing the
widget, and all. If the bindtags command is issued with a single argument, it
returns the current tag list for the specified widget. So for the widget .b in
the preceding example, the default tag list is

 bindtags .b
⇒ .b Button . all

This means that the binding for .b triggers first, followed by the binding for
all when the Return key is pressed.
The tag list can be modified to change the tag order, or to add or remove
windows, classes, or even user-defined tags. For example, since the
behavior of a button is defined with bindings on the Button class, new
behavior of a button can be assigned to a new tag, say, SpecialButton; simply
changing the bindtags for a given button instantly changes the button’s
behavior, like so:

Sometimes it’s necessary to prevent event bindings farther up the hierarchy
from triggering. This can be done by using the break command or the return -
code break command. Whenever the binding code for an event returns a
“break” status, further processing of the bindtags list is halted. For example,
changing the previous example like this:

changes the behavior so that the all binding is not triggered, at least not for
the .b window. The break command can be used within the body of the bind
script. If the bind script calls a Tcl procedure, the procedure must use the
return -code break command to return a break condition from the procedure
itself to have the same effect.

22.9 When Are Events Processed?

Tk processes events only at a few well-defined times. After a Tk
application completes its initialization, it enters an event loop to wait for
window system events and other events such as timer and file events. When

518

an event occurs, the event loop executes C or Tcl code to respond to that
event. Once the response has completed, control returns to the event loop to
wait for the next interesting event. Almost all events are processed from the
top-level event loop. New events are not considered while the event loop
responds to the current event, so there normally is no danger of one binding
triggering in the middle of the script for another binding. This approach
applies to all event handlers, including those for bindings, those for the
script options associated with widgets, and others yet to be discussed, such
as window manager protocol handlers.

Note

A few special commands, tkwait, vwait, and update, explicitly invoke the
event loop. If called from within an executing event handler, they
invoke nested instances of the event loop, which often causes
unexpected effects. The best practice is not to call these commands
from within your event-handling scripts. Commands and procedures
that invoke the event loop should be specially noted in their reference
documentation, so watch out for this. All other commands complete
immediately without reentering the event loop.

Event handlers are always invoked in the global scope of the global
namespace, even if the event loop was invoked from a tkwait, vwait, or update
command inside a procedure. This means that you should use only global
variables or fully qualified namespace variables in binding scripts. The
context in which a handler is evaluated is not the same as the context in
which the handler was defined. For example, suppose that you invoke bind
from within a procedure. When the script in the binding eventually triggers,
it does not have access to the local variables of the procedure; in most cases
the procedure will have returned before the binding is invoked, so the local
variables don’t even exist anymore.
The best practice is to use Tcl procedures to implement a binding script,
especially if the script needs to use temporary variables in order to process
the event. This keeps the global namespace from becoming too cluttered
with temporary variables. It can also prevent latent bugs when temporary
variables are inadvertently shared. Another good practice for sharing
variables is to use namespaces. (Namespaces are discussed in depth in
Chapter 10.) Namespace variables can be shared by namespace-defined
procedures, thereby isolating potential inadvertent interaction problems.

519

There is no problem having a bind script call a namespace-defined
procedure; simply use a fully qualified name when calling the procedure, as
shown here:

The other advantage to using Tcl procedures is performance. The Tcl
interpreter bytecode compiles procedure bodies for performance. Because
of the substitutions that take place each time a binding is triggered, a binding
script cannot be bytecode-compiled. When a Tcl procedure is invoked from
a binding, the procedure body can be compiled, improving the performance
of the event handling.

22.10 Named Virtual Events

Tk’s bindings provide an effective way to link actions from the windowing
system or from user input to tasks within the application. This is possible
with named virtual events. Let’s look at how these may be put to use.
Here’s an example of a typical application binding:

bind .text <Control-c> {tk_textCopy %W}

Now this binding may be repeated for other widgets in the application as
well. Windows applications commonly use <Control-c> for a copy shortcut;
however, on the Apple Macintosh, this operation is commonly performed
using <Command-c>. It would be cumbersome and error-prone to have to modify
every event binding in order to simply change the shortcut key for a given
operation. By using virtual events, we can simplify keyboard shortcut
assignments. First, create the binding to a named virtual event:

520

bind .text <<Copy>> {tk_textCopy %W}

You would do this for every widget or widget class that supports the copy
action. Next, tie the physical key binding to the named virtual event using the
Tk event command:

event add <<Copy>> <Control-c>

This needs to be done only once. Defining a new shortcut is as easy as
adding a new event definition:

event add <<Copy>> <Command-c>

So now there are two shortcuts for the copy operation, <Control-c> and
<Command-c>. The former shortcut can be removed with the event delete
command:

event delete <<Copy>> <Control-c>

Of course, there are situations where having both platforms’ event
sequences associated with the virtual event could cause incompatibilities. In
cases like these, you can use the tk windowingsystem command, described in
Chapter 29, to determine on which windowing system your application is
running, and then set up only the virtual event definitions appropriate for that
platform. For example, consider the case of binding scripts to a “right
mouse click.” Most Windows and Unix systems use three-button mice, and
the right-click is delivered as a <ButtonPress-3> event. However, it is common
for mice on Macintosh systems to have only a single button, and holding
down the Control key while clicking is often used as the equivalent of a
right-click. And even on those Macintosh systems that have a multibutton
mouse, the right-click is delivered as a <ButtonPress-2> event. So you could
define a virtual event named <<RightClick>> as follows:

If a virtual binding has the same sequence as a physical binding, the
physical binding always takes precedence. So if both

521

bind .text <Control-C> {puts "copy %W"}

and

bind .text <<Copy>> {tk_textCopy %W}
event add <<Copy>> <Control-c>

exist, the puts command executes, as this physical binding takes precedence
over the <<Copy>> virtual binding.
Tk predefines some common operations as virtual events for widget
bindings. The defaults for these are already platform-appropriate, so it is
unlikely that your application needs to change them. Table 22.3 lists the
predefined virtual events in Tk for user actions.

Table 22.3 Predefined Tk Virtual Events for User Actions

22.11 Generating Events

In addition to managing named virtual events as described earlier, the event
command has the generate option, which can generate any windowing system
event and send it to any window in the application, as if it came from the
windowing system. Being able to generate events provides a means of
testing an application’s user interface. The syntax of event generate is

event generate widget event ?option value option value ...?

522

Button presses, mouse motions, and key presses can all be emulated with the
event generate command. The option value pairs define the attributes of the
event, such as the mouse position. (See the reference documentation for a
complete list of supported options.) For example, the following command
generates a mouse button event:

event generate .copy <ButtonPress> -button 1 -x 10 -y 10

In this case, the press is for button 1, normally the leftmost mouse button. In
addition, the command provides the mouse location relative to the upper-left
corner of the widget, which Tk uses for event-handling scripts with %x and
%y. In this example, the event is delivered to the widget .copy, but the mouse
pointer remains in its position on the screen. The event generate command
also supports a -warp option, which, if provided a Boolean true value, also
moves the mouse pointer.
You can also generate virtual events. The virtual events you generate don’t
even have to have a physical event sequence associated with them. This can
serve as the basis of an asynchronous message-passing system in your
application. For example, consider the following code:

In this example, the widget named .display receives a <<Message>> event. The -
data option allows you to pass an arbitrary string value with the event, which
the event binding can retrieve via the %d event substitution; the -time option
allows you to set a timestamp that can be retrieved with the %t substitution.
In this example, the event handler simply formats the information received
and sets the value of the label’s linked text variable.
Another use of the event generate command is to tie a command action to a
widget’s virtual binding; for example:

523

or

.menu.edit add command -text Copy \
 -command {event generate [focus] <<Copy>>}

In this way, a single button or menu command can be tied to whichever
widget has the keyboard focus at the time the button is pressed.

22.12 Logical Actions

Most of the bindings discussed so far deal with interactions between the
application and the user or between the application and the windowing
system. Named virtual events and bindings can also be employed as a means
of messaging or signaling between various widgets and the application. This
is best illustrated through an example. We’ll use a simple text editor to
demonstrate how virtual events can be employed between the text widget
and an application toolbar.
The text editor example contains a toolbar with buttons for copy, cut, and
paste operations. When a selection is made in a text widget, the cut and
copy buttons in the application’s toolbar, as well as the Cut and Copy menu
items in the Edit menu, should change to an enabled state. The text widget
automatically generates a <<Selection>> event whenever its selection changes.
This allows each of the widgets that care about selection to create a binding
on <<Selection>> and update their states accordingly:

bind all <<Selection>> {updateToolbar %W}

In this example, the code binds to all widgets, so that no matter where the
selection may occur, the toolbar gets properly updated. In the code that
follows, the toolbar buttons are enabled and disabled based on whether text
is selected.
The updateToolbar procedure examines the selection state of the widget %W to
see if the selection is empty or not. It uses two other virtual events,

524

<<MayCopy>> and <<MayCut>>, to propagate the selection state to all the widgets
that need to know:

At this point, you could simply hard-code the binding scripts for the
<<MayCopy>> and <<MayCut>> events to update the appropriate menu entries and
toolbar buttons. However, you might envision a modular application that
could be extended with optional add-ons. These add-ons might need
notification about when copies and cuts may take place. In this case, taking
advantage of the bind command’s ability to extend an existing binding script
is quite useful. Remember that if the script argument to bind has + as its first
character, the script is appended to any existing binding script rather than
overwriting it. Thus, we could have our components register their interest in
the copy/cut notification like this:

Now when the <<MayCopy>> or <<MayCut>> event is generated, the code updates
toolbar buttons to copy and cut text, respectively. The code also updates the
menu items to copy and cut text.
Likewise, binding the text widget to a <<Cut>> event and having the toolbar
button and menu entry command generate a <<Cut>> event associate the action
with the widget without one window having to have direct knowledge of the
other. Note that the text widget already contains a binding for the <<Copy>> and
<<Cut>> virtual events, so all that is needed is to generate this event when the

525

toolbar button is pressed:

With this technique, the code merely issues an event indicating a cut or copy
operation, letting the Tk text widget handle the rest. The focus command tells
the code which widget has the text focus. That widget is the one used for
copying or cutting text. Like this example, Tk’s virtual events provide a
surprising amount of power, especially when you make use of the
preexisting body of Tcl code designed to handle these events.
Figure 22.1 shows an example of the editor in its initial state, with no text
selected. Note how the toolbar buttons are disabled. As soon as something
is selected, the copy and cut toolbar buttons become enabled, as shown in
Figure 22.2.

Figure 22.1 The toolbar buttons before selecting text. The icons in this
figure are from the Tango Desktop Project

(http://tango.freedesktop.org/Tango_Desktop_Project).

Figure 22.2 The toolbar buttons after text is selected. The icons in this
figure are from the Tango Desktop Project

526

http://tango.freedesktop.org/Tango_Desktop_Project

(http://tango.freedesktop.org/Tango_Desktop_Project).

After some text is selected, the cut button is pressed. At this point the copy
and cut buttons become disabled because there is nothing selected, and the
paste button becomes enabled because there is now text in the clipboard.
Figure 22.3 reflects this state.

Figure 22.3 The toolbar buttons after the selected text is cut. The icons in
this figure are from the Tango Desktop Project

(http://tango.freedesktop.org/Tango_Desktop_Project).

As applications grow more complex, the number of widget interactions can
make user interface development a daunting task. When widget commands
and states are organized into logical actions, the interactions become
manageable.

22.13 Other Uses of Bindings

527

http://tango.freedesktop.org/Tango_Desktop_Project
http://tango.freedesktop.org/Tango_Desktop_Project

The binding mechanism described in this chapter applies to widgets.
However, similar mechanisms are available internally within some widgets.
For example, canvas widgets allow bindings to be associated with
graphical items such as rectangles or polygons, and text widgets allow
bindings to be associated with ranges of characters. These bindings are
created using the same syntax for event sequences and % substitutions, but
they are created with the widget command for the widget and refer to the
widget’s internal objects instead of to windows. See Chapter 23 for more
information on the canvas widget and Chapter 24 for more information on
the text widget.

528

529

23. The Canvas Widget

This chapter describes Tk’s canvas widget. Canvases allow you to display
and manipulate a variety of graphical objects such as rectangles, lines,
images, and text strings. The canvas widget supports powerful features of
allowing you to tag objects and manipulate all the objects with a given tag.
For example, you can move or recolor all of the items with a given tag. You
can also create event bindings for tags so that a Tcl script is invoked
whenever the pointer passes over a tagged rectangle in a canvas, whenever
a button is pressed over a string in the widget, and so on. The tagging and
binding mechanisms make it easy to “activate” text and graphics so that they
respond to the mouse. This chapter provides an introduction to canvases and
shows some examples. It doesn’t cover every detail, however; for that you
should consult the reference documentation.

23.1 Canvas Basics: Items and Types

A canvas is a widget that displays a two-dimensional drawing surface on
which you can place items of various types. Tk currently supports the
following types:

• rectangle—drawn as an outline or a filled area; you can specify the
outline color, outline width, fill color, and fill stipple pattern.

• oval—for circles and ellipses, with the same attributes as rectangles.
• line—consisting of one or more connected segments, a width, a color,

a stipple pattern, and several other attributes such as whether to
miter or round the corners between segments and whether or not to
draw arrowheads at the ends of the line.

• Bézier curves—line items with an additional -smooth attribute
specifying how Bézier cubic splines should be drawn instead of
straight segments.

• polygon—consisting of three or more points, a fill color, and a stipple
pattern. As with line items, you can also use the -smooth attribute to
specify that the outline of the polygon should be a Bézier curve
instead of a collection of straight segments.

• arc—drawn in any of several styles such as a pie wedge or a section
of a circle. You can specify attributes such as the arc’s angular

530

range, outline width, outline color, fill color, and fill stipple.
• text—consisting of one or more lines drawn in a single font. You can

select a font, color, stipple pattern, justification mode, and line
length.

• bitmap—consisting of a bitmap name, background color, and
foreground color.

• image—consisting of a photo or bitmap image created using the Tk
image create command or any of the Tk image extensions.

• window—an embedded widget of any kind, in which case the canvas
acts as a geometry manager for the widget. The canvas reference
documentation and command syntax use the term window to refer to
these embedded widgets.

To create a canvas widget, use the canvas command:

canvas widgetName ?option value ...?

The canvas widget supports most standard widget options, such as -
background to set the background color and -borderwidth to set the width of the
widget’s border. You can also request the -height and -width for the canvas
using any supported Tk screen distance, as described in Section 18.2.2,
though the geometry manager used to display the canvas may override the
requested size (as discussed in Chapter 21).
The create subcommand creates new items on the canvas. For example, here
is a script that creates a canvas named .c and then creates a new rectangle
item on it:

The first argument after the create action gives the type of the item.
Following the type are pairs of x- and y-coordinates. The coordinates are
floating-point values specifying any screen distance supported by Tk, as
described in Section 18.2.2. When the canvas widget is created, its upper
left corner is the 0, 0 origin, and the coordinates increase going down and to
the right. The x- and y-coordinates may be provided either as separate
arguments or as a single list argument following the type.
For rectangles there must be exactly four coordinates giving the locations of
opposing corners of the rectangle. Ovals and arcs require four coordinates
describing opposing corners of a rectangle bounding the entire oval. Lines
accept coordinates for two or more points describing connected line

531

segments. Polygons accept coordinates for three or more points describing
the vertices; Tk automatically connects the last to the first point specified.
All other types require coordinates of a single positioning point for the
item. The -anchor option for those types then determines the location of the
item positioned on the positioning point. For example, -anchor nw positions
the upper left corner of the item on the positioning point.
Following the coordinates can be pairs of arguments specifying
configuration options. The configuration options are specified in the same
free-form style as for widgets. Default values apply for all options not
specified. In the preceding example, the outline width, outline color, and fill
color are specified, but no fill stipple is specified (it defaults to a solid
fill). See the reference documentation for a complete list of all options
supported for all types.
Items on the canvas have a stacking order (sometimes referred to as the
display list). Items that appear lower in the stacking order (earlier in the
list) might be obscured by items higher in the stacking order (later in the
list). Creating a new item places it at the end of the list, on top of all other
items in the canvas. As mentioned in the next section, you can also raise and
lower items after creation, changing their stacking order.

Note

Window items (embedded widgets) are an exception to the stacking
order rules. The underlying windowing systems require that they
always be drawn on top of all other items; they are never obscured by
other canvas items. If window items embedded within a canvas
overlap each other, you can use the Tk raise and lower commands,
discussed in Chapter 29, to change their stacking order relative to each
other.

Here is a script that uses line and text items to create a simple ruler:

532

Figure 23.1 shows the canvas created by this script. For each centimeter of
length, four tick marks are drawn with varying heights, along with a text
item that displays the number of centimeters. No options are specified for
the line items, since the default values are fine for this example. The option
-anchor sw for the text items causes their lower left corners to be positioned at
the specified coordinates.

Figure 23.1 The canvas generated by the ruler script

23.2 Manipulating Items with Identifiers and Tags

Each item on a particular canvas widget has a unique integer identifier. The
identifier for an item is returned by the create subcommand, and it can be
used in other widget commands to refer to the item. For example, you might
invoke the command

to create a solid black circle and save its identifier (12, in this example) in
the variable circle. Later on you could delete the item with the command

533

.c delete $circle

The widget command for a canvas provides several subcommands to
manipulate items:

• You can move and scale items (but not rotate them, as of Tk 8.5).
• You can raise or lower them relative to one another (that is, change

their z-order).
• You can query and change the coordinates (coords) and configuration

options (itemcget and itemconfigure) for items.
• You can find the item nearest a given point, or all the items in a given

rectangular region, or all the items with a given tag.
• For text items you can insert and delete (dchars) text, display and

manipulate an insertion cursor (icursor), set the focus, and select a
range of characters.

• You can bind events to them, such as <ButtonPress> or <KeyPress> events.
Consult the canvas reference documentation for a complete description of
all subcommands and their use.
Canvases also provide a second way of referring to items, called tags. A
tag is merely a text string associated with an item. A tag may have any form
except that of an integer. A single item may have any number of tags, and a
single tag may be applied to any number of items. Once an item has been
tagged, you can use any of its tags to refer to it:

.c delete circle

In this example all of the items with the circle tag are deleted.
Tags serve three purposes in canvases. First, they allow you to use human-
readable names for items so that you don’t have to save item identifiers in
variables. Second, they provide a grouping mechanism so that you can
manipulate related items together. For example, consider the following
commands:

.c itemconfigure circle -fill red

.c move circle 0 1c

The first command changes the fill color to red for all items with the circle
tag, and the second command moves all the circle items down 1 centimeter.
In general you can use a tag name anywhere that you can use an item
identifier. You can also use simple logical expressions of tags, such as
circle&&element; see the reference documentation for complete details.
The third use for tags is for defining behaviors. As discussed in the next
section, bindings can be associated with tags. This allows groups of items

534

to be responsive to user events. You can also apply multiple tags to an item
to combine several bound behaviors, or add and remove tags to change an
item’s behavior dynamically.
You can assign one or more tags to an item when you create it by providing
a list of tags as the value of the -tags option, as in the following command:

This command assigns both circle and element as tags associated with the new
item. You can also use the itemconfigure subcommand to assign a different list
of tags to an existing item by changing the value associated with the -tags
option.
The canvas widget command also provides commands for dynamically
adding or removing tags on items. The dtag subcommand removes tags from
use; for example:

You can also use the addtag subcommand to add a tag to one or more items:

canvas addtag tagName searchSpec

You need to specify the name of the tag to add as well as a search
specification for identifying which items should be tagged. Table 23.1
shows the allowable formats for the search specification. You can also use
the same format search specifications with the canvas find subcommand,
which returns a list of identifiers for all items that match.

Table 23.1 Canvas Search Specifications

535

The canvas widget automatically manages two additional predefined tags;
you may not explicitly add or remove these tags. The tag all always refers to
all items on the canvas. The tag current automatically refers to the topmost
item whose drawn area covers the position of the mouse cursor. If the mouse
is not in the canvas widget or is not over an item, no item has the current tag.

23.3 Bindings

When you create a canvas widget, you can create bindings in the normal
way using the bind command; these bindings apply to the widget as a whole.
(See Chapter 22 for a complete discussion of Tk events and using the bind
command.) In addition, you can create bindings for individual items within a
canvas using the bind subcommand. This command has the following form:

.c bind itemOrTag sequence script

The itemOrTag argument gives either the identifier of a single item, in which
case the binding applies to that one item, or a tag name, in which case it
applies to all items with the tag. sequence and script specify an event sequence
and script just as for the bind command. The event sequence may use only
Enter and Leave events (which trigger when the pointer moves into or out of an
item), mouse motion events, button presses and releases, key presses and
releases, or virtual events.

536

It is possible for multiple bindings to match a particular event, for example,
if you’ve created bindings for multiple tags and then applied some
combination of those tags to a particular item. When this occurs, all of the
matching bindings are invoked, starting with any matching binding on the all
tag, followed by any matching binding for each of the item’s tags (in order),
followed by any matching binding associated with the item’s ID. If there are
multiple matching bindings for a single tag, only the most specific binding is
invoked. A continue command in a binding script terminates that script, and a
break command terminates that script and skips any remaining scripts for the
event, just as for the bind command.

Note

If bindings have been created for a canvas window using the bind
command, they are invoked in addition to bindings created for the
canvas’s items using the bind subcommand. The bindings for items are
invoked before any of the bindings for the widget as a whole.

As an example of bindings, the following script allows you to create ball-
and-stick graphs interactively on a canvas:

537

538

If you source this script into wish, you can create nodes by clicking on the
canvas with button 1. You can create edges by moving the pointer over a
node, typing 1, then moving the pointer over a different node and typing 2.
See Figure 23.2 for an example of a graph created with this script.

Figure 23.2 A graph created interactively using the graph script

539

The script consists of two procedures for creating nodes and edges, plus
five bindings. The focus command is also required to explicitly assign
keyboard focus to the canvas widget. The script uses six global variables to
hold information about the graph:

• nodeX and nodeY are associative arrays where the index is the item
identifier for a node and the value is the x- or y-coordinate of the
node’s center. This information could be extracted from the canvas
when needed, but it’s simpler in this case to keep it in a Tcl array.

• edgeFirst and edgeSecond are associative arrays where the index is the
identifier for a node and the value is a list of item identifiers for
edges connecting to the node. edgeFirst holds the identifiers of all
edges for which a node is the starting point, and edgeSecond identifies
the edges for which a node is the ending point. This information is
used below to drag nodes interactively.

• firstNode holds the identifier of the node that was under the pointer
when 1 was typed last, or an empty string if 1 was typed when the
pointer wasn’t over a node.

• curNode holds the identifier of the node under the pointer or an empty
string if the pointer isn’t over a node.

The mkNode and mkEdge procedures just create new items in the canvas and
record information about them in the global variables. The lower
subcommand in mkEdge causes edges to be placed at the bottom of the display
list for the canvas so that the nodes appear on top of them.
The first binding is set for the entire canvas using the bind command; it
causes a new node to be created at the position of the pointer whenever
button 1 is pressed. The Enter and Leave bindings apply to all the nodes in the
canvas; they cause nodes to change color when the mouse passes over them.
The last two bindings are used to create edges; they trigger whenever 1 or 2
is typed in the canvas. Both of these bindings make use of the special tag
current, which is managed by Tk. The binding for 1 invokes the command

.c find withtag current

which returns a list of identifiers for the items that have the tag current (in
this case the result is either a list with one element or an empty list) and
saves the result in firstNode. The binding for 2 retrieves the current item and
also creates a new edge.
The following script extends graph to allow nodes to be dragged
interactively by holding the Control key while dragging with mouse button
1:

540

The procedure moveNode does all the work of moving a node: it uses the move
action to move the node item, then it updates all of the edges for which this
node is an endpoint. For each edge moveNode uses the coords action to read out
the edge’s current coordinates and replace either the first two or last two
coordinates to reflect the node’s new location.
The two new bindings apply to all items with the tag node. When button 1 is
pressed while the Control key is held, the pointer coordinates are stored in
variables curX and curY. When the mouse is dragged with button 1 down
while the Control key is held, the current item is moved by the amount the
mouse has moved and new pointer coordinates are recorded.
Note that there is an additional widget binding for the <Control-ButtonPress -1>
event as well, which provides a script that does nothing. If you omitted this
binding, a <Control-ButtonPress-1> event would be presented to the canvas
widget after the canvas item binding is processed. Without an exact binding
match, Tk would look for the best match and find and execute the

541

<ButtonPress-1> binding on the canvas. As a result, every time you tried to
move a node, you’d also end up creating a new node, which is not desired
behavior.

23.4 Canvas Scrolling

Canvases support vertical and horizontal scrolling in the standard fashion
for Tk widgets (see Section 18.9). However, if a canvas is scrolled, the
coordinates in the canvas window are not the same as the coordinates on the
logical surface of the canvas. To handle this situation canvases provide
additional widget command actions for translating from screen to canvas
coordinates.
Since the canvas can be considered a virtual sheet at least 32,000 by 32,000
pixels in size, the scrolling is not enabled until a scroll region is defined.
This limits the area that the scrollbars use as the visible region of the
canvas. The scroll region is defined by setting the canvas -scrollregion
option. The value is a list of four numbers defining the left, top, right, and
bottom bounds of the region, respectively. The canvas widget uses these
bounds to set the scrollbar range (see Figure 23.3). The most common way
to set the scroll region is to use the canvas bbox subcommand to obtain the
bounding region of all items currently on the canvas:

.c configure -scrollregion [.c bbox all]

Figure 23.3 Canvas scroll region

542

Note

Any time you create, delete, move, scale, or otherwise modify items on
the canvas, you could end up modifying the bounding region of all
items on the canvas.

Now that the canvas can be scrolled to view different regions of the virtual
canvas, translating mouse x- and y-coordinates to canvas coordinates is
necessary in order to identify locations in the canvas for the current view.
Mouse x- and y-coordinates are measured relative to the window’s upper
left origin. If the canvas is scrolled, the upper left corner of the window no
longer represents the 0, 0 coordinate on the canvas. The canvas widget’s
canvasx and canvasy subcommands translate the window-relative coordinates
into the canvas coordinates based on the current scroll positions.
For example, to enable scrolling of the graph application presented in
Section 23.3, you would need to modify all of the mouse event-binding
scripts to translate from window-relative mouse coordinates to canvas
coordinates, such as

543

23.5 PostScript Generation

Canvases can generate Encapsulated PostScript descriptions of their
contents for printing and insertion into other documents. Use the postscript
scommand to output the contents of a canvas widget to PostScript; for
example:

.c postscript -file canvas.eps

This command writes the contents of the canvas widget .c into a file named
canvas.eps. If you don’t provide the -file option, the PostScript data becomes
the return value of the command.
The postscript subcommand has a number of options to configure the
PostScript results. See the canvas reference documentation for more
information. The pdf4tcl extension, available at http://pdf4tcl.berlios.de/,
allows you to output the contents of a canvas widget to a PDF file. Many
users find the PDF format easier to work with than Encapsulated PostScript.

544

http://pdf4tcl.berlios.de/

545

24. The Text Widget

This chapter describes Tk’s text widget, which displays one or more lines
of text. The text widget can also display embedded images and widgets. The
text widget can be used to display text, provides the ability to edit text, and
even presents an interface for interacting with HTML or other tagged text.

24.1 Text Widget Basics

You create a text widget with the text command:

text widgetName ?option value ...?

The text widget supports many common widget options, such as -background, -
foreground, and -font, which determine the default settings of the text
displayed; additional options specific to the text widget, such as -tabs and -
wrap, provide default tab stops and line-wrapping settings. As you will see in
Section 24.4, all of these settings can be overridden for particular
characters by creating and applying tags. The text widget also supports -
height and -width options for the height in lines of text and the width in
characters; of course, the geometry manager used to display the canvas may
override the requested size (as discussed in Chapter 21). The -undo option
turns support for undo operations on or off, as described in Section 24.8.
Text widgets also support vertical and horizontal scrolling in the standard
fashion for Tk widgets (see Section 18.9). See the text widget reference
documentation for a complete description of supported options.
The basic text widget subcommands for manipulating text content are as
follows:

• widget delete index1 ?index2 ...?
Deletes a range of characters from the text, starting with the character at
index1 up to but not including the character at index2. If only index1 is
specified, that single character is deleted. Multiple ranges may also be
specified.

• widget get ?-displaychars? ?--? index1 ?index2 ...?
Returns a range of characters from the text, up to but not including the
character at index2. If only index1 is specified, it returns that single character.

546

Multiple ranges may also be specified. Characters hidden with the -elide
option are returned unless -displaychars is specified.

• widget insert index chars ?tagList chars tagList ...?
Inserts the string chars just before the character at index, optionally applying
the tags listed in tagList to the characters. Multiple strings and tags may be
provided for insertion.

• widget replace index1 index2 chars ?tagList chars
 tagList ...?

Deletes a range of characters from the text, starting with the character at
index1 up to but not including the character at index2, replacing them with the
string chars and optionally applying the tags listed in tagList to the characters.
Multiple strings and tags may be provided for insertion.
Each line of text contained in a text widget must be terminated with a
newline character. This is quite handy when reading text files and
displaying their contents in a text widget. Depending on the -wrap settings that
apply to the text, a single logical line might be wrapped visually in the text
widget display, or it might be truncated and require horizontal scrolling to
view the portions not visible.
As an example, the following script creates a text widget with an associated
scrollbar and reads a file into the text widget:

The first group of lines in the script creates a text widget and a scrollbar,
grids them side by side in the main window, and sets up connections
between the text and the scrollbar. The next part of the script defines and
calls the procedure loadFile, which opens a file, reads its content, and inserts
the content at the end of the text widget. The .text delete command in loadFile,
which deletes all of the text in the widget, isn’t necessary in this example

547

since the new widget is already empty. However, it allows loadFile to be
invoked again later to replace the contents of the widget with a new file.
After the script has completed, the screen should look like Figure 24.1
(assuming that your system has the standard Tk widget demos, which are
part of a standard Tk distribution).

Figure 24.1 A text widget and associated scrollbar

The default bindings for text widgets allow you to manipulate the text in a
number of ways:

• You can scroll the text with the scrollbar or by scanning with mouse
button 2 in the text.

• You can edit the text; for example, click with mouse button 1 to set the
insertion cursor, then type new characters.

• You can select information by dragging with mouse button 1 and then
copying the selection into other applications.

See the reference documentation for text widgets for complete information
on the default bindings.

24.2 Text Indices and Marks

Many of the text widget commands require you to identify particular places
in the text. For example, the insert action in the script from Section 24.1

548

specified end as the place to insert the text read from the file. A position
specifier in a text widget is called an index; it can take any of several forms.
The simplest form for an index is two numbers separated by a dot, such as
2.3. The first number gives a line number and the second number gives a
character index within a line. The characters within a line are numbered
starting with 0, as is common in Tcl; however, the lines are numbered
starting with 1, so as to be compatible with most other programs that
manipulate text files. If the character index is the string end, as in 5.end, it
refers to the newline character terminating the line. The index end refers to
the end of the file, and an index in the form @x,y, where x and y are numbers,
refers to the character closest to the pixel at location x,y in the window.
You can also use symbolic names for positions in a text; these symbolic
names are called marks. For example, the command

.text mark set first 2.3

sets a mark named first to refer to the gap between character 3 of line 2 and
the character just before it. In the future you can refer to the character after
the mark as first instead of 2.3. The mark continues to refer to the same
logical position even if characters are added to or deleted from the text. For
example, if you delete the first character of line 2, first becomes
synonymous with index 2.2 instead of 2.3.
Each mark also has a “gravity,” which is either left or right. The gravity for
a mark specifies what happens to the mark when text is inserted at the point
of the mark. If a mark has left gravity, it is treated as if it were attached to
the character on its left, so the mark remains to the left of any text inserted at
the mark position. If the mark has right gravity, which is the default, new text
inserted at the mark position appears to the left of the mark (so that the mark
remains rightmost). You can query or set the gravity of a mark with the mark
gravity subcommand, such as in this example, which sets the gravity of the
mark first to left:

.text make gravity first left

Two marks have special meaning in text widgets. The insert mark identifies
the location of the insertion cursor; if you modify insert, Tk displays the
insertion cursor at the new location. The second special mark is current,
which Tk updates continuously to identify the character underneath the
mouse pointer.
Indices can also take more complex forms consisting of a base followed by
one or more modifiers. For example, consider the following command:

549

.text delete insert "insert + 2 chars"

Both of the indices for this delete command use insert as a base, but the
second index also has a modifier + 2 chars, which advances the index by two
characters over its base value. Thus, the command deletes the two
characters just to the right of the insertion cursor. Some other examples of
modifier usage are first lineend, which refers to the newline at the end of the
line containing the mark first, and insert wordstart, which refers to the first
character of the word containing the insertion cursor.

24.3 Search and Replace

The text widget supports a search subcommand and a replace subcommand.
The search subcommand scans through the text looking for exact match strings
or regular expression pattern matching. It has the ability to return the next
match after a given starting point or returning all the matching locations. The
replace subcommand combines delete and insert operations into a single
command.
Here is a procedure that uses marks and other indices to provide a general-
purpose searching facility for text widgets:

The forAllMatches procedure takes three arguments: the name of a text widget,
a regular expression pattern, and a script. It uses the text widget’s search
subcommand to find all the starting indices for the text matching the pattern.
The -count option returns a list of the number of characters for each match in
the variable countList. For each match, forAllMatches sets the marks first and
last to the beginning and end of the range, then it invokes the script. For
example, the following script prints out the locations of all instances of the
word Tk in the text:

550

For each matching range the index subcommand is invoked for the first and
last marks; it returns numerical indices corresponding to the marks, which
puts prints on standard output. As another example, you could clean up
redundant the words in a text with the following script:

In this script the action taken for each range is to delete the first four
characters of the range, which eliminates the redundant the (this example
works only if both thes are on the same line).
Because the text widget indices look like real numbers, there is a tendency
to treat them as real numbers, but this can cause unexpected problems. For
example, comparing two indices using a simple expression does not give
correct results:

In this example, if the insert mark was located at index 3.7, the code
incorrectly reports that the insert mark was after the x mark.
The text widget provides a compare subcommand to perform index relational
comparisons:

widget compare index1 op index2

This compares the indices given by index1 and index2 according to the
relational operator given by op and returns 1 if the relationship is satisfied
and 0 if it is not. op must be one of the operators <, <=, ==, >=, >, or !=. Here is

551

the correct way to compare the index values in the preceding example:

24.4 Text Tags

Text tags provide a tagging mechanism similar to that of canvases except
that text tags apply to ranges of characters instead of graphical items. Tags
serve three purposes in the text widget. First, they are used to control the
formatting of the characters, such as foreground and background color, font,
spacing, and left and right margins. Second, they provide a way to manage
the selection. Finally, they provide event bindings, turning plain text into
active controls.
A tag name can have any string value, and it can be applied to arbitrary
ranges within the text. A single character may have multiple tags, and a
single tag may be associated with many ranges of characters. For example,
the command

.text tag add theWholeEnchilada 1.0 1.end

applies the tag theWholeEnchilada to the first line of the text; the command

.text tag remove wrd "insert wordstart" "insert wordend"

removes the tag wrd from all the characters in the word around the insertion
cursor; and

 .text tag ranges hot
⇒ 1.0 1.3 1.8 1.13

returns a list of indices for the beginning and end of each range of characters
tagged with hot. In the preceding example the tag hot is present on the
characters at indices 1.0 through 1.2 and 1.8 through 1.12.
Using the forAllMatches procedure from Section 24.3, let’s demonstrate how
tags can be used to control the formatting of text. The following script
changes all instances of the word Tk so they are drawn with a larger font, a
darker background color, and a raised relief:

552

The results are shown in Figure 24.2.

Figure 24.2 Using tags to format characters in a text widget

One special tag, sel, is used to manage the selection and has these special
characteristics:

• Whenever characters are tagged with sel, the text widget claims
ownership of the selection.

• Attempts to retrieve the selection are serviced by the text widget,
returning all the characters with the sel tag.

• If the selection is claimed away by another application or by another
window within the current application, the sel tag is removed from
all characters in the text.

• Whenever the sel tag range changes, a virtual event <<Selection>> is
generated. This is discussed more in Section 24.5.

• The sel tag cannot be deleted with the tag delete command.
• The sel tag is not shared with peer text widgets. Instead, each text

widget maintains its own sel tag. Peer text widgets are discussed in
Section 24.9.

553

24.4.1 Tag Options

There are almost two dozen tag options that can be grouped into three
categories: visibility, which allows for the hiding of text; formatting, which
affects the look of the characters such as font, size, and color; and layout,
which affects the placement of the characters on the display.
The only visibility tag option is -elide, which takes a Boolean value. If this
value is true for a tag, the characters to which this tag is applied are not
displayed by the text widget. By default, other text subcommands still apply
to the elided characters, though many of them have an option to ignore
elided characters if desired.
Formatting tag options are similar to named character styles in a word-
processing application in that they affect the appearance of individual
characters. Thus, a single line of text could have several tags applying
formatting to groups of characters, achieving a mix of colors, fonts, sizes,
and so on. The following formatting tag options are available:

• -background—the background color of the characters
• -bgstipple—a stipple pattern for the background
• -borderwidth—the width of the text border, as a screen distance
• -fgstipple—a stipple pattern applied to the characters
• -font—the character font
• -foreground—the color of the characters
• -offset—the number of pixels by which the text’s baseline should be

offset vertically from the overall line’s baseline; a positive value
raises the text to achieve a superscript effect, and a negative value
lowers the text to achieve a subscript effect

• -overstrike—a Boolean specifying whether or not to draw an
overstrike line through the middle of the characters

• -relief—the three-dimensional border style for the text
• -underline—a Boolean specifying whether or not to underline the

characters
The layout tag options are somewhat analogous to named paragraph styles in
a word-processing application, in that they determine display settings that
affect entire display lines. The layout tag options differ from the formatting
tag options in that they apply only if they occur on a tag applied to the first
nonelided (visible) character on a display line. Because it is difficult to
predict which characters might appear at the beginning of display lines, the
common practice when using these tag options is to apply the relevant tag to
the entire logical line of characters. The following layout tag options are

554

available:
• -justify—how to justify display lines; one of left, right, or center
• -lmargin1—the indent from the left side of the widget for the first

display line, expressed as a screen distance
• -lmargin2—the indent from the left side of the widget for the second

and subsequent display lines, expressed as a screen distance
• -rmargin—the indent from the right side of the widget for display lines,

expressed as a screen distance
• -spacing1—the amount of extra space to leave above the first display

line, expressed as a screen distance
• -spacing2—the amount of extra space to leave above the second and

subsequent display lines, expressed as a screen distance
• -spacing3—the amount of extra space to leave below the last display

line, expressed as a screen distance
• -tabs—a list of tab stops, as discussed below
• -tabstyle—the tab style, as discussed below
• -wrap—whether to wrap at word boundaries (word), at any character

(char), or not at all (none)
Tab stops for tags as well as the widget as a whole are set with the -tabs
option, which accepts a list of tab stops expressed as screen distances from
the left edge of the widget. After each position element in the list, you have
the option of providing one of the following keywords as another element to
set the justification of that tab stop: left (the default), right, center, or numeric.
left causes the text following the tab character to be positioned with its left
edge at the tab position, right means that the right edge of the text following
the tab character is positioned at the tab position, and center means that the
text is centered at the tab position. numeric means that the decimal point in the
text is positioned at the tab position; if there is no decimal point, the least
significant digit of the number is positioned just to the left of the tab
position; if there is no number in the text, the text is right-justified at the tab
position. For example,

-tabs {2c left 4c 6c center}

creates three tab stops at 2-centimeter intervals; the first two use left
justification and the third uses center justification.
If the list of tab stops does not have enough elements to cover all of the tabs
in a text line, Tk extrapolates new tab stops using the spacing and alignment
from the last tab stop in the list. If no -tabs option is specified, or if it is
specified as an empty list, Tk uses default tabs spaced every eight (average

555

size) characters.
The -tabstyle option specifies how to interpret the relationship between tab
stops on a line and tabs in the text of that line. The value must be tabular (the
default) or wordprocessor. If the tab style is tabular, the nth tab character in the
line’s text is associated with the nth tab stop defined for that line. If the tab
character’s x-coordinate falls to the right of the nth tab stop, the text widget
displays a gap of a single space as a fallback. If the tab style is wordprocessor,
any tab character being laid out uses the first tab stop to the right of the
preceding characters already laid out on that line.

24.4.2 Tag Priorities

As mentioned previously, a range of characters can have multiple tags
applied to it. If two or more tags specify options that conflict, the options of
the tag with the highest priority are used. If a particular display option has
not been specified for a particular tag, or if it is specified as an empty
string, that option is not used; the next-highest-priority tag’s option is used
instead. If no tag specifies a particular display option, the default style for
the widget is used.
When a new tag is defined, it is initially assigned a priority higher than that
of any existing tags defined for the text widget. You can change the priority
of a tag with the tag lower and tag raise subcommands. For example, the
following command takes the important tag and raises it to the highest tag
priority:

.text tag raise important

This next example lowers the priority of bold to just lower than the URL tag:

.text tag lower bold URL

24.4.3 Tag Bindings

The text widget allows you to associate bindings to tags with the tag bind
subcommand. You can use bindings to make portions of text “active” so that
they respond to mouse, keyboard, <Enter>, <Leave>, or virtual events. Among
other things, this enables you to implement hypertext effects. For example,
the following bindings cause all the Tk words to turn green whenever the

556

mouse passes over any one of them:

The following binding causes the text widget to reload itself with the Tk
demo’s README file when the user holds the Control key while clicking button
1 on any of the Tk words:

Note

Keyboard events trigger a tag binding only when the mouse cursor is
within the tagged region containing the binding. The insert cursor does
not have to be within the tagged region.

It is possible for multiple bindings to match a particular event, for example,
if you’ve created bindings for multiple tags and then applied some
combination of those tags to a section of text. When this occurs, all of the
matching bindings are invoked, in order from lowest-priority to highest-
priority tag. If there are multiple matching bindings for a single tag, only the
most specific binding is invoked. A continue command in a binding script
terminates that script, and a break command terminates that script and skips
any remaining scripts for the event, just as for the bind command.

Note

If bindings have been created for a text widget using the bind command,
they are invoked in addition to bindings created for the tags using the
tag bind subcommand. The bindings for tags are invoked before any of
the bindings for the widget as a whole.

557

24.5 Virtual Events

The text widget generates two virtual events. You can create bindings for
these events to handle them in any way you like. Often they are used to
dynamically enable or disable other interface features to behave in a
context-sensitive fashion.
The <<Modifed>> event is associated with the undo mechanism described in
Section 24.8. This feature requires the -undo option to be set to true (1) to be
enabled. The <<Modified>> event is generated the first time a change is made to
the text widget’s content after the widget’s modified flag is cleared. The
event is also generated when this flag is cleared, either by the edit undo
widget command or the explicit edit modified command. This event is often
used to enable a “save” feature only if the widget’s contents have been
modified since the last save operation. An example similar to this is shown
in Section 24.8.
The <<Selection>> event is generated whenever the widget’s selection
changes. It is often used to enable interface features like cut and copy only if
the sel tag is applied to any characters, and to disable the features
otherwise. An example of this is shown in Chapter 22.

24.6 Embedded Windows

In addition to text, a text widget can contain any number of widgets. These
are called embedded windows, and can be instances of any widget class.
Figure 24.3 shows the Tk widget demo embedded window example.

Figure 24.3 Embedded button and canvas widgets in a text widget

558

Widgets are inserted inline with the text and are subject to the same
padding, spacing, justification, and wrapping rules that apply to the text as if
each widget were a single character, albeit a very large character.
The text widget is acting as a geometry manager for the embedded windows,
so the widgets should be created as children of the text widget. Embedded
windows are inserted into a text widget using the window create subcommand.
The following code shows how this is done, and the result is shown in
Figure 24.4:

Figure 24.4 Embedding an existing button into a text widget

559

Another way to insert widgets is to use the -create option instead of the -
window option. The -window option requires that the widget be constructed
separately. The -create option is supplied a script that is evaluated by the
text widget when it needs the embedded window. Since embedded windows
cannot be shared between peer text widgets, it is necessary to create unique
widgets for each peer. The create script is typically used to accomplish this.
The following code shows how this is done, and the result is shown in
Figure 24.5:

Figure 24.5 Using a create script to create an embedded button

24.7 Embedded Images

Another type of item that can be added to a text window is an image. Images
can be inserted into the text using the image create widget command and can
appear inline with the text. This can be useful for inserting special-purpose
markers, emoticons, or even photographs. The following script
demonstrates inserting a specialized stop sign image used as a marker in the
text; the result is shown in Figure 24.6. Notice that instead of deleting the

560

<STOP> text and replacing it with the image, a tag is applied instead with the -
elide option set to true. This makes it possible to retrieve the original text
with the get subcommand, or through the user doing a copy-and-paste
operation involving the text.

Figure 24.6 Example of using a stop sign as an embedded image

561

Images are subject to the same wrapping and justification rules as regular
text. In the following example, nothing but images are placed in the text
widget, and the text widget is used like a geometry manager to lay out the
photos in a reasonably nice fashion:

562

24.8 Undo

The text widget has an unlimited undo/redo mechanism that is enabled by
setting the widget’s -undo option to 1. The mechanism records each insert and
delete action on a stack. These actions can be reversed by issuing the edit
undo subcommand. Boundaries are inserted between edit actions to define
groups of actions. These groups are used to define compound edit actions
that can be undone in a single step. The -autoseparators option, when enabled,
automatically inserts boundaries to group sequences of inserts or deletes.
You can add boundaries to the stack explicitly using the edit separator
subcommand. This can be useful if you want greater control of the undo
granularity in your application.
The text widget also keeps track of modifications by way of the modify flag
and the <<Modified>> virtual event. The modify flag is set to true and the
virtual event is triggered after any change (insert or delete) is made to the
data since the last time the flag was cleared. This flag is useful for
determining if the widget’s content needs to be saved, or for enabling or
disabling buttons, like a save button or undo button. The flag can be read
and set using the edit modified widget command.
The following code adds undo and redo buttons to the example from earlier
in the chapter:

563

Notice that we modified the loadFile function to clear the modified flag after
loading a file by adding the line

564

.text edit modified 0

In addition, we added the -undo 1 option to the text widget command and
packed the widgets in the proper order. Figure 24.7 shows the resulting
window when the application is first launched.

Figure 24.7 Updated text window with Undo button

With these additions, the moment a change is made in the text widget, by
typing or deleting something, the Undo button is enabled, as shown in Figure
24.8. You can then reverse the edits simply by pressing the Undo button.
Once the undo stack is exhausted, the Undo button is disabled automatically,
as shown in Figure 24.9.

Figure 24.8 An edit automatically enables the Undo button.

565

Figure 24.9 Exhausting the undo stack disables the Undo button.

24.9 Peer Text Widgets

The peer text widget command is used to create duplicate text widgets that
share the same text data. Any changes made in one text widget immediately
appear in its peer widgets. This command is useful for creating split views,
common in most modern text editors. Peer widgets share all text, images,
and tags. They do not share embedded windows, the tag sel, or the marks
insert and current. The following script shows an example of creating two
text widgets as peers. Any change you make in one is reflected immediately
in the other, as is shown in Figure 24.10:

566

Figure 24.10 A split-pane view using peer text widgets

Peer text widgets are true peers. This means that destroying the original text
widget does not affect the existing peer widgets. The text widget content is
not destroyed until all the peer text widgets are destroyed. Peers can also
create other peers. The peer names subcommand can be used to find the

567

widget path names of all the peer widgets for a given text widget.

568

569

25. Selection and the Clipboard

The selection is a mechanism for passing information between widgets and
applications. The user first selects one or more objects in a widget, for
example, by dragging the mouse across a range of text or clicking on a
graphical object. Once a selection has been made, the user can invoke
commands in other widgets to retrieve information about the selection, such
as the characters in the selected range or the name of the file containing the
selection. In today’s windowing environments there are two different
selection models, the selection owner model and the clipboard model.
The selection owner model is used in the X Window System. There is a
single owner of the selection at any given time. The widget containing the
selection and the widget requesting it can be in the same or different
applications. The receiving application or action can query the selection
owner and obtain the information about the selection.
In the clipboard model, which is the model used in Microsoft Windows and
Mac OS X as well as the X Window System, a global, virtual storage
device is used called a clipboard. Selected items are copied to the
clipboard, where they can be retrieved later by another widget or
application. This model uses selection also, but here the ownership is
confined to the current active window.
The selection, like the clipboard, is most commonly used to copy
information from one place to another. Tk widgets have default bindings to
do these common selection and clipboard operations, so you rarely need to
manage the selection or clipboard explicitly in your applications. However,
if your application needs to provide custom selection or clipboard handling,
you can implement this functionality with the selection and clipboard
commands. The selection command is used to manage the selection
ownership and provide access to selection data. The clipboard command
manages the clipboard, though the selection command can be used for that
purpose as well.

25.1 Commands Presented in This Chapter

This chapter discusses the following commands for managing the selection:

• selection clear ?-displayof window? ?-selection selection?

570

Clears or “unselects” the current selection. window defaults to . and selection
defaults to PRIMARY.

• selection get ?-displayof window? ?-selection selection?
 ?-type type?

Retrieves the selection according to selection and type. window defaults to .,
selection defaults to PRIMARY, and type defaults to STRING.

• selection handle ?-selection selection? ?-type type?
 ?-format format? window script

Creates a handler for selection requests. script is evaluated whenever the
selection is owned by window and someone attempts to retrieve it in the form
given by type. selection defaults to PRIMARY, and format and type default to STRING.
See the text and the reference documentation for more information.

• selection own ?-displayof window? ?-selection selection?
Returns the current owner of selection, or an empty string if no window owns
selection. window defaults to . and selection defaults to PRIMARY.

• selection own ?-command script? ?-selection selection?
 window

Claims ownership of selection for window. If script is specified, it is executed
when window loses the selection. selection defaults to PRIMARY.

• clipboard clear ?-displayof window?
Claims ownership of the clipboard on window’s display and removes any
previous contents. window defaults to ..

• clipboard append ?-displayof window? ?-format format?
 ?-type type? ?--? data

Appends data to the clipboard on window’s display in the form given by type
with the representation given by format and claims ownership of the
clipboard on window’s display. window defaults to ., and format and type default
to STRING.

• clipboard get ?-displayof window? ?-type type?
Retrieves data from the clipboard on window’s display. type specifies the form
in which the data is to be returned. window defaults to . and type defaults to
STRING.

25.2 Selections, Retrievals, and Types

In the selection owner model, when a user selects information in a window,
the window acquires selection ownership. By convention, the PRIMARY
selection is used, though other selections are supported under the X Window
System. It is possible for multiple disjointed objects to be selected

571

simultaneously within a widget (for example, three different items in a
listbox or several different polygons in a drawing window), but usually the
selection consists of a single object or a range of adjacent objects. When a
window acquires ownership of the selection, any previous owner is notified
that it has lost ownership of the selection. At any time, the selection owner
may receive a request for the selection content in a particular format, and so
the selection owner must arrange to service these requests until it loses
ownership of the selection.
In the clipboard model, the user selects some information in a window, and
then explicitly requests that the data be copied to the clipboard. Clients can
then use the CLIPBOARD selection to request a copy of the data from the
clipboard.
When you retrieve the selection, you can ask for several different kinds of
information, referred to as retrieval types, which are also known as targets.
The most common type is STRING. In this case the contents of the selection are
returned as a string. For example, if text is selected, a retrieval with type
STRING returns the contents of the selected text; if graphics are selected, a
retrieval with type STRING could return some string representation for the
selected graphics. If the selection is retrieved with type FILE_NAME, the return
value could be the name of the file associated with the selection. If type LINE
is used, the return value could be the number of the selected line within its
file. There are many types with well-defined meanings; refer to the X
Consortium Standard Inter-Client Communication Conventions Manual
(ICCCM) for more information.
The command selection get retrieves the selection. The type may be specified
explicitly, or it may be left unspecified, in which case it defaults to STRING.
For example, the following commands might be invoked when the selection
consists of a few words on one line of a file containing the text of
Shakespeare’s Romeo and Juliet:

These commands could be issued in any Tk application on the display
containing the selection; they need not be issued in the application
containing the selection.
Not every widget supports every possible selection type. For example, if
the information in a widget isn’t associated with a file, the FILE_NAME type may

572

not be supported. If you try to retrieve the selection with an unsupported
type, an error is returned. It is up to the selection owner to define the types
supported for the selection and to perform the translation. Fortunately, every
widget is supposed to support retrievals with type TARGETS; such retrievals
return a list of all the target forms supported by the current selection owner.
You can use the result of a TARGETS retrieval to pick the most convenient
available type. For example, the following procedure retrieves the selection
as PostScript if possible and as an unformatted string otherwise:

Tk widgets always support the type STRING. Tk widgets also support the
following ICCCM types: MULTIPLE, TARGETS, TIMESTAMP, TK_APPLICATION, and
TK_WINDOW, and on X Window Systems only, UTF8_STRING. MULTIPLE allows for the
selection to include more than one item or block of text at a time. TARGETS
gives the list of supported types. TIMESTAMP indicates when the selection
occurred. The two TK types are specific to Tk applications and are
discussed in the next section.

25.3 Locating and Clearing the Selection

Tk provides two mechanisms for finding out who owns the selection. The
command selection own (with no additional arguments) checks whether the
selection is owned by a widget in the invoking application. If so, it returns
the path name of that widget; if there is no selection or it is owned by some
other application, selection own returns an empty string.
The second way to locate the selection is with the retrieval types
TK_APPLICATION and TK_WINDOW. These types are both implemented by Tk and are
available whenever the selection is in a Tk application. The command

selection get -type TK_APPLICATION

returns the name of the Tk application that owns the selection (in a form
suitable for use with the send command, for example), and

573

selection get -type TK_WINDOW

returns the path name of the widget that owns the selection. If the application
that owns the selection isn’t based on Tk, it does not support the
TK_APPLICATION and TK_WINDOW types, and the selection get command returns an
error. These commands also return errors if there is no selection.
The selection clear command clears out any selection on the display of the
application’s main window. It works regardless of whether the selection is
in the invoking application or some other application on the same display.
The following script clears out the selection only if it is in the invoking
application:

25.4 Supplying the Selection with Tcl Scripts

The standard widgets such as entries and texts already contain C code that
supplies the selection, so you don’t usually have to worry about it when
writing Tcl scripts. However, it is possible to write Tcl scripts that supply
the selection. For example, you might want a widget to support an additional
type, such as FILE_NAME, for better integration with other applications in your
environment.
The protocol for supplying the selection has three parts:

1. A widget must claim ownership of the selection. This deselects any
previous selection, then typically redisplays the newly selected
material in a highlighted fashion.

2. The selection owner must respond to retrieval requests by other
widgets and applications.

3. The owner may request that it be notified when it is deselected.
Widgets typically respond to deselection by eliminating the
highlights on the display.

The next paragraphs describe two scenarios. The first scenario just adds a
new type to a widget that already has selection support, so it deals only with
the second part of the protocol. The second scenario implements complete
selection support for a group of widgets that didn’t previously have any; it
deals with all three parts of the protocol.
Suppose that you wish to add a new type to those supported for a particular

574

widget. For example, text widgets contain built-in support for the STRING
type, but they don’t automatically support the FILE_NAME type. You could add
support for FILE_NAME retrievals with the following script:

This code assumes that the text widget is named .t and that the name of its
associated file is stored in a namespace variable MyApp::fileName. The selection
handle command tells Tk to invoke MyApp::getFile whenever .t owns the
selection and someone attempts to retrieve it with type FILE_NAME. When such
a retrieval occurs, Tk takes the specified command (MyApp::getFile in this
case), appends two additional numerical arguments, and invokes the
resulting string as a Tcl command. In this example a command such as

MyApp::getFile 0 4000

results. The additional arguments identify a subrange of the selection by its
first byte and maximum length, and the command must return this portion of
the selection. If the requested range extends beyond the end of the selection,
the command should return everything from the given starting point up to the
end of the selection. Tk takes care of returning the information to the
application that requested it. In most cases the entire selection is retrieved
in one invocation of the command; for very large selections, however, Tk
makes several separate invocations so that it can transmit the selection back
to the requester in manageable pieces.
In the preceding example a new type was simply added to a widget that
already provided some built-in selection support. If selection support is
being added to a widget that has no built-in support at all, additional Tcl
code is needed to claim ownership of the selection and to respond to
deselect notifications. For example, consider a group of three radiobuttons
named .a, .b, and .c that have already been configured with their -variable
and -value options to store information about the selected button in a variable
named MyApp::state. Suppose that you want to tie the radiobuttons to the
selection, so that: (1) whenever a button becomes selected, it claims the X
selection; (2) selection retrievals return the contents of MyApp::state; and (3)
when some other widget claims the selection away from the buttons,
MyApp::state is cleared and all the buttons become deselected. The following

575

code implements these features:

The selection handle command and the MyApp::getValue procedure are similar to
the previous example: they respond to STRING selection requests for .a by
returning the contents of the MyApp::state variable. The foreach loop specifies a
-command option for each of the widgets. This causes the selection own command
to be invoked whenever the user clicks on any of the radiobuttons, and the
selection own command claims ownership of the selection for widget .a (.a
officially owns the selection regardless of which radiobutton the user
selects, and it returns the value of MyApp::state in response to selection
requests). The selection own command also specifies that the procedure
MyApp::selGone should be invoked whenever the selection is claimed away by
some other widget. MyApp::selGone sets MyApp::state to an empty string. All of
the radiobuttons monitor MyApp::state for changes, so when it gets cleared, the
radiobuttons deselect themselves.

25.5 The clipboard Command

The clipboard command interfaces with the windowing system clipboard.
Data placed in the clipboard can be retrieved via the selection command’s -
selection CLIPBOARD option or the clipboard get command. Unlike what happens
with the PRIMARY selection, data placed on the clipboard can be retrieved at a
later time, independent of who owns the selection or if anything is selected
at all.
The clipboard is typically used to implement cut, copy, and paste operations
for a window. The text widget provides a binding for the virtual <<Copy>>

576

event that looks like this:

This function retrieves the selection from the text widget w, clears the current
clipboard contents, and then copies the data to the clipboard with the
clipboard append command. The paste function performs the inverse operation:

Note

This is a simplified version of the actual function for illustration only.
The actual function also deletes the current selection in the target
window and manages the edit history for the widget’s undo
functionality.

25.6 Drag and Drop

Drag and Drop (DND) is the ability to select an object with the mouse and
“drag” the object to a destination window. This action simplifies the
common copy/paste or cut/paste actions in an application. Tk does not
directly support this style of interaction, but intra-application DND is easily
implemented using the selection or clipboard command. The steps required for
DND are as follows:

1. On <ButtonPress-1>, mark the current window and location, assuming
the mouse cursor is over an already selected object.

2. On mouse motion, don’t start the “drag” operation until the mouse
moves sufficiently from the starting point. Once the mouse has

577

moved far enough to indicate a “drag,” initiate the drag and provide
feedback, for example, by changing the cursor.

3. On <ButtonRelease-1>, use the x- and y-coordinates relative to the
display root to identify the window under the mouse (the winfo
containing command can do this).

4. Get the selection and insert the data at the location under the mouse
as indicated by the %X and %Y location in the target window.

This simple approach works fine inside a Tk application, but what if you
want to support DND between two applications, or between the application
and the windowing system? There are extensions that implement standard
DND protocols across multiple platforms, such as TkDND (see
http://www.sourceforge.net/projects/tkdnd). This extension handles the sequence
of operations for you so that the only code the application needs to provide
is the code to perform the actual extraction of the selection and the insertion
at the drop point.

578

http://www.sourceforge.net/projects/tkdnd

579

26. Window Managers

A window manager is a component of the windowing system whose main
function is to control the arrangement and decoration of all the toplevel
windows on each screen. In this respect it is similar to a geometry manager,
except that instead of managing internal windows within an application, it
manages the toplevel windows of all applications. The window manager
allows each application to request particular locations and sizes for its
toplevel windows, which users can override interactively. Window
managers also serve several purposes besides geometry management: they
add decorative frames around toplevel windows; they allow windows to be
iconified and deiconified; and they notify applications of certain events,
such as user requests to close the window.
Some operating systems have just one desktop environment or window
manager such as Microsoft Windows and Apple’s Mac OS X Aqua,
whereas Linux and other Unix-based operating systems allow for the
existence of many different window managers that implement different
styles of layout, provide different kinds of decoration and icon management,
and so on. Some examples include the GNOME and KDE desktop
environments, along with the older CDE, or Common Desktop Environment.
Only a single window manager runs on a display at any given time, and the
user gets to choose which one.
With Tk you use the wm command to communicate with the window manager.
Tk implements the wm command so that any Tk-based application should
work with any window manager without regard to the type of window
manager or desktop environment currently in use. In order to create a well-
behaved application on the desktop, your programs need to call the wm
command to properly inform the window manager about window titles,
icons, and so on.

Note

In general, an application can only send requests or provide hints to the
window manager. The window manager is free to ignore or modify
those requests and hints. For example, an application can request a
certain size for its toplevel, but the window manager might enforce a

580

smaller size because of the available dimensions of the display, or the
application might request a feature not implemented by the particular
window manager.

26.1 Commands Presented in This Chapter

This chapter discusses the wm command for interacting with the window
manager. In all of the following commands, window must be the name of a
toplevel window. Many of the commands, such as wm aspect or wm group, are
used to set and query various parameters related to window management.
For these commands, if the parameters are specified as null strings, the
parameters are removed completely; if the parameters are omitted, the
command returns the current settings for the parameters.

• wm aspect window ?xThin yThin xFat yFat?
Constrains the aspect ratio (width/length) of window to the values given.

• wm attribute window ?attribute? ?value attribute value ...?
Sets or queries the window-system-specific attributes. See Section 26.8 and
the reference documentation.

• wm client window ?name?
Sets or queries the WM_CLIENT_MACHINE property for window, which gives the name
of the machine on which window’s application is running.

• wm command window ?value?
Sets or queries the WM_COMMAND property for window, which contains the
command line used to initiate window’s application.

• wm deiconify window
Arranges for window to be displayed in normal (noniconified) fashion.

• wm focusmodel window ?model?
Sets or queries the focus model for window. model must be active or passive.

• wm forget window
Arranges for window to no longer be managed as a toplevel window by the
window manager.

• wm geometry window ?value?
Sets or queries the requested geometry for window. value must have the form
=widthxheight±x±y (any of =, widthxheight, or ±x±y can be omitted).

• wm grid window ?baseWidth baseHeight widthInc heightInc?
Indicates that window is to be managed as a gridded window and also
specifies the relationship between grid units and pixel units. See the
reference documentation for more information.

581

• wm group window ?leader?
Sets or queries the window group to which window belongs. leader must be the
name of a toplevel window, or an empty string to remove window from its
current group.

• wm iconbitmap window ?-default? ?bitmap?
Sets or queries the bitmap for window’s icon. If the -default option is specified,
the icon is applied to all toplevel windows (existing and future) to which no
other specific icon has yet been applied.

• wm iconify window
Arranges for window to be iconified.

• wm iconmask window ?bitmap?
Sets or queries the mask bitmap for window’s icon.

• wm iconname window ?string?
Sets or queries the string to be displayed in window’s icon.

• wm iconphoto window ?-default? image1 ?image2 ...?
Sets the title bar icon for window based on the named photo images. Multiple
images are allowed to provide different image sizes. If the -default option is
specified, the icon is applied to all future toplevel windows as well.

• wm iconposition window ?x y?
Sets or queries the hints about where on the screen to display window’s icon.

• wm iconwindow window ?icon?
Sets or queries the window to use as the icon for window. icon must be the path
name of a toplevel window.

• wm manage window
Arranges for window to be managed as a toplevel window by the window
manager.

• wm maxsize window ?width height?
Sets or queries the maximum permissible dimensions for window during
interactive resize operations.

• wm minsize window ?width height?
Sets or queries the minimum permissible dimensions for window during
interactive resize operations.

• wm overrideredirect window ?boolean?
Sets or queries the override-redirect flag for window.

• wm positionfrom window ?whom?
Sets or queries the source of the position specification for window. whom must
be program or user.

• wm protocol window ?protocol? ?script?
Arranges for script to be executed whenever the window manager sends a
message to window with the given protocol. protocol must be the name of an atom

582

for a window manager protocol, such as WM_DELETE_WINDOW. If script is an empty
string, the current handler for protocol is deleted. If script is omitted, the
current script for protocol is returned (or an empty string if there is no
handler for protocol). If both protocol and script are omitted, the command
returns a list of all protocols with handlers defined for window.

• wm resizable window ?width height?
Controls whether the user may interactively change the width and the height of
the window, according to the Boolean values given.

• wm sizefrom window ?whom?
Sets or queries the source of the size specification for window. whom must be
program or user.

• wm state window ?newstate?
Sets or queries the current state of window. The state can be one of normal,
iconic, withdrawn, or zoomed (Windows and Mac OS X only).

• wm title window ?string?
Sets or queries the title string to display in the decorative border for window.

• wm transient window ?master?
Sets or queries the transient status of window. master must be the name of a
toplevel window on whose behalf window is working as a transient.

• wm withdraw window
Arranges for window to be withdrawn from the screen.

26.2 Window Sizes

Even if a Tk application never invokes the wm command, Tk still
communicates with the window manager on the application’s behalf so that
its toplevel windows appear on the screen. By default each toplevel
window appears in its natural size, which is the size it requested using the
normal Tk mechanisms for geometry management. Tk forwards the natural
size to the window manager, and most window managers honor the request.
If the natural size of a toplevel window should change, Tk forwards the new
size to the window manager, and the window manager resizes the window
to correspond to the latest request.
If the user interactively resizes a toplevel window, the window’s natural
size is ignored from that point on. Regardless of how the internal needs of
the window change, its size remains as set by the user. A similar effect
occurs if you invoke the wm geometry command, as in the following example:

wm geometry .w 300x200

583

This command forces .w to be 300 pixels wide and 200 pixels high, just as if
the user had resized the window interactively. The natural size for .w is
ignored, and the size specified in the wm geometry command overrides any size
that the user might have specified interactively (though the user can resize
the window again to override the size in the wm geometry command).
If you would like to restore a window to its natural size, you can invoke wm
geometry with an empty geometry string:

wm geometry .w {}

This causes Tk to forget any size specified by the user or by wm geometry, so
the window returns to its natural size.
If you want to limit interactive resizing, you can invoke wm minsize and/or wm
maxsize to specify a range of acceptable sizes. For example, the script

wm minsize .w 100 50
wm maxsize .w 400 150

allows .w to be resized but constrains it to be 100 to 400 pixels wide and 50
to 150 pixels high. If the command

wm minsize .w 1 1

is invoked, there is effectively no lower limit on the size of .w. If you set a
minimum size without a maximum size, the maximum size is the size of the
display; if you set a maximum size without a minimum size, the minimum
size is unconstrained. You can disable or enable interactive resizing with
the wm resizable command, which allows you to set two Boolean values to
indicate whether horizontal or vertical resizing is allowed. The following
command disables both horizontal and vertical resizing, fixing the window
at whatever size it is when the command is executed:

wm resizable .w 0 0

In addition to constraining the dimensions of a window, you can also
constrain its aspect ratio (width divided by height) using the wm aspect
command. For example,

wm aspect .w 1 3 4 1

tells the window manager not to let the user resize the window to an aspect
ratio less than 1/3 or greater than 4. See Figure 26.1 for examples of various

584

aspect ratios. After the command just given, the window manager allows the
user to resize .w to any of the shapes between the two dotted lines but not to
those outside the dotted lines.

Figure 26.1 The aspect ratio of a window is its width divided by its height.

26.3 Window Positions

Controlling the position of a toplevel window is simpler than controlling its
size. Users can move windows interactively, and an application can also
move its own windows using the wm geometry command. For example, the
command

wm geometry .w +100+200

positions .w so that its upper left corner is at pixel (100,200) on the display.
If either of the + characters is replaced with a -, the coordinates are
measured from the right and bottom sides of the display. For example,

wm geometry .w -0-0

positions .w at the lower right corner of the display.

Note

If you are using a virtual root window manager, the positions you
specify in a wm geometry command may be relative either to the screen or
to the virtual root window. Consult the documentation for your window

585

manager to see which of these is the case. With some window
managers, you can use options to the window manager along with the wm
positionfrom command to control which interpretation is used.

26.4 Gridded Windows

In some cases it doesn’t make sense to resize a window to arbitrary pixel
sizes. For example, consider the application shown in Figure 26.2. When
the user resizes the toplevel window, the text widget changes size in
response. Ideally the text widget should always contain an integral number
of characters in each dimension, and sizes that result in partial characters
should be rounded off.

Figure 26.2 An example of gridded geometry management

Gridded geometry management accomplishes this effect. When gridding is
enabled for a toplevel window, the window’s dimensions are constrained to
lie on an imaginary grid. The geometry of the grid is determined by one of
the widgets contained in the toplevel window (e.g., the text widget in Figure
26.2) so that the widget always holds an integral number of its internal
objects. Usually the widget that controls the gridding is a text-oriented
widget such as an entry or listbox or text. If the user interactively resizes the
window from the dimensions in Figure 26.2(a) to those in Figure 26.2(b),
the window manager rounds off the dimensions so that the text widget holds

586

an integral number of characters in each dimension.
To enable a widget to control the grid for a toplevel window, set the -setgrid
option to 1 in the controlling widget. Only one widget can control the
gridding for a given toplevel. The following code was used in the example
in Figure 26.2, where the text widget is .t:

.t configure -setgrid 1

This command has several effects. First, it identifies to the toplevel window
that this widget determines the grid size for the overall window. Second, it
changes the unit of measurement for dimensions used in the wm geometry
command. For the text widget, the unit of measurement is a character. For
example, the command

wm geometry . 50x30

sets the size of the main window so that .t is 50 characters wide and 30
lines high. The units in wm minsize and wm maxsize as well as the -width and -
height options for the widget itself are also measured in grid units instead of
points.
Gridding may also be defined using the wm grid command. This is used when
the grid unit size is determined by something other than a widget.

Note

Gridding works well only for windows with fixed-size objects, such
as a text window with a monospace font. If different characters have
different sizes, the window’s size won’t necessarily be an integral
number of characters.
Furthermore, in order for gridding to work correctly, you must have
configured the internal geometry management of the application so that
the controlling window stretches and shrinks in response to changes in
the size of the toplevel window, for example, by gridding it with the
option -sticky nsew.

26.5 Window States

587

At any given time each toplevel window is in a given state. In the normal or
deiconified state the window appears on the screen. In the zoomed state,
supported on Windows and Mac OS X systems, the window appears in a
maximized state on the screen. In the iconified state the window does not
appear on the screen, but an icon is displayed in the taskbar or desktop
instead. In the withdrawn state the window does not appear anywhere on the
screen and the window is ignored completely by the window manager.
New toplevel windows start off in the normal state. You can use the
facilities of your window manager to iconify a window interactively, or you
can invoke the wm iconify command within the window’s application; for
example:

wm iconify .w

If you invoke wm iconify immediately, before the window first appears on the
screen, it starts off in the iconic state. The command wm deiconify causes a
window to revert to normal state again.
The command wm withdraw places a window in the withdrawn state. If invoked
immediately, before a window has appeared on the screen, the window
starts off withdrawn. The most common use for this command is to prevent
the main window of an application from ever appearing on the screen (in
some applications the main window serves no purpose and the user
interface is presented with a collection of toplevel windows). Once a
window has been withdrawn, it can be returned to the screen with either wm
deiconify or wm iconify.
The wm state command sets or returns the current state for a window:

26.6 Decorations

When a window appears on the screen in the normal state, the window
manager usually adds a decorative frame around it. The frame typically
displays a title for the window and contains interactive controls for resizing
the window, moving it, and so on. For example, Mac OS X Aqua decorated
the window in Figure 26.2.
The wm title command allows you to set the title that is displayed in a

588

window’s decorative frame. For example, the command

wm title . "Declaration of Independence"

was used to set the title for the window in Figure 26.2.
Other wm commands have indirect effects on the interactive frame controls.
For example, if the resizable flags are set to false (wm resizable . 0 0), the
maximize button or the resize grab handle (lower right corner) is not
displayed. The exact change of the controls depends on which window
manager is in use.
The wm command provides several options for controlling what is displayed
when a window is iconified. First, you can use wm iconname to specify a title
to display in the icon. Second, some window managers allow you to specify
an image to be displayed in the icon. The wm iconphoto command allows you
to set this image. Some older window managers support only simple two-
color bitmaps for icons. The wm iconbitmap and wm iconmask are used to set a
two-color icon and transparency mask respectively. Third, some window
managers allow you to use one window as the icon for another; wm iconwindow
sets up such an arrangement if your window manager supports it. Finally,
you can specify a position on the screen for the icon with the wm iconposition
command.

Note

Almost all window managers support wm iconname. The wm iconphoto
command is handled differently on different window managers, fewer
support wm iconbitmap, and almost no window managers support wm
iconwindow very well. You need to experiment with these commands to
determine which ones meet your requirements based on the platform or
platforms your application needs to support.

26.7 Special Handling: Transients, Groups, and
Override-Redirect

You can ask the window manager to provide special treatment for windows
to implement features such as toolbars, nonmodal dialog boxes, and splash

589

screens.
You can mark a toplevel window as transient with a command like the
following:

wm transient .w .

This indicates to the window manager that .w is a short-lived window such
as a dialog box, working on behalf of the application’s main window. The
last argument to wm transient (which is . in the example) is referred to as the
master for the transient window. Most window managers ensure that a
transient window always remains above its master. Additionally, the
window manager may treat transient windows differently from other
windows by providing less decoration or by iconifying and deiconifying
them whenever their master is iconified or deiconified.
In situations where several long-lived windows work together, you can use
the wm group command to tell the window manager about the group. The
following script tells the window manager that the windows .top1, .top2,
.top3, and .top4 are working together as a group, and .top1 is the group
leader:

The window manager can then treat the group as a unit, and it may give
special treatment to the leader. For example, when the group leader is
iconified, all the other windows in the group might be removed from the
display without icons being displayed for them: the leader’s icon represents
the whole group in this case. When the leader’s icon is deiconified again,
all the windows in the group might return to the display. The exact treatment
of groups is up to the window manager, and different window managers may
handle them differently. The leader for a group need not actually appear on
the screen (e.g., it could be withdrawn).
In some rare cases it is important for a toplevel window to be completely
ignored by the window manager: no decorations, no interactive
manipulation of the window via the window manager, no iconifying, and so
on. Typical examples of such a window are a hover-help window or a
splash screen. In these cases, the windows should be marked as override-
redirect using a command similar to the following:

wm overrideredirect .splash true

590

This command must be invoked before the window has actually appeared on
the screen.

Note

Menus automatically mark themselves as override-redirect so you
don’t need to do this for them.

26.8 System-Specific Window Attributes

Each windowing system has unique features that do not have any portable
equivalent in other windowing systems. The wm attribute command is used to
query and set some of these unique features:

wm attribute window ?attribute? ?value attribute value ...?

Currently, all windowing systems support the following attributes:

• -fullscreen boolean
When true, the window fills the entire screen without any window manager
decoration. This feature is usually used in conjunction with -topmost.

• -topmost boolean
When true, the window always appears above all others.
On Windows, the following additional attributes are available:

• -alpha number
Controls the transparency of the toplevel. Valid values are in the range 0.0
(transparent) to 1.0 (opaque).

• -disabled boolean
When true, the window is in a disabled state and cannot take focus.

• -toolwindow boolean
When true, causes the window to take on the style of a tool window.

• -transparentcolor color
Specifies the transparent color of the toplevel. If the empty string is
specified (default), no transparent color is used.
On Mac OS X Aqua, the following additional attributes are available:

• -alpha number
Controls the transparency of the toplevel. Valid values are in the range 0.0
(transparent) to 1.0 (opaque).

591

• -modified boolean
When true, the window close icon shows the modified state. This is
typically used to show that the application has modified, unsaved data.

• -notify boolean
When true, it causes the icon in the dockbar to bounce and, if enabled, the
voice announcement is triggered to indicate that the application needs
attention.

• -titlepath pathname
When set, specifies the path of the file referenced by the icon in the title bar
of the window, which can be dragged and dropped in lieu of the file’s
Finder icon.
On X11, the following additional attributes are available:

• -zoomed boolean
When true, maximizes the window as with wm state of zoomed for Windows
and Mac OS X.

26.9 Dockable Windows

The wm manage command is used to make any window into a toplevel window
managed by the window manager, and the wm forget command performs the
inverse operation, informing the window manager to stop managing the
window. Although this command can work with any widget, it is ideally
suited for use with the toplevel and frame widgets. These commands are
used to effect a “dock” operation, where two toplevel windows are joined
to make a single toplevel window, and an “undock” operation, where a
subwindow is removed from a toplevel window and made into a separate
toplevel window. These commands alone do not perform the complete
operation but when combined with another geometry manager command
complete the task. A typical dock operation would be

wm forget .top.frame1
grid.top.frame1 -row 0 -column 1

An undock operation would be

grid forget .top.frame1
wm manage .top.frame1

There are some limitations to be aware of when using the wm manage
command:

592

• When “docking,” the widget must be a child of the geometry
manager’s master widget.

• Toplevel class windows behave like frames when not managed by the
window manager, so only the frame properties of the widget apply.
This means the -menu setting is ignored and the menu bar is no longer
available in the window. It does reappear when the toplevel
window is again managed by the window manager.

• Only a toplevel widget can have a menu bar because this is the only
Tk widget with a -menu option.

• Bindtags that have been set explicitly in any subwindow of a docked
or undocked window must be reset or updated. This is because the
bindtag contains the widget path of the toplevel window. Since the
path of the toplevel window has been changed as a result of the
operation, the old bindtag is no longer appropriate. (See Section
22.8 for more information on bindtags.)

26.10 Window Close

Closing a toplevel window can be performed by the Tcl script using the
destroy command, or by the window manager when the user presses the close
button on the decoration frame. There are times when it is necessary for the
application to be notified when the window manager closes a window so
that additional actions may be taken or the operation prevented altogether.
This operation can be intercepted with the wm protocol command. There are
several window manager protocols that are implemented in X11, but the
only one relevant here and uniformly recognized on all platforms and
window managers is the WM_DELETE_WINDOW protocol. The window manager
invokes this protocol when it wants the application to destroy the window,
as when the user asks the window manager to close the window.
The wm protocol command arranges to execute a script whenever a particular
protocol is triggered. For example, the command

593

prompts the user for confirmation to quit whenever the window manager
asks the application to close its main window. If the user selects “No,” the
window is not actually destroyed. If you’ve not used the wm protocol
command to register a handler for the WM_DELETE_WINDOW protocol on a toplevel,
Tk takes the default action of destroying the window. For other protocols,
nothing happens unless you specify an explicit handler.

26.11 Session Management

Some window managers manage the user’s session, recording which
applications are running when the session is closed (i.e., when the user logs
off the system) and starting those same applications when a new session is
started (i.e., when the user logs on to the system). Two special wm commands
can provide the necessary information so that the window manager can
successfully save and restore the Tk application. The wm client command
provides the name of the host machine running the application. The wm command
command provides a program path name with arguments (i.e., a full
command line) that the session manager can use to restart the application.
For example,

wm client . sprite.berkeley.edu
wm command . {browse /usr/local/bin}

indicates that the application is running on the machine sprite.berkeley.edu and
was invoked with the shell command browse/usr/local/bin.

594

595

27. Focus, Modal Interaction, and Custom
Dialogs

This chapter discusses the management of the input focus window and
modal windows. Input focus determines which widget in your application
receives keyboard events. A modal window is a child window that requires
users to interact with it before they can continue interacting with the main
window. The most common examples of modal windows are dialogs such
as a file selector.
The default Tk bindings automatically handle focus management and modal
interactions in a way that most users expect. For example, clicking on an
entry automatically gives it focus so that the user can enter text into it, and
the dialogs provided by Tk automatically behave as modal windows.
Typically the only situation where you would manage focus and modal
interaction explicitly is if you need to create you own custom dialogs for
your application.

27.1 Commands Presented in This Chapter

This chapter describes the following commands for use in manipulating
focus, modal interaction, and custom dialogs:

• focus
Returns the path name of the focus window on the display containing the
application’s main window, or an empty string if no window in this
application has the focus on that display.

• focus -displayof window
Returns the name of the focus window on the display containing window. If the
focus window for window’s display isn’t in this application, the return value is
an empty string.

• focus -lastfor window
Returns the name of the most recent window to have the input focus among
all the windows in the same toplevel as window. If no window in that toplevel
has ever had the input focus, or if the most recent focus window has been
deleted, the name of the toplevel is returned.

• focus ?-force? window

596

Sets the application’s focus window to window. The -force option also forces
the application to have focus; this feature should be used sparingly.

• tk_focusFollowsMouse
Switches Tk to an implicit focus model, where focus is set to a window
whenever the mouse enters it.

• tk_focusNext window
Returns the next window after window in the focus order.

• tk_focusPrevious window
Returns the window just before window in the focus order.

• grab ?-global? window
Same as the grab set command.

• grab current ?window?
Returns the name of the current grab window for window’s display, or an
empty string if there is no grab for that display. If window is omitted, it returns
a list of all windows grabbed by this application for all displays.

• grab release window
Releases the grab on window, if there is one.

• grab set ?-global? window
Sets a grab on window, releasing any previous grab on window’s display. If -
global is specified, the grab is global; otherwise it is local.

• grab status window
Returns none if no grab is currently set on window, local if a local grab is set,
and global if a global grab is set.

• tkwait variable varName
Waits until the variable varName changes value, then returns.

• tkwait visibility window
Waits until the visibility state of window changes, then returns.

• tkwait window window
Waits until window is destroyed, then returns.

27.2 Input Focus

At any given time one window of an application is designated as the input
focus window, or focus window for short. All keystrokes received by the
application are directed to the focus window and are processed according
to its event bindings; if the focus window has no bindings for the keystroke,
the keystroke is ignored.

597

Note

The focus window is used only for key press and key release events.
Mouse-related events, such as enter, leave, button press, and button
release, are always delivered to the window under the mouse,
regardless of the focus window. Furthermore, the focus window
determines only what happens once a keystroke event arrives at a
particular application; it does not determine which of the applications
on the display receives keystrokes. The choice of a focus application is
made by the window manager, not Tk.

27.2.1 Focus Model: Explicit versus Implicit

There are two possible ways of handling the input focus, known as the
implicit and explicit focus models. In the implicit model the focus follows
the mouse: keystrokes are directed to the window under the mouse pointer,
and the focus window changes implicitly when the mouse moves from one
window to another. In the explicit model the focus window is set explicitly
and doesn’t change until it is explicitly reset; mouse motions do not
automatically change the focus.
Tk implements the explicit focus model, for several reasons. First, the
explicit model allows you to move the mouse cursor out of the way when
you’re typing in a window; with the implicit model you’d have to keep the
mouse in the window while you type. Second, and more important, the
explicit model allows an application to change the focus window without
the user moving the mouse. For example, when an application pops up a
dialog box that requires type-in, such as one that prompts for a file name, it
can set the input focus to the appropriate window in the dialog without your
having to move the mouse, and it can move the focus back to its original
window when you’re finished with the dialog box. This allows you to keep
your hands on the keyboard. Similarly, when you’re typing in a form, the
application can move the input focus to the next entry in the form each time
you press the Tab key, so that you can keep your hands on the keyboard and
work more efficiently. Last, if you want an implicit focus model, it can
always be achieved with event bindings that change the focus each time the
mouse cursor enters a new window. Tk provides a command named
tk_focusFollowsMouse that switches your application to an implicit focus model:

598

it reconfigures Tk bindings so that the focus is set to a window whenever
the mouse enters it.
Tk applications don’t need to worry about the input focus very often
because the default bindings for text-oriented widgets already take care of
the most common situations. For example, when you click mouse button 1
over an entry or text widget, the widget automatically makes itself the focus
window. As an application designer you need to set the focus only in cases
like those in the previous paragraph where you want to move the focus
among the windows of your application to reflect the flow of work. You
should be careful when doing this, though, because most windowing systems
use the explicit focus model. Changing the model can prove disconcerting to
your users.

27.2.2 Setting the Input Focus

To set the input focus, invoke the focus command with a widget name as
argument:

focus .dialog.entry

This directs subsequent keystrokes received by the application to
.dialog.entry; the previous focus window no longer receives keystrokes. The
new focus window displays some sort of highlight, such as a blinking
insertion cursor, to indicate that it has the focus, and the previous focus
window stops displaying its highlight.

Note

The focus -force option also attempts to force the application to have
focus; not all window managers honor this request. In general, forcing
focus to your application should be used sparingly; it is akin to going
up to a person at a party and shouting, “Pay attention to me!”

27.2.3 Querying the Input Focus

Sometimes it’s useful to query the current focus window, particularly if your

599

application needs to redirect focus temporarily to a different window. The
focus command returns the name of the application’s current focus window,
or an empty string if no window in the application is currently the focus
window. In contrast, focus -lastfor returns the name of the last focus window
within the toplevel containing the specified window; this is the name of the
window that receives the input focus the next time the window manager
gives focus to the toplevel.

27.3 Modal Interactions

Usually the user of a Tk application has complete control over what
operations to perform and in what order. The application offers a variety of
panels and controls, and the user selects among them. However, there are
times when it’s useful to restrict the user’s range of choices or force the user
to do things in a certain order; these are called modal interactions. The best
example of a modal interaction is a dialog box: the application is carrying
out some function requested by the user such as writing information to a file
when it discovers that it needs additional input from the user, such as the
name of the file to write. It displays a dialog box and forces the user to
respond to the dialog box, for example, by selecting a file name, before
proceeding. After the user responds, the application completes the operation
and returns to its normal mode of operation where the user can do anything
he or she pleases.
Tk provides two mechanisms for use in modal interactions. First, the grab
command allows you to restrict the user temporarily so that he or she can
interact with only a few of the application’s windows (for example, only the
dialog box). Second, the tkwait command allows you to suspend the
evaluation of a script until a particular event has occurred, such as the user
responding to a dialog box, and then continue the script after this has
happened.

Note

A word of caution is in order here. Although modal interactions are
sometimes useful, most experts agree that they should be kept to a
minimum. Users can become frustrated if their range of choices is
constantly being limited by modes, and mode switches can be

600

confusing.

27.3.1 Grabs

Mouse events such as button presses and mouse motions are normally
delivered to the window under the pointer. However, it is possible for a
window to claim ownership of the mouse so that mouse events are
delivered only to that window and its descendants in the Tk window
hierarchy. This is called a grab. When the mouse is over one of the
windows in the grab subtree, mouse events are delivered and processed just
as if no grab were in effect. When the mouse is outside the grab subtree,
button presses and releases and mouse motion events are delivered to the
grab window instead of the window under the mouse, and window entry and
exit events are discarded. Thus, a grab prevents the user from interacting
with windows outside the grab subtree.
The grab command sets and releases grabs. For example, if you’ve created a
dialog box named .dlg and you want to prevent the user from interacting with
any window except .dlg and its subwindows, you can invoke the command

grab set .dlg

After the user has responded to the dialog box, you can release the grab with
the command

grab release .dlg

If the dialog box is destroyed after the user has responded to it, there’s no
need to invoke grab release: Tk releases the grab automatically when the grab
window is destroyed.
To see how grabs work, try the following script:

In this script, you can interact with only one widget, the button .b3, which

601

has a grab on input events. You cannot set the keyboard focus to the entry
box or enter text. If you click on .b3, labeled “Grabby Button,” the callback
script destroys the button. This finally allows you to interact with the other
buttons as well as the entry widget.
The most common way to use grabs is to set a grab on a toplevel window so
that only a single panel or dialog box is active during the grab. However, it
is possible for the grab subtree to contain additional toplevel windows;
when this happens, all of the panels or dialogs corresponding to those
toplevel windows are active during the grab.

Note

Some window managers cause grab to fail or to raise an error if you try
to set a grab on a window that is not visible. Section 27.3.4 describes
how to use the tkwait visibility command to wait for a window to
become visible.

27.3.2 Local versus Global Grabs

Tk provides two forms of grab, local and global. A local grab affects only
the grabbing application: if the user moves the pointer into some other
application on the display, he or she can interact with the other application
as usual. You should always try to use local grabs, and they are the default
in the grab set command. A global grab takes over the entire display so that
you cannot interact with any application except the one that set the grab. To
request a global grab, specify the -global switch to grab set as in the
following command:

grab set -global .dlg

Global grabs are rarely needed, and they are tricky to use (if you forget to
release the grab, your display locks up so that it is unusable). One place
where global grabs are used internally by Tk is for pull-down menus.

Note

602

If you need to implement a global grab in your application, it can be
useful to install some sort of back door to regain control or let you kill
the application if you accidentally lock your display. For example, you
could install a key binding on the all bindtag, or set an after event
handler to exit your application after some time.

27.3.3 Keyboard Handling during Grabs

Local grabs have no effect on the way the keyboard is handled: keystrokes
received anywhere in the application are forwarded to the focus window as
usual. Most likely you should set the focus to a window in the grab subtree
when you set the grab. Windows outside the grab subtree can’t receive any
mouse events, so they are unlikely to claim the focus away from the grab
subtree. Thus, the grab is likely to have the effect of restricting the keyboard
focus to the grab subtree; however, you are free to move the focus anywhere
you wish. If you move the pointer into another application, the focus moves
to that other application just as if there had been no grab.
During global grabs Tk also sets a grab on the keyboard so that keyboard
events go to the grabbing application even if the pointer is over some other
application. This means that you cannot use the keyboard to interact with
any other application. Once keyboard events arrive at the grabbing
application, they are forwarded to the focus window in the usual fashion.

27.3.4 Waiting: The tkwait Command

The second aspect of a modal interaction is waiting. Typically you want to
suspend a script during a modal interaction and resume it when the
interaction is complete. For example, if you display a file selection dialog
during a file write operation, you probably want to wait for the user to
respond to the dialog, then complete the file write using the name supplied
in the dialog interaction. Or when you start up an application, you might
wish to display an introductory panel that describes the application and
keep this panel visible while the application initializes itself; before going
off to do the main initialization, you’ll want to be sure that the panel is
visible on the screen. The tkwait command can be used to wait in situations
like these.
tkwait has three forms, each of which waits for a different event to occur.

603

The first form waits for a window to be destroyed, as in the following
command:

tkwait window .dlg

This command does not return until .dlg has been destroyed. You might
invoke this command after creating a dialog box and setting a grab on it; the
command doesn’t return until after the user has interacted with the dialog in
a way that causes it to be destroyed. While tkwait is waiting, the application
responds to events so the user can interact with the application’s windows.
In the dialog box example, bindings must exist to destroy the dialog once the
user’s response is complete (e.g., the user clicks on the OK button). The
bindings for the dialog box might also save additional information in
variables (such as the name of a file or an identifier for the button that was
pressed). This information can be used once tkwait returns.
The following script creates a panel with two buttons labeled “OK” and
“Cancel,” waits for the user to click on one of the buttons, and then deletes
the panel:

When the tkwait command returns, the variable label contains the label of the
button on which you clicked.
The second form for tkwait waits for the visibility state of a window to
change. For example, the command

tkwait visibility .intro

does not return until the visibility state of .intro has changed. Typically this
command is invoked just after a new window is created, in which case it
doesn’t return until the window becomes visible on the screen. tkwait

604

visibility can be used to wait for a window to become visible before setting
a grab on it, or to make sure that an introductory panel is on the screen
before invoking a lengthy initialization script. Like all forms of tkwait, tkwait
visibility responds to events while waiting.
The third form of tkwait is equivalent to the vwait command. In this form, the
command doesn’t return until a given variable has been modified. For
example, the command

tkwait variable x

does not return until variable x has been modified. This form of tkwait is
typically used in conjunction with event bindings that modify the variable.
For example, the following procedure uses tkwait variable to implement
something analogous to tkwait window, except that you can specify more than
one window and the procedure will return as soon as any of the named
windows has been deleted (it returns the name of the window that was
deleted):

27.4 Custom Dialogs

Tk includes a number of built-in dialogs, such as tk_getOpenFile, that you
should use if they meet your needs. See Section 18.14 for a description of
the built-in dialogs provided by Tk. If none of these is suitable, you can
create a custom dialog. Your custom dialog should be a toplevel window.
You should also register your toplevel window as a transient for your
application’s main window using a command like the following, as
described in Chapter 26:

wm transient .dialog .

This command registers the toplevel window .dialog as a transient window

605

on behalf of the main window ., so that the window manager can choose to
provide dialog-specific decorations for your dialog window.

Note

Some window managers create the window as withdrawn if the parent
window is withdrawn or iconified. Combined with the grab that you
put on the dialog window, this can hang the entire application.
Therefore, the safest approach is to make the dialog transient only if
the parent is viewable. You could accomplish this with the winfo
viewable command as follows:

When you have a lot of widgets for your dialog, you can hide the window
until all the widgets are ready. In window manager terms, you withdraw the
window and then later deiconify it (all these terms come from the X
Window System); for example:

You should also set the title and a script to handle the close button (as
described in Chapter 26); for example:

This example calls the procedure cancelDialog when the user clicks on the
close button for the window. If your dialog has a “Cancel” button, it’s often
a good idea to use the same script as for that button. In fact, you can simply
invoke the “Cancel” button’s script in this case, for example:

606

For data-entry widgets, you normally use a grid-based layout to manage the
widget positions. Using a grid allows the prompts and data-entry widgets to
line up. And if you want the dialog to be modal, follow the techniques
described in this chapter; for example:

These commands wait until the dialog window is destroyed.

Note

On some window managers, it is possible that these tkwait or grab set
commands will raise an error condition. Therefore, it’s safest to run
each of these using a catch command to silently ignore these errors.

The following script pulls all these pieces together to create a simple main
window and a modal dialog. In this case, the dialog gathers input to set up a
user account for some hypothetical Internet site. To keep the example
simple, the main window sports two buttons, one to display the “Create
Account” dialog and one to exit the application. The script follows:

607

608

609

In this script, the cancelDialog procedure destroys the dialog window. The
createAccount procedure acts as a placeholder for the actual code that would
create a new user account. Figure 27.1 shows the main window. The
showCreateAccount procedure creates and populates the create account dialog
when the user clicks on the “Create Account” button. Figure 27.2 shows this
dialog. While the “Create Account” dialog is visible, the main window
does not accept keyboard or mouse input. The user then can enter in account
information, including a password that is shown as asterisks.

Figure 27.1 The main window

Figure 27.2 The create account custom dialog

610

Note

An alternate approach would be to build the dialog once, and then use
wm deiconify and wm withdraw to show and hide it as needed. This could
save time if it were a particularly complex dialog. It also has the
benefit of allowing widgets to maintain—and even update—their state
while hidden, which could be quite useful for something like a
preferences dialog.

611

612

28. More on Configuration Options

Configuration options for widgets were introduced in previous chapters.
You can specify configuration options when creating new widgets and
modify them with the configure action for widget commands. This chapter
describes two additional facilities related to options. The first part of the
chapter describes the option database, which can be used to specify default
values for options. The second part of the chapter describes the full syntax
of the configure widget command; it can be used to retrieve information about
options as well as to modify options.

28.1 Commands Presented in This Chapter

This chapter discusses the following commands for manipulating
configuration options. For a complete list of the options available for a
particular widget class, see the reference documentation for the
corresponding class command, such as button.

• class widget ?optionName value optionName value ...?
Creates a new widget with class class and path name widget and sets options
for the new widget as given by optionName value pairs. Unspecified options are
filled in using the option database or widget defaults. Returns widget as the
result.

• widget cget optionName
Returns the value currently assigned to the option optionName for widget.

• widget configure
Returns a list whose elements are sublists describing all of the options for
widget. Each sublist describes one option in the form described next.

• widget configure optionName
Returns a list describing the option optionName for widget. The list normally
contains five values: optionName, the option’s name in the option database, its
class, its default value, and its current value. If the option is a synonym for
another option, the list contains two values: the option name and the
database name for the synonym.

• widget configure optionName value ?optionName value ...?
Sets the value for each optionName of widget to the corresponding value.

• option add pattern value ?priority?

613

Adds a new option to the option database as specified by pattern and value.
priority must be either a number between 0 and 100 or a symbolic name (see
the reference documentation for details on symbolic names); if omitted, it
defaults to interactive (80).

• option clear
Removes all entries from the option database.

• option get widget dbName dbClass
If the option database contains a pattern that matches widget, dbName, and
dbClass, returns the value for the highest-priority matching pattern. Otherwise
returns an empty string.

• option readfile fileName ?priority?
Reads fileName, which must have the standard format for a .Xdefaults file, and
adds all the options specified in that file to the option database at priority
level priority. The priority defaults to interactive (80) if omitted.

28.2 The Option Database

The option database supplies values for configuration options that aren’t
specified explicitly by the application designer. The option database is
consulted when widgets are created: for each option not specified on the
command line, the widget queries the option database and uses the value
from the database, if there is one. If there is no value in the option database,
the widget class supplies a default value. Values in the option database are
usually provided by the user to personalize applications, for example, to
specify consistently larger fonts. On Unix systems, Tk supports the
RESOURCE_MANAGER property and .Xdefaults file in the same way as other X
toolkits.
The option database shouldn’t be needed very often in Tk applications
because widgets have reasonable default values for their options. If options
do need to be changed, it is often easier to make the changes by invoking
configure widget commands from a Tcl script rather than creating entries in
your .Xdefaults file. The option database exists primarily to provide cultural
compatibility with other X toolkits; you should use it as little as possible.

28.3 Option Database Entries

The option database contains any number of entries, where each entry

614

consists of two strings: a pattern and a value. The pattern specifies one or
more widgets and options, and the value is a string to use for options that
match the pattern.
In its simplest form a pattern consists of an application name, an optional
widget name, and an option name, all separated by dots. For example, here
are two patterns in this form:

wish.a.b.foreground
wish.background

The first pattern applies to the foreground option in the widget .a.b in the
application wish. In the second pattern the widget name is omitted, so the
pattern applies to the main widget for wish. Each of these patterns applies to
only a single option for a single widget.
Patterns may also contain classes or wildcards, which allow them to match
many different options or widgets. Any component of the widget name may
be replaced by a class, in which case the pattern matches any widget that is
an instance of that class. For example, the following pattern applies to all
children of .a that are checkbuttons:

wish.a.Checkbutton.foreground

Application and option names may also be replaced with classes. The
application name is the name of the executable (which would be the
interpreter name if you start an interactive interpreter, or the script name if
you create a self-executing script); the application class is the application
name with the initial letter capitalized. Individual options also have classes.
For example, the class for the foreground option is Foreground. Several other
options such as insertBackground (the color used for displaying an insertion
cursor) also have the class Foreground, so the following pattern applies to any
of these options for any entry widget that is a child of .a in wish:

wish.a.Entry.Foreground

Last, patterns may contain * wildcard characters. An * matches any number
of window names or classes, as in the following examples:

*Foreground
*Button.foreground

The first pattern applies to any option in any widget of any application as
long as the option’s class is Foreground. The second pattern applies to the

615

foreground option of any button widget in any application. The * wildcard may
be used only for window or application names; it cannot be used for the
option name (it wouldn’t make much sense to specify the same value for all
options of a widget).

Note

This syntax for patterns is the same as that supported by the standard X
resource database mechanisms in the X Window System.

The database name for an option is usually the same as the name you would
use in a widget creation command or a configure widget command, except
that there is no leading - and capital letters are used to mark internal word
boundaries. For example, the database name for the -borderwidth option is
borderWidth. The class for an option is usually the same as its database name
except that the first letter is capitalized. For example, the class for the -
borderwidth option is BorderWidth. It’s important to remember that in Tk classes
always start with an initial capital letter; any name starting with an initial
capital letter is assumed to be a class.

28.4 The RESOURCE_MANAGER Property and .Xdefaults File

When a Tk application starts up, Tk automatically initializes the option
database. For an X windowing system, if there is a RESOURCE_MANAGER property
on the root window for the display, the database is initialized from it.
Otherwise, Tk checks the user’s home directory for a .Xdefaults file and uses
it if it exists. The initialization information has the same form whether it
comes from the RESOURCE_MANAGER property or the .Xdefaults file. The syntax
described here is the same as that supported by other X toolkits.
Each line of initialization data specifies one entry in the resource database
in a form such as the following:

*Foreground: blue

The line consists of a pattern (*Foreground in the example) followed by a
colon, whitespace, and a value to associate with the pattern (blue in the
example). If the value is too long to fit on one line, it can be placed on
multiple lines with each line but the last ending in a backslash-newline

616

sequence:

The backslashes and newlines are not part of the value.
Blank lines are ignored, as are lines whose first nonblank character is # or !.

28.5 Priorities in the Option Database

It is possible for several patterns in the option database to match a
particular option. When this happens, Tk uses a two-part priority scheme to
determine which pattern applies. Tk’s mechanism for resolving conflicts is
different from the standard mechanism supported by the X Toolkit (Xt).
For the most part the priority of an option in the database is determined by
the order in which it was entered into the database: newer options take
priority over older ones. When specifying options (for example, by typing
them into your .Xdefaults file), you should specify the more general options
first, and more specific overrides later. For example, if you want button
widgets to have a background color of Bisque1 and all other widgets to have
white backgrounds, put the following lines in your .Xdefaults file:

*background: white
*Button.background: Bisque1

The *background pattern matches any option that the *Button.background pattern
matches, but the *Button.background pattern has higher priority since it was
specified last. If the order of the patterns had been reversed, all widgets
(including buttons) would have white backgrounds, and the *Button.background
pattern would have no effect.
In some cases it may not be possible to specify general patterns before
specific ones (for example, you might add a more general pattern to the
option database after it has already been initialized with a number of
specific patterns from the RESOURCE_MANAGER property). To accommodate these
situations, each entry also has an integer priority level between 0 and 100,
inclusive. An entry with a higher-priority level takes precedence over
entries with lower-priority levels, regardless of the order in which they
were inserted into the option database. Priority levels are not used very
often in Tk; refer to the reference documentation for complete details on

617

how they work.
Tk’s priority scheme is different from the scheme used by other X toolkits
such as Xt. Xt gives higher priority to the most specific pattern; for example,
.a.b.foreground is more specific than *foreground, so it receives higher priority
regardless of the order in which the patterns appear. In most cases this isn’t
a problem: you can specify options for Xt applications using the Xt rules,
and options for Tk applications using the Tk rules. In cases where you want
to specify options that apply to both Tk applications and Xt applications,
use the Xt rules but make sure that the patterns considered higher-priority by
Xt appear later in your .Xdefaults file. In general, you shouldn’t need to
specify very many options to Tk applications (the defaults should always be
reasonable), so the issue of pattern priority shouldn’t come up often.

Note

The option database is queried only for options not specified explicitly
in the widget creation command. This means that the user cannot
override any option that is specified in a widget creation command. If
you want to specify a value for an option but allow the user to override
that value through the RESOURCE_MANAGER property, you should specify the
value for the option using the option command, described in the next
section.

28.6 The option Command

The option command allows you to manipulate the option database while an
application is running. The command option add creates a new entry in the
database and takes two or three arguments. The first two arguments are the
pattern and value for the new entry, and the third argument, if specified, is a
priority level for the new entry. The priority defaults to interactive (80) if
omitted. For example,

option add *Button.background Bisque1

adds an entry that sets the background color for all button widgets to Bisque1.
Changes to the option database affect only the application in which option add
is invoked, and they apply only to new widgets created after option add is

618

executed; the database changes do not affect widgets that already exist.
The option clear command removes all entries from the option database. On
the next access to the database, it is re-initialized from the RESOURCE_MANAGER
property or the .Xdefaults file.
The command option readfile reads a file in the format described earlier for
the RESOURCE_MANAGER property and make entries in the option database for each
line. For example, the following command augments the option database
with the information in the file newOptions:

option readfile newOptions

The option readfile command can also be given a priority level as an extra
argument after the file name to specify the priority at which the options are
added. The priority defaults to interactive (80) if omitted.
To query whether there is an entry in the option database that applies to a
particular option, use the option get command:

option get .a.b background Background

This command takes three arguments: the path name of a widget (.a.b), the
database name for an option (background), and the class for that option
(Background). The command searches the option database to see if any entries
match the given window, option, and class. If so, the value of the highest-
priority matching option is returned. If no entry matches, an empty string is
returned.

28.7 The configure Widget Command

Every widget class supports a configure widget command. This command
comes in three forms, which can be used both to change the values of
options and to retrieve information about the widget’s options.
If a configure widget command is given two additional arguments, it changes
the value of an option, as in the following example:

.button configure -text Quit

If the configure widget command is given just one extra argument, it returns
information about the named option:

 .button configure -text
⇒ -text text Text { } Quit

619

The return value is normally a list with five elements. The first element of
the list is the name of the option as you’d specify it on a Tcl command line
when creating or configuring a widget. The second and third elements are a
name and class to use for looking up the option in the option database. The
fourth element is the default value provided by the widget class (a single
space character in the preceding example), and the fifth element is the
current value of the option.
Some widget options are just synonyms for other options (e.g., the -bg option
for buttons is the same as the -background option). Configuration information
for a synonym is returned as a list with two elements consisting of the
option’s command-line name and the option database name of its synonym:

 .button configure -bg
⇒ -bg background

If the configure widget command is invoked with no additional arguments, it
returns information about all of the widget’s options as a list of lists, where
each element is a nested sublist of information for each option:

620

28.8 The cget Widget Command

Every widget class supports a cget widget command. This command accepts
the name of one option as an argument, and it returns the current value of that
option. Pass the name of the option. For example:

Unlike the configure widget command, which returns a list when used to
retrieve widget values, the cget widget command returns just the value of the
given option.

621

622

29. Odds and Ends

This chapter describes several additional Tk commands: destroy, which
deletes widgets; update, which forces operations that are normally delayed,
such as screen updates, to be done immediately; winfo, which provides a
variety of information about windows, such as their dimensions and
children; bell, for ringing the bell; and tk, which provides access to various
internals of the Tk toolkit. This chapter also describes several predefined
variables that are read or written by Tk and may be useful in Tk
applications.

29.1 Commands Presented in This Chapter

This chapter discusses the following commands:

• destroy window ?window window ...?
Deletes each of the windows and all of the windows descended from them.
The corresponding widget commands (and all widget states) are also
deleted.

• tk appname ?newName?
Returns the current application name, or sets the application name to newName.

• tk inactive ?-displayof window? ?reset?
Returns the time in milliseconds since the last user interaction on the display
containing window, which defaults to .. Including the reset argument resets the
idle timer.

• tk scaling ?-displayof window? ?number?
Returns the scaling factor on the display containing window, which defaults to
., or sets it to number. The scaling factor is a floating-point number expressing
the number of pixels per typographic point.

• tk windowingsystem
Returns the current Tk windowing system, one of x11 (X11-based), win32 (MS
Windows), or aqua (Mac OS X Aqua).

• update ?idletasks?
Brings the display up to date and processes all pending events. If idletasks is
specified, no events are processed except those in the idle task queue
(delayed updates).

• winfo option ?arg arg ...?

623

Returns various pieces of information about windows, depending on the
option argument. See the reference documentation for details.

29.2 Destroying Widgets

The destroy command deletes one or more widgets. It takes any number of
widget names as arguments; for example:

destroy .dlg1 .dlg2

This command destroys .dlg1 and .dlg2, including their widget state and the
widget commands named after the windows. It also recursively destroys
their children. The command destroy . destroys all of the widgets in the
application; when this happens, most Tk applications exit.

29.3 The update Command

Tk normally delays operations such as screen updates until the application
is idle. For example, if you invoke a widget command to change the text in a
button, the button doesn’t redisplay itself immediately. Instead, it schedules
the redisplay to be done later and returns immediately. At some point the
application becomes idle, which means that all existing events have been
processed and the application is in the event loop and about to wait for
another event to occur. At this point all of the delayed operations are carried
out. Tk delays redisplays because it saves work when the same window is
modified repeatedly: with delayed redisplay the window gets redrawn only
once at the end. Tk also delays many other operations, such as geometry
recalculations and window creation.
For the most part the delays are invisible. Interactive applications rarely do
very much work at a time, so Tk becomes idle again very quickly and
updates the screen before the user can perceive any delay. However, there
are times when the delays are inconvenient. For example, if a script is going
to execute for a long time, you may wish to bring the screen up to date at
certain times during its execution. The update command allows you to do this.
If you invoke the command

update idletasks

624

all of the delayed operations such as redisplays are carried out immediately;
the command does not return until they have finished.

Note

Like the after command, the update command used to be part of Tk. It
has since moved to the Tcl core language, so you can use the update
command in applications such as network servers that don’t need to
present a graphical user interface.

The following procedure uses update to flash a widget synchronously:

This procedure flashes the widget a given number of times and doesn’t
return until the flashing is complete. Tk never becomes idle during the
execution of this procedure (the after command doesn’t return to the event
loop while it waits for the time to elapse), so the update commands are
needed to force the widget to be redisplayed. Without the update commands
no changes would appear on the screen until the script completed, at which
point the widget’s option would change to value2.
If you invoke update without the idletasks argument, all pending events are
processed, too. You might do this in the middle of a long calculation to
allow the application to respond to user interactions (for example, the user
might invoke a Cancel button to abort the calculation).

Note

The update command can be dangerous, in that it starts an instance of
Tcl’s event loop. If your script executes an update command from within
an event handler script, it actually starts a nested instance of an event

625

loop that must terminate before the outer event loop regains control.
This can cause serious problems with your control flow, especially if
the outer loop was started by a vwait or tkwait command. If the event that
they were looking for occurs during the nested update event loop, they
don’t “see” the event and so don’t terminate as expected. You should
avoid nested event loops wherever possible. One approach is to break
a long-running activity into smaller chunks and have each chunk
schedule the next chunk to execute via the after command. Another
approach is to use the Thread extension to create a multithreaded Tcl
application, so that a long-running activity in one thread doesn’t starve
the event loop in another thread.

29.4 Information about Widgets

The winfo command provides information about widgets. It has almost 50
different subcommands for retrieving different kinds of information about a
widget. For example, winfo exists returns a 0 or 1 value to indicate whether a
widget exists. winfo children returns a list whose elements are the children of
the widget. winfo width and winfo height return the current dimensions of the
widget. winfo class returns the class of the widget, such as Button or Text.
Refer to the Tk reference documentation for details on all of the options
provided by winfo.

29.5 The tk Command

The tk command provides access to various aspects of Tk’s internal state.
Most everything available from this command pertains to Tk in its entirety,
the application, or the overall display.
It can be important to know the windowing system on which your
application is executing. Historically, people tested the value of the
::tcl_platform(platform) array element, which Tcl would set to one of windows,
unix, or macintosh. However, since the introduction of Mac OS X, this array
element now (correctly) reports unix for a Mac OS X system. The tk
windowingsystem command is now the correct way to determine the windowing
system. It returns a value of aqua, win32, or x11.
tk inactive returns the number of milliseconds since a user last interacted

626

with the system, by moving the mouse, pressing a key, and so on:

 tk inactive
⇒ 3

tk inactive returns -1 if executed in a safe interpreter or on a system that
doesn’t support querying the inactive time. You can request the idle time of
a particular display by including the -displayof option and specifying the
name of a window on that display. Additionally, you can include the
argument reset to reset the idle timer.
tk scaling returns the scaling factor used when converting between pixels and
physical units of measure. It’s expressed as a floating-point number, giving
the number of pixels per typographic point (1/72 inch), and you can use the -
displayof option to specify the name of a window on a particular display
whose scaling factor you want to retrieve:

 tk scaling
⇒ 1.000492368291482

Tk does its best to determine the appropriate value when the application
starts, but systems often don’t provide Tk with a truly accurate value. If an
accurate scaling factor is important to your application, you should give
your users some method for calibrating the on-screen measurement. You can
then pass the new scaling factor to tk scaling as an argument to set the scaling
factor of the display for your application. The following example uses the
winfo screenmmwidth command to retrieve the calculated width in millimeters of
a window on-screen:

If your application uses the Tk send command to send messages to other Tk
applications, you need to know, and sometimes set, the name of the
application. The tk appname command returns the current name of the
application or sets it to a new value. See Chapter 12 for more information
on the send command.

29.6 Variables Managed by Tk

627

Several global variables are significant to Tk, either because Tk sets them
or because it reads them and adjusts its behavior accordingly. You may find
the following variables useful:

• tk_library
Set by Tk to hold the path name of the directory containing a library of
standard Tk scripts and demonstrations. This variable is set from the
TK_LIBRARY environment variable, if it exists, or from a set of other standard
locations otherwise. See the tkvars reference documentation for a detailed
description.

• tk_version
Set by Tk to its current version number. It has a form like 8.5, where 8 is the
major version number and 5 is a minor version number. Changes in the
major version number imply incompatible changes in Tk.

• tk_patchLevel
Set by Tk to its current patch level. It has a form like 8.5.4, where 8 is the
major version number, 5 is a minor version number, and 4 is the specific
patch level.
In addition to these variables, which may be useful to the application, Tk
also uses the associative array tk::Priv to store information for its private
use. Applications should not normally use or modify any of the values in
tk::Priv.

29.7 Ringing the Bell

Use the bell command to ring the bell, or produce a visual effect, on a given
display. The basic format is

bell

You can also pass the -displayof option to define which display should have
its bell rung:

bell -displayof window

With the -nice option, the bell command attempts to reset the screen saver on
the given display, normally making the screen visible again.

628

629

Part III. Writing Tcl Applications
in C

• Chapter 30: Tcl and C Integration Philosophy
• Chapter 31: Interpreters
• Chapter 32: Tcl Objects
• Chapter 33: Evaluating Tcl Code
• Chapter 34: Accessing Tcl Variables
• Chapter 35: Creating New Tcl Commands
• Chapter 36: Extensions
• Chapter 37: Embedding Tcl
• Chapter 38: Exceptions
• Chapter 39: String Utilities
• Chapter 40: Hash Tables
• Chapter 41: List and Dictionary Objects
• Chapter 42: Channels
• Chapter 43: Handling Events
• Chapter 44: File System Interaction
• Chapter 45: Operating System Utilities
• Chapter 46: Threads
• Chapter 47: Building Tcl and Extensions

630

631

30. Tcl and C Integration Philosophy

While it is possible to write a large variety of applications completely in
Tcl, in some cases it is useful or necessary to combine Tcl and C code, and
it is common to find large applications with portions written in both.
Where possible, it is almost always best to write Tcl code instead of using
the C programming language. Tcl programs are easier to write and quicker
to modify, require less expertise, and are therefore more accessible to other
programmers. Scripts do not require recompilation after every change and
are also generally less difficult to debug. However, there are times when
programming in C is the best choice.
Fortunately, Tcl makes it very pleasant and productive to combine Tcl and
C, having been designed with this in mind from the outset.
The two most common reasons for mixing Tcl and C are

• Adding functionality not available to Tcl, for example, creating a Tcl
interface to an image manipulation library written in C, or writing
code to talk to a special device on a Linux system that is accessed
via specific arguments to the ioctl system call.

• Optimizing performance-intensive tasks that must run as fast as
possible. C is many times faster than Tcl for processor-intensive
operations, and is therefore the better choice where speed is critical.
Tasks involving extensive numerical computation or manipulation of
binary-formatted information often benefit from implementation in C
code.

This part of the book deals with how to get the best of both worlds by using
the two languages together, each being used for the part of the application
for which it is best suited. You will find that it’s easy and a very powerful
way of programming that can lead to new and innovative applications.
Programmers generally add C code to Tcl applications by creating their own
Tcl commands, written in C. These commands then can be bundled into
extensions, which are loaded into the application as needed. These new
commands act similarly to any of the built-in Tcl commands or procedures
that you’ve created, making them easy to control from Tcl. If you are writing
C code to improve your program’s performance, an intelligent approach to
optimization is to begin with a program written entirely in Tcl, analyze it for
slow spots, and then rewrite those spots in C. This is a very attractive style
of developing an application, because it confers on the programmer all the

632

advantages of using a high-level language and concentrates low-level C
work only where it is absolutely necessary, maximizing both programmer
time and program efficiency.
A second approach is to embed Tcl in an existing application, a powerful
technique to enhance your application’s existing capabilities with a
scripting language. When done properly, this can turn the program into a
dynamic, configurable system whose behavior may be modified at runtime
via Tcl scripts, instead of a rigid block of code that must be modified and
recompiled in order to change its behavior, or at least restarted to reread
configuration files. As an example, with relatively few lines of C code, the
Rivet Apache web server module makes it possible to create dynamic web
pages that rival PHP for speed and ease of web programming. Figure 30.1
illustrates two methods of integrating C code and Tcl.

Figure 30.1 Embedding versus extending Tcl

There are several parts to most Tcl/C integration projects. The majority of
the code implements your special-purpose Tcl commands. Then comes the
startup code that registers those commands with the Tcl interpreter and takes
care of any other startup tasks such as creating global variables. If you’re
writing an application that embeds Tcl, at some point you need to write code
that evaluates Tcl scripts. On the other hand, if you’re writing an extension,
your C code probably won’t need to evaluate scripts; having the extension
register its commands with the Tcl interpreter usually is sufficient.

633

30.1 Tcl versus C: Where to Draw the Line

In order to maximize the flexibility of your application, it is best to organize
your C code as a group of primitive operations—basic building blocks,
flexible enough to be used in different ways—instead of attempting to make
every possible option available as C code. This makes it possible to mix
and match these operations in your Tcl scripts. The most important decision
to make is where to draw the line between having one big, simple command
that does it all and having many small, very fine-grained commands. If you
hide too much functionality behind one command, it may not be possible to
write scripts to combine the functionality in new and interesting ways that
the original author hadn’t planned for. On the other hand, creating commands
that are too low-level may not really provide any benefits or added
flexibility to developers using them. The right point to separate Tcl from C
is where you have maximum flexibility, but before your Tcl commands
become a repetitive copy of the C API.
Tcl’s socket command is a good example of an interface to a complex
underlying system. It does not mirror the series of C calls necessary to open
a socket. Instead, all you do is give it an address (which may be a name or
an IP number) and a port, and it hands you a channel that you can write to or
read from. More advanced configuration is still possible via the fconfigure
command, but the basic operation is very easy.
As another example, consider an array of sensors monitoring some
information about a production line in a plant, where each sensor takes
environmental measurements at a different point in the process. Users of
your interface may wish to perform tasks such as

• Printing a complete report of the current state of the production run to
a file on disk

• Saving which station has the lowest energy consumption in a database
• Displaying the temperature at station X
• Returning which stations spend more than 25% of their time idle
• Passing the average, high, and low temperatures to a web server

You’ll need to write some C code to access this information, which is
normally available only as a low-level API provided by the operating
system.
One approach might be to write code that reads all information from all
sensors and dumps it to standard output. It’s certainly a quick approach, but
it’s not going to be very flexible in the long term and might also be slow,
depending on access times for the sensors.

634

Another tactic might be to provide Tcl commands to select a sensor,
determine which information is available, open it for reading, and then fetch
one measurement. This is certainly flexible, but it’s going to be slow to code
using the resulting API.
One way to strike a good balance would be to provide a sensor command
that takes several arguments:

• list—returns a list of all sensors
• ready—returns a list of all sensors currently online and transmitting

data
• read $sensor—reads and returns the information for a specific sensor

This would make it easy to use standard Tcl commands like foreach to loop
through the list of sensors, taking readings from each one. Although the sensor
command doesn’t return an immediate answer for any of the tasks listed
previously, it’s possible to use it, together with a bit of scripting, to quickly
develop solutions for all five problems, and yet it is not too low-level.
Printing the entire report to a file would be a matter of looping over all
stations, reading them, and then printing them to a file via the open and puts
commands. The lowest energy consumption could be determined by looping
over the online sensors and saving progressively lower values as they
appear—and at that point the results could be saved to a relational database.
Displaying one value of the reading for a particular sensor is as easy as
reading it and saving only the desired information, discarding the rest.
Collecting statistics on idle stations would, once again, involve reading all
stations, then looking at one particular value from the collected results.

30.2 Resource Names—Connecting C Constructs to
Tcl

One common usage of C extensions is to allow Tcl code to interact with
complex data structures or objects from either your own application or
another C library. In your C program, you’d normally refer to this data by a
pointer to the data structure or object.
Since everything in Tcl ought to be representable as a string (so we can’t
use pointers), we need to dedicate some thought to connecting these abstract
strings with what they represent at the C level—most likely C structures. In
the example in the preceding section, the sensors might be given names
relative to their position or function, such as 1-heat, 2-pressure, 3-oxygen. These
names are brief but descriptive, so that people have an idea of what the

635

object might be just by looking at the name. In an example of this system at
work, Tcl uses names like file1 and sock7 for file channel handles and socket
channel handles respectively. These are simple, clear names that give the
user an idea that the thing in question is a socket or file. In this case we also
utilize the POSIX file descriptor number to create a unique name, although
that information isn’t meant to be used and shouldn’t be relied on at the
scripting level. In turn, these strings can map to specific structures, most
likely via a hash table that, for every string input, is able to return a C
structure of the desired type. Tcl contains a powerful hash table
implementation that makes this approach easy to implement. See Chapter 40
for more information on Tcl’s hash table functionality.

30.3 “Action-Oriented” versus “Object-Oriented”

There are two approaches to defining commands in an application: “action-
oriented” and “object-oriented.” In the action-oriented approach, commands
are defined that act on objects passed to them as parameters; for instance,
Tcl’s commands for manipulating files all take a file identifier returned by
open as an argument and proceed to perform some action on it:

In contrast, the “object-oriented” style provides one command whose only
job is to represent the object directly. In this case, there are many Tcl
commands that can be called: one for each object, and one to create new
objects. In retrospect, it might have been more logical to adopt this style for
files: you would create a file with open, and then use it as a command, as
here:

Despite appearances, remember that commands created in this way are just
regular Tcl commands. While in many ways they act similarly to objects in
languages like Smalltalk, Ruby, or Java (that is, the subcommands look like
“methods”; most of them have some data associated with them; etc.), they

636

actually are procedural commands; they do not have inheritance or support
other features of true object-oriented programming. There are other ways
(several, in fact) to create objects in Tcl based on classes, methods,
inheritance, and so on.
The action-oriented style is best when

• There are a large number of resources (e.g., strings or integers), so it
would be wasteful to create a command for each one.

• The resources are short-lived, so setup and tear-down time for the
object would be more effort than it was worth.

• A command accepts many types of objects as parameters and
executes the same code on all of them. For example, the destroy
command in Tk works on all widget types, so it’s best to keep all the
functionality in one place, instead of giving every widget a destroy
subcommand.

Our sensor-monitoring example uses this approach because there may be a
large number of sensors to watch, and there are not many actions that may be
performed on each one. In the case that not all sensors are read constantly, it
makes even more sense to use the action-oriented approach, so that the
program does not have to maintain information for each one all the time but
only when requested.
Using the “object-oriented” approach works well when

• There are not too many objects (tens or hundreds).
• The objects are well defined.
• They are likely to be in existence and used for a reasonable duration.
• They are reasonably complex, with a number of operations that may

be performed on them.

30.4 Representing Information

The information passed into and out of your Tcl commands should be
formatted for easy processing by Tcl scripts, not necessarily for maximum
human readability. The sensor monitor commands should not return a
description of the sensor status like hot, real hot, or The temperature is 70 C, or
a even nicely formatted table ready for printing, but rather results easily
passed to and consumed by other Tcl commands. Should you need to
structure the data in some way, you can create Tcl lists and arrays (or
dictionaries in Tcl 8.5) from C. As an aid to other programmers or
consumers of your data, it is preferable to make your data self-descriptive
enough that you don’t leave people wondering about what position in a list

637

corresponds to what value. For instance, the list 105 89 96 tells us nothing by
itself. If we use a dictionary like max 105 min 89 average 96, the data makes
much more sense at a glance, and yet it is still very easy to manipulate from
Tcl.

638

639

31. Interpreters

This chapter explains what interpreters are, how to create them and delete
them, and how to use them to evaluate Tcl scripts.

31.1 Functions Presented in This Chapter

• Tcl_Interp *Tcl_CreateInterp()

Creates and returns a new Tcl interpreter.
• Tcl_DeleteInterp(Tcl_Interp *interp)

Deletes a Tcl interpreter.
• Tcl_InterpDeleted(Tcl_Interp *interp)

Returns nonzero if the interpreter is slated for deletion.
• Tcl_Interp *Tcl_CreateSlave(Tcl_Interp *interp,

 CONST charslaveName, int isSafe)
Creates a “slave” interpreter with the name slaveName. The isSafe parameter
determines whether to create a safe interpreter or not.

• int Tcl_IsSafe(Tcl_Interp *interp)
Returns 1 if the interpreter is safe, otherwise 0.

• int Tcl_MakeSafe(Tcl_Interp *interp)
Transforms the interpreter into a safe interpreter, removing any “dangerous”
commands and variables. Does not remove commands from extensions, so
simply calling this function is not a guarantee of safety.

• Tcl_Interp *Tcl_GetSlave(Tcl_Interp *interp,
 CONST char *slaveName)

Returns the slave interpreter of interp named by slaveName.
• Tcl_Interp *Tcl_GetMaster(Tcl_Interp *interp)

Returns the master of the given slave interpreter.
• int Tcl_GetInterpPath(Tcl_Interp *askingInterp,

 Tcl_Interp *slaveInterp)
Sets the result in askingInterp to the path between askingInterp and slaveInterp.
Returns TCL_OK, or TCL_ERROR if the path cannot be computed.

• int Tcl_HideCommand(Tcl_Interp *interp,
 CONST char *cmdName, CONST char *hiddenCmdName)

Moves cmdName to the set of hidden commands, giving it the name hiddenCmdName.
If cmdName doesn’t exist as a visible command, TCL_ERROR is returned.

640

• int Tcl_ExposeCommand(Tcl_Interp *interp,
 CONST char *hiddenCmdName, CONST char *cmdName)

Moves the hidden command referred to by hiddenCmdName to the visible
command cmdName. Returns TCL_ERROR if the command doesn’t exist.

• int Tcl_CreateAlias(Tcl_Interp *slaveInterp,
 CONST char *slaveCmd, Tcl_Interp *targetInterp,
 CONST char *targetCmd, int argc,
 CONST char **argv)

int Tcl_CreateAliasObj(Tcl_Interp *slaveInterp,
 CONST char *slaveCmd, Tcl_Interp *targetInterp,
 CONST char *targetCmd, int objc,
 Tcl_Obj **objv)

These two commands are essentially the same, the difference being that
Tcl_CreateAliasObj takes an array of Tcl objects instead of strings, for the sake
of efficiency. Both commands create a command slaveCmd in slaveInterp,
aliasing it to targetCmd in targetInterp. The arguments in argv or objv are
prefixed to any arguments passed to the command alias.

• int Tcl_GetAlias(Tcl_Interp *interp,
 CONST char *slaveCmd, Tcl_Interp *targetInterpPtr,
 CONST char *targetCmdPtr, int *argcPtr,
 CONST char ***argvPtr)

int Tcl_GetAliasObj(Tcl_Interp *interp,
 CONST char *slaveCmd, Tcl_Interp *targetInterpPtr,
 CONST char *targetCmdPtr, int *objcPtr,
 Tcl_Obj ***objvPtr)

Both of these functions obtain information about an aliased command by
looking up an alias slaveCmd in interp and filling in the targetInterpPtr,
targetCmdPtr, a pointer to the number of arguments, and then either objvPtr or
argvPtr.

31.2 Interpreters

The central data structure used by the Tcl library is a C structure of type
Tcl_Interp. Throughout this part of the book we’ll refer to these data
structures as interpreters. An interpreter embodies the execution state of a
Tcl script, including Tcl procedures, commands implemented in C,
variables, and an execution stack that reflects the internal state of command

641

and script evaluation. It is, in a sense, the world in which a Tcl script is run,
and Tcl scripts cannot see outside the interpreter they are in. The interpreter
keeps track of where it is in the script being evaluated, what commands are
available to be called, as well as the variables that have been set within it.
Most of the Tcl library procedures take a pointer to a Tcl_Interp structure as
an argument.
Tcl applications often use only a single interpreter; however, it is possible
for a single process to manage several independent interpreters. As an
example, consider a server that responds to requests from different clients
by executing some Tcl code when it receives a network connection. Each
interpreter could be responsible for executing code from a specific client,
and since different interpreters are used, their data is not visible to one
another, even though they reside in the same address space. Keep in mind
that multiple interpreters are not multiple threads, though, and so do not
resolve problems of concurrency. In order to learn about concurrency
issues, see Chapter 43 on events and Chapter 46 on threads.
If you embed Tcl in your own code, you are responsible for creating one or
more interpreters. If you write a Tcl extension, when it is loaded, Tcl add
the extension’s commands and variables to those in the interpreter in which
it is loaded.

31.3 A Simple Tcl Application

Up until now you’ve run Tcl programs by using the tclsh or wish binaries, but
of course that’s not the only way.
The following program illustrates how to create and use an interpreter. It is
a simple but complete Tcl application that evaluates a Tcl script in a file and
prints either the results or, in the case of an error, the error message.

642

If you have a complete installation of Tcl, compiling this code should be
relatively easy, something along the lines of

cc -o simple simple.c -ltcl8.5

on a Debian Linux system. Depending on your installation of Tcl, you may
need to add flags such as -I/usr/include/tcl8.5 which is necessary, for
example, on Debian Linux systems. For more information on building Tcl
applications and extensions, see Chapter 47.
You can now use your program to run Tcl scripts, like so:

./simple hello.tcl

Let’s go back and look at simple.c. For this simple example, we do not need
to include any headers besides tcl.h, which already includes many other
headers in turn. Logically, whenever you use Tcl, you need to include tcl.h.
In the main function, we create a pointer to an interpreter, a return code
integer, and a pointer to a result string.
We then make sure that we have an argument to our program—the file
containing the Tcl script to evaluate. Next, we create the interpreter. This

643

new interpreter contains all the built-in commands defined in the Tcl library
(libtcl8.5.so in this case), but few of the Tcl procedures or variables that
standard tclsh has, because we do not load the standard initialization scripts.
For information on which variables are present where, see the tclvars and
tclsh reference documentation. After the file is evaluated, two pieces of
information are available: first, the return code from Tcl_EvalFile, which is an
int that corresponds to TCL_OK if everything went well, or TCL_ERROR if there
was a problem, or any one of TCL_RETURN, TCL_BREAK, or TCL_CONTINUE for other
various conditions. To get the result in string form, or an error string, we
call Tcl_GetStringResult and then, depending on whether it’s an actual result or
an error condition, print something to that effect.
See Chapter 33 for more ways of evaluating Tcl code from your own
applications and extensions.

31.4 Deleting Interpreters

When a Tcl interpreter is no longer needed, it may be deleted with the
Tcl_DeleteInterp call. This frees the interpreter and everything associated with
it, including variables, commands, and file descriptors that are not shared
with other interpreters.

31.5 Multiple Interpreters

One of Tcl’s most interesting features is the ability to have multiple
interpreters present and active. See Chapter 15 for a discussion of
manipulating multiple interpreters from Tcl scripts. As stated above,
multiple interpreters are not a mechanism for concurrency; however, they
are very useful for isolating code that must be run separately. The basic
mechanism for creating subinterpreters (also known as slaves) is the
Tcl_CreateSlave function, which is used as in the following example:

644

The loop creates a series of slave interpreters, each of which has a port
defined on which to listen, so that the Tcl code can listen on a separate port
for each one. If you are very sure of who you are connecting with, you could
even evaluate code sent over the socket and return the results, and problems
in one interpreter would not spill over into the others. Tcl_CreateSlave takes a
Tcl interpreter, name, and finally an integer specifying whether to make the
slave a safe interpreter or not.

645

646

32. Tcl Objects

In Tcl, all values can be treated as strings. Early versions of Tcl actually
stored all values as strings, even numeric data types. This approach could
be quite slow, especially for values that needed frequent conversion to
binary formats, such as floating-point numbers.
In contrast, all modern versions of Tcl (ever since 8.0, released in 1997)
store their data internally using a much more efficient form called Tcl
objects. Tcl objects are values that have a string representation and a
second “internal” representation of some other type, such as integer, double,
list, or, in Tcl 8.5, dictionaries. Tcl uses objects internally for variable
values, command arguments, command results, and scripts.
This dual nature of Tcl objects means that they are fast where they need to
be, efficient in terms of memory, and still easy to work with. For example,
in a while loop with a counter variable, the variable is transformed into an
integer and remains an integer for the duration of the loop. This makes the
Tcl code much more efficient than having a string that is constantly being
transformed to an integer and back, each time it is incremented.
Since objects are a newer addition to Tcl, for many operations there are two
API calls: one that uses objects, and one that uses the string-based interface.
The older API is simpler, but at the cost of speed, especially where numbers
are concerned.
Tcl objects are represented at the C level by the Tcl_Obj structure:

Tcl_Obj *obj = Tcl_NewObj();

This code creates a new, empty object. In most cases, you should view this
as an opaque type—you don’t need to deal with the structure’s members,
because the Tcl API does that for you.

32.1 Functions Presented in This Chapter

• Tcl_Obj *Tcl_NewObj()

Creates a new object.
• Tcl_Obj *Tcl_DuplicateObj(Tcl_Obj *objPtr)

Returns a new copy of the object, with reference count 0.

647

• Tcl_IncrRefCount(Tcl_Obj *objPtr)
Increases the object’s reference count.

• Tcl_DecrRefCount(Tcl_Obj *objPtr)
Decreases the object’s reference count and frees it if the reference count
goes to 0 or less.

• int Tcl_IsShared(Tcl_Obj *objPtr)
Returns 1 if the object is shared, 0 otherwise.

• Tcl_InvalidateStringRep(Tcl_Obj *objPtr)
Marks the object’s string representation as invalid and frees space
associated with it.

• Tcl_Obj *Tcl_NewBooleanObj(int boolValue)
Creates a new object with an initial value boolValue.

• Tcl_Obj *Tcl_NewIntObj(int intValue)
Creates a new object with an initial value intValue.

• Tcl_Obj *Tcl_NewLongObj(long longValue)
Creates a new object with an initial value longValue.

• Tcl_Obj *Tcl_NewWideIntObj(Tcl_WideInt wideValue)
Creates a new object with an initial value wideValue.

• Tcl_Obj *Tcl_NewBignumObj(mp_int *bigValue)
Creates a new object with an initial arbitrary-precision integer value
bigValue.

• Tcl_Obj *Tcl_NewDoubleObj(double doubleValue)
Creates a new object with an initial value doubleValue.

• Tcl_Obj *Tcl_NewStringObj(const char *bytes, int length)
Creates a new object with an initial value of the UTF-8 string from bytes.
Only the first length bytes are copied, unless length is negative, in which case
all bytes up to the first null character are copied.

• Tcl_Obj *Tcl_NewByteArrayObj(CONST unsigned char *bytes,
 int length)

Creates a new byte array object from bytes.
• Tcl_SetBooleanObj(Tcl_Obj *objPtr, int boolValue)

Sets the existing object objPtr to Boolean boolValue.
• Tcl_SetIntObj(Tcl_Obj *objPtr, int intValue)

Sets the existing object objPtr to intValue.
• Tcl_SetLongObj(Tcl_Obj *objPtr, long longValue)

Sets the existing object objPtr to longValue.
• Tcl_SetWideIntObj(Tcl_Obj *objPtr, Tcl_WideInt wideValue)

Sets the existing object objPtr to wideValue.
• Tcl_SetBignumObj(Tcl_Obj *objPtr, mp_int *bigValue)

Sets the existing object objPtr to the arbitrary-precision integer value

648

bigValue.
• Tcl_SetDoubleObj(Tcl_Obj *objPtr, double doubleValue)

Sets the existing object objPtr to doubleValue.
• Tcl_SetStringObj(Tcl_Obj *objPtr, const char *bytes,

 int length)
Sets the existing object objPtr to the value of the UTF-8 string from bytes.
Only the first length bytes are copied, unless length is negative, in which case
all bytes up to the first null character are copied.

• void Tcl_SetByteArrayObj(Tcl_Obj *objPtr,
 CONST unsigned char *bytes, int length)

Sets the object to be a byte array containing bytes.
• unsigned char *Tcl_SetByteArrayLength(Tcl_Obj *objPtr,

 int length)
Sets the length of the byte array, truncating it or extending it (with arbitrary
values), and returns the object’s new array of bytes.

• int Tcl_GetBooleanFromObj(Tcl_Interp *interp,
 Tcl_Obj *objPtr, int *boolPtr)

Gets the Boolean value of objPtr and places it in boolPtr. Returns TCL_ERROR on
failure.

• int Tcl_GetIntFromObj(Tcl_Interp *interp,
 Tcl_Obj *objPtr, int *intPtr)

Gets the integer value of objPtr and places it in intPtr. Returns TCL_ERROR on
failure.

• int Tcl_GetLongFromObj(Tcl_Interp *interp,
 Tcl_Obj *objPtr, long *longPtr)

Gets the long value of objPtr and places it in intPtr. Returns TCL_ERROR on
failure.

• int Tcl_GetWideIntFromObj(Tcl_Interp *interp,
 Tcl_Obj *objPtr, Tcl_WideInt *widePtr)

Gets the wide integer value of objPtr and places it in intPtr. Returns TCL_ERROR
on failure.

• int Tcl_GetBignumFromObj(Tcl_Interp *interp,
 Tcl_Obj *objPtr, mp_int *bigValue)

Gets the arbitrary-precision integer value of objPtr and places it in bigValue.
Returns TCL_ERROR on failure.

• int Tcl_GetDoubleFromObj(Tcl_Interp *interp,
 Tcl_Obj *objPtr, double *doublePtr)

Gets the double value of objPtr and places it in doublePtr. Returns TCL_ERROR on
failure.

• char *Tcl_GetStringFromObj(Tcl_Obj *objPtr,

649

 int *lengthPtr)
Returns a pointer to the object’s string representation and places the length
of the string in lengthPtr if it is non-null.

• unsigned char *Tcl_GetByteArrayFromObj(Tcl_Obj *objPtr,
 int *lengthPtr)

Returns the bytes contained in a byte array object and places the length of
the bytes in lengthPtr if it is non-null.

• char *Tcl_Alloc(int size)
char *Tcl_AttemptAlloc(int size)
char *ckalloc(int size)
char *attemptckalloc(int size)

Returns a pointer to a block of at least size bytes suitably aligned for any
use. Use these routines rather than the native malloc. Tcl_AttemptAlloc does not
cause the Tcl interpreter to panic if the memory allocation fails, whereas
Tcl_Alloc does. ckalloc and attemptckalloc are macros equivalent to their
corresponding functions, except they also support advanced memory
debugging. See the reference documentation for more information.

• char *Tcl_Realloc(char *ptr, int size)
char *Tcl_AttemptRealloc(char *ptr, int size)
char *ckrealloc(char *ptr, int size)
char *attemptckrealloc(char *ptr, int size)

Changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the new block. The contents are unchanged up to the lesser of the
new and old sizes. The returned location may be different from ptr.
Tcl_AttemptRealloc does not cause the Tcl interpreter to panic if the memory
allocation fails, whereas Tcl_Realloc does. ckrealloc and attemptckrealloc are
macros equivalent to their corresponding functions, except they also support
advanced memory debugging.

• Tcl_Free(char *ptr)
ckfree(char *ptr)

Makes the space referred to by ptr available for further allocation. ckfree is
an equivalent macro that also supports advanced memory debugging.

32.2 String Objects

Since all Tcl objects may be represented as strings, we will begin our
exploration of Tcl objects with them.
To create a new string object:

650

Tcl_Obj *strobj;
strobj = Tcl_NewStringObj("Tcl!", -1);

A new string object is created from a series of bytes (in the UTF-8 encoding
—see Chapter 39 for more information about encodings) and their length. In
this case, the -1 value means that we let Tcl determine the string length
instead of specifying the value ourselves, which is often a handy shortcut.
Strings and commands to manipulate them are covered in more detail in
Chapter 39.

32.3 Numerical Objects

Creating an object that contains an integer is similar:

Tcl_Obj *intobj;
intobj = Tcl_NewIntObj(42);

This version of intobj is far more efficient to use in mathematical operations
than a string representation of the number 42, because it contains an actual
integer as its internal representation.
Other numerical types that can be created are the following:

• Boolean—Either true or false, 1 or 0. Created with
Tcl_NewBooleanObj(int).

• long—Holds a long integer. Created with Tcl_NewLongObj(long).
• wide—Holds a “wide” (64-bit) integer. Created with

Tcl_NewWideIntObj(wideValue), where wideValue is at least a 64-bit value.
• bignum—Holds an arbitrary-precision integer. Created with

Tcl_NewBignumObj(bigValue), where bigValue is a pointer to an mp_int
structure as declared by the LibTomMath arbitrary-precision integer
library.

• double—Contains a C double type. This is the type Tcl uses to deal
with floating-point numbers. Created with Tcl_NewDoubleObj(double).

32.4 Fetching C Values from Objects

To use a Tcl object in your C code, you’ll need to retrieve its underlying
value, whether a string, an integer, a double, or some other format. Your
program asks the Tcl library to translate a given object into the type you

651

need. This may be directly accessible from the string or internal
representation, or some conversion may need to be done (e.g., retrieving a
double value from an object having an integer internal representation).
While Tcl guarantees that any arbitrary object can be retrieved as a string,
this is not true for other data types. Note also that by asking for a value as a
specific type, Tcl modifies the internal representation to be that type—if, of
course, it was possible to perform the requested fetch. For example, if an
object contains an integer internal representation, and Tcl_GetDoubleFromObj is
called on it successfully, the new internal representation is a double.
It is always possible to transform an object into a string, using the
Tcl_GetStringFromObj call, but it may not necessarily be possible to transform
an object into other types, such as integer, double, and so on. For this
reason, Tcl_GetIntFromObj and the other calls to obtain various types from Tcl
objects take an interpreter as an argument, so that they may raise an
exception should they encounter a problem transforming the object into the
desired type.

In the first case, the call to Tcl_GetStringFromObj is always successful, because
by their very nature, Tcl objects can always be represented as strings
—intstring is 42. However, the call to Tcl_GetIntFromObj does return an error,
because we attempt to call it with the object strobj. This object contains the
string Tcl!, which cannot be transformed into an integer, and so a TCL_ERROR
result is returned, and an error message is left in the interpreter. As with
object creation, functions exist for all types in order to attempt to extract the
type in question from the Tcl object—for example, Tcl_GetLongFromObj,
Tcl_GetDoubleFromObj, and so on for the numerical types.

32.5 The Dynamic Nature of a Tcl Object

To illustrate the dual nature of a Tcl object, let’s examine its life in a Tcl

652

script:
1. set foo 35100
2. puts "The value of \$foo is: $foo"
3. incr foo 100
4. puts "Now \$foo is: $foo"

On line 1, the variable foo is set to an object containing the characters 35100.
At this point, the object is a string.
When the script on line 2 prints the variable foo, its string value is needed,
and 35100 is used.
The object that foo contains is transformed in line 3. Whereas it was
previously a string, we now wish to increment its value by 100, so we need
to deal with it as a number. As it is not currently a number, it is set to the
integer type, and its internal representation is set to 35100. The incr
command then acts on this integer, incrementing it to 35200. The string
representation of the object is marked as invalid, but a new string
representation is not generated at this time; regenerating the string
representation could be wasted effort if the object is changed by further
arithmetic operations.
On the final line, we print the value of foo again. Its string representation is
not currently valid, so we update it to 35200, which the puts command then
prints. At the end of the script, the object contains both a valid string
representation and the integer 35200.

32.6 Byte Arrays

Byte arrays exist to hold arbitrary sequences of 8-bit values that do not
necessarily correspond to characters as string objects must. Byte arrays are
useful for holding binary data—such as a JPEG or an MP3 sound file—that
might contain embedded nulls.

This example creates a Tcl object that represents the first bytes of a JPEG
file header.

653

32.7 Composite Objects

Prior to Tcl 8.4, Tcl had one type of object that could contain other objects:
a list. From the perspective of C, lists are Tcl objects that contain an array
of other Tcl objects. Manipulating lists from a Tcl script is discussed in
Chapter 6. Tcl’s C API lets you do everything you can do from Tcl and is
covered in further detail in Chapter 41.
As of version 8.5 (although there is also a backport available for 8.4), Tcl
also provides dictionary objects (also referred to as dict objects) that
reference other objects through a hash table. The Tcl script commands for
interacting with dictionary objects are discussed in Chapter 7. The C
interface allows you to do many of the same things and is covered together
with lists in Chapter 41.
Tcl lists and dictionaries are good ways of passing more complex structures
back and forth between Tcl and C, as we saw in the section on representing
information in Chapter 30. Lists are best suited for situations where
elements are accessed via a numerical index (fetch element 5, for instance),
whereas dictionaries are efficient when looking up an object based on a
string describing it, for instance, mapping “Rome” to “Italy,” “Paris” to
“France,” “Berlin” to “Germany,” and so on.

32.8 Reference Counting

To avoid creating unnecessary copies of an object, many parts of your
application may share the same Tcl object at the same time. For example, a
single Tcl object might be used in a procedure, stored in a variable, used
within the Tcl library itself, and so on. In order to manage objects and the
memory they consume, Tcl uses a technique called reference counting.
Reference counting solves the same basic problem as garbage collection in
languages like Scheme, Ruby, or Java. It is robust, fast, straightforward, and
portable, and it makes working with Tcl at the C level simple.
A newly created Tcl object has an initial reference count of 0. Any code that
needs to mark the object as being in use should increment the reference
count of the object using the Tcl_IncrRefCount function. When the code no
longer needs the object, it should decrement the reference count with
Tcl_DecrRefCount. Once the reference count of an object is decremented to 0 or
less, Tcl can free the object.

654

Many Tcl functions temporarily modify the reference counts of object that
you provide as arguments. If your code creates a new object (with a
reference count of 0), and then passes it to a Tcl function without first
incrementing its reference count, the Tcl function could internally increment
and later decrement the reference counter of the object you provided. The
function’s internal decrement of the object’s reference count back to 0
would trigger the deletion of the object. Subsequent attempts to use the
object in your code would of course result in an error.
Generally speaking, you should increment the reference count of any newly
created object and then decrement the reference count when the pointer
variable goes out of scope. However, there are a few Tcl functions that store
a new reference to an existing object that you provide, incrementing the
object’s reference count. These functions handle putting an object in a
variable, storing it in a list or dictionary object, or putting it in the
interpreter’s result. (All of these actions are discussed in subsequent
chapters.) If you create an object only to pass it to one of these functions,
it’s safe to omit the Tcl_IncrRefCount/Tcl_DecrRefCount of the object.

32.9 Shared Objects

Tcl implements a “copy-on-write” system for objects. This means that an
object may be shared among several variables, for instance, as long as none
of them is written to. Once a write occurs, a copy of the object is made.
What this signifies when you are writing C code for Tcl is that when directly
modifying an object, you need to check to ensure that it’s not shared via the
Tcl_IsShared function, and if it is shared, copy it using Tcl_DuplicateObj:

Commands that need this check are usually those that access and modify an
object that’s the value of a variable, like incr and lappend. This bit of Tcl
code illustrates an object that is at first shared and subsequently copied
when modified:

655

Initially, an object containing 1 is created and assigned to the foo variable.
Then, the same object is assigned to the bar variable. At this point, both
variables refer to one object, whose value is 1. The next command, incr bar,
notices that the value is shared, makes a copy, and increments the value of
the copy. The foo variable now contains an object with the value 1, and bar
contains an integer object with the value 2. If we were to evaluate incr bar a
second time, Tcl_IsShared would return false, because the object is now
distinct from that contained in foo.

32.10 New Object Types

Since they are rarely needed, we won’t cover them in much depth here, but
you should be aware that if the need arises, it is possible to create new
object types via Tcl’s C API.
Creating a new object type makes sense where the object is easily
represented as a string that may be converted to the type in question and then
back again without losing information. For more complex C data structures,
a better approach is the technique of mapping the structure to a unique tag
via a hash table, mentioned in Section 30.4.
We must also ensure that if a user modifies the object value as a string,
nothing bad will happen if we transform it back to the type in question.
Consider what would happen if we were to create a Tcl “reference” object
type that contained a C pointer, say, 0x10001800. If the user modified it, as a
string, to be)0x10001810, and then tried to use it again as a pointer type, the
most likely result would be a segmentation fault or data corruption.
The most sensible reason to create a new Tcl object type is for simple (not
represented as a complex structure in C) new data types that need to
efficiently represent information and don’t have problems representing it as
a string.
A good example of how to create a new data type is provided by Salvatore
Sanfilippo’s tclsbignum package, which provided arbitrary-precision integer
math capabilities prior to Tcl 8.5’s native BignumObj support.
The core of a new type is the Tcl_ObjType structure:

656

When creating a new type, the programmer supplies functions that

• Free the storage of the type via the Tcl_FreeInternalRepProc slot. In the
bignum library, this just means freeing the associated memory.

• Make a copy of the object via the Tcl_DupInternalRepProc slot. If the type
is a data structure, it is up to the programmer to decided whether to
make a “deep copy” or not. By deep copy we mean copying the
entire data structure, not just the top, or head. For instance, when
copying a list, you could make a copy of the list structure itself and
leave the elements pointing to the same objects, or you could make
copies of all the elements as well (and so on recursively if the
elements are in turn lists). This is a deep copy. In reality, Tcl list
copies are not deep copies. In the bignum library, the bignum value
is copied.

• Update the object’s string representation to match the current value of
the object via the Tcl_UpdateStringProc slot. The bignum library’s string
update function fills in the string representation with a base 10
representation of the number.

• The opposite transformation—re-creating the internal representation
from a string—is performed by the SetFromAnyProc function slot in the
Tcl_ObjType structure. In this case, the bignum library must parse the
string into a number, or return an error if it is unable to do so.

32.11 Parsing Strings

Prior to the advent of Tcl objects, when everything was represented as a
string internally, it was necessary to be able to easily obtain other types
from those strings by parsing them. Tcl still provides those calls, and they
are occasionally handy when working with strings:

657

These calls all take an interpreter and a string containing the information to
be parsed as arguments, as well as a pointer to a C variable of the desired
type, with a Boolean being either 1 or 0. On success, they return TCL_OK, and
on failure, TCL_ERROR; for instance:

int num = 0;
Tcl_GetInt(interp, "42", &num);

This code sets num to 42 and returns TCL_OK.

32.12 Memory Allocation

Tcl provides, as you will see in later chapters, many functions to perform
common actions in a uniform, cross-platform manner. One of the most
important activities for which Tcl provides a layer is memory allocation. To
allocate and free memory in Tcl, we use Tcl_Alloc and Tcl_Free. These
functions are equivalent to malloc and free in C, but be careful not to mix and
match them, such as calling Tcl_Free on memory allocated with malloc or
strdup, because on some platforms with certain Tcl configurations, this
causes problems. Additionally, Tcl provides the Tcl_Realloc function, to use
instead of realloc, to change the size of an allocated block of memory. The
location returned may be different from the original location, but the
contents of the block are unchanged up to the lesser of the old and the new
sizes.
Tcl_Alloc and Tcl_Realloc cause the Tcl interpreter to panic if the memory
allocation fails. To avoid this, you can call Tcl_AttemptAlloc and
Tcl_AttemptRealloc instead, which simply return NULL if they fail.
Corresponding to all of these functions is a set of macros: ckalloc, ckfree,
ckrealloc, attemptckalloc, and attemptckrealloc. Normally, they are synonyms for
the corresponding procedures described previously. However, when Tcl
and all modules calling Tcl are compiled with TCL_MEM_DEBUG defined, these
macros are redefined to be special debugging versions of these procedures.
This enables the memory ensemble for tracking and reporting memory
allocation. See the memory reference documentation for more information. If

658

you anticipate requiring memory debugging of your code, you should use
these macros instead of direct calls to Tcl_Alloc and the other functions.

659

660

33. Evaluating Tcl Code

This chapter illustrates how to evaluate Tcl scripts from your C code, as
well as Tcl math expressions.

33.1 Functions Presented in This Chapter

• int Tcl_EvalObjEx(Tcl_Interp *interp,

 Tcl_Obj *objPtr, int flags)
Evaluates a Tcl script contained in an object.

• int Tcl_EvalFile(Tcl_Interp *interp,
 CONST char *fileName)

Evaluates a Tcl script in a file given by fileName.
• int Tcl_EvalObjv(Tcl_Interp *interp, int objc,

 Tcl_Obj **objv, int flags)
Executes a single preparsed command instead of a script. The objc and objv
arguments contain the values of the words for the Tcl command, one word in
each object in objv.

• int Tcl_Eval(Tcl_Interp *interp, CONST char *script)
Evaluates script.

• int Tcl_EvalEx(Tcl_Interp *interp,
 CONST char *script, int numBytes, int flags)

Evaluates script. More efficient than Tcl_Eval.
• int Tcl_GlobalEval(Tcl_Interp *interp,

 CONST char *script)
Evaluates script in the global namespace. Deprecated.

• int Tcl_GlobalEvalObj(Tcl_Interp *interp,
 Tcl_Obj *objPtr)

Evaluates the script in objPtr in the global namespace. Deprecated.
• int Tcl_VarEval(Tcl_Interp *interp, char *string,

 char *string, ... (char *) NULL)
Takes any number of string arguments of any length, concatenates them into a
single string, then evaluates that string. Deprecated.

• int Tcl_VarEvalVA(Tcl_Interp *interp,
 va_list argList)

Like Tcl_VarEval, but takes a va_list instead of multiple strings. Deprecated.

661

• Tcl_Obj *Tcl_GetObjResult(Tcl_Interp *interp)
Returns the result for interp as an object. The object’s reference count is not
incremented.

• const char *Tcl_GetStringResult(Tcl_Interp *interp)
Returns the result for interp as a string.

33.2 Evaluating Tcl Code

In Chapter 31 we saw the use of Tcl_EvalFile to evaluate a Tcl script in a file.
Tcl provides several other functions for evaluating scripts. These functions
all take an interpreter as their first argument, return a completion code, and
set a result in the interpreter. The most direct of these is Tcl_Eval:

This simply evaluates the string passed to it. If it’s successful, it returns
TCL_OK, and on failure, it returns TCL_ERROR as well as setting a result in the
interpreter.
You can use the Tcl_GetObjResult function to retrieve a pointer to the Tcl object
containing the result. The object’s reference count is not incremented; use
Tcl_IncrRefCount to increment its reference count if you need to retain a long-
term pointer to the object. For legacy code, Tcl_GetStringResult returns the
result as a string; you should use Tcl_GetObjResult for new code development.

Note

Because of the way Tcl works internally in versions prior to 8.4, it may
need to make some temporary modifications to the string while it is
working with it, so it is important that you pass a modifiable string to
Tcl_Eval rather than pass it a string constant directly. Code such as
Tcl_Eval(interp, "your script") may fail!

If you want to guarantee maximum efficiency from your script, consider
using Tcl_EvalObjEx. In addition to using the object interface, Tcl also byte-
compiles and caches the code passed to it, making it significantly faster

662

should it be executed again at some point in the future.

This example creates a new string object that contains the script we wish to
evaluate, increases its reference count, and then evaluates it. The 0 in the
call to Tcl_EvalObjEx is its “flags” argument. The two valid flags are
TCL_EVAL_DIRECT, which instructs Tcl not to byte-compile the script, and
TCL_EVAL_GLOBAL, which ensures that the script is processed at the global level,
running in the global namespace and using only global variables.
Each call to a procedure such as Tcl_Eval must contain a complete script. The
following does not work:

This code fails at the first call to Tcl_Eval, because the script it is attempting
to evaluate is not complete.

33.3 Dynamically Building Scripts

There are several ways to compose a script from multiple pieces. The
simplest is to build the command up as a list, in order to properly quote
whitespace within individual elements:

Note that because we build the command up as a list, with

663

Tcl_ListObjAppendElement, we don’t have to quote the hello world string
ourselves, even though it contains a space. When Tcl evaluates the object, it
is evaluating an object akin to puts {hello world}. Using lists is also more
efficient than using strings. If one of the elements is a number, for example,
it can be added to the list as a number instead of the number’s string
representation.
Another way of dynamically creating a command to evaluate is by using the
Tcl_EvalObjv function. It takes an array of Tcl objects and a count of the
objects as arguments, in addition to an interpreter:

In this code, we create the array of objects, fill it in, increment the reference
counts, perform the evaluation, and then lower the reference counts again.

33.4 Tcl Expressions

In addition to evaluating Tcl code, you can also calculate the result of a Tcl
expression. Expressions are useful as conditions for commands like if and
while, or as a way to perform some math with Tcl variables. See Chapter 4
on the expr command for further information on the syntax and utility of
expressions.
The basic method of performing an expression evaluation is via functions
like Tcl_ExprTYPE and Tcl_ExprTYPEObj, where TYPE is one of Long, Double, or Boolean,
and the result is stored in a variable of the corresponding C type; for
instance:

664

This code creates a string object from the string ($foo / 2) + 1, evaluates it,
and stores the result in the result variable.
If you don’t need the result returned as a particular C type, there are two
generic functions for evaluating expressions: Tcl_ExprObj and Tcl_ExprString.
The string form is the simplest, but it sacrifices some speed because the
result is stored as a string.

This calculates 2 + 2 and evaluates to a string result of 4. You can then fetch
the result with a call to Tcl_GetStringResult.
In the following we use the object-based call Tcl_ExprObj:

The object API is a bit more complex to use, but it is faster because it stores
the result as a Tcl object with some type of numeric representation, rather
than converting it back to a string.

665

666

34. Accessing Tcl Variables

In this chapter we cover how to set Tcl variables from C, how to read their
values, and how to delete them. We also describe how to link C variables
and Tcl variables, so that when one changes, the other changes as well. Also
included is a description of variable traces.

34.1 Functions Presented in This Chapter

This chapter covers the following functions for manipulating Tcl variables
from C code:

• Tcl_Obj *Tcl_SetVar2Ex(Tcl_Interp *interp,
 CONST char *name1, CONST char *name2,
 Tcl_Obj *newValuePtr, int flags)

Sets the variable given by name1 (and name2 in the case of an array element) to
newValuePtr.

• CONST char *Tcl_SetVar(Tcl_Interp *interp,
 CONST char *varName, CONST char *newValue,
 int flags)

Sets the variable varName to newValue.
• CONST char *Tcl_SetVar2(Tcl_Interp *interp,

 CONST char *name1, CONST char *name2,
 CONST char *newValue, int flags)

Sets the variable given by name1 (and name2 in the case of an array element) to
newValue.

• Tcl_Obj *Tcl_ObjSetVar2(Tcl_Interp *interp,
 Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
 Tcl_Obj *newValuePtr, int flags)

Sets the variable given by Tcl objects part1Ptr (and part2Ptr in the case of an
array element) to newValuePtr.

• Tcl_Obj *Tcl_GetVar2Ex(Tcl_Interp *interp,
 CONST char *name1, CONST char *name2, int flags)

Retrieves the contents of the variables given by name1 and name2 as a Tcl
object.

• CONST char *Tcl_GetVar(Tcl_Interp *interp,
 CONST char *varName, int flags)

667

Retrieves the contents of the variable varName as a string.
• CONST char *Tcl_GetVar2(Tcl_Interp *interp,

 CONST char *name1, CONST char *name2, int flags)
Retrieves the contents of the variables given by name1 and name2 as a string.

• Tcl_Obj *Tcl_ObjGetVar2(Tcl_Interp *interp,
 Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr, int flags)

Retrieves the contents of the variables given by Tcl objects part1Ptr and
part2Ptr as a Tcl object.

• int Tcl_UnsetVar(Tcl_Interp *interp, CONST char *varName,
 int flags)

Unsets the variable varName.
• int Tcl_UnsetVar2(Tcl_Interp *interp, CONST char *name1,

 CONST char *name2, int flags)
Unsets the variables given by name1 and name2.

• int Tcl_TraceVar(Tcl_Interp *interp,
 CONST char *varName, int flags,
 Tcl_VarTraceProc proc, ClientData clientData)

Arranges to call the function proc when the trace on varName matches one of
the conditions specified in flags.

• Tcl_UntraceVar(Tcl_Interp *interp,
 CONST char *varName, int flags,
 Tcl_VarTraceProc proc, ClientData clientData)

Unsets a trace. Arguments must match those used to set the trace.
• ClientData clientData Tcl_VarTraceInfo(Tcl_Interp *interp,

 CONST char *varName, int flags,
 Tcl_VarTraceProc proc, ClientData prevClientData)

Returns the clientData for a previously set trace.
• int Tcl_TraceVar2(Tcl_Interp *interp,

 CONST char *name1, CONST char *name2, int flags,
 Tcl_VarTraceProc proc, ClientData clientData)
Tcl_UntraceVar2(Tcl_Interp *interp,
 CONST char *name1, CONST char *name2, int flags,
 Tcl_VarTraceProc proc, ClientData clientData)
ClientData Tcl_VarTraceInfo2(Tcl_Interp *interp,
 CONST char *name1, CONST char *name2, int flags,
 Tcl_VarTraceProc proc, ClientData prevClientData)

These functions are the same as the previous three, but instead of taking one
variable name as an argument, they take a name1 and name2, where name2 is used
to refer to array elements.

668

34.2 Setting Variable Values

Tcl variables differ from Tcl objects in that an object is just some value that
can be used by Tcl, whereas a variable is an object that is accessible at the
script level via a variable name.
The simplest way to create a Tcl variable is with the Tcl_SetVar command:

Both the variable name and its value are given as strings, meaning that this
is not an efficient way to create variables with numeric values. If speed is
not an issue, this is the easiest way to get the job done. The variable can be
either a normal variable or an array element—such as foo or foo(bar). Other
than this, it is not parsed at all, and no substitutions occur. You could use the
string [$a] as the variable name if you so chose, although you should not use
names like this because they make your code confusing and difficult to read.
The object-based version of this command is as follows:

When this code snippet is executed, it creates a foo variable, as before. The
difference is that its value is an object containing the number 42, which is
more efficient to work with if the commands that subsequently operate on foo
deal with numbers.
The Tcl_SetVar2Ex function also lets us create array elements by using both the
second and third arguments, like so:

Tcl_SetVar2Ex(interp, "foo", "bar", intObj, 0);

This creates the foo(bar) array element.
The last argument to most variable functions—the 0 in the preceding
examples—is an ORed combination of flag bits:

• TCL_GLOBAL_ONLY
Looks up the variable in the global namespace only, even if execution is
deep within nested procedures.

• TCL_NAMESPACE_ONLY

669

Looks up the variable in the current namespace only.
• TCL_LEAVE_ERR_MSG

Sets the interpreter’s result to an error if a problem occurs when creating
the variable. Otherwise, most of the set commands simply return a NULL
value. This may prove useful within commands that should fail if they are
not able to set the variable in question.

• TCL_APPEND_VALUE
Instead of replacing an existing value of this variable, appends to it. If the
variable does not exist, it is created as normal.

• TCL_LIST_ELEMENT
The new value for the variable is converted to a list element (quoted, if
necessary). Depending on whether the TCL_APPEND_VALUE flag is set, the variable
is either set to a list containing this element, or the element is appended to
the value contained in the variable.
In addition to the Tcl_SetVar and Tcl_SetVar2Ex functions just described, the Tcl
API provides Tcl_ObjSetVar2, which takes Tcl objects for the variable name
and/or array element name. For example, to create a list of numbers:

In Tcl, printing the numlist variable would result in

 puts $numlist
⇒ 1 2 3 4 5 6 7 8 9 10

34.3 Reading Variables

The “read” that corresponds to the Tcl_SetVar “write” is Tcl_GetVar:

char *value;
value = Tcl_GetVar(interp, "foo", 0);

670

This returns a string pointer with the value contained in the variable foo. The
string returned belongs to Tcl, so if you wish to keep it or modify it, make a
copy with strdup. Calling Tcl_SetVar or Tcl_SetVar2 for the variable invalidates
the pointer, so copy it immediately if you want to save it.
The flags for the various GetVar operations are TCL_GLOBAL_ONLY and
TCL_LEAVE_ERR_MSG, which have the same meaning as for the SetVar functions.
The object-based GetVar function is Tcl_GetVar2Ex, which returns a Tcl object:

Tcl_Obj *value;
value = Tcl_GetVar2Ex(interp, "foo", NULL, 0);

With a Tcl_Obj in hand, you could use Tcl_GetIntFromObj to get the integer value
and then manipulate it, which is much more efficient than parsing the string
42 to obtain its integer value:

34.4 Unsetting Variables

It is possible to remove a variable using the Tcl_UnsetVar or Tcl_UnsetVar2
commands. Either

Tcl_UnsetVar(interp, "foo(bar)", 0);

or

Tcl_UnsetVar2(interp, "foo", "bar", 0);

removes the bar element from the foo array. These functions have the same
effect as the Tcl unset command. The Tcl equivalent to this code is

unset foo(bar)

These functions return TCL_OK on success and TCL_ERROR if the variable doesn’t
exist or can’t be removed for some other reason. The TCL_GLOBAL_ONLY and
TCL_LEAVE_ERR_MSG flags may be used with these calls. If an array name is given,
and no element is specified, the entire array is removed.

671

34.5 Linking Tcl and C Variables

Tcl provides a mechanism called variable linking that allows you to
associate a Tcl variable with a C variable. Whenever the Tcl variable is
read, the value is supplied from the C variable, and whenever the Tcl value
is written, the new value is stored in the C variable as well. The function
Tcl_LinkVar creates a link. Consider the following C code:

This links the Tcl variable x to the C variable value. Whenever the Tcl
variable x is read, Tcl converts value to a decimal string and returns the
string as the value of x (32 in the example). If value is modified, the new
value is returned the next time the Tcl variable x is read. Whenever the Tcl
variable x is written, x’s new value is converted from a Tcl object to an
integer and stored in value. If a Tcl script attempts to write a value into x that
isn’t a proper integer, the write is rejected with an error:

 set x "oops!"
⇒ can't set "x": variable must have integer value

The last argument to Tcl_LinkVar indicates the type of the C variable. In the
previous example, the type is TCL_LINK_INT, which indicates that the C
variable is an integer and only proper integer values may be stored in the
Tcl variable. Table 34.1 lists the allowed values for the type argument and
the C type to which they correspond. For any of the numerical types
supported by Tcl_LinkVar, any attempt to assign a value to the Tcl variable that
cannot be converted to the specified type (for example, a non-numerical
value or an out-of-range value) is rejected with a Tcl error.

Table 34.1 Allowed Type Arguments for Tcl_LinkVar

672

For the TCL_LINK_STRING type, if the C variable’s value is not NULL, it must point
to a string allocated with Tcl_Alloc or ckalloc. When the Tcl variable is
modified, the old string is freed and a new one is allocated to hold the
variable’s new value. The Tcl variable may be assigned any string value.
The Tcl variable returns the string NULL if it is read and the C variable is NULL.

Note

Only C variables allocated globally or dynamically, rather than those
from the stack, should be linked.

For example, to link to a string, you would do this:

The flag TCL_LINK_READ_ONLY may also be ORed with the type, as in the
following example:

Tcl_LinkVar(interp, "x", (void *), &value,
 TCL_LINK_INT|TCL_LINK_READ_ONLY);

673

This makes the Tcl variable read-only: any attempt to modify the variable
from Tcl is rejected with an error.
While the Tcl variable is linked, if it is unset, Tcl automatically re-creates
the variable. The Tcl variable cannot be unset permanently until the link is
removed. The function Tcl_UnlinkVar removes a variable link previously
established by Tcl_LinkVar. For example, the following statement removes the
link created previously:

Tcl_UnlinkVar(interp, "x");

34.6 Setting and Unsetting Variable Traces

Variable traces allow you to specify a C function to be called whenever a
variable is read, written, or unset. Traces can be used for many purposes. In
Tk, for instance, you can configure a button widget so that it displays the
value of a variable and updates itself automatically when the variable is
modified. This feature is implemented with variable traces. You can also
use traces for debugging, to create read-only variables, and for many other
purposes.

Note

Although they are quite powerful, you should be careful in your use of
traces, because they make it easy to create “magic variables” that, to
the user, appear to behave very strangely.

The Tcl_TraceVar and Tcl_TraceVar2 calls create variable traces, as in the
following example:

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES,
 WriteProc, (ClientData)NULL);

This creates a write trace on variable x in interp, which means that WriteProc
is invoked whenever x is modified. The third argument to Tcl_TraceVar is an
ORed combination of flag bits that select the operations to trace:
TCL_TRACE_READS for reads, TCL_TRACE_WRITES for writes, and TCL_TRACE_UNSETS for

674

unsets. In addition, the flag TCL_GLOBAL_ONLY may be specified to force the
variable name to be interpreted as global. Tcl_TraceVar and Tcl_TraceVar2
normally return TCL_OK. If an error occurs, they set an error result in the
interpreter and return TCL_ERROR.
The library functions Tcl_UntraceVar and Tcl_UntraceVar2 remove variable
traces. For example, the following call removes the trace set previously:

Tcl_Untrace(interp, "x", TCL_TRACE_WRITES,
 WriteProc,(ClientData)NULL);

Tcl_UntraceVar finds the specified variable; looks for a trace that matches the
flags, trace function, and clientData specified by its arguments; and removes
the trace if it exists. If no matching trace exists, Tcl_UntraceVar does nothing.
Tcl_UntraceVar and Tcl_UntraceVar2 accept the same flags as Tcl_TraceVar.

34.7 Trace Callbacks

Trace callback functions such as WriteProc in the previous section must match
the following prototype:

The clientData and interp arguments are the same as the corresponding
arguments passed to Tcl_TraceVar or Tcl_TraceVar2. clientData typically points to
a structure containing information needed by the trace callback. name1 and
name2 give the name of the variable in the same form as the arguments to
Tcl_SetVar2. flags consist of an ORed combination of bits. Either
TCL_TRACE_READS, TCL_TRACE_WRITES, or TCL_TRACE_UNSETS is set to indicate which
operation triggered the trace, and TCL_GLOBAL_ONLY is set if the variable is a
global variable that isn’t accessible from the current execution context; the
trace callback must pass this flag back into functions like Tcl_GetVar2 if it
wishes to access the variable. The bits TCL_TRACE_DESTROYED and
TCL_INTERP_DESTROYED are set in special circumstances, as described in Section
34.10.
For read traces the callback is invoked just before the Tcl_GetVar or other
variable read operations return the variable’s value; if the callback modifies
the value of the variable, the modified value is returned. For write traces the
callback is invoked after the variable’s value has been changed. The

675

callback can modify the variable to override the change, and this modified
value is returned as the result of Tcl_SetVar or other variable write functions.
For unset traces the callback is invoked after the variable has been unset, so
the callback cannot access the variable. Unset callbacks can occur when a
variable has been unset, when a Tcl procedure returns (thereby deleting all
of its local variables), or when an interpreter is destroyed (thereby deleting
all of the variables in the interpreter).
A trace callback function can invoke Tcl_GetVar and Tcl_SetVar or their
equivalents to read and write the value of the traced variable. All traces on
the variable are temporarily disabled while the callback executes, so calls
to Tcl_GetVar, Tcl_SetVar, and the like do not trigger additional trace callbacks.
As mentioned earlier, unset traces aren’t invoked until after the variable has
been deleted, so attempts to read the variable during unset callbacks fail.
However, it is possible for an unset callback function to write to the
variable, in which case a new variable is created.
This code sets a write trace that prints out the value of variable x each time
it is modified:

Print must pass the TCL_GLOBAL_ONLY bit of its flags argument to Tcl_GetVar2 in
order to make sure that the variable can be accessed properly. Tcl_GetVar2
should never return an error, but Print checks for one anyway and doesn’t try
to print the variable’s value if an error occurs. In this example we don’t use
the Tcl_Obj variant of Tcl_GetVar, because Tcl_GetVar2 is simpler and more
direct.

676

Trace callbacks normally return NULL values; a non-null value signals an
error. In this case the return value must be a pointer to a static string
containing an error message. The traced access aborts, and the error
message is returned to whoever initiated that access. For example, if the
access was invoked by a set command or $ substitution, a Tcl error results;
if the access was invoked via Tcl_GetVar, it returns NULL and also sets an error
result in the interpreter if the TCL_LEAVE_ERR_MSG flag was specified.
The following code uses a trace to make the variable zip read-only with the
value 94114:

The Reject function is a trace callback that is invoked whenever zip is written
to. It returns an error message to abort the write access. Since zip has
already been modified before Reject is invoked, Reject must undo the write by
restoring the variable’s correct value. The correct value is passed to the
trace callback using its clientData argument. This implementation allows the
same function to be used as the write callback for many different read-only
variables; a different correct value can be passed to Reject for each variable.

34.8 Whole-Array Traces

You can create a trace on an entire array by specifying an array name to
Tcl_TraceVar or Tcl_TraceVar2 without an element name. This creates a whole-
array trace: the callback function is invoked whenever any of the specified
operations is invoked on any element of the array. If the entire array is unset,
the callback is invoked just once, with name1 containing the array name and
name2 being NULL.

34.9 Multiple Traces

677

Multiple traces can exist for the same variable. When this happens, each of
the relevant callbacks is invoked on each variable access. The callbacks are
invoked in order from the one most recently created to the oldest. If there
are both whole-array traces and individual element traces, the whole-array
callbacks are invoked before element callbacks. If an error is returned by
one of the callbacks, no subsequent callbacks are invoked.

34.10 Unset Callbacks

Unset callbacks are different from read and write callbacks in several ways.
First of all, unset callbacks cannot return an error condition; they must
always succeed. Second, two extra flags are defined for unset callbacks:
TCL_TRACE_DESTROYED and TCL_INTERP_DESTROYED. When a variable is unset, all of its
traces are deleted; unset traces on the variable are still invoked, but they are
passed the TCL_TRACE_DESTROYED flag to indicate that the trace has now been
deleted and won’t be invoked anymore. If an array element is unset and
there is a whole-array unset trace for the element’s array, the unset trace is
not deleted and the callback is invoked without the TCL_TRACE_DESTROYED flag
being set.
If the TCL_INTERP_DESTROYED flag is set during an unset callback, it means that the
interpreter containing the variable has been destroyed. In this case the
callback must be careful not to use the interpreter at all, since the
interpreter’s state is in the process of being deleted. The callback should
merely clean up its own internal data structures.

678

679

35. Creating New Tcl Commands

For everyone planning on interacting with Tcl’s C API, whether through
extensions to Tcl or by embedding Tcl, creating new Tcl commands is the
primary means of integrating Tcl with your library or application.
Each Tcl command is implemented by a function written in C. When a Tcl
command is invoked during script evaluation, Tcl calls this function to carry
out the command. This chapter describes how to write command functions,
how to register them in an interpreter, and how to manage the result of the
command.

35.1 Functions Presented in This Chapter

• Tcl_Command Tcl_CreateObjCommand(Tcl_Interp *interp,

 CONST char *cmdName, Tcl_ObjCmdProc proc,
 ClientData clientData,
 Tcl_CmdDeleteProc deleteProc)

Creates a new command that is visible in Tcl as cmdName, which, when called,
runs the function proc.

• Tcl_WrongNumArgs(Tcl_Interp *interp, int objc,
 CONST Tcl_Obj *objv[], CONST char *message)

Generates a standard error message and stores it in the result object of
interp. The message includes the objc initial elements of objv plus message.

• int Tcl_DeleteCommand(Tcl_Interp *interp,
 CONST char *cmdName)

Deletes the command cmdName.
• int Tcl_DeleteCommandFromToken(Tcl_Interp *interp,

 Tcl_Command token)
Deletes the command referred to by token.

• Tcl_SetObjResult(Tcl_Interp *interp, Tcl_Obj *objPtr)
Sets objPtr as the result for interp and increments its reference count. This
replaces any existing result and decrements the reference count for any old
result object.

• Tcl_SetResult(Tcl_Interp *interp, char *result,
 Tcl_FreeProc *freeProc)

Arranges for result to be the result for the current Tcl command in interp,

680

replacing any existing result. The freeProc argument specifies how to manage
the storage for the result argument.

• Tcl_AppendResult(Tcl_Interp *interp, char *result,
 char *result, ... , (char *) NULL)
Tcl_AppendResultVA(Tcl_Interp *interp, va_list argList)

Takes each of its result arguments and appends them in order to the current
result associated with interp. Tcl_AppendResultVA is the same as Tcl_AppendResult
except that instead of taking a variable number of arguments, it takes an
argument list.

• Tcl_AppendElement(Tcl_Interp *interp, char *element)
Takes only a single element argument and appends that argument to the current
result as a proper Tcl list element.

• Tcl_ResetResult(Tcl_Interp *interp)
Clears the result for interp and leaves the result in its normal empty
initialized state. If the result is an object, its reference count is decremented.

• int Tcl_GetCommandInfo(Tcl_Interp *interp,
 CONST char *cmdName, Tcl_CmdInfo infoPtr)

Obtains information about the command cmdName and places it in infoPtr.
• int Tcl_SetCommandInfo(Tcl_Interp *interp,

 CONST char *cmdName, Tcl_CmdInfo infoPtr)
Modifies functions and client data associated with the command cmdName.

• int Tcl_GetCommandInfoFromToken(Tcl_Command token,
 Tcl_CmdInfo infoPtr)

Obtains information about the command referred to by token and places it in
infoPtr.

• int Tcl_SetCommandInfoFromToken(Tcl_Command token,
 Tcl_CmdInfo infoPtr)

Modifies functions and client data associated with the command referred to
by token.

• CONST char *Tcl_GetCommandName(Tcl_Interp *interp,
 Tcl_Command token)

Gets the name of the command referred to by token.
• void Tcl_GetCommandFullName(Tcl_Interp *interp,

 Tcl_Command token, Tcl_Obj *objPtr)
Produces the fully qualified name of a command from token. The name,
including all namespace prefixes, is appended to the object specified by
objPtr.

• Tcl_Command Tcl_GetCommandFromObj(Tcl_Interp *interp,
 Tcl_Obj *objPtr)

Returns a token for the command specified by the name in a Tcl_Obj. The

681

command name is resolved relative to the current namespace. Returns NULL if
the command is not found.

• Tcl_Trace Tcl_CreateObjTrace(Tcl_Interp *interp,
 int level, int flags, Tcl_CmdObjTraceProc objProc,
 ClientData clientData
 Tcl_CmdObjTraceDeleteProc deleteProc)

Creates a trace. The objProc function is called prior to the execution of every
command in interpreter interp. Only commands at or below nesting level
level are traced. Returns a trace that can be passed to Tcl_DeleteTrace.

• Tcl_Trace Tcl_CreateTrace(Tcl_Interp *interp,
 int level, Tcl_CmdTraceProc func,
 ClientData clientData)

Similar to Tcl_CreateObjTrace, but for command functions implemented using
the older interface.

• Tcl_DeleteTrace(Tcl_Interp *interp, Tcl_Trace trace)
Deletes a trace.

35.2 Command Functions

The interface to an object-based command function is defined by the
Tcl_CmdProc function prototype:

In other words, functions that implement new Tcl commands have this
signature. This replaces the older-style string-based commands, which have
the following function signature—included here only to aid in the
understanding of old code that is in need of updating:

A command function is invoked when its corresponding Tcl command is
executed, and it is passed four arguments. The first, clientData, is discussed
in Section 35.7. The second, interp, is the interpreter in which the command
was executed. The third and fourth arguments are similar in meaning to the
argc and argv arguments to a C main program: objc specifies the total number of
arguments (words) to the Tcl command, and objv is an array of pointers to

682

the Tcl_Obj values of the words. Tcl processes all the special characters such
as $ and [] before invoking command functions, so the values in objv are
those left after any substitutions have been performed.
The name of the command is counted in objc (meaning the command cmd foo
has an objc of 2) and is included as the first element of objv. objv[objc] is NULL.
A command function “returns” two values, just like Tcl_Eval and Tcl_EvalFile.
The C function returns an integer completion code such as TCL_OK or TCL_ERROR
and additionally sets a result in the Tcl interpreter with Tcl_SetObjResult. The
Tcl_WrongNumArgs call is also commonly used to indicate an error condition
caused by an incorrect number of arguments to the Tcl command.
Here is the command function for a new command called eq that compares
its two arguments for string equality:

EqCmd checks to see that it was called with exactly two arguments (i.e., the
objc has a value of 3, which includes the command name), and if not, it uses
Tcl_WrongNumArgs to set an error result and then returns TCL_ERROR. Otherwise, it
fetches the string values of its two arguments, compares them, and creates a
Boolean object that indicates whether they are indeed equal or not. It then
returns TCL_OK to indicate that the command completed normally. EqCmd does
not use its clientData argument, but this argument plays an important role in
many other Tcl commands, as you will see shortly.

Note

683

This command does not check the equivalence of two objects, only
their string equality. Consider two numbers, 1 and 1.0—EqCmd will
indicate that they are different.

A command function should treat the contents of the objv array as read-only.
In general, it is not safe for a command function to modify these objects.

35.3 Registering Commands

In order for a command function to be invoked by Tcl, you must register it
by calling Tcl_CreateObjCommand, which takes the form

This is the “magic” that associates the string in Tcl with the C function that
implements it. Here is the simple program from Section 31.3, augmented
with a call to Tcl_CreateObjCommand:

684

The first argument to Tcl_CreateObjCommand identifies the interpreter in which
the command will be used. The second argument specifies the name for the
command, and the third argument specifies its command function. The fourth
and fifth arguments are discussed in Section 35.7; they can be specified as
NULL for simple commands like this one. Tcl_CreateObjCommand creates a new
command for interp named eq. If a command by that name already exists, it is
silently deleted. Whenever eq is invoked in interp, Tcl calls EqCmd to carry out
its function. The Tcl_CreateObjCommand function returns a Tcl_Command “token” that
can be used to further manipulate and obtain information about the
command. See Section 35.8 and Section 35.9 for further information.
If the code for EqCmd is included in the same file with the main function, it can
be compiled and invoked just like the simple program in Section 31.3.
Alternatively, EqCmd could be compiled into an extension and loaded, as
described in Chapter 36. In either case, scripts are now able to use the new
eq command:

685

When processing scripts, Tcl carries out all of the command-line
substitutions before calling the command function, so when EqCmd is called
for the last eq command in the preceding code, both objv[1] and objv[2]
contain objects with the string .dlg.ok.
Tcl_CreateObjCommand is usually called by applications during initialization to
register application-specific commands, but new commands can be created
at any time while an application is running—even by other commands. For
example, the proc command creates a new command for each Tcl procedure
that is defined, and Tk creates a widget command for each new widget. In
Section 35.7 and Section 35.9 you will see examples where the command
function for one command creates a new command.
Commands created by Tcl_CreateObjCommand are indistinguishable from Tcl’s
built-in commands. Each built-in command has a command function with the
same form as EqCmd, and you can redefine a built-in command by calling
Tcl_CreateObjCommand with the name of the command and a new command
function.

35.4 The Result Protocol

The EqCmd function returns a result through a call to the Tcl_SetObjResult
function. This is the most efficient way to set a result. In the example in the
previous section, for instance, we create the type as a Boolean, so that if the
eq command’s result is read by another command that expects a Boolean as
an argument, no translation is necessary. If we were to provide a string
result, it would have to be created, then parsed back into a Boolean (an
integer).
By setting an object as the result in the interpreter, Tcl automatically
increments its reference count, so it’s not necessary for you to do it
explicitly.

35.5 Tcl_AppendResult

686

Another method of managing the result that is still useful, and reasonably
current (it is used in Tcl internally), is Tcl_AppendResult, which makes it easy
to build up results in pieces. It takes any number of strings as arguments and
appends them to the interpreter’s result in order. As the result grows in
length, Tcl_AppendResult allocates new memory for it. Tcl_AppendResult may be
called repeatedly to build up long results incrementally, and it does this
efficiently, even if the result becomes very large (it allocates extra memory
so that it doesn’t have to copy the existing result into a larger area on each
call). Here is an example from Tcl’s source that sets an error message when
it cannot open a file:

The NULL argument in Tcl_AppendResult marks the end of the strings to append.
Tcl_AppendElement is similar to Tcl_AppendResult except that it adds only one
string to the result at a time, and it appends it as a list element instead of a
raw string. In modern Tcl applications, it is probably best to construct a list
as an object and provide that as an argument to Tcl_SetObjResult.
If you set the result for an interpreter and then decide that you want to
discard it (for example, an error has occurred and you want to replace the
current result with an error message), you should call the function
Tcl_ResetResult. It frees the current result and restores the interpreter’s result
to its initialized state. You can then store a new value in the result in any of
the usual ways. You need not call Tcl_ResetResult if you’re going to use
Tcl_SetObjResult or Tcl_SetResult to store the new result, because these
functions take care of freeing any existing result.

35.6 Tcl_SetResult and interp->result

Before the advent of Tcl objects, the Tcl_SetResult function was used, and in
even older versions it was possible to set the result by manipulating fields
of the interpreter structure directly.

Note

687

This is slow and error-prone, and may not be supported in future Tcl
releases, as it has been deprecated for years. We describe it here to
assist the reader who is dealing with older code—and, we hope,
updating it.

The full definition of the Tcl_Interp structure, as visible outside the Tcl
library, is

The first field, result, points to the interpreter’s current result. It is possible
to set it directly to a string, by doing, for instance,

interp->result = "Maximum temperature exceeded!";

Tcl also provides, by default, a small amount of storage space that can be
written to directly. The exact quantity is defined by TCL_RESULT_SIZE, which is
guaranteed to be at least 200. You may see this used for numeric results in
code like the following:

sprintf(interp->result, "%d", argc);

It is also possible to allocate memory (via malloc or the like) and assign it to
interp->result. It is at this point that the second field in the interp structure,
freeProc, comes into play. If the result is set from dynamically allocated
memory, freeProc is a function that can free the memory when it is no longer
used. A freeProc must be defined with this signature:

typedef void Tcl_FreeProc(char *blockPtr);

The function is invoked with a single argument containing the address stored
in interp->result. In older code, malloc is used for dynamic allocation—as
opposed to ckalloc or Tcl_Alloc, which should always be used in new code.
Thus, interp->freeProc is usually set to the free function.
Tcl_SetResult is a step up from managing interp->result directly, yet it still
requires a function to free memory once it is no longer in use. The first
argument to Tcl_SetResult is an interpreter, the second argument is a string to
use as the result, and the third argument gives additional information about

688

the string. TCL_STATIC means that the string is static, so Tcl_SetResult just stores
its address into interp->result. A value of TCL_VOLATILE for the third argument
means that the string is about to change (for example, it is stored in the
function’s stack frame), so a copy must be made for the result. Tcl_SetResult
copies the string into the pre-allocated space if it fits; otherwise, it allocates
new memory to use for the result and copies the string there (setting interp-
>freeProc appropriately). If the third argument is TCL_DYNAMIC, it means that the
string was allocated with malloc and should become the property of Tcl:
Tcl_SetResult sets interp->freeProc to free as described earlier. Finally, the third
argument may be the address of a function suitable for use in interp->freeProc;
in this case the string is dynamically allocated and Tcl eventually calls the
specified function to free it.

Note

Once again: don’t use either of these approaches for any new code you
develop. If you come across them in existing code, take a few minutes
to bring the code up to date.

35.7 clientData and Deletion Callbacks

The fourth and fifth arguments to Tcl_CreateObjCommand, clientData and deleteProc,
were not discussed in Section 35.3, but they are useful when commands are
associated with “objects” (not Tcl_Objs, but objects as described in Section
30.3). The clientData argument is used to pass a one-word value to a
command function (typically the address of the C data structure for an
object). Tcl saves the clientData value and uses it as the first argument to the
command function. The type ClientData is large enough to hold either an
integer or a pointer value.
clientData values are used in conjunction with callback functions. A callback
is a function whose address is passed to a Tcl library function and saved in
a Tcl data structure. Later, at some significant time, the address is used to
invoke the function (“call it back”). A command function is an example of a
callback: Tcl associates the function’s address with a Tcl command name
and calls the function whenever the command is invoked. When a callback
is specified in Tcl or Tk, a clientData argument is provided along with the

689

function’s address, and the clientData value is passed to the callback as its
first argument.
The deleteProc argument to Tcl_CreateObjCommand specifies a deletion callback. If
its value isn’t NULL, it is the address of a function for Tcl to call when the
command is deleted. The function must match the following prototype:

typedef void Tcl_CmdDeleteProc(ClientData clientData);

The deletion callback takes a single argument, which is the clientData value
specified when the command was created. Deletion callbacks are used for
purposes such as freeing the object associated with a command.

690

These functions demonstrate how clientData and deleteProc can be used to
implement counter objects. CounterCmd creates new counters, which are
implemented by the ObjectCmd code. The application containing this code must
register CounterCmd as a Tcl command using the following call:

New counters can then be created by invoking the counter Tcl command; each
invocation creates a new object and returns a name for that object:

CounterCmd is the command function for counter. It allocates a structure for the

691

new counter and initializes its value to 0. Then it creates a name for the
counter using the static variable id, arranges for that name to be returned as
the command’s result, and increments id so that the next new counter will get
a different name.
This example uses the “object-oriented” style described in Section 30.3,
where there is one command for each counter object. As part of creating a
new counter, CounterCmd creates a new Tcl command named after the counter.
It uses the address of the Counter structure as the clientData for the command
and specifies DeleteCounter as the deletion callback for the new command.
Counters can be manipulated by invoking the commands named after them.
Each counter supports two options to its command: get, which returns the
current value of the counter, and next, which increments the counter’s value.
Once ctr0 and ctr1 are created, as shown earlier, the following Tcl
commands can be invoked:

The function ObjectCmd implements the Tcl commands for all existing
counters. It is passed a different clientData argument for each counter, which
it casts back to a value of type Counter *. ObjectCmd checks objv[1] to see which
command option was invoked. If it was get, it returns the counter’s value as
an integer object; if it was next, it increments the counter’s value and does
not set a result in the interpreter. If an unknown command was invoked,
ObjectCmd calls Tcl_AppendStringsToObj together with Tcl_SetObjResult to create an
error message.
To destroy a counter from Tcl you can delete its Tcl command; for example:

rename ctr0 {}

As part of deleting the command, Tcl invokes DeleteProc, which frees up the
memory associated with the counter.
This object-oriented implementation of counter objects is similar to Tk’s
implementation of widgets: there is one Tcl command to create a new
instance of a counter or widget, and one Tcl command for each existing
counter or widget. A single command function implements all of the counter
or widget commands for a particular type of object, receiving a clientData
argument that identifies a specific counter or widget. A different mechanism

692

is used to delete Tk widgets than to delete counters as shown earlier, but in
both cases the command corresponding to the object is deleted at the same
time as the object.

35.8 Deleting Commands

Tcl commands can be removed from an interpreter by calling
Tcl_DeleteCommand (this function is the same for both object-based commands
and old string-based commands). For example, the following statement
deletes the ctr0 command in the same way as the rename command used
earlier:

Tcl_DeleteCommand(interp, "ctr0");

If the command has a deletion callback, it is invoked before the command is
removed. Any command may be deleted, including built-in commands,
application-specific commands, and Tcl procedures.
In the counter implementation, it would also be possible to provide a
“delete” method in ObjectCmd that deletes the command, like so:

Tcl_DeleteCommand(interp, Tcl_GetString(objv[0]));

It is also possible to delete a command using the token returned by
Tcl_CreateObjCommand:

Tcl_DeleteCommandFromToken(Tcl_Interp *interp,
 Tcl_Command token);

This works even if the command has been renamed.

35.9 Fetching and Setting Command Parameters

The Tcl library provides several functions for fetching and storing
information about commands. The Tcl_GetCommandInfo and Tcl_SetCommandInfo
calls work with the Tcl_CmdInfo structure, which has the following fields:

693

The fields have the following meanings:

• isNativeObjectProc
Boolean value equal to 1 if the command was created with the “object API”
Tcl_CreateObjCommand, or 0 if it is not object-based and was created with the
“string API” Tcl_CreateCommand call. If this field is true, it is likely to be faster
to call objProc instead of proc.

• objProc
A pointer to the function that implements the command.

• objClientData
Client data for the object API version of the command.

• proc
If this command was created with Tcl_CreateCommand, this points to the function
that implements the command. If the command was brought into existance by
Tcl_CreateObjCommand, this is simply a function that exists to provide
compatibility with the older string API implementation.

• clientData
Client data for the string API command.

• deleteProc
This function is the same for both object and string API-derived commands
and points to the function called when the command is deleted.

• deleteData
The clientData value passed to deleteProc.

• namespacePtr
A pointer to the namespace that the command is in.
The following command function clones a command by fetching information
about one command using Tcl_GetCommandInfo and creating the new command:

694

In this code, oldCmdName is the command to be cloned, for example, expr. The
function raises an error if a valid name is not provided and Tcl_GetCommandInfo
returns 0. newCmdName is the name of a new command to create with the same
functionality as the existing command.
The same result could be achieved by replacing the Tcl_CreateObjCommand with
the following code:

This creates an “empty” command and then sets it to use the data contained
in the cmdinfo structure.
In addition to looking up commands by their names, it’s also possible to
look them up via tokens. There are two ways to obtain a token for a given
command. If you want to be certain you always have a token for a given
command, you should store the token returned by Tcl_CreateObjCommand. This

695

always points to that command, even if it is renamed. You can also retrieve
the token associated with a command name with the Tcl_GetCommandFromObj
function. As an example, this code gets the information for the puts
command:

The commands that use Tcl_Command tokens to fetch and set command
parameters are essentially the same as those described previously and are
listed in Section 35.1.

35.10 How Tcl Procedures Work

All Tcl commands, including those in the Tcl core such as set, if, and proc,
use the mechanism described in this chapter.

Note

In reality, the most common commands are bytecode-compiled, but that
is an internal optimization not covered in this book.

For example, consider the creation and execution of a Tcl procedure:

When the proc command is evaluated, Tcl invokes its command function. The
proc command function is part of the Tcl library, but it has the same
arguments and results as described in Section 35.2. The proc command
function allocates a new data structure to describe inc, including information
about inc’s arguments and body. Then the proc command function invokes
Tcl_CreateObjCommand to create the Tcl command for inc. It specifies a special
function called TclObjInterpProc (which is an internal part of the Tcl library)
as the command function for inc, and it uses the address of the new data
structure as the clientData for the command. Then the proc command function
returns.

696

When the inc procedure is evaluated, Tcl invokes TclObjInterpProc as the
command function for the command. TclObjInterpProc uses its clientData
argument to gain access to the data structure for inc and then byte-compiles
the body of the procedure if necessary. Subsequently, TclCompEvalObj (another
function internal to the Tcl library) evaluates inc’s body. Before calling
TclCompEvalObj, TclObjInterpProc creates a new variable scope for the procedure,
uses its objv argument to retrieve the first argument to the inc command, and
assigns this value to the x variable in the new scope. When the TclCompEvalObj
call completes, TclObjInterpProc destroys the procedure’s variable scope and
returns the completion code from TclCompEvalObj. All Tcl procedures have
TclObjInterpProc as their command function. However, each Tcl procedure has
a different clientData, which refers to the unique structure describing that
procedure.

35.11 Command Traces

In addition to being able to trace variable access, as discussed in Section
34.6, it is also possible to trace command execution in Tcl. The basic
method of doing this is via the Tcl_CreateObjTrace function, which creates a
trace function with the following signature:

This is useful for creating low-level Tcl debuggers, because at each step of
the program you can examine the command that’s about to be executed, the
program’s state, and so on. This is a very powerful feature, although do
keep in mind that because using it turns off Tcl’s bytecode compiler, it
notably slows down execution of Tcl code.

697

698

36. Extensions

Chapter 30 compared the approach of embedding Tcl into an existing
application versus extending Tcl with custom commands. It’s usually easier,
and faster in terms of programmer time, to code a few extensions in C for an
application written in Tcl, rather than write the application in C and call Tcl
scripts from it. Writing an extension minimizes the amount of C
programming compared to Tcl programming, making for better use of
programmer time.
This chapter explains how to write a Tcl extension in C.

36.1 Functions Presented in This Chapter

• CONST char *Tcl_PkgPresent(Tcl_Interp *interp,

 CONST char *name, CONST char *version, int exact)
CONST char *Tcl_PkgRequire(Tcl_Interp *interp,
 CONST char *name, CONST char *version, int exact)

Equivalent to the package present and package require commands, respectively.
Returns a pointer to the version string for the version of the package that is
provided in the interpreter (which may be different from version); if an error
occurs, it returns NULL and leaves an error message in the interpreter’s result.

• int Tcl_PkgProvide(Tcl_Interp *interp,
 CONST char *name, CONST char *version)

Equivalent to the package provide command. Returns TCL_OK if it completes
successfully; if an error occurs, it returns TCL_ERROR and leaves an error
message in the interpreter’s result.

• CONST char *Tcl_PkgRequireEx(Tcl_Interp *interp,
 CONST char *name, CONST char *version, int exact,
 ClientData *clientDataPtr)
CONST char *Tcl_PkgPresentEx(Tcl_Interp *interp,
 CONST char *name, CONST char *version, int exact,
 ClientData *clientDataPtr)
int Tcl_PkgProvideEx(Tcl_Interp *interp,
 CONST char *name, CONST char *version
 ClientData clientData)

These calls are identical to the previous versions, but allow the setting and
retrieving of the client data associated with the package.

699

• CONST char *Tcl_InitStubs(Tcl_Interp *interp
 CONST char *version, int exact)

This function must be the first one called from the Tcl library in an extension
compiled with Tcl stubs. It attempts to initialize the stub table pointers.

36.2 The Init Function

In practical terms, an extension is a shared library that is loaded into Tcl at
runtime with the load command, which is commonly wrapped in some Tcl
code in order to make it possible to load C extensions in the same way as
pure Tcl extensions—with a command like package require XYZ. Being shared
objects, extensions are recognizable by the file name extension on the
platform in question. Extension files end in .dll on Windows and .so on most
Unix systems.
Tcl extensions are usually based around one or more new Tcl commands that
provide functionality not available in the Tcl core. Proper extensions are
written as packages, just as if they were packages of Tcl scripts.
The entry point for any extension is its Init function, which takes the form

The function name, Myextension_Init in this case, must take the form
Packagename_Init. Packagename corresponds to the extension’s file name: an
extension named libPackagename.so must use Packagename_Init as its Init function,
and an extension with the Init function Foopackage_Init must be named
libFoopackage.so. This is so that Tcl can determine the Init function’s name and
then call it, knowing only the shared library file name. In reality, it is
possible to get around this requirement, but it’s a good idea to stick to the
convention, as it makes things easier.
The Init function is called when the extension is loaded and is run only
once, even if the file is loaded multiple times. This function is where all
setup takes place—commands are registered, variables are created, and
data structures are initialized. For example, if you want to create a hash
table to track a particular kind of object, create it in the Init function.
This function must return TCL_OK to indicate success, or TCL_ERROR if something
went awry.

700

36.3 Packages

Similar to the pure Tcl package system covered in Chapter 14, compiled
extensions offer a way to provide a package, based on the Tcl_PkgProvide
function:

int Tcl_PkgProvide(Tcl_interp *interp, char *name,
 char *version);

The interp argument is an interpreter, name is the name of the package, and
version is a version number string, such as 1.2 or 5.2.7. As with pure Tcl
packages, the name and version are used when the package require command
is called in a script. Try to pick a unique name for your package, so as not to
conflict with other packages.
Of course, in complex systems, your extension may require other extensions
to function. It is possible to require other packages via the Tcl_PkgRequire
function:

Tcl_PkgRequire(Tcl_Interp *interp, char *name,
 char *version, int exact);

The name is the name of a package to require. The version number is the
minimum version of the package that will work. If the exact flag is not 0, the
version number must match exactly; otherwise, any number that is equal to
or greater than the version provided here satisfies the dependency.
If you need to associate data with your package, in the form of a ClientData
pointer, Tcl provides the Tcl_PkgProvideEx and Tcl_PkgRequireEx functions. Aside
from taking a ClientData argument, they are identical to the function calls
described previously.
When creating the code to build and install your Tcl extension (see Chapter
47), you also need to provide a pkgIndex.tcl file similar to the following:

This is what actually carries out the load when a script asks for the package
with package require counter. Automatic generation of pkgIndex.tcl files is
explained in further detail in Chapter 14.

36.4 Namespaces

701

Tcl namespaces aid the programmer in modularizing and encapsulating
code. Tcl namespaces are discussed from the scripting level in Chapter 10.
In current versions of Tcl there is no C API to the namespace features, but
there are some work-arounds to create new namespaces from C.
Creating a command in a namespace automatically creates the namespace as
well if it does not already exist:

Tcl_CreateObjCommand(interp, "foo::bar", BarCmd,
 (ClientData) NULL, (Tcl_CmdDeleteProc *) NULL);

You can also create it with a quick Tcl_Eval call:

char *nsscript = "namespace eval ::foo {}";
Tcl_Eval(interp, nsscript);

If you are just providing a command or two, you probably don't need to
create a namespace, but if you have many commands, and especially if you
are creating lots of variables, consider using a namespace in order to spare
other programmers the chore of looking after too many commands in the
global namespace.

36.5 Tcl Stubs

Tcl provides a mechanism to ensure that an extension functions with
different versions of Tcl without having to be compiled or linked against
each one. This greatly increases compatibility between different releases of
extensions and Tcl versions, which are not required to move in lockstep
with one another. It does this by performing the symbol table lookups itself
instead of using the normal shared library mechanism. This double
indirection is what lets us detach the extension in question from a particular
version of the Tcl library. The stubs mechanism is invoked in a Tcl
extension via the function Tcl_InitStubs:

Tcl_InitStubs(Tcl_Interp *interp,
 char *version, int exact);

The first argument specifies the interpreter in which the extension will be
loaded. The version string argument specifies the minimum version of Tcl
required for the extension (the major number of the version must match that
of the Tcl interpreter). For example, 8.3 indicates that the extension needs

702

Tcl version 8.3 or later, whereas 8 indicates that any version 8 Tcl
interpreter is sufficient. If you want to use a specific version of the Tcl
library, set the exact flag to 1, requiring that the stubs match one, and only
one, version of Tcl—although at this point it might make more sense to link
directly and not use the stubs mechanism.
Tcl_InitStubs must be the first call in a Tcl extension that uses stubs; to access
other functions in the Tcl library, the stubs must be loaded.
In order to write robust code, it’s usually a good idea to use a #ifdef to
isolate the Tcl_InitStubs call, in case someone compiles the extension without
the stubs mechanism:

Thus, the use of stubs is determined by a compile-time flag, which is
covered in greater depth in Chapter 47.

36.6 The ifconfig Extension

The following source code implements an extension called ifconfig for
querying the status of network interfaces on a Linux system:

703

704

705

706

707

708

709

Consider the Init function. The compiled name of this library in Linux is
libtclifconfig.so, so tclifconfig corresponds to Tclifconfig in the Tclifconfig_Init
function. When Tcl loads this library, it looks for this function based on the
name of the shared library. At that point, depending on whether we
compiled with the USE_TCL_STUBS flag, we may or may not load the stub table.
The next order of business is to create the ifconfig command. We associate it
with the Ifconfig function using Tcl_CreateObjCommand, which also registers the
ifconfig command for use from within Tcl scripts.
The Tcl_PkgProvide call that comes next registers the extension as the ifconfig
package—not to be confused with the command—and sets the version to
0.1.
The Init function must return a TCL_OK, or else the extension fails to load.
After compiling the extension, we can use the new ifconfig command to
gather information about network interfaces on a Linux system:

All things considered, the source code, with comments, weighs in at less

710

than 300 lines of C and returns data in a form that we can use very easily in
Tcl.
By way of comparison, consider another way of performing the same task,
parsing the output of the /sbin/ifconfig command. In that case you must be
absolutely sure that the output format will not change from version to
version or among different platforms. If it does change, your script may have
to deal with mistaken information. Our Tcl/C extension requires some cross-
platform dexterity (ifdefs) of its own, but on the other hand, it’s very fast,
and there is no parsing involved—the data is immediately ready to use with
other Tcl commands.
To package this code for distribution, it would be a good idea to create a
pkgIndex.tcl file along these lines:

711

712

37. Embedding Tcl

Embedding is the practice of using Tcl from within an existing application
written in C. This chapter explains how to add Tcl to your application, as
well as how to create new tclsh-style applications.

37.1 Functions Presented in This Chapter

• void Tcl_FindExecutable(argv[0])

Computes the path of the executable, which is needed for several
mechanisms internal to Tcl.

• CONST char *Tcl_GetNameOfExecutable()
Returns a path to the full path name of the application.

• int Tcl_Init(Tcl_Interp *interp)
Carries out various Tcl initialization tasks, such as sourcing Tcl’s own
init.tcl.

• int Tcl_AppInit(Tcl_Interp *interp)
User-supplied hook procedure used in the creation of new tclsh-style
programs.

37.2 Adding Tcl to an Application

If you’re creating a new application from scratch, it may be worth
considering writing the application in Tcl, but for many reasons this might
not be an option. Embedding Tcl in existing applications is easy—with a
little bit of code, it’s possible to make an application far more powerful by
giving it a Tcl interpreter. In the extension model we saw earlier, most of the
code is written in Tcl, and extensions written in C are added as needed to
provide additional functionality or speed. In the “embedding” model, Tcl is
just another library that’s linked in to the main application to provide a
service, in this case, the evaluation of Tcl scripts.
For example, you could take a web server and add Tcl to it, allowing users
to create dynamic web pages in Tcl. This is the approach that AOLserver
and the various Apache Tcl projects have taken. The open-source

713

PostgreSQL database lets you use Tcl to write functions and trigger
procedures. There are countless other examples of large, complex programs
that have given users the ability to script new and interesting tools with Tcl.
A lot of value can be added to a program if it has a powerful scripting
interface. Your users will be able to create and share code—perhaps they
will even discover innovative ways of hooking the product to other systems
through Tcl.
Chapter 31 contains an extremely simple application that evaluates a Tcl
script contained in a file. Embedding Tcl doesn’t require much more work.
You need to choose a point in the life cycle of your application where you
want to initialize Tcl. For instance, you may wish to use Tcl as a
configuration language—you could start Tcl, and then use it to read in a file
that sets options for your system, such as

Alternatively, you could create some commands so that you don’t even have
to treat these configuration options like variables:

The command itself sets the variable internal to your application when it is
called. If you already have a configuration system, you may wish to delay
Tcl startup until you can set up the Tcl environment to reflect the information
about the system it’s running in; at that point you might set some Tcl
variables and vary behavior depending on how the system has been
configured.

37.3 Initialize Tcl

To evaluate Tcl code, you need to call the following setup functions:

714

You should call Tcl_FindExecutable before any other function of the Tcl library,
passing it argv[0] as its argument, to help the Tcl runtime to initialize itself.
Then you can create an interpreter with Tcl_CreateInterp, as described in
Chapter 31. If either the interpreter creation or the next call, Tcl_Init, should
fail, your system has a problem, and you may wish to abort the application,
as you will not be able to use Tcl inside it. Tcl_Init is the function
responsible for finding and evaluating the init.tcl script that is distributed as
a part of Tcl. Failure in any of these functions may indicate that you have not
installed Tcl correctly.
The Tcl library is now ready to evaluate Tcl scripts. In the same location in
your C code you should probably take care of any other initialization that
you need, such as the creation of commands, variables, channels, and so on.
If you are using multiple interpreters, you may want to initialize them first
and then, in each interpreter that needs it, perform the setup tasks, as it is
currently not possible to copy an interpreter’s state (commands, variables,
and so on).
The second decision you have to make, after having placed the Tcl
initialization code in your application, is when to evaluate Tcl scripts. For
some applications it’s obvious when this needs to happen. In a web server
that uses Tcl to dynamically generate pages, a Tcl script is evaluated when
the user requests some resource (usually a web page). If the user has
requested, say, index.tcl, the web server is responsible for executing that Tcl
code and sending the HTML results back to the user. Other applications may
need to add more complex hooks, such as working with Tcl’s event loop
(described in Chapter 43). However, at some point your application will
call one of the functions in the Tcl_Eval family to process Tcl code.

715

37.4 Creating New Tcl Shells

Before Tcl gained the ability to load shared library extensions, a popular
way of enhancing the language’s functionality was to create new versions of
the Tcl shell (tclsh) with the desired functionality added in. This is a special
case of “embedding” where the only functionality of the C “application” is
to set up and run Tcl code. The drawback to this approach is that you may
want to use more than one extension, and at this point you would need to
either integrate and compile both extensions or load one of them. Loading
extensions dynamically is a far more flexible approach.
There may be situations where old code is involved or where you wish to
have one statically linked executable with no libraries to load. In those
cases, creating your own Tcl shell may be the best approach, although even
here solutions like Starkits (described in Chapter 14) may be preferable.
You should also be aware of the differences between the Tcl library and the
tclsh program. tclsh provides several variables that are not set up by the Tcl
library, including argc, argv, argv0, and tcl_interactive, which are covered in
Chapter 3. Additionally, tclsh sources a “dot-file,” .tclshrc. If you wish to
create a shell of your own, you most likely want to copy this behavior, so
that your shell behaves like tclsh.
The means that Tcl provides to accomplish this is the Tcl_AppInit function.
Tcl_AppInit is a function that performs application-specific initialization, such
as creating new commands. The main functions for tclsh and wish invoke
Tcl_AppInit after they have performed all of their own initializations, but
before they start evaluating Tcl scripts. The overall idea is for the function
main to carry out functions that are the same in all tclsh-like (or wish-like)
applications, while Tcl_AppInit carries out the functions that may differ from
application to application.
The version of Tcl_AppInit used by tclsh looks like this:

Tcl_AppInit is invoked with a single argument consisting of the Tcl interpreter
for the application. If Tcl_AppInit completes normally, it returns TCL_OK, and if

716

it encounters an error, it returns TCL_ERROR and sets a result in the interpreter
(in this case the application prints the error message and exits). This
particular version of Tcl_AppInit does two things. First, it calls the function
Tcl_Init, which performs additional Tcl initialization (it sources a script
from the Tcl library to define the unknown procedure and set up the
autoloading mechanism, described in Chapter 14). The argument and result
for Tcl_Init are the same as for Tcl_AppInit. The second thing Tcl_AppInit does
is to set the global variable tcl_RcFileName, which gives the name of a user-
specific startup script. This variable is initially set to NULL by the main
function in the default tclsh and wish; if Tcl_AppInit modifies tcl_RcFileName, and
if the application is running interactively (rather than from a script file), main
sources the file named by tcl_RcFileName.
To create a new tclsh-style shell, all you have to do is write your own
Tcl_AppInit function and compile it with the Tcl library. For example, you can
regenerate the tclsh application by making a copy of the file unix/tclAppInit.c
from the Tcl source directory, which contains the preceding code for
Tcl_AppInit. Then compile this file and link it with the Tcl library as
described in Chapter 46:

cc tclAppInit.c -ltcl -lm -o mytclsh

The resulting application is identical to the system version of tclsh: it
supports interactive input, script files, and all of the other features of tclsh.
If you wanted to include the counter package presented in Chapter 35 in your
application, you might write the following Tcl_AppInit:

You would then compile counter.c as part of the application in addition to the
file containing the Tcl_AppInit function described previously.

717

718

38. Exceptions

Many Tcl commands, such as if and while, have arguments that are Tcl
scripts. The C functions for these commands evaluate them recursively to
evaluate the scripts. If Tcl_EvalObjEx or any of its related evaluation functions
returns a completion code other than TCL_OK, an exception is said to have
occurred. Exceptions include TCL_ERROR, which was described in Chapter 31,
plus several others that have not been mentioned yet. This chapter
introduces the full set of exceptions and describes how to unwind nested
evaluations and leave useful information in the errorInfo and errorCode
variables.

38.1 Functions Presented in This Chapter

• Tcl_AddObjErrorInfo(Tcl_Interp *interp,

 char *message, int length)
Adds error text to the errorInfo variable.

• Tcl_AddErrorInfo(Tcl_Interp *interp, char *message)
Like Tcl_AddObjErrorInfo, but initializes errorInfo from the string value of the
interpreter’s result if the error result is new.

• Tcl_SetObjErrorCode(Tcl_Interp *interp,
 Tcl_Obj *errorObjPtr)

Sets the errorCode variable from errorObjPtr.
• Tcl_SetErrorCode(Tcl_Interp *interp, char *element,

 char *element, ... (char *) NULL)
Sets the errorCode variable from a series of strings.

• Tcl_SetErrorCodeVA(Tcl_Interp *interp, va_list argList)
Sets the errorCode variable from a va_list.

• Tcl_Obj *Tcl_GetReturnOptions(Tcl_Interp *interp,
 int code)

Retrieves the dictionary of return options from an interpreter following a
script evaluation.

• int Tcl_SetReturnOptions(Tcl_Interp *interp,
 Tcl_Obj *options)

Sets the return options of interp to be options.
• CONST char *Tcl_PosixError(Tcl_Interp *interp)

719

Sets the errorCode variable after an error in a POSIX kernel call. It reads the
value of the errno C variable and calls Tcl_SetErrorCode to set errorCode in the
POSIX format. Returns a human-readable diagnostic message for the error.

• void Tcl_LogCommandInfo(Tcl_Interp *interp,
 CONST char *script, CONST char *command,
 int commandLength)

Adds information about the command that was being executed when the
error occurred to the errorInfo variable, and the line number stored internally
in the interpreter is set.

• void Tcl_Panic(CONST char *format, arg, arg, ...)
Prints the formatted error message to the standard error file of the process,
and then calls abort to terminate the process. Tcl_Panic does not return.

• void Tcl_PanicVA(CONST char *format, va_list argList)
Like Tcl_Panic, but takes a va_list argument.

• void Tcl_SetPanicProc(Tcl_PanicProc panicProc)
Sets the function to use when Tcl_Panic is called.

38.2 Completion Codes

Table 38.1 lists the full set of completion codes (which are integer return
values) defined by Tcl. If a command procedure returns anything other than
TCL_OK, Tcl aborts the evaluation of the script containing the command and
returns the code as the result of Tcl_EvalObjEx (or Tcl_EvalFile, etc.). TCL_OK and
TCL_ERROR have already been discussed; they are used for normal returns and
errors respectively. The completion code TCL_BREAK or TCL_CONTINUE occurs if a
break or continue command is invoked by a script; in both of these cases the
interpreter’s result is an empty string. The TCL_RETURN completion code occurs
if return is invoked; in this case the interpreter’s result is the intended result
of the enclosing procedure. Additional completion codes may be defined by
application-specific commands.

Table 38.1 Completion Codes Returned by Functions That Evaluate Scripts

720

As an example of how to generate a TCL_BREAK completion code, here is the
command procedure for the break command:

In reality, in code that has been bytecode-compiled, things work a little
differently, and the command gets called only if compilation doesn’t take
place. However, it is a good example.
TCL_BREAK, TCL_CONTINUE, and TCL_RETURN are used to unwind nested script
evaluations back to an enclosing looping command or procedure invocation.
Under most circumstances a procedure that receives any completion code
other than TCL_OK from Tcl_EvalObjEx should immediately return that same
completion code to its caller without modifying the interpreter’s result.
However, a few commands process some of the special completion codes
without returning them upward. For example, here is an implementation of
the while command:

721

After checking its argument count, Tcl_WhileObjCmd enters a loop where each
iteration evaluates the command’s first argument as an expression and its
second argument as a script. If an error occurs while the expression is being
evaluated, Tcl_WhileObjCmd returns the error. If the expression evaluates
successfully but its value is 0, the command terminates with a normal return.
Otherwise, it evaluates the script argument. If the completion code is
TCL_CONTINUE, Tcl_WhileObjCmd goes on to the next loop iteration. If the code is
TCL_BREAK, Tcl_WhileObjCmd ends the execution of the command and returns TCL_OK
to its caller. If Tcl_EvalObjEx returns any other completion code besides TCL_OK,
Tcl_WhileObjCmd simply reflects that code upward. This causes the proper
unwinding to occur on the TCL_ERROR or TCL_RETURN code and it also unwinds if
any new completion codes are added in the future.

722

If an exceptional return unwinds all the way through the topmost script being
evaluated, Tcl checks the completion code to be sure it is either TCL_OK or
TCL_ERROR. If another code is returned, Tcl turns the return into an error with
an appropriate error message. Furthermore, if a TCL_BREAK or TCL_CONTINUE
exception unwinds all the way out of a procedure, Tcl also turns it into an
error; for example:

Thus, applications need not worry about completion codes other than TCL_OK
and TCL_ERROR when evaluating scripts from the topmost level. It is possible to
circumvent this behavior with the Tcl_AllowExceptions function, covered in the
reference documentation.

38.3 Setting errorCode

The last piece of information set after an error is the errorCode variable,
which provides information about the error in a form that’s easy to process
with Tcl scripts—errorInfo (see below) is really meant to be read by people,
not programs. It is intended for use in situations where a script is likely to
catch the error, determine what went wrong, and attempt to recover from it
if possible. If a command procedure returns an error to Tcl without setting
errorCode, Tcl sets it to NONE. If a command procedure wishes to provide
information in errorCode, it should invoke either Tcl_SetErrorCode or
Tcl_SetObjErrorCode before returning TCL_ERROR.
Tcl_SetErrorCode takes as arguments an interpreter, any number of string
arguments, and then a null pointer. It forms the strings into a list and stores
the list as the value of errorCode. For example, suppose that you have written
several commands to implement gizmo objects, and that there are several
errors that could occur in commands that manipulate the objects, such as an
attempt to use a nonexistent object. If one of your command procedures
detects a nonexistent object error, it might set errorCode as follows:

723

This will leave the value GIZMO EXIST {no object by that name} in errorCode. GIZMO
identifies a general class of errors (those associated with gizmo objects),
EXIST is the symbolic name for the particular error that occurred, and the last
element of the list is a human-readable error message. You can store
whatever you want in errorCode as long as the first list element doesn’t
conflict with other values already in use, but the overall idea is to provide
symbolic information that can easily be processed by a Tcl script. For
example, a script that accesses gizmos might catch errors, and if the error is
a nonexistent gizmo, it might automatically create a new gizmo.
The object version is Tcl_SetObjErrorCode:

Tcl_SetObjErrorCode(Tcl_Interp *interp, Tcl_Obj
 *errorListObj);

where errorListObj is a Tcl list similar in form to the list that Tcl_SetErrorCode
takes:

It’s probably easier to use the non-object version in this case unless you
need to directly insert numbers into the list. One would hope that errors are
rare enough that the performance penalty incurred by the non-object code is
not noticeable.

38.4 Managing the Return Options Dictionary

As mentioned in Chapter 13, it’s possible to provide a return options
dictionary to the return command in order to pass arbitrary information when
raising an exception. The catch command can then retrieve the return options
dictionary and process it in any way desired.
The equivalent method of accomplishing the same thing from within C code
is to use Tcl_SetReturnOptions to set the return options dictionary and
Tcl_GetReturnOptions to retrieve it.

724

A typical usage for Tcl_GetReturnOptions is to retrieve the stack trace when
script evaluation returns an error, like so:

This takes the dictionary object options and returns the value of the -errorinfo
key, which should be a stack trace detailing what went wrong when script
was evaluated.

38.5 Adding to the Stack Trace in errorInfo

When an error occurs, Tcl adds a description of it to the stack trace of the
commands that were being evaluated at the time of the error; this stack trace
is visible to the user in the errorInfo global variable. Tcl accomplishes this
by calling the procedure Tcl_AddObjErrorInfo or Tcl_AddErrorInfo, both of which
have the following prototypes:

The difference is that message in Tcl_AddObjErrorInfo can contain embedded
nulls. For most purposes, it’s simpler to just use Tcl_AddErrorInfo.
The first call to Tcl_AddErrorInfo after an error has occurred sets errorInfo to
the error message stored in the interpreter and then appends message. Each
subsequent call for the same error appends message to errorInfo’s current
value. Whenever a command procedure returns TCL_ERROR, Tcl_Eval calls
Tcl_AddErrorInfo to log information about the command that was being
executed. If there are nested calls to Tcl_Eval, each one adds information
about its command as it unwinds, so that a stack trace forms in errorInfo.
Command procedures can call Tcl_AddErrorInfo themselves to provide
additional information about the context of the error. This is particularly

725

useful for command procedures that invoke Tcl_Eval recursively. For
example, consider the following Tcl procedure, which is a buggy attempt to
find the length of the longest element in a list:

This procedure fails because it never initializes the variable max, so an error
occurs when the if command attempts to read it. If the procedure is invoked
with the command longest {a 12345 xyz}, the following stack trace is stored in
errorInfo after the error:

All of the information is provided by Tcl_Eval except for the line with
comments in parentheses. The parenthesized message was generated by the
code that evaluates procedure bodies.
Keen observers will note that there is no error message for the while
command in this case. This is because it has been byte-compiled and thus
doesn’t really exist as a normal procedure. If we could force it to be called
as a procedure, we would get the following error trace:

726

Without the bytecode-compiled while command, we get a second
parenthesized message, which gives us information on where the error
occurred within the while body.
If you used the implementation of while from Section 38.2, instead of the
built-in Tcl implementation, the first parenthesized message would be
missing. The following C code is a replacement for the while loop and the
code that follows it in Tcl_WhileObjCmd; it uses Tcl_AppendResult to add the
parenthetical remark:

727

The -errorline key of the return options dictionary is set by Tcl_EvalObjEx
whenever a command procedure returns TCL_ERROR; it gives the line number of

728

the command that produced the error. A line number of 1 corresponds to the
first line of the script being evaluated, which is the line containing the open
brace in this example; the if command that generated the error is on line 3.

Note

Prior to Tcl 8.5, the error line number was available only by accessing
interp->errorLine directly. This technique is strongly deprecated in Tcl
8.5 and may be disabled altogether in Tcl 8.6. Any existing code that
accesses interp->errorLine should be replaced with code like that shown
previously to access the -errorline key from the return options
dictionary. Future versions of Tcl might provide more direct accessors
for the line number information; consult the Tcl reference
documentation for more information.

For simple Tcl commands you shouldn’t need to invoke Tcl_AddErrorInfo: the
information provided by Tcl_Eval is sufficient. However, if you write code
that calls Tcl_Eval, it’s a good idea to call Tcl_AddErrorInfo whenever Tcl_Eval
returns an error, to provide information about why Tcl_Eval was invoked and
also to include the line number of the error.
You must call Tcl_AddErrorInfo rather than trying to set the errorInfo variable
directly, because Tcl_AddErrorInfo contains special code to detect the first call
after an error and clear out the old contents of errorInfo.

38.6 Tcl_Panic

When the Tcl system encounters an error it can’t handle—running out of
memory, for example—it calls the Tcl_Panic function. Normally, this prints an
error message to the standard error channel and calls abort to end the current
process. You can use it in your own extensions like so:

Tcl_Panic(CONST char* format, arg, arg, arg, ...);

format is a format string like that in printf, and the args are arguments to print
out. This function does not return, so if you need to call it from your
extension, be sure it’s the last thing you call. Do not use this function where
an ordinary error would suffice, but only in cases where the application
should halt immediately.

729

When Tcl is embedded in an application, you might wish to provide a more
graceful way of shutting down Tcl and leave the process running, or simply
let the application shut down according to its own rules. Of course, once
Tcl_Panic has been called, you must ensure that your program does not attempt
to make further use of Tcl. It is possible to register a function to be called in
place of the default PanicProc using Tcl_SetPanicProc:

This registers a function that takes care of any cleanup specific to the
application, prints an error message, and then terminates the process.

730

731

39. String Utilities

Tcl provides a number of utility functions that make working with strings
and hash tables considerably easier and that C programmers can mostly use
(with the exception of the encoding framework and the regular expression
engine) independently of the rest of the Tcl library. This chapter describes
Tcl’s library functions for manipulating strings, including a dynamic string
mechanism that allows you to build up arbitrarily long strings; a function for
doing simple string matching; a suite of functions for working with Unicode
characters and UTF-8 strings; and a function for testing the syntactic
completeness of a command.

39.1 Functions Presented in This Chapter

The following string utility functions are described in this chapter:

• void Tcl_DStringInit(Tcl_DString *dsPtr)
Initializes dsPtr’s value to an empty string (the previous contents of dsPtr are
discarded without cleaning up).

• char *Tcl_DStringAppend(Tcl_DString *dsPtr,
 const char *string, int length)

Appends length bytes from string to dsPtr’s value and returns the new value of
dsPtr. If length is less than 0, appends all of string.

• char *Tcl_DStringAppendElement(Tcl_DString *dsPtr,
 const char *string)

Converts string to a proper list element and appends it to dsPtr’s value (with
separator space if needed). Returns the new value of dsPtr.

• Tcl_DStringStartSublist(Tcl_DString *dsPtr)
Adds suitable bytes to dsPtr ({, for example) to initiate a sublist.

• Tcl_DStringEndSublist(Tcl_DString *dsPtr)
Adds suitable bytes to dsPtr (}, for example) to terminate a sublist.

• char *Tcl_DStringValue(Tcl_DString *dsPtr)
Returns a pointer to the current value of dsPtr.

• int Tcl_DStringLength(Tcl_DString *dsPtr)
Returns the number of bytes in dsPtr’s value, not including the terminating
null byte.

• Tcl_DStringTrunc(Tcl_DString *dsPtr, int newLength)

732

If dsPtr has more than newLength bytes, shortens it to include only the first
newLength bytes.

• Tcl_DStringFree(Tcl_DString *dsPtr)
Frees up any memory allocated for dsPtr and re-initializes dsPtr’s value to an
empty string.

• Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)
Moves the value of dsPtr to the interpreter’s result and re-initializes dsPtr’s
value to an empty string.

• Tcl_DStringGetResult(Tcl_Interp *interp,
 Tcl_DString *dsPtr)

Moves the contents of the interpreter’s result into dsPtr and re-initializes the
interpreter’s result to the empty string.

• int Tcl_StringMatch(const char *string,
 const char *pattern)

Returns 1 if string matches pattern using glob-style rules for pattern matching,
0 otherwise.

• int Tcl_StringCaseMatch(const char *string,
 const char *pattern, int nocase)

Returns 1 if string matches pattern using glob-style rules for pattern matching,
0 otherwise. If nocase is 0, the match is performed case-sensitively, and if it is
1, the match is performed case-insensitively.

• int Tcl_RegExpMatchObj(Tcl_Interp *interp,
 Tcl_Obj *textObj, Tcl_Obj *patObj)

Tests whether the regular expression in patObj matches the string in textObj,
returning 1 if they match, 0 otherwise. If an error occurs while patObj is
compiling, an error message is left in the interpreter (if non-null) and -1 is
returned.

• int Tcl_RegExpMatch(Tcl_Interp *interp, char *text,
 const char *pattern)

Tests whether the regular expression in pattern matches the string in text,
returning 1 if they match, 0 otherwise. If an error occurs while pattern is
compiling, an error message is left in the interpreter (if non-null) and -1 is
returned.

• Tcl_RegExp Tcl_RegExpCompile(Tcl_Interp *interp,
 const char *pattern)

Compiles pattern to a regular expression and returns a handle to it. If an
error occurs while pattern is compiling, an error message is left in the
interpreter (if non-null) and NULL is returned.

• int Tcl_RegExpExec(Tcl_Interp *interp, Tcl_RegExp regexp,
 char *text, char *start)

733

Tests whether the compiled regular expression regexp matches the string text,
which itself should be a substring of the string start (information necessary
for repeated matching). Returns 1 if there is a match, 0 if there is no match,
and -1 if an error occurred (with an error message in the interpreter if that is
non-null).

• Tcl_RegExpRange(Tcl_RegExp regexp, int index,
 const char **startPtr, const char **endPtr)

Provides additional information about a subexpression range index after a
successful match against the expression regexp. The startPtr and endPtr

arguments indicate variables that are set to point to the start and end of the
matched range respectively.

• Tcl_RegExp Tcl_GetRegExpFromObj(Tcl_Interp *interp,
 Tcl_Obj *patObj, int cflags)

Compiles the pattern in patObj to a regular expression, given the compilation
flags in cflags. If an error occurs during compiling, it returns NULL and stores
an error message in the interpreter. See the reference documentation for a
description of the supported compilation flags.

• int Tcl_RegExpExecObj(Tcl_Interp *interp,
 Tcl_RegExp regexp, Tcl_Obj *textObj, int offset,
 int nmatches, int eflags)

Matches a regular expression regexp against a string in textObj, starting from
offset characters into the string. The nmatches argument describes the
maximum number of subexpressions for which information will be
requested, and eflags gives a number of regular-expression execution flags.
Returns 1 if the expression matches, 0 if it does not. If an error occurs during
matching, it returns -1 and leaves an error message in the interpreter. See the
reference documentation for a description of the supported execution flags.

• Tcl_RegExpGetInfo(Tcl_RegExp regexp,
 Tcl_RegExpInfo *infoPtr)

Obtains extended information about the last match of the regular expression
regexp. The information describes the number of possible subexpressions, the
number that actually matched, the character location within the string where
each subexpression matched, and (with correct compilation flags) whether it
is possible to match the regular expression at all, even with additional text.

• char *Tcl_ExternalToUtfDString(Tcl_Encoding encoding,
 const char *src, int srcLen, Tcl_DString *dsPtr)

Converts the character data in src (of length srcLen, or up to the first zero byte
if srcLen is negative) from the encoding encoding to the UTF-8 encoding used
internally in Tcl and returns the resulting string. The buffer in dsPtr is used as
a workspace; it should be released with Tcl_DStringFree once the converted

734

string is no longer required. If encoding is NULL, the current system encoding is
used.

• char *Tcl_UtfToExternalDString(Tcl_Encoding encoding,
 const char *src, int srcLen, Tcl_DString *dsPtr)

Converts the character data in src (of length srcLen, or up to the first zero byte
if srcLen is negative) from the UTF-8 encoding used internally in Tcl to the
encoding encoding and returns the resulting string. The buffer in dsPtr is used
as a workspace; it should be released with Tcl_DStringFree once the converted
string is no longer required. If encoding is NULL, the current system encoding is
used.

• Tcl_Encoding Tcl_GetEncoding(Tcl_Interp *interp,
 const char *name)

Returns the encoding called name, or if no encoding with that name is known,
returns NULL and places an error message in the interpreter’s result. The
returned encoding should be released with Tcl_FreeEncoding when it is no
longer required.

• Tcl_FreeEncoding(Tcl_Encoding encoding)
Releases an encoding previously returned by Tcl_GetEncoding.

• int Tcl_UniCharToUtf(int ch, char *buf)
Converts ch to UTF-8 and stores it in the buffer at buf. Returns the number of
bytes written.

• int Tcl_UtfToUniChar(const char *src, Tcl_UniChar *chPtr)
Converts the first UTF-8 character at src to Unicode and writes it to the
variable pointed to by chPtr. Returns the number of bytes read.

• char *Tcl_UniCharToUtfDString(const Tcl_UniChar *uniStr,
 int uniLength, Tcl_DString *dsPtr)

Converts the string of uniLength Unicode characters at uniStr to UTF-8 and
stores that in the given Tcl_DString. Returns the UTF-8 string produced.

• Tcl_UniChar *Tcl_UtfToUniCharDString(const char *src,
 int length, Tcl_DString *dsPtr)

Converts the string of up to length UTF-8 characters at src to a Unicode
string that is stored in the given Tcl_DString. Returns the Unicode string
produced. If length is -1, all UTF-8 characters up to the end of the input
string are processed.

• int Tcl_UniCharLen(const Tcl_UniChar *uniStr)
Returns the length (in Unicode characters) of the null-terminated Unicode
string in uniStr.

• int Tcl_UniCharNcmp(const Tcl_UniChar *ucs,
 const Tcl_UniChar *uct, int numChars)

Compares the first numChars characters of two Unicode strings for equality,

735

returning 0 if they are the same, a negative number if ucs has the smallest
character at the first place they differ, or a positive number if uct has the
smallest character at the first place they differ.

• int Tcl_UniCharNcasecmp(const Tcl_UniChar *ucs,
 const Tcl_UniChar *uct, int numChars)

Case-insensitively compares the first numChars characters of two Unicode
strings for equality, returning 0 if they are the same, a negative number if ucs
has the smallest character at the first place they differ, or a positive number
if uct has the smallest character at the first place they differ.

• int Tcl_UniCharCaseMatch(const Tcl_UniChar *uniStr,
 const Tcl_UniChar *uniPattern, int nocase)

Returns 1 if uniStr matches uniPattern using glob-style rules for pattern
matching, 0 otherwise. If nocase is non-zero, the pattern is compared case-
insensitively; otherwise it is compared case-sensitively.

• int Tcl_UtfNcmp(const char *cs, const char *ct,
 int numChars)

Compares the first numChars characters of two UTF-8-encoded strings for
equality, returning 0 if they are the same, a negative number if cs has the
smallest character at the first place they differ, or a positive number if ct has
the smallest character at the first place they differ.

• int Tcl_UtfNcasecmp(const char *cs, const char *ct,
 int numChars)

Case-insensitively compares the first numChars characters of two UTF-8-
encoded strings for equality, returning 0 if they are the same, a negative
number if cs has the smallest character at the first place they differ, or a
positive number if ct has the smallest character at the first place they differ.

• int Tcl_UtfCharComplete(const char *src, int length)
Tests if the length bytes (or all the bytes up to the next zero byte if length is
-1) at src represent at least one UTF-8 character.

• int Tcl_NumUtfChars(const char *src, int length)
Returns the number of UTF-8 characters in the string at src. Only the first
length bytes are used, or all bytes up to the first null are used if length is -1.

• const char *Tcl_UtfFindFirst(const char *src, int ch)
Returns the first instance of the character ch in the null-terminated UTF-8-
encoded string src, or NULL if the character is not present.

• const char *Tcl_UtfFindLast(const char *src, int ch)
Returns the last instance of the character ch in the null-terminated UTF-8-
encoded string src, or NULL if the character is not present.

• const char *Tcl_UtfNext(const char *src)
Returns the location of the next UTF-8 character in the string src.

736

• const char *Tcl_UtfPrev(const char *src,
 const char *start)

Returns the location of the previous UTF-8 character before src, where the
start of the string is pointed to by start.

• Tcl_UniChar Tcl_UniCharAtIndex(const char *src, int index)
Returns the indexth Unicode character extracted from the UTF-8 string src.
The string must contain at least index UTF-8 characters. The index must not
be negative.

• const char *Tcl_UtfAtIndex(const char *src, int index)
Returns a pointer to the indexth UTF-8 character in the UTF-8 string src. The
string must contain at least index UTF-8 characters.

• int Tcl_UtfBackslash(const char *src, int *readPtr,
 char *dst)

Parses a Tcl backslash sequence in src, storing the ensuing UTF-8 character
in the string at dst. The variable pointed to by readPtr is updated to contain
how many bytes of src were parsed. The number of bytes written to dst is
returned.

• int Tcl_CommandComplete(const char *cmd)
Returns 1 if cmd holds one or more syntactically complete commands, 0 if the
last command in cmd is incomplete because of open braces or other faults.

39.2 Dynamic Strings

A dynamic string is a string that can be appended to without bound. As you
append information to a dynamic string, Tcl automatically enlarges the
memory area allocated for it as needed. If the string is short, Tcl avoids
memory allocation altogether by using a small static buffer to hold the
string. It also forms a convenient system for managing buffers dynamically,
since it takes care of the low-level memory management details for you. Tcl
provides 11 functions and macros for manipulating dynamic strings:

• Tcl_DStringInit initializes a dynamic string to an empty string. Note that
a dynamic string that has been initialized and not appended to does
not need to be passed to Tcl_DStringFree.

• Tcl_DStringAppend adds bytes to a dynamic string. The dynamic string
remains null-terminated.

• Tcl_DStringAppendElement adds a new list element to a dynamic string.
• Tcl_DStringStartSublist and Tcl_DStringEndSublist are used to create

sublists within a dynamic string.
• Tcl_DStringValue returns the current value of a dynamic string.

737

• Tcl_DStringLength returns the current length of a dynamic string.
• Tcl_DStringTrunc truncates a dynamic string.
• Tcl_DStringFree releases any storage allocated for a dynamic string and

re-initializes the string.
• Tcl_DStringResult moves the value of a dynamic string to the result for

an interpreter and re-initializes the dynamic string.
Tcl_DStringGetResult does the reverse operation, transferring the result
to the dynamic string and resetting the interpreter.

The following code uses several of these functions to implement a map
command, which takes a list and generates a new list by applying some
operation to each element of the original list. The map command takes two
arguments: a list and a Tcl command. For each element in the list, it executes
the given command with the list element appended as an additional
argument. With the results of all the commands it generates a new list, and
then returns this list as its result. Here are some examples of how you might
use the map command:

Here is a command function that implements map:

738

MapCmd uses two dynamic strings. One holds the result list and the other holds
the command to execute in each step. The first dynamic string is needed
because the length of the command is unpredictable, and the second one is
needed to store the result list as it builds up (this information cannot be kept
immediately in the interpreter’s result because the result will be overwritten
by the command that is evaluated to process the next list element). Each
dynamic string is represented by a structure of type Tcl_DString. The structure
holds information about the string, such as a pointer to its current value, a
small array to use for small strings, and a length. Tcl does not allocate
Tcl_DString structures; it is up to you to allocate the structure (as a local
variable, for example) and pass its address to the dynamic string library
functions. You should never access the fields of a Tcl_DString structure

739

directly; use the macros and functions provided by Tcl.
After checking its argument count, extracting all of the elements from the
initial list, and initializing its dynamic strings, MapCmd enters a loop to process
the elements of the list. For each element, it first creates the command to
execute for that element. It does this by calling Tcl_DStringAppend to append the
part of the command provided in argv[2], then it calls Tcl_DStringAppendElement
to append the list element as an additional argument. These functions are
similar in that both add new information to the dynamic string. However,
Tcl_DStringAppend adds the information as raw text, whereas
Tcl_DStringAppendElement converts its string argument to a proper list element
and adds that list element to the dynamic string (with a separator space, if
needed).
In this case, it is important to use Tcl_DStringAppendElement for the list element
so that it becomes a single word of the Tcl command under construction. If
Tcl_DStringAppend were used instead and the element were a b c as in the
example earlier in this section, the command passed to Tcl_Eval would be
addz a b c, which would result in an error (because too many arguments are
passed to the addz procedure). When Tcl_DStringAppendElement is used, the
command is addz {a b c}, which parses correctly.1

1. There are other ways to invoke commands with extra arguments in a
systematically correct way. For example, Tcl_NewListObj and the other list
creation functions build a correctly quoted string that you can use with
Tcl_EvalObjEx, and Tcl_EvalObjv allows the execution of a command without any
parsing at all.

Once MapCmd has created the command to execute for an element, it invokes
Tcl_Eval to evaluate the command. The Tcl_DStringFree call frees any memory
allocated for the command string and resets the dynamic string to an empty
value for use in the next command. If the command returns an error, MapCmd
returns that same error; otherwise, it uses Tcl_DStringAppendElement to add the
result of the command to the result list as a new element.
MapCmd calls Tcl_DStringResult after all of the list elements have been
processed. This transfers the value of the string to the interpreter’s result in
an efficient way (for example, it might transfer ownership of a dynamically
allocated buffer to the interpreter instead of copying the buffer).
Before returning, MapCmd must free any memory allocated for the dynamic
strings. It turns out that Tcl_DStringFree has already done this for the command,
and Tcl_DStringResult has done this for newList.
It is possible to implement much of MapCmd more efficiently through the use of

740

the Tcl_Obj API. However, while that makes many parts of the processing
more efficient, the actual dispatch mechanism mentioned (using a Tcl_DString)
is still one of the simplest ways to achieve it. Indeed, the command might be
written like this:

As you can see, much of the code is extremely similar despite the
differences in function names.

39.3 String Matching

741

The functions Tcl_StringMatch and Tcl_StringCaseMatch (an extended version that
allows control over whether matches are case-sensitive or not) provide the
same functionality as the string match Tcl command. Given a string and a
pattern, they return 1 if the string matches the pattern using glob-style
matching and 0 otherwise. For example, here is a command function that
uses Tcl_StringMatch to implement a simplified version of lsearch that provides
only glob-style matching. It returns the index of the first element in a list that
matches a pattern, or -1 if no element matches:

39.4 Regular Expression Matching

When the simple matching capabilities of Tcl_StringMatch are insufficient, it is
usually necessary to use regular expressions instead. Chapter 5 described
the syntax and capabilities of regular expressions at the Tcl scripting level;
this section describes Tcl’s C API for working with regular expressions.

742

The simplest functions to use for regular expression matching are
Tcl_RegExpMatch and Tcl_RegExpMatchObj. These functions (which differ only in the
types of their arguments) test whether a regular expression pattern matches a
given string. They allow us to rewrite our previous simple lsearch-like
example to use regular expressions like this:

The main additional complexity here is that the regular expression compiler
can fail if presented with an invalid regular expression. When that is
allowed for, the structure of the code that uses this is virtually identical to
the version based on simple pattern matching.
When additional complexity is required, such as when applying the regular
expression efficiently to large numbers of strings or the same string multiple
times to obtain all the locations within it that match, or accessing to the
subexpressions that were matched, the more sophisticated variants of the
regular expression API are used. The first level of sophistication allows the
separation of the compilation and execution phases of regular expression
matching through Tcl_RegExpCompile and Tcl_RegExpExec. These functions also

743

allow control over where in the string to start matching. They additionally
enable the use of Tcl_RegExpRange to identify the substrings that match the
subexpressions of the regular expression.
A deeper level of sophistication is available as well. Tcl_GetRegExpFromObj
allows control over the compilation flags used to generate a regular
expression matcher, controlling things such as the regular expression dialect
used or exactly how newlines within the string are processed.
Tcl_RegExpExecObj allows control over not just the features that Tcl_RegExpExec
does, but also over how many subexpressions are expected and whether the
ends of strings should act as anchors. Tcl_RegExpGetInfo provides similar
information to Tcl_RegExpRange, but in more detail and in a way better suited
for use with the Tcl_Obj API.

Note

Be aware that when matching regular expressions, the Tcl_Obj-based
APIs are considerably more efficient. This is because of the better
treatment of caching afforded by the Tcl_Obj system, and it is especially
true when large numbers of expressions are used. However, when
small numbers of patterns are used, the difference is not particularly
great because the regular expression engine maintains an internal per-
thread cache of compiled regular expressions. Also note that in
virtually all cases, both literal string comparison and Tcl_StringMatch are
more efficient when the thing being matched is something that they are
capable of matching; regular expressions should be used only where
their considerably greater power is required.

39.5 Working with Character Encodings

A character encoding is a mapping of characters and symbols used in
written language into a binary format used by computers. Internally, Tcl
represents strings in the Unicode encoding using the UTF-8 format.
However, when you need to transfer a string to some other non-Tcl API, you
may very well need to transform the string into a different encoding. For
example, if you are passing a string to an operating system function, you
need to send that string in the system encoding (often ISO 8859-1 in North

744

America, but quite different in other locales); without that, many characters
(such as copyright marks, quotes, many currency symbols, etc.) get
interpreted as multiple characters, often with a confounding accented letter
apparently added. Chapter 5 described commands at the Tcl scripting level;
this section describes Tcl’s C API for working with character encodings.

Note

Internally, Tcl represents zero bytes as a multibyte denormalized
sequence because this allows UTF-8 strings to be processed correctly
with normal C string utility functions. Note that only internal strings are
represented this way; strings read from or presented to the outside
world never use this encoding scheme.

Tcl provides several functions for converting between Tcl’s UTF-8
representation and the world of external encodings. Tcl_UtfToExternalDString
takes a Tcl internal string and converts it to a string in some other encoding
that is stored in a Tcl_DString, and Tcl_ExternalToUtfDString goes the other way.
In order to use either of these functions, you need to get a handle for the
encoding with Tcl_GetEncoding. Pass the special value NULL instead of an
encoding handle to use the system encoding (which is often the right thing to
do, especially if using any operating system API). After using a handle for
an encoding gotten with Tcl_GetEncoding, always release that handle with
Tcl_FreeEncoding.
For example, the following function LogCmd is an implementation of a Tcl
command that writes log messages to a POSIX syslog. After checking that
the correct number of arguments has been supplied, it converts the supplied
argument from Tcl’s internal encoding into the system encoding with
Tcl_UtfToExternalDString and writes it to the log as an informational message.

745

The other functions for working with encodings are Tcl_UtfToExternal and
Tcl_ExternalToUtf. These functions are focused on providing efficient support
for streaming transformations; when converting whole strings, the
Tcl_DString-based API is much more convenient.
The most common case of having to work with encodings explicitly is when
working with network sockets. This is because with the worldwide Internet,
you cannot count on other parties to use the same encoding as you. Indeed,
this is sufficiently important that all channels have their own encoding
support, which means that as long as you configure the encoding upon them
correctly, you do not explicitly need to manage the encoding. However, this
can get distinctly complex with some protocols, especially those that mix
different encoding schemes (for example, binary and a text encoding).

39.6 Handling Unicode and UTF-8 Strings

Though conceptually they use the same set of characters, Unicode strings
(strictly, UCS-2 strings of host-system endian-ness) and UTF-8 strings have
fundamentally different properties. In particular, Unicode strings can be
indexed into at arbitrary offsets in constant time and so can have
sophisticated operations applied to them rapidly, whereas UTF-8 strings are
simple to pass through many traditional APIs. Tcl provides many functions
for working with Unicode and UTF-8 strings.
The functions Tcl_UniCharToUtf and Tcl_UtfToUniChar provide basic mapping

746

between Unicode and UTF-8 on a character-by-character basis. These are
extended to working with whole strings of Unicode and UTF-8 characters
by the functions Tcl_UniCharToUtfDString and Tcl_UtfToUniCharDString, which both
target a buffer in a Tcl_DString.
Tcl also provides analogs of many of the C string functions; Table 39.1
shows the mapping of C string functions to analogous Tcl functions.
Tcl_StringCaseMatch, which handles UTF-8 strings, also has a Unicode string
analog: Tcl_UniCharCaseMatch.

Table 39.1 Tcl Unicode and UTF-8 Analogs of C String Functions

In addition, the functions Tcl_UtfNext and Tcl_UtfPrev are used to step forward
and backward through a UTF-8-encoded string, and Tcl_UniCharAtIndex and
Tcl_UtfAtIndex respectively allow looking up a character at a specific index of
a Unicode or UTF-8 string, returning the Unicode character at that location
or a pointer to that location respectively.
When processing a buffer that might contain partial UTF-8 characters, the
function Tcl_UtfCharComplete returns whether the string its argument points to
contains at least one complete UTF-8 character. This is useful because many
protocols require that only complete characters be transferred in any
message.
Finally, Tcl_UtfBackslash provides a parser for the backslash sequences
supported by Tcl. It copies a backslash sequence from a source buffer to a
target buffer, transforming it in the process to the character that it maps to
according to Tcl’s syntax rules and returning the number of bytes written into
the target buffer in the process.
The C function that follows illustrates how to use these together. It takes a
character and a pointer to a UTF-8 string and returns a new string that
consists of that character and the two characters on either side of it. This
could be implemented using the Tcl script

set i [string first $ch $string] expr

747

{$i<0 ? "" : [string range $string $i-2 $i+2]}

and is a simple application of strchr with ASCII strings, but it is a little
more complex with UTF-8 because characters are not a constant width.

Note

Though the result string of the SubstringAbout function is only up to five
characters long, those five characters could take as many as 15 bytes,
depending on the writing system used. In the future, it could be even
longer as the space of Unicode characters outside the Basic
Multilingual Plane gets defined and supported. But since this function
makes no assumptions about the actual length of the result string, it will
continue to function correctly when this happens.

39.7 Command Completeness

748

When an application reads commands typed interactively, it must wait until
a complete command has been entered before evaluating it. For example,
suppose an application is reading commands from standard input and the
user types the following three lines:

If the application reads each line separately and passes it to Tcl_Eval, the first
line will generate a “missing close brace” error. Instead, the application
should collect input until all the commands read are complete (for example,
there are no unmatched braces or quotes), then execute all of the input as a
single script. The function Tcl_CommandComplete makes this possible. It takes a
string as argument and returns 1 if the string contains syntactically complete
commands or 0 if the last command is not yet complete.
The C function that follows uses dynamic strings and Tcl_CommandComplete to
read and evaluate a command typed on standard input. (For clarity, it avoids
using the Tcl channel API. Otherwise, this code would be longer and would
obscure the parts of the function that are really being demonstrated.) It
collects input until all the commands read are complete, and then it
evaluates the command(s) and returns the completion code from the
evaluation. It uses Tcl_RecordAndEval to evaluate the command so that the
command is recorded on the history list.

749

In the foreach example, DoOneCmd will collect all three lines before evaluating
them. If an end of file occurs, fgets will return NULL, and DoOneCmd will evaluate
the command if it is not yet complete.
Tcl_CommandComplete checks for completeness only in the sense of parsing
correctly. It does not guarantee that the script will behave correctly. For
example, if a user accidentally splits a command like set x y over two lines
by typing a newline after the x, each line will be considered to be complete.
The first line will simply query the variable instead of modifying it, and the
second line will invoke a command y, which will probably generate an
error.

750

751

40. Hash Tables

A hash table is a collection of entries, where each entry consists of a key
and a value. No two entries may have the same key. Given a key, a hash
table can locate its entry very quickly and hence the associated value. Tcl
contains a general-purpose hash table package that it uses in several places
internally. For example, all of the commands in an interpreter are stored in a
hash table where the key for each entry is a command name and the value is
a pointer to information about the command. All of the variables in a
namespace are stored in another hash table where the key for each entry is
the name of a variable and the value is a pointer to information about the
variable.
Tcl exports its hash table facilities through a set of library functions so that
applications can use them, too. The most common use for hash tables is to
associate names with objects. In order for an application to implement a
new kind of object, it must give the objects textual names for use in Tcl
commands. When a command function receives an object name as an
argument, it must locate the C data structure for the object. Typically there is
one hash table for each type of object, where the key for an entry is an
object name and the value is a pointer to the C data structure that represents
the object. When a command function needs to find an object, it looks up its
name in the hash table. If there is no entry for the name, the command
function returns an error.
The examples in this chapter use a hypothetical application that implements
objects called “gizmos.” Each gizmo is represented internally with a
structure declared like this:

The application uses names like gizmo42 to refer to gizmos in Tcl commands,
where each gizmo has a different number at the end of its name. The
application follows the action-oriented approach described in Section 30.3
by providing a collection of Tcl commands to manipulate the objects, such
as gizmo::create to create a new gizmo, gizmo::delete to delete an existing
gizmo, gizmo::search to find gizmos with certain characteristics, and so on.

752

40.1 Functions Presented in This Chapter

This chapter discusses the following functions for creating and manipulating
hash tables:

• void Tcl_InitHashTable(Tcl_HashTable *tablePtr,
 int keyType)

Creates a new hash table and stores information about the table at tablePtr.
keyType is either TCL_STRING_KEYS, TCL_ONE_WORD_KEYS, or an integer greater than 1.

• Tcl_InitObjHashTable(Tcl_HashTable tablePtr)
Creates a new hash table and stores information about the table at *tablePtr.
The keys in the hash table are Tcl_Obj* references (cast to char*), with key
equality determined according to whether the string representations of keys
(as returned by Tcl_GetString) are the same. Note that this is a front end to
Tcl_InitCustomHashTable, where the type of the keys is defined to be a managed
reference to a Tcl_Obj.

• Tcl_InitCustomHashTable(Tcl_HashTable *tablePtr,
 int keyType, Tcl_HashKeyType *typePtr)

Creates a new hash table and stores information about the table at tablePtr.
The keyType argument should be one of TCL_CUSTOM_TYPE_KEYS or
TCL_CUSTOM_PTR_KEYS, and the actual type of the keys should be more completely
described by the typePtr argument, which must be a pointer to a static
structure containing a key type descriptor. See the reference documentation
for a complete description of key type descriptors and how to use this
function.

• void Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)
Deletes all the entries in the hash table and frees up related storage.

• Tcl_HashEntry *Tcl_CreateHashEntry(
 Tcl_HashTable *tablePtr, char *key, int *newPtr)

Returns a pointer to the entry in tablePtr whose key is key, creating a new
entry if needed. newPtr is set to 1 if a new entry was created or 0 if the entry
already existed.

• Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr,
 char *key)

Returns a pointer to the entry in tablePtr whose key is key, or NULL if no such
entry exists.

• void Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)
Deletes an entry from its hash table.

• ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)
Returns the value associated with a hash table entry.

753

• void Tcl_SetHashValue(Tcl_HashEntry *entryPtr,
 ClientData value)

Sets the value associated with a hash table entry.
• char *Tcl_GetHashKey(Tcl_HashTable *tablePtr,

 Tcl_HashEntry *entryPtr)
Returns the key associated with a hash table entry.

• Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
 Tcl_HashSearch *searchPtr)

Starts a search through all the elements of a hash table. Stores information
about the search at searchPtr and returns the hash table’s first entry or NULL if it
has no entries.

• Tcl_HashEntry *Tcl_NextHashEntry(
 Tcl_HashSearch *searchPtr)

Returns the next entry in the search identified by searchPtr or NULL if all entries
in the table have been returned.

• char *Tcl_HashStats(Tcl_HashTable *tablePtr)
Returns a string giving usage statistics for tablePtr. The string is dynamically
allocated and must be freed by the caller.

40.2 Keys and Values

Tcl hash tables support four different kinds of keys. All of the entries in a
single hash table must use the same kind of key, but different tables may use
different kinds. The most common form of key is a string. In this case each
key is a null-terminated string of arbitrary length, such as gizmo18 or Waste not
want not. Different entries in a table may have keys of different length. The
gizmo implementation uses strings as keys.
The second form of key is a one-word value. In this case each key may be
any value that fits in a single word, such as an integer. One-word keys are
passed into Tcl using values of type char *, so the keys are limited to the size
of a character pointer.
The third form of key is an array. In this case each key is an array of integers
(C int type). All keys in the table must be the same size.
The last form of key is a reference to a Tcl_Obj instance. In this case, each
key is a pointer to a Tcl_Obj, and the hash table retains a reference to each
unique key value. Tcl_Obj* keys are passed into the hashing engine by casting
them to char* and are compared by comparing their string representations (as
returned by Tcl_GetStringFromObj).
The values for hash table entries are items of type ClientData, which are large

754

enough to hold either an integer or a pointer. In most applications, such as
the gizmo example, hash table values are pointers to records for objects.
These pointers are cast into ClientData items when stored in hash table
entries, and they are cast back from ClientData to object pointers when
retrieved from the hash table.

40.3 Creating and Deleting Hash Tables

Each hash table is represented by a C structure of type Tcl_HashTable. The
client, not Tcl, allocates space for such structures, which are usually global
variables or elements of other structures. When calling hash table functions,
you provide a pointer to a Tcl_HashTable structure as a token for the hash table.
You should not use or modify any of the fields of a Tcl_HashTable directly. Use
the Tcl library functions for this.
Here is how a hash table might be created for the gizmo application:

The first argument to Tcl_InitHashTable is a Tcl_HashTable pointer, and the second
argument is an integer that specifies the sort of keys that will be used for the
table. TCL_STRING_KEYS means that strings will be used as the keys for the table.
If TCL_ONE_WORD_KEYS is specified, it means that single-word values such as
integers or pointers will be used as keys. If the second argument is neither
TCL_STRING_KEYS nor TCL_ONE_WORD_KEYS, it must be an integer value greater than 1;
this means that keys are arrays with the given number of ints in each array.
Tcl_InitHashTable initializes the structure to refer to an empty hash table with
keys as specified. (The additional flag values TCL_CUSTOM_TYPE_KEYS and
TCL_CUSTOM_PTR_KEYS may be used only with Tcl_InitCustomHashTable.)
Hash tables whose keys are Tcl_Obj references are created with
Tcl_InitObjHashTable, whose only argument is a Tcl_HashTable pointer, just as
with the first argument to Tcl_InitHashTable.
Tcl_DeleteHashTable removes all the entries from a hash table and frees the
memory that was allocated for the entries and the table (except space for the
Tcl_HashTable structure itself, which is the property of the client calling
Tcl_DeleteHashTable). For example, the following statement could be used to
delete the hash table we just initialized:

Tcl_DeleteHashTable(&gizmoTable);

755

40.4 Creating Entries

The function Tcl_CreateHashEntry creates an entry with a given key, and
Tcl_SetHashValue sets the value associated with the entry. For example, the
following code might be used to implement the gizmo::create command, which
makes a new gizmo object:

This code creates a name for the object by concatenating gizmo with the value
of the static variable id. It returns the name of the new object as the result of
the Tcl command, but during creation it uses a stack-local buffer, nameBuf, to
hold the name. GizmoCreateCmd then increments id so that each new object will
have a unique name; in thread-safe code this would have to be either
protected with a mutex or made into either an interpreter- or thread-local
variable. Tcl_CreateHashEntry is called to create a new entry with a key equal
to the object’s name; it returns a token for the entry. Under normal conditions
an entry with the given key will not already exist, in which case

756

Tcl_CreateHashEntry sets new to 1 to indicate that it created a new entry.
However, it is possible for Tcl_CreateHashEntry to be called with a key that
already exists in the table. In GizmoCreateCmd this can happen only if a very
large number of objects are created, so that id wraps around to zero again. If
this happens, Tcl_CreateHashEntry sets new to 0; GizmoCreateCmd will try again with
the next larger id until it eventually finds a name that isn’t already in use.
After creating the hash table entry, GizmoCreateCmd allocates memory for the
object’s record and invokes Tcl_SetHashValue to store the record address as the
value of the hash table entry. The first argument to Tcl_SetHashValue is a token
for a hash table entry, and its second argument, the new value for the entry,
can be anything that fits in the space of a ClientData value. After setting the
value of the hash table entry, GizmoCreateCmd initializes the new object’s record
and stores the name of the object (in nameBuf) in the interpreter’s result.

Note

Tcl’s hash tables restructure themselves as you add entries. A table
does not use much memory for the hash buckets when it has only a
small number of entries, but it will increase the size of the bucket array
as the number of entries increases. Tcl’s hash tables operate efficiently
even when they have a very large number of entries.

When working with Tcl_Obj keys, the hash table system manages the lifetime
of the keys for you. The only constraint is that the object argument to
Tcl_CreateHashEntry must be cast to a char* to ensure that the type signature is
correctly obeyed. Once you have obtained a Tcl_HashEntry pointer from an
object hash table, you use it identically to the one from a string hash table;
hash tables do not constrain the types of their values at all.

40.5 Finding Existing Entries

The function Tcl_FindHashEntry locates an existing entry in a hash table. It is
similar to Tcl_CreateHashEntry except that it does not create a new entry if the
key doesn’t exist in the hash table. Tcl_FindHashEntry is typically used to find
an object, given its name. For example, the gizmo implementation might
contain a utility function called GetGizmo, which is something like Tcl_GetInt
except that it translates its string argument to a Gizmo pointer instead of an

757

integer:

GetGizmo looks up a gizmo name in the gizmo hash table. If the name exists,
GetGizmo extracts the value from the entry using Tcl_GetHashValue, converts it to a
Gizmo pointer, and returns it. If the name doesn’t exist, GetGizmo stores an error
message in the interpreter’s result and returns NULL. This is the same when
working with a Tcl_Obj* hash table, except the key must be cast to char* before
it is put into Tcl_FindHashEntry.
GetGizmo can be invoked from any command function that needs to look up a
gizmo object. For example, suppose there is a command gizmo::twist that
performs a “twist” operation on gizmos, and that it takes a gizmo name as its
first argument. The command might be implemented like this:

40.6 Searching

Tcl provides two functions that you can use to search through all of the
entries in a hash table. Tcl_FirstHashEntry starts a search and returns the first
entry, and Tcl_NextHashEntry returns successive entries until the search is
complete. For example, suppose you wish to provide a gizmo::search
command that searches through all existing gizmos and returns a list of the

758

names of the gizmos that meet a certain set of criteria. This command might
be implemented as follows:

A structure of type Tcl_HashSearch is used to keep track of the search; it is
possible to carry out multiple searches simultaneously, using a different
Tcl_HashSearch structure for each. Tcl_FirstHashEntry initializes this structure and
returns a token for the first entry in the table (or NULL if the table is empty).
Tcl_NextHashEntry uses the information in the structure to step through
successive entries in the table; each call to Tcl_NextHashEntry returns a pointer
to the next entry (in no particular order), and NULL is returned when the end of
the table is reached. GizmoSearchCmd extracts the value from each entry,
converts it to a Gizmo pointer, and checks whether that object meets the
criteria specified in the command’s arguments. If so, GizmoSearchCmd uses the
Tcl_GetHashKey function to get the name of the object (i.e., the entry’s key) and
invokes Tcl_AppendElement to append the name to the interpreter’s result as a
list element. Though the type of the result of Tcl_GetHashKey is char*, its actual
type depends on the key type configured at hash table creation time.

Note

It is not safe to modify the structure of a hash table during a search
except to delete the current entry returned by Tcl_FirstHashEntry and
Tcl_NextHashEntry. If you create any entries or delete any entry other than
the current one, you should terminate any searches of that table that are

759

in progress.

40.7 Deleting Entries

The function Tcl_DeleteHashEntry deletes an entry from a hash table. For
example, the following function uses Tcl_DeleteHashEntry to implement a
gizmo::delete command, which takes any number of arguments and deletes the
gizmo objects they name:

GizmoDeleteCmd checks each of its arguments to see if it is the name of a gizmo
object. If not, the argument is ignored. Otherwise, GizmoDeleteCmd extracts a
Gizmo pointer from the hash table entry and calls Tcl_DeleteHashEntry to remove
the entry from the hash table. Then it performs internal cleanup on the gizmo
object if needed and frees the object’s record.

Note

Tcl does not manage the lifetime of the hash values for you. If they are
values that need explicit freeing, you should do this when you use
Tcl_DeleteHashEntry or Tcl_DeleteHashTable, or the memory is leaked.

760

40.8 Statistics

The function Tcl_HashStats returns a string containing various statistics about
the structure of a hash table. For example, it might be used to implement a
gizmo::stat command for gizmos:

The string returned by Tcl_HashStats is dynamically allocated and must be
passed to ckfree or Tcl_Free; GizmoStatCmd uses this string to set the interpreter’s
result using the Tcl_SetResult command with the lifetime mode set to
TCL_DYNAMIC.
The string returned by Tcl_HashStats is not formally defined, but it contains
human-readable information such as the following:

You can use this information to see how efficiently the entries are stored in
the hash table. For example, the last line indicates the average number of
entries that Tcl will have to check during hash table lookups, assuming that
all entries are accessed with equal probability.

761

762

41. List and Dictionary Objects

As of version 8.5, Tcl provides two data structures that are easily
accessible from both C and Tcl: lists and dictionaries. Manipulating lists at
the Tcl scripting level is covered in Chapter 6 and dictionaries in Chapter 7.
The current Tcl list API has been around for several years, so you can count
on its being present in any reasonably up-to-date Tcl installation. On the
other hand, dictionaries (which are based internally on the hash tables
discussed in Chapter 40) require Tcl 8.5 or later.

41.1 Functions Presented in This Chapter

This chapter discusses the following functions for manipulating lists and
dictionaries:

• Tcl_Obj *Tcl_NewListObj(int objc, Tcl_Obj *CONST objv[])
Creates a new list object from an array objv pointing to Tcl objects and the
number of objects to use, objc.

• int Tcl_ListObjAppendElement(Tcl_Interp *interp,
 Tcl_Obj *listPtr, Tcl_Obj *objPtr)

Given a pointer listPtr to an object containing a list, appends objPtr to the
list.

• int Tcl_ListObjAppendList(Tcl_Interp *interp,
 Tcl_Obj *listPtr, Tcl_Obj *elemListPtr)

Given a pointer listPtr to an object containing a list (or that can be
converted to one), appends a second list elemListPtr to listPtr.

• Tcl_SetListObj(Tcl_Obj *objPtr, int objc,
 Tcl_Obj *CONST objv[])

Sets the list object objPtr to contain objc elements contained in objv.
• int Tcl_ListObjGetElements(Tcl_Interp *interp,

 Tcl_Obj *listPtr, int *objcPtr,
 Tcl_Obj ***objvPtr)

Returns a count and a pointer to an array of the elements in a list object.
• int Tcl_ListObjIndex(Tcl_Interp *interp,

 Tcl_Obj *listPtr, int index, Tcl_Obj **objPtrPtr)
Given a pointer, listPtr, to an object containing a list, places the object at
index index in objPtrPtr. If index is out of range (-1, or greater than the index of

763

the last element), NULL is stored in objPtrPtr and TCL_OK is returned.
• int Tcl_ListObjLength(Tcl_Interp *interp,

 Tcl_Obj *listPtr, int *intPtr)
Given a pointer listPtr to an object containing a list, places the list’s length
in intPtr.

• int Tcl_ListObjReplace(Tcl_Interp *interp,
 Tcl_Obj *listPtr, int first, int count, int objc,
 Tcl_Obj *CONST objv[])

Deletes count elements from listPtr, starting with the element indexed by
first, and then replaces them with objc number of elements from the objv
array of Tcl_Objs, starting with the first element. If objv is NULL, no new
elements are added. If the argument first is 0 or negative, it refers to the first
element. If first is greater than or equal to the number of elements in the list,
no elements are deleted; the new elements are appended to the list. count
gives the number of elements to replace. If count is 0 or negative, no elements
are deleted; the new elements are simply inserted before the one designated
by first.

• Tcl_Obj *Tcl_NewDictObj()
Creates a new, empty dictionary object.

• int Tcl_DictObjPut(Tcl_Interp *interp,
 Tcl_Obj *dictPtr, Tcl_Obj *keyPtr,
 Tcl_Obj *valuePtr)

Adds a key-value pair to a dictionary, or updates the value for a key if that
key already has a mapping in the dictionary.

• int Tcl_DictObjPutKeyList(Tcl_Interp *interp,
 Tcl_Obj *dictPtr, int keyc, const Tcl_Obj *keyv,
 Tcl_Obj *valuePtr)

Adds a key-value pair to a nested dictionary, or updates the value for a key
if that key already has a mapping in the dictionary. The keyv argument
specifies a list of keys (with outermost keys first) that acts as a path to the
key-value pair to be affected. Nested dictionaries are created for
nonterminal keys where they do not already exist.

• int Tcl_DictObjGet(Tcl_Interp *interp,
 Tcl_Obj *dictPtr, Tcl_Obj *keyPtr,
 Tcl_Obj **valuePtrPtr)

Given a key, gets its value from the dictionary (or NULL if the key is not found
in the dictionary).

• int Tcl_DictObjRemove(Tcl_Interp *interp,
 Tcl_Obj *dictPtr, Tcl_Obj *keyPtr)

Removes the key/value pair with the given key from the dictionary; the key

764

does not need to be present in the dictionary.
• int Tcl_DictObjRemoveKeyList(Tcl_Interp *interp,

 Tcl_Obj *dictPtr, int keyc, const Tcl_Obj *keyv)
Removes a key-value pair from a nested dictionary. The keyv argument
specifies a list of keys (with outermost keys first) that acts as a path to the
key-value pair to be affected. All nonterminal keys must exist and have
dictionaries as their values.

• int Tcl_DictObjSize(Tcl_Interp *interp,
 Tcl_Obj *dictPtr, int *sizePtr)

For the given dictionary, stores in the sizePtr variable a count of the number
of key-value pairs.

• int Tcl_DictObjFirst(Tcl_Interp *interp,
 Tcl_Obj *dictPtr, Tcl_DictSearch *searchPtr,
 Tcl_Obj **keyPtrPtr, Tcl_Obj **valuePtrPtr,
 int *donePtr)

Commences an iteration across all the key-value pairs in the given
dictionary, placing the key and value in the variables pointed to by the
keyPtrPtr and valuePtrPtr arguments. Locks the dictionary to enable safe
iteration over the dictionary. Stores a search token in the variable pointed to
by searchPtr. Stores 0 in the variable pointed to by donePtr if there are
additional key-value pairs to process, or nonzero if the iteration is
complete.

• void Tcl_DictObjNext(Tcl_DictSearch *searchPtr,
 Tcl_Obj *keyPtrPtr, Tcl_Obj **valuePtrPtr,
 int *donePtr)

Given a search token, retrieves the next key-value pair in a dictionary,
placing the key and value in the variables pointed to by the keyPtrPtr and
valuePtrPtr arguments. Stores 0 in the variable pointed to by donePtr if there
are additional key-value pairs to process, or nonzero if the iteration is
complete.

• void Tcl_DictObjDone(Tcl_DictSearch *searchPtr)
Given a search token, terminates a dictionary iteration before you reach the
end of the dictionary and unlocks the dictionary. You don’t need to call
Tcl_DictObjDone if a previous call to Tcl_DictObjFirst or Tcl_DictObjNext indicates
that the iteration has terminated. It is safe to call Tcl_DictObjDone multiple
times with the same search token.

41.2 Lists

765

Lists are implemented internally as position-indexed C arrays (rather than
linked lists or Tcl arrays), so operations on them are generally very fast.
The list C API supports the same basic operations that the Tcl list
commands do: creating lists; adding elements to lists; combining lists;
getting, setting, and replacing list elements; as well as finding the length of
the list.
Like other object types, lists have a function, Tcl_NewListObj, that creates a
new, empty Tcl object, as in the following example:

In this example, we first create an empty list. Then we add two elements to
it using the Tcl_ListObjAppendElement function. It is not necessary to increase the
reference count of the intobj and strobj objects; Tcl_ListObjAppendElement takes
care of doing that because the objects have at least one reference to them
while associated with the list. You can also take one list object and extend it
with the elements of another list object by using the Tcl_ListObjAppendList
function.
Section 30.4 of the chapter on design philosophy discussed the use of a
tagged list, such as max 105 min 89 average 96, as a means of passing
information between Tcl and C. Such a list is useful in and of itself, because
it describes the data. Furthermore, it could also be passed to the array set
command in order to create an array:

array set temps {max 105 min 89 average 96}

Building this array from C is easy when Tcl_ListObjAppendElement, as in the first
example, is used to build up the list piece by piece. Another approach is to
use an array of Tcl_Obj pointers, where each Tcl_Obj is intended as an element
in the resulting list, and pass the array to Tcl_NewListObj along with a count of
the number of objects:

766

It’s also possible to start with an object not originally created as a list
object and do list operations on it. As long as the string representation of the
object is that of a well-formed Tcl list, the accessor functions can convert
the object for use with the list functions. If the object does not have a valid
list structure, the accessor functions return TCL_ERROR. For example, the
following code first builds a Tcl_Obj based on a string. The subsequent list
operations then convert the object to have a list representation:

The Tcl_ListObjIndex returns an object representing the second element of the
list, in this case b, and places the result in element. Tcl_ListObjGetElements
retrieves all of the list elements as an array of Tcl_Objs and stores a pointer
to the array in objs and a count of the elements in objnum. The Tcl_Obj array
pointed to is managed by Tcl and should not be freed or written to by the
caller. The final example stores a count of the list elements in the variable
listlength.
The Tcl_ListObjReplace function can perform both element insertion and
deletion and so serves as the basis of many list operations. Its arguments in
order are the Tcl interpreter, a pointer to a list object to process, the index
of the first element to delete, a count of the number of consecutive elements

767

to delete, the count of the number of elements to insert in their place, and an
array of Tcl_Objs that serve as replacement elements. Any element deleted
from the list has its Tcl_Obj reference count decremented automatically, and
any element added to the list has its Tcl_Obj reference count incremented
automatically.
For example, the following replaces the single element at index 3 with a
single new element:

Tcl_Obj *newObj = Tcl_NewStringObj("Carol", -1);
Tcl_ListObjReplace(interp, mylist, 2, 1, 1, &newObj);

This example, on the other hand, inserts a new element at the beginning of
the list:

Tcl_Obj *newObj = Tcl_NewStringObj("Dean", -1);
Tcl_ListObjReplace(interp, mylist, 0, 0, 1, &newObj);

Naturally, lists can also contain other list objects, which allows us to nest
lists within lists, or dictionaries within lists, or lists within dictionaries, and
so on. However, be careful not to create a structure that is so complex that it
is difficult for someone else to understand how it works, or for you to
understand if you have to revisit your program later—if you have a list of
lists of dictionaries, perhaps it’s time to review your code!

41.3 Dictionaries

Dictionaries, as we have seen for Tcl, are a mapping of values to unique
keys. From the scripting perspective, the values can be any string, which
means that they can be interpreted as lists or nested dictionaries. Internally,
dictionaries are based on Tcl’s hash tables, discussed previously in Chapter
40, but Tcl’s C API provides a set of functions to deal with dictionaries as
objects quite easily.
You can use the Tcl_NewDictObj function to create a new, empty dictionary. You
can then add key-value mappings to the dictionary with the Tcl_DictObjPut
function. For example, the previous section described a “tagged list” with a
format such as max 105 min 89 average 96. Obviously, this is a dictionary format,
and we could create it directly as a dictionary as follows:

768

The Tcl_DictObjPut function automatically increments the reference counts for
both the key and the value if it proves necessary to store them in the
dictionary (i.e., if they didn’t already exist in the dictionary).

Note

The dictionary object cannot be shared if you pass it to Tcl_DictObjPut or
any other function that modifies a dictionary; a Tcl_Panic is triggered it if
is shared.

The Tcl_DictObjGet function retrieves a value associated with a key. For
example, the following code accesses the dictionary just created and
retrieves a pointer to the object representing the value of the min key, storing
it in the variable value:

The value stored in value would be NULL if the key didn’t exist. If the object
referred to by dictPtr cannot be converted to a dictionary, the Tcl_DictObjGet
function returns TCL_ERROR.
If you map a key to a string value that has the form of a nested dictionary,
that value is not automatically treated as a dictionary. For example, although

769

the value shown in the following code has the string format of a dictionary,
it is still treated as a string:

However, Tcl automatically converts the object to a dictionary
representation if it is accessed with a dictionary function. On the other hand,
if you know that you’re manipulating nested dictionary structures, you can
use the Tcl_DictObjPutKeyList function, which accepts an array of key objects.
For example, here is the implementation of Tcl’s dict set command function,
which allows the user to specify any number of nested keys as arguments,
followed by the value to map to the terminal key:

770

Note

Notice how the function checks to see if the dictionary object is shared
and, if so, duplicates it before modifying it. Otherwise, if the
dictionary object were shared, the call to Tcl_DictObjPutKeyList would
cause a Tcl_Panic.

The Tcl_DictObjSize function gives you the size of a dictionary (that is, the
number of key-value mappings). You can remove a key-value pair from a
dictionary using the Tcl_DictObjRemove function. This function also decrements
the reference count of the objects representing the key and value in the
dictionary. It is not an error if the key did not previously exist. For removing
key-value pairs from nested dictionary structures, you can call the
Tcl_DictObjRemoveKeyList function, which accepts an array of keys, as with
Tcl_DictObjPutKeyList.
Finally, you can iterate over the key-value pairs of a dictionary. The
Tcl_DictObjFirst function starts a traversal of a particular dictionary, returning
the first key-value pair. Subsequent calls to Tcl_DictObjNext iterate through the
key-value pairs. Each of these functions has a termination indicator to let
you know if you’ve reached the end of the iteration. If you want to stop a
search before you reach the end of the dictionary, you must call
Tcl_DictObjDone to clean up the search state; you don’t need to call

771

Tcl_DictObjDone if Tcl_DictObjNext reaches the end of the dictionary itself, though
it’s not an error to do so. Each dictionary traversal has its own unique
Tcl_DictSearch token associated with it, which must be passed to each of these
functions.

Note

If the value of the dictionary is modified during the iteration, either by
Tcl_DictObj function calls or a function call that causes the object to
change to a non-dictionary representation, the iteration is terminated.
The next call to Tcl_DictObjNext indicates that it has reached the end of
the iteration.

As an example of using the dictionary iterators, the following code creates a
list consisting of all the values from a dictionary:

772

773

42. Channels

Tcl provides an extremely flexible system for managing input and output
based on the concept of channels. You are probably familiar with file and
TCP socket channels at the Tcl level. They are two of the channel types that
Tcl itself provides. The channel system was created in order to provide a
flexible, extensible, cross-platform, device-independent means of dealing
with input and output. The channel design takes a two-tiered approach: from
Tcl, or using a high-level approach in C, all channels are used in more or
less the same way. Standard operations such as puts, read, chan flush, and so
forth are the same for all channels, whatever lowlevel device (files, TCP
sockets, real hardware devices, etc.) implements them. Lower-level drivers
implement the specifics of each channel type, creating a bridge between the
generic layer and the “device.” This design means that it is possible to
create new channel types that behave exactly as built-in channels do.
This chapter explains how to use channels from C and how to write a driver
for a new channel type.

42.1 Functions Presented in This Chapter

Tcl provides a rich set of functions for interacting with channels. Most of
these functions take a Tcl_Channel as an argument or return it as a result.

42.1.1 Basic Channel Operations

The following functions perform basic channel operations such as opening,
closing, reading, writing, and so on:

• Tcl_Channel Tcl_FSOpenFileChannel(Tcl_Interp interp, Tcl_Obj
 *pathPtr, const char *modeString, int permissions)

Opens a file specified by pathPtr and returns a channel handle. The syntax
and meaning of all arguments are similar to those given in the Tcl open
command when opening a file. (Replaces the older string-based
Tcl_OpenFileChannel function.)

• Tcl_Channel Tcl_GetStdChannel(int type)
Returns a channel handle for a standard I/O channel, where type is one of

774

TCL_STDIN, TCL_STDOUT, or TCL_STDERR.
• Tcl_SetStdChannel(Tcl_Channel channel, int type)

Sets an existing channel to use as a standard I/O channel, where type is one
of TCL_STDIN, TCL_STDOUT, or TCL_STDERR.

• int Tcl_Close(Tcl_Interp *interp, Tcl_Channel channel)
Destroys the channel. Buffered output is flushed to the channel’s output
device prior to destroying the channel, and any buffered input is discarded.
The channel should not be registered in any interpreter when Tcl_Close is
called; call Tcl_UnregisterChannel instead.

• int Tcl_ReadChars(Tcl_Channel channel,
 Tcl_Obj *readObjPtr, int charsToRead,
 int appendFlag)

Consumes bytes from channel, converting them to UTF-8 based on the
channel’s encoding and storing the produced data in readObjPtr’s string
representation. The return value is the number of characters, up to
charsToRead, that were stored in readObjPtr. If an error occurs while reading,
the return value is -1. (Replaces the older Tcl_Read function, which doesn’t
support encoding translation.)

• int Tcl_ReadRaw(Tcl_Channel channel, char *readBuf,
 int bytesToRead)

Similar to Tcl_ReadChars, except used by transformational channel drivers in
stacked channel applications. bytesToRead bytes are read from the channel
below and copied to readBuf without encoding translation or other changes.

• int Tcl_GetsObj(Tcl_Channel channel, Tcl_Obj *lineObjPtr)
int Tcl_Gets(Tcl_Channel channel, Tcl_DString *lineRead)

Tcl_GetsObj consumes bytes from channel, converting them to UTF-8 based on
the channel’s encoding, until a full line of input has been seen. All of the
characters of the line except for the terminating end-of-line character(s) are
appended to lineObjPtr’s string representation; the end-of-line character(s)
are read and discarded. Returns the number of characters stored in
lineObjPtr, or -1 in case of an error condition or an end-of-file condition; also
returns -1 and consumes no data on a non-blocking channel if a complete
line of data was not available. Tcl_Gets is the same as Tcl_GetsObj except the
resulting characters are appended to the dynamic string given by lineRead
rather than a Tcl object.

• int Tcl_Ungets(Tcl_Channel channel, const char *input,
 int inputLen, int addAtEnd)

Adds data from input to the input queue of a channel; inputLen gives the
number of bytes to add. A nonzero value of addAtEnd indicates that the data is
to be added at the end of the queue; otherwise, it is to be added at the head

775

of the queue. Tcl_Ungets returns inputLen, or -1 if an error occurs.
• int Tcl_WriteObj(Tcl_Channel channel,

 Tcl_Obj *writeObjPtr)
int Tcl_WriteChars(Tcl_Channel channel,
 const char *charBuf, int bytesToWrite)

Tcl_WriteObj writes the string representation of writeObjPtr to the channel,
converting the characters to the channel’s encoding. Tcl_WriteChars does the
same, except charBuf contains the UTF-8 characters; bytesToWrite specifies the
number of bytes to write, or -1 to indicate that charBuf is a nullterminated
string and all characters should be written. (Tcl_WriteChars replaces the older
Tcl_Write function, which doesn’t support encoding translation.) Returns the
number of bytes written, or -1 in case of an error.

• int Tcl_WriteRaw(Tcl_Channel channel, const char *byteBuf,
 int bytesToWrite)

Similar to Tcl_WriteChars, except used by transformational channel drivers in
stacked channel applications. bytesToWrite bytes are read from byteBuf and
written to the channel below without encoding translation or other changes.

• int Tcl_Eof(Tcl_Channel channel)
Returns a nonzero value if channel encountered an end of file during the last
input operation.

• int Tcl_Flush(Tcl_Channel channel)
Causes all of the buffered output data for channel to be written to its
underlying file or device as soon as possible.

• int Tcl_InputBlocked(Tcl_Channel channel)
Returns a nonzero value if channel is in non-blocking mode and the last input
operation returned less data than requested because insufficient data was
available. The call always returns 0 if the channel is in blocking mode.

• int Tcl_InputBuffered(Tcl_Channel channel)
Returns the number of bytes of input currently buffered in the internal buffers
for a channel. If the channel is not open for reading, this function always
returns 0.

• int Tcl_OutputBuffered(Tcl_Channel channel)
Returns the number of bytes of output currently buffered in the internal
buffers for a channel. If the channel is not open for writing, this function
always returns 0.

• Tcl_WideInt Tcl_Seek(Tcl_Channel channel,
 Tcl_WideInt offset, int seekMode)

Moves the access point in channel where subsequent data is read or written.
The requested access point is a signed byte offset relative to the seekMode,
which is one of SEEK_SET (start), SEEK_CUR (current position), or SEEK_END (end).

776

Buffered output is flushed to the channel, and buffered input is discarded,
prior to the seek operation. Returns the new access point, or -1 in case of an
error.

• Tcl_WideInt Tcl_Tell(Tcl_Channel channel)
Returns the current access point for a channel, or -1 if the channel does not
support seeking.

• int Tcl_TruncateChannel(Tcl_Channel channel,
 Tcl_WideInt length)

Truncates the file underlying channel to a given length of bytes.
• int Tcl_GetChannelOption(Tcl_Interp *interp,

 Tcl_Channel channel, const char *optionName,
 Tcl_DString *optionValue)

Retrieves the value of a channel option named optionName and stores the result
in optionValue. If optionName is NULL, the function stores an alternating list of all
channel option names and their values in optionValue. The interp can be NULL.

• int Tcl_SetChannelOption(Tcl_Interp *interp,
 Tcl_Channel channel, const char *optionName,
 const char *newValue)

Sets newValue as the value for the channel option given by optionName. The
procedure normally returns TCL_OK. If an error occurs, it returns TCL_ERROR; in
addition, if interp is non-null, Tcl_SetChannelOption leaves an error message in
the interpreter’s result.

42.1.2 Channel Registration Functions

The following functions manage the registration of channels with
interpreters and threads:

• void Tcl_RegisterChannel(Tcl_Interp *interp,
 Tcl_Channel channel)

Adds a channel to the set of channels accessible in interp. After this call, Tcl
programs executing in that interpreter can refer to the channel in input or
output operations using the name given in the call to Tcl_CreateChannel. The
interp argument may be NULL to add a reference to the channel independent of
any interpreter.

• int Tcl_UnregisterChannel(Tcl_Interp *interp,
 Tcl_Channel channel)
int Tcl_DetachChannel(Tcl_Interp *interp,
 Tcl_Channel channel)

Removes a channel from the set of channels accessible in interp. After this

777

call, Tcl programs can no longer use the channel’s name to refer to the
channel in that interpreter. The interp argument may be NULL to remove a
reference to the channel independent of any interpreter. In the case of
Tcl_UnregisterChannel, if this operation removes the last registration of the
channel in any interpreter, the channel is also closed and destroyed.

• int Tcl_IsChannelShared(Tcl_Channel channel)
Returns 1 if channel is shared among multiple interpreters, otherwise 0.

• int Tcl_IsChannelRegistered(Tcl_Interp *interp,
 Tcl_Channel channel)
void Tcl_CutChannel(Tcl_Channel channel)

Removes the specified channel from the list of all channels belonging to the
current thread (if threads are present). The operation may not be performed
on channels registered with an interpreter.

• void Tcl_SpliceChannel(Tcl_Channel channel)
Adds the specified channel to the list of all channels belonging to the current
thread (if threads are present). The operation may not be performed on
channels registered with an interpreter. The channel must have been
previously cut from a thread with Tcl_CutThread.

42.1.3 Channel Attribute Functions

The following functions allow you to query or set attributes of a particular
channel:

• int Tcl_IsChannelExisting(CONST char *channelName)
Returns 1 if a channel with the given name exists, 0 otherwise.

• int Tcl_IsStandardChannel(Tcl_Channel channel)
Returns 1 if the channel is one of the three standard channels—stdin, stdout,
or stderr—0 otherwise.

• ClientData Tcl_GetChannelInstanceData(Tcl_Channel channel)
Fetches the instance data for a given channel.

• Tcl_ChannelType *Tcl_GetChannelType(Tcl_Channel channel)
Fetches a pointer to the channel’s type.

• CONST char *Tcl_GetChannelName(Tcl_Channel channel)
Returns the name of a given channel.

• int Tcl_GetChannelHandle(Tcl_Channel channel,
 int direction, ClientData handlePtr)

Places the OS-specific device handle (such as a FILE *) associated with a
channel and direction (TCL_READABLE or TCL_WRITABLE) in handlePtr. Returns
TCL_ERROR if there is no handle.

778

• Tcl_ThreadId Tcl_GetChannelThread(Tcl_Channel channel)
Returns the ID of the thread currently managing the given channel.

• int Tcl_GetChannelMode(Tcl_Channel channel)
Returns an ORed combination of TCL_READABLE and TCL_WRITABLE.

• int Tcl_GetChannelBufferSize(Tcl_Channel channel)
Returns the channel’s buffer size, in bytes.

• Tcl_SetChannelBufferSize(Tcl_Channel channel, int size)
Sets the channel’s buffer size, in bytes.

• int Tcl_IsChannelRegistered(Tcl_Interp interp,
 Tcl_Channel channel)

Returns 1 if channel has been registered in interpreter interp, otherwise 0.

42.1.4 Channel Query Functions

The following functions provide tools for retrieving information about
channels in an interpreter:

• Tcl_Channel Tcl_GetChannel(Tcl_Interp interp,
 const char *channelName, int *modePtr)

Given the name of a channel handle in Tcl, returns the Tcl_Channel associated
with it and the modePtr, which is an integer ORed combination of TCL_READABLE
and TCL_WRITABLE.

• int Tcl_GetChannelNames(Tcl_Interp interp)
int Tcl_GetChannelNamesEx(Tcl_Interp interp,
 const char *pattern)

Writes the names of the registered channels to the interpreter’s result as a
list object. Tcl_GetChannelNamesEx filters these names according to the pattern
using the same syntax as string match.

42.1.5 Channel Type Definition Functions

The following functions are related to creating and using custom channel
types:

• Tcl_Channel Tcl_CreateChannel(
 Tcl_ChannelType *typePtr, CONST char *channelName,
 ClientData instanceData, int mask)

Creates a new channel of type typePtr with name channelName.
• Tcl_Channel Tcl_StackChannel(Tcl_Interp interp,

 Tcl_ChannelType *typePtr, ClientData instanceData,

779

 int mask, Tcl_Channel channel)
Stacks a new channel on an existing channel with the same name that was
registered for channel by Tcl_RegisterChannel. The mask parameter specifies the
operations that are allowed on the new channel. These can be a subset of the
operations allowed on the original channel. Other options are as for
Tcl_CreateChannel.

• int Tcl_UnstackChannel(Tcl_Interp interp,
 Tcl_Channel channel)

Reverses the process of stacking a channel. The old channel is associated
with the channel name, and the processing module added by Tcl_StackChannel
is destroyed. If there is no old channel, Tcl_UnstackChannel is equivalent to
Tcl_Close.

• Tcl_Channel Tcl_GetStackedChannel(Tcl_Channel channel)
Returns the channel in the stack of channels that is just below the supplied
channel.

• Tcl_Channel Tcl_GetTopChannel(Tcl_Channel channel)
Returns the top channel in the stack of channels of which the supplied channel
is a part.

• int Tcl_BadChannelOption(Tcl_Interp *interp,
 CONST char *optionName, CONST char *optionList)

Called from the channel option get/set functions to indicate that optionName is
not a valid option for this channel.

• Tcl_NotifyChannel(Tcl_Channel channel, int mask)
Called by the channel driver to indicate to the generic layer that the events
specified by mask (an OR’ed combination of TCL_READABLE, TCL_WRITABLE, and
TCL_EXCEPTION) have occurred.

• void Tcl_ClearChannelHandlers(Tcl_Channel channel)
Removes all channel handlers and event scripts associated with the
specified channel.

• int Tcl_ChannelBuffered(Tcl_Channel channel)
Returns the number, in bytes, currently in the channel’s input buffer.

42.2 Channel Operations

Tcl provides a rich set of operations, described in Section 42.1.1, for
interacting with channels. Most of these functions take a Tcl_Channel structure
as an argument or return it as a result. The following code shows the
definition of a command function implementing a filetovar command:

780

The idea is that executing the following from a script

filetovar /tmp/somefile content

has the same effect as

set fid [open /tmp/somefile]
set content [read $fid]
close $fid

The command procedure expects two arguments the name of a file to read
and the name of a variable in which to store the content. The
Tcl_FSOpenFileChannel function takes a Tcl object containing the file name to
open and a mode string that is interpreted in the same way as the mode
argument to Tcl’s open command. It returns a Tcl_Channel object that can then
be passed to other channel I/O commands.
The actual read is taken care of by the Tcl_ReadChars command, which takes as

781

arguments a channel, a Tcl object in which to place the data, the length of
data to read, and a flag indicating whether the data should be appended or
not. In this case, the length argument is -1, which tells Tcl_ReadChars to read the
entire file. This function is similar to the Tcl read command. Tcl_Close then
closes the file, and the content is assigned as the value of the variable using
Tcl_SetVar2Ex.
As you can see, most of the channel functions used in this example are
analogous to Tcl script-level commands. Likewise, most of the Tcl I/O
commands have roughly equivalent C functions, as shown in Table 42.1.
Especially useful are the Tcl_GetChannelOption and Tcl_SetChannelOption
commands, which let us get and set channel options. The following sets the
buffer size for a channel:

Tcl_SetChannelOption(interp, chan, "-buffersize", "10000");

Table 42.1 Tcl Channel Commands and Analogous C Functions

The next example retrieves the address, host name, and port number on a
socket channel and stores the results into a DString:

782

There are also several functions for querying attributes of the channel, as
listed in Section 42.1.3.

42.3 Registering Channels

If you create a channel in Tcl (e.g., with open), a channel identifier is
returned that lets you manipulate the channel from the scripting level. On the
other hand, if you create a channel using Tcl’s C API, the channel is not
automatically exposed at the scripting level. You would have to do all
channel interaction at the C level with Tcl_Channel.
If you want to expose a channel to the scripting level, you must call the
Tcl_RegisterChannel function to register it in each interpreter in which you want
to access it. You can register a channel in as many interpreters as you like,
as long as they are in the same thread.
The following code implements a randomfile package. It opens the Unix
/dev/random file as a source of random data, sets the channel encoding to
binary, and registers the channel with the Tcl interpreter. Then it retrieves
the name of the channel created and assigns it to the variable random:

783

Once you have compiled this code and loaded it into a Tcl script, you could
read 10 bytes of random data with a command like

read $random 10

Once you have registered a channel with Tcl, you should not close it from
the C level with Tcl_Close. The proper way to remove a channel from the Tcl
interpreter is with the Tcl_UnregisterChannel function, which makes the channel
invisible to the specified interpreter and, if there are no more references to
it, closes it. In contrast, Tcl_DetachChannel removes the channel from an
interpreter but does not attempt to close it.
Although you can share a channel with multiple interpreters, all of those
interpreters must be in the same thread. You cannot share channels across

784

threads. However, you can move a channel from one thread to another. To
do so, the channel must not be registered with any interpreters; call
Tcl_DetachChannel if necessary. Then you must “cut” the channel from its
current thread with the Tcl_CutChannel function. After the channel is no longer
associated with a particular thread, you can then call Tcl_SpliceChannel from a
thread to associate the channel with that thread. See Chapter 46 for more
information about threaded Tcl programming.
You can also get a Tcl_Channel handle for a channel even if it was created at
the scripting level. Given the name of a channel, such as file1, the
Tcl_GetChannel function returns a Tcl_Channel for it:

Tcl_Channel chan;
int mode = 0;
chan = Tcl_GetChannel(interp, "file1", &mode);

42.4 Standard Channels

You are probably already familiar with using Tcl’s standard channels: stdin,
stdout, and stderr (covered in Chapter 11). It is possible to manipulate them
from C, which is useful if you want to replace one of the standard channels
with one of your own creation.
The Tcl_GetStdChannel function returns a channel handle for a standard I/O
channel. The only argument is one of TCL_STDIN, TCL_STDOUT, or TCL_STDERR. You
can also use an existing channel as a standard I/O channel with the
Tcl_SetStdChannel function:

Tcl_SetStdChannel(myChan, TCL_STDOUT);
Tcl_RegisterChannel(NULL, myChan);

Note

The call to Tcl_RegisterChannel after Tcl_SetStdChannel is required in current
versions of Tcl. See the reference documentation for more information.

As an example of how this feature is used, Apache Rivet creates a special
Apache channel that uses the Apache web server’s API to send data through
the server to the browser. Rivet sets this channel as the standard output

785

channel, so that regular puts commands, such as puts "Hello, World", are
redirected to the Apache channel instead of the normal standard output. This
means that ordinary Tcl scripts can be run inside Apache without
modification.

Note

If one of the standard channels is set to NULL, either by calling
Tcl_SetStdChannel with a NULL channel argument or by calling Tcl_Close on
the channel, then the next call to Tcl_CreateChannel automatically sets the
standard channel with the newly created channel. If more than one
standard channel is NULL, the standard channels are assigned starting
with standard input, followed by standard output, and standard error
last.

42.5 Creating a New Channel Type

As stated earlier, Tcl provides a complete API for the creation of new
channel types. Examples of extensions that implement new channel types are
UDP sockets; the memchan memory channel implementation, which lets you
read and write to memory as if it were a file; and Rivet’s Apache channel,
which uses the Apache web server’s C API to send data to the browser.
The central concept in creating a new driver type is to implement the
functions that carry out the different tasks a driver performs, such as
reading, writing, flushing, and so on. The basic structure that represents a
channel type is Tcl_ChannelType:

786

Each entry is a pointer to a function that carries out a particular operation.
You don’t need to provide a function for each channel operation; you can set
several of the fields to NULL if they don’t apply, or implement a function that
returns EINVAL when called to indicate that the operation is not meaningful on
the channel. See the reference documentation for a complete description of
the function signatures, their purposes, and which ones are required. We’ll
see an example of a custom channel type later in Section 42.5.3.

42.5.1 Creating a Custom Channel Instance

After you have implemented your channel type and defined its channel
operation functions, you can create instances of the channel type with the
Tcl_CreateChannel function:

The typePtr is a pointer to a previously defined Tcl_ChannelType structure. The
name used by channelName must be unique (such as file1, file2, sock7, sock8, and
so on). The instanceData variable is your chance to pass some instance-
specific data to the channel implementation. Last, the mask instructs Tcl what
operations to allow on the channel, using the following flags:

• TCL_WRITABLE—Writing is allowed.
• TCL_READABLE—Reading is allowed.

787

Once you register a channel type with Tcl by creating a channel of that type,
the channel type cannot be removed.

42.5.2 Stacked Channels

In Tcl, not only is it possible to create new drivers for specific “devices,” it
is also possible to create stacked channels, which do not directly talk with a
device but act as intermediary filter layers between Tcl and some other
channel. TclTLS, the Tcl interface to OpenSSL, works this way. It doesn’t
actually create the socket that talks with the web server but adds an SSL
filter between the socket and Tcl.
To add a channel to a stack, use Tcl_StackChannel:

Aside from the ever-present interpreter, the function takes a pointer to a
Tcl_ChannelType structure, such as that illustrated in the preceding example,
instance data, a mask describing the mode (TCL_READABLE, TCL_WRITABLE, or
TCL_EXCEPTION), and the channel to layer on top of. The newly created top
channel structure is returned.
Once the channel is stacked, if any function tries to perform I/O on the
original channel, such as with Tcl_ReadChars or Tcl_WriteChars, the system
automatically redirects such calls to the channel on top of the stack. In other
words, all Tcl_Channel tokens stay valid, independently of where they are in a
stack, but there is no “back door” access through these standard I/O
functions. At the scripting level, Tcl automatically reassigns the symbolic
channel identifier to refer to the top channel in the stack.
It is possible to unstack a channel with Tcl_UnstackChannel. This is useful in the
case where you wish to remove a filter—perhaps you no longer want to
encrypt output to a file. It has a simple prototype:

int Tcl_UnstackChannel(Tcl_Interp interp,
 Tcl_Channel channel)

The old channel is associated with the symbolic channel name, and the
processing module added by Tcl_StackChannel is destroyed. If channel refers to
an unstacked channel, Tcl_UnstackChannel is equivalent to Tcl_Close.

42.5.3 ROT13 Channel

788

As an example of creating custom channel types, this section describes a
stacked channel type that implements the “ROT13” cipher. This is an ancient
method of encrypting messages. It works by taking a character, “rotating” 13
places down the alphabet, and using that letter in its place. For instance, the
letter a becomes n, b becomes o, and so on. Using 13 as the number to shift
each letter also has the advantage that performing a second ROT13
transformation “deciphers” the text. Of course, ROT13 is not in any way,
shape, or form secure in this day and age, but it makes for a simple example
that gives you an idea of what can be done with channels.
Since we are working with a filter, rather than an “endpoint” driver that
talks with some device or library external to Tcl, we need a means of
attaching our channel to a Tcl channel that is already open. To accomplish
this, we create a command, addrot, which takes a channel as an argument and,
optionally, a number to use in place of 13. In a Tcl script, it looks like this:

set fl [open /tmp/outfile w]
addrot $fl

Here is the command function to implement the addrot command:

789

The call to Tcl_GetChannel returns a Tcl_Channel structure for the channel
identifier of the existing channel. This channel is the “real” channel that
actually sends or pulls data from a file, the channel that our stacked channel
reads from or writes to. The code then fills in the fields of a RotInstance
structure that stores the number of characters to rotate for this instance of the
channel and the handle to the original channel. Finally, we use
Tcl_StackChannel to stack the channel, passing the RotInstance structure as
instance data. This is where the new channel is created and layered on top
of the existing channel. If we were creating a driver for a special device,
we would call Tcl_CreateChannel in this command instead of Tcl_StackChannel.
The key to understanding the new channel’s capabilities is in the RotChan
structure, which is declared in this way:

790

Our channel filter is not particularly complex. RotcloseProc does nothing more
than call Tcl_Free to free the storage allocated for the instance data.
RotwatchProc does nothing, and RotgetHandleProc returns an error, because there
is no lowlevel handle to return.
We’ll examine the output and input functions in detail. In order to define
what we’re doing clearly, output is when Tcl is sending data out, such as
with the puts command, and input is when data is being read, such as with
read or gets.

Output functions take four arguments: instance data, a buffer containing data
to output, how many bytes the buffer holds, and a pointer to an integer that

791

can hold a POSIX error code should a problem occur.
RotoutputProc allocates a second buffer to contain the transformed text and
performs the rot13 operation, which fills the outbuf buffer with the encoded
data. The tricky part is the call to Tcl_WriteRaw. You must use this write
function with stacked channels instead of a function like Tcl_WriteChars. We do
this because we are acting as a filter and must therefore write to the next
channel down the stack, which we saved in the instance data when it was
created. On the other hand, Tcl automatically redirects calls to functions like
Tcl_WriteChars to the top channel in a stacked channel.
Were this not a stacked channel (i.e., not a filter), instead of writing to
another layer of Tcl, we would write to a specific device. For instance,
Apache Rivet’s output channel sends the data from the web server to the
browser by calling the Apache API—ap_rwrite(buf, toWrite, globals->r)—
which hands off the buffer to Apache. In the preceding code, after freeing
the memory associated with the output buffer, we also return how much data
was actually written. In our case, this always equals the amount of data we
were asked to write, so we can simply return that value. Especially in the
case of non-blocking channels, these numbers are a bit trickier; see the
reference documentation for details.
The input function is activated when we read from a channel; for instance:

set fl [open /tmp/outfile]
addrot $fl
set data [read $fl]

During the read, the Tcl library calls this function to receive data from our
channel:

792

Input functions have four variables passed to them: instance data; a buffer to
write data to (remember that Tcl wants to read data from this function); the
amount of data the buffer can hold; and, again, a pointer to an int where we
can store an error code. For our channel, the functionality of the input
implementation is the reverse of the output function. Because it is a simple
filter, we don’t have the data ourselves and have to fetch it from the next
channel over, via Tcl_ReadRaw, noting how many characters were actually
read. Analogous to the case of writing, we must use this read function with
stacked channels instead of a function like Tcl_ReadChars, which Tcl
automatically redirects to the top channel in a stacked channel. We then
“decipher” the data with the rot13 function into the input buffer buf, free the
allocated input buffer, and let Tcl know how many bytes are waiting to be
collected in buf by returning the number we read from the next channel over.
Since we’re only performing filtering operations, we don’t have to do
anything with the file itself.
Given that channels are an I/O system, the input and output functions are
really the heart of what must be written. Tcl, via chan configure, also provides
a means to configure options on channels. We can use this to give users a
way to change the “rotate” number via a Tcl_DriverSetOptionProc function. The
Tcl code

puts [fconfigure $fl -rotate 10]

eventually causes the following function to be called. As arguments, it takes
an instance data pointer, an interpreter, the name of the option to set (-
rotate), and the string value of the option (10).

793

As there is only one possible option name, we check for it and attempt to set
the value accordingly. If we are given a bad option name, Tcl_BadChannelOption
is used to return an error with the incorrect name in the optionName parameter
and a list of the possible names, without the leading hyphen.
There is also a corresponding function to fetch information about current
options. It can either return information about one option in particular, such
as -rotate, or it can return information about all options. From Tcl the two
cases look like this:

set rotate [chan configure $fl -rotate]
set alloptions [chan configure $fl]

The function to get options takes the same arguments as the option set
function, with the exception of a Tcl_DString where the result is appended. A
NULL value for optionName is a request for all possible options and their values.

794

When dealing with a stacked channel, we have to consider that not only is
our rotate option visible, but also all the options of the underlying channel
or channels, in this case the file channel. In the preceding code, we first
check to make sure that the request is valid and returns an error via
Tcl_BadChannelOption if it is not. We then append the results to the DString—just
the rotate value if -rotate was specified to chan configure, otherwise both the
string -rotate and the value.
Finally, we have a simple implementation of the ROT13 algorithm itself:

795

796

797

43. Handling Events

This chapter describes Tcl’s library functions for event handling. The code
you will write for event handling is divided into three parts. The first part
consists of code that creates event handlers: it informs Tcl that certain
callback functions should be invoked when particular events occur. The
second part consists of the callbacks themselves. The third part consists of
top-level code that invokes the Tcl event dispatcher to process events.
Tcl supports two principal kinds of events: file events and timer events. Tcl
also allows you to create idle callbacks, which cause functions to be
invoked when Tcl runs out of other things to do; idle callbacks are used in
Tk to defer redisplays and other time-consuming computations until all
pending events have been processed.

43.1 Functions Presented in This Chapter

Tcl’s functions for event handling are the following:

• void Tcl_CreateChannelHandler(Tcl_Channel channel,
 int mask, Tcl_FileProc *callback,
 ClientData clientData)

Arranges for callback to be invoked whenever one of the conditions indicated
by mask occurs for the channel whose handle is channel.

• void Tcl_DeleteChannelHandler(Tcl_Channel channel,
 Tcl_FileProc *callback, ClientData clientData)

Deletes the handler for channel that matches a previous invocation of
Tcl_CreateChannelHandler with the given callback and clientData arguments.

• Tcl_TimerToken Tcl_CreateTimerHandler(int milliseconds,
 Tcl_TimerProc *callback, ClientData clientData)

Arranges for callback to be invoked after milliseconds have elapsed. Returns a
token that can be used to cancel the callback.

• void Tcl_DeleteTimerHandler(Tcl_TimerToken token)
Cancels the timer callback indicated by token, if it has not yet triggered.

• void Tcl_DoWhenIdle(Tcl_IdleProc *callback,
 ClientData clientData)

Arranges for callback to be invoked when Tcl has nothing else to do.
• void Tcl_CancelIdleCall(Tcl_IdleProc *callback,

798

 ClientData clientData)
Deletes any existing idle callbacks for callback and clientData.

• void Tcl_DoOneEvent(int flags)
Processes a single event of any sort and then returns. flags is normally 0 but
may be used to restrict the events that are processed or to return
immediately if there are no pending events.

• void Tcl_SetMainLoop(Tcl_MainLoopProc *mainLoopProc)
Installs a main-loop function into Tcl that will be called by Tcl_Main after the
processing of the application startup code (including the script specified on
the command line).

• void Tk_MainLoop(void)
Convenience function that processes events until every window created by
this thread has been destroyed. Available only when Tk is present.

43.2 Channel Events

Event-driven programs like network servers or Tk applications should not
block for long periods of time while executing any one operation, because
this prevents other events from being serviced. For example, if a Tk
application attempts to read from its standard input at a time when no input
is available, the application blocks until input appears. During this time the
process is suspended by the operating system so it cannot service GUI
events. This means, for example, that the application cannot respond to
mouse actions or redraw itself. Such behavior is likely to be annoying to
users, since they expect to be able to interact with the application at any
time.
Channel handlers provide an event-driven mechanism for reading and
writing channels that have long I/O delays. The function
Tcl_CreateChannelHandler creates a new file handler:

The channel argument gives the handle for an existing Tcl channel and may
refer to many different types of channel (e.g., network sockets, serial lines,
pipes, etc.), and mask indicates when callback should be invoked. It is an
ORed combination of the following bits:

• TCL_READABLE—Tcl should invoke callback whenever data is waiting to

799

be read on channel.
• TCL_WRITABLE—Tcl should invoke callback whenever channel is capable of

accepting more output data.
• TCL_EXCEPTION—Tcl should invoke callback whenever an exceptional

condition is present for channel.
The channel argument must match the following prototype:

typedef void Tcl_FileProc(ClientData clientData, int mask);

The clientData argument is the same as the clientData argument to
Tcl_CreateChannelHandler, and mask contains a combination of the bits TCL_READABLE,
TCL_WRITABLE, and TCL_EXCEPTION to indicate the state of the channel at the time of
the callback. You can place as many different callbacks on a channel at once
as you wish as long as they all have distinct callback and clientData values.
To delete a file handler, call Tcl_DeleteChannelHandler with the same channel,
callback, and clientData arguments that were used to create the handler:

void Tcl_DeleteChannelHandler(Tcl_Channel channel,
 Tcl_FileProc *callback , ClientData clientData)

Note

You can temporarily disable a particular channel callback by calling
Tcl_ CreateChannelHandler with a mask of 0. You then can call
Tcl_CreateChannelHandler again to reset the mask when you want to re-
enable the handler. This approach is more efficient than calling
Tcl_DeleteChannelHandler to delete the handler.

With channel handlers you can do event-driven file I/O. Instead of opening a
channel, reading it from start to finish, and then closing the channel, you
open the channel, create a channel handler for it, and then return. When the
channel is readable, the callback is invoked. It issues exactly one read
request for the channel, processes the data returned by the read, and then
returns. When the channel becomes readable again (perhaps immediately),
the callback is invoked again. Eventually, when all of the data from the
channel has been read, the channel becomes readable and the read call
returns an end-of-file condition. At this point the channel can be closed and
the channel handler deleted. With this approach, your application is still
able to respond to other incoming events even if there are long delays in

800

reading the channel.
For example, wish uses a file handler to read commands from its standard
input when it is connected to a real console. The main program for wish
creates a channel handler for standard input (file descriptor 0) with the
following statement:

In addition to registering StdinProc as the callback for standard input, this
code initializes a dynamic string that is used to buffer lines of input until a
complete Tcl command is ready for evaluation, and another dynamic string
that is used to read lines of text from the channel. The main program enters
the event loop as described in Section 43.5. When data becomes available
on standard input, StdinProc is invoked. Its code1 is as follows:

1. The real implementation of StdinProc is considerably more complex
because of the use of thread-specific data to enable multithreaded operation
of Tk.

801

After reading from standard input and checking for errors and end of file,
StdinProc adds the new data to the command buffer’s current contents. Then it
checks to see if the buffer contains a complete Tcl command (it won’t, for
example, if a line such as foreach i $x { has been entered but the body of the
foreach loop hasn’t yet been typed). If the command is complete, StdinProc
disables the channel handler, evaluates the command, reestablishes the
handler, clears the dynamic string buffer, and is ready for the next command.

Note

It is usually best to use non-blocking I/O with file handlers, just to be
absolutely sure that I/O operations don’t block. To request non-
blocking I/O, pass the correct flag bit to Tcl_FSOpenFileChannel, and set the
async flag to Tcl_OpenTcpClient, or use Tcl_SetChannelOption to turn off
blocking. If you use channel handlers for writing to channels with long
output delays, such as pipes and network sockets, it is essential that
you use non-blocking I/O; otherwise, if you supply too much data in a
Tcl_Write call, the output buffers fill and the operating system puts the
process to sleep.

Note

802

For ordinary disk files, you should not use the event-driven approach
described in this section, because reading and writing these files rarely
incurs noticeable delays, and operating systems maintain a fiction that
they never do. Channel handlers are useful primarily for channels such
as terminals, pipes, and network connections, which can block for
indefinite periods of time. Unfortunately, with network-based files the
fiction of immediate action wears rather thin, but operating systems
still maintain the fiction and only allow you to do blocking waits for
them. Sometimes abstractions are inevitably incomplete.

43.3 Timer Events

Timer events trigger callbacks after particular time intervals. For example,
entry widgets use timer events to display blinking insertion cursors, and the
http package uses timer events to time out very slow connections. In the case
of entry widgets, when the entry gains the input focus, it displays the
insertion cursor and creates a timer callback that triggers in a few tenths of a
second. The timer callback erases the insertion cursor and reschedules itself
for a few tenths of a second later. The next time the callback is invoked, it
turns the insertion cursor on again. This process repeats indefinitely so that
the cursor blinks on and off. When the widget loses the input focus, it
cancels the timer callback and erases the insertion cursor.
The function Tcl_CreateTimerHandler creates a timer callback:

Tcl_TimerToken Tcl_CreateTimerHandler(int milliseconds,
 Tcl_TimerProc *callback , ClientData clientData);

The milliseconds argument specifies how many milliseconds should elapse
before the callback is invoked. Tcl_CreateTimerHandler returns immediately, and
its return value is a token that can be used to cancel the callback. After the
given interval has elapsed, Tcl invokes callback, which must match the
following prototype:

void Tcl_TimerProc(ClientData clientData);

Its argument is the clientData passed to Tcl_CreateTimerHandler. callback is called
only once, after which Tcl deletes the callback automatically. If you want
callback to be called over and over at regular intervals, callback should

803

reschedule itself by calling Tcl_CreateTimerHandler each time it is invoked.

Note

There is no guarantee that callback will be invoked at exactly the
specified time. If the application is busy processing other events at the
specified time, callback won’t be invoked until the next time the
application invokes the event dispatcher, as described in Section 43.5.

The function Tcl_DeleteTimerHandler cancels a timer callback:

void Tcl_DeleteTimerHandler(Tcl_TimerToken token);

It takes a single argument, which is a token returned by a previous call to
Tcl_CreateTimerHandler, and deletes the callback so that it is never invoked. It is
safe to invoke Tcl_DeleteTimerHandler even if the callback has already been
invoked; in this case the function has no effect.

43.4 Idle Callbacks

The function Tcl_DoWhenIdle creates an idle callback:

void Tcl_DoWhenIdle(Tcl_IdleProc *callback ,
 ClientData clientData);

This arranges for callback to be invoked the next time the application
becomes idle. The application is idle when Tcl’s main event-processing
function, Tcl_DoOneEvent, is called and no channel events or timer events are
ready. Normally when this occurs, Tcl_DoOneEvent suspends the process until
an event occurs. However, if idle callbacks exist, all of them are invoked.
Idle callbacks are also invoked when the update Tcl command is invoked.
The callback for an idle callback must match the following prototype:

typedef void Tcl_IdleProc(ClientData clientData);

It returns no result and takes a single argument, which is the clientData
argument passed to Tcl_DoWhenIdle.
Tcl_CancelIdleCall deletes an idle callback so that it won’t be invoked after
all:

804

void Tcl_CancelIdleCall(Tcl_IdleProc *callback ,
 ClientData clientData);

Tcl_CancelIdleCall deletes all of the idle callbacks that match callback and
clientData (there can be more than one). If there are no matching idle
callbacks, the function has no effect.
Idle callbacks are used heavily to implement the delayed operations
described in Section 29.3. The most common uses of idle callbacks in Tk
are for widget redisplay and geometry recalculation. This is because it is
generally a bad idea to redisplay a widget immediately when its state is
modified, since this can result in multiple redisplays when related
modifications happen together. For example, suppose the following Tcl
commands are invoked to change a label widget .l:

.l configure -background purple -textvariable msg
set msg "Hello, world!"
.l configure -bd 3m

Each of these commands modifies the widget in a way that requires it to be
redisplayed, but it would be a bad idea for each command to redraw the
widget. This would result in three redisplays, which are unnecessary and
can cause the widget to flash as it steps through a series of changes. It is
much better to wait until all of the commands have been executed and then
redisplay the widget once. Idle callbacks provide a way of knowing when
all available events have been fully processed.

43.5 Invoking the Event Dispatcher

The preceding sections described the first two parts of event management:
creating event handlers and writing callback functions. The final part of
event management is invoking the Tcl event dispatcher, which waits for
events to occur and invokes the appropriate callbacks. If you don’t invoke
the dispatcher, no events are processed and no callbacks are invoked.
Tcl provides one function for event dispatching, Tcl_DoOneEvent, and Tk
provides another, Tk_MainLoop. Tk applications normally use Tk_MainLoop, and
non-Tk applications always use Tcl_DoOneEvent, usually within some kind of
loop.

Note

805

Tcl applications can install a main-loop function into Tcl with Tcl_
SetMainLoop. Tcl_Main calls the installed main-loop function after the initial
startup script (i.e., the script file specified on the command line) has
been executed. Tk installs Tk_MainLoop as a main-loop function by
default; if you want to use a custom main-loop function but also use Tk,
make sure you install your function only after the Tk package is loaded.

Tk_MainLoop takes no arguments and returns no result; it is typically invoked
once, in the main program after initialization. Tk_MainLoop calls the Tcl event
dispatcher repeatedly to process events. When all available events have
been processed, it suspends the thread until more events occur, and it
repeats this over and over. It returns only when every Tk window created by
the thread has been destroyed (for example, after the destroy . command has
been executed). A typical main program for a Tk application creates a Tcl
interpreter, creates the main Tk window and application, performs some
other application-specific initialization (such as evaluating a Tcl script to
create the application’s interface), and then calls Tk_MainLoop. When Tk_MainLoop
returns, the main program exits. Thus Tk provides top-level control over the
application’s execution, and all of the application’s useful work is carried
out by event handlers invoked via Tk_MainLoop.
The other function for event dispatching is Tcl_DoOneEvent, which provides a
lower-level interface to the event dispatcher:

int Tcl_DoOneEvent(int flags)

The flags argument is normally 0 (or, equivalently, TCL_ALL_EVENTS). In this case
Tcl_DoOneEvent processes a single event and then returns 1. If no events are
pending, Tcl_DoOneEvent suspends the thread until an event arrives, processes
that event, and then returns 1.
For example, Tk_MainLoop is implemented using Tcl_DoOneEvent:

As you can see, Tk_MainLoop just calls Tk_DoOneEvent over and over until all the
main windows have been deleted.
Tk_DoOneEvent is also used by commands such as vwait and tkwait that want to
process events while waiting for something to happen. For example, the

806

vwait command processes events until a given variable is updated, then it
returns. Here is the C code that implements this command:

The variable nameString identifies the variable whose update is awaited. The
code creates a trace callback that is invoked when the variable is updated,
then invokes Tcl_DoOneEvent over and over until the done flag is set to indicate
that the variable has been set or deleted. The callback for the variable trace
is as follows:

The clientData argument is a pointer to the flag variable. VwaitVarProc is only
ever called in the situation that it has been set to detect, so all it has to do is
set the flag variable to 1 when it is called.
The flags argument to Tcl_DoOneEvent can be used to restrict the kinds of events
it considers. If it contains any of the bits TCL_FILE_EVENTS2, TCL_TIMER_EVENTS, or
TCL_IDLE_EVENTS, only the events indicated by the specified bits are considered.
Furthermore, if the flags argument includes the bit TCL_DONT_WAIT, or if neither
file events nor timer events are selected, Tcl_DoOneEvent doesn’t suspend the
thread if no event is ready to be processed. Instead, it returns immediately
with a 0 result to indicate that it had nothing to do. For example, the update
idletasks command is implemented with the following code:

807

2. Tk’s X events are implemented as TCL_FILE_EVENTS in the lowest levels of
the event dispatcher by directly observing the communication channel that
the X library uses to communicate with the X server. This is fairly tricky
code, but it allows the user of Tk, even as a C library, to ignore the details.

By comparison, the core of the normal update command is this code:

808

809

44. File System Interaction

Tcl provides a platform-independent C API for working with files and
directories. Using these functions instead of platform-native system calls
makes your code more portable. The Tcl API also automatically handles any
translation required between the Tcl-native UTF representation of character
strings and the system encoding; all input and output string parameters for
these functions are based on Tcl-native UTF-encoded strings. Furthermore,
the Tcl API automatically supports Tcl’s virtual file systems. If the paths you
provide as parameters to these functions represent locations in a virtual file
system that your application has mounted (for example, a ZIP archive or an
FTP site), the functions can access the files as though they were typical on-
disk file systems.

Note

Most of these functions have an equivalent Tcl command at the
scripting level. In general, consider using a Tcl script if possible when
interacting with the file system, as it is faster to develop and easier to
modify in the future, should it prove necessary. These C-level functions
are most appropriate for performing occasional file system operations
when doing significant development in C.

44.1 Tcl File System Functions

Table 44.1 lists the functions provided for file system access and their
equivalent scripting-level commands. You can find more details about them
in Tcl’s FileSystem.3 reference documentation. Most of these functions return 0
on success or -1 on failure and set errno to describe the reason for failure.
Additionally, Tcl’s file system API is based almost completely on Tcl
objects. Some functions may cache internal representations and other path-
related strings, so objects that you pass to these functions must have a
reference count greater than 0, for example:

810

Table 44.1 Tcl C Functions and Equivalent Tcl Commands for File System
Interaction

811

If a function returns an object, you should assume that the reference count is
0. As with any other newly created Tcl object, if you use the object
elsewhere, you might need to call Tcl_IncrRefCount on the object to make sure
that it isn’t freed accidentally in the wrong place. See Chapter 32 for more
information on managing the reference counts of Tcl objects.

44.2 Virtual File Systems

Another interesting aspect of the Tcl file system interaction implementation
is that it is built on top of a “virtual file system” that is accessible via Tcl’s
C API. In other words, it is possible to write new “file systems” that Tcl
then accesses as if they were regular files. Some examples of this are
archive files, such as ZIP and tar, and remote files—WebDAV, FTP, and
HTTP. When you “mount” a ZIP file with the appropriate extension, you can
cd inside it, open files, use glob, and even source Tcl files inside it, all as if it
were just a part of the disk in which Tcl resides. Chapter 11 discusses how
you can use the tclvfs extension to mount and access such virtual file systems
in your applications.
Detailed coverage of the process of implementing a new virtual file system
is beyond the scope of this book and may be found in Tcl’s excellent
reference documentation—specifically, the FileSystem.3 reference page. The

812

basic process is similar to that covered in Chapter 42 for implementing
custom channel types: you create a structure and set its fields to functions
that carry out the underlying actions of the specific operations described in
this chapter.

813

814

45. Operating System Utilities

Tcl provides a variety of functions to deal with underlying operating system
services. This layer is platform-independent, except where it makes sense to
give the user access to lower-level options that may not be present on all
platforms.

45.1 Functions Presented in This Chapter

This chapter discusses the following functions for accessing operating
system services:

• Tcl_Channel Tcl_OpenCommandChannel(Tcl_Interp *interp,
 int argc, CONST char *argv, int flags)

Opens a command channel using argv as the command and its arguments.
• Tcl_DetachPids(int numPids, int *pidPtr)

Gives Tcl responsibility for numPids child processes that are passed in via the
pidPtr array.

• Tcl_ReapDetachedProcs()
Invokes the waitpid system call on each background process so that its state
can be cleaned up if it has exited. If the process hasn’t exited yet,
Tcl_ReapDetachedProcs doesn’t wait for it to exit.

• Tcl_Pid Tcl_WaitPid(int pid, int *statPtr, int options)
Wrapper for the waitpid system call.

• Tcl_AsyncHandler Tcl_AsyncCreate(Tcl_AsyncProc *func,
 ClientData clientData)

Creates an asynchronous handler, which is able to interrupt Tcl execution,
and returns a token for it.

• Tcl_AsyncDelete(Tcl_AsyncHandler async)
Deletes an asynchronous handler, given a token.

• Tcl_AsyncMark(Tcl_AsyncHandler async)
Marks the asynchronous handler indicated by async as ready to run.

• int Tcl_AsyncInvoke(Tcl_Interp *interp, int code)
Calls all handlers that are ready.

• int Tcl_AsyncReady()
Checks to see if any handlers are ready to be run.

• CONST char *Tcl_SignalId(int sig)

815

Returns a machine-readable string describing the signal, such as SIGPIPE.
• CONST char *Tcl_SignalMsg(int sig)

Returns a human-readable string describing the signal, such as bus error.
• Tcl_Exit(int status)

Exits Tcl and the process.
• Tcl_Finalize()

Similar to Tcl_Exit, but only ends the use of Tcl; it does not terminate the
entire process.

• Tcl_CreateExitHandler(Tcl_ExitProc proc,
 ClientData clientData)

Creates a handler to be called when Tcl_Exit or Tcl_Finalize is called.
• Tcl_DeleteExitHandler(Tcl_ExitProc proc,

 ClientData clientData)
Deletes an exit handler created by Tcl_CreateExitHandler.

• CONST char* Tcl_GetHostName()
Returns a pointer to a string containing the current host name.

• Tcl_GetTime(Tcl_Time *timePtr)
Fills in the previously allocated timePtr structure, which contains the number
of seconds since the epoch and the number of microseconds since the last
second.

• int Tcl_PutEnv(const char *assignment)
Given an assignment string in the form NAME=value, sets an environment variable.

45.2 Processes

The Tcl_OpenCommandChannel function spawns a process external to Tcl—the
equivalent of evaluating an exec or open | command. This is another case
where it typically makes sense to write Tcl code instead of C code if
possible, because the functionality is virtually identical, and writing Tcl
code is much faster. Its syntax is

argc is the number of arguments passed to the command or commands, via
the array of strings argv. argv[argc] must be NULL, so be sure to make argv one
element larger than argc. Keep in mind that it is possible to launch a
pipelined sequence of commands such as ls, |, grep, and foo, and that
standard exec arguments (see Chapter 12) like >, <, &, and so on are also valid

816

elements of argv. The channel returned is affected by an ORed combination
of the following flags:

• TCL_STDIN
The newly created channel is attached to the standard input of the first
process in the sequence launched by Tcl_OpenCommandChannel. In other words,
data written to the channel is sent as input to the process. If this flag is not
set, the first process uses the current (calling) process’s standard input.

• TCL_STDOUT
The newly created channel is attached to the standard output of the last
process launched by Tcl_OpenCommandChannel. Reading from the channel returns
data from the last process created. If this flag is not set, the last process’s
standard output goes to the standard output of the (current) calling process.

• TCL_STDERR
Data written to the standard error channel by any process spawned by
Tcl_OpenCommandChannel is directed to the channel for reading. When the channel
is closed, if there is data in the standard error channel, an error is raised. If
this flag is not set, the standard error data goes to the standard error of the
(current) calling process.

• TCL_ENFORCE_MODE
This flag, when it is set, means that standard exec arguments such as < and >
cannot override the TCL_STDIN, TCL_STDOUT, and TCL_STDERR flags; an error is raised
if redirections are attempted.

Note

The newly created channel is not registered with the supplied
interpreter. See Chapter 42 for information on registering channels.

In the following example we create a subtcl command, which pipes a script
into a tclsh that is launched as a subprocess and then returns the output:

817

818

We construct the command in argv, then pass it to Tcl_OpenCommandChannel. The
subprocess is able to read the input because we set the TCL_STDIN flag and
then send objv[1] to the channel with Tcl_WriteObj, followed by a flush
operation to make sure that the data has arrived. Thanks to the TCL_STDOUT flag,
the subprocess returns its results to chan, where we subsequently read them
and return them as the result of the command. The subtcl command is called
from Tcl like so:

The subtcl command returns any output from the tclsh process it spawns. One
improvement that could be made to this example would be to involve the
event loop so that the calling process would not block while waiting for the
subprocess to finish.

45.3 Reaping Child Processes

Tcl_OpenCommandChannel is sufficient to manage the lifetime of external
processes. However, if you wish to launch external processes yourself, such
as by using the fork and exec system calls, you can still manage them from
Tcl.
If an application creates a subprocess and abandons it (i.e., the parent never
invokes a system call to wait for the child to exit), the child executes in
background, and when it exits it becomes a zombie. It remains a zombie
until its parent officially waits for it or until the parent exits. Zombie
processes occupy space in the system’s process table, so if you create
enough of them, you can overflow the process table and make it impossible
for anyone to create more processes. To keep this from happening, you must
invoke a system call such as wait or waitpid, which returns the exit status of
the zombie process. Once the status has been returned, the zombie
relinquishes its slot in the process table. This procedure is often referred to
as reaping the child processes.
The Tcl_DetachPids function notifies Tcl to take responsibility for reaping one
or more child processes:

Tcl_DetachPids(int numPids, int *pidPtr);

819

The pidPtr argument is an array of process identifiers, and numPids is the
number of identifiers in the array. Each of these processes now becomes the
property of Tcl, and the caller should not refer to them again.
To reap these child processes, you call Tcl_ReapDetachedProcs, which takes care
of the low-level work of cleaning up after any processes that have exited. If
some of the detached processes are still executing, Tcl_ReapDetachedProcs
doesn’t actually wait for them to exit; it cleans up only the processes that
have already exited and returns.
Should it prove useful to wait on one particular child process, the Tcl_WaitPid
function, a wrapper for the waitpid system call, is the right tool for the job:

Tcl_Pid Tcl_WaitPid(int pid, int *statPtr, int options);

The pid argument is the process identifier, and statPtr is a pointer to an
integer that the function sets to either 0 or ECHILD to indicate the status of the
child process. The options permitted depend on the underlying operating
system, but WNOHANG should indicate that the function should return
immediately, rather than block, if the child has not exited.

45.4 Asynchronous Events

Tcl does not provide commands for handling ANSI or POSIX signals
(though you can use an extension such as TclX or Expect if you need this
functionality), but it does provide a generic framework for dealing with
asynchronous events like signals. The central concept in this infrastructure
is that when a signal (or some other event) arrives, it should not interrupt
Tcl while Tcl is busy. For instance, if a signal arrives and you attempt to
perform an eval while Tcl is already performing that command, instability
could result. Instead, Tcl is notified that an event of interest has occurred via
a flag, and when Tcl is able to, it processes the event.
The following example demonstrates an extremely simple signal handler:

820

This code uses the Tcl_AsyncCreate function to register a Tcl_AsyncHandler
function named HandleSignals. The return value is a unique token to identify
the handler. As is discussed below, an interpreter is not always available to
asynchronous handlers, so we pass the current interpreter to it as client data.
This carries some risk, in that the interpreter might be deleted before the
handler is called, but for the sake of our example, we assume this is not the
case. The next two lines initialize signal handlers for SIGHUP (hangup) and
SIGINT (interrupt), which use this function:

The lowlevelhandler function simply increments the tally of received signals in
a global variable and then invokes Tcl_AsyncMark to tell Tcl that SignalHandler’s
callback is ready for action. When Tcl reaches a point in its execution
where it is able to process the asynchronous event, it calls the HandleSignals

821

function:

The first argument to the signal handler corresponds to the clientData
argument of the Tcl_AsyncCreate function and, as in other Tcl subsystems,
serves as a means to pass data to the function called by the asynchronous
handler. If the handler is invoked just after an interpreter completes
execution of a command, the interp argument identifies the interpreter in
which the command was evaluated, and code is the completion code returned
by that command. (The command’s result is present in the interpreter’s
result.) When the handler returns, whatever it leaves in the interpreter’s
result is returned as the result of the command, and the integer return value
of the handler is the new completion code for the command. On the other
hand, if Tcl is in the event loop or in other states where no interpreter is
active, interp is NULL and code is 0, and the return value from the handler is
ignored.

Note

It is almost always a bad idea for an asynchronous event handler to

822

modify the interpreter’s result or return a code different from its code
argument. This sort of behavior can disrupt the execution of scripts in
subtle ways and result in bugs that are extremely difficult to track
down. If an asynchronous event handler needs to evaluate Tcl scripts, it
should first save the interpreter’s state by calling Tcl_SaveInterpState,
passing in the code argument. When the asynchronous handler is
finished, it should restore the interpreter’s state by calling
Tcl_RestoreInterpState and then returning the code argument.

In this simple example, we first attempt to obtain a valid interpreter,
returning an error condition if we don’t have one. Then we increment a
counter variable for each signal that has arrived.

Note

Even in cases where the handler receives an active interpreter as an
argument, there are no guarantees as to which interpreter it is, if
several are active, or in what sort of state it is. Thus, it is
recommended that you do not attempt to do too much even in this
handler. One possible solution would be to make asynchronous events
into an event source for Tcl’s event loop. See Chapter 42 for more
information.

45.5 Signal Names

On the topic of signals, Tcl also provides two functions that let you
transform a signal number into something more readable. Both Tcl_SignalId
and Tcl_SignalMsg take a POSIX signal number as argument, and each returns a
string describing the signal. Tcl_SignalId returns the official POSIX name for
the signal as defined in signal.h, and Tcl_SignalMsg returns a human-readable
message describing the signal. For example,

Tcl_SignalId(SIGALRM)

returns the string SIGALRM, and

Tcl_SignalMsg(SIGALRM)

823

returns alarm clock.

45.6 Exiting and Cleanup

The Tcl_Exit function call is provided to cleanly exit a process. It is
equivalent to the exit command in Tcl. Never call the C exit function
directly; Tcl provides a callback mechanism for exit handlers via
Tcl_CreateExitHandler. Tcl_Exit ensures that the proper cleanup is performed,
whereas simply calling exit may skip that step. Like other callbacks, this one
takes a function as an argument:

It is possible to provide a clientData value that is passed to the exit handler.
This could be used to cleanly shut down any communications with other
systems, networked resources such as a database server, connected clients,
and so forth. You can delete an existing exit handler with the
Tcl_DeleteExitHandler function.
Should you wish only to clean up Tcl in your program and continue running,
instead of shutting down the whole process, the Tcl_Finalize function carries
out the necessary work. This call should also be used prior to unloading, if
Tcl was loaded into your application as part of a shared object (.so or .dll)
that at some point may be unloaded. Most applications load modules but do
not unload them, so this is not a very common occurrence.

Note

If you are writing a multithreaded Tcl application, there are analogous
functions for exiting a thread, terminating the use of Tcl within a
specific thread, and registering thread exit handlers. See Chapter 46
for more information.

824

45.7 Miscellaneous

The Tcl_GetHostName function returns a string that contains the host name for the
machine on which Tcl is running. The storage allocated belongs to Tcl, and
you should not attempt to free it.
The Tcl_PutEnv function is meant to be a replacement for the putenv system
call. It takes a string argument of the form VARNAME=value. Remember that it is
also possible to work with environmental variables via Tcl’s global env
array, using Tcl_SetVar and the like.
To obtain information about the current time, Tcl provides the Tcl_GetTime
function, which retrieves a structure consisting of two long integers: the
current time in seconds since January 1, 1970, 00:00 UTC epoch, and the
number of microseconds that have elapsed since the start of the current
second; for example:

825

826

46. Threads

This chapter covers the use of Tcl’s thread API from C and the use of Tcl in
threaded programs. Complex programming with threads is tricky and can
lead to difficult-to-find errors if not treated with caution. We discuss Tcl’s
API but do not cover the nuances of programming with threads. For a
thorough discussion of the topic, refer to books such as Programming with
POSIX Threads by David Butenhof (ISBN 0-201-63392-2).

46.1 Functions Presented in This Chapter

This chapter discusses the following functions related to thread management
in Tcl:

• int Tcl_CreateThread(Tcl_ThreadId *idPtr,
 Tcl_ThreadCreateProc threadProc,
 ClientData clientData, int stackSize, int flags)

Creates a new thread whose new ID is stored in idPtr and starts running in
the function threadProc. See the text and the reference documentation for
information on the stackSize and flags arguments.

• Tcl_ExitThread(int status)
Terminates the current thread and invokes per-thread exit handlers.

• Tcl_FinalizeThread()
Cleans up per-thread Tcl state and calls thread exit handlers without
actually terminating the thread.

• Tcl_CreateThreadExitHandler(Tcl_ExitProc proc,
 ClientData clientData)

Registers a per-thread exit handler proc that is called with clientData.
• Tcl_DeleteThreadExitHandler(Tcl_ExitProc proc,

 ClientData clientData)
Deletes a per-thread exit handler.

• int Tcl_JoinThread(Tcl_ThreadId id, int result)
Waits on the exit of a thread that has been marked joinable via the
TCL_THREAD_JOINABLE flag to Tcl_CreateThread. Attempting to wait on a non-
joinable thread returns an error.

• void *Tcl_GetThreadData(Tcl_ThreadDataKey *keyPtr,
 int *size)

827

Returns a pointer to a block of thread-private data. Its argument is a key that
is shared by all threads and a size for the block of storage. The storage is
automatically allocated and initialized to all zeros the first time each thread
asks for it. The storage is deallocated automatically by Tcl_FinalizeThread.

• TCL_DECLARE_MUTEX(mutexName)
Macro to declare mutexes in a portable way. Has no effect if threads are not
enabled.

• void Tcl_MutexLock(Tcl_Mutex *mutexPtr)
Locks a mutex, waiting until it’s unlocked if some other thread holds the
lock.

• void Tcl_MutexUnlock(Tcl_Mutex *mutexPtr)
Unlocks a mutex.

• void Tcl_MutexFinalize(Tcl_Mutex *mutexPtr)
Frees any resources associated with a mutex after it is no longer needed.

• void Tcl_ConditionNotify(Tcl_Condition *condPtr)
Unblocks threads waiting on the condition variable.

• void Tcl_ConditionWait(Tcl_Condition *condPtr,
 Tcl_Mutex *mutexPtr, Tcl_Time *timePtr)

Waits for the condition in condPtr to be notified. Returns with mutexPtr locked.
If timePtr is not NULL, waits only the specified time for the condition to be
notified.

• void Tcl_ConditionFinalize(Tcl_Condition *condPtr)
Frees any resources associated with a condition after it is no longer needed.

46.2 Thread Safety

Tcl is thread-safe, meaning that it’s possible to use it within multithreaded
programs without problems. However, Tcl interpreters must be confined to
and accessed by only one thread, the thread where the interpreter was
created. This means that you cannot create an interpreter and share it among
several threads.

46.3 Building Threaded Tcl

Currently, most distributions of Tcl are built with threads enabled. You can
check by testing for the existence of ::tcl_platform(threaded) in your
interpreter. If you are building Tcl yourself, you must enable a threaded

828

build by running the ./configure script with --enable-threads at build time. See
Chapter 47 on building Tcl for more information. If you have a threaded Tcl,
keep in mind that you should also build any extensions you use with --enable-
threads as well.

46.4 Creating Threads

New threads are created via the cross-platform Tcl_CreateThread function,
which has the following signature:

The idPtr is a pointer to an integer where the thread ID of the newly created
thread is stored. When the operating system creates the new thread, it starts
running in the threadProc function, with clientData as its only argument. It is
possible to set the stack size for the new thread, but it is recommended to
simply use the TCL_THREAD_STACK_DEFAULT macro to let the operating system use
the standard stack size. Currently, flags may be either TCL_THREAD_NOFLAGS,
which specifies default behavior, or TCL_THREAD_JOINABLE, which means that the
new thread is joinable.
A thread is joinable if a second thread can wait for it to exit. Tcl provides
the Tcl_JoinThread function to accomplish this task. It takes two arguments: the
Tcl_ThreadID of the thread to join and a pointer to an integer where the exit
code for the joined thread is stored. The Tcl_JoinThread function blocks until
the specified thread exits. Trying to wait on a non-joinable thread or a
thread that is already waited upon results in an error. Waiting for a joinable
thread that has already exited is possible; the system retains the necessary
information until after the call to Tcl_JoinThread. This means that not calling
Tcl_JoinThread for a joinable thread causes a memory leak.

Note

Windows does not currently support joinable threads. Therefore, the
Tcl_JoinThread function is not supported on that platform, and the
TCL_THREAD_JOINABLE flag to Tcl_CreateThread is ignored.

829

46.5 Terminating Threads

Tcl provides the Tcl_ExitThread function to terminate the current thread. As
part of the termination process, Tcl deletes all interpreters and other Tcl
resources associated with the thread. You also have the option of registered
exit handlers for the thread using the Tcl_CreateExitHandler function. The exit
handlers can do anything that you like on thread termination, such as flushing
buffers and freeing global memory.
Tcl also provides a Tcl_FinalizeThread function, which deletes the Tcl
interpreters and other resources for the thread and invokes the thread exit
handlers but does not terminate the thread. Note that Tcl_ExitThread calls
Tcl_FinalizeThread as part of its operation, so there’s no need for you to do so
explicitly.

46.6 Mutexes

A mutex (short for mutual exclusion) is used to limit access to a portion of
code to one thread at a time. If you have a section of code that must execute
“atomically”—you don’t want it to be interrupted or performed by more
than one thread at a time—a mutex is most likely what you need to use. Tcl
has a platform-independent macro for creating a mutex:

TCL_DECLARE_MUTEX(myMutex);

The macro also ensures correct mutex handling even when the core is
compiled without threads enabled.
Once you have created a mutex, you can use Tcl_MutexLock and Tcl_MutexUnlock
to protect critical sections of your code:

These functions have no effect if Tcl is not compiled with threads. For a
threaded application, if one thread locks a mutex, any other thread that
attempts to lock it waits (blocks) until the first thread unlocks it. This means
that you’ll suffer a performance hit if code that is frequently executed is

830

protected by mutexes (although that is certainly preferable to data
corruption!), so try to structure your code in such a way that you don’t need
to share many resources. The Tcl_MutexFinalize function frees the resources
associated with a mutex when it is no longer needed.

46.7 Condition Variables

Condition variables (also known simply as conditions) are another
common tool in multithreaded programming. They are used when one thread
needs to let another know something about the state of a shared resource.
Condition variables are used in conjunction with a mutex to guard the
shared resource. Before a thread waits on the condition variable, it must
first lock the mutex guarding the shared resource. Then it calls
Tcl_ConditionWait to wait for notification from another thread; this also
atomically unlocks the mutex. The thread that performs the notification locks
the mutex, then calls Tcl_ConditionNotify to notify the waiting thread(s). Once it
unlocks the mutex, the Tcl_ConditionWait function in the waiting thread finally
returns, causing it to “wake up.” Upon return, Tcl_ConditionWait automatically
locks the related mutex for the thread that received the notification.
Tcl_ConditionWait takes as arguments a pointer to a Tcl_Condition structure, a
pointer to a mutex, and a time value that tells Tcl how long to wait on the
condition before giving up, or to wait forever if its value is NULL. The
Tcl_ConditionNotify function takes a pointer to a Tcl_Condition as its only
argument. The resources used by a Tcl_Condition may be freed by calling
Tcl_ConditionFinalize when the condition is no longer needed.
A complication arises in that the waiting thread might receive spurious
“wake-ups.” This is common when you have multiple worker threads
waiting on a condition variable for a shared resource like a message queue.
When the notification occurs signaling the arrival of a message, the first
thread that resumes processes the message. When the other worker threads
get the opportunity to respond to the notification, the message has already
been consumed, and so there’s nothing for them to do. In these cases, the
actual call to Tcl_ConditionWait is usually done within a loop that checks the
state of the shared resource when Tcl_ConditionWait returns and calls it again if
it needs to wait again.
As an example from Tcl itself, taken from the Tcl_InitNotifier function, here is
how Tcl goes about setting up the notifier thread that the threaded version of
Tcl uses for its event loop:

831

In this code, Tcl first locks the notifierMutex. If no notifiers exist, it then
launches a notifier thread via the private, internal TclpThreadCreate function.
This new thread proceeds until it hits a Tcl_MutexLock(¬ifierMutex), where it
waits. The first thread continues on, executing the Tcl_ConditionWait, which has
the side effect of unlocking the notifierMutex, allowing the second thread to
continue, which it does until it executes a Tcl_ConditionNotify and
Tcl_MutexUnlock, returning control to the first thread again, which unlocks the
mutex for the last time and goes on about its business. As you can see,
programming with threads is complicated indeed!

46.8 Miscellaneous

832

To retrieve the thread ID of the current thread, use this function:

Tcl_ThreadId Tcl_GetCurrentThread();

To fetch storage space that can be used for per-thread data, use
Tcl_GetThreadData:

void *Tcl_GetThreadData(Tcl_ThreadDataKey *keyPtr,
 int *size)

The function returns a pointer to a block of thread-private data. Its argument
is a key that is shared by all threads and a size for the block of storage. The
storage is automatically allocated and initialized to all zeros the first time
each thread asks for it. It is in some ways similar to Tcl_Alloc, but try not to
use it if you don’t need to. The storage space allocated is reclaimed by
Tcl_FinalizeThread only when the thread exits.
Tcl’s own use of Tcl_GetThreadData in the ThreadSafeLocalTime function (written by
Kevin Kenny) is instructive. The key, tmKey, is declared static to the file:

833

The storage space is allocated by Tcl_GetThreadData and then filled in by either
the localtime_r function or the regular localtime function while protected by a
mutex.

834

835

47. Building Tcl and Extensions

This chapter discusses how to compile Tcl, Tcl extensions, and code that
embeds Tcl on three platforms: Unix (including Linux and the various BSD
systems), Mac OS, and Windows. For most people, compiling Tcl is not
really necessary, as there are various ways to get binary distributions, as
discussed in Appendix A. However, if you are integrating Tcl into your own
program, you need to be familiar with the process. Building extensions to
load in Tcl is often the best approach, and this chapter explains how to go
about doing so in a portable way.

47.1 Building Tcl and Tk

The source code for Tcl and Tk is maintained on SourceForge, whose main
project home page is at http://tcl.sourceforge.net. Tcl and Tk are maintained
as separate projects on the site. You can download released versions of the
source code from the file distribution links, or you can access the CVS
repositories via anonymous access as described on the site. Released
versions of the sources are also available from
http://www.tcl.tk/software/tcltk/download.html. If you check out the source via
CVS, you end up with top-level source directories named tcl and tk. In
contrast, if you download a specific released version of the source, the top-
level directories have the version number appended to their names, such as
tcl8.5.5.
Each source distribution has a README file in its top-level directory with
general information and references to additional information about Tcl.
There is also a set of subdirectories, including

• doc/—Tcl/Tk reference documentation
• generic/—source code applicable to all supported platforms
• library/—a library of Tcl scripts used by Tcl/Tk
• macosx/—Macintosh-specific source code, make files, and Xcode

project files
• tests/—the Tcl/Tk test suite
• tools/—tools used when generating Tcl distributions
• unix/—Unix-specific source code, configure, and make files
• win/—Windows-specific source code and make files for use with

836

http://tcl.sourceforge.net
http://www.tcl.tk/software/tcltk/download.html

Microsoft Visual C++
Each significant subdirectory includes its own README file describing its
contents. The README files for the macosx, unix, and windows directories also
provide up-to-date information for building Tcl or Tk for those platforms.
You should always consult these README files to check for any new
dependencies, system requirements, or build procedures.

47.1.1 Building Tcl and Tk on Unix

Building Tcl on Unix is fairly straightforward. Tcl uses GNU Autoconf to
handle system build dependencies. Therefore, you can configure, build, and
install Tcl or Tk using the typical procedure:

Note

Before doing the make install, you can optionally run make test to run the
Tcl or Tk test suite to verify the build on your system. Be aware that the
test suite might take considerable time to execute.

You can provide standard options to configure, such as --prefix to specify the
installation directory and --exec-prefix to specify the installation directory for
architecture-specific files. The --prefix option is especially handy for
installing multiple versions of Tcl on a single system or building one or
more personal Tcl/Tk installations for testing purposes without interfering
with the system version of Tcl/Tk. The default prefix on Unix systems is
/usr/local, although Tcl is also often installed (for example, on Linux) in /usr.
See the Autoconf documentation for more information on standard configure
options (http://www.gnu.org/software/autoconf is one online resource).
Additionally, Tcl and Tk provide some package-specific options to configure
that affect how they are compiled. Most of them follow the standard syntax
of enabling or disabling a feature using the --enable-feature and --disable-
feature options. The more significant ones include

• --enable-shared

837

http://www.gnu.org/software/autoconf

Compile as a shared library if enabled (the default), otherwise as a static
library.

• --enable-threads
Compile with multithreading support if enabled; the default is disabled.
(Many precompiled distributions of Tcl now enable this feature.)

• --enable-64bit
Enable 64-bit support (where applicable); the default is disabled.

• --enable-symbols
Compile with debugging symbols if enabled; the default is disabled.

• --with-tcl=location
(Tk only) Specifies the directory where Tcl was built. By default, the Tk
build system assumes that this directory is ../../tcl<version>, where <version>
is the same version of Tk being built. If this is not the case, you must specify
the appropriate directory with --with-tcl to build Tk successfully.
Among other things produced while building Tcl is a file called tclConfig.sh,
which is used by the Tcl Extension Architecture (described in Section 47.2)
to hold information about the Tcl installation for use with extension
compilation. It is a shell script that defines a number of variables such as
the Tcl version; the C compiler used to compile Tcl; compiler and linker
flags; the location of include files, libraries, and paths; and so on. Building
Tk creates an analogous file, tkConfig.sh.

47.1.2 Building Tcl and Tk on Mac OS

Building Tcl on the Macintosh requires at least Mac OS X 10.1; earlier
versions are no longer supported. (Tcl/Tk 8.4 was the last version that had
support for the “classic” Mac OS series.) You must also have Apple’s
Developer Tools installed on your system.
One option for building Tcl/Tk on the Macintosh is to use the Unix build
system found in tcl/unix and tk/unix. In that case, you follow the exact same
steps as described in Section 47.1.1. There are a few additional configure
options that apply only to builds on Mac OS:

• --enable-corefoundation
Use Apple’s Core Foundation framework; enabled by default.

• --enable-framework
Package shared libraries in Mac OS X frameworks; disabled by default.

• --enable-aqua
(Tk only) Use the Aqua windowing system, rather than X11; disabled by
default. Requires Tcl and Tk to be built with the Core Foundation

838

framework.
Alternatively, the tcl/macos and tk/macos directories contain a GNUmakefile that
you can use to build and install Tcl and Tk directly. The following steps are
sufficient for a standard installation. They assume that your Tcl and Tk
source directories are contained within a common parent, and for generality,
they’re presented assuming that a shell variable name ver exists containing
the version string (e.g., 8.5.5) for a specific released version, or an empty
string if you are building from CVS. First, to actually build the packages,
you would open a terminal, go to the common parent directory, and execute

make -C tcl${ver}/macosx
make -C tk${ver}/macosx

Then, to install the package onto your system’s root volume (which requires
the administrator password):

sudo make -C tcl${ver}/macosx install
sudo make -C tk${ver}/macosx install

To install into an alternate location, such as your home directory (for
example, if you don’t have administrator privileges, or if you want to test
against multiple versions of Tcl):

Other make targets and options are available. Consult the README file for more
information.
Finally, the macosx subdirectories also contain several project files that you
can use with different versions of Apple’s Xcode integrated development
environment. Once again, see the README file for information on which project
file to use and how the files are configured.

47.1.3 Building Tcl and Tk on Windows

There are several options for building Tcl/Tk on Windows, depending on
what tools you have installed.
If you have Microsoft Visual C++, the tcl/win and tk/win directories contain a
makefile.vc file that you can use with nmake. Each file contains comments
describing the targets and options available. The tcl/win directory contains a
Microsoft Developer Studio workspace and project file that you can use as

839

well.
Alternatively, you can use the open-source MinGW and MSYS tools to
build Tcl on Windows. (See http://www.mingw.org to read more about and to
download these tools.) These tools provide a “Minimalist GNU for
Windows,” including standard GNU compilers and build utilities. For this
option, tcl/win and tk/win include configure scripts that you can use to follow
the same sequence of configure, make, and make install as for Unix. If you
choose this approach, you can use the same set of configure options as
described in Section 47.1.1.

47.2 The Tcl Extension Architecture (TEA)

If you are writing your own extension in C, you could use any build system
you like to compile the extension for use, write your own make files, and so
on. However, if you plan to distribute your extension for use on a variety of
platforms, it’s very difficult to design a general system to handle all of your
target platforms.
Tcl has a standard system for building extensions called TEA, which stands
for “Tcl Extension Architecture.” TEA is based on the GNU Autoconf tool
and provides a system for building extensions. TEA also defines best
practice policies for extension development and distribution.
The starting point for using TEA for your extensions is a sample extension
designed to illustrate the TEA system and to serve as a template for
extension development. The sample extension is maintained on SourceForge
as part of the Tcl project (http://tcl.sourceforge.net). You can obtain it from
the CVS repositories via anonymous access as described on the site. The
module name is sampleextension.

Note

The sample extension also contains a subdirectory named tea, which
contains more detailed documentation on TEA as well as guidelines
for developing portable extensions. As TEA continues to evolve, this
is likely to be the most up-to-date documentation on TEA.

The heart of TEA is Autoconf and the configure script that it generates.
Autoconf takes two template files, configure.in and Makefile.in, along with a

840

http://www.mingw.org
http://tcl.sourceforge.net

set of M4 macro definitions, supplied in a file named aclocal.m4, and
generates an appropriate configure script that people can use to build your
extension. The sample extension ships with commented, general-purpose
configure.in and Makefile.in files that you can adapt for use by your extension,
as well as a set of M4 macros to include in your aclocal.m4 that implement the
TEA build infrastructure. In practice, if you start with the files from the
sample extension, all you need to do is edit the configure.in and Makefile.in
files, then execute autoconf in the directory containing your extension to
generate your extension’s configure script.

Note

In addition to the sample extension, TEA assumes that you have
development tools installed on your system, including Autoconf. To use
Autoconf to create a configure script on a Windows development
system, you must have the open-source MinGW and MSYS tools
installed as well as Autoconf. (See http://www.mingw.org to read more
about and to download these tools.)

Autoconf is required only for your development system so that you can
create the configure script for your extension. Users of your extension, who
would build it on their own systems, require only appropriate development
tools to be installed. They can then use the configure script you provide to
actually build the extension on their systems.
After the configure script has been run, your extension should be ready to
build, which you can do by issuing the make command. Installation is handled
by make install. Other targets include make test, if you have defined tests and
provided a way to run them, and the extremely useful make dist, which
bundles your source and configure files into a distribution (by default, a
gzipped tar file) that is ready to ship.

47.2.1 TEA Standard Configure Options

TEA defines a large set of options for the configure script it generates, which
users of your extension can use to configure your extension when they build
it on their systems. Most of them follow the standard syntax of enabling or
disabling a feature using the --enable-feature and --disable-feature options. The
more significant ones include

841

http://www.mingw.org

• --enable-shared
Compile as a shared library if enabled (the default), otherwise as a static
library.

• --enable-threads
Compile with multithreading support if enabled (the default).

• --enable-64bit
Enable 64-bit support (where applicable); the default is disabled.

• --enable-symbols
Compile with debugging symbols if enabled; the default is disabled.

• --with-tcl=location
Specifies the directory where Tcl was built. This allows you to build your
extension for multiple versions of Tcl or for multiple platforms. If you don’t
have multiple versions of Tcl installed on your system, Autoconf can often
find this information automatically.

• --with-tk=location
Specifies the directory where Tk was built. This option might be required
only if your extension uses the Tk C API. If you don’t have multiple versions
of Tk installed on your system, Autoconf can often find this information
automatically.

• --with-tclinclude=location
Specifies the directory where the Tcl include files can be found (most
notably, tcl.h).

• --with-tcllib=location
Specifies the directory where the Tcl libraries can be found (most notably,
libtclstubs.a).

• --prefix
Defines the root of the installation directory. Defaults to the value given to
Tcl when it was built.

• --exec-prefix
Defines the root of the installation directory for platform-specific files.
Defaults to the value given to Tcl when it was built.

47.2.2 Directory Layout for TEA Extensions

TEA recommends a standard directory structure for organizing your
extension’s source within a common parent directory:

• demos/—demonstration scripts for the extension
• doc/—extension reference documentation
• generic/—source code applicable to all supported platforms

842

• library/—supporting scripts, such as default bindings for widgets
• macosx/—Macintosh-specific source code
• tests/—the extension test suite
• unix/—Unix-specific source code
• win/—Windows-specific source code

Additionally, the sample extension provides the following files and
directories in support of TEA:

• tclconfig/—a directory containing tcl.m4, which defines a collection of
Autoconf macros used by TEA, and install-sh, a program used for
copying files to their installation locations

• tea/—a directory containing documentation on the current version of
TEA

• aclocal.m4—a file used by Autoconf as input when generating the final
configure script

• configure.in—the script template used by Autoconf to generate the
final configure script

• Makefile.in—the template used by configure to generate the final Makefile
• pkgIndex.tcl.in—the template used by configure to generate the final

pkgIndex.tcl file
The make install command installs a TEA package relative to the --prefix and
--exec-prefix directories. For example, for the compiled library files and
pkgIndex.tcl file, the installer creates a subdirectory under the $prefix/lib
directory consisting of the package name concatenated with the package
version number, such as thread2.6.5. By default, files are installed to the
following locations:

• $exec-prefix/lib/$package$version/—compiled library files and the
pkgIndex.tcl file

• $exec-prefix/bin/—binary executables and dependent .dll files on
Windows

• $prefix/include/—C header files
• $prefix/man/—Unix man pages from the doc source directory

47.2.3 Customizing the aclocal.m4 File

One input to Autoconf is the aclocal.m4 file, located in the root of your source
directory. This file defines the M4 macros used to process the configure.in
file and produce the configure script. The sample extension provides the file
tclconfig/tcl.m4 that defines all of the M4 macros needed for the TEA build
system, so in most cases your aclocal.m4 file can contain just the following

843

line:

builtin(include,tclconfig/tcl.m4)

If you want to extend the configure script options for your extension or
otherwise customize the build system, you can add more macro definitions
to this file.

47.2.4 Customizing the configure.in File

The configure.in file is a template containing a series of M4 macros that
determine how the resulting configure script behaves. The sample extension
provides a well-annotated version of this file, and in most cases you can
simply edit the file as needed in the sections marked for you to change. In
general, the order of the macros is important; mixing them up can cause
problems that are difficult to trace.
The first macro in your configure.in file is AC_INIT, which initializes the
environment and specifies the name and version number of your extension:

AC_INIT([tclifconfig], [0.1])

Next you initialize the TEA variables, specifying the version of TEA, and
instruct Autoconf to use the tclconfig subdirectory for additional build
scripts and definitions:

TEA_INIT([3.7])
AC_CONFIG_AUX_DIR(tclconfig)

The next two macros are responsible for finding and loading the tclConfig.sh
file, which is created when you build Tcl. It contains information such as the
Tcl version; the C compiler used to compile Tcl; compiler and linker flags;
the location of include files, libraries, and paths; and so on. TEA
incorporates heuristics to try to find a Tcl installation on the target system
containing a tclConfig.sh file, but a person building your extension can also
use the --with-tcl option to configure to identify a specific directory. This is
especially useful when building your extension against multiple versions of
Tcl or for multiple platforms. There are no arguments to provide to these
macros:

TEA_PATH_TCLCONFIG
TEA_LOAD_TCLCONFIG

844

If your extension also uses the Tk C API, you need two macros to find and
load an analogous tkConfig.sh file created when Tk is built:

#TEA_PATH_TKCONFIG
#TEA_LOAD_TKCONFIG

The next two macros are required to handle the --prefix argument and to
identify the appropriate C compiler and its options:

TEA_PREFIX
TEA_SETUP_COMPILER

The next set of macros is specific to your extension. Most important is a
space-separated list of C source files to compile; you do not need to specify
the subdirectory containing the file as long as it is one of the standard TEA
source directories:

TEA_ADD_SOURCES([sample.c tclsample.c])

If other extensions or applications would compile against your extension,
you might need to provide a list of public header files that you want
installed on the target system with the make install command:

TEA_ADD_HEADERS([])

If required, you can list additional libraries needed to compile the
extension, additional directories containing required include files, and
additional compiler flags:

TEA_ADD_LIBS([])
TEA_ADD_INCLUDES([])
TEA_ADD_CFLAGS([])

You can also provide a list of additional Tcl source files that are part of
your extension:

TEA_ADD_TCL_SOURCES([])

In the next section, you can provide platform-specific configuration
instructions. In the condition sections, you can include additional calls to the
TEA_ADD_* macros to list platform-specific source files, dependent libraries,
and so forth:

845

Next you specify which Tcl and Tk headers your extension needs. At a
minimum, you’ll need the Tcl public header (tcl.h). If you need to compile
against the Tk C API, you’ll also need the Tk public header (tk.h) and the
macro for locating the X11 headers. If at all possible, you should avoid
using the private headers because the data structures and API may change
without notice, whereas the Tcl Core Team makes every effort to keep the
exported public C API very stable:

The next set of macros does some standard processing during configuration
—checking whether or not to compile with multithreaded support, to build
shared or static libraries, to include symbols or not, and general compiler
options:

TEA_ENABLE_THREADS
TEA_ENABLE_SHARED
TEA_CONFIG_CFLAGS
TEA_ENABLE_SYMBOLS

Chapter 36 discussed the use of Tcl’s stubs mechanism, which allows an
extension compiled against one version of Tcl to be used with later versions
of Tcl. Extensions should almost always use stubs to be as independent as
possible of Tcl versions. On the other hand, if you are compiling code that
links to Tcl as a library, rather than creating an extension, you should not use
stubs—they serve no purpose. Use the following declaration to enable stubs
for the Tcl C API and, if needed, the Tk C API:

AC_DEFINE(USE_TCL_STUBS)
#AC_DEFINE(USE_TK_STUBS)

Next is a standard TEA macro that generates a command line to use when
building a library:

846

TEA_MAKE_LIB

The following macros determine the names of the tclsh and/or wish
executables, which are used by the build system only to run test cases in
response to the make test command:

TEA_PROG_TCLSH
#TEA_PROG_WISH

The last line of the file lists all of the files that the configure script needs to
create:

AC_OUTPUT([Makefile pkgIndex.tcl])

Each file listed must have a template file in the same directory, named with
a .in suffix. At a minimum, you’ll need Makefile.in. You can also have
Autoconf manage the creation of a pkgIndex.tcl file, as illustrated by the
sample extension. For a cross-platform extension, you might find it easier to
maintain separate make files in the different source subdirectories, such as
the following code that creates additional make files in the generic, unix, and
win subdirectories from the respective templates:

Some additional TEA macros are available which are not covered in this
section, and you can also use standard Autoconf macros to manage aspects
of the build process. See the TEA documentation that comes with the sample
extension for more information on these features.

47.2.5 Customizing the Makefile.in File

The Makefile.in file serves as a template for the Makefile that is to be
generated. Trying to create a Makefile.in from scratch that you could use with
TEA would be difficult and tedious. The recommended approach is to base
your make file template on the Makefile.in that comes with the sample
extension, which in most cases works “out of the box.” You might want to
customize it to go beyond the basic build process, such as using it for

847

running tools to build your documentation in different formats on different
platforms (e.g., Unix man pages versus Windows help files) or performing
custom cleanup operations. The actual customization of the file is beyond
the scope of this chapter. See the TEA documentation that comes with the
sample extension for more information.

47.2.6 Building an Extension on Windows

TEA is based on Autotools, the GNU build system. The open-source
MinGW and MSYS tools provide the environment necessary to build a TEA
extension on a Windows system (see http://www.mingw.org). If you feel that
your target users are willing to use MinGW and MSYS to build your
extension on Windows, you can use the same configure script as for Unix;
Windows users would do the same sequence of configure, make, and make
install to build your extension on their systems.
If you prefer, you can decide to create and deliver a Visual C++ make file
for your extension as well. The sample extension provides an example in
win/makefile.vc. It has been designed to be as generic as possible but still
requires some additional maintenance to synchronize with the TEA
configure.in and Makefile.in files. Instructions for using the Visual C++ make
file are written in the first part of the makefile.vc file.

47.3 Building Embedded Tcl

When Tcl is embedded in other systems, it is probably necessary to integrate
the Tcl build system with that of your program. If the program that embeds
Tcl uses Autotools, it shouldn’t be too difficult to accomplish. The basic
approach is to use the TEA macros by including the tcl.m4 file, so that it’s
possible to obtain information about how Tcl is compiled.

848

http://www.mingw.org

849

Appendixes

• Appendix A: Installing Tcl and Tk
• Appendix B: Extensions and Applications
• Appendix C: Tcl Resources
• Appendix D: Tcl Source Distribution License

850

851

A. Installing Tcl and Tk

The source code and reference documentation for Tcl and Tk are freely
available. Tcl and Tk are available under a BSD-style license, which
provides great flexibility, including the use of Tcl and Tk in commercial
products without royalties or being required to open-source your own code.
This appendix describes different methods for retrieving the Tcl and Tk
distributions for use on your local system.

A.1 Versions

Tcl and Tk are distributed separately, and each distribution has a version
number. A version number consists of two or more integers separated by a
period, such as 8.5.3 or 8.4. The first of the numbers is the major version
number and the second is the minor version number. A third number, if
present, indicates a patch release, usually containing only bug fixes; it’s
rare for a patch release to introduce any significant new functionality. Each
new release of Tcl or Tk gets a new version number. If the release is
compatible with the previous release, it is called a minor release: the minor
version number increments and the major version number stays the same.
For example, Tcl 8.5 was a minor release that followed Tcl 8.4. Minor
releases are compatible in the sense that C code and Tcl scripts written for
the old release should also work under the new release without
modifications. If a new release includes incompatible changes, it is called a
major release: the major version number increments and the minor version
number resets to 0. For example, Tcl 8.0 was a major release that followed
Tcl 7.6. When you upgrade to a major release, you will probably have to
modify your scripts and C code to work with the new release.
Although Tcl can be used by itself, each release of Tk is designed to be used
with a particular release of Tcl. When it starts up, Tk checks the Tcl release
number to be sure that it will work with Tk. The matching releases of Tcl
and Tk don’t necessarily have the same version numbers; for example, Tk
3.6 required Tcl 7.3. However, all modern Tcl and Tk releases since 8.0
share version numbers to avoid confusion.

852

A.2 Bundled Tcl Distributions

Many Unix and Unix-like operating systems have precompiled Tcl/Tk
distribution packages available. (Many have the Tcl and Tk source
available as distribution packages as well.) Some operating systems include
Tcl and Tk by default when you install the operating system or offer it as an
option in a “developer” package. If Tcl and Tk are not available on your
operating system’s installation media, or you want to upgrade to a newer
version of Tcl/Tk, you should be able to find Tcl/Tk distribution packages
from the official package repositories for your operating system. You can
use whatever package management utilities are supported on your operating
system (for example, rpm, yum, dpkg, apt-get, etc.) to handle installing,
upgrading, and uninstalling Tcl/Tk on your system.
One disadvantage to using such official Tcl/Tk distribution packages is that
there can be a delay—sometimes substantial—between the release of a new
version of Tcl/Tk and the availability of an official distribution of the new
version for your operating system. It can also be more difficult to install
multiple versions of Tcl/Tk for use on the same system, or to install and
maintain Tcl/Tk for multiple platforms for use from a shared network file
system.

A.3 ActiveTcl

ActiveState Software (http://www.activestate.com) is a company that creates
development tools and provides service and support for several dynamic
languages, including Tcl. In addition to their commercial products,
ActiveState offers a free, precompiled version of Tcl called ActiveTcl,
which also bundles several popular Tcl extensions. ActiveTcl is available
for several platforms, including Windows, Linux, Mac OS X, Solaris, AIX,
and HP-UX at this time. ActiveTcl is often the easiest way to install Tcl/Tk
on your system if your focus is Tcl/Tk script development.

A.4 Tclkits

Chapter 14 discussed the use of Tclkits as a strategy for distributing your
Tcl/Tk-based applications. A Tclkit is a single-file executable containing the

853

http://www.activestate.com

entire Tcl distribution in a remarkably small footprint (typically well under
2MB). You can use the Tclkit executable as a Tcl shell, just as you would
tclsh. Precompiled Tclkits are available for a variety of platforms. You can
find out more about Tclkits at http://www.equi4.com/tclkit and
http://wiki.tcl.tk/tclkit and download Tclkits from
http://www.equi4.com/tclkit/download.html.

A.5 Compiling Tcl/Tk from Source Distributions

The source code for Tcl and Tk is maintained on SourceForge, whose main
project home page is at http://tcl.sourceforge.net. Tcl and Tk are maintained
as separate projects on the site. You can download released versions of the
source code from the file distribution links, or you can access the CVS
repositories via anonymous access as described on the site. Released
versions of the sources are also available from
http://www.tcl.tk/software/tcltk/download.html. Detailed instructions for
compiling and installing Tcl and Tk are provided in Chapter 47.

854

http://www.equi4.com/tclkit
http://wiki.tcl.tk/tclkit
http://www.equi4.com/tclkit/download.html
http://tcl.sourceforge.net
http://www.tcl.tk/software/tcltk/download.html

855

B. Extensions and Applications

Tcl/Tk has an active user community. Many people have built packages that
extend the base functionality of Tcl and Tk and applications based on Tcl
and Tk. Several of these packages and applications are publicly available
and widely used in the Tcl/Tk community. There isn’t space in this book to
discuss all of the available Tcl/Tk software in detail, but this appendix
gives a quick overview of several extensions and applications.

B.1 Obtaining and Installing Extensions

The best source for information on available Tcl extensions and
applications is the Tcler’s Wiki (http://wiki.tcl.tk). There you can search for
topics of interest and find links to related extensions and applications. The
Wiki also contains a page listing Tcl/Tk extensions, http://wiki.tcl.tk/940.
Another excellent resource is the “Great Unified Tcl/Tk Extension
Repository” maintained by Joe English,
http://www.flightlab.com/~joe/gutter/browse.html. Each provides links to where
you can download the desired extensions. Authors also often announce new
versions of extensions and applications on the comp.lang.tcl Usenet
newsgroup (see Section C.1).

B.1.1 Installing Extensions Manually

Once you have downloaded an extension, follow the instructions that
accompany it for installing it on your system. Some extensions provide
installer applications, and some you copy to an appropriate location where
Tcl can find them on your system. A README file should be included with the
extension that tells how to install it and describes any peculiarities.
If the extension provides no installation instructions, usually you can simply
copy the extension to one of the directories where Tcl looks for extensions
by default. If the extension is distributed as a Tcl module, you can copy the
file to one of the directories described in Section 14.6.2. If the extension is
distributed as a package with separate files, including a pkgIndex.tcl file, you
can move the directory containing the extension files to one of the

856

http://wiki.tcl.tk
http://wiki.tcl.tk/940
http://www.flightlab.com/~joe/gutter/browse.html

directories described in Section 14.5.4.

B.1.2 Installing Extensions from ActiveState TEApot Repositories

ActiveState (http://www.activestate.com) has developed a Tcl package
management system that provides a simple method for obtaining, installing,
and updating Tcl extensions and applications. It allows you to use a client
application named teacup to browse, search, and install extensions from
hosted repositories running a repository server application named teapot.
ActiveState’s free ActiveTcl distribution includes the teacup application and
documentation, but you can also download a copy of it for your platform
from http://teapot.activestate.com. ActiveState hosts a public TEApot at
http://teapot.activestate.com containing a variety of extensions and
applications. You can get help for teacup and its options by executing teacup
help. Additionally, you can read more about teacup on the Tcler’s Wiki at
http://wiki.tcl.tk/teacup. The documentation included with ActiveTcl also
describes the availability of teapot for establishing your own TEApot
repositories (e.g., a company-hosted TEApot containing approved versions
of open-source and proprietary extensions for internal use).
The teacup application includes a set of subcommands for managing one or
more local installation repositories that serve as a source of extensions for
use by your Tcl installation. In other words, if you have installed a
particular extension in one of your installation repositories, the Tcl shells
configured to use the repositories can successfully load the extension with a
package require command. Most often you would use just one installation
repository, known as the default installation repository. You can query or
change the default repository directory with the teacup default command:

 teacup default
⇒ /Library/Tcl/teapot

You can also create and delete additional repositories and configure your
Tcl installations to use different sets of repositories. See the teacup
documentation for more details.
The teacup list command lists the extensions available from the TEApot.
You can also provide a specific extension name and optionally a version of
that extension. If there is not an exact match for the name, the command does
a case-insensitive substring search for candidate names. To list extensions
that you have installed in your default repository, include the --at-default
option; for example:

857

http://www.activestate.com
http://teapot.activestate.com
http://teapot.activestate.com
http://wiki.tcl.tk/teacup

You can get a description of an extension using the teacup describe command.
As with teacup list, you can get descriptions either for extensions available
on the TEApot or, with the --at-default option, for installed extensions; for
example:

The teacup install command installs a named extension. You can optionally
specify a minimum or exact version to install; by default the latest version
available is installed. If the extension has dependencies on other extensions
not already installed, teacup automatically installs them as well. You can use
the --dry-run option to simulate the installation, in which case teacup install
reports the steps it would take during the installation.
To upgrade your installation repository, use the teacup update command. By
default, this updates all installed extensions and applications to the latest
version available in the TEApot and installs any uninstalled extensions and
applications from the TEApot. You can use the --only newer option to upgrade
only currently installed extensions, or the --only uninstalled option to install
extensions and applications you don’t have installed already. The --dry-run
option is also available to simulate the update process.
The teacup remove command uninstalls a named extension or application. If
you invoke it without naming an extension or application, it removes all
items from the installation repository. The --dry-run option for simulating
removal is also available for this command.
You can use the teacup version command to determine what version of teacup is
installed. To upgrade to the latest version of teacup, execute teacup upgrade-
self.

Note

858

If you want to use teacup with a Tcl distribution other than ActiveTcl,
you can download a copy of it for your platform from
http://teapot.activestate.com. You then need to set up an installation
repository if you don’t already have one, set up your Tcl shell to be
able to use repositories, and then link your shell to the repository you
created. You can accomplish this with the following set of commands:

B.2 TkCon Extended Console

TkCon is an enhanced console for interacting with Tcl. Although the wish
interpreter has a bare-bones console, TkCon extends this basic functionality
with many useful facilities to aid Tcl programming, including

• Interactive command editing
• A cross-session persistent command history
• Enhanced history searching
• Command, variable, and path expansion
• Electric character matching (similar to emacs)
• Command and variable highlighting
• Capture of input, output, error, or command history to log files
• “Hot errors,” where clicking on an error result displays a stack trace
• Interactive debugging features
• Extensive configuration options

TkCon, developed by Jeff Hobbs, is written entirely in Tcl/Tk and can be
embedded into a Tcl/Tk application to provide console support for the
application. For more information, see the TkCon SourceForge page
(http://tkcon.sourceforge.net) and the TkCon page on the Tcler’s Wiki
(http://wiki.tcl.tk/tkcon).

B.3 The Standard Tcl Library, Tcllib

Tcllib, otherwise known as the Standard Tcl Library, contains several

859

http://teapot.activestate.com
http://tkcon.sourceforge.net
http://wiki.tcl.tk/tkcon

independent packages providing a variety of commonly used features,
including

• Networking protocol implementations, including e-mail (POP3 and
SMTP), domain name resolution (DNS), file transfer (FTP),
directory (LDAP), Usenet news (NNTP), chat (IRC), and network
time (NTP)

• Web support for parsing and generating HTML, generating
JavaScript, writing CGI scripts, and working with URLs and MIME
attachments

• Encryption and checksum support for CRC checksums, DES, MD4,
MD5, SHA1, and base64 encoding

• Programming utilities for logging, profiling performance, and
generating documentation

• Data structure implementations, including stacks, queues, matrixes,
graphs, and trees

• The Snit object-oriented framework
• Text-processing utilities, including CSV processing
• Advanced math functions

For more information, see the Tcllib SourceForge page
(http://tcllib.sourceforge.net) and the Tcllib page on the Tcler’s Wiki
(http://wiki.tcl.tk/tcllib).

B.4 Additional Image Formats with Img

Img is a Tk extension that adds support for many image formats beyond the
small number supported natively by Tk. Img includes support for formats
including BMP, GIF, ICO, JPEG, Pixmap, PNG, PPM, PostScript, SGI, Sun,
TGA, TIFF, XBM, and XPM. The Img extension comes from Jan Nijtmans.
For more information, see the Img page on the Tcler’s Wiki
(http://wiki.tcl.tk/img) and the Img SourceForge page
(http://sourceforge.net/projects/tkimg).

B.5 Sound Support with Snack

The Snack sound extension adds commands to play and record audio. Snack
supports in-memory sound objects, file-based audio, and streaming audio,
with background audio processing. It handles file formats such as AIFF, AU,

860

http://tcllib.sourceforge.net
http://wiki.tcl.tk/tcllib
http://wiki.tcl.tk/img
http://sourceforge.net/projects/tkimg

MP3, NIST/Sphere, and WAV. Snack is courtesy of Kåre Sjölander. You can
find out more about Snack at the Snack home page
(http://www.speech.kth.se/snack) and the Snack page on the Tcler’s Wiki
(http://wiki.tcl.tk/snack).

B.6 Object-Oriented Tcl

One of the historical criticisms of Tcl has been the lack of native object-
oriented structures. However, this resulted in people developing several
object-oriented extensions, each with its own unique features and strengths.
[incr Tcl], also known as Itcl (the name is a play on the Tcl version of the
C++ operator used to name C++), implements a framework very similar to
C++. You can define classes consisting of data members and methods, with
public, protected, and private protection levels available for each.
Inheritance, including multiple inheritance, is supported. Additionally, you
can use the object-oriented Tk widgets in the [incr Tk] and [incr Widgets]
packages. [incr Tcl] was created by Michael McLennan. For more
information, see the [incr Tcl] page on the Tcler’s Wiki (http://wiki.tcl.tk/62)
and the [incr Tcl] SourceForge page (http://incrtcl.sourceforge.net/itcl).
XOTcl, or extended object Tcl, extends an earlier object-oriented package
called OTcl. XOTcl provides a number of object-oriented concepts to help
reduce the complexity of large-scale programs. These concepts include mix-
in classes, nested classes, aggregations, forwarders to support delegation,
slots for storing data, and filters that provide features similar to aspect-
oriented programming. XOTcl comes from Uwe Zdun and Gustaf Neumann.
For more on XOTcl, see the XOTcl home page (http://www.xotcl.org) and the
XOTcl page on the Tcler’s Wiki (http://wiki.tcl.tk/xotcl).
Snit, short for Snit’s Not Incr Tcl, provides an alternative object-oriented
extension written in pure Tcl. Unlike most object-oriented languages or
language extensions, Snit is based on delegation, not inheritance. Snit
objects delegate work to child components, rather than inherit from base
classes. While it used to be a separate extension, Snit is now part of Tcllib,
described in Section B.3. Snit was developed by William Duquette. For
more on Snit, see the Snit page on the Tcler’s Wiki (http://wiki.tcl.tk/3963)
and the Snit reference page (http://tcllib.sourceforge.net/doc/snit.html).

Note

861

http://www.speech.kth.se/snack
http://wiki.tcl.tk/snack
http://wiki.tcl.tk/62
http://incrtcl.sourceforge.net/itcl
http://www.xotcl.org
http://wiki.tcl.tk/xotcl
http://wiki.tcl.tk/3963
http://tcllib.sourceforge.net/doc/snit.html

Tcl 8.6 will introduce a native object-oriented framework. Although it
will be sufficient for stand-alone use in scripts, its primary purpose is
to serve as a core for other object-oriented extensions, making them
easier to implement and more efficient.

B.7 Multithreaded Tcl Scripting

Chapter 47 discussed the requirements for embedding Tcl in a multithreaded
application and described the functions in Tcl’s C API that support
platform-neutral, multithreaded development. Tcl does not have any built-in
commands that expose multithreading at the script level. The Thread
extension—originally written by Brent Welch and now maintained by Zoran
Vasiljevic—provides a set of script-level commands for creating and
managing threads in an application.
The Thread extension supports what is often called an apartment threading
model. Each thread created at the script level has its own Tcl interpreter,
which maintains its own variables, procedures, namespaces, and other state
information. The Thread extension also implements a message-passing
mechanism for inter-thread communication, shared variables, mutual
exclusions (mutexes), condition variables, and thread pools.
You can use the Thread extension only in a tclsh, wish, or other application
that has been compiled with multithreaded support enabled, as described in
Chapter 46. Also, any other binary extensions used by your application must
be compiled with multithreaded support enabled as well.
The source code for the Thread extension is maintained as a project on the
Tcl SourceForge site: http://tcl.sourceforge.net. You can read more about the
Thread extension on the Tcler’s Wiki, at http://wiki.tcl.tk/thread.

B.8 XML Programming

XML programming has become more important over the years, as XML has
become a common serialization and data exchange format. Tcl has several
extensions related to XML processing.
TclXML groups a number of extensions related to parsing XML documents.
The base extension, TclXML, handles parsing XML documents. TclDOM

862

http://tcl.sourceforge.net
http://wiki.tcl.tk/thread

adds a document object model, a way to manipulate XML as a tree structure
in memory. TclXSLT adds XSL transformations, and TclTidy cleans up XML
and HTML and is particularly useful for parsing HTML from web pages,
many of which do not truly conform to HTML standards. TclXML was
created by Steve Ball. For more information, see the TclXML SourceForge
page (http://tclxml.sourceforge.net) and the TclXML page on the Tcler’s Wiki
(http://wiki.tcl.tk/tclxml).
tDOM provides an alternative for processing XML documents, including
XSLT support. It is known for its processing speed and low memory
consumption. The tDOM project was started by Jochen Loewer and is
currently maintained by Rolf Ade. You can find out more about it at the
tDOM home page (http://www.tdom.org) and the tDOM page on the Tcler’s
Wiki (http://wiki.tcl.tk/tclxml).
TclSOAP helps you create XML messages for SOA, or service-oriented
architectures, using the Simple Object Access Protocol, or SOAP. With
SOAP, applications send and receive XML messages; the major advantage
is that you can write programs in any language, such as Tcl, and not worry
about the implementation of the program on the other side. TclSOAP was
created by Pat Thoyts. For more information, see the TclSOAP SourceForge
page (http://tclsoap.sourceforge.net) and the TclSOAP page on the Tcler’s
Wiki (http://wiki.tcl.tk/tclsoap).

B.9 Database Programming

Although Tcl doesn’t support database access natively, you can add a
number of extensions to help access data from relational databases.
Oratcl allows Tcl applications to access Oracle databases
(http://oratcl.sourceforge.net). Mysqltcl similarly provides an interface to
MySQL databases (http://www.xdobry.de/mysqltcl). PostgreSQL has the pgtcl
extension for database access (http://pgfoundry.org/projects/pgtcl). Sybtcl
provides Sybase support (http://sybtcl.sourceforge.net). The sqlite2 extension
provides access to SQLite (http://www.sqlite.org). TclODBC allows Tcl
applications to call on ODBC database drivers, most commonly used on
Windows (http://sourceforge.net/projects/tclodbc).

Note

863

http://tclxml.sourceforge.net
http://wiki.tcl.tk/tclxml
http://www.tdom.org
http://wiki.tcl.tk/tclxml
http://tclsoap.sourceforge.net
http://wiki.tcl.tk/tclsoap
http://oratcl.sourceforge.net
http://www.xdobry.de/mysqltcl
http://pgfoundry.org/projects/pgtcl
http://sybtcl.sourceforge.net
http://www.sqlite.org
http://sourceforge.net/projects/tclodbc

Tcl 8.6 will introduce TDBC, an extension shipped as part of the Tcl
core, to provide a standard interface for SQL database access. For
more information, see the TDBC page on the Tcler’s Wiki
(http://wiki.tcl.tk/tdbc).

Another popular option is Metakit, which is designed to be an efficient
embedded database library with a small footprint. The Mk4tcl extension
provides a Tcl API for accessing Metakit. See http://www.equi4.com/metakit for
more information.

B.10 Integrating Tcl and Java

The Tcl/Java Project provides two routes for integrating Tcl and Java code.
One option is TclBlend, an extension that supports loading a Java interpreter
into an existing Tcl process. As a result, you can use Tcl script commands to
load Java classes, create objects, invoke methods, and so forth. The other
option is Jacl, a self-contained implementation of a Tcl interpreter written
entirely in Java. The intent of Jacl is to incorporate scripting functionality
into an existing Java application. You can find out more at the Tcl/Java
home page (http://tcljava.sourceforge.net) and the Tcl/Java page on the Tcler’s
Wiki (http://wiki.tcl.tk/tcljava).

B.11 SWIG

If you have an existing library of C/C++ code, you might want to make its
functionality available through Tcl script commands. Although you could
write your own wrapper code to expose the various functions as Tcl
commands, a tool called SWIG can create the wrapper code for you
automatically. SWIG is not limited to use with just Tcl but can also generate
wrapper code for many other dynamic languages. See the SWIG home page
(http://www.swig.org) for more information.

B.12 Expect

Expect is one of the oldest Tcl applications and also one of the most
popular. It is a program that “talks” to interactive programs. An Expect

864

http://wiki.tcl.tk/tdbc
http://www.equi4.com/metakit
http://tcljava.sourceforge.net
http://wiki.tcl.tk/tcljava
http://www.swig.org

script describes what output can be expected from a program and what the
correct responses should be. It can be used to automatically control
programs such as ftp, telnet, ssh, fsck, and others that cannot be automated
from a shell script because they require interactive input. Expect also
allows the user to take control and interact directly with the program when
desired. For example, the following Expect script logs into a remote
machine using the ssh program, sets the working directory to that of the
originating machine, then turns control over to the user:

The spawn, expect, send, and interact commands are implemented by Expect, but
lindex and pwd are built-in Tcl commands. The spawn command starts up ssh,
using a command-line argument as the name of the remote machine (lindex
extracts the first argument from the command line, which is available in the
variable argv). The expect command waits for ssh to output a password
prompt, matching it in a case-insensitive manner. The script assumes that the
password is the second command-line argument and sends it to the ssh
program. (This approach is insecure and shown for simplicity only. There
are several other approaches for handling password prompts like this in
Expect that are beyond the scope of this section.) The script waits for a
shell prompt (either % or #, followed by a space), then send outputs a
command to change the working directory, just as if a user had typed the
command interactively. The following expect command waits for a prompt
signifying that the cd command has been processed. Finally, interact causes
Expect to step out of the way so that the user who invoked the Expect script
can now type directly to ssh.
Expect can be used for many purposes, such as acting as a scriptable front
end to debuggers, mailers, and other command-line-driven programs that
don’t have scripting languages of their own. The programs require no
changes to be driven by Expect. Expect is also useful for regression testing
of interactive programs. Expect can be combined with Tk or other Tcl
extensions. For example, by using Tk and Expect together, it is possible to
write a graphical front end for an existing interactive application without
changing the application.

865

Expect was created by Don Libes of the National Institute of Standards and
Technology. For more information, see the Expect home page
(http://expect.nist.gov) and the Expect page on the Tcler’s Wiki
(http://wiki.tcl.tk/expect).

B.13 Extended Tcl

Extended Tcl (TclX) is a library package that augments the built-in Tcl
commands with many additional commands and procedures oriented toward
system programming tasks. Here are a few of the most popular features of
TclX:

• Access to many additional POSIX system calls and functions such as
fork and kill

• A file-scanning facility with functionality much like that of the awk
program

• Keyed lists, which provide functionality similar to C structures
• Facilities for debugging, profiling, and program development

Many of the best features of TclX are no longer part of it: they turned out to
be so widely useful that they were incorporated into the Tcl core. Among the
Tcl features pioneered by TclX are file input and output, TCP/IP socket
access, array variables, real arithmetic and transcendental functions,
autoloading, and the incr and upvar commands.
Extended Tcl was created by Karl Lehenbauer and Mark Diekhans. For
more information, see the TclX SourceForge page (http://tclx.sourceforge.net)
and the TclX page on the Tcler’s Wiki (http://wiki.tcl.tk/tclx).

866

http://expect.nist.gov
http://wiki.tcl.tk/expect
http://tclx.sourceforge.net
http://wiki.tcl.tk/tclx

867

C. Tcl Resources

The following are suggested resources for more information on Tcl/Tk.

C.1 Online Resources

Several online resources are available for Tcl/Tk, including

• Tcl Developer’s Xchange, http://www.tcl.tk
A good contact point for keeping up to date with the Tcl world. The Tcl
Developer’s Xchange announces new Tcl releases, upcoming conferences,
and other significant Tcl events. It also hosts online versions of the Tcl/Tk
reference documentation for current and historical releases, Tcl download
links, and Tcl advocacy information.

• Tcler’s Wiki, http://wiki.tcl.tk
A collaboratively edited collection of Tcl wisdom, tips, and code samples.
This site is a treasure trove of Tcl information and should be the first place
to check when researching Tcl topics.

• ActiveState Programmer Network (ASPN) Tcl Resources,
http://aspn.activestate.com/ASPN/Tcl

ActiveState’s ASPN provides information on technologies supported by
ActiveState, including Tcl. The site hosts several Tcl-related mailing lists, a
Tcl “cookbook,” and other resources. From this site you can also freely
download ActiveTcl, ActiveState’s binary build of Tcl, and several popular
Tcl extensions.

• TkDocs, http://www.tkdocs.com
Mark Roseman’s site providing Tk tutorials and documentation. Mark has
some excellent tips for cross-platform Tk development, and his tutorials
cover Tk not only for Tcl but for other dynamic languages like Perl and
Python as well.

• Tcl SourceForge Project, http://tcl.sourceforge.net
The source code repository for Tcl/Tk and core extensions.

• The comp.lang.tcl Usenet newsgroup
The Usenet newsgroup for the exchange of information about Tcl/Tk and
related extensions and applications. The newsgroup is used to answer
questions from Tcl/Tk users, to exchange information about bugs and their
fixes, and to discuss possible new features in Tcl and Tk. New releases of

868

http://www.tcl.tk
http://wiki.tcl.tk
http://aspn.activestate.com/ASPN/Tcl
http://www.tkdocs.com
http://tcl.sourceforge.net

Tcl/Tk also are announced on this newsgroup, as are releases of other
related extensions and applications. You can access the Usenet newsgroups
through dedicated news client applications or through web gateways such as
Google Groups (http://groups.google.com).

• The Tcl chatroom
A real-time chat service for discussing Tcl/Tk, currently based on the XMPP
protocol. Many experienced Tcl programmers are regular contributors,
readily answering questions, solving problems, and debating Tcl/Tk
development. The chatroom can be accessed via standard XMPP clients, a
dedicated TkChat client (http://tkchat.tcl.tk), and web and IRC gateways.
See http://wiki.tcl.tk/1178 on the Tcler’s Wiki for the latest information on
how to access the Tcl chatroom.

C.2 Books

Several books are available for more information on Tcl/Tk and related
topics:

• Butenhof, David R. Programming with POSIX Threads. Reading,
MA: Addison-Wesley, 1997.

• Flynt, Clif. Tcl/Tk: A Developer’s Guide, Second Edition. San
Francisco: Morgan Kaufmann, 2003.

• Friedl, Jeffrey. Mastering Regular Expressions, Third Edition.
Sebastopol, CA: O’Reilly Media, Inc., 2006.

• Libes, Don. Exploring Expect: A Tcl-based Toolkit for Automating
Interactive Programs. Sebastopol, CA: O’Reilly Media, Inc., 1994.

• Welch, Brent, and Ken Jones. Practical Programming in Tcl and Tk,
Fourth Edition. Upper Saddle River, NJ: Prentice Hall, 2003.

869

http://groups.google.com
http://tkchat.tcl.tk
http://wiki.tcl.tk/1178

870

D. Tcl Source Distribution License

This software is copyrighted by the Regents of the University of California,
Sun Microsystems, Inc., Scriptics Corporation, ActiveState Corporation and
other parties. The following terms apply to all files associated with the
software unless explicitly disclaimed in individual files.
The authors hereby grant permission to use, copy, modify, distribute, and
license this software and its documentation for any purpose, provided that
existing copyright notices are retained in all copies and that this notice is
included verbatim in any distributions. No written agreement, license, or
royalty fee is required for any of the authorized uses. Modifications to this
software may be copyrighted by their authors and need not follow the
licensing terms described here, provided that the new terms are clearly
indicated on the first page of each file where they apply.
IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE
TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS
SOFTWARE IS PROVIDED ON AN “AS IS” BASIS, AND THE
AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
OR MODIFICATIONS.
GOVERNMENT USE: If you are acquiring this software on behalf of the
U.S. government, the Government shall have only “Restricted Rights” in the
software and related documentation as defined in the Federal Acquisition
Regulations (FARs) in Clause 52.227.19 (c) (2). If you are acquiring the
software on behalf of the Department of Defense, the software shall be
classified as “Commercial Computer Software” and the Government shall
have only “Restricted Rights” as defined in Clause 252.227-7013 (c) (1) of
DFARs. Notwithstanding the foregoing, the authors grant the U.S.
Government and others acting in its behalf permission to use and distribute

871

the software in accordance with the terms specified in this license.

872

873

Index

Symbols

!! in history shortcuts, 286
in comments, 32–35
#! in script execution, 9–10
$

command evaluation, 24
as constraint, 80
invoking substitution, 11
variable substitution, 24–25, 43–45

%
in expressions, 55–56
substitutions in scripts that handle events, 419–421
in time and date strings, 254–256

& in expressions, 56, 57
&& in expressions, 56, 57
*

expr syntax, 5
glob-style pattern matching, 79
operators and precedence, 55–56
as quantifier, 84
in regular expressions, 81

** in expressions, 55–56
:: in qualified names, 161–162

::pkg::create, 237
::tcl::tm::path list, 231, 240–241
::tk, 304
::ttk, 304
@ in image options, 311
[]

command substitution, 26
invoking substitution, 11
regular expression atoms, 82–83

874

\\ in substitution, 27
^

as constraint, 80
in gridder, 396
operators and precedence, 56, 57

^old^new, 286
{ }

basic dictionary structure, 118
in glob commands, 180
inside comments, 34–35
in lists, 104
quoting expressions, 61
quoting with, 29–30
in regular expressions, 86
in replacement strings, 88
string manipulation, 62
use of, 12–13
using in variable names, 45

{*}
argument expansion, 32
substitutions, 36

{m, } in regular expressions, 81
{m,n} in regular expressions, 81
{m} in regular expressions, 81
|

operators and precedence, 56, 57
in regular expressions, 84

||
expr syntax, 5–6
operators and precedence, 56, 57

~
in file names, 176
operators and precedence, 55

+
operators and precedence, 55–56
as quantifier, 84
in regular expressions, 81

< in expressions, 55, 56–57
<< in expressions, 55, 57
<=

875

expr syntax, 5–6
precedence and, 55, 56–57

!= in expressions, 55, 56–57
== in expressions, 55, 56–57
>

expr syntax, 5–6
precedence and, 55, 56–57

>= in expressions, 55, 56–57
>> in expressions, 55, 57
;

in basic syntax, 5
as separator, 21

"
vs. braces, 12–13
quoting with, 28–29
string expressions, 62

Ø in notation, xxxiv
/

in glob commands, 180
precedence and, 55–56

2> in redirection syntax, 201
2>@1 in redirection syntax, 201
-

expr syntax, 5–6
in gridder, 396
precedence and, 55–56

! and precedence, 55–56, 57
?: and precedence, 56, 58
?

glob-style pattern matching, 79
as quantifier, 84
in regular expressions, 81

--
odd file names, 185
in regexp command, 87

.
regular expression atoms, 80
in widget names, 7, 294–295

\
back references, 85
backslash substitution, 26–27
invoking substitution, 11

876

in regular expressions, 80–82
in replacement strings, 88

⇒
basic syntax, 5
notation, xxxiv

A

\a in substitution, 27
Aborting commands, 219
abs function, 58
Absolute paths, 178
Absolute qualified names, 161
Access

file. See File access.
positions, 191–192
safe interpreter, 277–279

Accessing Tcl variables
functions, 551–553
linking with C variables, 556–558
multiple traces, 561
reading, 555
setting and unsetting traces, 558–559
setting values, 553–555
trace callbacks, 559–561
unset callbacks, 562
unsetting, 556
whole-array traces, 561

aclocal.m4 file, 710–711
acos function, 58
Action-oriented programming, 525–526
Actions

defined, 300
logical, 423–424

active state
for button widgets, 313
common widget options, 339
themed widgets, 358

ActiveState Software, 718, 722–724

877

ActiveTcl, 718
add action, 328–329
Addition operator

precedence and, 55–56
as quantifier, 84
in regular expressions, 81

Advanced regular expressions (AREs), 80
after cancel command, 248
after command, 247, 253–254
after idle command, 248
-after option

configuring packer, 398
packing order, 404
panedwindows, 336

Aliases
command, 276–277
safe interpreter, 278

Aligning text, 309
all binding, 423
all tag, 439
Allocation, memory, 544
-alpha attribute, 487, 488
alternate state, 358
-anchor option, 398, 403–404
Anchor position, 340–341
AND operator, 56, 57
Anonymous procedures, 151–153
ANSI C. See C.
Apartment threading models, 727
Appearance

themed widget states, 358–360
themed widget styles, 360–364

append command
defined, 47–49
working with variables, 39

Applications
adding Tcl to, 594
option database entries, 507
sending commands to Tcl programs, 214–217
simple Tcl interpreters, 530–531

878

Tk, 296
apply command

creating anonymous procedures, 151–153
defined, 143–144

arc type, 434
AREs (advanced regular expressions), 80
argc variable, 49
args variable, 147–148
Arguments

applying anonymous procedures, 151–153
clientData, 572–575
command evaluation, 22–24
control structures, 12–13
defaults and variable numbers of, 146–148
defined, 4
event binding, 15–18
expanding, 30–32
notation, xxxiv
passing lists as, 30
in windowing commands, 7–8

argv variable, 49
argv0 variable, 49
Arithmetic

operators, 64
performing clock, 258–259

array command, 46–47
array exists command, 40, 47
array get command, 40
array names command, 40, 46–47
array set command, 40
array size command, 40, 46
array unset command, 40, 49
Arrays, 19

accessing with upvar, 149
byte, 540
defined, 42–43
vs. dictionaries, 115, 119–120
file stat, 184
hash table keys, 632
multidimensional, 45–46

879

querying elements of, 45–46
tk::Priv, 518
tracing variables, 268–269
whole-array traces, 561

Arrows in scrollbars, 318
asin function, 58
Aspect ratios, 482
Associative arrays, 42. See also Arrays.
Asynchronous events, 690–694
Asynchronous subprocesses, 211–212
atan function, 58
atan2 function, 58
atime option, 184–185
Atoms, 80–83
Attributes

channel functions, 654–655
system-specific window, 487–488

auto_execok command, 274
auto_mkindex command, 230, 233–234
auto_path variable, 234
Autoexec, 273
Autoloading

default version of unknown, 273
defined, 229, 233–234

B

\b, 27
Back references, 85
Background errors, 416
-background option

button command, 7–8
configuring bitmap images, 376
formatting text tags, 455
for images, 311
widget color, 307–308

Background processes, 193–194, 685
background state, 358
Backslash substitution

880

defined, 11
inside braces, 29
inside double quotes, 28–29
more on, 36–37
syntax overview, 26–27

Backslashes
back references, 85
in file names, 176
in lists, 104–105
in regular expressions, 80–82
in replacement strings, 88

Backspaces
escape sequences, 82
keysyms, 415
in substitutions, 27

Basic regular expressions (BREs), 80
-before option

configuring packer, 398
packing order, 404
panedwindows, 336

Behavior of themed widgets, 358–360
bell command, 518
Bézier curves, 434
-bgstipple option, 455
Bignum types, 538
Binary files, 190–191
binary format command, 65, 95–97
Binary numeric operands, 54
binary scan command, 65–66, 96–99
Binary strings, 95–99
bind command

defined, 413–414
overview, 416–417

Bindings
additional uses, 431
bind command, 416–417
canvas widget, 439–444
conflict resolution, 421–422
defined, 413
event-binding hierarchy, 422–423

881

event-driven channel interaction, 206
events, 15–18
generating events, 427–428
keyboard shortcut, 332–333
named virtual events, 425–426
text tag, 457–458
text widget, 449–450
treeview item tags, 356–357
widget default, 304–305

Bindtags, 422–423
bindtags command, 414, 422
-bitmap option, 311
bitmap type, 434
Bitmaps

image command, 375–377
in window decoration, 485–486

Bit-wise operators, 56, 57
blink procedure, 254
Blocking channels

defined, 204–205
interacting with, 206

Book resources, 732–733
bool function, 58
Boolean operators

expr syntax, 6
precedence and, 57

Boolean types, 538
-borderwidth option

formatting text tags, 455
for frames, 305

Bounds, 84
Braces

basic dictionary structure, 118
in glob commands, 180
inside comments, 33–34
in lists, 104
quoting expressions, 61
quoting with, 29–30
in regular expressions, 86
in replacement strings, 88

882

string manipulation, 62
use of, 12–13
using in variable names, 45

Brackets
command substitution, 26
invoking substitution, 11

Branches, 84–85
break command

defined, 131
event-binding hierarchy and, 423
generating exceptions, 224
loop control, 138

BREs (basic regular expressions), 80
Buffering

channel buffering mode, 205
file output, 188
I/O to and from command pipeline, 203

Building
embedded Tcl, 714
Tcl and Tk, 703–707
TEA, 707–714
threaded Tcl, 697

Butenhof, David, 695
button command, 6–8
Button widgets

defined, 294
event bindings, 16–18
overview, 312–315

ButtonPress event, 415
ButtonRelease event, 415
Byte arrays, 540

C

C

accessing Tcl variables from. See Accessing Tcl variables.
analogous Tcl channel commands, 658
character set issues, 89
command evaluation, 24

883

creating commands. See Command creation.
embedding Tcl. See Embedding Tcl.
evaluating Tcl code in. See Evaluating Tcl code.
expr syntax, 5–6
fetching values from Tcl objects, 538–539
file system interaction functions, 681–683
generating strings with format, 74–75
integration with Tcl. See Tcl and C integration.
interfaces, 19
loading libraries, 232
operators, 5–6
operators and precedence, 56
parsing strings with scan, 76–77
real operand specification, 54
string functions in UTF-8 and Unicode, 626
vs. Tcl, 14, 523–524
Tcl interpreters. See Interpreters.
writing extensions in. See Extensions.

c suffix, 17
\c in regular expressions, 81
Call by reference, 148–150
Callbacks

applying anonymous procedures, 152–153
channel event handling, 673–676
clientData and deletion, 572–575
handling idle, 677–678
handling with namespace code, 160–161
idle, 253, 671
invoking event dispatcher, 678–680
timer event handling, 676–677
trace, 559–561
unset, 562

canvas command, 434–435
Canvas widget

bindings, 439–444
canvas scrolling, 444–445
items and types, 433–436
manipulating items with identifiers and tags, 436–439
PostScript generation, 445

Carriage return in substitutions, 27

884

cascade entry, 328
Cascaded menus, 331–332
Case conversion, 70
Case-sensitivity of variable names, 41
Catalogs, message, 91–95
catch command

defined, 219–220
generating exceptions, 224–226
limiting interpreters, 280–281
return options dictionary, 604
trapping errors, 222–223

Cavities
defined, 361
packing, 396–397

cd command, 173, 179
ceil function, 58
Cells in gridder, 389
cget widget command, 505, 512
chan close command, 174
chan configure command

configuring channel options, 204–205
defined, 175, 198–199

chan copy command, 176, 192–194
chan eof command, 174, 191–192
chan event command, 199, 207–209
chan flush command, 174
chan gets command, 174
chan puts command, 175
chan read command, 175
chan seek command, 175, 191–192
chan tell command, 175, 191–192
Channel events, 206
Channel handlers, 673–676
Channels

basic file, 186–188
character encodings and, 90
configuring options, 204–205
creating new types, 661–669
event handling, 672–676
event-driven interaction, 206–208

885

functions, 649–656
operating system process utilities, 687–689
operations, 656–658
registering, 658–660
standard, 660–661
transferring between interpreters, 279–280

char functions, 536–537
Character classes, 82–83
Character encodings

defined, 89–91
working with string utilities, 624–625
working with text files, 190

Characters
extracting with string, 69
generating strings with format, 74–76
glob-style pattern matching, 78–79
handling Unicode and UTF-8 strings, 625–627
parsing strings with scan, 76–78
in regular expressions, 80–83
relative placement in gridder, 395–396
separators, 7
set issues, 89–91
split, 112
substitutions. See Substitutions.
supported by string is, 73–74
text tags, 453–458
time and date format groups, 254–257
variables and substitutions, 11
working with text files, 190

[chars]
glob-style pattern matching, 79
in regular expressions, 81

checkbutton entry, 328
Checkbuttons, 313–314
Child process reaping, 689–690
Choice operator, 56, 58
chooseDirectory procedure, 338
Class commands

creating and destroying widgets, 297–298
for widgets, 7–8

886

class widget command, 505
Classes

bindings, 416
character in regular expressions, 82–83
characters supported by string is, 73–74
namespaces and, 171–172
option database entries, 507–508
themed widget vs. classic widget, 344–345
widget, 7–8, 294, 305. See also Widgets.
widget commands, 18, 299–300

Cleanup, process in C, 693–694
Clearing, selection, 470–471
Client communication sockets, 210–212
clientData argument, 572–575
clipboard append command, 468–469, 474
clipboard clear command, 468
clipboard command, 473–474
clipboard get command, 469, 473
Clipboard model

defined, 467
selection, retrievals, and types, 469–470

CLIPBOARD selection, 469
clock add command, 248, 258–259
clock command, 254–259
clock format command, 248, 254–257
clock microseconds command, 248, 254
clock milliseconds command, 248, 254
clock scan command, 248, 257–258
clock seconds command, 248, 254
Closing

command pipeline, 204
windows, 489–490

Code evaluation. See Evaluating Tcl code.
Collections. See Lists, Dictionaries.
Colon in qualified names, 161–162
Colors for widgets, 307–308
Columns

gridder options, 389–390
managing treeview, 353–355
spanning gridder, 393–394

887

Combobox widget, 345–346
Command creation

clientData and deletion callbacks, 572–575
command functions, 565–567
deleting, 575
fetching and setting parameters, 576–578
functions, 564–565
how procedures work, 578–579
registration, 567–569
result protocol, 569
Tcl_AppendResult, 569–570
Tcl_SetResult and interp->result, 570–572
traces, 579

command entry, 327
Command functions, 565–567
-command option

button command, 7–8
widget commands, 18

Command procedures. See Procedures.
Command substitution

defined, 11
syntax overview, 26

Commands
additional Tk, 513–514
analogous C functions, 658
canvas, 434–435
configuration option, 505–506
control flow, 131–132
creating and destroying widgets, 297–298
creating lists as, 113–114
dictionary, 116–118
errors and exceptions, 219–220
evaluation, 22–24
event binding, 15–18
expression, 53
file access, 173–176
file system interaction, 681–683
for fonts, bitmaps and images, 367–369
geometry manager, 386
history, 283–284

888

information about, 262–263
inspecting namespaces, 163–164
for interconnection, 300–301
library, 230–231
list, 101–103
namespace, 155–158
normal and exceptional returns, 35
notation, xxxiv
peer text widget, 463–465
process, 197–199
re-executing from history list, 285–286
script files, 8–10
selection and clipboard, 468–469
sending to Tcl programs, 214–217
string manipulation, 65–69
string utility completeness, 627–628
syntax overview, 21–22
Tcl as language, 14–15
Tcl internals, 247–253
tclsh application, 4–6
Tcl/Tk benefits, xxxii–xxxiii
Tk windowing, 6–8
variables, 39–40
variables and substitutions, 11
widget, 18, 299–300
window management, 478–481
working with ensembles, 164–169

Comments
in switch statements, 136
syntax overview, 32–35

Communication
commands for widget interconnection, 300–301
interapplication, 19
TCP/IP socket, 210–214

Comparisons
operators, 64
string, 71
text widget index, 452

Compatibility issues in releases, 717–718
comp.lang.tcl newsgroup, 732

889

Completeness, command, 627–628
Completion codes, 600–603
Composite objects, 540
-compound option

defined, 311
in themed widgets, 365

concat command, 101, 105–106
Condition variables, 699–701
Conditions, 699–701
Configuration options

bitmap image, 376–377
cget widget command, 512
chan configure, 204–205
color, 307–308
commands, 505–506
common themed widget, 364–365
common widget, 339–342
configure widget command, 511–512
creating and destroying widgets, 298
database, 506–507
database entries, 507–508
ensembles, 166–167
for frames, 306–307
geometry manager, 408–409
gridder, 390–392
for labels, 309–312
named font, 370–371
notebook, 347–348
option command, 510–511
packer, 398–399
panedwindows, 336–337
photo images, 377–379
priorities in database, 509–510
RESOURCE_MANAGER property and .Xdefaults file, 508–509
text widget tags, 454–456
themed widget style, 362–364
treeview columns and headings, 355
treeview item selection management, 355
treeview item tags, 356
treeview items, 351

890

widget, 294, 304
windowing commands, 7

configure command
defined, 18
TEA standard options, 707–709

Configure event, 415
configure widget command, 506, 511–512
configure.in file, 711–714
Conflicts

in event bindings, 421–422
priorities in option database, 509–510

Console window, 6
Constraints, 80
Contents

copying file, 192–194
listing directory, 179–181
PostScript generation, 445

continue command
defined, 131
generating exceptions, 224
loop control, 138

Contributed extensions to Tcl/Tk, 721–724
Control flow

commands, 131–132
eval, 139–140
executing from files, 140–141
if, 132–133
loop control, 138
looping commands, 136–138
switch, 133–136

Control structures
additional features, 19
creating new, 150–151
Tcl, 12–14

Conversion specifiers, 94–95
Conversions

character encodings, 89–91
generating strings with format, 74–76
parsing strings with scan, 76–78
between strings and lists, 111–112

891

types and, 63–64
working with character encodings, 624–625

Copying
with clipboard, 473–474
file content, 192–194
files, 182–183

Core commands, xxxi
cos function, 58
cosh function, 58
countdown procedure, 34–35
Counting, reference, 540–541
Current event number, 287
current tag, 439
Current working directory, 179
Cursors

common widget options, 341–342
insertion, 323
themed widget options, 364

Customization
aclocal.m4 file, 710–711
channel instance, 662
configure.in file, 711–714
dialog, 499–504
Makefile.in file, 714

Cutting with clipboard, 473–474

D

Dashes in odd file names, 185
-data option

configuring bitmap images, 376
configuring photo images, 377

Data storage, 41–42
Databases, 728
Databases, option. See Option database.
Date manipulation, 254–259
Decimal operands, 54
Decorating windows, 485–486
Default bindings, 304–305

892

Default fonts, 370
Default installation repositories, 722–724
Defaults and variable number of arguments, 146–148
Deferred evaluation, 29–30
Deiconified state

creating custom dialogs, 500
defined, 483–484

Delayed operations, 514–515
Delaying for time, 253–254
Deleting

clientData and deletion callbacks, 572–575
commands, 269, 575
destroying widgets, 514
with dict unset, 127
files, 181–182
hash table entries, 637
hash tables, 632–633
interpreters, 531
with lreplace, 107
named fonts, 372
namespace, 159
with namespace forget, 162
thread termination, 698
traces, 562
tracing commands, 270
treeview items, 353
with unset and array unset, 49
widgets, 298
windows, 490–491

Demo script for widgets, 305
Descriptions, font, 374–375
Desktop environment, 293
destroy command

defined, 298
destroying widgets, 513, 514

Destroy event, 415
Detail field

for event patterns, 417–418
for key and button events, 415

Advantages, Tcl, xxxii

893

Dialogs
custom, 499–504
modal interactions, 495–499
standard, 337–339

dict append command, 123–124
dict command, 116, 123–126
dict create command, 116, 120–121
dict exists command, 116, 122–123
dict filter command, 116
dict for command, 116, 122–123
dict get command

basic dictionary structure, 118–120
defined, 116
working with nested dictionaries, 126–127

dict incr command, 116, 124
dict keys command, 117, 122–123
dict lappend command, 117, 124
dict merge command, 117, 121
dict remove command, 117
dict replace command, 117, 120–121
dict set command

defined, 117
updating dictionaries, 121
working with nested dictionaries, 126–127

dict size command, 117, 122–123
dict unset command

defined, 117
updating dictionaries, 121
updating dictionary values, 125
working with nested dictionaries, 126–127

dict update command, 117, 124–125
dict values command, 117
dict with command, 118, 126–129
Dictionaries

basic structure, 117–120
commands, 116–118
converting betweens arrays and, 47
creating and updating, 120–121
defined, 19
examining, 122–123

894

managing return options, 604–605
overview, 115–116
return options, 225–226
string map command, 72
updating values, 123–126
working with nested, 126–129

Dictionary objects
defined, 644–648
functions, 639–642

Diekhans, Mark, 730
Directories

creating, 181
current working, 179
layout for TEA extensions, 709–710
libraries. See Libraries.
listing contents, 179–181
name manipulation, 176–179

-disabled attribute, 488
disabled state, 358
Disk files

handling channel events and, 675–676
working with, 181–185

Dispatcher, event, 678–680
Display lists, 435
Displays, 292
DLL (Dynamic Link Library), 232
DND (Drag and Drop), 474–475
do command

creating with uplevel, 150–151
generating exceptions, 226–227

Dockable windows, 488–489
Dollar sign

command evaluation, 24
invoking substitution, 11
variable substitution, 24–25, 43–45

Double colon, 161–162
double function, 58
Double modifier, 418
Double quotes, 28–29
Double types, 538

895

Drag and Drop (DND), 474–475
Duquette, William, 726
Dynamic languages, xxxi
Dynamic Link Library (DLL), 232
Dynamic strings, 617–621
Dynamic Tcl objects, 539
Dynamic Tcl scripts, 548

E

Echo servers, 212–214
Elements

defined, 101
examining dictionaries, 122–123
extracting from lists, 109
inserting and deleting from lists, 644
themed widget style, 361–362

Elements, array
defined, 42–43
multidimensional arrays, 45–46
querying, 45–46
removing, 49

-elide, 454
Ellipses in canvas widgets, 433
else clauses, 133
elseif clauses, 133
Embeddable commands languages, xxxi
Embedded images, 460–462
Embedded windows, 459–460
Embedding Tcl

adding to application, 594
building, 714
in C, 522
creating shells, 596–597
functions, 593
initialization, 595

Encapsulated PostScript, 445
encoding convertfrom command, 66
encoding convertto command, 66

896

encoding names command
character set issues, 89
defined, 66

encoding system command, 66
Encodings, character

defined, 89–91
working with string utilities, 624–625
working with text files, 190

End-of-line conventions, 188–190
Ensembles

defined, 23
working with namespaces and, 164–169

Enter event, 415
enter traces, 271–272
enterstep traces, 271–272
entier function, 64
Entries

creating hash table, 633–634, 635
defined, 16
deleting hash table, 637
in listboxes, 317–318
option database, 507–508
overview, 323–327

env variable
defined, 50
processes and, 210
tracing, 268–269

Epoch time
defined, 184–185
manipulation, 254–259

eq operator, 55
Equals sign, 55, 56–57
EREs (extended regular expressions), 80
error command, 220, 222
Error messages, 221
errorCode variable

defined, 603–604
setting, 221–222

errorInfo variable
adding to stack trace in, 605–608

897

defined, 35
Errors

background, 416
background and bgerror, 227–228
commands, 219–220
entry validation, 326–327
exceptional returns, 35
exceptions, 223–227. See also Exceptions.
generating from Tcl scripts, 222
raised by exec, 202
in system calls, 196
trapping, 222–223
unknown commands, 274
what happens after?, 220–222

Escape sequences
in file names, 176
regular expression character class, 83
in regular expressions, 82

eval command
control flow, 139–140
defined, 131

Evaluating Tcl code
dynamically building scripts, 548
embedding Tcl, 595
functions, 545–546
in namespaces, 158–161
overview, 546–547
Tcl expressions, 549

Evaluation
command, 22–24
deferring, 29–30
nested script, 31

event add command, 414
event delete command, 414
Event dispatcher, 678–680
event generate command, 414, 427–428
Event handlers

background errors, 227–228
commands for interconnection, 300
defined, 206

898

registering, 207–209
Tk, 297

Event handling
asynchronous, 690–694
channel events, 672–676
event dispatcher, 678–680
functions, 671–672
idle callbacks, 677–678
timer events, 676–677

event info command, 414
Event loops

defined, 297
entering Tcl with vwait, 206–207
processing times, 423–424

Event patterns, 417–419
!event shortcut, 286
Event specifiers, 17
Event-driven programming

after command, 253–254
Tk applications, 297

Events
bind, 416–417
binding, 15–18
commands, 413–414
conflict resolution, 421–422
current event number, 287
event-binding hierarchy, 422–423
event-driven channel interaction, 206–208
generating, 427–428
history list, 284–285
logical actions, 428–431
named virtual, 425–426
overview, 414–416
processing times, 423–424
sequences, 419
specifying, 285
substitutions in scripts, 419–421
tag bindings, 457–458
Tk, 297
in windowing systems, 293

899

Examples
blink, 253–254
do, 150–151, 226–227
fac, 145
factorial, 15–18
flash, 515
GetGizmo, 635
GizmoCreateCmd, 633–634
GizmoDeleteCmd, 637
GizmoSearchCmd, 636
GizmoStatCmd, 638
GizmoTwistCmd, 635
graphs, 440–441
Hello, World!, 6–8
inc, 417, 578–579
map, 618
plus, 144–145
power, 167
printargs, 50
printArray, 149
printVars, 147
ruler, 435–436
sum, 148
waitWindows, 499

Exceptional returns, 35
Exceptions

adding to stack trace in errorInfo, 605–608
completion codes, 600–603
functions, 599–600
managing return options dictionary, 604–605
overview, 223–227
setting errorCode, 603–604
Tcl_Panic, 608–609

Exclamation points, 55–56
exec command

accessing process IDs, 209
autoexec, 273
defined, 197
invoking subprocesses with, 199–203

Executable files, 184

900

Executable scripts, 9
Execution

defined, 22–24
from files, 140–141
re-executing commands from history list, 285–286
timing command, 259
tracing command, 271, 579

exit command
defined, 6, 198
process termination, 199

Exiting
asynchronous event handlers, 693–694
threads, 698

exp function, 58
-expand option in packer, 398, 401–403
Expansion

argument, 30–32
configuring packer, 401–403
file name and exec, 202–203

Expect, 729–730
Explicit focus models, 493–494
Exponentiation operator, 55–56
Exporting namespace commands, 162
expr command

defined, 53
evaluating, 23
getting started, 4

Expressions
commands, 53
evaluating from C, 549
list manipulation, 63
matching regular, 622–623
math functions, 58–60
numeric operands, 54
operators and precedence, 55–58
Pattern matching with, 79–87
precision, 64
string manipulation, 62–63
substitutions, 60–61
Substitutions with, 87–88

901

Tcl as language, 14–15
types and conversions, 63–64

Extended regular expressions (EREs), 80
Extended Tcl (TclX), 730
Extensible languages, xxxi
Extensions

connected C to Tcl, 524–525
database programming, 728
defined, xxxi
file and directory name manipulation, 178
functions, 581–582
ifconfig, 585–592
Init, 582–583
integrating Tcl and C, 522
namespaces, 584
obtaining and installing, 721–724
packages, 583–584
Snack, 725–726
Tcl stubs, 584–585
Tcl/Tk benefits, xxxii
TEA, 707–714
Thread, 727
TkCon, 724
virtual file systems, 194–196
XML programming, 727–728

External padding in packer, 404
Extraction

character, 69
element, 109

F

\f in backslash substitution, 27
fac example, 145
factorial procedure, 12–14, 15–18
-failindex option, 73
False values, 57–58
fconfigure command, 90
Fetching command parameters, 576–578

902

-fgstipple option, 455
File access

additional features, 19
commands, 173–176
current working directory, 179
on disks, 181–185
errors in system calls, 196
listing directory contents, 179–181
name manipulation, 176–179
reading and writing files, 185–194
virtual file systems, 194–196

file command, 183–185
file copy command, 182–183
file delete command, 181–182
file dirname command, 178
File events

defined, 206
registering handlers, 207–209

file extension command, 178
File extensions, 9–10
File handlers, 673–676
File identifiers, 187
file join command, 176–177
file mkdir command, 181
File name expansion, 202–203
file nativename command, 177
file normalize command, 178
-file option

configuring bitmap images, 376
configuring photo images, 377

file option command, 174
file pathtype command, 178–179
file rename command, 183
file rootname command, 178
file split command, 176–177
File system interaction

Tcl functions, 681–683
virtual file systems, 683

file tail command, 178
file volumes command, 179

903

FILE_NAME type, 469–470
Files

executing from, 140–141
navigation dialogs, 338–339
script, 8–10, 263

-fill option
configuring packer, 398, 400–401
vs. -expand, 403

Flags
operating system process, 687–688
reading variable, 555
Tcl variable values, 554
variable linking, 557

flash example, 515
floor function, 58
Flow, control. See Control flow.
flush command, 188
fmod function, 58
Focus, input

commands, 491–492
overview, 493–495

focus command, 491–492, 494
focus state, 358
Focus widgets, 301
FocusIn event, 415
FocusOut event, 415
font actual command, 367
font configure command, 368, 371
font create command, 368, 370
font delete command, 368, 372
font families command, 368, 373–374
font measure command, 368, 374
font metrics command, 368
font names command, 368, 372
-font option

in button command, 7–8
for formatting text tags, 455
for labels, 310

Fonts
command overview, 367–368

904

font command, 369–375
for command

defined, 131–132
looping, 136–138

forAllMatches procedure, 451–452
foreach command

defined, 132
looping, 136–138
using with array names, 47

-foreground option
for bitmap image configuration, 376
in button command, 7–8
defined, 308
for formatting text tags, 455
for images, 311

Form feeds
escape sequences, 82
in substitution, 27

format command
defined, 66
generating strings with, 74–76

Format groups
clock format, 254–257
clock scan, 257

-format option in photo images, 377
Formats

additional image with Img, 725
font, 374–375
representing information, 526
text tags, 453–458
types for binary strings, 96–97

Forward slash
in glob commands, 180
precedence and, 55–56

Frames
defined, 306–307
hierarchical geometry management with, 405–407
in panedwindows, 335
window decorations, 485–486

-fullscreen attribute, 487

905

Functions
for accessing Tcl variables, 551–553
analogous Tcl channel commands, 658
channel, 649–656
command creation, 564–565
for evaluating Tcl code, 545–546
event handling, 671–672
exception, 599–600
file system interaction, 681–683
hash table, 630–631
Init, 582–583
interpreter, 527–529
manipulating list and dictionary objects, 639–642
math, 58–60
operating system, 685–687
string utility, 611–617
Tcl embedding, 593
Tcl extension, 581–582
Tcl object, 534–537
thread management, 695–697

G

-gamma option in photo images, 377
Geometry managers

commands, 386
defined, 8
gridder, 389–396
hierarchy, 405–407
options, 408–409
other in Tk, 409–411
overview, 385, 387–389
packer, 396–404
padding, 404–405
placer, 405
text widget as, 459
Tk, 298–299
widget stacking order, 407–408
window management. See Window managers.

906

Geometry propagation, 409
GetGizmo example, 635
getOpenFile procedure, 338
gets command, 203
getSaveFile procedure, 338
GizmoCreateCmd example, 633–634
GizmoDeleteCmd example, 637
Gizmos

checking statistics, 638
creating, 633–634
defined, 629–630
searching, 636

GizmoSearchCmd example, 636
GizmoStatCmd example, 638
GizmoTwistCmd example, 635
glob command

defined, 173–174
listing directory contents, 179–181

global command, 51, 144
Global grabs, 496–497
Global namespaces, 91–95
Global variables

accessing with upvar, 149–150
defined, 13–14
managed by Tk, 517–518
overview, 49–50
procedures, 146

Glob-style pattern matching
listing directory contents, 179–181
String manipulation, 78–79
string matching, 621–622

Glue language, xxxii
gm command, 386, 408–409
gm configure command, 386, 408
gm forget command, 386, 408–409
gm info command, 386, 408
gm slaves command, 386, 408
GNU Autoconf

building Tcl and Tk, 703–707
TEA, 707–714

907

grab command, 492, 495–497
Grabs

defined, 301
modal interactions, 495–497

Grammar, 14–15
Graphical user interface (GUI) creation with Tk. See Tk.
graphs example, 440–441
Gravity, mark, 450
Greater than, 55, 56–57
Greater than or equal to, 55, 56–57
Greedy quantifiers, 84–85
grid command

event binding, 17
“Hello, World!” example, 6–8
introduction to widgets, 304

Grid managers, 298–299
Gridded geometry management, 483
Gridded windows, 483–484
Gridders, 8, 385, 389–396
Groups, window, 486–487
GUI (Graphical user interface) creation with Tk. See Tk.

H

Handlers, event. See Event handlers.
Handling events. See Event handling.
Hash tables

creating and deleting, 632–633
creating entries, 633–634
deleting entries, 637
finding existing entries, 635
functions, 630–631
keys and values, 631–632
overview, 629–630
searching, 636–637
statistics, 638

Hashmarks in comments, 32–35
Headings, treeview, 353–355
-height option

908

for configuring photo images, 377
in panedwindows, 336
in widgets, 339–340

“Hello, World!” example, 6–8
Hexadecimal operands, 54
Hidden commands and slave interpreters, 277–279
-hide option in panedwindows, 336
Hiding text, 325
Hierarchies

event-binding, 422–423
geometry management, 405–407
widget, 7–8

History
commands, 283–284
current event number, 287
event specification, 285
history list, 284–285
re-executing commands from list, 285–286
shortcuts implemented by unknown, 286–287

history clear command, 282
history command, 282
history info command, 282
history keep command, 282
History lists

defined, 284–285
re-executing commands from, 284–285

history nextid command, 282, 287
history redo command, 282, 285–286
Hobbs, Jeff, 724
Hostnames, 694
Human-readable time and data

generating, 254–257
scanning, 257–258

hypot function, 59

I

i suffix, 17
Icon decorations, 485–486

909

Iconified state, 483–484
Identifiers

accessing process, 209–210
file, 187
manipulating items with canvas widget, 436–439
process, 208–209
retrieving thread, 701
tab in notebook widgets, 347

Idle callbacks
defined, 671
handling, 677–678
time delay commands, 253

Idleness, 514
IEEE Floating Point Standard, 63
if command

comments, 34–35
control flow, 132–133
defined, 53, 132

ifconfig command, 585–592
image create command, 311, 368, 376
image delete command, 368
image height command, 368
image inuse command, 369
image names command, 369
Image objects, 375
-image option in themed widgets, 365
image type, 434
image type command, 369
image types command, 369
image width command, 369
Images

additional formats, 725
commands, 368–369
embedded in text widget, 460–462
image command, 375–383
widget options, 311

Img format, 725
Immediate values, 201
Implicit focus models, 493–494
Importing

910

namespace commands, 162
variables from other namespaces, 169

in operator
list manipulation, 63
operators and precedence, 56

-in option
configuring gridder, 390
configuring packer, 398

inc example, 417, 578–579
incr command

defined, 47–49
working with variables, 39

Indices
in basic list structure, 103–105
building with autoloader, 233–234
extracting characters, 69
text widget, 450–451
treeview item, 353

info args command, 248, 261–262
info body command, 248, 261–262
info cmdcount command, 248, 263
info command, 259–264
info commands command, 249, 262–263
info complete command, 249, 263
info default command, 249, 261–262
info exists command, 249, 260
info globals command, 249, 260
info hostname command, 249, 264
info level command, 249, 262
info library command, 249, 264

defined, 230
info loaded command, 230
info locals command, 249–250, 260
info nameofexecutable command, 250, 264
info patchlevel command, 250, 264
info procs command, 250, 261–262
info script command, 250, 263
info sharedlibextension command

defined, 230, 250
loading libraries, 232

911

runtime information, 264
info tclversion command, 250, 264
info vars command, 250, 260–261
Init function, 582–583
Initialization scripts

defined, 297
Tcl embedding, 595

Input focus
commands, 491–492
overview, 493–495

Input/output (I/O). See I/O (input/output).
insert action, 323
Insertion cursors, 323
Installation

package, 238
Tcl and Tk, 717–719
Tcl extensions, 721–724
Tcl module, 240–241
Tclkit, 243

Installation repositories, 722–724
instate widget command, 359–360
int function

defined, 59
types and conversions, 64

Integers
clock arithmetic, 258–259
generating strings with format, 74–76
numeric operands, 54
numerical object types, 537–538
types and conversions, 63–64

Integrating Tcl and C. See Tcl and C integration.
Interactive interpreters, 10
Interactive resizing, 481–482
Interapplication communication, 19
Interconnection commands, 300–301
Interface integration. See Tcl and C integration.
Internal padding

in packers, 404
in widgets, 341

Internal windows, 292

912

Internals, Tcl. See Tcl internals.
interp alias command, 250, 276–277
interp bgerror command, 220, 227–228
interp command, 275–276
interp create command

defined, 251
safe interpreters, 277–278
slave interpreters, 275

interp delete command, 251, 275
interp eval command, 251, 275
interp expose command, 251, 279
interp hide command, 251, 279
interp invokehidden command, 251
interp limit command, 251
interp recursionlimit command, 251, 281
interp share command, 251, 280
interp transfer command, 251, 280
interp->result, 570–572
Interpreters

autoloading, 233–234
command evaluation, 22–24
deleting, 531
errors and exceptions, 220
functions, 527–529
loading libraries into, 232
managing internals. See Tcl internals.
multiple, 531–532
overview, 529
simple Tcl application, 530–531
slave, 274–281
Starpacks, 245–246
Tcl as language, 14–15
Tclkit, 243
thread safety, 697

invalid state, 359
I/O (input/output)

basic file, 186–188
channel event handling, 673–676
to and from command pipeline, 203–204
configuring channel options, 204–205

913

exec support for redirection, 200–201
transferring channels between interpreters, 279–280

-ipadx
configuring gridder, 391
configuring packer, 399
geometry management, 404–405

-ipady
configuring gridder, 391
configuring packer, 399
geometry management, 404–405

Itcl, 726
Items

canvas widget, 433–436
manipulating with identifiers and tags, 436–439
treeview, 350–353
treeview selection management, 355–356
treeview tags, 256–257

J

Java and Tcl integration, 728–729
join command, 102, 111–113
Joinable threads, 697–698
-justify option

in labels, 309
in text tags, 455

K

\k in regular expressions, 81
Kenny, Kevin, 701
Key replacements, 72
Keyboard events and tag bindings, 458
Keyboard shortcuts

binding to named virtual events, 425–426
defined, 332–333

Keyboard traversal
defined, 332

914

in notebook widgets, 349
Keyboards and grabs, 497
KeyPress events, 414
KeyRelease events, 414
Keys

in basic dictionary structure, 118–119
defined, 629
dictionary objects, 644–648
examining dictionaries, 122–123
file stat, 184
hash table, 631–632
input focus, 493–495
updating dictionary values, 123–126

Keysyms, 415–416

L

Label widgets

defined, 309–312
event binding, 16–18

-labelanchor option, 312
Labelframes, 312
Language

creating localized message files, 93–94
Tcl and C integration. See Tcl and C integration.
Tcl as, 14–15

lappend command, 102, 108–109
lassign command, 102, 109
Layout

formatting text tags, 455–456
geometry management, 387–388
for TEA extensions, 709–710
themed widget styles, 361

Leaders, window, 486–487
Leave event, 415
leave traces, 271–272
leavestep traces, 271–272
Lehenbauer, Karl, 730
Length

915

basic list structure, 104–105
string, 70

Less than, 55, 56–57
Less than or equal to, 55, 56–57
Libes, Don, 730
Libraries

autoloading, 233–234
commands, 230–231
default version of unknown, 273
extensions as, 582
load, 232
overview, 229
packages, 234–239
packaging scripts as Starkits, 242–246
Tcl modules, 239–241
Tcllib, 725
vs. tclsh, 596
Tk variables, 517–518
using, 232

Limiting interpreters, 280–281
lindex command

basic list structure, 103
defined, 102
evaluating, 23

Line continuation, 17
line type, 434
Lines in canvas widgets, 434
Linking Tcl variables to C variables, 556–558
linsert command, 102, 107
list command, 102, 105–106
List objects

defined, 642–644
functions, 639–642

Listboxes, 317–318
Listening sockets, 212–214
Lists

vs. arrays, 43
basic structure, 103–105
commands, 101–103
converting between strings and, 111–112

916

creating, 105–106
creating commands as, 113–114
defined, 19, 23
directory contents, 179–181
extracting elements, 109
history, 284–285
manipulation expressions, 63
modifying, 106–109
packing, 396
passing as arguments, 30
re-executing commands from history list, 285–286
searching, 110
sorting, 111

llength command, 102, 103–105
-lmargin1 option, 455
-lmargin2 option, 455
load command, 232
Local grabs vs. global grabs, 496–497
Local variables

accessing with upvar, 149–150
defined, 13
procedures, 146

Locale
generating readable time and date, 256–257
scanning time and date, 258
setting msgcat, 91–92

log command, 270–271
log function, 59
log10 function, 59
Logical actions, 428–431
Logical operators, 53
Long types, 538
Looping

after command, 253
commands, 136–138
control, 138
with dict for, 123
entering Tcl event with vwait, 206–207
generating exceptions, 226–227

lower command, 386, 407–408

917

lrange command, 102, 106
lrepeat command, 102, 105–106
lreplace command, 102, 107–108
lsearch command, 102–103, 110
lset command, 103, 108–109
lsort command, 103, 111
lstat option, 185

M

\m in regular expressions, 81
\M in regular expressions, 81
m suffix, 17
Mac OS X

binding to named virtual events, 425–426
building Tcl and Tk on, 705–706
cursor options, 342
executable scripts on, 9
platform-specific menus, 333
system-specific window attributes, 488
tcl_platform array, 50

Main widgets, 7
Main windows, 295
Major releases, 717–718
Major version number, 717
Makefile.in file customization, 714
Managers, geometry. See Geometry managers.
Managers, window. See Window managers.
Managing Tcl internals. See Tcl internals.
Manual entries, xxxiii
map command, 153
Map event, 415
map example, 618
-map option in ensembles, 167
Marks, 450–451
-maskdata option in bitmaps, 376
-maskfile option in bitmaps, 377
Master interpreters, 274
Master widgets, 387–389

918

Master windows, 486
Matching

patterns. See Pattern matching.
regular expressions, 622–623
strings, 621–622

Math functions
overview, 58–60
types and conversions, 64

max function, 59
McLennan, Michael, 726
mcload command, 92
mclocale command, 91–93
Memory allocation, 544
Menu bars, 329–331
Menubuttons, 316
Menus, 327–334
Message catalogs, 91–95
Message files

creating localized, 93–94
defined, 91

messageBox dialog, 337–338
Messages, error, 221
min function, 59
Minor releases, 717–718
Minor version number, 717
-minsize option in panedwindows, 336
Minus sign, 55–56
Mk4tcl, 728
Modal interactions, 495–499
Modal user interface elements

defined, 330
messageBox dialog, 338

-modified attribute, 488
Modified virtual event, 458, 462–463
Modifier keys, 416, 418
Modify flag, 462–463
Module path, 240
Modules

defined, 229
working with Tcl, 239–241

919

Monitoring. See Tracing.
monospace notation, xxxiv
Motion events, 415
Mouse

button widgets, 312–313
DND, 474–475
input focus and, 493–494
modal interactions, 495–499
pop-up menus, 334

MouseWheel event, 415
msgcat package, 91–95
Multidimensional arrays, 45–46
Multiple interpreters, 531–532
Multiple traces, 561
Multiplication operator, 5, 55–56
Multithreading

Tcl scripting, 727
Tk support, 296

Mutexes, 698–699
Mysqltcl, 728

N

\n in substitution, 27
Named fonts

defined, 369–370
manipulating and using, 370–373

Named keys, 125
Named virtual events, 425–426
Names

application and using send, 216
array, 42–43
array commands, 40
in basic dictionary structure, 118–120
controlling resolution paths, 170–172
dealing with odd file, 185
file name expansion and exec, 202–203
managing image, 375
manipulating file and directory, 176–179

920

manipulating qualified, 161–162
renaming files, 183
signal, 693
simple variables, 41
tracing array variables, 268
unknown commands, 272–274
utility package commands, 238
variable substitution, 44–45
widget, 7, 294–295

namespace children command, 155–156, 163
namespace code command, 156, 160–161
namespace command, 51, 158
namespace current command, 156, 163
namespace delete command, 156, 159
namespace ensemble command, 164–169
namespace ensemble configure command, 156, 166–167
namespace ensemble create command

controlling configuration, 166–167
defined, 156, 164–165

namespace ensemble exists command, 156, 165
namespace eval command, 156, 158–161
namespace exists command, 156
namespace export command

creating ensembles, 164
defined, 156, 162
inspecting namespaces, 164

namespace forget command, 156–157, 162
namespace import command, 157, 162
namespace origin command, 157, 164
namespace parent command, 157, 163
namespace path command, 157, 170–172
namespace qualifiers command, 157, 161–162
namespace tail command, 157, 161
namespace unknown command, 157
namespace upvar command, 158
namespace which command, 158, 163–164
Namespaces

accessing variables from other, 169–170
commands, 155–158
controlling name resolution path, 170–172

921

ensemble commands, 164–169
evaluating Tcl code in, 158–161
exporting and importing commands, 162
images and, 383
inspecting, 163–164
manipulating qualified names, 161–162
mapping functions to commands, 59–60
C language extensions, 584
Tk widgets, 304
using message catalogs with, 95
variables, 14, 146

Natural window size, 481
ne operator, 56
Nesting

with braces, 12, 29
dictionary, 126–129
ensembles, 165–166
handling errors, 221
in lists, 105
script evaluation, 31
slave interpreters, 275
treeview items, 351
widgets, 294

Neumann, Gustaf, 726
Newline characters

backslash substitution, 26–27
in basic syntax, 21
variables and substitutions, 11

\newline whitespace, 27
Newsgroup for Tcl and Tk, 732
ni operator

list manipulation, 63
precedence and, 56

-nocase option, 71
Non-blocking I/O, 675
Non-capturing subexpressions, 85
Non-greedy quantifiers, 84–85
Normal returns, 35
Normal window state, 483
Not equal, 55, 56–57

922

NOT operator, 55, 57
Notation, xxxiv
Notebook widget

defined, 346–349
as geometry manager, 410–411

-notify attribute, 488
Numeric operands, 54
Numerical objects, 537–538

O

Object-oriented programming

vs. Action-oriented programming, 525–526
Tcl, 726

Objects. See Tcl objects.
Octal operands, 54
Ones complement, 57
Online resources, 731–732
\ooo in substitution, 27
open command

command pipeline, 203
defined, 186–187, 198

open name command, 174
Operands

defined, 53
list manipulation, 63
numeric, 54
string manipulation, 62–63
substitution, 60–61
types and conversions, 63–64

Operating system utilities
asynchronous events, 690–694
functions, 685–687
miscellaneous, 694
processes, 687–689
reaping child processes, 689–690

Operating systems
character encodings and, 89–90
file and directory name manipulation, 176–179

923

system-specific window attributes, 487–488
Tk support, 293
variable describing, 50

Operations, channel, 656–658
Operators

defined, 53
expr syntax, 5–6
overview, 55–58
types and conversions, 63–64

option command, 506, 510–511
Option database

defined, 506–507
entries, 507–508
option command, 510–511
option priorities, 509–510

Options. See Configuration options.
OR operator

expr syntax, 5–6
precedence and, 56, 57

Oratcl, 728
Ordered collections, 115
Orientation

panedwindows, 334
progressbar, 349
scrollbar, 320
separator, 350

Origins, namespace, 164
Output buffering, 188
oval type, 433
Override-redirect windows, 487
-overstrike option

configuring font, 371
formatting text tags, 455

Ownership, selection
locating selections, 470–471
model, 467
retrievals, types and, 469

P

924

p suffix, 17
pack command, 399–400
package ifneeded command, 230, 237
package names command, 230, 238
package prefer command, 230–231
package provide command

defined, 231, 235–236
using Tcl modules, 238–239

package require command
defined, 231, 235
using Tcl modules, 239

package vcompare command, 231
package versions command, 231, 238
Packages

defined, 229
packaging scripts as Starkits, 242–246
Tcl extension, 583–584
Tcl modules, 239–241
working with, 234–239

Packers
defined, 298, 385
geometry management, 396–404

Packing lists, 396
Packing space, 397
Padding options

configuring gridder, 391
configuring packer, 399
defined, 341
geometry management, 404–405

-padx option
configuring gridder, 391
configuring packer, 399
event binding, 17
geometry management, 404–405
panedwindows, 336
in widgets, 341

-pady option
configuring gridder, 391
configuring packer, 399

925

event binding, 17
geometry management, 404–405
panedwindows, 336
in widgets, 341

-palette option in photo images, 377–378
Panedwindows

as geometry manager, 410
overview, 334–337

Parameters, command, 576–578
Parcels

defined, 362
packing, 397

Parentheses, 81–82
Parsing

defined, 22–24
forcing with eval, 139–140
operand substitution, 60–61
string operands, 62
strings, 543–544
strings with scan, 76–78
substitutions, 36

Pasting with clipboard, 473–474
Patch levels, 518
Patch releases, 717–718
PATH environment variable, 9, 200
Paths

file pathtype command, 178–179
module, 240

Pattern matching
event patterns, 417–419
Glob style, 78–79
listing directory contents, 179–181
with regular expressions, 79–87
with switch, 133–136

Patterns
event, 417–419
option database entries, 507–508

peer text widget command, 464–466
Percent symbol

operators and precedence, 55–56

926

substitutions in scripts that handle events, 419–421
in time and date strings, 254–256

Periods as separators, 7
photo images, 375–376, 377–383
Photos in window decoration, 485
pid command, 198, 209–210
Pipeline I/O, 203–204
pkg_mkIndex procedure, 231, 236–237
place command, 405
Placers

defined, 385
geometry management, 405

Platforms
binding to named virtual events, 425–426
building Tcl and Tk, 703–707
file and directory name manipulation, 176–179
handling end-of-line conventions, 188–190
specific menus, 333
Starpacks, 245–246
variable describing, 50

plus example, 144–145
Plus sign, 55–56
Pointer options in widgets, 341–342
polygon type, 434
Pop-up menus, 334
Ports, 210
Positional specifiers

defined, 76
using in source and translation strings, 95

Positioning points, 435
Positions, 482–483
POSIX

errors, 222
signal names, 222

Posted menus, 328–329
PostgreSQL, 728
PostScript, 445
pow function, 59
power example, 167
Precedence of operators, 55–58

927

Predefined variables, 49–50
Preferences, 84
Prefixes, 161–162
pressed state, 358
PRIMARY selection, 469
printargs example, 50
printArray example, 149
Printing array variables, 149
printVars example, 147
Priorities

configuration option database, 509–510
tag, 457

proc command
creating procedures, 144–145
defaults and variable numbers of arguments, 146–148
defined, 12–13, 143
Tcl code in namespace, 158–161

Procedures
applying anonymous, 151–153
basics, 144–145
call by reference, 148–150
command creation, 578–579
command evaluation, 23
commands, 143–144
creating new control structures, 150–151
declaring in namespaces, 158
defaults and variable numbers of arguments, 146–148
factorial, 12–14
information about, 261–262
libraries. See Libraries.
local and global variables, 146
Tcl as language, 14–15

Processes
commands, 197–199
configuring channel options, 204–205
environment variables, 210
event-driven channel interaction, 206–208
IDs, 208–209
invoking subprocesses, 199–203
I/O to and from command pipeline, 203–204

928

operating system utilities, 687–689
reaping child processes, 689–690
sending commands to Tcl programs, 214–217
TCP/IP socket communication, 210–214
termination, 199

Processing events, 423–424
Programming with POSIX Threads (Butenhof), 695
Progressbar widget, 349
Prompts, displaying command number, 287
Propagation

geometry, 409
using traces for, 51

Property, RESOURCE_MANAGER, 508–509
Protocols

result, 569
window management, 490–491

Pull-down menus, 329–331
puts command

I/O to and from command pipeline, 203
output buffering, 188

pvar procedure, 265
pwd command, 174, 179

Q

Quadruple modifier, 418
Qualified names

inspecting namespace, 163–164
manipulating, 161–162

Quantifiers, 84–85
Querying

array elements, 46–47
channel functions, 655
with ifconfig, 585–592
input focus, 494–495

Quoting
with braces, 29–30
with double quotes, 28–29
in element names, 43

929

expressions with braces, 61
string manipulation, 62

R

\r in substitution, 27
radiobutton entry, 328
Radiobuttons, 315–316
raise command, 386, 407–408
rand function, 5, 59
Random Access, 190–191
Range

extracting characters, 69
regular expression atoms, 82–83

re1|re2 in regular expressions, 81
Read traces, 266–267
Readable files, 184
Readable time and date

generating, 254–257
scanning, 257–258

Reading
files, 185–194
Tcl variables, 555

readlink option, 185
readonly state, 358
Read-only variables, 266
Real operands

defined, 54
types and conversions, 63–64

Reaping, 689–690
rectangle type, 433
Redirection, I/O, 200–201
Redisplays, optimizing, 677–678
Redo

history, 286
text widget, 462

Reference
call by, 148–150
counting, 540–541

930

Reference documentation, xxxiii
regexp command, 66, 81
Registering

background errors, 227–228
channels, 653–654, 658–660
file event handlers, 207–209
new commands, 567–569
toplevel windows as transient, 499

regsub command, 66, 87–88
Regular expressions

matching, 622–623
pattern matching with, 79–87
using for substitutions, 87–88

Relational operators
defined, 56–57
expr syntax, 5–6

Relative paths, 178
Relative placement characters, 395–396
Relative qualified names, 161
Releases, 717–718
-relief option

formatting text tags, 455
for frames, 305

Removing variables, 49
Removing whitespace, 70
rename command, 252, 268
Renaming

commands, 269
files, 183
tracing commands, 270

Repeating strings, 70
Repetition count, 259
Replacements, string, 72
Replacing

elements from list objects, 644
with text widget, 451–452

Repositories, installation, 722–724
Representing information, 526
Requested sizes of widgets, 387–388
Resizing windows, 481–482

931

Resolution, commands in namespaces, 170
Resolution paths, 170–172
Resource names, 524–525
RESOURCE_MANAGER property, 508–509
.result label, 16–17
Result protocols

command creation, 569
Tcl_AppendResult, 569–570
Tcl_SetResult and interp->result, 570–572

Retrievals, selection, 469–470
return command

basics of, 144–145
defined, 144
errors and exceptions, 220
of factorial, 12–13
generating exceptions, 224–226
return options dictionary, 604–605

Return options dictionary, 225–226
Returns

managing return options dictionary, 604–605
normal and exceptional, 35

Right-shifting, 57
-rmargin2 option in text tags, 455
Romeo and Juliet (Shakespeare), 469
Root items, 351
Root windows, 292, 296
ROOT.msg, 93
ROT13 channels, 663–669
round function, 59, 64
Rows

gridder options, 389–391
spanning gridder, 393–394

ruler example, 435–436
Runtime information, 264

S

Safe interpreters, 277–279
Safety, thread, 697

932

Saving sessions, 490
Scalar variables, 39
Scales, 321–323
scan command

defined, 54, 66
parsing strings with, 76–78

Scoping for variables, 143
Screens

distances, 307
Tk, 296

Script files
info script, 263
overview, 8–10

Script libraries. See Libraries.
Scripting languages

defined, xxxi
Tcl/Tk benefits, xxxii–xxxiii

Scripts
dynamically building, 548
executing in namespaces, 158–161
generating errors from, 222
multithreaded Tcl, 727
packaging as Starkits, 242–246
substitutions in, 419–421
supplying selection with, 471–473
syntax overview, 21–22
Tk, 297

Scroll regions, 444–445
Scrollbars

commands for interconnection, 300
overview, 318–321

Scrolling
canvas widget, 444–445
themed widgets, 364–365

sdx Starkit, 243–245
Searching

with array names, 47
canvas specifications, 438–439
glob-style pattern matching, 78–79
hash tables, 636–637

933

lists, 110
with message catalogs, 91–95
with regular expressions, 79–87
simple string, 70–71
with text widget, 451–452

Security and send, 217
sel tag, 453–454
Selected checkbuttons, 313
selected state, 358
Selection

clipboard, 473–474
commands, 468–469
DND, 474–475
locating and clearing, 470–471
managing treeview, 355–356
overview, 467–468
retrievals, types and, 469–470
supplying with Tcl scripts, 471–473

selection clear command, 468, 471
selection command, 301
selection get command, 468, 469–470
selection handle command, 468
selection own command, 468, 470
Selection owner model, 467
Selection virtual event, 458
Selectors, checkbutton, 313
Semicolons, 5
send command, 214–217
separator entry, 328
Separator widget, 350
Separators

in basic syntax, 21–22
defined, 7
disabling, 28
variable substitution, 44

Sequences, event, 419
Server sockets, 212–214
Service-oriented architecture (SOA), 728
Session management, 490
set command

934

evaluating, 23
simple variables and, 41
working with variables, 40

Setting
command parameters, 576–578
Tcl variable values, 553–555
traces, 558–559

Shapes, canvas, 433–436
Shared libraries, 232
Shared objects, 541–542
Sharing

channels between interpreters, 279–280
between peer widgets, 464–466

Shells, 596–597
Shifting operators, 57
Shimmering, 42
Shortcuts

binding to named virtual events, 425–426
event pattern, 418–419
implemented by unknown, 286–287
menu, 332–333
notebook, 349

-show option for entry widgets, 325
-side option for packer, 399–400
Signals, 690–694
sin function, 59
Single-file distribution, 242–246
sinh function, 59
Size

channel buffering mode, 205
common widget options, 339–340
dictionary object, 647
examining dictionary, 122
file information options, 184–185
window management, 481–482

-size option in fonts, 370–371
Sizegrip widget, 350
Sjölander, Kåre, 726
-slant option in fonts, 370
Slave interpreters

935

creating, 531–532
defined, 274–281

Slave widgets
defined, 320–321
geometry management, 387–389

Sliders
in scrollbars, 318
scrolling single widget, 319–320

Snack, 725–726
Snit, 726
SOA (service-oriented architecture), 728
socket command, 198, 210–212
Socket communication, 210–214
socket -server command, 198
Sorting

dictionaries, 123
lists, 111

Sound support, 725–726
Source code

building Tcl and Tk, 703–704
compiling Tcl/Tk from, 719

source command
autoloading and, 233
defined, 66, 132
executing from files, 140–141
safe interpreters, 278–279
system encodings, 90

SourceForge, 703, 719
Space characters

append command and, 48
backslash substitution, 27
multidimensional arrays, 46

-spacing options in text tags, 456
Special characters

backslash substitution, 26–27
creating commands as lists, 113–114
glob-style pattern matching, 79
quoting with braces, 29–30
in regular expressions, 80–83
variables and substitutions, 11

936

Specifiers, conversion
generating strings with format, 74–76
using in source and translation strings, 94–95

Specifiers, event, 285
Specifiers, positional, 76
Spencer, Henry, 79
Spinboxes, 324–325
Spinning, 324
Split characters, 112
split command

converting between lists and strings, 111–113
defined, 103

sprintf procedure, 74–75
sqlite2, 728
sqrt function, 59
Square brackets

command substitution, 26
invoking substitution, 11

srand function, 59
sscanf procedure, 76
Stack traces, 605–608
Stacked channels, 662–663
Stacking order

canvas item, 435
widget, 407–408

Standard error, redirection, 201
Standard input

command completeness, 627–628
redirection in exec, 201

Standard output
channel I/O, 661
redirection in exec, 201

Standard Tcl Library, 725
Star-crossed lovers, 470
Starkits

defined, 229
packaging scripts as, 242–246

Starpacks, 245–246
stat option, 184–185
state widget command, 359

937

States
event, 416
representing with checkbuttons, 314
themed widget, 358–360
widget, 339
window management, 484–485

Static variables, 146
Statistics, 638
stderr channel

defined, 187
manipulating in C, 660–661

stdin channel
defined, 187
manipulating in C, 660–661

stdout channel
defined, 187
manipulating in C, 660–661

-sticky option
configuring gridder, 391, 392–393
panedwindows, 336

Storage
with clipboard, 473–474
internal data, 41–42
Tcl module, 239

Stretch behavior of gridder, 394–395
-stretch option for panedwindows, 336
string bytelength command, 67
string command, 23
string compare command, 67, 71
string equal command, 67, 71
string first command, 67, 70–71
string index command, 67, 69
string is command, 67, 73–74
string last command, 67, 71
string length command, 67, 70
String manipulation

binary strings, 95–99
character set issues, 89–91
commands, 65–69
comparisons, 71

938

extracting characters, 69
generating with format, 74–76
glob-style pattern matching, 78–79
length, case conversion, trimming, and repeating, 70
message catalogs, 91–95
parsing with scan, 76–78
pattern matching with regular expressions, 79–87
replacements, 72
simple searching, 70–71
substitutions with regular expressions, 87–88
types, 73–74

string map command, 67–68, 72
string match command, 68, 78–79
string range command, 68, 69
string repeat command, 68, 70
string replace command, 68, 72
string tolower command, 68
string totitle command, 68
string toupper command, 68, 70
string trim command, 68, 70
string trimleft command, 68, 70
string trimright command, 68, 70
STRING type, 469–470
String utilities, C language

command completeness, 627–628
dynamic, 617–621
functions, 611–617
handling Unicode and UTF-8, 625–627
regular expression matching, 622–623
string matching, 621–622
working with character encodings, 624–625

string wordend command, 69
string wordstart command, 69
Strings

accompanying exceptions, 224–225
command evaluation, 22–24
constructing with append, 49
converting between lists and, 111–112
hash table keys, 632
internal storage of data, 41–42

939

manipulation commands, 19
manipulation expressions, 62–63
object, 537
parsing, 543–544
representing values, 4–5
time and date, 254–258
variables and substitutions, 11

Stubs, 584–585
Styles

defined, 343
themed widget, 360–364

Subcommands
image, 378–379
working with ensembles, 164–169

Subexpressions
defined, 81–82
non-capturing, 85

Subpatterns, 82
Subprocesses, 199–203
Substitutions

backslash, 26–27
call by reference, 148–149
command, 26
expression, 60–61
in file names, 176
inside braces, 12–13, 29–30
inside double quotes, 28–29
overview, 11
with regular expressions, 87–88
in scripts, 419–421
with switch, 134
syntax overview, 35–37
Tcl as language, 14–15
variable, 24–25, 43–45

Substrings, 86
Subtraction operator, 5–7, 55–56
sum example, 148
Support

characters classes supported by string is, 73–74
exec, 200

940

operators and precedence, 55–58
regular expression, 80
Tcl/Tk benefits, xxxii
for virtual file systems, 194

Suspended processes, 202, 672–673
SWIG, 729
switch command, 132, 133–136
Sybtcl, 728
Symbolic links, 185
Synchronized scrolling, 320–321
Synonyms, 308
Syntax

argument expansion, 30–32
backslash substitution, 26–27
command evaluation, 22–24
command substitution, 26
comments, 32–35
defined, xxxiv
normal and exceptional returns, 35
option database entries, 507–508
quoting with braces, 29–30
quoting with double quotes, 28–29
regular expressions, 80
scripts, commands, and words, 21–22
substitutions, 35–37
use of braces, 12–13
variable substitution, 24–25

System call errors, 196
System encodings, 89–90

T

\t in substitution, 27
Tab identifiers, 347
-tab option in text tags, 456
Tables, hash. See Hash tables.
Tabs

formatting text tags, 456
in notebook widgets, 347–348

941

-tabstyle option in text tags, 456
Tags

canvas widget, 433
event-binding hierarchy, 422–423
manipulating items with canvas widget, 436–439
text widget, 447, 453–458
treeview item, 256–257

tan function, 59
tanh function, 59
Targets, selection, 469–470
TARGETS selection target, 470
.tcl, 9
Tcl (tool command language)

additional features, 19
benefits of, xxxii–xxxiii
building, 703–707
building threaded, 697
control structures, 12–14
creating commands. See Command creation.
defined, xxxi
embedding. See Embedding Tcl.
evaluating code. See Evaluating Tcl code.
evaluating code in namespaces, 158–161
event binding, 15–18
generating errors from scripts, 222
getting started, 3–6
“Hello, World!” with Tk, 6–8
installing, 717–719
interpreters. See Interpreters.
as language, 14–15
script files, 8–10
script libraries. See Libraries.
sending commands to Tcl programs, 214–217
supplying selection with scripts, 471–473
variable access. See Accessing Tcl variables.
variables and substitutions, 11

Tcl and C integration
action-oriented vs. object-oriented, 525–526
overview, 521–523
representing information, 526

942

resource names, 524–525
Tcl vs. C, 523–524

Tcl Extension Architecture (TEA), 707–714
Tcl internals

commands, 247–253
info command, 259–264
renaming and deleting commands, 269
slave interpreters, 274–281
time and date manipulation, 254–259
time delays, 253–254
timing command execution, 259
tracing array variables, 268–269
tracing commands, 270–272
tracing operations on simple variables, 264–267
unknown commands, 272–274

Tcl objects
byte arrays, 540
composite, 540
dictionaries, 644–648
dynamic nature of, 539
fetching C values from, 538–539
functions, 534–537
gizmos, 629–630
image, 375
lists, 642–644
memory allocation, 544
namespaces and, 171–172
new types, 542–543
numerical, 537–538
overview, 533–534
parsing strings, 543–544
reference counting, 540–541
shared, 541–542
string, 537

Tcl resources
books, 732–733
online, 731–732

TCL_ALL_EVENTS symbol, 679–680
Tcl_AppendResult procedure, 569–570
Tcl_CancelIdleCall procedure, 677

943

Tcl_CreateHashEntry procedure, 431, 433–434
Tcl_CreateSlave function, 531–532
Tcl_CreateTimerHandler procedure, 672, 676–677
Tcl_DeleteHashEntry procedure, 637
Tcl_DeleteHashTable procedure, 633, 637
Tcl_DeleteInterp function, 531
Tcl_DeleteTimerHandler procedure, 676–677
Tcl_DetachPids procedure, 685, 690
TCL_DONT_WAIT flag, 680
Tcl_DoOneEvent procedure, 677–680
Tcl_DoWhenIdle procedure, 677
TCL_EVAL functions, 545–547
TCL_EXCEPTION flag, 673
TCL_FILE_EVENTS flag, 680
Tcl_FileProc procedure prototype, 671–673
Tcl_FindHashEntry procedure, 635
Tcl_FirstHashEntry procedure, 636
Tcl_GetHashKey macro, 636
Tcl_HashSearch type, 636
Tcl_HashStats procedure, 638
Tcl_HashTable type, 632–633
TCL_IDLE_EVENTS flag, 680
Tcl_IdleProc procedure prototype, 677
Tcl_InitHashTable procedure, 632–633
Tcl_Interp function, 527–528, 529
Tcl_NextHashEntry procedure, 636–637
TCL_OBJ function

defined, 534–535
regular expression matching, 623

TCL_ONE_WORD_KEYS symbol, 632
Tcl_Panic function, 608–609
tcl_platform array, 50
TCL_READABLE flag, 655–656, 662–663, 673–675
Tcl_ReapDetachedProcs procedure, 685, 690
Tcl_SetHashValue macro, 633–634
Tcl_SetResult procedure, 570–572
Tcl_SignalId procedure, 693
Tcl_SignalMsg procedure, 693
TCL_STRING_KEYS symbol, 630, 632
TCL_TIMER_EVENTS flag, 680

944

Tcl_TimerProc procedure prototype, 672, 676
Tcl_TimerToken type, 676
TCL_WRITABLE flag, 655–656, 662–663, 673–675
Tcl/Java Project, 728–729
Tclkits

defined, 229
installing, 719
packaging scripts as Starkits, 242–243

Tcllib, 725
TclODBC, 728
tclsh application

creating new shells, 596–597
getting started, 3–6
script execution, 10
variables and substitutions, 11

TclSOAP, 728
tclvfs extension, 194–196
TclX (Extended Tcl), 730
TclXML, 727
TCP/IP socket communication, 210–214
tDOM, 727
TEA (Tcl Extension Architecture), 707–714
teacup, 722–724
TEApot, 722–724
Tear-off menus, 329
Termination

process, 199
thread, 698

Ternary operator, 56, 58
text command, 447
Text editor example, 428–431
Text files, 185–194
-text option

button command, 7–8
for labels, 309–310
themed widgets, 365

text type, 434
Text widget

basics, 447–450
embedded images, 460–462

945

embedded windows, 459–460
gridded windows, 482–483
indices and marks, 450–451
peer, 464–466
search and replace, 451–452
tags, 453–458
-undo, 462–463
virtual events, 458

-textvariable option
event binding, 16
for labels, 309–310
themed widgets, 365

tgrep script, 186–188
Themed widgets

basics, 305
vs. classic widgets, 343–345
combobox, 345–346
defined, 303–304
notebook, 346–349
other standard options, 364–365
progressbar, 349
separators, 350
sizegrip, 350
states, 358–360
styles, 360–364
treeview, 350–357

Themes
defined, 343
widget styles, 360–361

Threads
building threaded Tcl, 697
condition variables, 699–701
creating, 697–698
extension, 727
functions, 695–697
interacting with blocking channels, 206
miscellaneous, 701–702
multiple interpreters, 275
mutexes, 698–699
safety, 697

946

terminating, 698
Tilde

in file names, 176
precedence and, 55–56

Time
command execution, 259
delay commands, 253–254
event processing, 423–424
manipulation, 254–259

time command, 252, 259
Time zones, 256
Timer events, 676–677
-titlepath attribute, 488
Titles, window, 485
Tk

applications, toplevel widgets, and screens, 296
benefits of, xxxii–xxxiii
building, 703–707
commands for fonts and images, 367–369
commands for interconnection, 300–301
configuration options. See Configuration options.
creating and destroying widgets, 297–298
defined, xxxi
focus commands, 492
fonts, 369–375
geometry managers, 298–299. See also Geometry managers.
“Hello, World!” example, 6–8
images, 375–383
installing, 717–719
introduction to windowing systems, 292–293
odds and ends, 513–518
overview, 291
scripts and events, 297
send command, 214–217
tcl_platform array, 50
widget commands, 299–300
widgets, 294–295. See also widgets.

tk appname command, 513, 517
tk command, 516–517
tk inactive command, 513, 516–517

947

tk scaling command, 513
tk windowingsystem command, 513, 516
TK_APPLICATION selection target, 470–471
Tk_DoOneEvent procedure, 679
tk_focusFollowsMouse command, 492, 494
TK_LIBRARY environment variable, 517–518
tk_library variable, 517–518
Tk_MainLoop procedure, 678–679
tk_patchlevel variable, 518
tk_version variable, 518
TK_WINDOW type, 471
TkCon, 724
tk::Priv, 518
tkwait command

defined, 492–493
invoking event loops, 423–424
modal interactions, 497–499

Tokens, 578
Tool command language (Tcl). See Tcl (tool command language).
-toolwindow attribute, 488
Toplevel widgets, 296, 308–309
Toplevel windows

defined, 292, 296
managing position, 482–483
sizing, 481–482

-topmost attribute, 487
trace add command command, 252, 270–271
trace add execution command, 252, 271
trace add variable command, 252, 267
trace command

array variables, 268–269
commands, 270–272
defined, 50–51
operations on simple variables, 264–267

trace info command command, 252
trace info execution command, 252, 272
trace info variable command, 252, 267
trace remove command command, 252, 272
trace remove execution command, 252, 272
trace remove variable command, 252, 267

948

Tracing
adding to stack trace in errorInfo, 605–608
array variables, 268–269
callbacks, 559–561
command creation, 579
commands, 270–272
multiple, 561
operations on simple variables, 264–267
setting and unsetting traces, 558–559
whole-array, 561

Transferring channels between interpreters, 279–280
Transformation formats, 89–91
Transients

custom dialogs, 499–500
defined, 486

Translation
binary to text, 190–191
creating localized message files, 93–94
using in conversion specifiers in, 94–95

-transparentcolor attribute, 488
Treeview widget, 350–357
Trimming strings, 70
Triple modifier, 418
Tristate values

defined, 314
of radiobuttons, 315–316

Troughs, 318
True values, 74
Types

adding selection to widgets, 471–473
canvas widget, 433–436
channel definition functions, 655–656
conversions and, 63–64
creating new channel, 661–669
event, 414–415
fetching C values from Tcl objects, 538–539
finding file, 180
identifying file, 183
new object, 542–543
numerical object, 537–538

949

selection and, 469–470
string, 73–74
variable linking, 557

U

\uhhhh in substitution, 27
-underline option

configuring font, 371
formatting text tags, 455

-undo in text widget, 462–463
Undocking window, 488–489
Unicode

character set issues, 89
characters supported by string is, 73–74
handling strings, 625–627
Tcl backslash substitution, 26–27
Tcl support, xxxii
working with character encodings, 624–625

-uniform option
configuring gridder, 392
stretch behavior and, 394–395

Unix
building Tcl and Tk on, 704–705
bundled Tcl distributions, 718
executable scripts on, 9
tcl_platform array, 50

unknown command
defined, 252–253
managing, 272–274
shortcuts implemented by, 286–287

-unknown option in ensembles, 167–169
unknown procedures, 233
Unmap event, 415
Unposted menus, 328–329
unset command

variable removal, 49
working with variables, 40

Unsetting

950

Tcl variables, 556
traces, 558–559

update command
defined, 513
invoking event loops, 423–424
updating widgets, 514–516

Updating
dictionaries, 120–121
dictionary values, 123–126
installation repositories, 723

Uplevel addressing, 144
uplevel command, 144
upvar command

call by reference, 148–150
defined, 51, 144
env variable and, 268–269

User interface creation with Tk. See Tk.
UTF-8

character set issues, 89–91
handling strings, 625–627
working with character encodings, 624–625

Utilities, operating system. See Operating system utilities.
Utilities, string. See String utilities.

V

\v in substitution, 27
Validation for entry widgets, 325–327
Values

basic dictionary structure, 118–120
changing with incr and append, 47–49
creating commands as lists, 113–114
dictionary objects, 644–648
examining dictionaries, 122–123
in expressions. See Expressions.
fetching C from Tcl objects, 538–539
generating strings with format, 74–76
in hash tables, 629, 631–632
option database entries, 507–508

951

setting Tcl variable, 553–555
simple variable, 41
storage as strings, 41–42
string representation, 4–5
updating dictionary, 123–126
variables and substitutions, 11

variable command, 159–160
Variable linking, 556–558
Variable substitution

defined, 11
overview, 43–45
syntax overview, 24–25

Variables
accessing from C. See Accessing Tcl variables.
accessing from other namespaces, 169–170
accessing with upvar, 148–150
arrays, 42–43
auto_path, 234
command evaluation, 23–24
commands, 39–40
declaring in namespaces, 159
environment, 210
errorCode, 221–222
global, 13–14
incr and append commands, 47–49
information about, 260–261
inspecting namespaces, 163–164
listbox, 317
local and global, 146
managed by Tk, 517–518
multidimensional arrays, 45–46
overview, 11
predefined, 49–50
preview of other facilities, 50–51
querying array elements, 46–47
radiobutton options, 315
setting errorCode, 603–604
simple and set, 41
slave interpreter, 274
Tcl’s internal storage of data, 41–42

952

-textvariable option, 309–310
thread condition, 699–701
tracing array, 268–269
tracing operations on simple, 264–267
unset and array unset, 49
waiting and, 499

Vasiljevic, Zorand, 727
Versions

installing Tcl and Tk, 717–718
Tcl interpreter, 264
tclsh application, 3–4
Tk variables, 518
using packages, 235
utility package commands, 238

Virtual events
binding to named, 425–426
generating, 427–428
text widget, 458

Virtual file systems
file access, 194–196
interaction, 683
Starkits, 242

Virtual root window managers, 483
Volumes, 179
vwait command

defined, 199
entering Tcl event loop with, 206–207
invoking event loops, 423–424

W

Waiting

condition variables for threads, 699–701
tkwait command, 497–499

waitWindows example, 499
-weight option

configuring font, 371
configuring gridder, 392
stretch behavior and, 394–395

953

Welch, Brent, 727
while command

defined, 132
of factorial, 12–13
looping, 136–138

Whitespace characters
backslash substitution, 27
in basic syntax, 22
defined, 4
variable substitution, 44

Whole-array traces, 561
wide function, 59, 64
Wide types, 538
Widget commands

basics, 304–305
cget, 511–512
configuration options, 505–506
configure, 511–512
defined, 299–300
evaluating, 23
event binding, 18

widget delete command, 448
widget get command, 448
widget insert command, 448
widget replace command, 448
Widgets

additional features, 19
basics of, 304–305
buttons, 312–315
canvas. See Canvas widget.
color options, 307–308
commands for interconnection, 300–301
creating and destroying, 297–298
defined, 292
entries, 323–327
event bindings, 15–18
events. See Events.
frames, 306–307
geometry management, 409–411
geometry managers, 298–299

954

“Hello, World!” example, 7–8
joinable thread support, 698
labelframes, 312
labels, 309–312
listboxes, 317–318
menus, 327–334
odds and ends, 513–518
other common options, 339–342
overview, 294–295, 303–304
panedwindows, 334–337
scales, 321–323
scrollbars, 318–321
selection. See Selection.
stacking order, 407–408
standard dialogs, 337–339
text. See Text widget.
vs. themed widgets, 343–345
toplevel, 296
toplevels, 308–309

-width option
configuring photo images, 378
panedwindows, 337
in widgets, 339–340

Wildcards
in glob-style pattern matching, 180
in patterns, 507

Window manager protocols, 490–491
Window managers

commands, 478–481
decorations, 485–486
defined, 293, 298
dockable windows, 488–489
gridded windows, 483–484
overview, 477–478
session management, 490
special handling, 486–487
states, 484–485
system-specific window attributes, 487–488
window close, 489–490
window positions, 482–483

955

window sizes, 481–482
window type, 434
Windowing commands

additional features, 19
“Hello, World!” with Tk, 6–8

Windowing systems
clipboard command, 471–473
introduction to, 292–293
stacking order, 435
tk command, 516–517

Windows
binding to named virtual events, 425–426
building Tcl and Tk on, 707
building TEA extension on, 714
cursor options, 342
defined, 292
embedded in text widget, 459–460
exec support, 200
executable scripts on, 9–10
input focus, 493–495
invoking wish on, 6
modal, 495–499
platform-specific menus, 333
system-specific window attributes, 487–488
tcl_platform array, 50
waiting and, 498

winfo command, 513, 516
wish interpreter

executing script files with, 9–10
“Hello, World!” example, 6–8
variables and substitutions, 11
versions, 4

Withdrawn window state, 483–484
wm aspect command, 482
wm attribute command, 487–488
wm client command, 490
wm command

defined, 301, 477–478
geometry management, 410
list of subcommands, 478–480

956

wm command command, 490
wm deiconify command

creating custom dialogs, 500, 504
defined, 485

wm forget command, 488–489
wm geometry command

window positions, 482–483
window sizes, 481

wm group command, 486
wm iconbitmap command, 486
wm iconify command, 485
wm iconmask command, 486
wm iconname command, 485–486
wm iconphoto command, 485–486
wm iconposition command, 486
wm iconwindow command, 486
wm manage command, 488–489
wm override-redirect command, 487
wm protocol command, 490–491
wm state command, 485
wm title command, 485
wm transient command, 486
wm withdraw command

creating custom dialogs, 500, 504
defined, 485

WM_DELETE_WINDOW protocol, 490–491
Words

command evaluation, 22–24
defined, 4
substitution in. See Substitutions.
syntax overview, 21–22

-wrap option in text tags, 456
Writable files, 184
Write traces, 266–267
Writing

files, 185–194
Tcl variable values, 553–555

X

957

\x

glob-style pattern matching, 79
in regular expressions, 80

x in gridder, 396
X Window System

selection, 467
send, 215

X11
platform-specific menus, 333
system-specific window attributes, 488

.Xdefaults file configuration, 508–509
\xhh in substitution, 27
XML programming, 727–728
XOTcl, 726

Y

-yscrollcommand option, 319–320

Z

Zdun, Uwe, 726
Zombies, 689–690
Zoomed state for windows, 488

958

Table of Contents

Preface 30
Preface to the First Edition 33
Introduction 39
PART I The Tcl Language 46
Chapter 1 An Overview of Tcl and Tk 48

1.1 Getting Started 49
1.2 “Hello, World!” with Tk 52
1.3 Script Files 55

1.3.1 Executable Scripts on Unix and Mac OS X 55
1.3.2 Executable Scripts on Windows 56
1.3.3 Executing Scripts in an Interactive Interpreter 56

1.4 Variables and Substitutions 57
1.5 Control Structures 58
1.6 On the Tcl Language 61
1.7 Event Bindings 62
1.8 Additional Features of Tcl and Tk 66

Chapter 2 Tcl Language Syntax 68
2.1 Scripts, Commands, and Words 69
2.2 Evaluating a Command 69
2.3 Variable Substitution 72
2.4 Command Substitution 74
2.5 Backslash Substitution 74
2.6 Quoting with Double Quotes 76
2.7 Quoting with Braces 77
2.8 Argument Expansion 81
2.9 Comments 82
2.10 Normal and Exceptional Returns 85
2.11 More on Substitutions 86

Chapter 3 Variables 88
3.1 Commands Presented in This Chapter 89

959

3.2 Simple Variables and the set Command 90
3.3 Tcl’s Internal Storage of Data 91
3.4 Arrays 92
3.5 Variable Substitution 93
3.6 Multidimensional Arrays 96
3.7 Querying the Elements of an Array 97
3.8 The incr and append Commands 98
3.9 Removing Variables: unset and array unset 100
3.10 Predefined Variables 100
3.11 Preview of Other Variable Facilities 102

Chapter 4 Expressions 103
4.1 Commands Presented in This Chapter 104
4.2 Numeric Operands 104
4.3 Operators and Precedence 106

4.3.1 Arithmetic Operators 107
4.3.2 Relational Operators 108
4.3.3 Logical Operators 108
4.3.4 Bit-wise Operators 109
4.3.5 Choice Operator 109

4.4 Math Functions 110
4.5 Substitutions 112
4.6 String Manipulation 114
4.7 List Manipulation 115
4.8 Types and Conversions 116
4.9 Precision 117

Chapter 5 String Manipulation 118
5.1 Commands Presented in This Chapter 119
5.2 Extracting Characters: string index and string range 122
5.3 Length, Case Conversion, Trimming, and Repeating 123
5.4 Simple Searching 124
5.5 String Comparisons 125
5.6 String Replacements 125
5.7 Determining String Types 127
5.8 Generating Strings with format 128

960

5.9 Parsing Strings with scan 131
5.10 Glob-Style Pattern Matching 133
5.11 Pattern Matching with Regular Expressions 134

5.11.1 Regular Expression Atoms 135
5.11.2 Regular Expression Branches and Quantifiers 139
5.11.3 Back References 140
5.11.4 Non-capturing Subexpressions 141
5.11.5 The regexp Command 141

5.12 Using Regular Expressions for Substitutions 143
5.13 Character Set Issues 145

5.13.1 Character Encodings and the Operating System 145
5.13.2 Encodings and Channel Input/output 146
5.13.3 Converting Strings to Different Encodings 147

5.14 Message Catalogs 147
5.14.1 Using Message Catalogs 148
5.14.2 Creating Localized Message Files 149
5.14.3 Using Conversion Specifiers in Source and Translation
Strings 151

5.14.4 Using Message Catalogs with Namespaces 152
5.15 Binary Strings 153

Chapter 6 Lists 157
6.1 Commands Presented in This Chapter 158
6.2 Basic List Structure and the lindex and llength Commands 159
6.3 Creating Lists: list , concat , and lrepeat 162
6.4 Modifying Lists: lrange , linsert , lreplace , lset , and lappend 163
6.5 Extracting List Elements: lassign 166
6.6 Searching Lists: lsearch 167
6.7 Sorting Lists: lsort 168
6.8 Converting between Strings and Lists: split and join 169
6.9 Creating Commands as Lists 171

Chapter 7 Dictionaries 174
7.1 Commands Presented in This Chapter 175
7.2 Basic Dictionary Structure and the dict get Command 177
7.3 Creating and Updating Dictionaries 180

961

7.4 Examining Dictionaries: The size , exists , keys , and for
Subcommands

182

7.5 Updating Dictionary Values 184
7.6 Working with Nested Dictionaries 187

Chapter 8 Control Flow 192
8.1 Commands Presented in This Chapter 193
8.2 The if Command 194
8.3 The switch Command 195
8.4 Looping Commands: while , for , and foreach 198
8.5 Loop Control: break and continue 200
8.6 The eval Command 201
8.7 Executing from Files: source 203

Chapter 9 Procedures 205
9.1 Commands Presented in This Chapter 206
9.2 Procedure Basics: proc and return 207
9.3 Local and Global Variables 208
9.4 Defaults and Variable Numbers of Arguments 209
9.5 Call by Reference: upvar 211
9.6 Creating New Control Structures: uplevel 214
9.7 Applying Anonymous Procedures 215

Chapter 10 Namespaces 218
10.1 Commands Presented in This Chapter 219
10.2 Evaluating Tcl Code in a Namespace 221
10.3 Manipulating Qualified Names 225
10.4 Exporting and Importing Namespace Commands 226
10.5 Inspecting Namespaces 227
10.6 Working with Ensemble Commands 229

10.6.1 Basic Ensembles 229
10.6.2 Placing Ensembles Inside Ensembles 230
10.6.3 Controlling the Ensemble Configuration 231
10.6.4 Handling Unknown Ensemble Subcommands 232

10.7 Accessing Variables from Other Namespaces 234
10.8 Controlling the Name Resolution Path 235

Chapter 11 Accessing Files 239

962

11.1 Commands Presented in This Chapter 240
11.2 Manipulating File and Directory Names 242
11.3 The Current Working Directory 246
11.4 Listing Directory Contents 246
11.5 Working with Files on Disk 248

11.5.1 Creating Directories 248
11.5.2 Deleting Files 249
11.5.3 Copying Files 249
11.5.4 Renaming and Moving Files 250
11.5.5 File Information Commands 251
11.5.6 Dealing with Oddly Named Files 252

11.6 Reading and Writing Files 253
11.6.1 Basic File I/O 253
11.6.2 Output Buffering 256
11.6.3 Handling Platform End-of-Line Conventions 256
11.6.4 Handling Character Set Encoding 258
11.6.5 Working with Binary Files 259
11.6.6 Random Access to Files 259
11.6.7 Copying File Content 261

11.7 Virtual File Systems 263
11.8 Errors in System Calls 265

Chapter 12 Processes and Interprocess Communication 267
12.1 Commands Presented in This Chapter 268
12.2 Terminating the Tcl Process with exit 270
12.3 Invoking Subprocesses with exec 270
12.4 I/O to and from a Command Pipeline 274
12.5 Configuring Channel Options 275

12.5.1 Channel Blocking Mode 276
12.5.2 Channel Buffering Mode 277

12.6 Event-Driven Channel Interaction 277
12.6.1 Entering the Tcl Event Loop with vwait 278
12.6.2 Registering File Event Handlers 279

12.7 Process IDs 282
12.8 Environment Variables 282

963

12.9 TCP/IP Socket Communication 283
12.9.1 Creating Client Communication Sockets 283
12.9.2 Creating Server Sockets 285

12.10 Sending Commands to Tcl Programs 288
12.10.1 Basics of send 289
12.10.2 Application Names 290
12.10.3 Security Issues with send 291

Chapter 13 Errors and Exceptions 292
13.1 Commands Presented in This Chapter 293
13.2 What Happens after an Error? 294
13.3 Generating Errors from Tcl Scripts 296
13.4 Trapping Errors with catch 296
13.5 Exceptions in General 297
13.6 Background Errors and bgerror 301

Chapter 14 Creating and Using Tcl Script Libraries 303
14.1 Commands Presented in This Chapter 304
14.2 The load Command 306
14.3 Using Libraries 307
14.4 Autoloading 307
14.5 Packages 309

14.5.1 Using Packages 310
14.5.2 Creating Packages 311
14.5.3 Using ::pkg::create 313
14.5.4 Installing Packages 313
14.5.5 Utility Package Commands 314

14.6 Tcl Modules 315
14.6.1 Using Tcl Modules 316
14.6.2 Installing Tcl Modules 316

14.7 Packaging Your Scripts as Starkits 318
14.7.1 Installing a Tclkit 319
14.7.2 Creating Starkits 320
14.7.3 Creating a Platform-Specific Executable 323

Chapter 15 Managing Tcl Internals 324
15.1 Commands Presented in This Chapter 325

964

15.2 Time Delays 330
15.3 Time and Date Manipulation 332

15.3.1 Generating Human-Readable Time and Date Strings 332
15.3.2 Scanning Human-Readable Time and Date Strings 334
15.3.3 Performing Clock Arithmetic 335

15.4 Timing Command Execution 337
15.5 The info Command 337

15.5.1 Information about Variables 337
15.5.2 Information about Procedures 339
15.5.3 Information about Commands 341
15.5.4 The Tcl Interpreter Version and Other Runtime
Environment Information 342

15.6 Tracing Operations on Simple Variables 343
15.7 Tracing Array Variables 346
15.8 Renaming and Deleting Commands 348
15.9 Tracing Commands 349
15.10 Unknown Commands 351
15.11 Slave Interpreters 354

15.11.1 Command Aliases 355
15.11.2 Safe Slave Interpreters and Hidden Commands 357
15.11.3 Transferring Channels between Interpreters 360
15.11.4 Placing Limits on an Interpreter 360

Chapter 16 History 363
16.1 Commands Presented in This Chapter 364
16.2 The History List 365
16.3 Specifying Events 366
16.4 Re-executing Commands from the History List 366
16.5 Shortcuts Implemented by unknown 367
16.6 Current Event Number: history nextid 367

PART II Writing Scripts for Tk 369
Chapter 17 An Introduction to Tk 371

17.1 A Brief Introduction to Windowing Systems 372
17.2 Widgets 374
17.3 Applications, Toplevel Widgets, and Screens 376

965

17.4 Scripts and Events 378
17.5 Creating and Destroying Widgets 378
17.6 Geometry Managers 379
17.7 Widget Commands 380
17.8 Commands for Interconnection 381

Chapter 18 A Tour of the Tk Widgets 384
18.1 Widget Basics 386
18.2 Frames 388

18.2.1 Relief Options 388
18.2.2 Screen Distance Options 389

18.3 Color Options 389
18.3.1 Synonyms 391

18.4 Toplevels 391
18.5 Labels 391

18.5.1 Text Options 392
18.5.2 Font Options 393
18.5.3 Image Options 394
18.5.4 Compound Options 395

18.6 Labelframes 395
18.7 Buttons 396

18.7.1 Checkbuttons 397
18.7.2 Radiobuttons 398
18.7.3 Menubuttons 400

18.8 Listboxes 401
18.9 Scrollbars 402

18.9.1 Scrolling a Single Widget 403
18.9.2 Synchronized Scrolling of Multiple Widgets 405

18.10 Scales 406
18.11 Entries 409

18.11.1 Entry Widget 409
18.11.2 Spinbox 410
18.11.3 The show Option 411
18.11.4 Validation 412

18.12 Menus 413

966

18.12.1 Pull-Down Menus 416
18.12.2 Cascaded Menus 418
18.12.3 Keyboard Traversal and Shortcuts 419
18.12.4 Platform-Specific Menus 420
18.12.5 Pop-up Menus 421

18.13 Panedwindow 422
18.14 Standard Dialogs 425
18.15 Other Common Options 427

18.15.1 Widget State 427
18.15.2 Widget Size Options 428
18.15.3 Anchor Options 428
18.15.4 Internal Padding 429
18.15.5 Cursor Options 429

Chapter 19 Themed Widgets 432
19.1 Comparing Classic and Themed Widgets 433
19.2 Combobox 436
19.3 Notebook 437
19.4 Progressbar 439
19.5 Separator 440
19.6 Sizegrip 440
19.7 Treeview 441

19.7.1 Manipulating Treeview Items 441
19.7.2 Managing Treeview Columns and Headings 445
19.7.3 Treeview Item Selection Management 447
19.7.4 Treeview Item Tags 447

19.8 Themed Widget States 449
19.9 Themed Widget Styles 452

19.9.1 Using Themes 452
19.9.2 The Elements of Style 453
19.9.3 Creating and Configuring Styles 454

19.10 Other Standard Themed Widget Options 457
Chapter 20 Fonts, Bitmaps, and Images 458

20.1 Commands Presented in This Chapter 459
20.2 The font Command 460

967

20.2.1 Manipulating and Using Named Fonts 462
20.2.2 Other Font Utilities 465
20.2.3 Font Descriptions 466

20.3 The image Command 467
20.3.1 Bitmap Images 468
20.3.2 Photo Images 469
20.3.3 Images and Namespaces 475

Chapter 21 Geometry Managers 477
21.1 Commands Presented in This Chapter 478
21.2 An Overview of Geometry Management 479
21.3 The Gridder 481

21.3.1 The grid Command and the -sticky Options 484
21.3.2 Spanning Rows and Columns 486
21.3.3 Stretch Behavior and the -weight and -uniform Options 487
21.3.4 Relative Placement Characters 488

21.4 The Packer 489
21.4.1 The pack Command and -side Options 492
21.4.2 Filling 493
21.4.3 Expansion 495
21.4.4 Anchors 497
21.4.5 Packing Order 497

21.5 Padding 498
21.6 The Placer 499
21.7 Hierarchical Geometry Management 499
21.8 Widget Stacking Order 501
21.9 Other Geometry Manager Options 502
21.10 Other Geometry Managers in Tk 504

Chapter 22 Events and Bindings 507
22.1 Commands Presented in This Chapter 508
22.2 Events 509
22.3 An Overview of the bind Command 511
22.4 Event Patterns 512
22.5 Sequences of Events 514
22.6 Substitutions in Scripts 514

968

22.7 Conflict Resolution 516
22.8 Event-Binding Hierarchy 517
22.9 When Are Events Processed? 518
22.10 Named Virtual Events 520
22.11 Generating Events 522
22.12 Logical Actions 524
22.13 Other Uses of Bindings 527

Chapter 23 The Canvas Widget 529
23.1 Canvas Basics: Items and Types 530
23.2 Manipulating Items with Identifiers and Tags 533
23.3 Bindings 536
23.4 Canvas Scrolling 542
23.5 PostScript Generation 544

Chapter 24 The Text Widget 545
24.1 Text Widget Basics 546
24.2 Text Indices and Marks 548
24.3 Search and Replace 550
24.4 Text Tags 552

24.4.1 Tag Options 554
24.4.2 Tag Priorities 556
24.4.3 Tag Bindings 556

24.5 Virtual Events 558
24.6 Embedded Windows 558
24.7 Embedded Images 560
24.8 Undo 563
24.9 Peer Text Widgets 566

Chapter 25 Selection and the Clipboard 569
25.1 Commands Presented in This Chapter 570
25.2 Selections, Retrievals, and Types 571
25.3 Locating and Clearing the Selection 573
25.4 Supplying the Selection with Tcl Scripts 574
25.5 The clipboard Command 576
25.6 Drag and Drop 577

969

Chapter 26 Window Managers 579
26.1 Commands Presented in This Chapter 581
26.2 Window Sizes 583
26.3 Window Positions 585
26.4 Gridded Windows 586
26.5 Window States 587
26.6 Decorations 588
26.7 Special Handling: Transients, Groups, and Override-Redirect 589
26.8 System-Specific Window Attributes 591
26.9 Dockable Windows 592
26.10 Window Close 593
26.11 Session Management 594

Chapter 27 Focus, Modal Interaction, and Custom
Dialogs 595

27.1 Commands Presented in This Chapter 596
27.2 Input Focus 597

27.2.1 Focus Model: Explicit versus Implicit 598
27.2.2 Setting the Input Focus 599
27.2.3 Querying the Input Focus 599

27.3 Modal Interactions 600
27.3.1 Grabs 601
27.3.2 Local versus Global Grabs 602
27.3.3 Keyboard Handling during Grabs 603
27.3.4 Waiting: The tkwait Command 603

27.4 Custom Dialogs 605
Chapter 28 More on Configuration Options 612

28.1 Commands Presented in This Chapter 613
28.2 The Option Database 614
28.3 Option Database Entries 614
28.4 The RESOURCE_MANAGER Property and .Xdefaults File 616
28.5 Priorities in the Option Database 617
28.6 The option Command 618
28.7 The configure Widget Command 619
28.8 The cget Widget Command 621

970

Chapter 29 Odds and Ends 622
29.1 Commands Presented in This Chapter 623
29.2 Destroying Widgets 624
29.3 The update Command 624
29.4 Information about Widgets 626
29.5 The tk Command 626
29.6 Variables Managed by Tk 627
29.7 Ringing the Bell 628

PART III Writing Tcl Applications in C 629
Chapter 30 Tcl and C Integration Philosophy 631

30.1 Tcl versus C: Where to Draw the Line 634
30.2 Resource Names—Connecting C Constructs to Tcl 635
30.3 “Action-Oriented” versus “Object-Oriented” 636
30.4 Representing Information 637

Chapter 31 Interpreters 639
31.1 Functions Presented in This Chapter 640
31.2 Interpreters 641
31.3 A Simple Tcl Application 642
31.4 Deleting Interpreters 644
31.5 Multiple Interpreters 644

Chapter 32 Tcl Objects 646
32.1 Functions Presented in This Chapter 647
32.2 String Objects 650
32.3 Numerical Objects 651
32.4 Fetching C Values from Objects 651
32.5 The Dynamic Nature of a Tcl Object 652
32.6 Byte Arrays 653
32.7 Composite Objects 654
32.8 Reference Counting 654
32.9 Shared Objects 655
32.10 New Object Types 656
32.11 Parsing Strings 657
32.12 Memory Allocation 658

971

Chapter 33 Evaluating Tcl Code 660
33.1 Functions Presented in This Chapter 661
33.2 Evaluating Tcl Code 662
33.3 Dynamically Building Scripts 663
33.4 Tcl Expressions 664

Chapter 34 Accessing Tcl Variables 666
34.1 Functions Presented in This Chapter 667
34.2 Setting Variable Values 669
34.3 Reading Variables 670
34.4 Unsetting Variables 671
34.5 Linking Tcl and C Variables 672
34.6 Setting and Unsetting Variable Traces 674
34.7 Trace Callbacks 675
34.8 Whole-Array Traces 677
34.9 Multiple Traces 677
34.10 Unset Callbacks 678

Chapter 35 Creating New Tcl Commands 679
35.1 Functions Presented in This Chapter 680
35.2 Command Functions 682
35.3 Registering Commands 684
35.4 The Result Protocol 686
35.5 Tcl_AppendResult 686
35.6 Tcl_SetResult and interp->result 687
35.7 clientData and Deletion Callbacks 689
35.8 Deleting Commands 693
35.9 Fetching and Setting Command Parameters 693
35.10 How Tcl Procedures Work 696
35.11 Command Traces 697

Chapter 36 Extensions 698
36.1 Functions Presented in This Chapter 699
36.2 The Init Function 700
36.3 Packages 701
36.4 Namespaces 701

972

36.5 Tcl Stubs 702
36.6 The ifconfig Extension 703

Chapter 37 Embedding Tcl 712
37.1 Functions Presented in This Chapter 713
37.2 Adding Tcl to an Application 713
37.3 Initialize Tcl 714
37.4 Creating New Tcl Shells 716

Chapter 38 Exceptions 718
38.1 Functions Presented in This Chapter 719
38.2 Completion Codes 720
38.3 Setting errorCode 723
38.4 Managing the Return Options Dictionary 724
38.5 Adding to the Stack Trace in errorInfo 725
38.6 Tcl_Panic 729

Chapter 39 String Utilities 731
39.1 Functions Presented in This Chapter 732
39.2 Dynamic Strings 737
39.3 String Matching 741
39.4 Regular Expression Matching 742
39.5 Working with Character Encodings 744
39.6 Handling Unicode and UTF-8 Strings 746
39.7 Command Completeness 748

Chapter 40 Hash Tables 751
40.1 Functions Presented in This Chapter 753
40.2 Keys and Values 754
40.3 Creating and Deleting Hash Tables 755
40.4 Creating Entries 756
40.5 Finding Existing Entries 757
40.6 Searching 758
40.7 Deleting Entries 760
40.8 Statistics 761

Chapter 41 List and Dictionary Objects 762
41.1 Functions Presented in This Chapter 763

973

41.2 Lists 765
41.3 Dictionaries 768

Chapter 42 Channels 773
42.1 Functions Presented in This Chapter 774

42.1.1 Basic Channel Operations 774
42.1.2 Channel Registration Functions 777
42.1.3 Channel Attribute Functions 778
42.1.4 Channel Query Functions 779
42.1.5 Channel Type Definition Functions 779

42.2 Channel Operations 780
42.3 Registering Channels 783
42.4 Standard Channels 785
42.5 Creating a New Channel Type 786

42.5.1 Creating a Custom Channel Instance 787
42.5.2 Stacked Channels 788
42.5.3 ROT13 Channel 788

Chapter 43 Handling Events 797
43.1 Functions Presented in This Chapter 798
43.2 Channel Events 799
43.3 Timer Events 803
43.4 Idle Callbacks 804
43.5 Invoking the Event Dispatcher 805

Chapter 44 File System Interaction 809
44.1 Tcl File System Functions 810
44.2 Virtual File Systems 812

Chapter 45 Operating System Utilities 814
45.1 Functions Presented in This Chapter 815
45.2 Processes 816
45.3 Reaping Child Processes 819
45.4 Asynchronous Events 820
45.5 Signal Names 823
45.6 Exiting and Cleanup 824
45.7 Miscellaneous 825

974

Chapter 46 Threads 826
46.1 Functions Presented in This Chapter 827
46.2 Thread Safety 828
46.3 Building Threaded Tcl 828
46.4 Creating Threads 829
46.5 Terminating Threads 830
46.6 Mutexes 830
46.7 Condition Variables 831
46.8 Miscellaneous 832

Chapter 47 Building Tcl and Extensions 835
47.1 Building Tcl and Tk 836

47.1.1 Building Tcl and Tk on Unix 837
47.1.2 Building Tcl and Tk on Mac OS 838
47.1.3 Building Tcl and Tk on Windows 839

47.2 The Tcl Extension Architecture (TEA) 840
47.2.1 TEA Standard Configure Options 841
47.2.2 Directory Layout for TEA Extensions 842
47.2.3 Customizing the aclocal.m4 File 843
47.2.4 Customizing the configure.in File 844
47.2.5 Customizing the Makefile.in File 847
47.2.6 Building an Extension on Windows 848

47.3 Building Embedded Tcl 848
Appendixes 849
Appendix A Installing Tcl and Tk 851

A.1 Versions 852
A.2 Bundled Tcl Distributions 853
A.3 ActiveTcl 853
A.4 Tclkits 853
A.5 Compiling Tcl/Tk from Source Distributions 854

Appendix B Extensions and Applications 855
B.1 Obtaining and Installing Extensions 856

B.1.1 Installing Extensions Manually 856
B.1.2 Installing Extensions from ActiveState TEApot 857

975

Repositories 857

B.2 TkCon Extended Console 859
B.3 The Standard Tcl Library, Tcllib 859
B.4 Additional Image Formats with Img 860
B.5 Sound Support with Snack 860
B.6 Object-Oriented Tcl 861
B.7 Multithreaded Tcl Scripting 862
B.8 XML Programming 862
B.9 Database Programming 863
B.10 Integrating Tcl and Java 864
B.11 SWIG 864
B.12 Expect 864
B.13 Extended Tcl 866

Appendix C Tcl Resources 867
C.1 Online Resources 868
C.2 Books 869

Appendix D Tcl Source Distribution License 870
Index 873

976

	Preface
	Preface to the First Edition
	Introduction
	PART I The Tcl Language
	Chapter 1 An Overview of Tcl and Tk
	1.1 Getting Started
	1.2 “Hello, World!” with Tk
	1.3 Script Files
	1.3.1 Executable Scripts on Unix and Mac OS X
	1.3.2 Executable Scripts on Windows
	1.3.3 Executing Scripts in an Interactive Interpreter

	1.4 Variables and Substitutions
	1.5 Control Structures
	1.6 On the Tcl Language
	1.7 Event Bindings
	1.8 Additional Features of Tcl and Tk

	Chapter 2 Tcl Language Syntax
	2.1 Scripts, Commands, and Words
	2.2 Evaluating a Command
	2.3 Variable Substitution
	2.4 Command Substitution
	2.5 Backslash Substitution
	2.6 Quoting with Double Quotes
	2.7 Quoting with Braces
	2.8 Argument Expansion
	2.9 Comments
	2.10 Normal and Exceptional Returns
	2.11 More on Substitutions

	Chapter 3 Variables
	3.1 Commands Presented in This Chapter
	3.2 Simple Variables and the set Command
	3.3 Tcl’s Internal Storage of Data
	3.4 Arrays
	3.5 Variable Substitution
	3.6 Multidimensional Arrays
	3.7 Querying the Elements of an Array
	3.8 The incr and append Commands
	3.9 Removing Variables: unset and array unset
	3.10 Predefined Variables
	3.11 Preview of Other Variable Facilities

	Chapter 4 Expressions
	4.1 Commands Presented in This Chapter
	4.2 Numeric Operands
	4.3 Operators and Precedence
	4.3.1 Arithmetic Operators
	4.3.2 Relational Operators
	4.3.3 Logical Operators
	4.3.4 Bit-wise Operators
	4.3.5 Choice Operator

	4.4 Math Functions
	4.5 Substitutions
	4.6 String Manipulation
	4.7 List Manipulation
	4.8 Types and Conversions
	4.9 Precision

	Chapter 5 String Manipulation
	5.1 Commands Presented in This Chapter
	5.2 Extracting Characters: string index and string range
	5.3 Length, Case Conversion, Trimming, and Repeating
	5.4 Simple Searching
	5.5 String Comparisons
	5.6 String Replacements
	5.7 Determining String Types
	5.8 Generating Strings with format
	5.9 Parsing Strings with scan
	5.10 Glob-Style Pattern Matching
	5.11 Pattern Matching with Regular Expressions
	5.11.1 Regular Expression Atoms
	5.11.2 Regular Expression Branches and Quantifiers
	5.11.3 Back References
	5.11.4 Non-capturing Subexpressions
	5.11.5 The regexp Command

	5.12 Using Regular Expressions for Substitutions
	5.13 Character Set Issues
	5.13.1 Character Encodings and the Operating System
	5.13.2 Encodings and Channel Input/output
	5.13.3 Converting Strings to Different Encodings

	5.14 Message Catalogs
	5.14.1 Using Message Catalogs
	5.14.2 Creating Localized Message Files
	5.14.3 Using Conversion Specifiers in Source and Translation Strings
	5.14.4 Using Message Catalogs with Namespaces

	5.15 Binary Strings

	Chapter 6 Lists
	6.1 Commands Presented in This Chapter
	6.2 Basic List Structure and the lindex and llength Commands
	6.3 Creating Lists: list , concat , and lrepeat
	6.4 Modifying Lists: lrange , linsert , lreplace , lset , and lappend
	6.5 Extracting List Elements: lassign
	6.6 Searching Lists: lsearch
	6.7 Sorting Lists: lsort
	6.8 Converting between Strings and Lists: split and join
	6.9 Creating Commands as Lists

	Chapter 7 Dictionaries
	7.1 Commands Presented in This Chapter
	7.2 Basic Dictionary Structure and the dict get Command
	7.3 Creating and Updating Dictionaries
	7.4 Examining Dictionaries: The size , exists , keys , and for Subcommands
	7.5 Updating Dictionary Values
	7.6 Working with Nested Dictionaries

	Chapter 8 Control Flow
	8.1 Commands Presented in This Chapter
	8.2 The if Command
	8.3 The switch Command
	8.4 Looping Commands: while , for , and foreach
	8.5 Loop Control: break and continue
	8.6 The eval Command
	8.7 Executing from Files: source

	Chapter 9 Procedures
	9.1 Commands Presented in This Chapter
	9.2 Procedure Basics: proc and return
	9.3 Local and Global Variables
	9.4 Defaults and Variable Numbers of Arguments
	9.5 Call by Reference: upvar
	9.6 Creating New Control Structures: uplevel
	9.7 Applying Anonymous Procedures

	Chapter 10 Namespaces
	10.1 Commands Presented in This Chapter
	10.2 Evaluating Tcl Code in a Namespace
	10.3 Manipulating Qualified Names
	10.4 Exporting and Importing Namespace Commands
	10.5 Inspecting Namespaces
	10.6 Working with Ensemble Commands
	10.6.1 Basic Ensembles
	10.6.2 Placing Ensembles Inside Ensembles
	10.6.3 Controlling the Ensemble Configuration
	10.6.4 Handling Unknown Ensemble Subcommands

	10.7 Accessing Variables from Other Namespaces
	10.8 Controlling the Name Resolution Path

	Chapter 11 Accessing Files
	11.1 Commands Presented in This Chapter
	11.2 Manipulating File and Directory Names
	11.3 The Current Working Directory
	11.4 Listing Directory Contents
	11.5 Working with Files on Disk
	11.5.1 Creating Directories
	11.5.2 Deleting Files
	11.5.3 Copying Files
	11.5.4 Renaming and Moving Files
	11.5.5 File Information Commands
	11.5.6 Dealing with Oddly Named Files

	11.6 Reading and Writing Files
	11.6.1 Basic File I/O
	11.6.2 Output Buffering
	11.6.3 Handling Platform End-of-Line Conventions
	11.6.4 Handling Character Set Encoding
	11.6.5 Working with Binary Files
	11.6.6 Random Access to Files
	11.6.7 Copying File Content

	11.7 Virtual File Systems
	11.8 Errors in System Calls

	Chapter 12 Processes and Interprocess Communication
	12.1 Commands Presented in This Chapter
	12.2 Terminating the Tcl Process with exit
	12.3 Invoking Subprocesses with exec
	12.4 I/O to and from a Command Pipeline
	12.5 Configuring Channel Options
	12.5.1 Channel Blocking Mode
	12.5.2 Channel Buffering Mode

	12.6 Event-Driven Channel Interaction
	12.6.1 Entering the Tcl Event Loop with vwait
	12.6.2 Registering File Event Handlers

	12.7 Process IDs
	12.8 Environment Variables
	12.9 TCP/IP Socket Communication
	12.9.1 Creating Client Communication Sockets
	12.9.2 Creating Server Sockets

	12.10 Sending Commands to Tcl Programs
	12.10.1 Basics of send
	12.10.2 Application Names
	12.10.3 Security Issues with send

	Chapter 13 Errors and Exceptions
	13.1 Commands Presented in This Chapter
	13.2 What Happens after an Error?
	13.3 Generating Errors from Tcl Scripts
	13.4 Trapping Errors with catch
	13.5 Exceptions in General
	13.6 Background Errors and bgerror

	Chapter 14 Creating and Using Tcl Script Libraries
	14.1 Commands Presented in This Chapter
	14.2 The load Command
	14.3 Using Libraries
	14.4 Autoloading
	14.5 Packages
	14.5.1 Using Packages
	14.5.2 Creating Packages
	14.5.3 Using ::pkg::create
	14.5.4 Installing Packages
	14.5.5 Utility Package Commands

	14.6 Tcl Modules
	14.6.1 Using Tcl Modules
	14.6.2 Installing Tcl Modules

	14.7 Packaging Your Scripts as Starkits
	14.7.1 Installing a Tclkit
	14.7.2 Creating Starkits
	14.7.3 Creating a Platform-Specific Executable

	Chapter 15 Managing Tcl Internals
	15.1 Commands Presented in This Chapter
	15.2 Time Delays
	15.3 Time and Date Manipulation
	15.3.1 Generating Human-Readable Time and Date Strings
	15.3.2 Scanning Human-Readable Time and Date Strings
	15.3.3 Performing Clock Arithmetic

	15.4 Timing Command Execution
	15.5 The info Command
	15.5.1 Information about Variables
	15.5.2 Information about Procedures
	15.5.3 Information about Commands
	15.5.4 The Tcl Interpreter Version and Other Runtime Environment Information

	15.6 Tracing Operations on Simple Variables
	15.7 Tracing Array Variables
	15.8 Renaming and Deleting Commands
	15.9 Tracing Commands
	15.10 Unknown Commands
	15.11 Slave Interpreters
	15.11.1 Command Aliases
	15.11.2 Safe Slave Interpreters and Hidden Commands
	15.11.3 Transferring Channels between Interpreters
	15.11.4 Placing Limits on an Interpreter

	Chapter 16 History
	16.1 Commands Presented in This Chapter
	16.2 The History List
	16.3 Specifying Events
	16.4 Re-executing Commands from the History List
	16.5 Shortcuts Implemented by unknown
	16.6 Current Event Number: history nextid

	PART II Writing Scripts for Tk
	Chapter 17 An Introduction to Tk
	17.1 A Brief Introduction to Windowing Systems
	17.2 Widgets
	17.3 Applications, Toplevel Widgets, and Screens
	17.4 Scripts and Events
	17.5 Creating and Destroying Widgets
	17.6 Geometry Managers
	17.7 Widget Commands
	17.8 Commands for Interconnection

	Chapter 18 A Tour of the Tk Widgets
	18.1 Widget Basics
	18.2 Frames
	18.2.1 Relief Options
	18.2.2 Screen Distance Options

	18.3 Color Options
	18.3.1 Synonyms

	18.4 Toplevels
	18.5 Labels
	18.5.1 Text Options
	18.5.2 Font Options
	18.5.3 Image Options
	18.5.4 Compound Options

	18.6 Labelframes
	18.7 Buttons
	18.7.1 Checkbuttons
	18.7.2 Radiobuttons
	18.7.3 Menubuttons

	18.8 Listboxes
	18.9 Scrollbars
	18.9.1 Scrolling a Single Widget
	18.9.2 Synchronized Scrolling of Multiple Widgets

	18.10 Scales
	18.11 Entries
	18.11.1 Entry Widget
	18.11.2 Spinbox
	18.11.3 The show Option
	18.11.4 Validation

	18.12 Menus
	18.12.1 Pull-Down Menus
	18.12.2 Cascaded Menus
	18.12.3 Keyboard Traversal and Shortcuts
	18.12.4 Platform-Specific Menus
	18.12.5 Pop-up Menus

	18.13 Panedwindow
	18.14 Standard Dialogs
	18.15 Other Common Options
	18.15.1 Widget State
	18.15.2 Widget Size Options
	18.15.3 Anchor Options
	18.15.4 Internal Padding
	18.15.5 Cursor Options

	Chapter 19 Themed Widgets
	19.1 Comparing Classic and Themed Widgets
	19.2 Combobox
	19.3 Notebook
	19.4 Progressbar
	19.5 Separator
	19.6 Sizegrip
	19.7 Treeview
	19.7.1 Manipulating Treeview Items
	19.7.2 Managing Treeview Columns and Headings
	19.7.3 Treeview Item Selection Management
	19.7.4 Treeview Item Tags

	19.8 Themed Widget States
	19.9 Themed Widget Styles
	19.9.1 Using Themes
	19.9.2 The Elements of Style
	19.9.3 Creating and Configuring Styles

	19.10 Other Standard Themed Widget Options

	Chapter 20 Fonts, Bitmaps, and Images
	20.1 Commands Presented in This Chapter
	20.2 The font Command
	20.2.1 Manipulating and Using Named Fonts
	20.2.2 Other Font Utilities
	20.2.3 Font Descriptions

	20.3 The image Command
	20.3.1 Bitmap Images
	20.3.2 Photo Images
	20.3.3 Images and Namespaces

	Chapter 21 Geometry Managers
	21.1 Commands Presented in This Chapter
	21.2 An Overview of Geometry Management
	21.3 The Gridder
	21.3.1 The grid Command and the -sticky Options
	21.3.2 Spanning Rows and Columns
	21.3.3 Stretch Behavior and the -weight and -uniform Options
	21.3.4 Relative Placement Characters

	21.4 The Packer
	21.4.1 The pack Command and -side Options
	21.4.2 Filling
	21.4.3 Expansion
	21.4.4 Anchors
	21.4.5 Packing Order

	21.5 Padding
	21.6 The Placer
	21.7 Hierarchical Geometry Management
	21.8 Widget Stacking Order
	21.9 Other Geometry Manager Options
	21.10 Other Geometry Managers in Tk

	Chapter 22 Events and Bindings
	22.1 Commands Presented in This Chapter
	22.2 Events
	22.3 An Overview of the bind Command
	22.4 Event Patterns
	22.5 Sequences of Events
	22.6 Substitutions in Scripts
	22.7 Conflict Resolution
	22.8 Event-Binding Hierarchy
	22.9 When Are Events Processed?
	22.10 Named Virtual Events
	22.11 Generating Events
	22.12 Logical Actions
	22.13 Other Uses of Bindings

	Chapter 23 The Canvas Widget
	23.1 Canvas Basics: Items and Types
	23.2 Manipulating Items with Identifiers and Tags
	23.3 Bindings
	23.4 Canvas Scrolling
	23.5 PostScript Generation

	Chapter 24 The Text Widget
	24.1 Text Widget Basics
	24.2 Text Indices and Marks
	24.3 Search and Replace
	24.4 Text Tags
	24.4.1 Tag Options
	24.4.2 Tag Priorities
	24.4.3 Tag Bindings

	24.5 Virtual Events
	24.6 Embedded Windows
	24.7 Embedded Images
	24.8 Undo
	24.9 Peer Text Widgets

	Chapter 25 Selection and the Clipboard
	25.1 Commands Presented in This Chapter
	25.2 Selections, Retrievals, and Types
	25.3 Locating and Clearing the Selection
	25.4 Supplying the Selection with Tcl Scripts
	25.5 The clipboard Command
	25.6 Drag and Drop

	Chapter 26 Window Managers
	26.1 Commands Presented in This Chapter
	26.2 Window Sizes
	26.3 Window Positions
	26.4 Gridded Windows
	26.5 Window States
	26.6 Decorations
	26.7 Special Handling: Transients, Groups, and Override-Redirect
	26.8 System-Specific Window Attributes
	26.9 Dockable Windows
	26.10 Window Close
	26.11 Session Management

	Chapter 27 Focus, Modal Interaction, and Custom Dialogs
	27.1 Commands Presented in This Chapter
	27.2 Input Focus
	27.2.1 Focus Model: Explicit versus Implicit
	27.2.2 Setting the Input Focus
	27.2.3 Querying the Input Focus

	27.3 Modal Interactions
	27.3.1 Grabs
	27.3.2 Local versus Global Grabs
	27.3.3 Keyboard Handling during Grabs
	27.3.4 Waiting: The tkwait Command

	27.4 Custom Dialogs

	Chapter 28 More on Configuration Options
	28.1 Commands Presented in This Chapter
	28.2 The Option Database
	28.3 Option Database Entries
	28.4 The RESOURCE_MANAGER Property and .Xdefaults File
	28.5 Priorities in the Option Database
	28.6 The option Command
	28.7 The configure Widget Command
	28.8 The cget Widget Command

	Chapter 29 Odds and Ends
	29.1 Commands Presented in This Chapter
	29.2 Destroying Widgets
	29.3 The update Command
	29.4 Information about Widgets
	29.5 The tk Command
	29.6 Variables Managed by Tk
	29.7 Ringing the Bell

	PART III Writing Tcl Applications in C
	Chapter 30 Tcl and C Integration Philosophy
	30.1 Tcl versus C: Where to Draw the Line
	30.2 Resource Names—Connecting C Constructs to Tcl
	30.3 “Action-Oriented” versus “Object-Oriented”
	30.4 Representing Information

	Chapter 31 Interpreters
	31.1 Functions Presented in This Chapter
	31.2 Interpreters
	31.3 A Simple Tcl Application
	31.4 Deleting Interpreters
	31.5 Multiple Interpreters

	Chapter 32 Tcl Objects
	32.1 Functions Presented in This Chapter
	32.2 String Objects
	32.3 Numerical Objects
	32.4 Fetching C Values from Objects
	32.5 The Dynamic Nature of a Tcl Object
	32.6 Byte Arrays
	32.7 Composite Objects
	32.8 Reference Counting
	32.9 Shared Objects
	32.10 New Object Types
	32.11 Parsing Strings
	32.12 Memory Allocation

	Chapter 33 Evaluating Tcl Code
	33.1 Functions Presented in This Chapter
	33.2 Evaluating Tcl Code
	33.3 Dynamically Building Scripts
	33.4 Tcl Expressions

	Chapter 34 Accessing Tcl Variables
	34.1 Functions Presented in This Chapter
	34.2 Setting Variable Values
	34.3 Reading Variables
	34.4 Unsetting Variables
	34.5 Linking Tcl and C Variables
	34.6 Setting and Unsetting Variable Traces
	34.7 Trace Callbacks
	34.8 Whole-Array Traces
	34.9 Multiple Traces
	34.10 Unset Callbacks

	Chapter 35 Creating New Tcl Commands
	35.1 Functions Presented in This Chapter
	35.2 Command Functions
	35.3 Registering Commands
	35.4 The Result Protocol
	35.5 Tcl_AppendResult
	35.6 Tcl_SetResult and interp->result
	35.7 clientData and Deletion Callbacks
	35.8 Deleting Commands
	35.9 Fetching and Setting Command Parameters
	35.10 How Tcl Procedures Work
	35.11 Command Traces

	Chapter 36 Extensions
	36.1 Functions Presented in This Chapter
	36.2 The Init Function
	36.3 Packages
	36.4 Namespaces
	36.5 Tcl Stubs
	36.6 The ifconfig Extension

	Chapter 37 Embedding Tcl
	37.1 Functions Presented in This Chapter
	37.2 Adding Tcl to an Application
	37.3 Initialize Tcl
	37.4 Creating New Tcl Shells

	Chapter 38 Exceptions
	38.1 Functions Presented in This Chapter
	38.2 Completion Codes
	38.3 Setting errorCode
	38.4 Managing the Return Options Dictionary
	38.5 Adding to the Stack Trace in errorInfo
	38.6 Tcl_Panic

	Chapter 39 String Utilities
	39.1 Functions Presented in This Chapter
	39.2 Dynamic Strings
	39.3 String Matching
	39.4 Regular Expression Matching
	39.5 Working with Character Encodings
	39.6 Handling Unicode and UTF-8 Strings
	39.7 Command Completeness

	Chapter 40 Hash Tables
	40.1 Functions Presented in This Chapter
	40.2 Keys and Values
	40.3 Creating and Deleting Hash Tables
	40.4 Creating Entries
	40.5 Finding Existing Entries
	40.6 Searching
	40.7 Deleting Entries
	40.8 Statistics

	Chapter 41 List and Dictionary Objects
	41.1 Functions Presented in This Chapter
	41.2 Lists
	41.3 Dictionaries

	Chapter 42 Channels
	42.1 Functions Presented in This Chapter
	42.1.1 Basic Channel Operations
	42.1.2 Channel Registration Functions
	42.1.3 Channel Attribute Functions
	42.1.4 Channel Query Functions
	42.1.5 Channel Type Definition Functions

	42.2 Channel Operations
	42.3 Registering Channels
	42.4 Standard Channels
	42.5 Creating a New Channel Type
	42.5.1 Creating a Custom Channel Instance
	42.5.2 Stacked Channels
	42.5.3 ROT13 Channel

	Chapter 43 Handling Events
	43.1 Functions Presented in This Chapter
	43.2 Channel Events
	43.3 Timer Events
	43.4 Idle Callbacks
	43.5 Invoking the Event Dispatcher

	Chapter 44 File System Interaction
	44.1 Tcl File System Functions
	44.2 Virtual File Systems

	Chapter 45 Operating System Utilities
	45.1 Functions Presented in This Chapter
	45.2 Processes
	45.3 Reaping Child Processes
	45.4 Asynchronous Events
	45.5 Signal Names
	45.6 Exiting and Cleanup
	45.7 Miscellaneous

	Chapter 46 Threads
	46.1 Functions Presented in This Chapter
	46.2 Thread Safety
	46.3 Building Threaded Tcl
	46.4 Creating Threads
	46.5 Terminating Threads
	46.6 Mutexes
	46.7 Condition Variables
	46.8 Miscellaneous

	Chapter 47 Building Tcl and Extensions
	47.1 Building Tcl and Tk
	47.1.1 Building Tcl and Tk on Unix
	47.1.2 Building Tcl and Tk on Mac OS
	47.1.3 Building Tcl and Tk on Windows

	47.2 The Tcl Extension Architecture (TEA)
	47.2.1 TEA Standard Configure Options
	47.2.2 Directory Layout for TEA Extensions
	47.2.3 Customizing the aclocal.m4 File
	47.2.4 Customizing the configure.in File
	47.2.5 Customizing the Makefile.in File
	47.2.6 Building an Extension on Windows

	47.3 Building Embedded Tcl

	Appendixes
	Appendix A Installing Tcl and Tk
	A.1 Versions
	A.2 Bundled Tcl Distributions
	A.3 ActiveTcl
	A.4 Tclkits
	A.5 Compiling Tcl/Tk from Source Distributions

	Appendix B Extensions and Applications
	B.1 Obtaining and Installing Extensions
	B.1.1 Installing Extensions Manually
	B.1.2 Installing Extensions from ActiveState TEApot Repositories

	B.2 TkCon Extended Console
	B.3 The Standard Tcl Library, Tcllib
	B.4 Additional Image Formats with Img
	B.5 Sound Support with Snack
	B.6 Object-Oriented Tcl
	B.7 Multithreaded Tcl Scripting
	B.8 XML Programming
	B.9 Database Programming
	B.10 Integrating Tcl and Java
	B.11 SWIG
	B.12 Expect
	B.13 Extended Tcl

	Appendix C Tcl Resources
	C.1 Online Resources
	C.2 Books

	Appendix D Tcl Source Distribution License
	Index

