
www.it-ebooks.info

http://www.it-ebooks.info/

Tcl Scripting for Cisco IOS

Ray Blair, CCIE No. 7050
Arvind Durai, CCIE No. 7016

John Lautmann

Cisco Press
800 East 96th Street

Indianapolis, IN 46240

www.it-ebooks.info

http://www.it-ebooks.info/

ii Tcl Scripting for Cisco IOS

Tcl Scripting for Cisco IOS
Ray Blair, Arvind Durai, John Lautmann

Copyright © 2010 Cisco Systems, Inc.

Published by:
Cisco Press
800 East 96th Street
Indianapolis, IN 46240 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval sys-
tem, without written permission from the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America

First Printing June 2010

Library of Congress Cataloging-in-Publication Data:

Blair, Ray, 1965—
Tcl scripting for Cisco IOS / Ray Blair, Arvind Durai, John Lautmann.

p. cm.
ISBN-13: 978-1-58705-945-2 (pbk.)
ISBN-10: 1-58705-945-2 (pbk.)

1. Tcl (Computer program language) 2. Cisco IOS. I. Durai, Arvind.
II. Lautmann, John. III. Title.

QA76.73.T44B58 2010
005.13'3—dc22

2010015179

ISBN-13: 978-1-58705-945-2

ISBN-10: 1-58705-945-2

Warning and Disclaimer

This book is designed to provide information about the Tcl scripting for Cisco IOS Software. Every effort has
been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have
neither liability nor responsibility to any person or entity with respect to any loss or damages arising from
the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco Systems, Inc.

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service marks have been appropriate-
ly capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the validity of any trademark or service mark.

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Corporate and Government Sales

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or spe-
cial sales, which may include electronic versions and/or custom covers and content particular to your busi-
ness, training goals, marketing focus, and branding interests. For more information, please contact: U.S.
Corporate and Government Sales 1-800-382-3419 corpsales@pearsontechgroup.com

For sales outside the United States, please contact: International Sales international@pearsoned.com

Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise of
members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us
through e-mail at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your
message.

We greatly appreciate your assistance.

Publisher: Paul Boger Cisco Representative: Eric Ullanderson

Associate Publisher: Dave Dusthimer Cisco Press Program Manager: Anand Sundaram

Executive Editor: Brett Bartow Copy Editor: Keith Cline

Managing Editor: Sandra Schroeder Proofreader: Sheri Cain

Senior Development Editor: Christopher Cleveland Technical Editors:
Joe Marcus Clarke, Greg S. Thompson

Project Editor: Mandie Frank

Editorial Assistant: Vanessa Evans Book Designer: Louisa Adair

Cover Designer: Sandra Schroeder Composition: Mark Shirar

Indexer: Tim Wright

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

CCDE, CCENT, Cisco Eos, Cisco HealthPresence, the Cisco logo, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco WebEx, DCE, and Welcome to the Human Network are trademarks; Changing the

Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the

Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step,

Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers,

Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and

the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0812R)

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters
Cisco Systems International BV
Amsterdam, The Netherlands

www.it-ebooks.info

www.cisco.com/go/offices
http://www.it-ebooks.info/

About the Authors

Ray Blair, CCIE No. 7050, is a Vertical Solutions Architect and has been with Cisco
Systems for more than 10 years, working primarily with large network designs. He has
almost 22 years of experience with designing, implementing, and maintaining networks
that have included nearly all networking technologies. During the early stages of his
career, he wrote many applications using Assembly language and C. Mr. Blair maintains
three CCIE certifications in Routing and Switching, Security, and Service Provider. He is
also a Certified Information Systems Security Professional (CISSP) and coauthor of the
Cisco Secure Firewall Services Module book.

Arvind Durai, CCIE No. 7016, is an Advanced Services Technical Leader for Cisco
Systems. His primary responsibility in the past 10 years has been in supporting major
Cisco customers in the enterprise sector, including financial, manufacturing, e-commerce,
state government, utility (smart grid networks) and health-care sectors. Some of his
focuses have been on security, multicast, network virtualization, and he has authored sev-
eral white papers and design guides in various technologies. He has leveraged Embedded
Event Manager (EEM) and Tool Command Language (Tcl) scripts in various customer
designs. Mr. Durai maintains two CCIE certifications: Routing and Switching, and
Security. He holds a Bachelor of Science degree in electronics and communication, a
master’s degree in electrical engineering (MS), and master’s degree in business administra-
tion (MBA), and is a coauthor of Cisco Secure Firewall Services Module.

John Lautmann is a Software Engineer for Cisco Systems. He has developed and
enhanced network management software for nearly 14 years. Before joining Cisco, he
held positions in customer support and software testing. With six networking patents,
John has been involved in the development of new Cisco IOS features such as data-link
switching, syslog, configuration rollback and archiving, IOS Tcl interpreter, digitally
signed Tcl scripts, and Multiprotocol Label Switching (MPLS) ping and trace. Mr.
Lautmann holds a Bachelor of Science degree in computer science and master’s degrees in
both business and engineering.

iv Tcl Scripting for Cisco IOS

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Reviewers

Joe Marcus Clarke, CCIE No. 5384, is a distinguished support engineer working in
Technical Services and specializing in network management. In his 11+ years at Cisco, he
has handled worldwide escalations for network management problems relating to SNMP,
CiscoWorks, and embedded management technologies. He has also helped customers
design and implement embedded management solutions using the Embedded Event
Manager, Embedded Syslog Manager, and the Tcl shell in IOS. He works closely with the
embedded management technology teams to improve and extend the capabilities in Cisco
products. Joe is also extremely active on the Cisco Support Communities (aka NetPro)
network management forum where he provides assistance to customers on a wide variety
of network management issues.

Greg S. Thompson is a senior software engineer with more than 25 years of experience
working in networking/telecommunications. He has spent the past several years at Cisco
Systems, Inc. implementing Tcl and Tcl-based features in Cisco IOS, such as ESM
(Embedded Syslog Manager) and EMM (Embedded Menu Manager).

Dedications

Ray Blair As with everything in my life, I thank my Lord and Savior for his faithful
leading that has brought me to this place. This book is dedicated to my wife, Sonya, and
my children, Sam, Riley, Sophie, and Regan. You guys mean the world to me!

Arvind Durai This book is dedicated to my wife, Monica, and my son, Akhhill. Thank
you for everything!

To my parents, for providing me with values.

To my brother and family, my parents-in-law, and brother-in-law and family for all their
good wishes.

Thank you, God!

John Lautmann I dedicate this book to my family: my wife, Susana, my daughter, Kate,
and my son, Rhys. You are all very special!

v

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

Ray Blair This project was a significant undertaking, and without the partnership of
Arvind and John, and the support of those mentioned here and many others, this would
not have been an achievable goal. I am very grateful for all your help and support in com-
pleting this book!

Thanks to my wife, Sonya, and my children, Sam, Riley, Sophie, and Regan, for your
patience in the many hours I spent working on this book.

Arvind and John, your excellent technical knowledge and dedication to the accuracy of
the content made writing this book a pleasure. I look forward to many more years as your
colleague and friend.

Arvind Durai Thanks to my wife, Monica, and my son, Akhhill, for your support and
tolerance with my long working hours.

Thanks to my director, Andrew Maximow, and my manager, Shibu Nair, for supporting
me in this effort.

As always, it is great working with Ray and John, who have immaculate technical knowl-
edge and dedication. You both have made the experience of writing this book a pleasure.
Thank you!

John Lautmann I would like to thank my family members for their support during the
writing of this book. I could not have done it without you. Thank you Susana, Kate,
Rhys, Judith, and Ron.

Thank you Arvind and Ray for your excellent support and motivation during the writing
of the book. As a team, we can achieve anything!

Our special thanks to:

We are very grateful to Joe Marcus Clarke and Greg S. Thompson for their valuable input
in providing direction and maintaining accuracy of the material in this book. Without the
talent of these two technical reviewers, the book would not have been possible.

The Cisco Press team was very helpful in providing excellent feedback and direction,
many thanks to Brett Bartow, Christopher Cleveland, and Dayna Isley.

Thanks to all of our customers with whom we have worked. Each customer scenario
inspired us to write this book.

vi Tcl Scripting for Cisco IOS

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Introduction xiv

Chapter 1 The Origin of Tcl 1

Chapter 2 Tcl Interpreter and Language Basics 11

Chapter 3 Tcl Functioning in Cisco IOS 33

Chapter 4 Embedded Event Manager (EEM) 55

Chapter 5 Advanced Tcl Operation in Cisco IOS 111

Chapter 6 Tcl Script Examples 183

Chapter 7 Security in Tcl Scripts 243

Appendix A Cisco IOS Tcl Commands Quick Reference 259

Index 287

vii

www.it-ebooks.info

http://www.it-ebooks.info/

viii Tcl Scripting for Cisco IOS

Contents

Introduction xiv

Chapter 1 The Origin of Tcl 1

Tcl and Cisco IOS Software 3

Embedded Event Manager and Tcl 4

Restriction of Tcl in IOS 4

Tcl with EEM Support in IOS 5

Using Tcl Scripts in the Network 8

Troubleshooting Problems 8

Monitoring the Network 8

Adding Intelligence to Cisco IOS Protocols 9

Summary 9

References 9

Chapter 2 Tcl Interpreter and Language Basics 11

Simple Variables in Tcl 12

Storing Variables 12

Viewing Variables 13

The append Command 13

The incr Command 13

Representation of Variables in Tcl 14

Command Substitution 14

Variable Substitution 15

Lists 17

lappend 18

lindex 18

linsert 18

llength 19

lsearch 19

lreplace 20

lrange 20

lsort 20

Procedures 21

for Command 22

foreach Command 23

while Command 23

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays 24

if Command 26

switch Command 27

Files 28

Summary 31

References 31

Chapter 3 Tcl Functioning in Cisco IOS 33

Understanding the Tcl Interpreter in Cisco IOS 33

Using Cisco IOS Exec-Mode Parser in the Tcl Shell 34

Entering an IOS Command into the Tcl Command Interpreter 35

Using Tcl to Enter Commands 36

Copying a Tcl Script to a Cisco IOS Device 38

Fetching a Cisco IOS Tcl Script from a Remote Device 41

Using Tcl to Examine the Cisco IOS Device Configuration 41

Using Tcl to Modify the Router Configuration 43

Using Tcl with SNMP to Check MIB Variables 44

Other Uses of SNMP 44

Enabling SNMP on a Cisco IOS Device 47

Querying the Configuration of a Cisco IOS Device Using SNMP 48

Modifying the Configuration of a Cisco IOS Device Using SNMP 51

Summary 53

References 53

Chapter 4 Embedded Event Manager (EEM) 55

EEM Architecture 55

Policies 56

EEM Server 56

Event Detectors 57

Software Release Support for EEM 60

Platform and IOS Considerations for EEM 65

Writing an EEM Applet 66

Practical Example of an Event Trigger 68

Using Object Tracking as an Event Trigger 69

Creating Applet Actions 70

Examples of EEM Applets 70

Configuring the IP SLA Sender and Responder 72

Applet and IP SLA Route Failover Example 74

ix

www.it-ebooks.info

http://www.it-ebooks.info/

Applet That Monitors the Default Route 83

Applet and Application Failover with a Network Address Translation

Example 88

Using EEM and Tcl Scripts 96

Programming Policies with Tcl 97

Tcl Example Used to Check for Interface Errors 98

Tcl Example Used to Check the CPU Utilization 104

Summary 110

References 110

Chapter 5 Advanced Tcl Operation in Cisco IOS 111

Introduction to the Syslog Protocol 112

Configuring Syslog Server Parameters in Cisco IOS 113

Syslog Tcl Script Example 116

Syslog Tcl Script Sample Output 118

Sending Syslog Messages to a File 121

Syslog Server Script Procedures 124

Syslog Server Script Body 127

Putting the Syslog Script into Operation 129

Introduction to Embedded Syslog Manager 130

Filtering Syslog Messages 130

ESM Global Variables 134

Rebuilding a Syslog Message from Its Components 136

Displaying/Adding ESM Tcl Script Filters 137

Introduction to Embedded Menu Manager 139

Using Tcl as a Web Server 144

Obtaining a Free Web Server Application 147

Reverse Engineering the Web Server 149

Creating Your Own Simple Web Page 152

Creating a Web Page Using IOS show Commands 154

Adding User Input to the Web Page 157

Introduction to IP SLA 160

Adding the IP SLA Measurement to the Web Page 162

Modifying the Button and Label for User Input 162

Creating a Tcl Script to Display IP SLA Measurement Results 163

Putting the New Tcl Scripts into Operation 165

Reformatting the IP SLA Output for Readability 167

x Tcl Scripting for Cisco IOS

www.it-ebooks.info

http://www.it-ebooks.info/

Automatic Removal and Creation of IP SLA Entries 170

Displaying the Results of the IP SLA Measurement

with Auto-Refresh 174

Tcl Script Refresh Policy 177

SNMP Proxy Event Detector 178

Remote-Procedure Call Requests 179

Multiple-Event Support for Event Correlation 180

Using the clear Command 181

Summary 182

References 182

Chapter 6 Tcl Script Examples 183

Creating an Application from Start to Finish 183

Determine What You Want to Accomplish 183

Creating a Flowchart 184

Deciding What the User Interface Should Look Like 185

Write the Code in Pseudo-Code 187

Before You Begin 188

Starting to Program the Application 190

Configuring the Web Server 190

Writing Code for the MPLS VPN Script 191

Configuring HTML 209

Writing Code for the MPLS CFG Script 216

Troubleshooting as You Go 228

Using Tcl to Troubleshoot Network Problems 230

Monitoring the Console for Events 233

Creating a Web Application for Remote SNMP Graphing 236

Summary 241

References 241

Chapter 7 Security in Tcl Scripts 243

Introduction to PKI Infrastructure 243

PKI Prerequisite 244

Confidentiality with PKI 244

Digital Signatures with PKI 245

Using Digital Signatures to Sign a Tcl Script 247

Step 1: Decide on the Final Tcl Script Contents (Myscript) 248

Step 2: Generate a Public/Private Key Pair 248

xi

www.it-ebooks.info

http://www.it-ebooks.info/

Step 3: Generate a Certificate with the Key Pair 250

Step 4: Generate a Detached S/MIME pkcs7 Signature
for Myscript Using the Private Key 250

Step 5: Modify the Format of the Signature to Match
the Cisco Style for Signed Tcl Scripts and Append
It to the End of Myscript 251

Tcl Script-Failure Scenario 256

Scaling Tcl Script Distribution 257

Summary 258

References 258

Appendix A Cisco IOS Tcl Commands Quick Reference 259

Index 287

xii Tcl Scripting for Cisco IOS

www.it-ebooks.info

http://www.it-ebooks.info/

Command Syntax Conventions

The conventions used to present command syntax in this book are the same conventions
used in the IOS Command Reference. The Command Reference describes these conven-
tions as follows:

■ Boldface indicates commands and keywords that are entered literally as shown. In
actual configuration examples and output (not general command syntax), boldface
indicates commands that are manually input by the user (such as a show command).

■ Italic indicates arguments for which you supply actual values.

■ Vertical bars (|) separate alternative, mutually exclusive elements.

■ Square brackets ([]) indicate an optional element.

■ Braces ({ }) indicate a required choice.

■ Braces within brackets ([{ }]) indicate a required choice within an optional element.

xiii

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Embedded Event Manager (EEM) along with Tool Command Language (Tcl) and applets
enable you to customize the operation of the IOS device. These powerful tools can be
leveraged when the normal operation of IOS is not suitable for your specific requirements.

This book was written to provide an understanding of the operation of EEM, Tcl, and
applets. It begins with the fundamentals of Tcl and provides practical examples of how to
create your own application.

Who Should Read This Book?

This book is targeted at individuals who manage, maintain, or operate a network that con-
tains IOS devices. To get the most value from the material, you should have at least a
basic knowledge of programming.

How This Book Is Organized

This book is organized into seven chapters and one appendix and includes an introduc-
tion to Tcl, language basics, Cisco IOS device support, how Tcl functions in IOS, the use
of EEM, and practical examples. After absorbing the material in this book, you will be
well qualified to write your own programs. The chapters in this book cover the following
topics:

■ Chapter 1, “The Origin of Tcl”: This chapter introduces Tcl, EEM, and how you can
use them to enhance Cisco IOS.

■ Chapter 2, “Tcl Interpreter and Language Basics”: This chapter provides an
overview of the basic command syntax for Tcl.

■ Chapter 3, “Tcl Functioning in Cisco IOS”: This chapter examines how Tcl functions
in Cisco IOS.

■ Chapter 4, “Embedded Event Manager (EEM)”: This chapter explains the various
EEM versions, platform considerations, and applets.

■ Chapter 5, “Advanced Tcl Operation in Cisco IOS”: This chapter covers Embedded
Syslog Manger (ESM), Embedded Menu Manager (EMM), and includes myriad Tcl
examples.

■ Chapter 6, “Tcl Script Examples”: This chapter explains how to write a Tcl script
from start to finish.

■ Chapter 7, “Security in Tcl Scripts”: This chapter introduces public key infrastruc-
ture (PKI) and covers how to secure Tcl scripts.

■ Appendix A, “Cisco IOS Tcl Commands Quick Reference”: This appendix covers
Tcl commands specific to Cisco IOS.

xiv Tcl Scripting for Cisco IOS

www.it-ebooks.info

http://www.it-ebooks.info/

TCL Scripting Examples

To register this product and gain access to sample Tcl scripts, go to www.ciscopress.
com/tclscripting to sign in and enter the ISBN. After you register the book, a link to the
bonus content will be listed on your Account page, under Registered Products.

Chapter 3:

■ chap3e1.tcl—Verifies if the 10.0.0.x network is associated with any local
interfaces.

■ chap3e2.tcl—Parses the running-configuration and looks for and displays the time-
zone parameter. This script is helpful to parse parameters or text from the Cisco CLI
show command and derive the desired value as an output.

Chapter 4:

■ cpu_threshold_email.tcl—Sends an email in the event the CPU utilization is over
60%.

■ interface_errors_email.tcl—Sends an email in the event interface errors are detected.

Chapter 5:

■ syslogd_book.tcl—This is a syslog daemon script application that displays the
syslog messages at the terminal.

■ syslogd_book2.tcl—This is a syslog daemon script application used to collect and
store information locally on an IOS device. There are two input parameters: tcp port
and file name to write syslog messages.

■ filter.tcl, filter2.tcl, filter3.tcl, filter4.tcl—Performs embedded syslog manager
message processing.

■ my.mdf , my2.mdf, my3.mdf—Examples of Embedded Menu Manager menu
definition files.

■ chap5e1.tcl, chap5e2.tcl, chap5e3.tcl, chap5e4.tcl, clock.tcl, ipsla.tcl, ipsla1.tcl,
ipsla1.5.tcl, ipsla2.tcl, ipsla3.tcl, ipslaresult1.tcl—Examples of Tcl scripts that
generate web pages.

Chapter 6:

■ MPLS-VPN.tcl—This provisions MPLS VPN on a router through a GUI. (This appli-
cation was tested on an ISR2800.)

■ Remote-SNMP.tcl—Collects SNMP data from a remote device and displays it to the
user as a graph on web page.

xv

www.it-ebooks.info

www.ciscopress.com/tclscripting
www.ciscopress.com/tclscripting
http://www.it-ebooks.info/

Chapter 7:

■ my_append—An expect script that assists in converting and generating the correct
format for signed Tcl script.

■ myscript—Raw Tcl script to be signed.

■ myscript.hex, myscript.hex_sig, myscript.pk7—Intermediate files generated in the
process of signing a Tcl script.

■ myscript.tcl—The final signed Tcl script in the correct format.

■ myscript-changed1char.tcl—The final signed Tcl script with one modified character
to illustrate the security violation being detected.

Appendix A:

■ arg-demo.tcl—Illustrates the use of input arguments to a Tcl script.

■ count-to-one.tcl—A Tcl script that counts to 1.

■ count-to-ten.tbc—A Tcl script that counts to 10, in byte-code format.

■ count-to-ten.tcl—A Tcl script that counts to 10.

■ debugging-tcl_trace—Example procedures used to understand debugging using
tcl_trace.

■ int.tcl—A Tcl script the prints the value of tcl_interactive.

■ mypackages/—directory.

■ pkgIndex.tcl—File that assists in loading the correct package when a Tcl script
requires a package.

■ circle.tcl, square.tcl, triangle.tcl—Tcl files that provide some example packages.

xvi Tcl Scripting for Cisco IOS

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The Origin of Tcl

This chapter covers the following topics:

■ Tcl and Cisco IOS Software

■ Using Tcl Scripts in the Network

Tool Command Language (Tcl), invented in the late 1980s by John K. Ousterhout of the
University of California, Berkeley, is a dynamic programming or scripting language, an
interpreter, and a C library. Tcl helps users control other applications or utilities using
basic flow control. Tcl is pronounced “tickle” or “tee-cee-ell.” One of the original sugges-
tions for a title of this book was How to Tickle Your Router, which, although inappropri-
ate, is quite descriptive.

Tcl is an interpreted programming language versus a compiled programming language.
One advantage of an interpreted language is speed in the development process. A pro-
grammer can make changes quickly as the script is being developed and rapidly run the
script to see the changes. Another advantage is that the script is available for any users to
modify because it is written in a plain text format, with the exception of precompiled
byte-code. As the requirements change over time, various changes can easily be made to
modify the script to suit customer needs.

Note Precompiled byte-code enables you to hide the implementation details of a TCL
script and is discussed in greater detail in Chapter 7, “Security in Tcl Scripts.”

www.it-ebooks.info

http://www.it-ebooks.info/

2 Tcl Scripting for Cisco IOS

The disadvantage of an interpreted programming language is performance. The speed of
execution is reduced slightly because of the overhead of interpreting the script com-
mands first. The execution speed depends on the operating system, processor, program-
ming language, and so on, but will typically be in the range of a few seconds. At runtime,
the Tcl script must first be parsed before execution can begin. In contrast, a compiled
language is written and compiled ahead of time. At runtime, the machine language (com-
piled code) is run without the interpretation step. Another disadvantage for commercial
applications is the difficulty hiding the contents of the script. Because the script is plain
text, a software company will be reluctant to release their work in an open format that
can be seen and copied. The code can be obfuscated through the process of byte-code
compilation, but this is not a completely secure method, because compiled byte-code
can be reverse-engineered. This also makes it difficult to protect the intellectual property
rights of the software they develop.

Besides performance, the memory requirements are generally greater for an interpreted
language because the entire contents of the script itself, the compiled version of the
script, and all the script variables are held in memory. Do not allow this to discourage
you from writing Tcl scripts, however; they still are very usable and have a relatively small
memory footprint.

Key benefits of Tcl include the following:

■ Used to manipulate and display information that can be obtained from other devices,
a user interface, a database, and so on.

■ The automation of complex tasks.

■ There are many commands for the manipulation of information, including integers
and strings.

■ Simple language to learn.

Another component of Tcl is Tool Kit (Tk). Tk is a library of procedures written to create
graphical user interfaces (GUI). Tk includes commands to create GUI widgets, windows,
buttons, text boxes, and so on. Tk also provides a GUI for the host operating system
where the script is executed. Tk is not covered in this book because Tk support is not
available in Cisco IOS Software.

The usage of Tcl can be seen in the following areas:

■ Testing and automation: Use of this language is commonly seen in testing environ-
ments to leverage the capability of the language to interact with various software and
hardware devices.

■ Web applications: Tcl has Tcllib libraries, including a number of Common Gateway
Interface (CGI) libraries and can also be used as a conventional web programming
language.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: The Origin of Tcl 3

■ Desktop GUI applications: With the help of Tk, Tcl has been used to write GUI
applications. The dynamic approach of Tcl makes it easy to develop GUIs.

■ Databases: Tcl extensions are available to use for all standard databases, such as
Oracle, Sybase, and so on.

■ Embedded development: Tcl is a compact language and is popular with embedded
development. Tcl scripts are hidden in many hardware devices for user-defined func-
tionality.

Tcl/Tk has been gaining popularity and interest among users from the time it was intro-
duced. This is primarily because it is fast, powerful, easy to learn, and can run on almost
all computing platforms. The Tcl language is different from many other scripting lan-
guages in that it can embed into other applications. These applications can easily add a
full-feature Tcl interpreter and macro language.

Note Another offshoot of Tcl is Expect. Expect is highly specialized to match output
strings. The primary use of Expect is to automate interactive user sessions such as Telnet,
Secure Shell (SSH), File Transfer Protocol (FTP), Secure FTP (SFTP), and so on. For addi-
tional information about Expect, refer to Exploring Expect, by Don Libes (O’Reilly, 1994;
ISBN 1-56592-090-2).

Tcl and Cisco IOS Software

By now, you probably have a general understanding of Tcl, but you may be thinking,
“What’s it gonna do for me?” The combination of Tcl with Cisco IOS Software is a pow-
erful tool, one that enables you to enhance the operation of Cisco IOS. With the addition
of Tcl, you can customize IOS to execute unique procedures specific to your environ-
ment. Maybe you would like to create a menu for the help desk to make VLAN changes
on defined ports, but disallow any other changes. Are you thinking of other applications?

If you are considering running Tcl, you might also be wondering what devices are sup-
ported. The Tcl shell was first introduced in 12.3(2)T and 12.2(25)S and was merged into
the Catalyst 6500 in version 12.2.(18)SX4 for modular IOS and 12.2(18)SX5 for IOS. In
the desktop switching space, Tcl shell was added in 12.2(40)SE.

Note If you do not have access to a router or switch that supports Tcl, you can start prac-
ticing on your computer. Windows, Mac OS X, and UNIX operating systems all support
Tcl. You can download and install/compile Tcl to run on your computer. You can access the
official Tcl/Tk distribution site at http://www.tcl.tk/.

This is probably a better place to start, rather than practicing on production equipment,
especially if you want to keep your job!

www.it-ebooks.info

http://www.tcl.tk/
http://www.it-ebooks.info/

4 Tcl Scripting for Cisco IOS

Embedded Event Manager and Tcl

Embedded Event Manager (EEM) is a powerful tool available in Cisco IOS Software that
enables users to run Tcl programs/scripts or applets directly on Cisco routers or switches.
An applet is a single or series of IOS commands, similar to a macro. The support for EEM
helps users to manage Cisco devices through event detectors. Event detectors monitor
both the hardware and software components on specific platforms.

Examples of EEM functionality include the following:

■ Event detectors monitor specific conditions of the device, and based on those param-
eters, event triggers can initiate a script to perform a predefined task.

■ EEM can take actions based on syslog messages. For example, after detecting a
CPUhog syslog message, EEM could take particular show command output and
send an e-mail to the user.

■ EEM can be used to influence the route forwarding based on an IOS trigger.

EEM has the capability to trigger or initiate two unique functions:

■ Create applet policies: This is an easy-to-use interface using IOS command-line inter-
face (CLI) commands. The user does not need to know the details of a scripting lan-
guage; the familiarity with IOS is sufficient to create an applet policy.

■ Write user-defined policies with Tcl scripts: This is more flexible because it is not
constrained by IOS commands only and has extensive capabilities; however, the user
should know how to use the Tcl language.

Note Chapter 4, “Embedded Event Manager (EEM),” covers EEM in more detail.

Figure 1-1 offers a graphical example of the relationship of event detectors, EEM, Tcl
scripts, and applets.

Restriction of Tcl in IOS

Before getting into the details of writing Tcl scripts, you should be familiar with Tcl pro-
gramming and Cisco IOS commands.

Tcl code can be executed from the Tcl parser shell mode in the Cisco IOS CLI. The exe-
cution of Tcl in the CLI can be done only from privileged EXEC mode.

For example:

R1>en

Password:

R1#tclsh

R1(Tcl)#

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: The Origin of Tcl 5

Event Detectors
Watch for Events of Interest

EEM Server
Brains of the System

Policies
Actions to Take

(Tcl Script or Applet)

IOS Subsystems
Subscribes to receive

application events,
publishes application

events using
Application Specific

Event Detector

EEM Applet Policy
Subscribes to receive
events, implements

policy actions

EEM Tcl Policy
Subscribes to receive
events, implements

policy actions

Tcl Shell

Application
Specific

Event Detector

“None”
Event Detector

EEM Server

Command
Line Interface

Timer
Services Counters Syslog OIR

Interface
Counters &

Status

Embedded
Resource
Manager

Posix
Process
Manager

IOS Process
Watchdog

SNMP
Generic Online

Diagnostics
(GOLD)

Redundancy
Facility

Object Tracking

Cisco IOS Infrastructure and Network Subsystems

Event
Detectors

Figure 1-1 EEM’s Relationship with Other Functions

Certain functionality of Cisco IOS uses Tcl subsystems such as Embedded Syslog
Manager (ESM), Embedded Menu Manager (EMM), and Interactive Voice Response
(IVR). These topics are covered in greater detail in Chapter 5, “Advanced Tcl Operation in
Cisco IOS.” These subsystems integrate proprietary commands and keywords not avail-
able in a Tcl shell.

A Tcl shell can be enabled, and Tcl commands can be executed, in IOS. The Tcl interpreter
checks whether the entered Tcl commands are valid, and if so, the result is sent to the tty.
Tcl commands that are not recognized as valid are sent to the Cisco IOS CLI parser.

Tcl with EEM Support in IOS

Tcl commands from version 8.3.4 are available in Cisco IOS. Table 1-1 shows support for
Tcl with EEM in specific Cisco IOS code versions.

www.it-ebooks.info

http://www.it-ebooks.info/

6 Tcl Scripting for Cisco IOS

Platform IOS Release (Beginning With)

10000-PRE2 12.2(28)SB

10000-PRE3 12.2(31)SB2

10000-PRE4 12.2(33)SB

1700 series 12.3(14)T1

1800 series 12.3(14)YT

2600XM 12.3(14)T1

2691 12.3(14)T1

2800 series 12.3(14)T

3270 12.4(24)T

3600 series 12.3(14)T1

3700 series 12.3(14)T1

3800 series 12.3(14)T1

7200 12.2(25)S

7200-NPE-G2 12.2(31)SB2

7201 12.2(31)SB5

7301 12.2(31)SB3

7500 12.2(25)S

7600-RSP720-10GE 12.2(33)SRC

7600-RSP720/MSFC4 12.2(33)SRB

7600-SAMI 12.2(33)SRD

800 series 12.4(6)XE3

AS5350XM 12.4(20)T

AS5400XM 12.4(20)T

ASR1000-RP1 2.1.0

ASR1000-RP2 2.3.0

Cat 6500-Sup720 12.2(33)SXH

CAT3560E 12.2(35)SE1

CAT3750E 12.2(35)SE1

Table 1-1 Tcl with EEM Support by Cisco Device/IOS Release

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: The Origin of Tcl 7

Platform IOS Release (Beginning With)

CAT3750Metro 12.2(40)SE

CAT4500E-SUP6E 12.2(50)SG

CAT4948 12.2(44)SG

CAT4948-10GE 12.2(44)SG

CAT6000-SUP32/MSFC2A 12.2(33)SXH

CAT6000-VS-S720-10G/MSFC3 12.2(33)SXH

CBS3000 series 12.2(40)EX2

CBS3100 series 12.2(40)EX2

CRS-1 3.5.4

IAD2400 series 12.4(22)T

IAD2801 12.4(11)XJ2

IAD880 series 12.4(20)T

ME3400 12.2(40)SE

ME3400E 12.2(44)EY

ME4900 12.2(40)SG

ME6524 12.2(33)SXH

UBR10K-PRE2 12.2(33)SCB2

UBR10K-PRE4 12.2(33)SCB2

UBR7200 12.2(33)SCB2

UBR7200-NPE-G2 12.2(33)SCB2

UC520 12.4(20)T1

VGD-1T3 12.4(22)T

XR 12000-PRP 3.5.4

Nexus 7000 *Applets only

*Applets are covered in Chapter 4. This is not a comprehensive list. Consult the documentation
on your specific device and version requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

8 Tcl Scripting for Cisco IOS

Using Tcl Scripts in the Network

Network administrators can leverage Tcl scripts to provide enhanced functionality. Scripts
can be used for troubleshooting, monitoring, and increasing the intelligence of IOS, as
described in the sections that follow.

Troubleshooting Problems

Network administrators use different methods to analyze and troubleshoot problems in
the network. Some of these tools and technologies consist of packet-capture devices or
sniffers, Remote Monitoring (RMON) probes, NetFlow collectors, Simple Network
Management Protocol (SNMP), IP service level agreement (IP SLA) measurements, net-
work management system (NMS) tools, and so on. These tools help in gathering informa-
tion about the condition or health of the network. Collection of information is accom-
plished through the monitoring or analysis of the packet passing to or through an inter-
face. The problems that are more difficult to detect are those that do not break the net-
work or node and are often referred to as silent drops. Some of the examples of silent
drops are as follows:

■ Packets dropped because of an incorrect quality of service (QoS) implementation

■ Application slowness in the network

■ High CPU usage

■ Faulty cable infrastructure

Tcl scripts can be used to collect information based on an event. For example, if drops in
the QoS queue or drops on the interfaces increase, a script can be executed to collect the
interface statistic and send an e-mail with the pertinent information. You might find your-
self troubleshooting an issue that occurs infrequently, in which case, the capability to
execute a script to collect relevant information might just prove invaluable.

Monitoring the Network

Normally, NMS tools are used to monitor networks. NMS tools have the capability to
receive SNMP traps, configuration management information, syslog monitoring mes-
sages, interface statistics, and traffic profiles. The raw data is then presented to the user in
a graphical or user-defined format. These tools are expensive, and the cost factor mainly
depends on the network size. In small networks, network administrators can use a Tcl
script on a UNIX box to query the basic functionality of network gear. This functionality
can be used as a substitute for a more expensive NMS product; however, Tcl scripts can-
not be used to substitute an enterprise NMS solution. Tcl scripts can monitor particular
SNMP traps; perform configuration assessment; parse severity 0 (emergencies), 1 (alerts),
and 2 (critical) syslog information; and monitor the traffic profile for the local node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1: The Origin of Tcl 9

Adding Intelligence to Cisco IOS Protocols

While designing networks, you may need to address a predetermined requirement, or you
might need to address a requirement change because of new applications or services
(sometimes referred to as scope creep). For example, when designing a network using
Open Shortest Path First (OSPF), a remote site might have a requirement to load balance
or install routes based on specific conditions. This requirement might need to be accom-
plished using features unavailable with OSPF. As a network administrator, you can create
a Tcl script that aligns itself to the routing features of OSPF and uses other IOS features
to influence the routing decision on how the packets are sent. Tcl script examples are
included in Chapter 6, “Tcl Script Examples.”

Summary

As you read through this chapter, you might have already begun thinking of applications that
you could create to make managing your network infrastructure much easier using Tcl scripts.
This could be task automation, building a user interface for the help desk, or notification of a
change or problem in the network.

Our intent is for this first chapter to pique your interest in developing your own Tcl scripts.
Now, continue reading. The following chapters walk you through the process of becoming an
efficient Tcl programmer.

References

Tcl Developer Xchange: http://www.tcl.tk

EEM: http://www.cisco.com/go/eem

IP SLA: http://www.cisco.com/go/ipsla

RFC 1157, Simple Network Management Protocol (SNMP):
http://tools.ietf.org/html/rfc1157

RFC 3577, Introduction to the Remote Monitoring (RMON) Family of MIB Modules:
http://www.ietf.org/rfc/rfc3577.txt

RFC 3954, Cisco Systems NetFlow Services Export Version 9:
http://www.ietf.org/rfc/rfc3954.txt

“History of Tcl”: http://home.pacbell.net/ouster/tclHistory.html

www.it-ebooks.info

http://www.tcl.tk
http://www.cisco.com/go/eem
http://www.cisco.com/go/ipsla
http://tools.ietf.org/html/rfc1157
http://www.ietf.org/rfc/rfc3577.txt
http://www.ietf.org/rfc/rfc3954.txt
http://home.pacbell.net/ouster/tclHistory.html
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Tcl Interpreter and Language
Basics

This chapter covers the following topics:

■ Simple Variables in Tcl

■ Procedures

■ Arrays

■ if Command

■ switch Command

■ Files

This is where the rubber meets the road. Without a fundamental understanding of the
command syntax, you will be unsuccessful in writing any programs whatsoever. Reading
and attempting to memorize command syntax can be arduous and boring. To really get an
idea of how to use commands in this chapter, a better solution is to use them in practice.

Tcl interpreters are supported on Mac, UNIX/Linux, Windows, and other operating sys-
tems. You can visit the Tcl Developer Xchange website at http://www.Tcl.tk/ or perform a
search for the latest Tcl interpreters.

Note To determine the version of Tcl you are using on your IOS device, use the following
commands:

Router#tclsh

Router(tcl)#info patchlevel

8.3.4

www.it-ebooks.info

http://www.Tcl.tk/
http://www.it-ebooks.info/

12 Tcl Scripting for Cisco IOS

Note The examples in this chapter were created using Tcl version 8.3.4.

Simple Variables in Tcl

A variable is data (information) stored in memory and referenced by a name. Variables are
one of the fundamental building blocks of any programming language. Many types of
information can all be stored in a variable, including an input received from the keyboard,
external I/O card, other applications, or a placeholder for the results of an equation. In
addition, variables can be referenced later for display or further processing. Strings are
ordered sets of characters or symbols.

Note Tcl supports only the single data type of a string. Many other programming lan-
guages require the initialization and specification of variables used when programming (for
example, integers, characters, long integers). This makes the process of assigning variable
types much simpler in Tcl.

Storing Variables

Storing variables in the Tcl interpreter is accomplished using the set command.

For example, to store the value of 100 in the variable x, enter the following:

Router(tcl)#set x 100

100

To use the value of a variable in a script, you must precede the variable with the dollar
symbol, $. In the example that follows, the command expr evaluates the expression and
returns the result. The expr command performs mathematical computations, comparison
of operands, conditional checks, and so on. Because x has a value of 100 and 10 was
added, the result is 110:

Router(tcl)#expr $x+10

110

Table 2-1 provides some examples of setting variables. Consider practicing storing some
variables to get a better understanding of how they can be referenced.

Table 2-1 Storing Values in a Variable

Variable Result

set x 100 100

set y x X

set y $x 100

set y $x+$x+$x 100+100+100

set y $x.3 100.3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Tcl Interpreter and Language Basics 13

Did you expect a different result from the variable set y $x+$x+$x? Remember that the
set command is used to store variables and not perform any mathematic functions.

Viewing Variables

Viewing variables in the Tcl interpreter is accomplished using the puts command. There
are three standard channels: stdin, stdout, and stderr. The default channel stdout pro-
vides the output to the display.

For example, to print the value of x on the screen, use the puts command as follows:

Router(tcl)#puts $x

100

Did you notice that the variable x was preceded with a $ symbol? If you forget, the out-
put will be x. In this case, the output is the value stored in x, which is 100.

The append Command

The append command is another key feature used in Tcl to append or concatenate
strings. The next example assigns strings to two variables, a and b, and displays the out-
put on the screen:

Router(tcl)#set a “This is my”

This is my

Router(tcl)#set b “ favorite book”

favorite book

Router(tcl)#append a $b

This is my favorite book

Router(tcl)#puts $a

This is my favorite book

The append command is useful to add a command-line interface (CLI) statement.

Do you remember your high school math class? The teacher would always have you solve
equations the hard way and then show you the easy method. As a shortcut, you can also
use the following command with the previously defined variables:

Router(tcl)#puts “ab”

This is my favorite book

The incr Command

The incr command is used to increment or add 1 to an integer variable in a Tcl script, and
is especially helpful when loops are being used. The following is a simple example of
incrementing a variable:

www.it-ebooks.info

http://www.it-ebooks.info/

14 Tcl Scripting for Cisco IOS

Router(tcl)#set x 1

1

Router(tcl)#incr x

2

The incr command can also be used with a numeric value. The expression will be evaluat-
ed with either positive or negative values, as shown:

Router(tcl)#set x 10

10

Router(tcl)#incr x -2

8

Router(tcl)#incr x 13

21

Note The incr command is applicable only for numeric values.

You can also use the expr command to accomplish the same result, but notice that it does
require some additional characters and will make the script slightly more difficult to read. The
next example provides the same results using the expr command:

Router(tcl)#set x 1

1

Router(tcl)#expr $x+1

2

Representation of Variables in Tcl

A few key elements necessary for scripting in Tcl are as follows:

■ Words: White space separates words in a command.

■ Double quotes: If the first character of a word is double quote (”), the word is termi-
nated by the next double-quote character. Quotes allow for substitutions within a
group.

■ Braces: An open brace ({) needs to be matched by a close brace (}), and do not allow
substitutions within a group.

Command Substitution

The open bracket ([) is used for command substitution. This is done by invoking the Tcl
interpreter to process the characters between the open and closed brackets (]).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Tcl Interpreter and Language Basics 15

Note Command and variable substitution is not performed by words in braces.

Variable Substitution

When a variable is preceded by a dollar sign ($), the Tcl interpreter will execute the con-
tents of the entire variable, by dereferencing the contents of the variable. Variable substi-
tution can take any of the following forms:

■ $name: The name is a sequence of one or more characters that are a alphanumeric,
underscore, or namespace separators. Anything other than :: can be used.

■ $name(index): The name denotes the name of the variable (obviously), and the
index provides the name of an element within that array. Scalar variables contain
strings (for example, a list).

The following example uses an array variable called x, which contains multiple subele-
ments. The index of 1 is used to store 100:

Router(tcl)#set x(1) 100

100

The index of 2 is used to store 200:

Router(tcl)#set x(2) 200

200

The variables are displayed using the puts command:

Router(tcl)#puts $x(1)

100

Router(tcl)#puts $x(2)

200

Note If you are still using the variable x from an example, you might receive the follow-
ing message: “Cannot set “x(1)”: variable is not array.” In this case, you can use the unset
command as follows, or exit the Tcl shell using the exit command and return using the
tclsh command:

Router(tcl)#unset x

www.it-ebooks.info

http://www.it-ebooks.info/

16 Tcl Scripting for Cisco IOS

Index values of an array are not limited to numeric values. The following uses y to store the
value of 1000:

Router(tcl)#set x(y) 1000

1000

The output of $x(y) is 1000:

Router(tcl)#puts $x(y)

1000

Alternatively, and in more common practice, you can use numeric values as index vari-
ables, as shown in the following example:

Router(tcl)#set x(23) 1000

1000

The output of $x(y) is 1000:

Router(tcl)#puts $x(23)

1000

Lastly, if an element in the array has not been initialized, you will get an error when you
attempt to reference it. The following message will display. In this case, you have not ini-
tialized the index of 3:

Router(tcl)#puts $x(3)

cannot read “x(3)”: no such element in array

For ${name}, the name can contain any characters whatsoever, except for closed braces.
For example, you could use the entire string of I love-this book! @@ as a variable:

Router(tcl)#set {I_love-this book! @@} WOW

WOW

Router(tcl)#puts ${I_love-this book! @@}

WOW

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Tcl Interpreter and Language Basics 17

Note There might be any number of variable substitutions in a single string. A string
enclosed in braces is considered one element of the string.

For example:

Router(tcl)#set x substitution

substitution

Router(tcl)#puts “Quotes with $x”

Quotes with substitution

Router(tcl)#puts {Curly braces with $x}

Curly braces with

$x

Lists

A list is not a new data type but a collection of values separated by white space. An
example of a list is as follows:

Router(tcl)#list red green blue orange purple black

red green blue orange purple black

You can also use the set command:

Router(tcl)#set COLORS “red green blue orange purple black”

red green blue orange purple black

Lists can be manipulated in different ways. Some of the more common methods that will
be explained are as follows:

■ lappend

■ lindex

■ linsert

■ llength

■ lrange

■ lreplace

■ lsearch

■ lset

■ lsort

www.it-ebooks.info

http://www.it-ebooks.info/

18 Tcl Scripting for Cisco IOS

lappend

This command appends a variable to a string. The lappend command is similar to
append, except with lappend, elements are added to the list separated with white space.
These values can be manipulated with the previously mentioned list-related commands, as
compared to append where the values are added to the string.

The following example describes the use of lappend:

Router(tcl)#lappend tcl_book this book

this book

Router(tcl)#lappend tcl_book is great

this book is great

Router(tcl)#puts $tcl_book

this book is great

lindex

The command lindex returns an element from a list, but does not change the list. Using
lindex, the specified element in the list is extracted, as follows:

Router(tcl)#set $tcl_book “this book is great”

this book is great

Router(tcl)#index $tcl_book 3

great

As seen from the output, the third element from the list is extracted, with the following
command showing that the string has not changed:

Router(tcl)#puts $tcl_book

this book is great

linsert

The linsert command enables you to insert new elements in a list. These new elements
can either be inserted before or after any element in the list.

Consider this continuation of the previous example:

Router(tcl)#puts $tcl_book

this book great

Router(tcl)#set tcl_book [linsert $tcl_book 2 is]

this book is great

Router(tcl)#puts $tcl_book

this book is great

This example used the tcl_book list, and added an element to the second position. The
elements in the string are counted from the left, starting with 0. Because we used 2, the is
would be inserted between book and great.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Tcl Interpreter and Language Basics 19

llength

The llength command enables you to count the number of elements in a list.

Consider this continuation of the previous example:

Router(tcl)#puts $tcl_book

this book is great

Router(tcl)#llength $tcl_book

4

Notice that this command provides and actual count of the number of elements.

lsearch

The lsearch command enables you to search a list for a pattern match. The following
example will attempt to search for the letter i in the string:

Router(tcl)#puts $tcl_book

this book is great

Router(tcl)#lsearch $tcl_book i

-1

The -1 indicates that a match was not found. In looking at the list, you can clearly see that
there is an i in this and is. What happened?

The lsearch command is looking for an exact match. When attempting to match an entire
element, as the following example shows, a match will be found in element 2. Remember
0, 1, 2:

Router(tcl)#lsearch $tcl_book is

2

If you were interested in locating the first occurrence of the letter i, you could use a reg-
ular expression, as follows:

Router(tcl)#lsearch -regexp $tcl_book i

0

The 0 indicates that i is present in the first element.

The lsearch command has three options that you can use:

■ -exact: The list element must contain exactly the same string as the pattern.

■ -glob: The pattern is a glob-style pattern that is matched against each list element
using the same rules as the string match command.

■ -regexp: The pattern is treated as a regular expression and matched against each list
element using the rules described in the re_syntax reference page
(http://www.tcl.tk/man/tcl8.3/TclCmd/re_syntax.htm).

www.it-ebooks.info

http://www.tcl.tk/man/tcl8.3/TclCmd/re_syntax.htm
http://www.it-ebooks.info/

20 Tcl Scripting for Cisco IOS

Note Regular expressions provide a method of matching strings through patterns and are
commonly used when configuring Border Gateway Protocol (BGP) to match attributes in
routing information. Many books and much material online have been published on regular
expressions, and that particular topic is beyond the scope of this book.

lreplace

The lreplace command enables you to replace an element or elements in a list. As you will
see in the example, elements can be added or removed.

The following example changes the list from this book is great to this book is really
awesome, by starting (the first instance of 3) and ending with the third (3 3) element (the
second instance of 3) great. Remember that the count starts with 0:

Router(tcl)#puts $tcl_book

this book is great

Router(tcl)#set tcl_book [lreplace $tcl_book 3 3 really awesome]

this book is really awesome

This next command manipulates the third and fourth (3 4) elements, by replacing both
really and awesome with spectacular:

Router(tcl)#set tcl_book [lreplace $tcl_book 3 4 spectacular]

this book is spectacular

lrange

The lrange command selects a contiguous group of elements from a list based on the
starting and ending index values.

The following example changes the tcl_book string from four elements to two. The ele-
ment values of 2 and 3 specify the range. In this case, it is the last two elements in the
string, is spectacular:

Router(tcl)#puts $tcl_book

this book is spectacular

Router(tcl)#set tcl_book [lrange $tcl_book 2 3]

is spectacular

lsort

The lsort function arranges elements within a list based on the following parameters in
Table 2-2.

The lsort command enables you to arrange strings of text, as shown in the following
example:

Router(tcl)#puts $tcl_book

this book is spectacular

Router(tcl)#set tcl_book [lsort $tcl_book]

book is spectacular this

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Tcl Interpreter and Language Basics 21

Table 2-2 lsort Parameters

Options for lsort Explanation

-ascii Use a string comparison with Unicode code. This is the default.

-dictionary Use dictionary-style comparison.

-integer Use integer comparison

-real Convert elements in a list to floating-point values and use floating
comparison.

-command Use command as a comparison. Used to evaluate Tcl scripts consisting
of commands with the elements appended as additional arguments.

-increasing Sort the list in ascending order, which means smallest items first. This
is the default.

-decreasing Sort the list in decreasing order, which means largest items first.

-index Sort based on the specified element.

-unique Only the last set of duplicate elements will be kept.

The output of lsort is used to modify the original string in alphabetic order.

This next example shows how numeric values (integers) in a string can be sorted from
largest to smallest:

Router(tcl)#set numbers “34 2 42 9 192 3 8”

34 2 42 9 192 3 8

Router(tcl)#lsort -integer -decreasing $numbers

192 42 34 9 8 3 2

As you can see from the output, it worked as advertised. You might also notice that the
lsort command was used alone. Any of the previous list-related commands can be used in
conjunction with other commands or by itself. In this example, the output is sent only to
the screen and not stored as another variable or modified the original variable.

Procedures

A procedure can be called in a Tcl script using the proc command. When the procedure
is invoked, the contents will be executed by the Tcl interpreter.

The syntax for the proc command includes the following arguments:

proc name args body

www.it-ebooks.info

http://www.it-ebooks.info/

22 Tcl Scripting for Cisco IOS

In the following example, the procedure myproc is called. A for loop executes until vari-
able z is less than 10 (variable z is initialized to 0):

Router(tcl)#proc myproc {} {

puts “this is myproc”

}

% set z {0}

0

Router(tcl)#puts $z

0

Router(tcl)#for {set z 0} {$z<10} {incr z} {

myproc

}

this is myproc

this is myproc

this is myproc

this is myproc

this is myproc

this is myproc

this is myproc

this is myproc

this is myproc

this is myproc

The result, this is myproc, is printed 10 times on the screen, starting at 0 and ending at 9.

for Command

The for command enables you to perform repetitive procedures to minimize the number
of lines in a Tcl script. When this command is invoked, it evaluates an expression, and
based on that condition, the body of the program is executed. This is similar to the for
statement in the C programming language.

The syntax for the for command includes the following arguments:

for start test next body

In the following example

■ start sets the variable z to 0.

■ test evaluates the variable to determine whether it is less than 3 (if not, the for loop
ends).

■ next increments the variable z.

■ body displays variable z along with the text Enjoy your reading, using the puts
command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Tcl Interpreter and Language Basics 23

Router(tcl)#for {set z 0} {$z<3} {incr z} {

+>puts “ $z. Enjoy your reading”

+>}

0. Enjoy your reading

1. Enjoy your reading

2. Enjoy your reading

As an alternative, the commands can also be placed on a single line, as follows:

Router(tcl)#for {set z 0} {$z<3} {incr z} {puts “ $z. Enjoy your reading”}

0. Enjoy your reading

1. Enjoy your reading

2. Enjoy your reading

foreach Command

The foreach command is also used to execute loops in Tcl scripts, and can be directed to
one or more lists. A counter is not required to keep track of foreach loops. This is done
internally, and as long as there are elements left in the list, the loop will continue.

The syntax for the foreach command includes the following arguments:

foreach varList list ?varList list ...? command

In the following example, we place several elements in a list that represents router names
and the CPU utilization collected twice:

Router(tcl)#set cpuinfo {r1 50 90 r2 20 10 r3 17 21}

r1 50 90 r2 20 10 r3 17 21

With that information entered into the cpuinfo list, we will parse through the list and
glean the router name and the CPU information. We will then take an average of the first
and second CPU values (divide by 2) and display the information:

Router(tcl)#foreach {router CPU1 CPU2} $cpuinfo { set CPUavg [expr ($CPU1

+$CPU2)/2] ; puts “$router $CPUavg” }

r1 70.0

r2 15.0

r3 19.0

From the output, you can see that the average utilization of r1 was 70 percent, r2 was 15
percent, and r3 was 19 percent.

while Command

The while command is also used to create loop functions in Tcl scripts. The command
evaluates a test expression, and based on the result of the expression, the body is
executed. When the test expression is no longer true, the loop is complete.

www.it-ebooks.info

http://www.it-ebooks.info/

24 Tcl Scripting for Cisco IOS

The syntax for the while command contains only two arguments:

while test command

In the example that follows, the variable y is initialized to 0. The while loop runs while
the variable y is less than 5. The body executes the expression (expr) of multiplying vari-
able y by 2, and displays that information. Finally, variable y is incremented by 1 before
the script performs the evaluation test:

Router(tcl)#set y 0 ; while {$y < 5} { set T [expr ($y*2)] ; puts “$y. twice $y

is $T” ;

incr y }

0. twice 0 is 0

1. twice 1 is 2

2. twice 2 is 4

3. twice 3 is 6

4. twice 4 is 8

Arrays

Arrays are a structured collection of variables. The array command provides a way to
access the information stored within the array.

The syntax for the array command is as follows:

array option arrayName ?arg arg ...?

The example that follows begins by creating an array and populating the variables with
the interface names along with the bits/second count:

Router(tcl)#set InterfaceCount(GigabitEthernet0/0) {221343 39387 313423}

382212 5133 125233

Router(tcl)# set InterfaceCount(GigabitEthernet0/1) {221343 39387 313423}

221343 39387 313423

Router(tcl)#set InterfaceCount(Serial0/0/0) {336373 383 27383}

336373 383 27383

Using the get command, you can display the entire array:

Router(tcl)#array get InterfaceCount

GigabitEthernet0/0 {382212 5133 125233} GigabitEthernet0/1 {382212 5133 125233}

Serial0/0/0 {336373 383 27383}

The variables associated with an element can also be displayed:

Router(tcl)#array get InterfaceCount Serial0/0/0

Serial0/0/0 {336373 383 27383}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Tcl Interpreter and Language Basics 25

The count of the number of items within the array can be viewed with the following
command:

Router(tcl)#array size InterfaceCount

3

There are three elements within the array:

■ GigabitEthernet0/0

■ GigabitEthernet0/1

■ Serial0/0/0

You can also search through the array; however, a token must be generated as the first
step in the process. You can do so using the following command:

Router(tcl)#array startsearch InterfaceCount

s-1-InterfaceCount

Depending on how many times you generate a token and what the array name is, you will
receive a different output. In a “real” script, this is a good opportunity to store it as a vari-
able for future reference.

Using the previously generated token, you can begin searching through the list using the
nextelement command:

Router(tcl)#array nextelement InterfaceCount s-1-InterfaceCount

GigabitEthernet0/0

To determine whether the array contains additional elements, use the anymore command,
as follows:

Router(tcl)#array anymore InterfaceCount s-1-InterfaceCount

1

The result of 1 indicates that other elements are available.

You would use the nextelement command to display the next element in the array:

Router(tcl)#array nextelement InterfaceCount s-1-InterfaceCount

GigabitEthernet0/1

To terminate the search, use the donesearch command with the token. This command
destroys all state information associated with the search:

Router(tcl)#array donesearch InterfaceCount s-1-InterfaceCount

Lastly, you have the capability to remove elements from the array using the unset com-
mand. For example, you can remove the element GigabitEthernet0/1 as follows:

Router(tcl)#array unset InterfaceCount GigabitEthernet0/1

www.it-ebooks.info

http://www.it-ebooks.info/

26 Tcl Scripting for Cisco IOS

You can see that the element GigabitEthernet0/1 has been removed from the array:

Router(tcl)#array get InterfaceCount

GigabitEthernet0/0 {382212 5133 125233} Serial0/0/0 {336373 383 27383}

Router(tcl)#

To see a list of the names of all the elements in an array, use the names command:

Router(tcl)#array names InterfaceCount

GigabitEthernet0/0 Serial0/0/0 GigabitEthernet0/1

Router(tcl)#

if Command

The if command evaluates an expression in a Tcl script, resulting in a Boolean value. If
the value of the expression is true, the block of code is executed. If the value is false, the
code block is ignored and another code block is executed.

The following example sets the variable drops to 0 and uses an if-else statement to verify the
value.

Router(tcl)#set drops {0}

0

In the following statements, the if command checks whether the values of drops is
absolutely equal to 0. In this case, the evaluation is true, and the puts command display-
ing interface has no drops, and the value is 0 is executed, and the else section of the
script is never executed:

Router(tcl)#if {$drops == 0} {

puts “interface has no drops, and the value is $drops”

} else {

puts “interface has drops and the value for the drops is $drops”}

interface has no drops, and the value is 0

In this example, the value of drops will be set to 23:

Router(tcl)#set drops {23}

23

Because the value of drops is not absolutely equal to 0, the else statement is evaluated
and the output of the puts command is interface has drops and the value for the drops
is 23:

Router(tcl)#if {$drops == 0} {

puts “interface has no drops, and the value is $drops”

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Tcl Interpreter and Language Basics 27

} else {

puts “interface has drops and the value for the drops is $drops”}

interface has drops and the value for the drops is 23

switch Command

The switch command is a powerful conditional command in the Tcl scripting language.
This command evaluates a pattern match on a string and runs the associated commands.
The default variable can be used to run a command set in the event that there was not a
specific string match.

The syntax for the switch command is as follows:

switch ?switches? string pattern body ... ?default body?

The ?switches? parameter consists of the following options:

■ -exact: Compares the exact string pattern and is the default match pattern used.

■ -glob: Matches filenames.

■ -regexp: Matches regular expression match criteria.

The following example sets the value of drops to 1 and uses the switch command to eval-
uate the condition:

Router(tcl)#set drops 1

Using the switch command, the evaluation matches 1 and the put command displays a 1:

Router(tcl)#switch $drops {

”0” {

puts “0”

}

“1” {

puts “1”

}

default {

puts “default”

}

}

1

Any value other than a 0 or 1 will cause the default section to execute. It is a good prac-
tice to always include the default in all case statements, because if no matching value is
found, an empty string is returned.

In Tcl, no break statement is needed, and each case will not result in a fall through as it
does in the C programming language.

www.it-ebooks.info

http://www.it-ebooks.info/

28 Tcl Scripting for Cisco IOS

Files

Opening a file inside a program, or script in this case, requires much more attention to
detail! Not only do you have to open the file for reading/writing, but you need to make
sure that you close the file when you are finished with it; otherwise, you will waste
resources. In addition, when a file is open, you have to know the location of the pointer
to either read from or write to the contents.

The following example takes you through several commands in listing files, creating a file,
writing information to that file, reading the contents, moving the pointer, closing the file,
and finally deleting the file.

The first example begins by getting a list of the files that currently exist in the flash: file
system of the router. You can do so using the dir command, which provides a list of files
in the specified directory:

Router(tcl)#dir flash:

Directory of flash:/

1 -rw- 31261340 Dec 31 1983 00:01:00 +00:00 c2800nm-ipbasek9-mz.124-

24.T1.bin

2 -rw- 3660 Jul 21 2009 20:28:04 +00:00 interface_errors_email.tcl

Note The dir command is not a Tcl command. This is an example where the Tcl inter-
preter does not recognize the command and so sends it to the Cisco IOS exec-mode parser.

The output indicates that there are two files: the IOS image and a file called
interface_errors_email.tcl. Notice on the left the letters rw. This indicates that the files can be
opened for reading or writing. The file size is also shown, along with the creation date.

Next, create a file called IntStats.dat, which will be used to store information about (you
guessed it) interface statistics. When opening a file, you have several options, including
the following:

■ r: Open for reading

■ r+: Open for reading and writing

■ w: Open for writing, overwrite existing file, or create a new one

■ w+: Open for reading and writing, overwrite existing file, or create a new one

■ a: Open for writing and append to file

■ a+: Open for reading and writing and append to file

The following example creates a file called IntStats.dat for writing and declares a variable
called IntStats to reference the open file handle:

Router(tcl)#set IntStats [open IntStats.dat w]

file7

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Tcl Interpreter and Language Basics 29

Using information from the example on arrays, you will populate the file:

Router(tcl)#puts $IntStats “GigabitEthernet0/0 {382212 5133 125233}”

Router(tcl)#puts $IntStats “GigabitEthernet0/1 {382212 5133 125233}”

Router(tcl)#puts $IntStats “Serial0/0/0 {336373 383 27383}”

Notice that the puts command is used to send information to the file rather than to the terminal.

To close the file, enter the following:

Router(tcl)#close $IntStats

To verify that the file has been created, enter the following:

Router(tcl)#dir flash:

Directory of flash:/

1 -rw- 31261340 Dec 31 1983 00:01:00 +00:00 c2800nm-ipbasek9-mz.124-

24.T1.bin

2 -rw- 3660 Jul 21 2009 20:28:04 +00:00

interface_errors_email.tcl

4 -rw- 111 Jul 28 2009 04:02:42 +00:00 IntStats.dat

31885312 bytes total (616448 bytes free)

The file IntStats is in the flash: directory with a file size of 111 bytes.

To open the file you just created for reading only, use the r option:

Router(tcl)#set IntStats [open IntStats.dat r]

file7

Now you can get some data from the open file using the gets command as demonstrated
in the following example, and place that information in the variable data:

Router(tcl)#gets $IntStats data

39

What in the world is 39? That is not the data that you stored! The number 39 indicates
where the pointer resides in the file. Look at the collected data using the puts command:

Router(tcl)#puts $data

GigabitEthernet0/0 {382212 5133 125233}

As you can see from the output, you have just the first line of data. If you count the
number of characters starting from the left (do not forget to start with 0), you will see
that you collected 38 characters plus newline (\n).

You can also determine where the pointer is by using the tell command as follows:

Router(tcl)#tell $IntStats

40

www.it-ebooks.info

http://www.it-ebooks.info/

30 Tcl Scripting for Cisco IOS

Now that you know the pointer is on the first character of the second line, you can gather
some additional information using the read command. In this case, get the next 18 bytes:

Router(tcl)#read $IntStats 18

GigabitEthernet0/1

No surprise here: The output is GigabitEthernet0/1, as expected.

With the read command, you can read the rest of the file, as follows:

Router(tcl)#read $IntStats

{382212 5133 125233}

GigabitEthernet0/1 {382212 5133 125233}

Now when you check to see where the pointer is, you can see that it is at the end of the
file (EOF):

Router(tcl)#tell $IntStats

111

The file pointer can be moved to any location using the seek command. To direct the
pointer to the beginning of the file, use the following command statement:

Router(tcl)#seek $IntStats 0

Note Not all Cisco IOS File System (IFS) devices support the seek operation. Some older
flash types might not be supported.

You can use other methods covered earlier in the chapter to manipulate or search through the
file for specific information.

When you have finished pulling information from the file, you should close it. Otherwise,
you are wasting valuable memory resources. To close the file, simply use the following
command:

Router(tcl)#close $IntStats

Finally, when you need to delete file, use the following command (with extreme caution):

Router(tcl)#file delete IntStats.dat

This should really be said for any of the file commands. You could inadvertently open or
overwrite the IOS image or other files located on the flash, so always use care when
manipulating files. In addition, files can be opened on remote devices. For example, you
can open a file on a TFTP server using the following command:

Router(tcl)#open tftp://192.168.0.182/file.dat “w”

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2: Tcl Interpreter and Language Basics 31

Summary

One of the best ways to familiarize yourself with the commands and procedures discussed in
this chapter is hands-on practice. If you do not have access to a router, you can perform most
of what you previously read about on your own personal computer. Just install the appropri-
ate Tcl shell software if it is not already there.

One last note of caution: When cutting and pasting information into a Tcl shell, you might be
challenged with formatting errors. For example, quotes might not paste properly and may
cause some interesting issues.

References

Tcl Command Reference: http://www.tcl.tk/man/tcl8.3/TclCmd/contents.htm

www.it-ebooks.info

http://www.tcl.tk/man/tcl8.3/TclCmd/contents.htm
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Tcl Functioning in Cisco IOS

This chapter covers the following topics:

■ Understanding the Tcl Interpreter in Cisco IOS

■ Using Tcl to Enter Commands

■ Copying a Tcl Script to an Cisco IOS Device

■ Using Tcl to Examine the Cisco IOS Device Configuration

■ Using Tcl to Modify the Router Configuration

■ Using Tcl with SNMP to Check MIB Variables

Tcl operates as a process within IOS. It provides the capability of running Tcl scripts
natively within IOS. As you will discover throughout this book, Tcl scripts can simplify
repetitive tasks, automate processes, provide notification about specific events, or even
be used to create a graphical user interface (GUI). Tcl is one of those tools that you need
to have readily available in your tool bag. The more you understand how to leverage Tcl,
the more powerfully it will enable you to operate and troubleshoot your network infra-
structure. Tcl interpreters might be in several processes depending on the features being
used. A Tcl shell can spawn a server process for each vty entering tclsh parser mode.
Interactive Voice Response (IVR) maintains a cache of Tcl interpreters/processes to
service incoming calls.

Understanding the Tcl Interpreter in Cisco IOS

The Tcl interpreter is available for use in certain IOS software images. See Table 1-1 in
Chapter 1, “The Origin of Tcl,” to determine which platform and IOS images are support-
ed, or see the appropriate documentation for the specified device. You can also verify
that the image you are using has the Tcl interpreter by just entering the command tclsh at
the router prompt. Be sure that you are first in enable mode, which you can determine by
looking at the command prompt:

www.it-ebooks.info

http://www.it-ebooks.info/

34 Tcl Scripting for Cisco IOS

Router>

! this is not yet in enable mode

Router>enable

Router#

! now we have entered enable mode

You might also be required to enter the enable mode password or username and pass-
word if additional authentication has been configured.

To check whether the Tcl interpreter is present, enter tclsh and observe if the command
prompt changes:

Router#tclsh

Router(tcl)#

You can now see the command prompt has changed to show that you are in Tcl mode.
Commands entered at the (tcl) prompt will be first handled by the Tcl interpreter, if it
understands them. If the Tcl interpreter does not understand the commands, they will be
passed along to the device’s normal command handler.

Lastly, you can do an alternative check to see whether the image you are running has the
Tcl interpreter, without actually entering the Tcl interpreter. Use the following command:

Router#show subsys name tcl

Name Class Version

tcl Library 2.000.001

In the preceding example, you can see the Tcl library is present. This means the device
software version you are using does have the capability to run the Tcl interpreter. If the
device does not have a Tcl interpreter, the output would appear as follows:

Router#show subsys name tcl

Name Class Version

Using Cisco IOS Exec-Mode Parser in the Tcl Shell

The Tcl shell is not only used to process Tcl commands on Cisco IOS, it can also be use
to send commands to the Cisco IOS exec-mode parser. As stated previously, all com-
mands are first handled by the Tcl interpreter, unless the interpreter does not recognize
the command. In that case, the command is passed along to the IOS command handler.
The following examples explain how the interpreter functions.

Enter info at the Tcl command interpreter prompt, as follows:

Router(tcl)#info

wrong # args: should be “info option ?arg arg ...?”

Notice that you have provided the proper Tcl command, but have neglected to enter the
appropriate options for which Tcl is looking. In this case, Tcl provides a brief help string
about what went wrong.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Tcl Functioning in Cisco IOS 35

In this example, you see that info must be followed by a valid option or options. If you
are not familiar with all the options, you can simply enter one and see how it works. This
example arbitrarily uses the word games as an option, as follows:

Router(tcl)#info games

bad option “games”: must be args, body, cmdcount, commands, complete, default,

exists, globals,

hostname, level, library, loaded, locals, nameofexecutable, patchlevel, procs,

script, sharedlibextension, tclversion, or vars

The output of the Tcl interpreter has provided all the possible options associated with the
base command. As you can see, you have quite a few choices!

The next example uses the option tclversion to display the current version:

Router(tcl)#info tclversion

8.3

If you are interested in more detailed information about the patch level of the Tcl inter-
preter, you can choose the patchlevel option, as follows:

Router(tcl)#info patchlevel

8.3.4

From the preceding output, you can see that the router has patch level 8.3.4 of the Tcl
interpreter.

Note There were also a few images that contained code for parser mode in Tcl 7.1,
although this was not officially supported.

Entering an IOS Command into the Tcl Command Interpreter

Now that you have seen how a Tcl command behaves, you will next see how an IOS com-
mand that is entered into the Tcl command interpreter can be used. If the command is not
recognized by the Tcl interpreter, it is passed along to the standard IOS command proces-
sor. This is similar to how Tcl behaves in a host-based environment.

The following IOS command, used to view the IP status of the interfaces, is entered into
the Tcl command interpreter:

Router(tcl)#show ip interface brief

Interface IP-Address OK? Method Status Protocol

Ethernet0/0 192.168.1.1 YES manual up up

Ethernet0/1 10.0.0.1 YES manual administratively down down

Ethernet0/2 unassigned YES NVRAM administratively down down

Ethernet0/3 unassigned YES NVRAM administratively down down

www.it-ebooks.info

http://www.it-ebooks.info/

36 Tcl Scripting for Cisco IOS

In the preceding example, the IOS command show ip interface brief is not understood by
the Tcl interpreter, even though it was entered at the (tcl) prompt. Because the command is
not understood, it is passed to the normal IOS command handler, which provides the results.

As you can see, the ability to have commands “fall through” to the underlying operating
system can be powerful. This is quite handy for collecting information from the router
and acting on the output within a Tcl script. (You are probably already thinking of all the
intelligent Tcl scripts that you could write.)

Using Tcl to Enter Commands

This section covers how to write a script that collects the output from an IOS command
so that you can make a decision based on the output.

Suppose you want to know whether the router has any interfaces with an IP address in
the 10.0.0.0/24 network.

Although commands that the Tcl interpreter does not recognize are passed along to the
normal IOS interpreter, you do not have to or should not rely on this, because it will con-
sume additional processing resources. If you know in advance that you want to send the
command directly to the IOS command processor, you can use a special Tcl command
named exec. To pass a command directly to the IOS command processor while in the Tcl
shell, enter the command in quotes after the Tcl exec command:

Router(tcl)#exec “show ip interface brief”

Interface IP-Address OK? Method Status Protocol

Ethernet0/0 192.168.1.1 YES manual up up

Ethernet0/1 10.0.0.1 YES manual administratively down down

Ethernet0/2 unassigned YES NVRAM administratively down down

Ethernet0/3 unassigned YES NVRAM administratively down down

Although you are still in the Tcl shell, the output of the show ip interface brief command
is displayed.

To save the output of the command, the collected information can now be stored in a
variable, namely mybuffer, as the following example shows:

Router(tcl)#set mybuffer [exec “show ip interface brief”]

Interface IP-Address OK? Method Status Protocol

Ethernet0/0 192.168.1.1 YES manual up up

Ethernet0/1 10.0.0.1 YES manual administratively down down

Ethernet0/2 unassigned YES NVRAM administratively down down

Ethernet0/3 unassigned YES NVRAM administratively down down

Router(tcl)#

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Tcl Functioning in Cisco IOS 37

Note You can suppress the output of the command results using the log_user command.
To suppress the results, use the follow command:

Router(tcl)#log_user 0

0

Note To display the results (default behavior), use the following command:

Router(tcl)#log_user 1

1

You can verify that mybuffer contains the contents you are interested in. The Tcl com-
mand puts will display the contents of any text buffer:

Router(tcl)#puts $mybuffer

Interface IP-Address OK? Method Status Protocol

Ethernet0/0 192.168.1.1 YES manual up up

Ethernet0/1 10.0.0.1 YES manual administratively down down

Ethernet0/2 unassigned YES NVRAM administratively down down

Ethernet0/3 unassigned YES NVRAM administratively down down

Now that the command has been captured in a buffer, you can run a Tcl command
against it for further processing.

The following command determines how many bytes are contained in the string:

Router(tcl)#string bytelength $mybuffer

430

All the characters can be changed to uppercase, as follows:

Router(tcl)#string toupper $mybuffer

INTERFACE IP-ADDRESS OK? METHOD STATUS PROTOCOL

ETHERNET0/0 192.168.1.1 YES MANUAL UP UP

ETHERNET0/1 10.0.0.1 YES MANUAL ADMINISTRATIVELY DOWN DOWN

ETHERNET0/2 UNASSIGNED YES NVRAM ADMINISTRATIVELY DOWN DOWN

ETHERNET0/3 UNASSIGNED YES NVRAM ADMINISTRATIVELY DOWN DOWN

www.it-ebooks.info

http://www.it-ebooks.info/

38 Tcl Scripting for Cisco IOS

Returning to the original intention of the exercise (to determine whether the router has an
interface in the 10.0.0.0/24 network), begin the script with a command to save the output
of show ip interface brief into a buffer:

Router(tcl)#set mybuffer [exec “show ip interface brief”]

With the information stored in a variable, you can use the string first command to search
the string named mybuffer for 10.0.0. If the search string is found, the Tcl command will
return a byte count number, corresponding to the first occurrence of the search string.
Use the following command:

Router(tcl)#string first “10.0.0.” $mybuffer

201

If the search string “10.0.0.” is found, the Tcl interpreter returns an integer value of the
character number corresponding to the beginning of the search string. If the search string
is not found, a -1 is returned. Based on the returned value, you can make a decision
whether the text buffer contains the network of interest “10.0.0.*”.

You can save the position of “10.0.0.*” in the variable foundposition as follows:

Router(tcl)#set foundposition [string first “10.0.0.” $mybuffer]

201

Next, you can determine whether the network was present in our router, by using the fol-
lowing command:

Router(tcl)#if {$foundposition > -1} {

puts “We found the 10.0.0.* network!”

}

We found the 10.0.0.* network!

Combining the previous commands, the entire script would appear as follows:

set mybuffer [exec “show ip interface brief”]

set foundposition [string first “10.0.0.” $mybuffer]

if {$foundposition > -1} {

puts “We found the 10.0.0.* network!”

}

The script is now finished. You can either enter the commands line by line at the Tcl
prompt or save the script on the IOS device to be used later.

Copying a Tcl Script to a Cisco IOS Device

Entering Tcl commands on a line-by-line basis is an arduous task. To take advantage of
the real power of Tcl, the script needs to reside on the IOS device or server.

You can copy the script to the IOS device in several different ways. Scripts can be trans-
ferred using Trivial File Transfer Protocol (TFTP), File Transfer Protocol (FTP), Secure

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Tcl Functioning in Cisco IOS 39

Copy Protocol (SCP), Hypertext Transfer Protocol (HTTP), Hypertext Transfer Protocol
Secure (HTTPS), XModem, Ymodem, Remote File Copy (RCP), or even using “sneaker-
net” (copying the script to removable media and walking it to the device).

To transfer scripts to an IOS device, other than sneakernet, a server must be configured
to host the file-transfer service. This could be your PC, a UNIX host, or an IOS device
that contains the script.

TFTP is one of the more common methods. As previously noted, a TFTP server must first
be configured. Several commercial, free, and integrated applications are readily available
for most operating systems. It is beyond the scope of this book to provide installation
and configuration documentation on file server applications.

After the TFTP server has been set up and configured properly, the procedure to copy
the Tcl script to the IOS device (flash:) is as follows:

Router#copy tftp: flash:

Address or name of remote host []? 192.168.1.17

Source filename []? chap3e1.tcl

Destination filename [chap3e1.tcl]? myscript.tcl

Accessing tftp://192.168.1.17/chap3e1.tcl...

Loading chap3e1.tcl from 192.168.1.17 (via Tunnel1): !

[OK - 170 bytes]

170 bytes copied in 0.100 secs (1700 bytes/sec)

Caution Be aware, there are no inherent mechanisms within TFTP to validate a login, and
the data (script) is sent across the network in clear text. Someone with a packet sniffer
could easily capture the information you are retrieving from the TFTP server, or log in to
the TFTP server and download data.

FTP provides an alternative to transfer a Tcl script to an IOS device. Many FTP software
applications are available. Use the following command on the IOS device to copy a file
via FTP, and follow the prompts:

Router#copy ftp: flash:

Although FTP has a mechanism for username and passwords, the information is sent in
the clear across the network. Consequently, passwords and data can be easily captured.

A more secure method to transfer a script to an IOS device is using SCP. SCP uses the
Secure Shell (SSH) protocol to securely transfer information. Unlike TFTP and FTP, the
passwords and actual data transferred during the interactive session are all encrypted. To
begin a secure copy, follow the prompts after entering the following command:

Router#copy scp: flash:

www.it-ebooks.info

http://www.it-ebooks.info/

40 Tcl Scripting for Cisco IOS

Cisco IOS devices also can transfer files using either HTTP or the secure HTTPS protocol.
HTTP is the protocol used by web browsers, and HTTPS builds on top of that protocol by
adding security. Follow the prompts after entering the following command on the IOS device:

Router#copy http: (or https:) flash:

After the script has been copied to the IOS device, it can now be executed. Before start-
ing the script, you must validate that the script is present, using the following command:

Router#dir flash:chap3e1.tcl

Directory of flash:/chap3e1.tcl

18 -rw- 170 Sep 16 2009 23:56:48 +00:00 chap3e1.tcl

The script is located in the local flash.

To start the script, you must enter Tcl mode and start the script using the source com-
mand as follows:

Router(tcl)#source flash:chap3e1.tcl

We found the 10.0.0.* network!

The preceding example is interactively running a Tcl interpreter. The Tcl interpreter exists
both before the source command is entered and continues to run after the source com-
mand finishes. Why is this important? The Tcl script will have access to any variables or
procedures that may exist before the Tcl script is “sourced,” and you can examine any
variables or procedures left behind by the source command.

For example:

Router(tcl)#puts $foundposition

201

The variable foundpostion did not exist in the running Tcl interpreter until you sourced
the Tcl script and created the variable. To get a list of all variables known by the current
Tcl interpreter, you can enter the following:

Router(tcl)#info vars

mybuffer tcl_interactive tcl_version sys_type argv argv0 tcl_traceCompile

tclDefaultLibrary

foundposition tcl_pkgPath tcl_patchLevel argc tcl_traceExec tcl_platform

Most of the variables are created automatically for you. However, you can see other variables in
the list created from the previous script, mybuffer and foundposition. When you exit the Tcl
interpreter, these variables will be destroyed and will not persist after the exit, as shown here:

Router(tcl)#exit

Router#tclsh

Router(tcl)#info vars

tcl_version sys_type argv argv0 tcl_interactive tclDefaultLibrary tcl_pkgPath

tcl_patchLevel argc

tcl_traceExec tcl_platform

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Tcl Functioning in Cisco IOS 41

The preceding examples demonstrated how a Tcl script can be run interactively using
the source command. Alternatively, the Tcl script can be run one time and then immediately
exit the Tcl interpreter. This could be done to run a more complicated script where you
are only interested in the end result and do not want to examine any variables after the
script completes. For this reason, IOS provides additional parameters to the tclsh com-
mand, similar to what is provided in a UNIX environment:

Router#tclsh flash:chap3e1.tcl

We found the 10.0.0.* network!

From the preceding output, you can see that a new Tcl interpreter is started, and it
immediately “sourced” the script named flash:chap3e1.tcl and presented the output. In
the end, the Tcl interpreter was destroyed when the Tcl script completed.

Fetching a Cisco IOS Tcl Script from a Remote Device

As a further convenience, Tcl on IOS can fetch a script from a remote device and immedi-
ately execute the script. This obviates the need to copy the script to the IOS device. Yes,
all that work for nothing! All the other previously mentioned methods used to copy the
Tcl script are supported. For example, if you do not want to maintain files local to the
IOS device, a Tcl script located on a remote server can easily be initiated. You can tell Tcl
to fetch the script and run it, as follows:

Router#tclsh tftp://192.168.1.17/chap3e1.tcl

Loading chap3e1.tcl from 192.168.1.17 (via Tunnel1): !

[OK - 170 bytes]

We found the 10.0.0.* network!

As long as a valid path is provided to Tcl, a script can be downloaded and run.

Note You can also pass arguments to the Tcl script using the tclsh syntax as follows:

Router#tclsh tftp://192.168.1.17/chap3e1.tcl passed_arguments

Using Tcl to Examine the Cisco IOS Device
Configuration

Tcl on IOS extends the Tcl interpreter with some unique functionality that makes it easier to
examine and modify the router configuration. As you can imagine, this feature can be powerful.

The running-configuration contains all the settings and customization that has been done
to the IOS device, from the initial state. The configuration is generally viewed using various
commands, such as show running-config, to display the current state of the configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

42 Tcl Scripting for Cisco IOS

On entering the following command, the entire running configuration will be stored in a
variable called config:

Router(tcl)#set config [exec “show running”]

After the information has been saved in a variable, you can view that variable for any con-
figuration commands of interest. For example, suppose you are interested in checking what
time zone has been configured. A simple script that will display the time zone is as follows:

set runconfig [exec “show running-config”]

set foundposition [string first “clock timezone” $runconfig]

set cutoff [string length “clock timezone”]

if {$foundposition > -1} {

set cutoff [string length “clock timezone”]

set begin [expr $foundposition + $cutoff]

set end [string first “\n” $runconfig $begin]

set timezone [string range $runconfig $begin $end]

puts “We found the timezone!”

puts -nonewline “The current timezone is”

puts $timezone

}

The following list describes the script:

1. The entire configuration is stored in a variable called runconfig with the set runcon-
fig [exec “show running-config”] command.

2. Using the following string command locates the integer position of the configura-
tion command clock timezone:

Router(tcl)#set foundposition [string first “clock timezone” $runconfig]

393

3. If the clock timezone string is not present, if {$foundposition > -1}, the commands
following are not processed and the script will be completed.

4. The string length of clock timezone is calculated and stored in a variable using the
following command:

Router(tcl)#set cutoff [string length “clock timezone”]

14

5. To glean the contents of the timezone variable and not include the keywords clock
timezone, the following command is used to populate a variable with the beginning
location of the contents:

Router(tcl)#set begin [expr $foundposition + $cutoff]

407

6. The following statement sets the variable end to the first newline (\n) occurrence in
the string (runconfig) starting at the location begin:

Router(tcl)#set end [string first “\n” $runconfig $begin]

414

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Tcl Functioning in Cisco IOS 43

7. The following command collects the time zone information from the runconfig
string and stores it in the timezone variable:

Router(tcl)#set timezone [string range $runconfig $begin $end]

PST -8

8. Using the following statement displays a message indicating that the time zone was
found:

Router(tcl)#puts “We found the timezone!”

We found the timezone!

9. The puts -nonewline “The current timezone is” and the puts $timezone commands
display the time zone:

Router(tcl)#puts $timezone

The current timezone is PST -8

Using Tcl to Modify the Router Configuration

Tcl can also be used to add or modify any setting in the IOS device. This section explains
how to change the hostname of the device.

Using the ios_config command, a one-line statement is used to change the hostname of
the router, as follows:

Router(tcl)#ios_config “hostname TCLRouter”

TCLRouter(tcl)#

To make the changes permanent, you must copy the running-config to the startup-config
and add one line to the script:

exec “copy running-config startup-config”

Now you can run the script and see that IOS has saved its configuration permanently as
indicated by [OK] in the output, and notice that the hostname has changed:

Router#tclsh tftp://192.168.0.186/chap3e2.tcl

Loading chap3e2.tcl from 192.168.0.186 (via GigabitEthernet0/0): !

[OK - 73 bytes]

TCLRouter#

Note It is not a recommended practice to enter configuration mode from the Tcl shell
because this has been known to cause collisions between configuration commands and Tcl
commands.

www.it-ebooks.info

http://www.it-ebooks.info/

44 Tcl Scripting for Cisco IOS

Using Tcl with SNMP to Check MIB Variables

One little-known tool available within Tcl on IOS is the ability to check any Simple
Network Management Protocol (SNMP) Management Information Base (MIB) variable.
SNMP is a protocol that enables system administrators to check various counters and
information about devices connected to a network. Some standard MIBs define what
variables mean and how to interpret the data. The data can come as simple variables, such
as textual or numeric, or it can be tabular, too.

SNMP is typically used by a graphical network management application that can be used
to check on various devices throughout the network. Many commercial and free software
packages can be used to examine the network and troubleshoot issues that may arise.

One common use for SNMP is in developing graphical maps that show an overall picture
of the network, showing connections between devices and the overall topology diagrams.

Other Uses of SNMP

SNMP can also be used to collect information, such as interface errors, interface
input/output statistics, CPU utilization, memory usage, and so on, from devices on the
network. This information can be saved over a period of time to develop trend statistics
that will help in determining what resources need to be allocated to meet the changing
demands. As an alternative to the CLI or graphical network configuration tools, SNMP is
also used to make configuration changes on network devices.

Another widespread use of SNMP is to troubleshoot network issues. Suppose a device
on the network has been determined to be causing problems on the network. Various
MIBs exist on the device for different networking protocols and interface counters. When
additional information is required from a “device of interest,” you can drill down and
view MIB information for a closer look at to how the device is performing.

One common question a system administrator may ask is this: What is this device, and how
long has it been up and running? In the SNMP world, you would examine objects within
the SNMPv2-MIB file, and look at the object sysDescr for more information about the
device. Of course, someone needs to enter this information in the device for it to be useful.
Another MIB object to determine how long the system has been running is the sysUpTime.

A typical IOS device will have many interfaces connected to the network. You can check
each of these interfaces at the router prompt by typing commands such as show
interface. Although it is convenient for a human to examine interfaces in this way, it is not
so easy for a graphical network management application to understand the output. For
this reason, an “interfaces” MIB was designed to standardize the information available for
various types of interfaces and collect all the pertinent information in one place. The
“interfaces MIB” is shortened to just IF-MIB in the actual names of objects within it.

Another common question to answer is this: What interfaces are present on this device?
If you were connected to the IOS device, you could simply enter show interfaces and
look at the output. With SNMP, you need to send a packet or series of packets request-
ing the information from the device, the ifTable of the IF-MIB.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Tcl Functioning in Cisco IOS 45

Every item defined in the MIB has an object identifier (OID). It is just a numeric represen-
tation of what piece of information you are looking at, and can be thought of as a very
long telephone number that gives us an exact item we are interested in. It also represents a
hierarchy, in that related information is within the same MIB.

Cisco provides an “SNMP object navigator” to help understand where a given object fits
in the hierarchy:

http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en

When you are searching the IF-MIB, the specific object information is shown as follows:

■ Object: IF-MIB.

■ OID: 1.3.6.1.2.1.31.

■ MIB: IF-MIB.

■ Description: This MIB describes the generic objects for a network interface sublayer
and is an updated version of MIB-II’s ifTable. It incorporates the extensions defined
in RFC 1229.

In addition, a hierarchy diagram shows where it fits in with the all MIBs, as shown in Figure 3-1.

At the top of the hierarchy, the highest-level organization (iso.org.dod.internet) defines
objects. Most of the standard MIBs developed by the IETF will fall somewhere below
this level, and therefore their individual OIDs will begin with the same number (1.3.6.1...).

OID Tree:

Top of Form

Bottom of Form

•
 iso (1)

•
 org (3)

•
 dod (6)

•
 internet (1)

mgmt (2)
|

|

|

|

|

|

|

|

|

|

_ _ _

mib–2 (1)

…Objects 1–30…

…Objects 34–129…

|

|

_ _ _

|

ifMIB (31) object Details

|

_ _ _

ifMIBObjects (1) _ _
+

|

|
ifConformance (2) _ _

+

Figure 3-1 IF-MIB Hierarchy

www.it-ebooks.info

http://tools.cisco.com/Support/SNMP/do/BrowseOID.do?local=en
http://www.it-ebooks.info/

46 Tcl Scripting for Cisco IOS

As you progress lower in the hierarchy, suborganizations may define their own MIBs
within the tree. An organization such as Cisco Systems is free to define its own custom
MIBs, such as the CISCO-DLSW-MIB, as shown here:

■ Object: ciscoDlswMIB.

■ OID: 1.3.6.1.4.1.9.10.9.

■ MIB: CISCO-DLSW-MIB.

■ Description: This MIB module contains objects to manage data-link switches.

Figure 3-2 illustrates the Cisco MIB hierarchy.

Most of the MIBs defined by Cisco Systems will fall below the level iso.org.dod.inter-
net.private.enterprises.cisco, and therefore, their individual OIDs will all begin with the
same number (1.3.6.1.4.1.9...).

The root item in the IF-MIB is ifMIBObjects, and the first item we can use is
ifTableLastChange. This item fits in the hierarchy of the MIB as ifMIBObjects.5. In this
case, ifTableLastChange is the fifth item underneath ifMIBObjects.

OID Tree:

Top of Form

Bottom of Form

•
 iso (1)

•
 org (3)

•
 dod (6)

•
 internet (1)

•
private (4)

•

|

|
|
|
|
|
|
|

|
|
|
|
|
|

cisco (9)

…Objects 1–9…

…Objects…

…Objects continue…

…Objects continue…

|

|

|

|

|

|

_ _ _

ciscoExperiment (10)

|

|

|
+

_ _ _

ciscoDlswMIB (9) object Details

|

_ _ _

ciscoAdmin (11)_ _

|

|
+ ciscoDlswMIBObjects (1)_ _

|

|
+ ciscoDlswDomains (2)_ _

|

|
+ ciscoDlswConformance (3)_ _

enterprises (1)

Figure 3-2 Cisco MIB Hierarchy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Tcl Functioning in Cisco IOS 47

The description of ifTableLastChange is “the value of sysUpTime at the time of the last
creation or deletion of an entry in the ifTable.” It tells you what time the interface table
was last changed. The next example queries the ifTableLastChange to see how you can
use the information.

Enabling SNMP on a Cisco IOS Device

Before any SNMP queries can be performed on an IOS device, the SNMP protocol needs
to be enabled. When enabling SNMP, a community string is specified, which essentially
acts as a primitive layer of security. The correct community string must be provided in
any incoming SNMP request. Without the correct string, no response will be provided.
In addition, many community strings may be entered, each with their own security level.
For now, we simply configure one SNMP community with the default access, read-only
(RO). This prevents any changes to the configuration of the router being performed from
within SNMP. Enter the following command in configuration mode:

Router(config)#snmp-server community public RO

Note It is not a recommended to use public as the read community string for production
networks, because this is the default value that many devices use.

Now you are able to make SNMP requests from within the Tcl interpreter. You have the ability
to query the ifTableLastChange by fully specifying its location in the IF-MIB hierarchy:

Router(tcl)#snmp_getone public ifMIB.1.5.0

{<obj oid=’ifTableLastChange.0’ val=’121’/>}

From the output, the value of 121 represents the elapsed time in SNMP. It shows you that
the last time anything changed in the Interfaces Table was 121 ms after the router started.

The object that was returned in response to the query was changed from ifMIB.1.5.0 to
ifTableLastChange.0. The IOS device has simplified the request, because it has changed the
OID to the more specific one. In the future, you can simply query ifTableLastChange.0.

Note Every SNMP must have an instance, indicated as 0 in ifTableLastChange.0. Scalar
objects (for example, ifTableLastChange) will always have a 0 index, and tabular objects
(for example, ifDescr) will always have at least one non-0 index.

The router has also answered the SNMP request by placing the response in XML encoding.
OIDs are noted with obj oid, and MIB values are shown using val. The XML encoding can be
used by Tcl to recognize elements parsing the response data.

www.it-ebooks.info

http://www.it-ebooks.info/

48 Tcl Scripting for Cisco IOS

Querying the Configuration of a Cisco IOS Device Using SNMP

The next example adds a new interface called Loopback 3 to the IOS device and queries
the SNMP MIB. Adding a new interface will cause the device to modify the Interfaces
Table. Therefore, the last update time will change to reflect the change:

Router(tcl)#ios_config “int Loopback 3” “end”

*Aug 10 20:23:17.987: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback3,

changed state to up

Router(tcl)#snmp_getone public ifMIB.1.5.0

{<obj oid=’ifTableLastChange.0’ val=’811373’/>}

Note To minimize locking of the configuration, use the "end" parameter as the final
statement in the ios_config command.

Notice the value has changed from 121 to 811373, which indicates the Interfaces Table has
been modified. Whenever this value has increased from the last time you checked it, you can
be sure the Interfaces Table has been modified, indicating that an interface was either added
or removed.

The sysUpTime parameter is a 32-bit numeric value that indicates the time a change was
made in reference to the system uptime, with the least significant number being .01 sec-
onds. You can determine the time as follows:

811373/100 = seconds

8113.73 seconds

811373/60 = minutes

135.22 minutes

135.22/60 = hours

2.25 hours

The last change was 2.25 hours after the system started.

SNMP MIB objects are kept in a particular order. It is possible to request information
about the next object after the current object. You might wonder why SNMP needs this
capability and why getone is insufficient? There are two reasons. The first is that there
may be gaps in a particular implementation of a MIB. Certain objects are optional,
and a particular vendor such as Cisco might choose to or not to implement a specific
object. Objects might be left unimplemented if they are too difficult or CPU intensive
to calculate. The second reason is that getone is not sufficient because of tables, as
explained next.

You can query the next object after ifTableLastChange using snmp_getnext command:

Router(tcl)#snmp_getnext public ifTableLastChange.0

{<obj oid=’ifStackLastChange.0’ val=’811373’/>}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Tcl Functioning in Cisco IOS 49

The ifStackLastChange is the next object after ifTableLastChange. If the process is con-
tinued, the entire MIB tree can be “walked”:

Router(tcl)#snmp_getnext public ifTableLastChange.0

{<obj oid=’ifStackLastChange.0’ val=’326343004’/>}

Router(tcl)#snmp_getnext public ifStackLastChange.0

{<obj oid=’atmTrafficDescrParamEntry.2.0’ val=’mib-2.37.1.1.1’/>}

Router(tcl)#snmp_getnext public atmTrafficDescrParamEntry.2.0

{<obj oid=’atmTrafficDescrParamEntry.3.0’ val=’0’/>}

Router(tcl)#snmp_getnext public atmTrafficDescrParamEntry.3.0

{<obj oid=’atmTrafficDescrParamEntry.4.0’ val=’0’/>}

Caution Entering the snmp_getnext command in repetition through a script will essen-
tially perform a “MIB walk” and might cause high CPU utilization. Exercise caution when
using this command.

The following example displays every MIB variable, and yes, this will drive up the CPU:

set MIB_Object [snmp_getnext public 1.0]

set Start_Position [string first “‘“ $MIB_Object]

set Number_of_MIBS 0

set Valid_Data -1

while {$Valid_Data == -1} {

puts $MIB_Object

set End_Position [string first “‘ val” $MIB_Object]

set Next_MIB [string range $MIB_Object [expr $Start_Position + 1] [expr

$End_Position - 1]]

set MIB_Object [snmp_getnext public $Next_MIB]

set Start_Position [string first “‘“ $MIB_Object]

incr Number_of_MIBS

set Valid_Data [string first “END_OF_MIB” $MIB_Object]

}

puts “This is the total number of MIB objects: $Number_of_MIBS”

...output suppressed...

{<obj oid=’internet.6.3.12.1.4.0’ val=’0’/>}

{<obj oid=’internet.6.3.12.1.5.0’ val=’0’/>}

This is the total number of MIB objects: 24759

The following shows high CPU utilization because of Tcl script:

Router#show processes cpu | exclude 0.00

CPU utilization for five seconds: 99%/1%; one minute: 56%; five minutes: 26%

PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process

2 292 657979 0 0.08% 0.03% 0.02% 0 Load Meter

115 28460 248046 114 0.48% 0.29% 0.15% 0 IP Input

231 504916 3819 132211 97.14% 54.48% 25.01% 515 Tcl Serv- tty51

www.it-ebooks.info

http://www.it-ebooks.info/

50 Tcl Scripting for Cisco IOS

In addition to simple objects, SNMP allows for tables to be built that store data. One exam-
ple is the actual Interfaces Table. If you want to get all the elements from the Interfaces Table,
you can repeatedly use snmp_getnext until you have passed the last element in the table.

In the Interfaces Table definition, there is an object that stores the name of a particular
interface on the router. This object is called ifDescr. The following example will “walk”
through all the objects in this table one by one, until you realize you have all of them:

Router(tcl)#snmp_getnext public ifDescr.0

{<obj oid=’ifDescr.1’ val=’Ethernet0/0’/>}

Router (tcl)#snmp_getnext public ifDescr.1

{<obj oid=’ifDescr.2’ val=’Ethernet0/1’/>}

Router (tcl)#snmp_getnext public ifDescr.2

{<obj oid=’ifDescr.3’ val=’Ethernet0/2’/>}

Router (tcl)#snmp_getnext public ifDescr.3

{<obj oid=’ifDescr.4’ val=’Ethernet0/3’/>}

Router (tcl)#snmp_getnext public ifDescr.4

{<obj oid=’ifDescr.5’ val=’VoIP-Null0’/>}

Router (tcl)#snmp_getnext public ifDescr.5

{<obj oid=’ifDescr.6’ val=’Null0’/>}

Router (tcl)#snmp_getnext public ifDescr.6

{<obj oid=’ifDescr.7’ val=’Loopback3’/>}

Router (tcl)#snmp_getnext public ifDescr.7

{<obj oid=’ifType.1’ val=’6’/>}

From the last line of the output, you see that the device returned the next object after the
one you asked it for. The response coming back from the router is simply fed back into
the next request. The process continues, until you realize you have walked past the
objects you are interested in. When the last response came back, the router responded
with ifType.1, which is past the last ifDescr object in the Interfaces Table. As you can see,
there are four Ethernet interfaces in the router, plus the loopback interface created earlier.
This matches other show commands, such as show ip interface brief:

Router(tcl)#show ip interface brief

Interface IP-Address OK? Method Status Protocol

Ethernet0/0 unassigned YES NVRAM administratively down down

Ethernet0/1 unassigned YES NVRAM administratively down down

Ethernet0/2 unassigned YES NVRAM administratively down down

Ethernet0/3 unassigned YES NVRAM administratively down down

Loopback3 unassigned YES NVRAM up up

You may have noticed two other interfaces: VoIP-Null0 and Null0. VoIP-Null0 is purely
cosmetic and will be enabled when Cisco Express Forwarding (CEF) is turned on, and
Null0 is the bit bucket or garbage can for discarding traffic.

Because of the complexity of tables in SNMP, there are other methods besides snmp_getone
and snmp_getnext that can fetch multiple items at once. For convenience, there is also
snmp_getbulk, which provide a particular number of MIB objects simultaneously.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Tcl Functioning in Cisco IOS 51

For example:

Router(tcl)#snmp_getbulk public 0 10 ifDescr.0

{<obj oid=’ifDescr.1’ val=’Ethernet0/0’/>}

{<obj oid=’ifDescr.2’ val=’Ethernet0/1’/>}

{<obj oid=’ifDescr.3’ val=’Ethernet0/2’/>}

{<obj oid=’ifDescr.4’ val=’Ethernet0/3’/>}

{<obj oid=’ifDescr.5’ val=’VoIP-Null0’/>}

{<obj oid=’ifDescr.6’ val=’Null0’/>}

{<obj oid=’ifDescr.7’ val=’Loopback3’/>}

{<obj oid=’ifType.1’ val=’6’/>}

{<obj oid=’ifType.2’ val=’6’/>}

{<obj oid=’ifType.3’ val=’6’/>}

The output shows 10 of the objects within the Interfaces Table, starting from the first
interface description. Besides the usual community string and object names, two numeric
values are passed into snmp_getbulk.

The first is non_repeaters, which will be used to limit the responses and can be set to
0 or 1. The second is max_repetitions, which will also limit the number of get-next
attempts that will be made within the table. Setting these values will limit how many
objects will be returned in the response. In practice, when you are setting the
max_repetitions to an extremely high value, the responses are limited by the maximum
SNMP packet size, which is configured using the snmp-server packetsize command.

Modifying the Configuration of a Cisco IOS Device Using SNMP

You have seen how to query SNMP MIB variables with Tcl. Next, you will change one of
them. Remember you have created a new interface in the Interfaces Table, Loopback 3?
By default, when a new loopback interface is created, it is enabled. However all interfaces
in the router can be shut down. The identifier for this new Loopback 3 interface is 7, from
the previous interface description.

To determine the interface status, you must query the interface with the following com-
mand:

Router(tcl)#snmp_getone public ifAdminStatus.7

{<obj oid=’ifAdminStatus.7’ val=’1’/>}

The current value is 1, indicating up from the MIB definition.

To shut the interface down, you can set it to 2 or down from the MIB definition:

Router(tcl)#snmp_setany public ifAdminStatus.7 -i 2

{<snmp error type=’tcl_snmp_processing_error’ value=’6’ text=’NO_ACCESS_ERROR:

1.’ />}

www.it-ebooks.info

http://www.it-ebooks.info/

52 Tcl Scripting for Cisco IOS

The specified variable of -i indicates an integer. Other options include the following:

■ -u: A 32-bit number representing a decimal value

■ -c: A 32-bit counter

■ -g: A 32-bit number (gauge) that can be incremented or decremented

■ -o: An octet string in hex notation

■ -d: An octet string in text notation

■ -ipv4: An IP Version 4 address

■ -oid: An OID

Unfortunately, the attempt to shut down the loopback interface has failed! This is evident
from the “snmp error” message. In reviewing the parameters for the snmp_setany com-
mand, the community string is provided, followed by the object you want to change, and
finally a type and value for the object.

In reviewing the parameters that were sent to the snmp_setany command. The communi-
ty string is provided, followed by the object you want to change, and finally a type and
value for the object. In this case, you specify an integer of value 2.

Why did the attempt fail? Remember, you previously configured a community string at the
beginning that has just read-only access. In this case, you tried to change an object and SNMP
refused, because the public community was not granted permission to write to a MIB object.
Instead, define a community string that will provide the capability to write to MIB objects:

Router(config)#snmp-server community private rw

Note It is not recommended to use private as the write community string for production
networks, because this is the default value that many devices use.

Now that the community string is set to read-write, you can once again attempt to shut down
the interface from within Tcl:

PE11(tcl)#snmp_setany private ifAdminStatus.7 -i 2

{<obj oid=’ifAdminStatus.7’ val=’2’/>}

*Aug 10 22:29:58.447: %LINK-5-CHANGED: Interface Loopback3, changed state to

administratively down

After a brief delay, the interface has been shut down. To verify this, you can double-check
the router’s running-configuration:

Router(tcl)#show running-config interface Loopback3

Building configuration...

Current configuration : 52 bytes

!

interface Loopback3

no ip address

shutdown

end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3: Tcl Functioning in Cisco IOS 53

To make the configuration changes permanent, you must copy the running-configuration
to the startup-configuration.

The preceding output verifies that the interface has been shut down.

SNMP MIB access is a powerful tool that can be used from within the Tcl interpreter in
IOS. It provides valuable management information that can help you understand what is
occurring on the device.

Summary

Tcl is implemented in many flavors of Cisco IOS, and as you have seen in this chapter, it
enables you to interact with the command line directly. Scripts can be downloaded
directly to the IOS device or be initiated from a central server using TFTP, FTP, SCP,
HTTP, and so on. SNMP combined with Tcl can be used to glean pertinent information
from the device for monitoring or troubleshooting and for making configuration changes.

References

RFC 2863, The Interfaces Group MIB (June 2000):
http://www.ietf.org/rfc/rfc2863.txt?number=2863

“Cisco IOS Scripting with Tcl”: http://tinyurl.com/47gv9v

www.it-ebooks.info

http://www.ietf.org/rfc/rfc2863.txt?number=2863
http://tinyurl.com/47gv9v
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Embedded Event Manager (EEM)

This chapter covers the following topics:

■ EEM Architecture

■ Software Release Support for EEM

■ Writing an EEM Applet

■ Using EEM and Tcl Scripts

Embedded Event Manager (EEM) enables you to run user-defined scripts (Tcl scripts) in
Cisco IOS. EEM consists of three components:

■ Event detectors: Event detectors are used as a trigger based on certain conditions.
Some of these conditions include, monitoring for syslog events, online insertion and
removal (IOR), command-line interface (CLI) input, timers, and so on.

■ EEM server: The EEM server is the director of EEM. When configured events
occur, the associated action is implemented.

■ Policies: Policies or scripts are either applets or Tcl scripts configured by the adminis-
trator.

This chapter explains the architecture of EEM. In this chapter, you will learn about event
detectors, which platforms are supported, and see some examples of implementation. By
the time you finish this chapter, you should be well on your way to customizing the oper-
ation of a Cisco IOS device.

EEM Architecture

Figure 4-1 illustrates the relationship of the three primary building blocks of the EEM
architecture (policies, the EEM server, and event detectors).

www.it-ebooks.info

http://www.it-ebooks.info/

56 Tcl Scripting for Cisco IOS

Policies

Policies or scripts are either applets or Tcl scripts configured by the administrator:

■ Applets: Users do not need to know how to write Tcl scripts. Policies can be defined
through the IOS CLI. The body of applets also appear in the configuration of the
Cisco IOS device.

■ Tcl scripts: Actions can also be defined through Tcl scripts. Scripts provide an exten-
sive control as compared to applet policies. Applets were designed to provide a sim-
pler interface for EEM.

EEM Server

The EEM server is a bridge between the policies and internal Cisco IOS subsystems used
within the event detectors. Some of the functionality of the EEM server is to register
events seen in the IOS subsystems, store information about an event, publish an event,
request additional information about an event, register internal script directories, register
Tcl scripts and applets, and process actions taken by user-defined scripts. The version of
EEM is based on the IOS release cycle. It is important to understand the functionality of
EEM based on the IOS image, so that you fully understand the features and functionality
of the event detectors and what is supported. The specifics about EEM versions are cov-
ered in the section “Software Release Support for EEM.”

Embedded Event Manager Server

Applets Tcl Scripts

Policy Engines

Event Detectors

CLI
Time

Service
Counter Syslog

Object
Tracking GOLD

Figure 4-1 EEM Architecture Framework

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 57

Event Detectors

Event detectors monitor the operational state of processes on an IOS device. These
processes run at medium priority, are always operational, and on detecting an event, the
event detector sends an alert that provides information about the specific event. The list
that follows describes some of the event detectors in Cisco IOS (for a current and com-
plete list, refer to the appropriate documentation for the specific platform):

■ Syslog event detector: Triggered when a syslog message match is seen in the output
of the console. Additional granularity can be achieved based on number of occur-
rences for any given message. Console logging does not have to be active for the sys-
log event detector to generate events; this is completely independent of which logging
targets are configured.

■ SNMP event detector: A specific Simple Network Management Protocol (SNMP)
variable can be polled, and if the SNMP variable reaches a threshold, a trigger can be
generated.

■ SNMP notification event detector: This event detector provides the capability to
intercept SNMP trap messages sent into the IOS device.

■ Timer event detector: Generates an event at a specific time interval. This can be
used to run a task after a period of time, at a specific time, or at selected intervals.
This is similar to KRON on Cisco IOS or CRON in UNIX:

■ Absolute time of day: Publishes an event when a specified absolute date and
time occur.

■ Countdown time: Publishes an event when timer counts to zero.

■ Watchdog timer: Publishes an event when a timer counts down to zero. The
timer will automatically resets itself to the initial value and start the countdown
sequence again.

■ CRON timer: Publishes an event using the UNIX standard CRON specifications
to indicate when the event is to be published.

■ Counter event detector: Used to monitor a specific counter for a particular thresh-
old value and generate an event. After a counter event has been published, the count-
er monitoring logic can be reset to start monitoring the counter immediately or can
be reset when a second threshold is called and an exit value is crossed.

■ IP SLA event detector: This detector publishes an event when an IP service level
agreement (SLA) reaction is triggered.

■ Interface event detector: This detector monitors interface counters based on a
defined threshold value. The threshold can be specified as an absolute value or an
incremental value.

■ CLI event detector: The event detector triggers when a specified command is
entered via a console or Telnet/SSH (Secure Shell) session. This detector screens CLI

www.it-ebooks.info

http://www.it-ebooks.info/

58 Tcl Scripting for Cisco IOS

commands that match a regular expression. When a match is found, an event is pub-
lished and the CLI event detector can perform a logical match before the command
is parsed and executed.

■ NetFlow event detector: When a NetFlow event is triggered, the NetFlow event
detector publishes an event.

■ Custom CLI event detector: This event detector publishes an event that adds and
enhances an existing CLI command. The user can define a specific character or any
other value when entered in the CLI. The CLI compares this input, and if a match is
found, an action is triggered:

■ Synchronous publishing of CLI events: The CLI command is not fully executed
until the EEM policy exits. Therefore, the EEM policy can control whether the
command is executed.

■ Asynchronous publishing of CLI events: The CLI policy is published, and then
the command is executed.

■ Asynchronous publishing of CLI events with command skipping: The CLI
event is published, but the command is not executed.

■ Enhanced object tracking event detector: This event detector is triggered when
a status of the tracked object changes. A unique number identifies each tracked
object. This number is specified on the tracking CLI. The detector process uses
this number to track a specific object. The tracking process periodically polls
the tracked objects and notes any change in value. The changes in the tracked
object are communicated to event detector process, either immediately or after a
specified delay. The object values are reported as either up or down. Enhanced
object tracking is now integrated with EEM to allow EEM to report on the sta-
tus change of a tracked object. For example, Hot Standby Router Protocol
(HSRP) may change because of the loss of a neighbor router or from an inter-
face state change.

■ Routing event detector: This event detector is invoked when routing information in
the Routing Information Base (RIB) has been changed.

■ Resource event detector: The Embedded Resource Manager (ERM) monitors system
resource usage to better understand scalability needs by allowing you to configure
threshold values for resources such as the CPU, buffers, and memory.

■ GOLD event detector: The Generic Online Diagnostics (GOLD) event detector pub-
lishes an event when a GOLD failure event is detected. GOLD can detect faults in
hardware and provide a trigger to proactively indicate the state of the device. There
are two primary tests for GOLD: the Power-On Self Test (POST) and the GOLD test.
The POST test runs during the boot process and verifies the CPU subsystem, system
memory, and peripherals. GOLD performs packet-switching and ASIC memory tests
using runtime drivers. GOLD is available on various Cisco platforms such as the

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 59

Catalyst 6500, 4500, and 3750 switches and the 7600 CRS-1 routers.

The GOLD diagnostic capabilities are as follows:

■ Boot diagnostics: Tests conducted during boot time or online insertion or
removal of modules.

■ Health monitoring diagnostics: Tests that run in the background while the sys-
tem is in operation.

■ On-demand diagnostics: This enables you to conduct various tests on demand
using the CLI.

■ Scheduled diagnostics: This enables you to conduct various tests at a scheduled
date, time, and frequency using the CLI.

■ Event detector IOS watchdog: This detector monitors an IOS task for excessive
use of the CPU or memory. Thresholds can be specified when these processes
are watched.

■ Watchdog System Monitor (WDSysMon) event detector for Cisco IOS software
modularity: This detects infinite loops, dead locks, and memory leaks in the IOS
software modularity process.

■ RF event detector: When one or more redundancy framework (RF) events occur
during synchronization in a dual Router Processor (RP) system, an RF event detector
publishes the event. The RF detector can also detect when as RP changes the role
from active.

■ Remote-procedure call (RPC) event detector: This event detector enables you to
invoke EEM policies from outside the router over an encrypted connection using
SSH. RPC event detectors uses Simple Object Access protocol (SOAP) data encoding
to exchange Extensible Markup Language (XML)-based messages.

■ System Manager event detector: This event detector is seen in modular IOS. It gen-
erates an event for processes within modular IOS for start, normal, abnormal stop,
and restart events.

■ OIR event detector: This event detector publishes an event when a hardware module
insertion or removal occurs.

■ Application event detector: This event detector can kick start a script based on a
user-defined event within a script.

■ Process event detector: This event detector pertains to IOS with Software
Modularity and is used to monitor process starts, restarts and stops.

■ None event detector: This event detector publishes an event when the Cisco IOS
event manager runs a CLI command and executes an EEM policy. This is the “man-
ual” way of running a script, which you may consider using to test the script func-
tionality or creating custom commands.

www.it-ebooks.info

http://www.it-ebooks.info/

60 Tcl Scripting for Cisco IOS

Software Release Support for EEM

The EEM event detectors have evolved based on IOS releases. The functionality of the
event detection and action depends on the specific release. Tables 4-1 through 4-9 pro-
vide some insight as to which features are supported on which versions of code.

EEM is available for the Catalyst 6500 series switches, Integrated Services Routers (ISRs),
7200 series routers, 7300 series routers, 7600 series routers, 10000 series routers,
Catalyst 4500 series switches, Catalyst 3550, 3560, and 3700 series switches, the ASR-
1000 series routers, and the Nexus platform.

The following software release have support for EEM: IOS Software Release 12.2SX,
12.2SR, 12.2SB, 12.4, 12.4T, 12.2SG, 12.2SE, IOS XE and future versions, IOS XR, and
NX OS.

Table 4-1 Embedded Event Manager 1.0

Software Release Supported Events Actions

Support available in Cisco
IOS Releases 12.0(26)S and
12.3(4)T and later releases

SNMP event detector allows
a standard SNMP MIB object
to be monitored. When a
specific threshold is crossed,
an event is generated.
The syslog event detector
allows for screening syslog
messages.

Generate a Cisco Networking
Services (CNS) event for
upstream process by a CNS
device.
Reload the Cisco IOS software.
Switch to a secondary proces-
sor in a fully redundant hard-
ware configuration.
Generate prioritized syslog
messages.

Table 4-2 Embedded Event Manager 2.0

Software Release Supported Events Actions

Support available
from Cisco IOS
Release 12.2(25)S
and later releases

Application-specific event allows the EEM to
publish an event.
Counter event detector publishes an event when a
named counter crosses a specified threshold.
The interface counter event detector publishes an
event when an interface counter for a specified
interface crosses a defined threshold.
The timer event detector publishes events for the
following four different types of timers: absolute
time of day, countdown, watchdog, and CRON.
The IOS WDSysMon event detector publishes an
event when the CPU or memory utilization of a
process crosses a threshold.

Run a Cisco-
defined Tcl
policy
Publish an appli-
cation-specific
event
Generate an
SNMP trap by
EEM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 61

Table 4-3 Embedded Event Manager 2.1

Software Release Supported Events Actions

Support available from Cisco
IOS Release 12.3(14)T,
12.2(18)SXF5, 12.2(28)SB,
12.2(33)SRA, and later
releases

None. When the event manag-
er run command executes an
EEM policy, the None event
detector publishes an event.
When an insertion or removal
of a line card takes place, the
OIR event detector publishes
an event.
When a regular expression
match is seen, the CLI event
detector publishes an event.
GOLD support was added in
EEM 2.1.5 for IOS modularity
with 12.2(18)SXF4.

Execution of CLI command
using a script.
Send a short e-mail.
Manually run an EEM policy
and permit running of multiple
concurrent policies using the
new event manager schedule
script command.
Support for SNMP event
detector rate-based events.

Table 4-4 Embedded Event Manager 2.2

Software Release Supported Events Actions

Support available
from Cisco IOS
Release 12.4(2)T,
12.2(31)SB3,
12.2(33)SRB, and
later releases

Enhanced object tracking event detector. Enhanced
object tracking provides complete separation
between the objects to be tracked and the action to
be taken by a client when a tracked object changes.
When the ERM reports an event for the specified
policy, the resource event detector publishes an
event.
When more than one event is seen during the syn-
chronization of the dual RP system, the RF event
detector publishes an event.

Read the state of
a tracked object.
Set the state of
tracked object.

www.it-ebooks.info

http://www.it-ebooks.info/

62 Tcl Scripting for Cisco IOS

Table 4-5 Embedded Event Manager 2.3

Software Release Supported Events Actions

Supported from IOS
Release 12.2(33)SXH
and later releases for the
Cisco Catalyst 6500
series switches and
introduces enhance-
ments to the GOLD
event detector for that
product. EEM 2.3 was
integrated into 12.4(11)T
and was the first single-
source release of EEM.

GOLD diagnostics
Added support for the
pattern keyword to
the action CLI com-
mand, which enables
you to run interactive
commands using
applets

The event gold command was enhanced
with the addition of the following com-
mands:
action-notify

testing-type

test-name

test-id

consecutive-failure

platform-action

maxrun

GOLD event detector support the follow-
ing environment variables:
Boot diagnostic level

Card index, name, serial number

Port counts

Test counts

Read-only applet GOLD event detectors,
which include the following:
Test name, attribute, total run count

Test result per test, port, or device

Total failure count, last fail time

Error code

Occurrence of consecutive failures

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 63

Table 4-6 Embedded Event Manager 2.4

Software Release Supported Events Actions

Supported from Cisco
IOS Release 12.4(20)T,
12.2(50)SE,
12.2(33)SXI, and later
releases

The SNMP notification event
detector enables you to view
SNMP traps coming into the
router. An SNMP notification
event is generated when an
incoming SNMP trap message
matches specified values or
crosses specified thresholds.
The RPC event detector enables
you to invoke EEM policies
from outside the router over an
encrypted connection using
SSH.
EEM 2.4 added enhancements
to the following event detec-
tors:
Interface counter rate-based
trigger:
This feature adds the ability for
an interface event to be trig-
gered based on a rate of change
over a period of time. For entry
and exit value, the rate can be
specified.

SNMP delta value:
This publishes the difference
between the monitored object
identifier (OID) value at the
beginning of the monitored
period and the actual OID
value when the event is pub-
lished.

Multiple event support
The show event manager com-
mands were enhanced to show
multiple events.
The parameter argument has
been added to the event manag-
er run command for a maxi-
mum of 15 parameters.
The display of job ID and status
can be seen using the show
event manager command.
The ability to kill a running pol-
icy through the event manager
scheduler clear command was
also added.
EEM accepts extensions for
byte-code scripts *.tbc on valid
EEM policies.
Tcl extension support with
EEM now include *.tcl for user
policies and *tm for system
policies.
Byte-code extension.
Registration substitution
enhancement for multiple
parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Table 4-7 Embedded Event Manager 3.0

Software Release Supported Events Actions

Cisco IOS Release
12.4(22)T and later
releases

When route entries change
in the Routing Information
Base (RIB), the routing event
detector publishes an event.
When a NetFlow event is
triggered, a NetFlow event
detector publishes an event.
When an IP SLA reaction is
triggered, the IP SLA event
detector publishes an event.
The custom CLI event
detector publishes an event
to add and enhance existing
CLI command syntax.

Class-based scheduling can be
assigned to a class.
Three new Tcl commands are intro-
duced:
event_completion

event_wait

event_completion_with_wait

Two new IOS commands are sup-
ported:
action gets

action puts

Applet input support via the console.
Variable logic for applets:
Conditional logic can be applied to
the applet through the variable logic
feature in EEM.
A programmable interface that
encapsulates show commands in an
XML interface.
Signature verification for a Tcl script.
Support authenticating e-mail
servers.
The keyword source addr is added
in Tcl e-mail templates to specify it is
either an IPv6 or IPv4 address.
SNMP library extensions for SNMP
getid, inform, trap, and set-type
operations included in the EEM
applet action info and Tcl sys_reqin-
fo_snmp commands.
SNMP notification IPv6 support:
IPv6 address is supported for the
source and destination IP addresses.
CLI library XML-PI support:
Provides a programmable interface
that encapsulates CLI show com-
mands in an XML format in a consis-
tent way across different Cisco prod-
ucts.

64 Tcl Scripting for Cisco IOS

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 65

Table 4-8 Embedded Event Manager 3.1

Software Release Supported Events Actions

Cisco IOS Release 15.0(1)M
and later releases

The SNMP object event
detector enables you to
replace the trap with an OID.
SNMP notification and inter-
cept outgoing SNMP mes-
sages.
The action syslog command
can now specify the facility.

The description command
was added.
AAA (authentication,
authorization, and account-
ing) bypass is now enabled.
The cli_run and
cli_run_interactive were
added.

Table 4-9 Embedded Event Manager 3.2

Software Release Supported Events Actions

Cisco IOS release 12.2(52)SE
and later releases

Cisco Discovery Protocol
(CDP) and Link Layer
Discovery Protocol (LLDP)
neighbor event detector pro-
vides notification when a
neighbor is added, deleted,
or updated
Interface link and line status
notifications.
Identity event detector for
AAA.
MAC address table event
detector that generates an
event when new MAC is
learned.

The following commands were
added:
debug event manager

event identity

event mat

event neighbor-discovery

show event manager detector

Platform and IOS Considerations for EEM

The previous tables give you a good idea of what code version will be required to sup-
port your specific needs, but you should still review the platform and IOS before deploy-
ing EEM. Conduct the following steps before implementation:

Step 1. Use the feature navigator to verify the support of EEM features in the code
train: http://www.cisco.com/go/fn.

Step 2. For specific features and functionality support, the release notes will provide
definitive answers for your specific platform and image.

Step 3. EEM will consume memory resources. Remember to allocate storage space
(flash) for the Tcl scripts.

www.it-ebooks.info

http://www.cisco.com/go/fn
http://www.it-ebooks.info/

66 Tcl Scripting for Cisco IOS

Step 4. The operation of EEM will also require some additional CPU cycles. This fac-
tor must be considered by verifying the impact of the EEM scripts on the
device in a test environment.

Writing an EEM Applet

The process of writing EEM applets is relatively simple, especially if you have any expe-
rience using IOS CLI. The following section guides you through the five-step process of
creating an applet.

Step 1. Enter into configuration mode:

Router#configure terminal

Step 2. Configure an applet name:

event manager applet name of the applet

For example, the following statement will create an applet called TEST:

Router(config)#event manager applet TEST

Step 3. Configure an event that will cause the event manager to take an action. You
guessed it, use the event command:

Router(config-applet)#event ?

application Application specific event

cli CLI event

config Configuration policy event

counter Counter event

env Environmental event

interface Interface event

ioswdsysmon IOS WDSysMon event

ipsla IPSLA Event

nf NF Event

none Manually run policy event

oir OIR event

resource Resource event

rf Redundancy Facility event

routing Routing event

rpc Remote Procedure Call event

snmp SNMP event

snmp-notification SNMP Notification Event

syslog Syslog event

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 67

tag event tag identifier

timer Timer event

track Tracking object event

As seen from the output, there are several events that can be used to trigger
the event manager.

Step 4. Define an action or actions to be initiated, with the action keyword. Because
several actions can be defined, an alphabetic sort is used on the label to deter-
mine the order of operation:

Router(config-applet)#action WORD Label

As a matter of best practice, using numeric values is a very good way to sort
actions. For example, you can label actions starting with 1.0, 2.0, 3.0 and so
on. In the event you need to make an addition between event 1.0 and 2.0, you
can easily add 1.5 without having to change any labels.

Note Because actions are interpreted alphabetically, action 10.0 would execute after
action 1.0 and before 9.0.

Router(config-applet)#action 1.0 ?

add Add

append Append to a variable

break Break out of a conditional loop

cli Execute a CLI command

cns-event Send a CNS event

comment add comment

context Save or retrieve context information

continue Continue to next loop iteration

counter Modify a counter value

decrement Decrement a variable

divide Divide

else else conditional

elseif elseif conditional

end end conditional block

exit Exit from applet run

force-switchover Force a software switchover

foreach foreach loop

gets get line of input from active tty

handle-error On error action

help Read/Set parser help buffer

www.it-ebooks.info

http://www.it-ebooks.info/

68 Tcl Scripting for Cisco IOS

if if conditional

increment Increment a variable

info Obtain system specific information

mail Send an e-mail

multiply Multiply

policy Run a preregistered policy

publish-event Publish an application specific event

puts print data to active tty

regexp regular expression match

reload Reload system

set Set a variable

snmp-trap Send an SNMP trap

string string commands

subtract Subtract

syslog Log a syslog message

track Read/Set a tracking object

wait Wait for a specified amount of time

while while loop

Event actions have many alternatives, and so you have tremendous flexibility.

Step 5. Exit from applet configuration mode and save your configuration. Because
applets are part of the configuration, there are no additional steps.

Note You must exit the applet submode configuration for the applet to get registered.
Entering the do show run command will not show the newly created applet.

Router(config-applet)#end

Router#copy running-config startup-config

Practical Example of an Event Trigger

The following example creates an applet that matches a syslog pattern using a regular
expression. When the interface GigabitEthernet2/0 changes state to down, an event trig-
ger will be generated. This is one of the most common ways to write an applet:

Router(config-applet)#event syslog pattern “Interface GigabitEthernet2/0, changed

state to down”

The regular expression match in this example is extremely rudimentary. You could also
create a regular expressing matching or excluding particular characters, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 69

Using Object Tracking as an Event Trigger

Object tracking offers another powerful way to create event triggers. A unique number
is used to track a specific object through a client process. The client process can be
HSRP, static routes, SLA, and so on. The tracked objects are polled periodically, and
changes in state are monitored. When a change occurs, the interested client process can
be notified immediately of after a predefined delay. The object values are reported as
either up or down.

A number of features are incorporated into object tracking that warrant some additional
clarification, including the following:

■ Unique number: A unique number can be used to track a specified object.

■ Threshold: This allows a tracked list to be configured to use a weight or percentage
threshold to measure the state of the list. Each object in a tracked list can be
assigned a threshold weight. The state of the tracked list is determined by whether
the threshold has been met.

■ Boolean AND function: When a tracked list has been assigned a Boolean AND
function, it means that each object defined within a subset must be in an up state
before the tracked object is defined as up.

■ Boolean OR function: When a tracked list has been assigned a Boolean OR function,
it means that at least one object defined within a subset must be in an up state before
the tracked is defined as up.

The next example explains how to use event tracking. Begin by using the track command
to track the status of the line-protocol on interface GigabitEthernet 0/1:

Router(config)#track 1 interface gigabitEthernet 0/1 line-protocol

You can now configure the event to track the state of the object, in this case, object 1:

Router(config-applet)#event track 1 state down

Based on the status of object tracking, a user-defined action can be triggered. As you can
see, this is a powerful tool to have in your network tool bag!

www.it-ebooks.info

http://www.it-ebooks.info/

70 Tcl Scripting for Cisco IOS

Creating Applet Actions

After the event trigger has been initiated, a single action or multiple actions can be gener-
ated. This section provides an example of how to use applet actions. In the following
example, the CLI event detector watches for the configure terminal command, as follows:

Router(config-applet)#event cli pattern “configure terminal” sync no skip no

A couple of other parameters that should be addressed are sync and skip. The sync
option set to no will run the command asynchronously, and if it is set to yes, the result
will determine whether the command will be run. The skip option when set to no will
execute the command, and set to yes the command will not be executed.

Configure the user-defined action that will be taken when the line-protocol of
gigabitEthernet 0/1 changes state to down. The event trigger will add the “ip route
0.0.0.0 0.0.0.0 10.1.1.1” statement. The configuration is as follows:

Router(config)#track 1 interface gigabitEthernet 0/1 line-protocol

Router(config)#event manager applet TEST

Router(config-applet)#event track 1 state down

Router(config-applet)#action 1.0 cli command “enable”

Router(config-applet)#action 2.0 cli command “configure terminal”

Router(config-applet)#action 3.0 cli command “ip route 0.0.0.0 0.0.0.0 10.1.1.1”

Other events could include a syslog pattern match, as follows:

Router(config-applet)#event syslog pattern “Up->Down”

Other actions could be to generate a syslog message, as follows:

Router(config-applet)#action 1.0 syslog msg “!!Experiencing Network Slowness to

10.1.23.2!!”

From the preceding configuration examples, the actions can be quite varied, including
any user-defined CLI commands. Based on the action, the user can configure a static
route, change the Border Gateway Protocol (BGP) neighbor statement, generate a syslog
event, and so on.

Note Certain EEM actions that set internal variables can be accessed within the EEM
policy. For example, using the following action command, action 3.0 cli command “show
ver”, the result of the “show ver” command will be stored in the $_cli_result variable. This
variable can then be used to generate a user-defined function using syslog, snmp-trap
action, and so on.

Examples of EEM Applets

The next example uses an EEM script to monitor network performance between an IP
SLA sender and an IP SLA receiver using probe messages. The User Datagram Protocol
(UDP) message in this example are used to emulate a specific traffic type. Having the
ability to craft probes to match a specific type of traffic, for example voice, allows you to

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 71

determine how that traffic will behave on the network with all the associated Quality of
Service (QoS) policies, Access Control Lists (ACL), and so on. The applet will generate a sys-
log message indicating that the network is down when the UDP messages are delayed or no
longer received.

Two routers are used to accomplish this task. R1 is used as the initiator or sender of the SLA
probes, and R2 is configured as the responder. Delay or loss of connectivity to the destina-
tion of the UDP message activates the EEM script. The EEM script tracks the syslog mes-
sage for the track command that is used to monitor the response of the IP SLA probes.

The responder, R2, is configured to accept the probes and provide a response. The
responder should be configured before the sender; otherwise, the sender will display a
down state until the responder is configured:

ip sla responder

ip sla responder udp-echo ipaddress 10.1.23.2 port 54321

The IP SLA probe is configured to send UDP messages sourced from the IP address

of 10.1.13.1 port 54321 to the destination IP address of 10.1.23.2. The frequen-

cy of the probe is set to 30 seconds and the threshold to 35 milliseconds. If

the probe exceeds 35 milliseconds, the state will be changed to “down”. The

probe is scheduled to start at the current time and will continue indefinitely.

The track command initiates the process:

ip sla 10

udp-echo 10.1.23.2 54321 source-ip 10.1.13.1

threshold 35

frequency 30

ip sla schedule 10 start-time now recurring

track 10 ip sla 10

The following EEM applet monitors the syslog message generated by the track message
to create a new user-defined syslog message, slowness in the network.

event manager applet IPSLA_Track

event syslog pattern “10 ip sla 10 state Up->Down”

action 1.0 syslog msg “!!Experiencing Network Slowness to 10.1.23.2!!”

Note An alternative approach would be to use the track event detector, but it is not avail-
able on all code releases.

To view the track status of R1, use the following command:

r1#show track 10

Track 10

IP SLA 10 state

State is Up

15 changes, last change 00:16:41

Latest operation return code: OK

Latest RTT (millisecs) 29

www.it-ebooks.info

http://www.it-ebooks.info/

72 Tcl Scripting for Cisco IOS

Did you notice the Latest RTT (millisecs) parameter is 29 milliseconds? When it crosses
the 35-millisecond threshold, the state will be changed to down. The following output
shows the tracking state changing to a down. In looking at the track state, you can see that
the Latest RTT is now 37 milliseconds, which is over the threshold of 35 milliseconds:

%TRACKING-5-STATE: 10 ip sla 10 state Up->Down

r1#show track 10

Track 10

IP SLA 10 state

State is Down

10 changes, last change 00:00:12

Latest operation return code: Over threshold

Latest RTT (millisecs) 37

An IP SLA has many features that you can incorporate within applets and Tcl scripts.
Cisco IP SLA allows users to analyze IP service levels for IP applications and services by
using active traffic monitoring. This is achieved by probes that generate traffic in a con-
tinuous and predictable manner that is then used to measure network performance. IP
SLAs collect a unique subset of these performance metrics:

■ Delay (both round trip and one way)

■ Jitter (directional)

■ Packet loss (directional)

■ Packet sequencing (packet ordering)

■ Path (per hop)

■ Connectivity (directional)

■ Server or website download time

To achieve the specified operation, you can configure the IP SLA with specific probes
and leverage it in multiple ways:

■ Enterprise customers can verify service levels across the service provider (SP) cloud.

■ Enables you to understand the network performance at different levels.

■ Enables you to understand the application impact before and after applying QoS.

■ Assists in network troubleshooting.

■ In conjunction with EEM, it can be used to make intelligent Layer 7-based routing
decisions.

Configuring the IP SLA Sender and Responder

The following steps walk you through the configuration of the responder and sender:

Step 1. Enable the IP SLA responder on the receiver end.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 73

Command-line configuration:

ip sla Entry Number

For example:

ip sla 10

Step 2. Configure the IP SLA operation type.

The following is a list of the available operation types. The operation types
may change based on Cisco IOS code version.

■ dhcp: DHCP operation

■ dlsw: DLSW operation

■ dns: DNS query operation

■ ethernet: Ethernet operation

■ exit: Exit operation configuration

■ ftp: FTP operation

■ http: HTTP operation

■ icmp-echo: ICMP echo operation

■ mpls: MPLS operation

■ path-echo: Path Discovered ICMP echo operation

■ path-jitter: Path discovered ICMP jitter operation

■ slm: SLM operation

■ tcp-connect: TCP connect operation

■ udp-echo: UDP echo operation

■ udp-jitter: UDP jitter operation

The following example uses Internet Control Message Protocol (ICMP) and
does not require an additional router configured as a responder. It does require
that a device is capable of responding back to ICMP echo request messages:

Router(config-ip-sla)#icmp-echo 10.1.1.1 source-ip 10.1.1.2

r2(config-ip-sla-echo)#frequency 10

In this example, ICMP probes are configured for destination 10.1.1.1, with a source
address of 10.1.1.2. The frequency that the probe are sent is every 10 seconds.

Step 3. Configure threshold conditions, if required. The threshold is a period or
hold time for the IP SLA to report an incident and is used to monitor the IP
SLA event.

www.it-ebooks.info

http://www.it-ebooks.info/

74 Tcl Scripting for Cisco IOS

For example:

r2(config-ip-sla-echo)#threshold 30

In this step, the threshold is defined as 30 milliseconds.

Step 4. Schedule the IP SLA operation, using the following command syntax:

ip sla monitor schedule operation-number [life {forever seconds}]
[start-time {hh:mm [:ss] [month day day month] pending now after

hh:mm:ss] [ageout seconds] [recurring]

■ operation-number: References the IP SLA probe.

■ life: An optional field that sets the operation to run forever or for a specific
number of seconds. The range is from 0 to 2147483647. The default is 3600
seconds (1 hour).

■ start-time: An optional parameter used to configure the time for the opera-
tion to begin collecting information. To start at a specific time, enter the hour,
minute, second (in 24-hour notation), and day of the month. Enter now to
start the operation immediately. Set the hh:mm:ss to indicate that the opera-
tion should start after the entered time has elapsed.

■ ageout seconds: An optional field that specifies the number of seconds to
keep the data of the probe in memory, when it is not actively collecting infor-
mation. The range is 0 to 2073600 seconds, the default is 0 seconds (the
probe does not timeout).

■ recurring: An optional parameter used to set the operation to automatical-
ly run every day.

Tip IP SLA is commonly used with object tracking and EEM scripts. It can be used to
generate syslog messages when a specific condition occurs in the network.

Applet and IP SLA Route Failover Example

This applet is used to monitor the delay for remote sites that are connected through a carrier
network with an alternate path for backup. The EEM script monitors the delay to a particular
address and changes the route based on the response from the destination. This method can
be used at remote sites that require only the default route to reach the hub. The IP SLA probe
is based on ICMP (note that ICMP probes do not require IP SLA responder configured at the
destination); other probes could also be configured based on specific requirement.

As depicted in Figure 4-2, there are two routers in this example, R1 and R2. R1 has a pri-
mary path to R2 and is using the E0/0 interface. The backup path between R1 and R2 is
using the E1/0 interface. Instead of using a routing protocol, a default and static route is
the method used for next-hop reachability. R1 has a static route for the 192.168.1.0/24
subnet toward 10.1.1.2. During failover, the 192.168.1.0/24 subnet will have a new static
route toward 172.16.1.2, and the existing static route will be removed. Similarly, R2 has a
default route pointing toward 10.1.1.1. During failure of the E0/0 link, a new default route

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 75

is installed to 172.16.1.1, and the existing static route is removed. The next-hop reachabili-
ty of the interface is monitored using IP SLA probes. A minor modification can be made
to achieve millisecond failover between the two nodes. Object tracking is used to track
the IP SLA probes. The object tracking generates a syslog message and in turn activates
the EEM script. This script changes the static or the default route and displays a user-
defined syslog message that provides the path taken by the packet. In this example, both
routers are running Cisco IOS Version 12.4(19.11)T code.

The commented configurations outlined in Table 4-10 will help you understand the
steady or normal state of operation.

E0/0 10.1.1.1

E1/0 172.16.1.1 E1/0 172.16.1.2

E0/0 10.1.1.2

R1 R2
Primary Link

Secondary Link

Figure 4-2 EEM/IPSLA for Static Routing Decision Example

R1 R2

The track-object is monitoring IP SLA probe
100.

The track-object is monitoring IP SLA probe
100.

R1#show track 100

Track 100

IP SLA 100 reachability

Reachability is Up

7 changes, last change 00:00:50

Latest operation return code: OK

Latest RTT (millisecs) 4

R2#show track 100

Track 100

IP SLA 100 reachability

Reachability is Up

9 changes, last change 00:01:55

Latest operation return code: OK

Latest RTT (millisecs) 4

The show track command indicates the status
of the IP SLA probes. As shown in the output
above, the probes are being received.

The show track command indicates the status
of the IP SLA probes. As shown in the output
above, the probes are being received.

R1#show ip sla statistics 100

Round Trip Time (RTT) for Index 100

Latest RTT: 1 milliseconds

Latest operation start time:

*08:40:15.663 PST Sun Oct 11 2009

Latest operation return code: OK

Number of successes: 72

Number of failures: 52

Operation time to live: 3353 sec

R2#show ip sla statistics 100

Round Trip Time (RTT) for Index 100

Latest RTT: 4 milliseconds

Latest operation start time:

*08:41:19.011 PST Sun Oct 11 2009

Latest operation return code: OK

Number of successes: 106

Number of failures: 50

Operation time to live: 3288 sec

This command provides the history of the
events that have triggered all the applets.

This command provides the history of the
events that have triggered all the applets.

continues

www.it-ebooks.info

http://www.it-ebooks.info/

76 Tcl Scripting for Cisco IOS

R1 R2

R1#show event manager history events

No. Time of Event Event Type Name

1 Sun Oct11 08:37:09 2009 syslog applet: #100

2 Sun Oct11 08:37:09 2009 syslog applet: #101

3 Sun Oct11 08:37:14 2009 syslog

4 Sun Oct11 08:39:20 2009 syslog applet: #101

5 Sun Oct11 08:42:45 2009 syslog applet: #100

6 Sun Oct11 08:42:50 2009 syslog applet: #101

R1#

R2#show event manager history events

No. Time of Event Event Type Name

1 Sun Oct11 08:36:33 2009 syslog applet: #100

2 Sun Oct11 08:36:48 2009 syslog applet: #101

3 Sun Oct11 08:37:13 2009 syslog applet: #100

4 Sun Oct11 08:37:39 2009 syslog applet: #101

5 Sun Oct11 08:37:49 2009 syslog applet: #100

6 Sun Oct11 08:37:54 2009 syslog applet: #101

7 Sun Oct11 08:38:49 2009 syslog applet: #100

8 Sun Oct11 08:39:19 2009 syslog applet: #101

In the steady-state operation, the route for
192.168.1.0/24 points to 10.1.1.2.

In the steady-state operation, the default route
points to 10.1.1.1.

Table 4-10 EEM/IP SLA for Static Routing Configuration Example (Continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 77

R1 R2

R1#show ip route

Codes: C - connected, S - static, R -

RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external,

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1,

N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 -

OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 -

IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candi-

date default, U - per-user static

route

o - ODR, P - periodic downloaded

static route

Gateway of last resort is not set

172.16.0.0/24 is subnetted,

1 subnets

C 172.16.1.0 is directly connected,

Ethernet1/0

10.0.0.0/24 is subnetted,

1 subnets

C 10.1.1.0 is directly connected,

Ethernet0/0

S 192.168.1.0/24 [1/0] via 10.1.1.2

192.169.2.0/32 is subnetted,

1 subnets

C 192.169.2.2 is directly connected,

Loopback1

R1#

r2#show ip route

Codes: C - connected, S - static, R -

RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external,

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1,

N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 -

OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 -

IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candi-

date default, U - per-user static

route

o - ODR, P - periodic downloaded

static route

Gateway of last resort is 10.1.1.1 to

network 0.0.0.0

172.16.0.0/24 is subnetted,

1 subnets

C 172.16.1.0 is directly connected,

Ethernet1/0

10.0.0.0/24 is subnetted,

1 subnets

C 10.1.1.0 is directly connected,

Ethernet0/0

C 192.168.1.0/24 is directly

connected, Loopback0

S* 0.0.0.0/0 [1/0] via 10.1.1.1

R2#

www.it-ebooks.info

http://www.it-ebooks.info/

78 Tcl Scripting for Cisco IOS

Table 4-11 shows the results during the failure of the primary link between R1 and R2.

R1 R2

To simulate a failure, the Ethernet interface
0/0 on R1 will be shutdown. We can then
observe the results of the simulated failure.

When the e0/0 interface is shut down on R1
router, the EEM script is triggered and

traffic will change to the backup path.

R1(config)#int e0/0

R1(config-if)#shut

R1(config-if)#end

R1#

R1#

*Oct 11 09:00:22.023: %SYS-5-CON-

FIG_I: Configured from console by

console

*Oct 11 09:00:22.975: %LINK-5-

CHANGED: Interface Ethernet0/0,

changed state to administratively

down

*Oct 11 09:00:23.983: %LINEPROTO-5-

UPDOWN: Line protocol on Interface

Ethernet0/0, changed state to down

R1#

t

R2#

*Oct 11 09:00:25.343: %TRACKING-5-

STATE: 100 ip sla 100 reachability

Up->Down

R2#

*Oct 11 09:00:26.607: %HA_EM-6-LOG:

#100: back up route

R2#

*Oct 11 09:00:26.611: %SYS-5-CON-

FIG_I: Configured from console by

vty0

Object tracking detects the IP SLA probe
“down” state.

*Oct 11 09:00:24.503: %TRACKING-5-

STATE: 10 ip sla 10 reachability

Up->Down

*Oct 11 09:00:26.503: %TRACKING-5-

STATE: 100 ip sla 100 reachability

Up->Down

EEM scripts gets triggered and changes

the path to back up. A new syslog message

is added by the script to let the admin

know the traffic path is passing through

back up.

*Oct 11 09:00:28.015: %HA_EM-6-LOG:

#100: back up route

Table 4-11 EEM/IP SLA for Static Routing Failure Scenario

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 79

R1 R2

The show ip route displays the new route
that is installed in the table and the original
route that points to the primary link is
removed.

The show ip route command shows the new
default route has been installed in the table
and the original default route that points to
the primary link has been removed.

R1#show ip route

*Oct 11 09:00:28.015: %SYS-5-CON-

FIG_I: Configured from console by

vty0

R1#show ip route

Codes: C - connected, S - static,

R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external,

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1,

N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 -

OSPF external type 2

i - IS-IS, su - IS-IS summary,

L1 - IS-IS level-1, L2 - IS-IS

level-2

ia - IS-IS inter area, * - can-

didate default, U - per-user static

route

o - ODR, P - periodic downloaded

static route

Gateway of last resort is not set

172.16.0.0/24 is subnetted,

1 subnets

C 172.16.1.0 is directly connect-

ed, Ethernet1/0

S 192.168.1.0/24 [1/0] via

172.16.1.2

192.169.2.0/32 is subnetted,

1 subnets

C 192.169.2.2 is directly

connected, Loopback1

R1#

R2#show ip route

Codes: C - connected, S - static,

R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external,

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1,

N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 -

OSPF external type 2

i - IS-IS, su - IS-IS summary,

L1 - IS-IS level-1, L2 - IS-IS

level-2

ia - IS-IS inter area, * - can-

didate default, U - per-user static

route

o - ODR, P - periodic downloaded

static route

Gateway of last resort is 172.16.1.1

to network 0.0.0.0

172.16.0.0/24 is subnetted,

1 subnets

C 172.16.1.0 is directly connect-

ed, Ethernet1/0

10.0.0.0/24 is subnetted,

1 subnets

C 10.1.1.0 is directly connected,

Ethernet0/0

C 192.168.1.0/24 is directly

connected, Loopback0

S* 0.0.0.0/0 [1/0] via 172.16.1.1

R2#

www.it-ebooks.info

http://www.it-ebooks.info/

80 Tcl Scripting for Cisco IOS

R1 R2

In this example, the primary interface is
restored and we can observe the behavior.

R1(config)#interface e0/0

R1(config-if)#no shut

R1(config-if)#

*Oct 11 09:21:25.515: %LINK-3-

UPDOWN: Interface Ethernet0/0,

changed state to up

*Oct 11 09:21:26.515: %LINEPROTO-5-

UPDOWN: Line protocol on Interface

Ethernet0/0, changed state to up

R1(config-if)#end

R1#

When the e0/0 interface has been restored
on R1.

The track object detects the SLA probe and
changes from down to an up state.

The track object detects the SLA probe and
changes from a down to an up state.

*Oct 11 09:21:27.887: %TRACKING-5-

STATE: 100 ip sla 100 reachability

Down->Up

*Oct 11 09:21:28.387: %SYS-5-CON-

FIG_I: Configured from console by

console

R2#

*Oct 11 09:21:26.987: %TRACKING-5-

STATE: 100 ip sla 100 reachability

Down->Up

The EEM applet generates the syslog

message “back to primary route.”

*Oct 11 09:21:28.239: %HA_EM-6-LOG:

#101: back to primary routeR2#

*Oct 11 09:21:28.255: %SYS-5-CON-

FIG_I: Configured from console by

vty0

The EEM applet generates a syslog message,
“back to primary route.”

The primary route is restored and the back-
up route is removed.

Table 4-12 shows the results when the primary link is restored.

Table 4-12 EEM/IP SLA for Static Routing Restoration Scenario

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 81

R1 R2

*Oct 11 09:21:29.287: %HA_EM-6-LOG:
#101: back to primary route

R1#

*Oct 11 09:21:29.287: %SYS-5-CON-
FIG_I: Configured from console by
vty0

R1#

*Oct 11 09:21:32.899: %TRACKING-5-
STATE: 10 ip sla 10 reachability
Down->Up

! The primary route is restored and
the

! back up route is removed.

R1#

R1#show ip route

Codes: C - connected, S - static,
R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external,
O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1,
N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 -
OSPF external type 2

i - IS-IS, su - IS-IS summary,
L1 - IS-IS level-1, L2 - IS-IS
level-2

ia - IS-IS inter area, * - can-
didate default, U - per-user static
route

o - ODR, P - periodic downloaded
static route

Gateway of last resort is not set.

172.16.0.0/24 is subnetted,
1 subnets

C 172.16.1.0 is directly connect-
ed, Ethernet1/0

10.0.0.0/24 is subnetted, 1 sub-
nets

C 10.1.1.0 is directly connected,
Ethernet0/0

S 192.168.1.0/24 [1/0] via 10.1.1.2

192.169.2.0/32 is subnetted, 1
subnets

C 192.169.2.2 is directly con-
nected, Loopback1

R2#show ip route

Codes: C - connected, S - static, R
- RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external,
O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1,
N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 -
OSPF external type 2

i - IS-IS, su - IS-IS summary,
L1 - IS-IS level-1, L2 - IS-IS
level-2

ia - IS-IS inter area, * - can-
didate default, U - per-user static
route

o - ODR, P - periodic downloaded
static route

Gateway of last resort is 10.1.1.1
to network 0.0.0.0

172.16.0.0/24 is subnetted,
1 subnets

C 172.16.1.0 is directly connect-
ed, Ethernet1/0

10.0.0.0/24 is subnetted,
1 subnets

C 10.1.1.0 is directly connected,
Ethernet0/0

C 192.168.1.0/24 is directly
connected, Loopback0

S* 0.0.0.0/0 [1/0] via 10.1.1.1

www.it-ebooks.info

http://www.it-ebooks.info/

82 Tcl Scripting for Cisco IOS

R1 R2

R1#show run

Building configuration...

Current configuration : 2831 bytes

!

version 12.4

!

hostname R1

!

ip cef

! To track IP SLA 100

track 100 ip sla 100 reachability

!

!

!

interface Ethernet0/0

ip address 10.1.1.1 255.255.255.0

!

interface Ethernet1/0

ip address 172.16.1.1 255.255.255.0

!

!

ip forward-protocol nd

ip route 192.168.1.0 255.255.255.0
10.1.1.2

!

r2#show run

Building configuration...

Current configuration : 2667 bytes

!

version 12.4

!

hostname r2

!

!

ip cef

!

track 100 ip sla 100 reachability

!

interface Loopback0

ip address 192.168.1.1

255.255.255.0

!

interface Ethernet0/0

ip address 10.1.1.2 255.255.255.0

!

interface Ethernet1/0

ip address 172.16.1.2 255.255.255.0

!

ip route 0.0.0.0 0.0.0.0 10.1.1.1

!

! IP SLA 100 is configured using an ICMP-
ECHO probe, the timeout and frequency is
adjusted for quicker convergence.

! IP SLA 100 is configured using an ICMP-
ECHO probe, the timeout and frequency is
adjusted for quicker convergence.

ip sla 100

icmp-echo 10.1.1.2 source-ip

10.1.1.1

timeout 5

frequency 2

ip sla schedule 100 start-time now

recurring

!

!

ip sla 100

icmp-echo 10.1.1.1 source-ip

10.1.1.2

timeout 5

frequency 2

ip sla schedule 100 start-time now

recurring

!

Table 4-13 shows the final configuration of R1 and R2.

Table 4-13 EEM/IP SLA for Static Routing Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 83

The preceding example could be applied to any situation where time-sensitive applica-
tions are constrained to function appropriately only within certain network conditions.
Having the ability to proactively measure the real-time network conditions and alter the
behavior of the traffic pattern will ultimately create a better user experience.

Applet That Monitors the Default Route

In this example, a simple EEM applet is used to monitor events in the routing table. This
can be useful for overall network management. Figure 4-3 illustrates the network topolo-
gy for this example.

R1 R2

EEM Applet triggered during failure. EEM Applet triggered during failure.

event manager applet #100

event syslog pattern “ip sla 100

reachability

Up->Down”

action 1.0 cli command “enable”

action 1.1 cli command “config

terminal”

action 2.0 cli command “no ip route

192.168.1.0 255.255.255.0 10.1.1.2”

action 3.0 cli command “ip route

192.168.1.0 255.255.255.0 172.16.1.2”

action 4.0 syslog msg “back up

route”

event manager applet #100

event syslog pattern “ip sla 100

reachability

Up->Down”

action 1.0 cli command “enable”

action 1.1 cli command “config

terminal”

action 2.0 cli command “no ip route

0.0.0.0 0.0.0.0 10.1.1.1”

action 3.0 cli command “ip route

0.0.0.0 0.0.0.0 172.16.1.1”

action 4.0 syslog msg “back up

route”

When the EEM applet triggered once, the

primary link is restored.

When the EEM applet triggered once, the

primary link is restored.

event manager applet #101

event syslog pattern “ip sla 100

reachability

Down->Up”

action 1.0 cli command “enable”

action 1.1 cli command “config

terminal”

action 2.0 cli command “no ip route

192.168.1.0 255.255.255.0 172.16.1.2”

action 3.0 cli command “ip route

192.168.1.0 255.255.255.0 10.1.1.2”

action 4.0 syslog msg “back to

primary route”

!

end

event manager applet #101

event syslog pattern “ip sla 100

reachability

Down->Up”

action 1.0 cli command “enable”

action 1.1 cli command “config

terminal”

action 2.0 cli command “no ip route

0.0.0.0 0.0.0.0 172.16.1.1”

action 3.0 cli command “ip route

0.0.0.0 0.0.0.0 10.1.1.1”

action 4.0 syslog msg “back to

primary route”

!

end

www.it-ebooks.info

http://www.it-ebooks.info/

84 Tcl Scripting for Cisco IOS

The objective of this applet is to generate probes from one Cisco IOS device to another
and monitor the statistics of the probe messages. When a condition in the network
occurs such that the probes are no longer received within a specified set of parameters,
the applet will change the default route to an alternative path.

The following script is installed on R2 and monitors the availability of the default route in
the routing table. When the default route is removed, it generates a user-defined syslog
message “Default route is removed.” The configuration is as follows:

event manager applet ROUTING

event routing network 0.0.0.0/0 type remove

action 1.0 syslog msg “Default route removed”

The next script detects when the default route has been restored:

event manager applet ROUTING#!

event routing network 0.0.0.0/0 type add

action 1.0 syslog msg “Default route restored”

The routing table during normal activity is as follows:

R2#show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static route

o - ODR, P - periodic downloaded static route, H - NHRP

+ - replicated route, % - next hop override

Gateway of last resort is 10.0.0.1 to network 0.0.0.0

O*E2 0.0.0.0/0 [110/1] via 10.0.0.1, 00:33:22, Ethernet0/0

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

E0/0 10.0.0.1/24 10.0.0.1/24 E0/0

R1 R2

OSPF neigbhor

R2 learns the default
route as a type2

external route from 1

Figure 4-3 EEM Routing Event Detection Example

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 85

C 10.0.0.0/24 is directly connected, Ethernet0/0

L 10.0.0.2/32 is directly connected, Ethernet0/0

When R2 loses connectivity to R1, the following information will be generated.

■ R2 loses its Open Shortest Path First (OSPF) relationship:

%OSPF-5-ADJCHG: Process 1, Nbr 10.0.0.1 on Ethernet0/0 from FULL to DOWN,

Neighbor Down: Dead timer expired

■ The default route is not seen in the routing table:

R2#show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static

route

o - ODR, P - periodic downloaded static route, H - NHRP

+ - replicated route, % - next hop override

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

C 10.0.0.0/24 is directly connected, Ethernet0/0

L 10.0.0.2/32 is directly connected, Ethernet0/0

R2#

■ The EEM script is triggered once the default route has been removed and the follow-
ing syslog message is generated:

%HA_EM-6-LOG: ROUTING: Default route removed

When the connection is restored from R1 to R2, the following information is generated:

■ The OSPF adjacency is established:

%OSPF-5-ADJCHG: Process 1, Nbr 10.0.0.1 on Ethernet0/0 from LOADING to FULL,

Loading Done

■ The EEM script is triggered once the default route is restored and a syslog message
is generated:

%HA_EM-6-LOG: ROUTING#!: Default route restored

■ You can use the show ip route command to view the routing information:

www.it-ebooks.info

http://www.it-ebooks.info/

86 Tcl Scripting for Cisco IOS

R2#show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default, U - per-user static

route

o - ODR, P - periodic downloaded static route, H - NHRP

+ - replicated route, % - next hop override

Gateway of last resort is 10.0.0.1 to network 0.0.0.0

O*E2 0.0.0.0/0 [110/1] via 10.0.0.1, 00:00:19, Ethernet0/0

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

C 10.0.0.0/24 is directly connected, Ethernet0/0

L 10.0.0.2/32 is directly connected, Ethernet0/0

To view the details of the EEM script, use the show event manager detector routing
detailed command, as demonstrated here:

R2#show event manager detector routing detailed

No. Name Version Node Type

1 routing 02.00 node0/0 RP

Tcl Configuration Syntax:

::cisco::eem::event_register_routing

[tag <tag-val>]

network <network>/<length>

[ge <ge-length>]

[le <le-length>]

[ne <ne-length>]

[type {add remove modify all}]

[protocol <protocol-val>]

[queue_priority {normal low high last}]

[maxrun <sec.msec>] [nice {0 1}]

Tcl event_reqinfo Array Names:

event_id

event_type

event_type_string

event_pub_time

event_pub_sec

event_pub_msec

event_severity

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 87

network

mask

protocol

type

lastgateway

distance

time

time_sec

time_msec

metric

lastinterface

Applet Configuration Syntax:

[no] event [tag <tag-val>] routing

network <network>/<length>

[ge <ge-length>]

[le <le-length>]

[ne <ne-length>]

[type {add remove modify all}]

[protocol <protocol-val>]

[maxrun <sec.msec>]

Applet Built-in Environment Variables:

$_event_id

$_event_type

$_event_type_string

$_event_pub_time

$_event_pub_sec

$_event_pub_msec

$_event_severity

$_routing_network

$_routing_mask

$_routing_protocol

$_routing_type

$_routing_lastgateway

$_routing_distance

$_routing_time

$_routing_time_sec

$_routing_time_msec

$_routing_metric

$_routing_lastinterface

Applets can definitely help you monitor the elements in the routing table. More complex
user-defined actions can also be performed for route path selection.

www.it-ebooks.info

http://www.it-ebooks.info/

88 Tcl Scripting for Cisco IOS

Applet and Application Failover with a Network Address Translation Example

In this example, EEM is used in conjunction with object tracking and Network Address
Translation (NAT) to provide high availability for an application.

The objective is to achieve access to a server, whose address is NATed to the IP address
172.16.1.1. Host1 (10.61.1.1) resides in RA, and host2 (10.61.1.2) resides in RB. RA is the
primary host that services the application. When RA is down, the traffic for 172.16.1.1
will be sent to RB (that is, host 2). Figure 4-4 provides an overview of the network.

E0/0

E0/0

E1/0

E1/0

E2/0 E2/0

Loopback 10.61.1.2

10.1.1.0/24

10.1.2.0/24

10.1.3.0/24

Loopback 10.61.1.1

Steady State
10.61.1.1------172.16.1.1
Unavailability of 10.61.1.1 the NAT changes to
10.61.1.2--- 172.16.1.1

RD

RA

RB

RC

Figure 4-4 EEM IP SLA and NAT Example

This example uses four routers: RA, RB, RC, RD. RA and RB represent host1 (10.61.1.1)
and host2 (10.61.1.2), respectively. RC is the router that maintains the IP SLA probes,
EEM, and the NAT configuration. RD initiates traffic to the primary services address of
172.16.1.1. RA and RB have default route pointing to RC. RC and RD have a routing pro-
tocol relationship. The configuration and operation of the script follows.

During normal operation, the following conditions will be exhibited:

■ Ping from RD to the IP address 172.16.1.1:

RD#ping 172.16.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.16.1.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/6/12 ms

RD#

■ The packet flow through RC translates the traffic destined for 172.16.1.1 to host1
(10.61.1.1). RC has a route that sends the packets destined to 172.16.1.1 through E0/0
(outgoing interface to RA). Interface E2/0 facing is configured as the NAT inside.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 89

E0/0 facing RA is configured as the NAT outside. The configuration for NAT on RC
is as follows:

ip nat inside source static 10.61.1.1 172.16.1.1

■ Looking at the NAT translations, you can see the operation of the translation:

RC#show ip nat translations

Pro Inside global Inside local Outside local Outside global

icmp 172.16.1.1:35 10.61.1.1:35 10.1.3.2:35 10.1.3.2:35

--- 172.16.1.1 10.61.1.1 --- ---

■ Any traffic sent from RD will get translated from 172.16.1.1 to 10.61.1.1 when the
packet traverses through interface E0/0 (inside NAT interface of RC). The following is
the route statement added to RC that adds 172.16.1.1 route pointing to interface E0/0:

RC#show ip route 172.16.1.1

Routing entry for 172.16.1.1/32

Known via “static”, distance 1, metric 0 (connected)

Tag 1

Redistributing via ospf 1

Advertised by ospf 1 subnets tag 1 route-map TEST

Routing Descriptor Blocks:

* directly connected, via Ethernet0/0

Route metric is 0, traffic share count is 1

Route tag 1

■ RC is configured with IP SLA probes. These probes monitor the availability of
10.61.1.1 and are linked to object tracking. The status of the IP SLA probes will be
tracked and a syslog message will be generated. The EEM script uses the syslog
message to make a determination of which service to direct traffic toward:

RC#show ip sla statistics 1

Round Trip Time (RTT) for Index 1

Latest RTT: 4 milliseconds

Latest operation start time: *20:13:57.146 PST Fri Oct 9 2009

Latest operation return code: OK

Number of successes: 358

Number of failures: 0

Operation time to live: Forever

■ This following output shows that the IP SLA probe operation is up:

RC#show track 3

Track 3

IP SLA 1 reachability

Reachability is Up

www.it-ebooks.info

http://www.it-ebooks.info/

90 Tcl Scripting for Cisco IOS

25 changes, last change 01:18:41

Latest operation return code: OK

Latest RTT (millisecs) 1

The EEM applet is configured on RC. This applet will be be used only during failover.
During a failover scenario, when RA is not reachable, the traffic will be directed to RB
(host2, 10.61.1.2). The following list shows the configuration required on RC:

Step 1. Define the name of the applet:

event manager applet #3

Step 2. Trigger the applet using the following pattern match ip sla 1 reachability
Down->Up:

event syslog pattern “ip sla 1 reachability Down->Up”

Step 3. Access the enable prompt and clear the translations:

action 1.0 cli command “enable”

action 1.1 cli command “ clear ip nat translation *”

Step 4. Change to configuration mode and remove the existing NAT translation:

action 2.0 cli command “config terminal”

action 3.0 cli command “no ip nat inside source static 10.61.1.2

172.16.1.1”

Step 5. Add the new NAT translation that points to host1:

action 4.0 cli command “ip nat inside source static 10.61.1.1

172.16.1.1”

Step 6. The nat inside statement is removed from E1/0:

action 5.0 cli command “interface E1/0”

action 6.0 cli command “no ip nat inside”

Step 7. The nat inside statement is added to E1/0:

action 7.0 cli command “int e 0/0”

action 8.0 cli command “ ip nat inside”

Step 8. The route statement for 172.16.1.1 for the previous NAT inside interface is
removed:

action 9.0 cli command “no ip route 172.16.1.1 255.255.255.255

Ethernet1/0 tag 1”

Step 9. The route statement for 172.16.1.1 on interface E1/0 is added:

action 9.1 cli command “ip route 172.16.1.1 255.255.255.255

Ethernet0/0 tag 1”

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 91

Step 10. The operation of the script is as follows:

RC#show ip nat translations

Pro Inside global Inside local Outside local Outside global

icmp 172.16.1.1:36 10.61.1.1:36 10.1.3.2:36 10.1.3.2:36

--- 172.16.1.1 10.61.1.1 --- ---

RC#show track

Track 3

IP SLA 1 reachability

Reachability is Up

27 changes, last change 01:20:52

Latest operation return code: OK

Latest RTT (millisecs) 4

Note: Show the traffic is traversing to host1 at RA

When a failure happens, the following occurs:

Step 1. The following output from RC shows what happens when the traffic changes
from host1 (10.61.1.1) to host2 (10.61.1.2):

%SYS-5-CONFIG_I: Configured from console by console

%TRACKING-5-STATE: 3 ip sla 1 reachability Up->Down

Step 2. The EEM policy is triggered and the configuration changes is completed
based on the script:

SYS-5-CONFIG_I: Configured from console by vty0

Step 3. After the script is executed, the new translation is moved to 10.61.1.2, as shown:

RC#show ip nat translations

Pro Inside global Inside local Outside local Outside global

--- 172.16.1.1 10.61.1.2 --- ---

Step 4. The route has now changed:

RC#show ip route 172.16.1.1

Routing entry for 172.16.1.1/32

Known via “static”, distance 1, metric 0 (connected)

Tag 1

Redistributing via ospf 1

Advertised by ospf 1 subnets tag 1 route-map TEST

Routing Descriptor Blocks:

* directly connected, via Ethernet1/0

Route metric is 0, traffic share count is 1

Route tag 1

www.it-ebooks.info

http://www.it-ebooks.info/

92 Tcl Scripting for Cisco IOS

Step 5. The original nat inside statement is removed:

RC#show run interface e0/0

Building configuration...

Current configuration : 64 bytes

!

interface Ethernet0/0

ip address 10.1.1.2 255.255.255.0

end

Step 6. The new nat inside statement is now pointing to host2:

RC#show run int e1/0

Building configuration...

Current configuration : 102 bytes

!

interface Ethernet1/0

ip address 10.1.2.2 255.255.255.0

ip nat inside

ip virtual-reassembly

end

Step 7. Traffic from RD is now sent to 172.16.1.1 at RC:

RC#show ip nat translations

Pro Inside global Inside local Outside local Outside global

icmp 172.16.1.1:37 10.61.1.2:37 10.1.3.2:37 10.1.3.2:37

--- 172.16.1.1 10.61.1.2 --- ---

On recovery, the following events occur:

RC#

%TRACKING-5-STATE: 3 ip sla 1 reachability Down->Up

Step 1. The syslog message shows that the IP SLA probe is in the up state:

RC#

%SYS-5-CONFIG_I: Configured from console by vty0

Step 2. The NAT translation is changed from 10.61.1.2 to 10.61.1.1:

RC#show ip nat translations

Pro Inside global Inside local Outside local Outside global

--- 172.16.1.1 10.61.1.1 --- ---

Step 3. The route to 172.16.1.1 is pointing to interface E0/0:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 93

RC#show ip route 172.16.1.1

Routing entry for 172.16.1.1/32

Known via “static”, distance 1, metric 0 (connected)

Tag 1

Redistributing via ospf 1

Advertised by ospf 1 subnets tag 1 route-map TEST

Routing Descriptor Blocks:

* directly connected, via Ethernet0/0

Route metric is 0, traffic share count is 1

Route tag 1

Step 4. The nat inside statement is now removed from E1/0:

RC#show run int e1/0

Building configuration...

Current configuration : 64 bytes

!

interface Ethernet1/0

ip address 10.1.2.2 255.255.255.0

end

Step 5. The nat inside statement is added to E0/0:

RC#show run int e0/0

Building configuration...

Current configuration : 102 bytes

!

interface Ethernet0/0

ip address 10.1.1.2 255.255.255.0

ip nat inside

ip virtual-reassembly

end

Step 6. Traffic from RD now traverses RC to reach host1 (10.61.1.1).

The pertinent configuration commands on RC are as follows:

RC#show run

track 2 ip sla 2 reachability

track 3 ip sla 1 reachability

interface Ethernet0/0

ip address 10.1.1.2 255.255.255.0

ip nat inside

interface Ethernet2/0

ip address 10.1.3.1 255.255.255.0

ip nat outside

router ospf 1

redistribute static subnets tag 1 route-map TEST

www.it-ebooks.info

http://www.it-ebooks.info/

94 Tcl Scripting for Cisco IOS

network 0.0.0.0 255.255.255.255 area 0

ip route 10.61.1.1 255.255.255.255 Ethernet0/0

ip route 10.61.1.2 255.255.255.255 Ethernet1/0

ip route 172.16.1.1 255.255.255.255 Ethernet0/0 tag 1

ip nat inside source static 10.61.1.1 172.16.1.1

ip sla 1

icmp-echo 10.1.1.1

frequency 5

ip sla schedule 1 life forever start-time now

ip sla 2

icmp-echo 10.1.2.1

frequency 5

ip sla schedule 2 life forever start-time now

access-list 1 permit 172.16.1.1

route-map TEST permit 1

match ip address 1

event manager applet #2

event syslog pattern “ip sla 1 reachability Up->Down”

action 1.0 cli command “enable”

action 1.1 cli command “ clear ip nat translation *”

action 2.0 cli command “config terminal”

action 3.0 cli command “no ip nat inside source static 10.61.1.1 172.16.1.1”

action 4.0 cli command “ip nat inside source static 10.61.1.2 172.16.1.1”

action 5.0 cli command “int e 0/0”

action 6.0 cli command “no ip nat inside”

action 7.0 cli command “int e 1/0”

action 8.0 cli command “ip nat inside”

action 9.0 cli command “no ip route 172.16.1.1 255.255.255.255 Ethernet0/0 tag 1”

action 9.1 cli command “ip route 172.16.1.1 255.255.255.255 Ethernet1/0 tag 1”

event manager applet #3

event syslog pattern “ip sla 1 reachability Down->Up”

action 1.0 cli command “enable”

action 1.1 cli command “ clear ip nat translation *”

action 2.0 cli command “config terminal”

action 3.0 cli command “no ip nat inside source static 10.61.1.2 172.16.1.1”

action 4.0 cli command “ip nat inside source static 10.61.1.1 172.16.1.1”

action 5.0 cli command “int e 1/0”

action 6.0 cli command “no ip nat inside”

action 7.0 cli command “int e 0/0”

action 8.0 cli command “ ip nat inside”

action 9.0 cli command “no ip route 172.16.1.1 255.255.255.255 Ethernet1/0 tag 1”

action 9.1 cli command “ip route 172.16.1.1 255.255.255.255 Ethernet0/0 tag 1”

This script can be used to achieve dynamic active/standby redirection of traffic. The host
could be multiple hops away, and the same principle can be applied with a slight modifi-
cation to the configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 95

To view all the event detectors, use the following command:

Router#show event manager detector all

No. Name Version Node Type

1 appl 01.00 node0/0 RP

2 syslog 01.00 node0/0 RP

3 routing 02.00 node0/0 RP

4 track 01.00 node0/0 RP

5 resource 01.00 node0/0 RP

6 cli 01.00 node0/0 RP

7 counterp9.676 01.00 node0/0 RP

8 interface 01.00 node0/0 RP

9 ioswdsysmon 01.00 node0/0 RP

10 none 01.00 node0/0 RP

11 oir 01.00 node0/0 RP

12 snmp 01.00 node0/0 RP

13 snmp-notification 01.00 node0/0 RP

14 timer 01.00 node0/0 RP

15 ipsla 01.00 node0/0 RP

16 nf 01.00 node0/0 RP

The name event describes what can be tracked by using EEM.

To view the details of the events that can be monitored, use the following command:

Router#show event manager detector ipsla detailed

No. Name Version Node Type

1 ipsla 01.00 node0/0 RP

Tcl Configuration Syntax:

::cisco::eem::event_register_ipsla

[tag <tag-val>]

group_name <group-name value>

operation_id <operation-id value>

[reaction_type <reaction_type value>]

[dest_ip_addr <destination-ip-address>]

[queue_priority {normal low high last}]

[maxrun <sec.msec>] [nice {0 1}]

Tcl event_reqinfo Array Names:

event_id

event_type

event_type_string

event_pub_time

event_pub_sec

event_pub_msec

event_severity

www.it-ebooks.info

http://www.it-ebooks.info/

96 Tcl Scripting for Cisco IOS

group_name

oper_id

condition

react_type

dest_ip_addr

threshold_rising

threshold_falling

threshold_count

threshold_count2

Applet Built-in Environment Variables:

$_event_id

$_event_type

$_event_type_string

$_event_pub_time

$_event_pub_sec

$_event_pub_msec

$_event_severity

$_ipsla_group_name

$_ipsla_oper_id

$_ipsla_condition

$_ipsla_react_type

$_ipsla_threshold_type

$_ipsla_dest_ip_addr

$_ipsla_threshold_rising

$_ipsla_threshold_falling

$_ipsla_threshold_count

$_ipsla_threshold_count2

$_ipsla_measured_threshold_value

Using EEM and Tcl Scripts

EEM policies have two primary components, an event and an action:

■ An event keyword is used to establish a criteria when the policy is run.

■ A user-defined action in the policy provides the response to the detected event.

Within Cisco IOS, system policies are already built and provide a great starting point for
writing scripts. You can show the available system policies on the Cisco IOS device using
the following command:

Router#show event manager policy available system

No. Type Time Created Name

1 system Wed Feb 6 22:28:15 2036 ap_perf_test_base_cpu.tcl

2 system Wed Feb 6 22:28:15 2036 cl_show_eem_tech.tcl

3 system Wed Feb 6 22:28:15 2036 no_perf_test_init.tcl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 97

Note Although namespace import is not mandatory, it requires that you will have to fully
qualify all the EEM Tcl procedures.

Figure 4-5 illustrates the basic elements for Tcl scripts, as follows:

■ Event Register Keyword: To start any policy, the policy needs to be described and
registered. This is done using the event register keyword.

■ Environment Must Define: The variables that need to be used in the Tcl script need
to be defined in the router configuration, using environment variable in the event
manager configuration.

Event Register Keyword

Environment must defines

Namespace Import

Entry Status

Body

Exit Status

Required for EEM
Script

Figure 4-5 Functional Specifications for Tcl Scripts

4 system Wed Feb 6 22:28:15 2036 sl_intf_down.tcl

5 system Wed Feb 6 22:28:15 2036 tm_cli_cmd.tcl

6 system Wed Feb 6 22:28:15 2036 tm_crash_reporter.tcl

7 system Wed Feb 6 22:28:15 2036 tm_fsys_usage.tcl

Programming Policies with Tcl

Event manager policies consist of one or more EEM detectors combined with a Tcl script.
The Tcl script can perform tasks based on a trigger from the EEM detectors. EEM poli-
cies consist of required elements and optional elements. The required elements are event
register and the Tcl script body. The other optional elements include namespace import,
entry status, and exit status. Figure 4-5 describes the EEM policies that are the founda-
tion for the script itself.

www.it-ebooks.info

http://www.it-ebooks.info/

98 Tcl Scripting for Cisco IOS

■ Namespace Import: Namespace import refers to all Tcl commands closely related to
EEM.

■ Entry Status: This determines whether an earlier policy has been run for the same
event. Based on the result of the previous policy (if executed), the current policy
may or may not be executed.

■ Body: The actual body of the Tcl script that defines the policy.

■ Exit Status: This provides the criteria used by EEM to determine the exit policy.

Tcl Example Used to Check for Interface Errors

The EEM script in this section checks the interface counters, and if errors are seen, it
generates an e-mail to the selected account.

For the script to operate properly, you need to define environment variables. The vari-
ables include the following elements:

event manager environment _email_server e_mail_server.com

event manager environment _email_to destination_account

event manager environment _email_from source_account

event manager environment _cron_entry 0-59/2 0-23/1 * * 0-7

event manager environment _show_cmd show interface include errors

event manager directory user policy flash:

Note Variables that begin with an underscore (_) character are reserved for Cisco internal
use and could be overwritten by system variables.

event manager policy interface_errors_email.tcl

Tip When configuring the source account using authentication to the SMTP server, use
the following format:

event manager environment _email_server USERPASSWORD@SERVER_IP_ADDRESS

Step 1. The beginning of the Tcl script registers the CRON timer with user-defined
parameters gleaned from the event manager variables:

::cisco::eem::event_register_timer cron name crontimer2 cron_entry

$_cron_entry maxrun_sec 240

Step 2. Verify the existence of all the environment variables you need for the script.
If any of them are not available, print out an error message and quit.

Step 3. Validate that the _email_server environment variable is set:

if {![info exists _email_server]} {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 99

Step 4. If the environment variable _email_server has not been detected, save the
error and quit:

set result \

“Policy cannot be run: variable _email_server has not been set”

error $result $errorInfo

}

Step 5. The following section checks whether the required environment variable
_email_from exists:

if {![info exists _email_from]} {

Step 6. If an error is detected in the environment variable (_email_from), save the
reason for the error and exit the script:

set result \

“Policy cannot be run: variable _email_from has not been set”

error $result $errorInfo

}

Step 7. The following section checks whether the required environment variable
_email_to exists:

if {![info exists _email_to]} {

Step 8. If an error is detected in the environment variable (_email_to), save the reason
for the error and exit the script:

set result \

“Policy cannot be run: variable _email_to has not been set”

error $result $errorInfo

}

Step 9. The following section checks whether the _email_cc environment variable
exists. Because this is not a required parameter, the variable will be config-
ured as an empty string if nothing has been entered:

if {![info exists _email_cc]} {

Step 10. The _email_cc is an option, but must set to an empty string if not configured:

set _email_cc ““

}

Step 11. Verify that the _show_cmd environment variable is set, because this will be
used to collect the IOS show command output and send it in the e-mail body:

if {![info exists _show_cmd]} {

Step 12. If there is an error, collect the information and exit the script:

www.it-ebooks.info

http://www.it-ebooks.info/

100 Tcl Scripting for Cisco IOS

set result \

“Policy cannot be run: variable _show_cmd has not been set”

error $result $errorInfo

}

Step 13. Load the standard EEM libraries. The procedures error and cli_open are stan-
dard EEM library procedures:

namespace import ::cisco::eem::*

namespace import ::cisco::lib::*

Step 14. Query the event info and log a message:

array set arr_einfo [event_reqinfo]

Step 15. If any problems were detected, variable _cerrno is set to a nonzero value, and
the variable named _cerr contains the details of the problem:

if {$_cerrno != 0} {

set result [format “component=%s; subsys err=%s; posix err=%s;\n%s” \

$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result

}

Step 16. The following variables are used to store the time of the error:

global timer_type timer_time_sec

set timer_type $arr_einfo(timer_type)

set timer_time_sec $arr_einfo(timer_time_sec)

Step 17. Log a message:

set msg [format “timer event: timer type %s, time expired %s” \

$timer_type [clock format $timer_time_sec]]

Step 18. Send the message to the syslog process:

action_syslog priority info msg $msg

Step 19. If any problems were detected, the variable _cerrno is set to a nonzero value
and the variable named _cerr will contain the details of the problem:

if {$_cerrno != 0} {

set result [format “component=%s; subsys err=%s; posix err=%s;\n%s” \

$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result

}

Step 20. Execute the show command from the environment variable _show_cmd:

if [catch {cli_open} result] {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 101

Step 21. If there is a problem with the show command, end the script because of the
error:

error $result $errorInfo

} else {

Step 22. With a success, save the results to the array cli1:

array set cli1 $result

}

Step 23. Because the cli_open was successful, use the variable fd from now on to
access the CLI.

Step 24. Enter IOS enable mode for proper display of many show commands:

if [catch {cli_exec $cli1(fd) “en”} result] {

Step 25. In the event of an error, end the script:

error $result $errorInfo

}

Step 26. Execute the IOS show command, and save the result:

if [catch {cli_exec $cli1(fd) $_show_cmd} result] {

Step 27. If a problem occurred executing the IOS show command, end the script now:

error $result $errorInfo

} else {

Step 28. Save the output of the IOS show command in variable cmd_output:

set cmd_output $result

}

Step 29. If a problem occurred closing access to the CLI, end the script now:

if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo

}

Step 30. Log the success of the CLI command:

set msg [format “Command \”%s\” executed successfully” $_show_cmd]

Step 31. Send the message to the syslog process:

action_syslog priority info msg $msg

Step 32. If any problems were detected, the variable _cerrno is set to a nonzero value
and the variable named _cerr will contain the details of the problem:

www.it-ebooks.info

http://www.it-ebooks.info/

102 Tcl Scripting for Cisco IOS

if {$_cerrno != 0} {

set result [format “component=%s; subsys err=%s; posix err=%s;\n%s” \

$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result

}

Collect the input and output errors using the IOS show command from the environment
variable:

Step 1. Wherever a space appears, save it in the mylist variable:

set mylist [split $cmd_output “ “]

Step 2. Create an identical copy of the variable that will be modified as we work out
the results:

set newlist [split $cmd_output “ “]

Step 3. Create counter variables to keep track of how many interface input and out-
put errors were detected:

set inputerror 0

set outputerror 0

Step 4. The curpos variable is a pointer to a specific position in the string newlist.
Look for the first occurrence of the word input in mylist and save that loca-
tion as curpos:

set curpos [lsearch $mylist input]

Step 5. Search through the string newlist until there are no longer any instances of
the word input, at this time curpos will be set to 0:

while {$curpos > 0} {

Step 6. Set the variable prev to the location in the string just prior to the value of
curpos:

set prev [expr $curpos - 1]

Step 7. The curerror variable contains the actual number of input errors:

set curerror [lindex $mylist $prev]

Step 8. Increment the variable inputerror if there were any input errors:

if {$curerror > 0} {incr inputerror}

Step 9. Change the word input to junk in the string newlist. This is done to prevent
counting the same error multiple times:

set newlist [lreplace $newlist $curpos $curpos junk]

Step 10. Search for the word input in the string newlist:

set curpos [lsearch $newlist input]

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 103

Step 11. Look for the first occurrence of the word output in the string newlist and set
the variable curpos to that location:

set curpos [lsearch $mylist output]

Step 12. Search through the string newlist until there are no longer any instances of
the word output, at this time curpos will be set to 0:

while {$curpos > 0} {

Step 13. Set the variable prev to the location in the string just prior to the value of
curpos:

set prev [expr $curpos - 1]

Step 14. The curerror variable contains the actual number of input errors:

set curerror [lindex $mylist $prev]

Step 15. Increment the variable inputerror if there were any input errors:

if {$curerror > 0} {incr outputerror}

Step 16. Change the word input to junk in the string newlist. This is done to prevent
counting the same error multiple times:

set newlist [lreplace $newlist $curpos $curpos junk]

Step 17. Search for the word output in the string newlist:

set curpos [lsearch $newlist output]

}

Step 18. Check whether there were any interface errors:

if {$inputerror < 1 && $outputerror < 1} {

Step 19. If both variables inputerror and outputerror are 0, this indicates that there
were not any errors:

set result “no interface errors found”

Step 20. Because there were not any errors detected, end the script:

error $result

}

Send an e-mail indicating that the interface errors were detected.

Step 1. Collect the name of the Cisco IOS device:

set routername [info hostname]

if {[string match ““ $routername]} {

www.it-ebooks.info

http://www.it-ebooks.info/

104 Tcl Scripting for Cisco IOS

Step 2. If the IOS device is missing the hostname configuration command, display
the following error message:

error “Host name is not configured”

}

Step 3. Concatenate the show command output with a standard e-mail template from
the library and get the e-mail server IP address:

if [catch {smtp_subst [file join $tcl_library email_template_cmd.tm]}

result] {

error $result $errorInfo

}

Step 4. Send the e-mail message:

if [catch {smtp_send_email $result} result] {

error $result $errorInfo

}

Figure 4-6 shows the e-mail received from the IOS device.

Tcl Example Used to Check the CPU Utilization

The sample script in this section checks the CPU, and if it exceeds a 60 percent thresh-
old, generates an e-mail.

Step 1. The following event manager commands configured on the IOS device are
used to define the environment variables in the Tcl script:

event manager environment _email_server e_mail_server.com

event manager environment _email_to destination_account

event manager environment _email_from source_account

event manager environment _cron_entry 0-59/2 0-23/1 * * 0-7

From router TCLRouter: Periodic show interface | i errors Output

ray.blair@comcast.net <ray.blair@comcast.net>

To: Ray Blair <rablair@cisco.com>

1 input errors, 0 CRC, 1 frame, 0 overrun, 0 ignored

0 output errors, 0 collisions, 3 interface resets

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored

0 output errors, 0 colloisions, 0 interface resets

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

0 output errors, 0 colisions, 6 interface resets

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

0 output errors, 0 collisions, 6 interface resets

TCLRouter#

Figure 4-6 Script Error Results

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 105

event manager environment _show_cmd show proc cpu i five

event manager environment _percent 60

event manager dir user pol flash:

event manager policy cpu_threshold_email.tcl

Note Because of an aspect of implementation (bug) in code prior to EEM Release 2.3, it
is recommended to use the IP address of the mail server and not the name.

Step 2. The beginning of the Tcl script registers the CRON timer with user-defined
parameters gleaned from the event manager variables:

::cisco::eem::event_register_timer cron name crontimer2 cron_entry

$_cron_entry maxrun_sec 240

Step 3. The following section checks whether the required environment variable
_email_server exists:

if {![info exists _email_server]} {

Step 4. If an error is detected in the environment variable (_email_server), save the
reason for the error and exit the script:

set result \

“Policy cannot be run: variable _email_server has not been set”

error $result $errorInfo

}

Step 5. The following section checks whether the required environment variable
_email_from exists:

if {![info exists _email_from]} {

Step 6. If an error is detected in the environment variable (_email_from), save the
reason for the error and exit the script:

set result \

“Policy cannot be run: variable _email_from has not been set”

error $result $errorInfo

}

Step 7. The following section checks whether the required environment variable
_email_to exists:

if {![info exists _email_to]} {

Step 8. If an error is detected in the environment variable (_email_to), save the reason
for the error and exit the script:

set result \

“Policy cannot be run: variable _email_to has not been set”

www.it-ebooks.info

http://www.it-ebooks.info/

106 Tcl Scripting for Cisco IOS

error $result $errorInfo

}

Step 9. The following section checks whether the _email_cc environment variable
exists. Because this is not a required parameter, the variable will be config-
ured as an empty string if nothing has been entered:

if {![info exists _email_cc]} {

set _email_cc ““

}

Step 10. Verify that the _show_cmd environment variable is set. This parameter will
be used to collect the Cisco IOS show command output and send it in the e-
mail body:

if {![info exists _show_cmd]} {

Step 11. If there is an error, collect the information and exit the script:

set result \

“Policy cannot be run: variable _show_cmd has not been set”

error $result $errorInfo

}

Step 12. Load the standard EEM libraries. For example, the namespace import state-
ment error and cli_open are standard EEM library procedures:

namespace import ::cisco::eem::*

namespace import ::cisco::lib::*

Step 13. Query the event info and log a message:

array set arr_einfo [event_reqinfo]

Step 14. If any problems were detected, the variable _cerrno is set to a nonzero value,
and the variable named _cerr will contain the details of the problem:

if {$_cerrno != 0} {

set result [format “component=%s; subsys err=%s; posix err=%s;\n%s” \

$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result

}

Step 15. The following variables are used to store the time of the error:

global timer_type timer_time_sec

set timer_type $arr_einfo(timer_type)

set timer_time_sec $arr_einfo(timer_time_sec)

Step 16. Log a message:

set msg [format “timer event: timer type %s, time expired %s” \

$timer_type [clock format $timer_time_sec]]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 107

Step 17. Send the message to the syslog process:

action_syslog priority info msg $msg

Step 18. If any problems were detected, the variable _cerrno is set to a nonzero value,
and the variable named _cerr will contain the details of the problem:

if {$_cerrno != 0} {

set result [format “component=%s; subsys err=%s; posix err=%s;\n%s” \

$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result

}

Step 19. Execute the show command from the environment variable _show_cmd:

if [catch {cli_open} result] {

Step 20. If there is a problem with the show command, end the script because of the
error:

error $result $errorInfo

} else {

Step 21. With a success, save the results to the array cli1:

array set cli1 $result

}

Step 22. Because the cli_open was successful, use the variable fd from now on to
access the CLI.

Step 23. Enter IOS enable mode for proper display of many show commands:

if [catch {cli_exec $cli1(fd) “en”} result] {

Step 24. In the event of an error, end the script:

error $result $errorInfo

}

if [catch {cli_exec $cli1(fd) $_show_cmd} result] {

Step 25. If a problem occurred executing the IOS show command, end the script now:

error $result $errorInfo

} else {

Step 26. Save the output of the IOS show command in variable cmd_output:

set cmd_output $result

}

if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

www.it-ebooks.info

http://www.it-ebooks.info/

108 Tcl Scripting for Cisco IOS

Step 27. If a problem occurred closing access to the CLI, end the script now:

error $result $errorInfo

}

Step 28. Log the success of the CLI command:

set msg [format “Command \”%s\” executed successfully” $_show_cmd]

Step 29. Send the message to the syslog process:

action_syslog priority info msg $msg

Step 30. If any problems were detected, the variable _cerrno is set to a nonzero value,
and the variable named _cerr will contain the details of the problem:

if {$_cerrno != 0} {

set result [format “component=%s; subsys err=%s; posix err=%s;\n%s” \

$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result

}

Step 31. Collect the actual CPU percentage from the show command. The variable
foundposition will point to the beginning of the word “five” in the string
“five minutes:”.

set foundposition [string first “five minutes: “ $cmd_output]

Step 32. We get the string length of “five minutes:” so that it can be easily removed later:

set cutoff [string length “five minutes: “]

Step 33. Only process the output if foundposition actually found the string “five
minutes: ”:

if {$foundposition > -1} {

Step 34. Set the variable begin to the location of the beginning of the number after
“five minutes: ”:

set begin [expr $foundposition + $cutoff]

Step 35. Set the variable end to the location of the end of the number after “five min-
utes: ”. This assumes that the number is no longer than three digits; it could
be one, two, or three digits long:

set end [expr $begin + 3]

Step 36. Save the number variable realcpu. This variable might or might not contain
the % character, depending on how many digits long it is. For example, if the
variable was at 100, the realcpu variable will not have the % character present

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4: Embedded Event Manager (EEM) 109

because only three digits were saved. If it were a two-digit number like 50,
you would have the % character in the variable realcpu:

set realcpu [string range $result $begin $end]

Step 37. Check whether the % character was found. If it was, remove it:

set foundpercent [string first “%” $realcpu]

if {$foundpercent > -1} {

Step 38. Remove any trailing white space characters:

set realcpu [string trimright $realcpu]

Step 39. Remove the % character if it is present:

set realcpu [string trimright $realcpu “%?”]

}

}

Step 40. Compare the CPU usage to the %60 value specified. If the CPU usage
exceeded the set max, the variable realcpu contains the actual number from
the show command:

if {$realcpu < $_percent} {

set result “CPU did not exceed the set percent”

error $result

}

Step 41. Collect the name of the Cisco IOS device:

set routername [info hostname]

if {[string match ““ $routername]} {

Step 42. If the IOS device is missing the hostname configuration command, display
the following error message:

error “Host name is not configured”

}

Step 43. Send an e-mail indicating that the CPU was above the configured limit.
Concatenate the show command output with a standard e-mail template from
the library and get the e-mail server IP address:

if [catch {smtp_subst [file join $tcl_library email_template_cmd.tm]}

result] {

error $result $errorInfo

}

Step 44. Send the e-mail message:

if [catch {smtp_send_email $result} result] {

error $result $errorInfo

}

www.it-ebooks.info

http://www.it-ebooks.info/

110 Tcl Scripting for Cisco IOS

Summary

The Embedded Event Manager (EEM) includes detectors for notification of a particular
event, the event manager that controls the operation of predetermined actions, and the
policies that can be either an applet or Tcl script. EEM has continued to evolve, with
more feature functionality with each subsequent release.

From the examples in this chapter, you can see the differences in applets and Tcl scripts
and the power you have to customize your own applications to automate monitoring and
troubleshooting processes.

References

Cisco Beyond (a repository for user-contributed EEM policies):
http://tinyurl.com/yetbqgq

Cisco Embedded Automation Systems: http://www.cisco.com/go/easy

Cisco IOS Embedded Event Manager (EEM): http://www.cisco.com/go/eem

Writing Embedded Event Manager Policies Using Cisco IOS CLI:
http://tinyurl.com/yjveq6q

Cisco IOS IP Service Level Agreements (SLAs): http://www.cisco.com/go/ipsla

www.it-ebooks.info

http://tinyurl.com/yetbqgq
http://www.cisco.com/go/easy
http://www.cisco.com/go/eem
http://tinyurl.com/yjveq6q
http://www.cisco.com/go/ipsla
http://www.it-ebooks.info/

Chapter 5

Advanced Tcl Operation in
Cisco IOS

This chapter covers the following topics:

■ Introduction to the Syslog Protocol

■ Configuring Syslog Server Parameters in Cisco IOS

■ Syslog Tcl Script Example

■ Sending Syslog Messages to a File

■ Putting the Syslog Script into Operation

■ Introduction to Embedded Syslog Manager

■ Using Tcl as a Web Server

■ Introduction to IP SLA

■ Tcl Script Refresh Policy

■ SNMP Proxy Event Detector

■ RPC Requests

■ Multiple-Event Support for Event Correlation

■ Using the clear Command

To this point, the examples in this book have been relatively simple. This chapter covers
some more complicated Tcl scripts and their use with Cisco IOS. Some examples are
more complicated because they involve handling a specific network protocol as a server.
Therefore, they may have more work to do to service incoming requests from clients. The
first advanced Tcl script presented functions as a syslog daemon.

One important set of Tcl commands that might prove particularly helpful when writing a
network server is the socket library. The syslog example demonstrates the use of sockets,
which are built directly in to Tcl in Cisco IOS. A socket library simplifies the

www.it-ebooks.info

http://www.it-ebooks.info/

112 Tcl Scripting for Cisco IOS

programmer’s job of writing a network server by handling the complexities of the net-
working protocol. Instead of concentrating on how to handle the incoming network con-
nection, the programmer can focus on the important part, handling the incoming data.

Introduction to the Syslog Protocol

The syslog protocol allows network devices to send small text messages to a central server
that can be viewed by network administrators. The main purposes of syslog messages are
to document failures, monitor trends, collect pertinent statistics, and send alarm messages
to a central location. The central device is typically a syslog server running a software
application that collects data and displays it in a format suitable for human consumption.
This information will help network administrators with capacity planning, maintaining
network security, troubleshooting, and so on. Ultimately, this data provides network
administrators with a better overall understanding of what is happening with the network.

The actual syslog messages consist of five parts:

■ An optional timestamp.

■ The message “facility,” or what part of the system the message is coming from, also
known as a mnemonic.

■ The “severity,” or how serious is the issue. Severity ranges from 0, meaning an
absolute emergency, to a value of 7, which is used for debugging messages. Table 5-1
shows a list of syslog severities in IOS.

■ The message name follows after severity. This is a short abbreviation for the message
name that can be used for correlation of many messages.

■ The final portion is the text of the syslog message. The message text will vary from
message to message. For example, a syslog message printed on the console of a
Cisco IOS router might appear as follows:

*Dec 6 21:07:05.754: %LDP-5-NBRCHG: LDP Neighbor 10.131.191.252:0 (4) is UP

The preceding example is a syslog message that contains the following five fields:

Timestamp: Dec 6 21:07:05.754

Facility Name: LDP

Severity: 5 (Notifications)

Name: NBRCHG

Text: LDP Neighbor 10.131.191.252:0 (4) is UP

Note Cisco IOS has a concept of a subfacility that follows the facility. The subfacility is
separated from the facility by a hyphen (-). This is typically seen using the Catalyst 6500
when the switching engine generates a syslog message as follows:

%SWITCH-SP-5-NOTICE ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 113

Table 5-1 IOS Syslog Severity Levels

Severity Text Name Meaning

0 Emergencies System is unusable.

1 Alerts Immediate action needed.

2 Critical Critical conditions.

3 Errors Error conditions.

4 Warnings Warning conditions.

5 Notifications Normal but significant
conditions.

6 Informational Informational messages.

7 Debugging Debugging messages.

Configuring Syslog Server Parameters in Cisco IOS

By default, Cisco IOS displays these syslog messages on the console, along with the date
and time the syslog message occurred (timestamp). If you do not want to see every sys-
log message printed on the console, but instead only want to be notified of severity 3
messages or lower, configure the following:

Router#config terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#logging console errors

Only severity 3 (or worse, meaning severity 0, 1, or 2) syslog messages will appear on
the console.

By default, syslog messages will have a timestamp with the date and time, including the
millisecond entry, of the message. It is also possible to change the format of the time-
stamp, which begins each message. For example, to change the timestamp to use the
uptime of the Cisco IOS device, enter the following:

Router(config)#service timestamps log uptime

Note By default, Cisco IOS uses uptime for service timestamps. To enable a timestamp
field with the data and time, you must use the following command in configuration mode:

Router(config)#service timestamps log datetime

www.it-ebooks.info

http://www.it-ebooks.info/

114 Tcl Scripting for Cisco IOS

The syslog messages will have a timestamp showing the uptime of the Cisco IOS device,
in other words, how much time has elapsed since the device booted up.

It is also possible to completely disable the timestamps from appearing in the syslog mes-
sages. To do so, configure the following:

syslogSender#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)#no service timestamps log

syslogSender(config)#end

syslogSender#

Sequence numbers can be optionally included before the timestamp. To enable this, con-
figure service sequence-numbers, as shown here:

syslogSender#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)#service sequence-numbers

syslogSender(config)#end

syslogSender#

000039: *Jan 9 21:12:12.751: %SYS-5-CONFIG_I: Configured from console by console

syslogSender#

In the preceding example, you can see that the sequence number has been added to the
beginning of the syslog message before the timestamp. In this case, the sequence num-
ber is 39. Sequence numbers enable you to determine whether messages have been
dropped or lost.

Messages can also be saved in a small text buffer. The buffer can save only a certain num-
ber of messages before becoming full. Once full, the oldest are removed to make space
for the newest messages. To configure the buffer size for the syslog message, change the
size of the logging buffer as follows:

Router(config)#logging buffered 1000000

The number 1000000 represents how many bytes of local memory will be used to save
outgoing syslog messages. To review all the setting for the syslog in the Cisco IOS device,
enter the following command:

Router#show logging

syslog logging: enabled (0 messages dropped, 12 messages rate-limited,

0 flushes, 0 overruns, xml disabled, filtering disabled)

No Active Message Discriminator.

No Inactive Message Discriminator.

Console logging: level errors, 46 messages logged, xml disabled,

filtering disabled

Monitor logging: level debugging, 0 messages logged, xml disabled,

filtering disabled

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 115

Buffer logging: level debugging, 9 messages logged, xml disabled,

filtering disabled

Exception Logging: size (4096 bytes)

Count and timestamp logging messages: disabled

Persistent logging: disabled

Trap logging: level informational, 72 message lines logged

Log Buffer (1000000 bytes):

2d20h: %SYS-5-CONFIG_I: Configured from console by console

2d20h: %LDP-5-CLEAR_NBRS: Clear LDP neighbors (*) by console

2d20h: %LDP-5-NBRCHG: LDP Neighbor 10.131.159.251:0 (3) is DOWN (User cleared

session manually)

2d20h: %LDP-5-NBRCHG: LDP Neighbor 10.131.191.252:0 (4) is DOWN (User cleared

session manually)

2d20h: %LDP-5-NBRCHG: LDP Neighbor 10.131.191.252:0 (1) is UP

2d20h: %LDP-5-NBRCHG: LDP Neighbor 10.131.159.251:0 (2) is UP

The output of the command will show various settings related to the syslog and the con-
tents of the local buffer, which holds the syslog messages. As you can see, console log-
ging is enabled, and the severity level of messages will be error or severity 3 (or worse).
In addition, the size of the internal buffer has been enlarged to 1000000 bytes and will
store severity level debugging or severity 7 (or worse).

Now that you have an understanding of the syslog operation in Cisco IOS, you can see
how the syslog messages can be sent to a remote host for central correlation.

The syslog protocol allows both User Datagram Protocol (UDP) and Transmission
Control Protocol (TCP) to be used to send messages between devices. UDP messages are
not acknowledged; they are sent in one direction only. For this reason, TCP support was
added to Cisco IOS to provide a small level of guarantee that messages are delivered to
the central syslog server. Because it is possible for network interruptions to bring down
the TCP connection, a special syslog message is generated every time the TCP connection
is established or torn down.

Note The Berkeley Software Distribution (BSD) syslog protocol, described in RFC 3164,
does not mention the use of TCP as a method to transport information.

To see a syslog message being sent to a remote host, you must configure the IOS device
to begin sending messages to the host, tell it what protocol to use, and provide the IP
address of the remote host. In this example, syslog messages will be generated by an IOS
router with the hostname of syslogSender:

syslogSender#config terminal

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)#logging host 10.10.10.1 transport tcp port 9500

syslogSender(config)#end

syslogSender#

www.it-ebooks.info

http://www.it-ebooks.info/

116 Tcl Scripting for Cisco IOS

*Dec 6 22:09:39.175: %SYS-5-CONFIG_I: Configured from console by console

syslogSender#

*Dec 6 22:10:00.231: %SYS-6-LOGGINGHOST_STARTSTOP: Logging to host 10.10.10.1

port 9500 started - CLI initiated

syslogSender#

From the previous configuration, the router has been configured to send logging mes-
sages to the host (or syslog daemon) with the IP address of 10.10.10.1. In addition, TCP
port 9500 will be used for the connection.

Now that the Cisco IOS router has been configured to send the messages to a specific
host, we will use a Tcl script to receive the actual syslog messages.

Note The most common method of transporting syslog data is over UDP. Using TCP to
transport the messages is less common. The default syslog port is UDP port 514.

Syslog Tcl Script Example

The following script opens a TCP socket and listens for incoming connections from the
syslog sender. When syslog messages are received on the socket, they are printed on the
console of the IOS device. If the socket connection closes, the server continues to listen
for additional socket connections. When users are ready to exit the syslog daemon, they
can press Esc to exit back to the IOS prompt.

The following is an example of the Tcl syslog daemon script.

To begin, configure the procedures.

Configure all incoming connections to use the variable name my_sock:

global my_sock

Set all incoming data to use the variable name my_data:

global my_data

The next command handles starting and stopping the server, and calling the on_connect
procedure for incoming socket connections:

proc Listener {port action} {

The global command links the local variable to the global variable:

global my_sock

if {$action == “START”} {

On startup, open a socket and save the socket handle to the variable my_sock. Also, tell
the socket to call the on_connect procedure for any incoming connections:

set my_sock [socket -server on_connect $port]

} else {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 117

If there is a problem, close the socket for cleanup:

if {[info exists my_sock]} {

puts “Closing my socket”

close $my_sock

}

}

return $my_sock

}

The procedure on_connect is called whenever a new socket connection has been estab-
lished:

proc on_connect {newsock clientAddress clientPort} {

puts “socket is connected now”

Configure the socket for nonblocking operation:

fconfigure $newsock -blocking 0

If the new socket is readable, call the procedure handleInput:

fileevent $newsock readable [list handleInput $newsock]

}

proc handleInput {f} {

global my_data

If the socket was closed, delete the handler (for example, the sending device closes the
socket). This is important, because we would otherwise try to read data from a closed
socket:

if {[eof $f]} {

When the end of the file is reached, remove the handleInput procedure for incoming
events on the socket and set it to an empty list.

fileevent $f readable {}

Close the socket:

close $f

return

}

Read the incoming text data and save the text data into my_data:

set my_data [read -nonewline $f]

Remove any nonprintable characters using a regular expression:

regsub -all {<[0-9]+>[0-9]+: } $my_data “ “ output

www.it-ebooks.info

http://www.it-ebooks.info/

118 Tcl Scripting for Cisco IOS

Verify whether there is any data in the string:

if {[string length $output]} {

With data available, show it to the user:

puts stdout “$output”

}

Wait for more data:

}

Configure the main portion of the Tcl script. So far, we have just defined the procedures
above this point.

Set the break key to the Esc key:

exec “term esc 27”

Call the procedure to listen for an incoming socket, using TCP port 9500:

Listener 9500 START

Wait for any events on the incoming socket connection:

vwait my_sock

Syslog Tcl Script Sample Output

The following section demonstrates the use of the Tcl syslog daemon script.

From the command line of the IOS device, initiate the script using the following command:

syslogDaemon#tclsh flash:syslogd_book.tcl

In this case, the file is located in the root directory of the flash: file system. This IOS
device is configured as the syslog server or receiver of the syslog messages.

The syslog daemon will initially wait for any incoming connections. Next, add the
logging host configuration command to allow the IOS device to connect to the syslog
server. This IOS device is configured to send logging information to the syslog server:

syslogSender#conf t

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)# logging host 10.10.10.1 transport tcp port 9500

syslogSender(config)#end

syslogSender#

*Dec 8 02:29:25.244: %SYS-5-CONFIG_I: Configured from console by console

syslogSender#

*Dec 8 02:29:26.264: %SYS-6-LOGGINGHOST_STARTSTOP: Logging to host 10.10.10.1

port 9500 started - CLI initiated

syslogSender#

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 119

Two different routers must be used for this example, which can connect across the net-
work. One router is named syslogSender, and it generates the syslog messages. The sec-
ond router is named syslogDaemon, and it collects the syslog messages to be displayed
on the console. Note that in production networks, a router will not typically be used as a
syslog daemon.

The syslog server built in to Cisco IOS will attempt a TCP connection to the Tcl syslog
daemon script. The following is the message displayed on syslogDaemon about the sock-
et connection:

socket is connected now

*Dec 8 02:29:25.244: %SYS-5-CONFIG_I: Configured from console by console

*Dec 8 02:29:26.264: %SYS-6-LOGGINGHOST_STARTSTOP: Logging to host 10.10.10.1

port 9500 started - CLI initiated

The preceding messages are generated from the user exiting out of configure terminal
mode (SYS-5-CONFIG_I), and the syslog server creates a message whenever it successful-
ly connects to any syslog daemon (SYS-6-LOGGINGHOST_STARTSTOP).

To generate additional syslog messages, you clear the Multiprotocol Label Switching
(MPLS) Label Distribution Protocol (LDP) neighbor on the IOS device sending syslog
messages:

syslogSender#clear mpls ldp neighbor *

The output from the IOS device acting as the syslog server displays the following messages:

Dec 8 02:36:14.434: %LDP-5-CLEAR_NBRS: Clear LDP neighbors () by console

*Dec 8 02:36:14.446: %LDP-5-NBRCHG: LDP Neighbor 10.131.191.252:0 (1) is DOWN

(User cleared session manually)

*Dec 8 02:36:14.446: %LDP-5-NBRCHG: LDP Neighbor 10.131.159.251:0 (2) is DOWN

(User cleared session manually)

*Dec 8 02:36:14.594: %LDP-5-NBRCHG: LDP Neighbor 10.131.159.251:0 (3) is UP

*Dec 8 02:36:14.571: %LDP-5-NBRCHG: LDP Neighbor 10.131.191.251:0 (1) is DOWN

(TCP connection closed by peer) *Dec 8 02:36:17.374: %LDP-5-NBRCHG: LDP

Neighbor 10.131.191.252:0 (4) is UP

*Dec 8 02:36:17.443: %LDP-5-NBRCHG: LDP Neighbor 10.131.191.251:0 (2) is UP

To exit from the syslog daemon, press the Esc key.

Here is the complete syslog Tcl script example:

syslog Daemon & socket example

#all incoming connection will be on the socket named “my_sock”

global my_sock

#all incoming texutal data will be on the socket named “my_sock”

global my_data

#Listener procedure handles starting and stopping the server

and calling on_connect procedure for incoming socket connections

proc Listener {port action} {

www.it-ebooks.info

http://www.it-ebooks.info/

120 Tcl Scripting for Cisco IOS

the global variable is known by the procedure also

global my_sock

if {$action == “START”} {

we are being told to startup, so open a socket and save the

socket handle in my_sock. Also tell the socket to call

on_connect procedure for any incoming connections

set my_sock [socket -server on_connect $port]

} else {

we are being told to shutdown, so close the socket for

cleanup purposes

if {[info exists my_sock]} {

#if the socket is really there, close it

puts “Closing my socket”

close $my_sock

}

}

return $my_sock

}

Procedure on_connect is called whenever a new socket connection is

made by a syslog server

proc on_connect {newsock clientAddress clientPort} {

puts “socket is connected now”

configure the socket for no blocking operation

this is import and because we do not want to block on any read later

fconfigure $newsock -blocking 0

if the new socket is readable, then set the procedure handleInput

to be called whenever input arrives

fileevent $newsock readable [list handleInput $newsock]

}

Procedure called whenever input arrives on the readable socket

connection.

proc handleInput {f} {

global my_data

Delete the handler if the socket was closed for example the

other side closes the socket. This is important because we would

otherwise try to read data from a closed socket

if {[eof $f]} {

we got the End of File character: clean up

first, remove the handleInput procedure for incoing events

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 121

on the socket, set it to an empty list

fileevent $f readable {}

close the socket

close $f

exit procedure

return

}

Read and handle the incoming text data

set my_file [open /var/log/router_tcp.log a]

save the text data into my_data

set my_data [read -nonewline $f]

remove any nonprintable characters using a regular expression

regsub -all {<[0-9]+>[0-9]+: } $my_data “ “ output

check whether there was text data

if {[string length $output]} {

there was some data to print, show it to the user

puts stdout “$output”

}

at this point we will wait again for more data

}

The beginning of the TCL script, so far we have just defined

procedures above this point

set the break key to ESC key

exec “term esc 27”

call the procedure to listen for incoming socket, using tcp port 9500

Listener 9500 START

wait for any events on the incoming socket connection

vwait my_sock

Sending Syslog Messages to a File

The Tcl interpreter provides access to the file system for reading and writing files. Instead
of just showing the syslog messages on the console, it is possible to create a file that can
be retrieved later. Depending on where the file is placed on the router, it can also be made
available for other network devices.

Files can be thought of as channels. To get a list of all the current channels in the Tcl
interpreter, enter the following in Tcl shell:

syslogDaemon(tcl)#file chan

stderr stdout stdin

www.it-ebooks.info

http://www.it-ebooks.info/

122 Tcl Scripting for Cisco IOS

You can see that there are three default channels that Tcl automatically opens when start-
ing up. These so-called standard channels are used for getting input and output to the
user and for reporting errors. In Chapter 2, “Tcl Interpreter and Language Basics,” you
learned how to open a file for reading the contents of the file. Now you examine how to
open a file and write data into the file.

The next example opens/creates a file called syslog on disk0: for writing only
(WRONLY). To open the file, enter the following command in the Tcl shell:

syslogDaemon(tcl)#open disk0:syslog WRONLY

file0

If the file did not exist before opening it, it will be created. If the file already existed, it
will be opened to write additional data into it. Many different modes can be used when
opening a file. In this case, we have chosen to create file that is write-only, meaning it can
only be written to but not read from. Your complete access options are RDONLY,
WRONLY, RDWR, APPEND, CREAT EXCL, NOCTTY, NONBLOCK, TRUNC, r, r+,
w, w+, a, and a+. However, only some of the modes are supported in Cisco IOS, as
described in Table 5-2.

When a file has been successfully opened, it returns a channel name or handle that can
be used to access the file as long as the file remains open. To get a list of the channels
that are currently open, enter the following command in the Tcl shell:

syslogDaemon(tcl)#file chan

file0 stderr stdout stdin

The preceding list indicates that file0 is currently open. Next, add the word testing to the
opened file, using the following command:

syslogDaemon(tcl)#puts file0 testing

When you have completed writing information into the file, it should be closed, as follows:

syslogDaemon(tcl)#close file0

The file is now closed and you can verify by checking the open channels once again:

syslogDaemon(tcl)#file chan

stderr stdout stdin

You can see that file0 has been removed from the list of known channels.

To verify that the data put into the file is actually there, you can do a quick check of the
length of the file with the file size command:

syslogDaemon(tcl)#file size disk0:syslog

8

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 123

Table 5-2 Supported File Access Modes in Cisco IOS

Access Mode Meaning

RDONLY File may only be read from.

WRONLY File may only be written to.

RDWR File may be both read from and written to. However, Cisco IOS can-
not read a file opened in this mode, only write to the file.

r File may only be read from and must exist

r+ File may be read from and written to and must exist. However, Cisco
IOS cannot read a file opened in this mode, only write to the file.

w File may only be written to. If the file exists, it will be truncated; if
not, the file will be created.

w+ File may be read from or written to. If the file exists, it will be trun-
cated; if not, the file will be created. However, Cisco IOS cannot read
a file opened in this mode, only write to the file.

a File may be appended to.

a+ File may be read from or appended to. However, Cisco IOS cannot
read a file opened in this mode, only write to the file.

The output of the preceding command indicates that there is a total of eight characters in
this file. This matches what was entered earlier; the word testing is seven characters long
plus there is a newline character that is automatically appended to the end, for a total of
eight characters. You can also validate the contents of the file by copying the data into a
variable.

First, the file needs to be opened. Because you will not be adding or writing information
into the file, you can open the file in a read-only mode so that you do not accidentally
change the contents:

syslogDaemon(tcl)#open disk0:syslog RDONLY

file0

Next, the contents of the file is read into a local variable called incoming_data, using the
following command:

syslogDaemon(tcl)#set incoming_data [read -nonewline file0]

testing

www.it-ebooks.info

http://www.it-ebooks.info/

124 Tcl Scripting for Cisco IOS

From the preceding output, you can see that the contents of the file match the informa-
tion that was originally added.

Now that you have successfully created a new file with the Tcl interpreter, you can modi-
fy the syslog example to create a text file containing the incoming syslog messages. This
example uses the TCP port number and filename to write the data as parameters to the
script. The argc and argv will be used to access the incoming parameters provided in
tclsh scriptname arg1, arg2, arg3.

The main body of the script is used to examine the incoming arguments provided to the
Tcl shell. If the number of parameters does not match what the script is expecting, we
immediately exit the script. The port and filename are required parameters. It is always a
good idea to perform some error checking on the variables passed to the script to prevent
any unexpected problems.

Syslog Server Script Procedures

The following script is the complete example of the syslog server that will write to a
text file:

Step 1. All incoming connection will be on the socket named my_sock:

global my_sock

Step 2. All incoming data will be directed to the socket named my_sock:

global my_data

Step 3. Create the my_mode variable to save the mode of operation. 1 is for writing
to the console, and 2 is for writing to the console and the file and will be con-
figured later:

global my_mode

Step 4. Set the file handle to my_file:

global my_file

Step 5. The Listener procedure handles starting and stopping the server, and calling
the on_connect procedure for incoming socket connections:

proc Listener {port action filename} {

Step 6. Set the variables as global:

global my_sock

global my_file

global my_mode

set my_mode 0

if {$action == “START”} {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 125

Step 7. Open a socket and save the socket handle in my_sock. Initiate the
on_connect procedure for any incoming connections:

set my_sock [socket -server on_connect $port]

Step 8. Set my_mode to 1, which will write to the console only:

set my_mode 1

} elseif {$action == “STARTWriting”} {

set my_sock [socket -server on_connect $port]

set my_file [open $filename WRONLY]

Step 9. Set my_mode to 2, which will write to the console and file:

set my_mode 2

} else {

Step 10. Close the socket for cleanup purposes:

if {[info exists my_sock]} {

puts “Closing my socket”

close $my_sock

}

}

return $my_sock

}

Step 11. Close the file:

if {[info exists my_file]} {

#if the socket is really there, close it

puts “Closing my file”

close $my_file

}

Step 12. The procedure on_connect is called whenever a new socket connection is ini-
tiated by a syslog server:

proc on_connect {newsock clientAddress clientPort} {

puts “socket is connected now”

Step 13. Configure the socket for noblocking operation. This is important because you
do not want to block on a read function later in the script:

fconfigure $newsock -blocking 0

www.it-ebooks.info

http://www.it-ebooks.info/

126 Tcl Scripting for Cisco IOS

Step 14. If the new socket is readable, set the procedure handleInput to be called
whenever input arrives:

fileevent $newsock readable [list handleInput $newsock]

}

Step 15. Call the following procedure whenever input arrives on the readable socket
connection:

proc handleInput {f} {

Step 16. Provide access to global variables inside the procedures, by declaring them
as global:

global my_data

global my_file

global my_mode

Step 17. Delete the handler if the socket was closed. For example, the syslog sender
closes the socket. If the socket is left open, the script would continue to try
and read data from a closed socket:

if {[eof $f]} {

Step 18. On an End of File (EoF) character, clean up by removing the handleInput pro-
cedure for incoming events on the socket and set it to an empty list:

fileevent $f readable {}

Step 19. Close the socket:

close $f

Step 20. Exit the procedure:

return

}

Step 21. Read and handle the incoming text data and save the text data to the vari-
able my_data:

set my_data [read -nonewline $f]

Step 22. Remove any nonprintable characters using the following regular expression:

regsub -all {<[0-9]+>[0-9]+: } $my_data “ “ output

Step 23. Check whether there was text data:

if {[string length $output]} {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 127

Step 24. If there is data, show it to the user:

puts stdout “$output”

Step 25. If the variable my_mode is set to 2, write to the file and the console:

if {[expr ($my_mode == 2)]} {

Step 26. Write the data to the file:

puts $my_file $output

}

}

}

The body of the script is defined in the section that follows.

Syslog Server Script Body

The usage guidelines for the script are as follows:

syslogd port [filename]

Where

■ port is the TCP port to listing for incoming connection.

■ filename is optional to write the syslog data.

Check the incoming variable arguments. If the user forgot to provide any, display an
informative help message:

if {$argc == 0} {

puts “Usage: syslogd port filename”

puts “port is the TCP port to listing for incoming connection”

puts “filename is optional parameter to use for writing the syslog data”

return

}

set port [lindex $argv 0]

Verify that the user provided port is a number. Check whether the port is a digit using
the string is ... command, which returns a value of 1. Compare the value to 1 and termi-
nate the script if it does not match:

if {[expr (1 != [string is digit $port])]} {

puts “must provide a numeric port number”

return

}

www.it-ebooks.info

http://www.it-ebooks.info/

128 Tcl Scripting for Cisco IOS

Check that the port is in the acceptable range (for example, the ephemeral port range, or
at least greater than 0, and less than 65536). If the user entered an out-of-range port num-
ber, provide a warning message and terminate the script:

#verify port is in the valid range

if ([expr (1 != (0 < $port))]) {

puts “port number too low”

return

}

#verify port is in the valid range

if ([expr (1 != ($port < 65536))]) {

puts “port number too high”

return

}

if {$argc == 1} {

The user only provides the port input parameter:

Listener $port START 0

} elseif {$argc == 2} {

The user provides two input parameters, the port and filename. Save the filename the user
provided in my_filename:

set my_filename [lindex $argv 1]

Call the procedure to listen for incoming syslog connections and configure the procedure
to write messages to a file:

Listener $port STARTWriting $my_filename

} else {

If the user provided more than two input parameters and there is at least one additional
arg that is not understandable, we remind the user of the correct usage and end the script:

puts “Usage: syslogd port filename”

puts “port is the TCP port to listing for incoming connection”

puts “filename is optional parameter to use for writing the syslog data”

return

}

Set the break key to the Esc key:

exec “term esc 27”

Call the procedure to listen for incoming sockets, using TCP port provided by user input.
Wait for any events on the incoming socket connection:

vwait my_sock

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 129

Putting the Syslog Script into Operation

From the enable prompt of the IOS device configured as the syslog server, put the script
into operation with incorrect parameters to validate the functionality of the script:

syslogDaemon#tclsh disk0:syslogd_book2.tcl

Usage: syslogd port filename

port is the TCP port to listing for incoming connection

filename is optional parameter to use for writing the syslog data

syslogDaemon#$syslogd_book2.tcl 9500 flash:syslog.txt extra-parameter

Usage: syslogd port filename

port is the TCP port to listing for incoming connection

filename is optional parameter to use for writing the syslog data

syslogDaemon#

Now input the correct parameters:

syslogDaemon#tclsh flash:syslogd_book2.tcl 9500 flash:syslog.txt

Now, the syslog daemon is waiting for incoming messages. By disabling and enabling log-
ging on the syslog sender, syslog messages will be generated:

syslogSender(config)#no logging host 10.10.10.1 transport tcp port 9500

syslogSender(config)#

*Dec 13 00:20:34: %SYS-6-LOGGINGHOST_STARTSTOP: Logging to host 10.10.10.1 port

9500 stopped - CLI initiated

*Dec 13 00:20:35: %SYS-6-LOGGINGHOST_STARTSTOP: Logging to host 10.10.10.1 port

9500 stopped - disconnection

syslogSender(config)#logging host 10.10.10.1 transport tcp port 9500

syslogSender(config)#end

syslogSender#

*Dec 13 00:20:40: %SYS-5-CONFIG_I: Configured from console by console

syslogSender#

*Dec 13 00:20:41: %SYS-6-LOGGINGHOST_STARTSTOP: Logging to host 10.10.10.1 port

9500 started - CLI initiated

syslogSender#

From the following messages, you can see that the syslog daemon has correctly displayed
the incoming syslog messages on the console:

syslogDaemon#

socket is connected now

*Dec 13 00:20:40: %SYS-5-CONFIG_I: Configured from console by console

*Dec 13 00:20:41: %SYS-6-LOGGINGHOST_STARTSTOP: Logging to host 10.10.10.1 port

9500 started - CLI initiated

www.it-ebooks.info

http://www.it-ebooks.info/

130 Tcl Scripting for Cisco IOS

The operation of the script can be verified by checking whether the file was written cor-
rectly. Exit the syslog daemon by pressing the Esc key and use the more command to
display the contents of any file on a Cisco IOS device:

syslogDaemon#more flash:syslog.txt

*Dec 13 00:20:40: %SYS-5-CONFIG_I: Configured from console by console

*Dec 13 00:20:41: %SYS-6-LOGGINGHOST_STARTSTOP: Logging to host 10.10.10.1 port

9500 started - CLI initiated

syslogDaemon#

You can use the syslog daemon script application to collect and store information locally
on an IOS device. This information, as you will see later, will be used to create a graphi-
cal display of the collected information.

Introduction to Embedded Syslog Manager

The Embedded Syslog Manager (ESM) is a Tcl script-based processing tool for syslog
messages that runs on Cisco IOS devices. ESM can take incoming syslog messages and
make changes to them before they are sent to their destination. Recall that syslog mes-
sages can be sent to the console, remote terminal sessions connected to the router, a local
buffer, or specific hosts running a syslog daemon. ESM can make changes to the syslog
messages before they arrive at any of these destinations. Other main purposes of ESM
include advanced message filtering and severity escalation.

ESM can act as a filter to block particular syslog messages from being sent. A regular
expression can be used to match particular syslog messages that are not needed. Entire
message facility names can be filtered out. For example, if the user wants to block all the
mnemonic SYS messages, it can easily be done with an ESM filter.

Another common application is severity escalation of particular syslog messages. If you
write an appropriate ESM script, it can easily change the severity of particular syslog
messages to higher or lower. The ESM script looks for syslog messages matching a regu-
lar expression and can change the severity of any message matching the pattern.

ESM was first introduced in Cisco IOS Software Release 12.3(2)T and was integrated into
Cisco IOS Software Releases 12.3(2)XE and 12.2(25)S.

Filtering Syslog Messages

ESM uses a Tcl script as a filter to drop the incoming syslog messages before sending them
out. One or more filters may be applied in a chain to process the incoming syslog mes-
sages and sends them on to the next filter for further processing. Each type of syslog des-
tination can have a filter chain applied or not, depending on the IOS device configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 131

For example, the following commands enable ESM and apply a Tcl script filter to all sys-
log messages on the console. The filter would not be applied to the other syslog destina-
tions, such as the local buffer or syslog hosts:

syslogSender#show running-config include logging

logging console filtered

logging filter disk0:filter.tcl

logging host 10.10.10.1 transport tcp port 9500

The logging console filtered command applies the ESM Tcl script to all syslog messages
on the IOS device console. The logging filter flash:filter.tcl command specifies the one
and only Tcl script we want to perform the syslog message processing. Finally, there is a
command for sending syslog messages to a host, but it receives the original, unfiltered
syslog messages.

The string value that the Tcl script returns is the replacement for the original syslog mes-
sage. If you want to replace all syslog messages with your own message, you can use the
following one-line Tcl script:

return “All syslog messages changed to this.”

To apply the filter, copy the Tcl script to the local storage of the Cisco IOS device and
apply the following commands to the IOS device:

syslogSender#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)#logging console filtered

syslogSender(config)#logging filter flash:filter.tcl

syslogSender(config)#end

syslogSender#

Note Filters can also be located on remote devices. Filters can also be loaded across the
network on FTP, HTTP, NVRAM, RCP, and TFTP file systems.

All syslog messages are changed. For example, the typical syslog message that is generat-
ed when exiting configuration mode is as follows:

%SYS-5-CONFIG_I: Configured from console by console

Because you applied the new ESM filter, the output changes to the following message:

All syslog messages changed to this.

To write a more useful filter, you could create a script that either decides to allow the sys-
log message through or not. For example, if you are connected to the Cisco IOS device
console, it is not that useful to know you have just exited configuration mode. Therefore,
it is not helpful to have SYS-5-CONFIG_I display on the console if the console user is
the one making changes. However, you might want to know whether someone has modi-
fied the configuration coming in through a remote terminal session. You can write an

www.it-ebooks.info

http://www.it-ebooks.info/

132 Tcl Scripting for Cisco IOS

ESM filter that only lets the SYS-5-CONFIG_I syslog message through if it does not
match the string console.

To write this filter, you need to understand how to access the global variables that are
provided by ESM in the Tcl filter script. One of the global variables ESM provides is
::orig_msg, which is used as follows:

return $::orig_msg

This global variable consists of the original, unmodified syslog message.

In the following example, the filter is named filter2.tcl and copied to the local storage of
the router. Remove the old filter.tcl and add the new filter2.tcl command so that only one
ESM filter is active. If you make the following configuration change to the router, the fil-
ter in action is not very useful either:

syslogSender#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)#no logging filter flash:filter.tcl

syslogSender(config)# logging filter flash:filter2.tcl

syslogSender(config)#end

syslogSender#

*Jan 10 00:40:17.671: %SYS-5-CONFIG_I: Configured from console by console

syslogSender#

The SYS-5-CONFIG_I syslog message is being displayed, completely unchanged from
its original form. Now you can put the two filters together to write a new and more
powerful one.

The form of the syslog messages from users exiting on the console is as follows:

*Jan 10 01:14:37.418: %SYS-5-CONFIG_I: Configured from console by console

The form of syslog messages from users exiting on incoming telnet sessions is as follows:

*Jan 10 01:15:20.230: %SYS-5-CONFIG_I: Configured from console by cisco on vty0

(10.10.10.1)

The difference in the syslog message text is that the console session configuration always
ends in the words by console, and the Telnet session configuration always ends with on
vty, and a number representing which incoming remote terminal session is being used,
followed by the IP address of the remote device. You can use this difference in the text to
write a new ESM Tcl filter script.

If the user exits out of configuration mode on the console, the string by console will be
present at the end the original syslog message. For this reason, you can do a global search
for the words by console and reject the syslog message if it is found. Because you want
to display the syslog message only if it does not end in the words by console, you can
write the following Tcl script and name it filter3.tcl:

if [string match “*by console” $::orig_msg] {

return ““

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 133

} else {

return $::orig_msg

}

Copy this new filter to the local storage of the router and remove the old filter2.tcl and
add the newly created filter3.tcl:

syslogSender#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)#no logging filter flash:filter2.tcl

syslogSender(config)#logging filter flash:filter3.tcl

syslogSender(config)#end

syslogSender#

On exiting configuration mode, a syslog message was not generated on the Cisco IOS
device console. However, you will be notified with a syslog message when a user modi-
fies the configuration that comes in through a remote terminal session.

Enable Telnet users to connect to the Cisco IOS device by using local authentication with
the following commands:

syslogSender(config)#line vty 0 4

syslogSender(config-line)#login local

syslogSender(config-line)#exit

syslogSender(config)#username cisco password cisco

syslogSender(config)#enable password cisco

syslogSender(config)#end

syslogSender#

The line vty 0 4 command enters the configuration submode for virtual terminal sessions
such as Telnet. The login local allows the IOS device to use local usernames and pass-
words for user authentication. The username command creates a local user and local
password. The enable password cisco command is also needed so that the incoming
Telnet user can access full privilege mode to enter configuration mode. Preferably, use
something other than cisco for your password.

Connect to the router through a Telnet session and exit configuration mode. Syslog mes-
sages are generated on the console as follows:

syslogDaemon#telnet 10.10.10.2

Trying 10.10.10.2 ... Open

User Access Verification

Username: cisco

Password:

syslogSender>en

Password:

syslogSender#config

www.it-ebooks.info

http://www.it-ebooks.info/

134 Tcl Scripting for Cisco IOS

syslogSender#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)#end

syslogSender#

From the console connection on the IOS device, the following is displayed:

syslogSender#

*Jan 10 01:15:20.230: %SYS-5-CONFIG_I: Configured from console by cisco on vty0

(10.10.10.1)

syslogSender#

The ESM Tcl script filter has worked correctly, and you are still being notified of any
configuration changes coming from incoming Telnet sessions.

ESM Global Variables

In addition to the global variable ::orig_msg, many other global variables are available in
ESM Tcl scripts, as outlined in Table 5-3. The original syslog message is also broken
down into its component parts for convenience. Instead of operating on ::orig_msg, it is
also possible to reconstruct the original syslog message by concatenating the individual
parts. Why would this be done? It is used if the Tcl script just needs to change one part
of the syslog message and leave the other parts unchanged. That way, the original mes-
sage can be concatenated with the changed variable.

Global Variable Meaning Example

::buginfseq Sequence number of the syslog message
(if enabled with “service sequence-
numbers”).

000074:

::timestamp The timestamp of the syslog message. *Jan 10 02:01:34.454

::facility Syslog message facility. SYS

::severity Syslog message severity. 5

::mnemonic Syslog message name. CONFIG_I

::format Syslog message text format. Configured from %s by
%s

::msg_args Syslog message text variables. console console

::orig_msg The original, full unmodified syslog
message.

000041: *Mar 23
07:08:01.023: %SYS-5-
CONFIG_I: Configured
from console by console

Table 5-3 Frequently Used Global ESM Variables with Meanings

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 135

Global Variable Meaning Example

::hostname The actual hostname in use by the router. syslogSender

::syslog_facility A number, which is used for syslog mes-
sages. This was traditionally used to deter-
mine what process generated the syslog
message in a UNIX host. It can be
changed globally with the configuration
command: logging facility name.

23

::module_position This filter’s position in the list of filters
that can be applied. Multiple filters may
be used together to create a “chain.” The
first one begins at 1 and proceeds higher.

1

::stream If there are many logging destinations
defined, the stream variable can be used
to direct the output of the filter. Changing
the value of the stream will redirect where
the syslog message will be directed after
processing (see Table 5-4). It can be used
to send the syslog messages to certain sys-
log hosts. For example, configure the fol-
lowing configuration command to restrict
the stream for that particular host: logging
host 1.2.3.4 filtered stream 10.

2

::traceback
(Optional. Only some
syslog messages will
contain this variable.)

A list of hexadecimal values, intended for
Cisco development to help understand the
syslog message.

::process
(Optional. Only some
syslog messages will
contain this variable.)

The name of the process generating the
syslog message.

::pid
(Optional. Only some
syslog messages will
contain this variable.)

The process ID of the process generating
the syslog message.

www.it-ebooks.info

http://www.it-ebooks.info/

136 Tcl Scripting for Cisco IOS

Table 5-4 ESM Stream Destinations to Use When Setting the ::stream Variable

Number Destination

0 The standard syslog stream

1 XML-tagged syslog stream

2 Default filtered syslog stream (the default
value if unmodified by the filter)

3–9 Reserved

10–65536 User defined

Rebuilding a Syslog Message from Its Components

To write an ESM Tcl script filter that returns the original message made out of its compo-
nent parts, we write the following Tcl script:

Step 1. Copy the original format into variable called text:

set text $::format

Step 2. Create a pointer to the first msg_arg in the list we created:

set listp 0

Step 3. Loop until you are past the last item in the list you created:

while {$listp < [llength $::msg_args]} {

Step 4. Set the variable beg to the beginning of the first item:

set beg [string first %s $text]

Step 5. Set the variable end to the end of the first occurrence of %s in text:

set end $beg

incr end

Step 6. Replace the %s with the actual msg_arg it should be, and save this back into
the variable text:

set text [string replace $text $beg $end [lindex $msg_args $listp]]

Step 7. Increment the variable listp and point to the next item in the list:

incr listp

}

Step 8. Return the original syslog message from the number of its’ component parts:

return “$buginfseq$timestamp: %$facility-$severity-$mnemonic: $text”

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 137

Step 9. Save the script to a file named filter7.tcl and copy it to the local storage of the
Cisco IOS device. Remove the old filter filter3.tcl and add the newly created
filter filter7.tcl, as shown:

syslogSender#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)#no logging filter flash:filter3.tcl

syslogSender(config)#logging filter flash:filter7.tcl

syslogSender(config)#end

syslogSender#

000079: *Jan 10 23:48:59.519: %SYS-5-CONFIG_I: Configured from console

by console

syslogSender#

You have successfully created a new ESM Tcl filter that can process all the component
parts back into the original syslog message. You can verify that the filter is working cor-
rectly by signing on through a Telnet session and entering and exiting configuration
mode to generate a syslog message:

syslogDaemon#telnet 10.10.10.2

Trying 10.10.10.2 ... Open

User Access Verification

Username: cisco

Password:

syslogSender>en

Password:

syslogSender#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)#end

syslogSender#

From the IOS device console, you can see the ESM Tcl script filter is working correctly:

syslogSender#

000080: *Jan 10 23:50:19.347: %SYS-5-CONFIG_I: Configured from console by cisco

on vty0 (10.10.10.1)

syslogSender#

Displaying/Adding ESM Tcl Script Filters

Now that you have written a few ESM Tcl script filters, you can see how they can be
chained together to process syslog messages in turn. The show logging command dis-
plays information about which ESM filters are currently active:

www.it-ebooks.info

http://www.it-ebooks.info/

138 Tcl Scripting for Cisco IOS

syslogSender#show logging

syslog logging: enabled (1 messages dropped, 11 messages rate-limited,

0 flushes, 0 overruns, xml disabled, filtering enabled)

No Active Message Discriminator.

No Inactive Message Discriminator.

Console logging: level debugging, 54 messages logged, xml disabled,

filtering enabled

Monitor logging: level debugging, 0 messages logged, xml disabled,

filtering disabled

Buffer logging: level debugging, 93 messages logged, xml disabled,

filtering disabled

Logging Exception size (4096 bytes)

Count and timestamp logging messages: disabled

Persistent logging: disabled

Filter modules:

flash:filter7.tcl

Filtering is currently enabled for the console, in which the script flash:filter7.tcl is
applied. To apply an additional ESM filter in the chain, you can add it to the end of the
list. Filter filter3.tcl was used to filter the SYS-5-CONFIG_I messages from appearing
when the console exits out of configuration mode, but still allows the message to appear
when a Telnet session exits out of configuration mode. You can add the filter filter3.tcl
into the chain of filters:

syslogSender#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

syslogSender(config)#logging filter flash:filter3.tcl

syslogSender(config)#end

Use the show logging command to view the changes:

syslogSender#show logging

syslog logging: enabled (1 messages dropped, 11 messages rate-limited,

0 flushes, 0 overruns, xml disabled, filtering enabled)

No Active Message Discriminator.

No Inactive Message Discriminator.

Console logging: level debugging, 54 messages logged, xml disabled,b

filtering enabled

Monitor logging: level debugging, 0 messages logged, xml disabled,

filtering disabled

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 139

Buffer logging: level debugging, 94 messages logged, xml disabled,

filtering disabled

Logging Exception size (4096 bytes)

Count and timestamp logging messages: disabled

Persistent logging: disabled

Filter modules:

flash:filter7.tcl

flash:filter3.tcl

Now there are two active filter modules loaded: filter7.tcl and filter3.tcl. The script
filter3.tcl filtered out the SYS-5-CONFIG_I message from appearing on the console. If
you again exit from configuration mode on an incoming Telnet session, the following sys-
log message is generated on the console:

000087: *Jan 11 00:18:56.095: %SYS-5-CONFIG_I: Configured from console by cisco

on vty0 (10.10.10.1)

Another powerful tool is to use separate streams to send particular syslog messages to
different hosts. Suppose that three different remote hosts are listening for syslog mes-
sages and are configured as follows:

logging 192.168.1.1

logging host 192.168.1.2 filtered stream 10

logging host 192.168.1.3 filtered stream 11

In this example, the host 192.168.1.1 will receive all syslog messages. Host 192.168.1.2
will receive only syslog messages redirected to stream 10. This will occur only if the ESM
filter sets the ::stream value to 10. Similarly, host 192.168.1.3 will receive only syslog
messages redirected to stream 11. Again, this will only occur if the ESM filter sets the
::stream value to 11.

As you can see, this affords a great deal of flexibility in processing the syslog messages
that are sent to different hosts. Using Tcl to decide which syslog messages are sent to
which syslog hosts, provides the ability to scale syslog servers and differentiate messages
to specific hosts.

Introduction to Embedded Menu Manager

Another feature in Cisco IOS that makes use of Tcl scripting is the Embedded Menu
Manager (EMM). EMM was first introduced into Cisco IOS Software Release 12.4(20)T.
It enables you to create text-based menus written in XML that present Cisco IOS device
users a simplified user interface. As part of the menu, you can use Tcl script language
commands.

www.it-ebooks.info

http://www.it-ebooks.info/

140 Tcl Scripting for Cisco IOS

You can find the XML schema at the following site:

http://www.cisco.com/en/US/prod/iosswrel/ps6537/ps6555/ps9424/cisco_ios_
service_diagnostics_scripts.html

In XML, you need to tag every object with a start tag and end tag. The start tag is simply
the element name, surrounded by < and > characters:

<name>

Closing the element requires a similar format, but with </ characters before the name and
> after the name:

</name>

The first required element in the schema is called menu. This must be present in the XML
document, which defines the EMM menu.

You can begin by writing your own menu using the EMM XML schema document as a
guide. The menu will be written in a Menu Definition File (MDF). First you must format
the menu, as follows:

<Menu MenuName=”My First Menu” schemaVersion=”1.1”>

<MenuTitle>

</MenuTitle>

<Item>

<ItemTitle>

<Constant String=”This is the first item”/>

</ItemTitle>

</Item>

</Menu>

This is the simplest menu we could write. It is called My First Menu and has only one
item called “This is the first item”. Save this in a text editor and call it my.mdf.

To test the menu, copy the file my.mdf to the Cisco IOS device, and then load the menu
by telling EMM to try to read the MDF file, as follows:

Router#emm mdf flash:my.mdf

1. This is the first item

Enter selection:

www.it-ebooks.info

http://www.cisco.com/en/US/prod/iosswrel/ps6537/ps6555/ps9424/cisco_ios_service_diagnostics_scripts.html
http://www.cisco.com/en/US/prod/iosswrel/ps6537/ps6555/ps9424/cisco_ios_service_diagnostics_scripts.html
http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 141

Note MDF files can also be located on remote devices. MDF files can be loaded across
the network on FTP, HTTP, NVRAM, RCP, and TFTP file systems.

The Cisco IOS device has read the menu definition file and immediately started the menu.
You can enter the only available choice, by typing number 1. After selecting 1, the menu
immediately exits.

You can easily make a small change to the menu to show the current time as part of the
menu display. To do this, you modify the first item to execute the Cisco IOS command
show clock. There is an XML tag you can use called IOSExecCommand, which allows
any Cisco IOS command to be run. One more XML tag needs to be added to Item,
which is the ContinuePrompt. Without the ContinuePrompt, you would not see the
results of the show command. In addition, you must add a second item to the menu, the
ability to exit.

Edit the MDF script to contain the new item:

<Menu MenuName=”My First Menu” schemaVersion=”1.1”>

<MenuTitle>

</MenuTitle>

<Item ContinuePrompt=”true”>

<ItemTitle>

<Constant String=”This is the first item”/>

</ItemTitle>

<IOSExecCommand>”show clock”</IOSExecCommand>

</Item>

<Item>

<ItemTitle>

<Constant String=”Exit”/>

</ItemTitle>

</Item>

</Menu>

Copy the MDF script to the Cisco IOS device and use the following command to initiate
the menu:

Router#emm mdf flash:my2.mdf

1. This is the first item

2. Exit

Press 1:

Enter selection:1

*19:04:01.003 PST Sun Jan 17 2010

Press any key to continue...

www.it-ebooks.info

http://www.it-ebooks.info/

142 Tcl Scripting for Cisco IOS

Select 2 to exit the script.

With basics covered, we will continue creating an EMM menu by adding a Tcl script
command to the menu.

One Tcl script command previously used is string length, which tells you how many char-
acters are in the given string. Another Tcl command you can use is hostname. If entered
alone, it returns the hostname of the Cisco IOS device. You will use these two commands
to count how many characters are in the hostname. To perform that function, you can
enter the following command in a Tcl shell and view the length of the hostname string:

Router(tcl)#hostname

Router

Router(tcl)#string length [hostname]

6

Router(tcl)#

To configure the menu to perform the same Tcl script function to count the hostname
length, edit the MDF to contain the new items that will perform the counting.

You must add one new item, which uses the XML tags EmbeddedTCL and
TCLCommand:

<Item ContinuePrompt=”true”>

<ItemTitle>

<Constant String=”Count Hostname Length”/>

</ItemTitle>

<EmbeddedTCL>

<TCLCommand>return [string length [hostname]]</TCLCommand>

</EmbeddedTCL>

</Item>

After you add the new item to the MDF file, the complete file contains the following:

<Menu MenuName=”My First Menu” schemaVersion=”1.1”>

<MenuTitle>

</MenuTitle>

<Item ContinuePrompt=”true”>

<ItemTitle>

<Constant String=”This is the first item”/>

</ItemTitle>

<IOSExecCommand>”show clock”</IOSExecCommand>

</Item>

<Item ContinuePrompt=”true”>

<ItemTitle>

<Constant String=”Count Hostname Length”/>

</ItemTitle>

<EmbeddedTCL>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 143

<TCLCommand>return [string length

[hostname]]</TCLCommand>

</EmbeddedTCL>

</Item>

<Item>

<ItemTitle>

<Constant String=”Exit”/>

</ItemTitle>

</Item>

</Menu>

Copy the new MDF to the Cisco IOS device and monitor the results:

Router#emm mdf flash:my3.mdf

1. This is the first item

2. Count Hostname Length

3. Exit

Enter selection:2

9

Press any key to continue...

The menu was able to provide the correct number for the hostname string length.

One of the strengths of EMM is the capability to configure and preload the menus for partic-
ular user accounts, by using the autocommand option. For example, configure the following:

Router(config)#emm mdf flash:my3.mdf

Router(config)#user cisco password cisco

Router(config)#user cisco autocommand emm My First Menu

Router(config)#end

Router#

*Mar 23 22:23:10.575: %SYS-5-CONFIG_I: Configured from console by console

Router#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#line con 0

Router(config-line)#login local

Router(config-line)#end

After configuring the preceding, try to log in and see the menu being displayed:

Username: cisco

Password: 1. This is the first item

2. Count Hostname Length

3. Exit

Enter selection:

www.it-ebooks.info

http://www.it-ebooks.info/

144 Tcl Scripting for Cisco IOS

Caution Use caution when enabling login local on the console. It is possible to lock
yourself out from the router! Instead, consider enabling on login local on line vty 0 4
instead. That way, incoming Telnet sessions will be authenticated with a username and
password.

We have demonstrated the ability to use Tcl script commands within the menu. The
EMM feature is a powerful tool you can use to build simple user interfaces that allow
nearly anything to be done on the Cisco IOS device. It is a great help in writing a cus-
tomized application to be run on a Cisco IOS device that requires user input.

Using Tcl as a Web Server

One exciting area that exemplifies the value of a Tcl script is the capability to run a web
server. This section examines a web server running under the Tcl interpreter. It is freely
available, and you can modify it to suit your needs. This Tcl-based web server is easily
customizable and is suitable for rapid deployment of small web-based applications run-
ning on a Cisco IOS device. A typical application would be to allow a network adminis-
trator to modify a device configuration through a web-based interface. Other applica-
tions include troubleshooting, network monitoring, and so on.

Cisco IOS does include a small embedded web server already. It enables you to show the
diagnostic log, discussed in the previous section. All the messages in the logging buffer
are viewable from within the embedded web server. All the Cisco IOS commands can be
used from the embedded web server, and the output of the commands will display as a
web page presented to the user. An additional command available is the show technical
support command. This is useful when communicating with Cisco technical support, to
rapidly collect the information they may request to troubleshoot problems. A small utili-
ty also included that allows the user to initiate ping requests from the Cisco IOS device.

To access the embedded web server, verify the following is configured on the IOS device:

Router#show running-config include http

ip http server

ip http authentication local

no ip http secureserver

The command ip http server enables the built-in embedded web server. The next com-
mand, ip http authentication local, is used to query for usernames and passwords when
the web server is accessed. Finally, no ip http secureserver disables the internal web
server that is used when the user tries to connect to the Cisco IOS device using HTTPS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 145

To determine what IP addresses are configured in the Cisco IOS device, use the command
show ip interface brief. After examining the output, choose a suitable IP address to use.

Using a web browser, enter the IP address of the Cisco IOS device as the website to
browse, as shown in Figure 5-1.

After you enter the IP address of the router, the web browser attempts to communicate
with the Cisco IOS router. The response asks for a username and password, as shown in
Figure 5-2.

In this case, you have not yet configured a username or password on the Cisco IOS
device. You must cancel this connection and configure the following in the Cisco IOS
device in configuration mode:

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Figure 5-1 IOS Device Web Interface

Figure 5-2 IOS Device Web Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

146 Tcl Scripting for Cisco IOS

Router(config)#username cisco privilege 15 password 0 cisco

Router(config)#end

Router#

You have now created a user with the name cisco and password cisco that can be used to
access the web page. This username will be used in conjunction with the ip http authen-
tication local configuration command, which was entered earlier. Typing individual user-
names and passwords into the configuration manually is one of the simplest ways to
authenticate web page users. Because this configuration is device specific, scalability is a
major concern. Another method that offers extensive scalability is to centralize user
information about RADIUS or TACACS server. Now that a user has been added to the
local database, you can reattempt the connection from a web browser and enter the cor-
rect username and password, as shown in Figure 5-3.

After clicking OK, you are presented with the home page for the Cisco IOS device, as
shown in Figure 5-4.

From this page, you can

■ Access the syslog buffer with show diagnostic log

■ Execute selected commands with monitor the router

Figure 5-3 IOS Device User Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 147

Figure 5-4 IOS Device HTTP Server Page

■ Collect tech-support information with show tech-support

■ Perform ping requests with extended ping

■ Access the QoS Device Manager (if this optional component has been installed)

You can see the embedded web server provides valuable information and functions. Any
command that you can run from the IOS device console can now be applied through the
web interface. The web server, however, is not customizable to a specific application. If
you are interested in creating a user interface specific to an application, you must write
one. The web server application will provide the foundation for web-based services.
Fortunately, the Tcl web-server program has been made freely available for modification.

Obtaining a Free Web Server Application

The Cisco Beyond application repository contains many user-contributed scripts usable
on Cisco IOS devices. These applications might work with the Tcl interpreter, EEM, or
other scripting done on Cisco IOS. You can access these applications at the following site:

http://www.cisco.com/go/ciscobeyond

Using the Cisco Beyond search engine, you can easily locate the HTTP server applica-
tion. Enter http in the search box and find the HTTP Server with CGI Support script.

www.it-ebooks.info

http://www.cisco.com/go/ciscobeyond
http://www.it-ebooks.info/

148 Tcl Scripting for Cisco IOS

This script uses EEM and Tcl to create a web server running on Cisco IOS. After down-
loading and extracting the HTTP Server with CGI Support package, you have the follow-
ing files:

■ Application_1.tcl

■ Application_2.tcl

■ Application_3.tcl

■ Application_4.tcl

■ Instructions.txt

■ Mihyar.tcl

■ StaticPage.html

■ Favicon.ico

■ Http_server.tcl

■ Index.html

■ Logo.gif

■ Runcli.tcl

■ Sendemail.tcl

■ Sitearea-nav.jpg

You learn from the Instructions.txt file that you must place these files on the local stor-
age of your Cisco IOS router. It also mentions that http_server.tcl is hard-coded to use
disk2: for the web server files. You can change this by using any text editor. Search for
disk2: and replace with an appropriate path for the device that you are using. For exam-
ple, flash:, disk0, slot0 are possible alternatives. A subdirectory can also be used below
the root directory. For example, you can choose to place all the files in a subdirectory
named WEB and then alternatively change the word disk2: to flash:/WEB/.

The IOS copy command is used to copy the files one by one to your local storage. The
following example uses a TFTP server:

Router#copy tftp: flash:

Address or name of remote host []? 171.69.1.129

Source filename []? jlautman/http/Application_1.tcl

Destination filename [Application_1.tcl]?

Accessing tftp://10.69.1.129/jlautman/http/Application_1.tcl...

Loading jlautman/http/Application_1.tcl from 10.69.17.19 (via

GigabitEthernet0/0): !

[OK - 7316 bytes]

7316 bytes copied in 0.980 secs (7465 bytes/sec)

Router#

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 149

After all the files have been copied to the local storage, such as the flash: directory, the
web server can be started. The Instructions.txt file mentions that you need to disable
the embedded IOS HTTP web server. You can do so with the following configuration
commands:

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#no ip http server

Router(config)#end

Router#

The Instructions.txt file describes how to start the web server:

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#event manager directory user policy “flash:/”

Router(config)#event manager policy http_server.tcl

Router(config)#end

Router#event manager run http_server.tcl

The event manager directory command enables you to specify the file system in which
all the user-created policies are located. This is in contrast to the included system poli-
cies, which are internal and always available.

The event manager policy configuration command enables you to specify user policies
to be available to run.

Finally, the event manager run command enables you to begin the execution of a specif-
ic user policy.

After a brief pause, the Cisco IOS router starts up the http_server.tcl script, and you can
open the web page in your browser, as shown in Figure 5-5. The web browser will initially
load index.html first, which redirects the web browser to display this page.

Reverse Engineering the Web Server

Now that you have seen the web server in operation, you need to know how it operates
internally. First of all, note that the following messages are being displayed on the con-
sole of the router:

Router#GET / HTTP/1.1

file name:

Parameters:

GET /Mihyar.tcl HTTP/1.1

file name: Mihyar.tcl

Parameters:

GET /logo.gif HTTP/1.1

file name: logo.gif

www.it-ebooks.info

http://www.it-ebooks.info/

150 Tcl Scripting for Cisco IOS

Figure 5-5 IOS Device HTTP Server Page gummyjoe router

Parameters:

GET /sitearea-nav.jpg HTTP/1.1

file name: sitearea-nav.jpg

Parameters:

The first message displayed is a get, but the filename is empty. Looking at the code of
the http_server.tcl script, you find that it opens a socket on TCP port 80, which is the
port that web servers generally use, as shown here:

set svcPort 80

...many lines cut ...

Create a server socket on port $svcPort.

Call proc accept when a client attempts a connection.

set srvrsock [socket -server accept $svcPort]

while {1} {

Inside the while loop, which runs forever unless it is interrupted with the break state-
ment, you see some lines which reference index.html:

} elseif {[regexp “GET /(.*) HTTP/1.1” $l temp request] != 0} {

puts “$l”

if {[regexp “(.*)\\?(.*)” $request temp filename param] == 0} {

set param ““

set filename $request

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 151

}

set ::parameters $param

puts “file name: $filename”

puts “Parameters: $::parameters”

if {$filename == ““} {set filename “index.html”}

From the preceding code block, it is clear that if no filename is passed to this part of the
code, it will be changed to index.html.

You can verify this by entering the filename explicitly in the browser, as shown in
Figure 5-6.

When this page is opened, you see that the same home page appears as before. However,
a different set of debug messages are printed on the Cisco IOS device console:

Router#GET /index.html HTTP/1.1

file name: index.html

Parameters:

GET /Mihyar.tcl HTTP/1.1

file name: Mihyar.tcl

Parameters:

GET /logo.gif HTTP/1.1

file name: logo.gif

Parameters:

GET /sitearea-nav.jpg HTTP/1.1

file name: sitearea-nav.jpg

Parameters:

This time, the index.html filename is being displayed, indicating that you are correct in
your understanding of the Tcl script http_server.tcl. The same home page and the debug
messages are nearly identical with the exception of the index.html filename. The first time
you opened the web server home page, the code of http_server.tcl replaced the blank file-
name with index.html. To change the “home page” of the web server for your own specif-
ic applications, you can modify the index.html file and save it to the IOS device.

The current contents of index.html is the following:

<script type=”text/javascript”>

document.location = “Mihyar.tcl”;

</script>

Figure 5-6 IOS Device HTTP index.html Page

www.it-ebooks.info

http://www.it-ebooks.info/

152 Tcl Scripting for Cisco IOS

What does this web page tell the web browser to do? It simply tells it to open a web page
called Mihyar.tcl. The web browser executes the JavaScript code contained between the
<script> and </script> tags. Note that is the final web page displayed after the web
browser loads the index.html file.

Toward the end of the Mihyar.tcl file, you see that there are many lines of code, as
shown here:

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: binary

“

puts $httpsock $httpheader$header$middle$footer

The Tcl script code concatenates the header, middle, and footer with httpheader, and
then it is sent on the httpsock channel. Cumulatively, these three components make up
the complete web page, which will then be displayed to the user on the web browser.

In the next section, you will create your own example script, chap4e1.tcl. The same for-
mat will be maintained, using header, middle, and footer, and combining them all together
with httpheader.

Creating Your Own Simple Web Page

The goal here is to modify the web server to display your own custom-created web page
instead of the default. Begin by modifying the index.html file and associating a script
that you write, as follows:

<script type=”text/javascript”>

document.location = “chap4e1.tcl”;

</script>

Next, create a simple script called chap4e1.tcl. This script will be used to learn about
how the web server functions. In this example, the following script will be implemented:

set header ““

set middle “<html><body>This web page may be easily customized. Nearly anything

available to the TCL Interpreter running on Cisco IOS may be easily displayed.

</body>

</html>

“

set footer ““

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 153

Content-Transfer-Encoding: binary

“

puts $httpsock $httpheader$header$middle$footer

This script simply creates an empty header and an empty footer. The contents of the web
page are entirely within the variable middle. It uses the simplest form of HTML tagging.
The text begins with <html><body> and concludes with </body></html>.

To facilitate the operation, both files must be copied to the IOS device. Using a TFTP
server to copy the files, the following is an example:

Router#copy tftp: flash:

Address or name of remote host []? 10.69.1.129

Source filename []? jlautman/http/index.html

Destination filename [index.html]?

%Warning:There is a file already existing with this name

Do you want to over write? [confirm]

Accessing tftp://10.69.1.129/jlautman/http/index.html...

Loading jlautman/http/index.html from 10.69.17.19 (via GigabitEthernet0/0): !

[OK - 80 bytes]

80 bytes copied in 0.396 secs (202 bytes/sec)

Router#copy tftp: flash:

Address or name of remote host [10.69.1.129]?

Source filename [jlautman/http/index.html]? jlautman/http/chap4e1.tcl

Destination filename [chap4e1.tcl]?

Accessing tftp://10.69.1.129/jlautman/http/chap4e1.tcl...

Loading jlautman/http/chap4e1.tcl from 10.69.17.19 (via GigabitEthernet0/0): !

[OK - 386 bytes]

386 bytes copied in 0.484 secs (798 bytes/sec)

Router#

Type the URL http://10.93.130.224/index.html to display the web page shown in
Figure 5-7.

Note It might be necessary to reload the page, because certain web browsers might
cache the results.

Figure 5-7 IOS Device HTTP Customized Page

www.it-ebooks.info

http://10.93.130.224/index.html
http://www.it-ebooks.info/

154 Tcl Scripting for Cisco IOS

As an alternative method to access the page previously created, you can direct navigate
to that specific page. You can get direct access if you type in the full URL of your script.
For example, use the following address:

http://10.93.130.224/chap4e1.tcl

Creating a Web Page Using IOS show Commands

This section takes the output from a show command and retrieves the current time from
the Cisco IOS device. This information will provide the content for our page.

You can start with the previous example and modify it to store the show command out-
put and current time. In this example, the file will be saved as chap4e2.tcl.

The following lines prepare to run the specific show command:

if {[catch {cli_open} output]} {

error $output $errorInfo

} else {

array set cli_fd $output

}

Step 1. Enter enable mode on the IOS device:

if {[catch {cli_exec $cli_fd(fd) “enable”} output]} {

error $output $errorInfo

}

Step 2. Issue the show clock command and capture the current time in variable
clock_output:

if {[catch {cli_exec $cli_fd(fd) “show clock”} clock_output]} {

error $output $errorInfo

}

Step 3. Close the file handle used for CLI commands:

if {[catch {cli_close $cli_fd(fd) $cli_fd(tty_id)} output]} {

error $output $errorInfo

}

Step 4. Define the HTTP header to show The time is now: and include the variable
clock_output, which represents the previous show clock command:

set header “<html><body>The time is now: $clock_output

</body>

</html>

“

www.it-ebooks.info

http://10.93.130.224/chap4e1.tcl
http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 155

set middle “<html><body>This web page may be easily customized. Nearly

anything available to the TCL

Interpreter running on Cisco IOS may be easily

displayed.

</body>

</html>

“

set footer ““

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: binary

“

puts $httpsock $httpheader$header$middle$footer

Step 5. You also need to modify index.html to reflect the new filename you are using:

<script type=”text/javascript”>

document.location = “chap4e2.tcl”;

</script>

Step 6. Copy the files to the IOS device:

Router#copy tftp flash:

Address or name of remote host []? 10.69.1.129

Source filename []? jlautman/http/index.html

Destination filename [index.html]?

%Warning:There is a file already existing with this name

Do you want to over write? [confirm]

Accessing tftp://10.69.1.129/jlautman/http/index.html...

Loading jlautman/http/index.html from 10.69.1.129 (via

GigabitEthernet0/0): !

[OK - 80 bytes]

80 bytes copied in 0.380 secs (211 bytes/sec)

Router#copy tftp flash:

Address or name of remote host [10.69.1.129]?

Source filename [jlautman/http/index.html]? jlautman/http/chap4e2.tcl

Destination filename [chap4e2.tcl]?

Accessing tftp://10.69.1.129/jlautman/http/chap4e2.tcl...

Loading jlautman/http/chap4e2.tcl from 10.69.1.129 (via

GigabitEthernet0/0): !

[OK - 851 bytes]

851 bytes copied in 0.532 secs (1600 bytes/sec)

Router#

www.it-ebooks.info

http://www.it-ebooks.info/

156 Tcl Scripting for Cisco IOS

Step 7. From your browser, load the web page. The results will look like Figure 5-8.

How were you able to get the clock output? There are some EEM Tcl library commands
that are used. A “handle” is created to interact with the Cisco IOS device, as shown here:

if {[catch {cli_open} output]} {

error $output $errorInfo

} else {

array set cli_fd $output

}

The handle is stored in the Tcl variable array called cli_fd, short for command-line inter-
face file descriptor. It is simply a channel on which the Cisco IOS commands will be sent
and data will be returned. The cli_open could fail if, for example, too many users were
connected by Telnet. Only a finite number of connections can be made to the Cisco IOS
device, and as such, there are a finite number of resources. If cli_open fails, you catch the
result and send it to the user interface. Otherwise, it would silently fail without display-
ing any information about the fault.

Commands are sent one at a time to this cli_fd using the EEM Tcl library command
cli_exec. The cli_exec command needs to know what channel will be used to send the
command, for example:

if {[catch {cli_exec $cli_fd(fd) “enable”} output]} {

error $output $errorInfo

}

The results are captured in the catch variable as the result of the cli_exec in case there is
a failure. If it fails, the user will be notified that there is a problem with the Tcl script. The
parameters within the quotes, are the actual commands that will be initiated on the Cisco
IOS device. In this case, it is the enable keyword. This is done to enter privileged mode,
which offers many more command options.

The cli_exec command is performed again, but this time it is used to save the show
clock output:

if {[catch {cli_exec $cli_fd(fd) “show clock”} clock_output]} {

error $clock_output $errorInfo

}

Figure 5-8 IOS Device HTTP Clock Page

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 157

Finally, the file handle is closed to properly clean up:

if {[catch {cli_close $cli_fd(fd) $cli_fd(tty_id)} output]} {

error $output $errorInfo

}

Adding User Input to the Web Page

Now that you understand how to use Cisco IOS commands with the web server script,
you will investigate how to add user input to the web page. The original web page used
the script Mihyar.tcl, which allowed user input (downloaded from the Cisco Beyond site).
The original web page contains a Run CLI command box and has a Run button. After you
enter a CLI command and click the Run button, the web server application will attempt to
run the command, save the output, and present that as a web page to the user.

To view the code used in the Tcl script Mihyar.tcl, you can search for the text “Run CLI
command,” from which you will find the following block of code:

<p>Run CLI command</p>

<form name=’runcli’ action=’runcli.tcl’ method=’GET’ target=’_blank’>

<div align=’left’>

<input type=’text’ name=’CLIcommand’ value=’CLI Command’

onblur=’init_field(this,\”CLI Command\”);’ onFocus=’clear_field(this,\”CLI

Command\”);’ style=’WIDTH: 440px; color:#000000; font-family: arial; font-size:

10pt’>

<input type=’submit’ value=’RUN’>

</div>

</form>

This block of code creates an HTML form where user input can be entered. The user
information is entered into a text box, and the input is sent as a parameter to the Tcl
script named runcli.tcl. The text box is initially populated with the words CLI Command.
As soon as the text box is clicked, the words disappear. The initial population of the
input box is accomplished with a combination of HTML and JavaScript:

onblur=’init_field(this,\”CLI Command\”);

The clearing of the text box when clicked is accomplished with the following command:

onFocus=’clear_field(this,\”CLI Command\”);’

The JavaScript that accomplishes this task is as follows:

<script>

// clear default value from field when selected

function clear_field(field, value) {if(field.value == value) field.value = ‘’;}

function init_field(field, value) {if(field.value == ‘’) field.value = value;}

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

158 Tcl Scripting for Cisco IOS

The JavaScript code that runs on the web browser will be called to populate the text box.
When the text box is selected, it will be called to clear the box.

Using this method, you can modify the sample web page to include a text box for user
input. Modify the Tcl script as follows:

if {[catch {cli_open} output]} {

error $output $errorInfo

} else {

array set cli_fd $output

}

Enter enable or privileged mode:

if {[catch {cli_exec $cli_fd(fd) “enable”} output]} {

error $output $errorInfo

}

Issue the show clock command to get the current time and record the output in the
clock_output variable:

if {[catch {cli_exec $cli_fd(fd) “show clock”} clock_output]} {

error $clock_output $errorInfo

}

Close the handle used for CLI commands:

if {[catch {cli_close $cli_fd(fd) $cli_fd(tty_id)} output]} {

error $output $errorInfo

}

Configure the output to show the clock:

set header “<html><body>The time is now: $clock_output

</body>

</html>

“

Display the following custom text:

set middle “<html><body>This web page may be easily customized. Nearly anything

available to the TCL

Interpreter running on Cisco IOS may be easily

displayed.

</body>

</html>

“

set footer “

<script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 159

Clear the default value from field when selected:

function clear_field(field, value) {if(field.value == value) field.value = ‘’;}

function init_field(field, value) {if(field.value == ‘’) field.value = value;}

</script>

<input type=’text’ name=’CLIcommand’ value=’CLI Command’

onblur=’init_field(this,\”CLI Command\”);’ onFocus=’clear_field(this,\”CLI

Command\”);’ style=’WIDTH: 440px; color:#000000; font-family: arial; font-size:

10pt’>

<input type=’submit’ value=’RUN’>

</form>

“

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: binary

“

puts $httpsock $httpheader$header$middle$footer

After you copy the script to the Cisco IOS device and reload the web page in your web
browser, you see the results shown in Figure 5-9.

In Figure 5-10, you can verify that clicking the text box clears the text that is in the box.

There is, however, one limitation in the current example. When you enter some text in the
box and click the Run button, no action is taken yet. Why is this? After carefully examin-
ing the code in the script named Mihyar.tcl, you find that it is connected to another Tcl
script with the following code:

<form name=’runcli’ action=’runcli.tcl’ method=’GET’ target=’_blank’>

That line of code was omitted from the sample script. Once you modify the footer section
of the script to contain the action to take, the Run button will invoke another Tcl script!

Now that you have seen how to add a text box and button for user input, the next thing
to do is modify the web page into a more useful monitoring application.

Figure 5-9 IOS Device HTTP Clock and Command Input

www.it-ebooks.info

http://www.it-ebooks.info/

160 Tcl Scripting for Cisco IOS

Suppose you are getting network performance complaints from users at a remote office.
You can create a customized web page to monitor the remote IOS device. In this hypo-
thetical scenario, a network administrator in Hawaii has alerted you that the IP telephones
are working but performing poorly. You suspect the network connection between Hawaii
and the central IP telephone server.

To quickly get to the root cause of this, you can deploy a Tcl script on the IOS device in
Hawaii. The local network administrator can monitor the performance of the circuit
through a web browser. The administrator must open the web page on the router, enter in
the IP address of the IP telephone server, and click Monitor. The idea is that the network
administrator can go to this web page and start monitoring when he or she is having a
problem and additional information will be available.

The web page will use a Tcl script in conjunction with the Cisco IOS feature called IP
service level agreement (SLA).

Introduction to IP SLA

IP service level agreement (IP SLA) is a feature within Cisco IOS that allows the device to
periodically measure the performance of the network. Many customers want to purchase
a network connection with a contractual guarantee that their Internet connection will
have minimal downtime per year. As a result of this contract, both the Internet service
provider (ISP) and the customer purchasing the service might want to monitor their net-
work connection to verify the network is meeting the contractual guarantee. This is
where the IP SLA feature becomes useful. It allows the IOS device measure various net-
work conditions.

Figure 5-10 IOS Device HTTP Clock and Command Input Clear Text Box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 161

In its simplest form, you can use IP SLA to initiate an ICMP ping echo request on a peri-
odic basis. This is the same type of ping packet we have all used before. For example,
using the command prompt within Windows, you can ping an IP address:

C:\>ping 10.93.130.224

Pinging 10.93.130.224 with 32 bytes of data:

Reply from 10.93.130.224: bytes=32 time=43ms TTL=245

Reply from 10.93.130.224: bytes=32 time=43ms TTL=245

Reply from 10.93.130.224: bytes=32 time=43ms TTL=245

Reply from 10.93.130.224: bytes=32 time=44ms TTL=245

Ping statistics for 10.93.130.224:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 43ms, Maximum = 44ms, Average = 43ms

C:\>

You can also perform the same type of ping from within IP SLA on the Cisco IOS device.
To configure this, an IP SLA entry must be defined and then scheduled, as follows:

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#ip sla 1

TCL1(config-ip-sla)#icmp-echo 10.21.69.186

TCL1(config-ip-sla-echo)#ip sla schedule 1 start-time now

Router(config)#

Note This syntax assumes 12.4T or higher. 12.4 mainline uses ip sla monitor, and earlier
releases use rtr. Devices supporting EEM and tclsh could support all three syntax variations.

In the preceding example, a new IP SLA entry has been defined with an ID number of 1,
using the ip sla 1 configuration command. The ID number is arbitrary and is just a unique
identifier that must be assigned for every entry.

The next configuration command, icmp-echo 10.21.69.186, is used to define what type
of measurement to perform and the target IP address that you want to measure. In this
case, you are doing icmp-echo, one of the simplest types of measurement. Other more
elaborate measurements can also be conducted, but this requires an IP SLA-capable
device as the source and one as the destination.

Finally, the new entry must be scheduled to run using the ip sla schedule 1 start-time
now configuration command. This command will start the IP SLA process and start col-
lecting data. The default measurement will occur every 60 seconds. This works well for
the example. Consequently, the default value will remain unchanged. In this case, the

www.it-ebooks.info

http://www.it-ebooks.info/

162 Tcl Scripting for Cisco IOS

length of time to perform the measurement has not been specified. The default value is 1
hour. This also fits well into the example, so this default value will remain unchanged.

To see the results of the ongoing measurement, enter the following command at the Cisco
IOS device console:

Router#show ip sla statistics

IPSLAs Latest Operation Statistics

IPSLA operation id: 1

Type of operation: icmp-echo

Latest RTT: 44 milliseconds

Latest operation start time: *22:06:51.207 UTC Sun Dec 27 2009

Latest operation return code: OK

Number of successes: 7

Number of failures: 0

Operation time to live: 3189 sec

Router#

From the previous output, the IPSLA operation id you are interested in is 1. It could
have many entries running at the same time. However, you are only interested in 1. The
type of operation entered is displayed as icmp-echo. The latest measured round-trip time
(RTT) measured by the Cisco IOS device was 44 milliseconds. The time that the measure-
ment was attempted is displayed next. The latest return code or result is displayed as OK,
which indicates that a response was received. It could also be timeout if the Cisco IOS
device sent an ICMP echo request but no response was received. Additional information
is shown, such as how many successes have occurred (the return code of OK is consid-
ered a success and a return code of timeout to be a failure). Finally, you see the operation
will continue for another 3189 seconds.

For more information about IP SLA, see the following web page:

http://www.cisco.com/go/ipsla

Adding the IP SLA Measurement to the Web Page

You can now modify the sample web page script to receive the user input for the IP SLA
parameters. When the user enters an IP address, you will use it to configure a new IP SLA
measurement entry.

Modifying the Button and Label for User Input

To start, change the name of the text box and the button for entering the data. In this
case, change the text box to be called IP Address to Monitor. You can do so by changing
the user input section of the Tcl script within the footer section:

set footer “

<script>

function clear_field(field, value) {if(field.value == value) field.value = ‘’;}

www.it-ebooks.info

http://www.cisco.com/go/ipsla
http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 163

function init_field(field, value) {if(field.value == ‘’) field.value = value;}

</script>

<form name=’ipsla’ action=’ipsla.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’IPSLAmonitor’ value=’IP address to monitor’

onblur=’init_field(this,\”IP address to monitor\”);’

onFocus=’clear_field(this,\”IP address to monitor\”);’ style=’WIDTH: 440px;

color:#000000; font-family: arial; font-size: 10pt’>

<input type=’submit’ value=’Begin Monitor’>

</form>

“

Notice the change in the help text? This will make it clear that IP SLA measurements will
be initiated. Another item of interest is that the user input data is directed to a different
Tcl script, using the action command. Previously, the runcli.tcl was executed and now it
was replaced with ipsla.tcl. You will now need to create the ipsla.tcl script to begin the
measurement, based on the user-provided IP address.

Creating a Tcl Script to Display IP SLA Measurement Results

Start with a simple version of the Tcl script, named ipsla.tcl. The function of this script
will be to display the user-provided IP address, as described in the code and descriptions
that follow.

The first line of code receives the IP address from the user input and assigns it to the
variable ipaddr:

set ipaddr [lindex $parmlist 1]

set header “<html>

<head>

<title>IP SLA Measurment Results Page</title>

<script>

function clear_field(field, value) {if(field.value == value) field.value = ‘’;}

function init_field(field, value) {if(field.value == ‘’) field.value = value;}

</script>

</head>

<body>

IP SLA Measurment Results Page

We are monitoring :

$ipaddr

</body>

</html>”

set middle ““

set footer ““

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: binary

“

puts $httpsock $httpheader$header$middle$footer

www.it-ebooks.info

http://www.it-ebooks.info/

164 Tcl Scripting for Cisco IOS

Modifications to the example web page will be used to clarify the user input text box.
This new Tcl script will be saved as chap4e4.tcl:

if {[catch {cli_open} output]} {

error $output $errorInfo

} else {

array set cli_fd $output

}

if {[catch {cli_exec $cli_fd(fd) “enable”} output]} {

error $output $errorInfo

}

Issue the show clock command and store the information in the clock_output variable:

if {[catch {cli_exec $cli_fd(fd) “show clock”} clock_output]} {

error $output $errorInfo

}

Close the handle used for CLI commands:

if {[catch {cli_close $cli_fd(fd) $cli_fd(tty_id)} output]} {

error $output $errorInfo

}

set header “<html><body>The time is now: $clock_output

</body>

</html>

“

The middle section of the HTML output displays information about the operation of
the script:

set middle “<html><body>This web page will help to monitor any network device

that needs to be measured. An IP SLA Monitoring operation will be automatically

started. Please enter the IP address of the device you want to monitor.

</body>

</html>

“

set footer “

<script>

Clear the default value from field when selected:

function clear_field(field, value) {if(field.value == value) field.value = ‘’;}

function init_field(field, value) {if(field.value == ‘’) field.value = value;}

</script>

<form name=’ipsla’ action=’ipsla.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’IPSLAmonitor’ value=’IP address to monitor’

onblur=’init_field(this,\”IP address to monitor\”);’

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 165

onFocus=’clear_field(this,\”IP address to monitor\”);’ style=’WIDTH: 440px;

color:#000000; font-family: arial; font-size: 10pt’>

<input type=’submit’ value=’Begin Monitor’>

</form>

“

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: binary

“

puts $httpsock $httpheader$header$middle$footer

Putting the New Tcl Scripts into Operation

Copy the two scripts chap4e4.tcl and ipsla.tcl to the Cisco IOS device and you will be
ready to try it out!

In the web browser, you can directly open chap4e4.tcl by typing the following URL:

http://10.93.130.224/chap4e4.tcl

After opening the web page, you will see the results in Figure 5-11.

Enter an IP address in the IP Address to Monitor field and select Begin Monitor. As
shown in Figure 5-12, you are now presented with the new web page, which runs ipsla.tcl.

Figure 5-11 IOS Device HTTP IP SLA

Figure 5-12 IOS Device HTTP IP SLA Monitoring

www.it-ebooks.info

http://10.93.130.224/chap4e4.tcl
http://www.it-ebooks.info/

166 Tcl Scripting for Cisco IOS

The user-supplied IP address has been correctly saved. You can now begin to modify
iplsa.tcl so that it displays the results of IP SLA measurement operation:

set ipaddr [lindex $parmlist 1]

if {[catch {cli_open} output]} {

error $output $errorInfo

} else {

array set cli_fd $output

}

if {[catch {cli_exec $cli_fd(fd) “enable”} output]} {

error $output $errorInfo

}

if {[catch {cli_exec $cli_fd(fd) “show ip sla statistics”} ipslaoutput]} {

error $ipslaoutput $errorInfo

}

if {[catch {cli_close $cli_fd(fd) $cli_fd(tty_id)} output]} {

error $output $errorInfo

}

set header “<html>

<head>

<title>IP SLA Measurment Results Page</title>

<script>

function clear_field(field, value) {if(field.value == value) field.value = ‘’;}

function init_field(field, value) {if(field.value == ‘’) field.value = value;}

</script>

</head>

<body>

IP SLA Measurment Results Page

We are monitoring :

$ipaddr

The latest results:

$ipslaoutput

</body>

</html>”

set middle ““

set footer ““

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: binary

“

puts $httpsock $httpheader$header$middle$footer

When you use the EEM Tcl library commands cli_open, cli_exec, and cli_close, the out-
put of the show ip sla statistics command is stored in the variable named ipslaoutput.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 167

Now that the output has been collected and stored in the ipslaoutput variable, it will be
added to the web page with the inclusion of the following commands:

The latest results:

$ipslaoutput

This allows the new web page to include the current results. Because you have already
configured an IP SLA operation, you will now see the results in the web page. After
copying ipsla.tcl to the router, you open the web page, enter the IP address, select Begin
Monitor, and see the results in Figure 5-13.

From the output, you are getting closer to the customized web page that you want to cre-
ate for the remote network administrator!

Reformatting the IP SLA Output for Readability

The web page displays the text output from the show ip sla statistics command, but it is
not formatted exactly like it is shown on the console. For example, the following is the
display from the console:

Router#sh ip sla statistics

IPSLAs Latest Operation Statistics

IPSLA operation id: 1

Type of operation: icmp-echo

Latest RTT: 231 milliseconds

Latest operation start time: *22:59:51.202 UTC Sun Dec 27 2009

Latest operation return code: OK

Number of successes: 60

Number of failures: 0

Operation time to live: 0

Figure 5-13 IOS Device HTTP IP SLA Monitoring Example

www.it-ebooks.info

http://www.it-ebooks.info/

168 Tcl Scripting for Cisco IOS

Reviewing the web page, the line breaks are missing. Some extra formatting needs to be
done to present the show command output correctly. Looking back at the runcli.tcl
script, you see the following block of code:

set commandoutput [string map {“\r\n” “\n” “\”” “”” “<” “<” “>”

“>” “‘“ “’”} $commandoutput]

Later in the script, the show command output is printed with the following parameters:

<textarea name=’body’ style=’WIDTH: 710px; HEIGHT: 465px; color:#000000; font-

##family: courier; font-size: 8pt’>$commandoutput</textarea>

The first block of Tcl code with the string map command replaces \r\n, which represent
newlines in the original output, with the \n character, which represents a newline in the
web page. Similarly, Table 5-5 shows which characters from the show command output
are replaced with HTML characters in the web page.

The textarea name creates an HTML box where the show command output will display
in a fixed font. The effect of these two changes is to make the show command output
look identical to the console output.

Now, update ipsla.tcl to properly display the show command output:

set ipaddr [lindex $parmlist 1]

Configure the IP SLA entry:

if {[catch {cli_open} output]} {

error $output $errorInfo

} else {

array set cli_fd $output

}

if {[catch {cli_exec $cli_fd(fd) “enable”} output]} {

error $output $errorInfo

}

Table 5-5 Character Replacement from the show Command Output

Original Character from

show Output

Replacement HTML

Character Displayed Character

\r\n \n Line feed

\ ” “

< < <

> > >

“ &146; ‘

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 169

if {[catch {cli_exec $cli_fd(fd) “show ip sla statistics”} ipslashowcmd]} {

error $iplashowcmd $errorInfo

}

if {[catch {cli_close $cli_fd(fd) $cli_fd(tty_id)} output]} {

error $output $errorInfo

}

set ipslaoutput [string map {“\r\n” “\n” “\”” “”” “<” “<” “>”

“>” “‘“ “’”} $ipslashowcmd]

set header “<html>

<head>

<title>IP SLA Measurment Results Page</title>

<script>

function clear_field(field, value) {if(field.value == value) field.value = ‘’;}

function init_field(field, value) {if(field.value == ‘’) field.value = value;}

</script>

</head>

<body>

IP SLA Measurment Results Page

We are monitoring :

$ipaddr

The latest results:

<textarea name=’body’ style=’WIDTH: 710px; HEIGHT: 465px; color:#000000; font-

family: courier; font-size: 8pt’>$ipslaoutput</textarea>

</body>

</html>”

set middle ““

set footer ““

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: binary

“

puts $httpsock $httpheader$header$middle$footer

Copy ipsla.tcl to the Cisco IOS device and verify that the show output is presented cor-
rectly. It should appear as shown in Figure 5-14.

Now that the output is presented correctly on the web page, modify the ipsla.tcl script
so that it creates the IP SLA automatically. You are currently displaying the results from
the IP SLA entry that was created manually. Instead of entering the command manually,
modify the Tcl script to enter the IOS device configuration commands that will create the
IP SLA entry.

www.it-ebooks.info

http://www.it-ebooks.info/

170 Tcl Scripting for Cisco IOS

Figure 5-14 IOS Device HTTP IP SLA Formatted Display

Automatic Removal and Creation of IP SLA Entries

The first configuration command entered was ip sla 1. In this example, you want to first
remove entry number 1, if it exists in the configuration. To do so, you must enter the fol-
lowing configuration commands:

no ip sla 1

ip sla 1

icmp-echo <put in the ip address from user input in chap4e4.tcl web page>

ip sla schedule 1 start-time now

To accomplish these configuration commands, you must make the following changes to
the ipsla.tcl script:

if {[catch {cli_open} output]} {

error $output $errorInfo

} else {

array set cli_fd $output

}

Enter “enable” mode:

if {[catch {cli_exec $cli_fd(fd) “enable”} output]} {

error $output $errorInfo

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 171

Enter configuration mode:

if {[catch {cli_exec $cli_fd(fd) “config terminal”} output]} {

error $output $errorInfo

}

Delete the IP SLA entry if it exists:

if {[catch {cli_exec $cli_fd(fd) “no ip sla 1”} output]} {

error $output $errorInfo

}

Configure the IP SLA entry:

if {[catch {cli_exec $cli_fd(fd) “ip sla 1”} output]} {

error $output $errorInfo

}

Set the type of measurement to icmp-echo and use the input IP address:

if {[catch {cli_exec $cli_fd(fd) “icmp-echo $ipaddr”} output]} {

error $output $errorInfo

}

Begin measuring IP SLA information now:

if {[catch {cli_exec $cli_fd(fd) “ip sla schedule 1 start-time now”} output]} {

error $output $errorInfo

}

Exit out of configuration mode:

if {[catch {cli_exec $cli_fd(fd) “end”} output]} {

error $output $errorInfo

}

Verify that the entry was created for later display on the web page:

if {[catch {cli_exec $cli_fd(fd) “show ip sla configuration 1”} showconfigcmd]} {

error $showconfigcmd $errorInfo

}

Close the handle:

if {[catch {cli_close $cli_fd(fd) $cli_fd(tty_id)} output]} {

error $output $errorInfo

}

www.it-ebooks.info

http://www.it-ebooks.info/

172 Tcl Scripting for Cisco IOS

This new script will take the following steps:

Step 1. Enter enable mode to be allowed to enter config terminal later.

Step 2. Enter the config terminal command to modify the device’s running-
configuration.

Step 3. Remove any existing IP SLA entry 1 with no ip sla 1 command.

Step 4. Create a new IP SLA entry 1 with ip sla 1 command.

Step 5. Specify what type of measurement to take (in this case, icmp-echo) and con-
figure the user-provided IP address from the incoming parameter to this web
page Tcl script with the $ipaddr variable.

Step 6. Starting the measurement right away with ip sla schedule 1 start-time now.

Step 7. Exit out of configuration mode with end.

Step 8. Use the show ip sla configuration 1 to verify that the IP SLA entry was cre-
ated. Save the output of this show command in a Tcl variable called
showconfigcmd. The contents will display later in the web page.

Step 9. Close the handle cli_fd in which you have entered the above commands to
properly clean up.

The final change to make is to separate the web page that configures the IP SLA entry
from the web page that displays the actual results. You can do so by creating an addition-
al button to display the results.

To add the button, use the following lines of code:

<form name=’ipslaresult’ action=’ipslaresult.tcl’ method=’GET’ target=’_blank’>

<input type=’submit’ value=’Get IP Sla Result’>

</form>

You need to write a new Tcl script to display the results, which will be called
ipslaresult.tcl. The title and body of the web page will be changed to IP SLA
Measurement Configuration Page.

Putting it all together, this is the new ipsla.tcl script:

set ipaddr [lindex $parmlist 1]

if {[catch {cli_open} output]} {

error $output $errorInfo

} else {

array set cli_fd $output

}

if {[catch {cli_exec $cli_fd(fd) “enable”} output]} {

error $output $errorInfo

}

if {[catch {cli_exec $cli_fd(fd) “config terminal”} output]} {

error $output $errorInfo

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 173

if {[catch {cli_exec $cli_fd(fd) “no ip sla 1”} output]} {

error $output $errorInfo

}

if {[catch {cli_exec $cli_fd(fd) “ip sla 1”} output]} {

error $output $errorInfo

}

if {[catch {cli_exec $cli_fd(fd) “icmp-echo $ipaddr”} output]} {

error $output $errorInfo

}

if {[catch {cli_exec $cli_fd(fd) “ip sla schedule 1 start-time now”} output]} {

error $output $errorInfo

}

if {[catch {cli_exec $cli_fd(fd) “end”} output]} {

error $output $errorInfo

}

if {[catch {cli_exec $cli_fd(fd) “show ip sla configuration 1”} showconfigcmd]} {

error $showconfigcmd $errorInfo

}

if {[catch {cli_close $cli_fd(fd) $cli_fd(tty_id)} output]} {

error $output $errorInfo

}

set ipslaoutput [string map {“\r\n” “\n” “\”” “”” “<” “<” “>”

“>” “‘“ “’”} $showconfigcmd]

set header “<html>

<head>

<title>IP SLA Measurment Configuration Page</title>

<script>

function clear_field(field, value) {if(field.value == value) field.value = ‘’;}

function init_field(field, value) {if(field.value == ‘’) field.value = value;}

</script>

</head>

<body>

IP SLA Measurment Configuration Page

We are monitoring :

$ipaddr

<form name=’ipslaresult’ action=’ipslaresult.tcl’ method=’GET’ target=’_blank’>

<input type=’submit’ value=’Get IP Sla Result’>

</form>

Configuration of IP Sla entry:

<textarea name=’body’ style=’WIDTH: 710px; HEIGHT: 465px; color:#000000; font-

family: courier; font-size: 8pt’>$ipslaoutput</textarea>

</body>

</html>”

set middle ““

set footer ““

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

www.it-ebooks.info

http://www.it-ebooks.info/

174 Tcl Scripting for Cisco IOS

Content-Transfer-Encoding: binary

“

puts $httpsock $httpheader$header$middle$footer

After you have copied the new iplsla.tcl to the Cisco IOS device, the web page appears,
as shown in Figure 5-15.

Everything looks great so far!

Displaying the Results of the IP SLA Measurement with Auto-Refresh

There is one final page to write. You need to display the results in a new web page. The
results will display using a new Tcl script called ipslaresult.tcl. As an additional enhance-
ment to implement, you want the results page to automatically refresh. You will have the
page refresh every minute so that the output will always show the latest ping echo
request time displayed.

To accomplish this, add the following JavaScript code into the Tcl script:

<script type=’text/javascript’>

<!——

var timer = setInterval(‘autoRefresh()’, 1000 * 60);

function autoRefresh(){self.location.reload(true);}

//——>

</script>

Figure 5-15 IOS Device HTTP with IP SLA Automatically Configured

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 175

This JavaScript code tells the browser to automatically refresh every minute. The timer
expires every 60,000 milliseconds. When the timer expires, it calls autoRefresh, which
causes the web page to reload.

Putting it all together, the new ipslaresult.tcl script contains the following:

if {[catch {cli_open} output]} {

error $output $errorInfo

} else {

array set cli_fd $output

}

if {[catch {cli_exec $cli_fd(fd) “enable”} output]} {

error $output $errorInfo

}

if {[catch {cli_exec $cli_fd(fd) “show ip sla statistics 1”} ipslacmd]} {

error $ipslacmd $errorInfo

}

if {[catch {cli_close $cli_fd(fd) $cli_fd(tty_id)} output]} {

error $output $errorInfo

}

set ipslaoutput [string map {“\r\n” “\n” “\”” “”” “<” “<” “>”

“>” “‘“ “’”} $ipslacmd]

set header “<html>

<head>

<title>IP SLA Measurment Result Page with AutoReload</title>

</head>

<script type=’text/javascript’>

<!——

var timer = setInterval(‘autoRefresh()’, 1000 * 60);

function autoRefresh(){self.location.reload(true);}

//——>

</script>

<body>

IP SLA Measurment Result Page with AutoReload

Results of the Latest IP Sla entry:

<textarea name=’body’ style=’WIDTH: 710px; HEIGHT: 465px; color:#000000; font-

family: courier; font-size: 8pt’>$ipslaoutput</textarea>

</body>

</html>”

set middle ““

set footer ““

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: binary

“

puts $httpsock $httpheader$header$middle$footer

www.it-ebooks.info

http://www.it-ebooks.info/

176 Tcl Scripting for Cisco IOS

Verify that the results are correctly presented within the web page, which should appear
as shown in Figure 5-16.

After 1 minute, the page automatically reloads and presents the latest results, as shown in
Figure 5-17.

This completes writing the customized web page for the remote network administrator.
Whenever a problem occurs on the network, the web page will be called into action to
help troubleshoot the problem. As you have seen, there are nearly limitless possibilities in
the type of web application that you can create.

Figure 5-16 IOS Device HTTP with IP SLA Auto-Refresh

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 177

Figure 5-17 IOS Device HTTP with IP SLA Refreshed

Tcl Script Refresh Policy

Managing EEM policies in a large network environment can be an administrative burden.
You can help reduce required management of scripts on individual IOS devices by using
the Tcl script refresh policy.

Script policy refresh includes the following features:

■ Automatic update of the Tcl code from a predetermined location.

■ It can be used to selectively update a specific script or can be used to update all the
scripts registered on the IOS device.

■ Figure 5-18 shows the Tcl refresh policy feature in a network. The centralized EEM
server updates the Tcl script to all the routers using this feature.

www.it-ebooks.info

http://www.it-ebooks.info/

178 Tcl Scripting for Cisco IOS

The following command is configured on the IOS device in configuration mode and spec-
ifies the default location from where the policies are updated:

event manager directory user repository url location

The following command enables you to update specific scripts or select the group name
using a regular expression for the policy to be downloaded. The repository is the loca-
tion from which the policies can be copied:

event manager update user policy [name policy name group group name
expression] repository url location

SNMP Proxy Event Detector

The SNMP event detector is initiated when an IOS device sends an SNMP trap. When the
event detector is triggered, it can be configured to perform a user-defined action. For
example, the IOS device receives an SNMP trap if the uninterruptible power supply
(UPS) is on backup. The script can then shut down all noncritical ports.

The proxy event detector functions as listed:

Step 1. EEM registers with the SNMP proxy server to receive SNMP traps for the
user-specified IP address.

Step 2. The specific IP address sends the protocol data unit (PDU), and the device
will queue it on the EEM proxy event detector’s receive queue.

Step 3. The SNMP proxy event detector will review the information based on the cri-
teria from the registered policy.

EEM

EEM

EEM

EEM EEM

EEM

Request for new
updates.

Request for new
updates.

Server

EEM Repository

Figure 5-18 Tcl Refresh Policy Diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 179

Step 4. If a match of the data is detected, the SNMP proxy event detector triggers
the EEM script to run an action associated with the registered policy.

Remote-Procedure Call Requests

Remote-procedure call (RPC) requests allow an outside entity to make an XML RPC
request, which will invoke an EEM policy or script. The Simple Object Access Protocol
(SOAP) message is used to communicate with a server via Secure Shell (SSH) Version 2.

The following is an example of an RPC request:

<?xml version=”1.0”?>

<SOAP:Envelope xmlns:SOAP=”http://www.cisco.com/eem.xsd”>

<SOAP:Body>

<run_emscript>

<script_name> name of script </script_name>

<argc> argc value </argc>

<arglist>

<l> argv1 value </l>

<l> argv2 value </l>

...

<l> argvn value </l>

</arglist>

</run_Eemscript>

</SOAP:Body>

</SOAP:Envelope>

The reply syntax is configured as follows:

<?xml version=”1.0”?>

<SOAP:Envelope xmlns:SOAP=”http://www.cisco.com/eem.xsd”>

<SOAP:Body>

<run_Eemscript_response>

<return_code> rc </return_code>

<output> output string </output>

</run_eemscript_response>

</SOAP:Body>

</SOAP:Envelope

Configurations tasks:

EEM RPC events will also need to be registered and can be run from a Tcl script using
the following commands:

::cisco::eem::event_register_rpc

namespace import ::cisco::eem::*

puts -nonewline “This is a test”

www.it-ebooks.info

http://www.it-ebooks.info/

180 Tcl Scripting for Cisco IOS

SSH provides an encrypted session for executing server programs. SSH must be config-
ured on the IOS device to allow access to a remote SSH server, as follows:

TCL(config)#aaa new-model

TCL(config)#crypto key generate rsa usage-keys label sshkeys modulus 768

TCL(config)#ip ssh version 2

The domain name needs to be configured with ip domain-name for SSH to work.

Multiple-Event Support for Event Correlation

A trigger initiates an EEM applet or script. The event detector facilitates multiple triggers
that can be used to start a policy. Multiple events can be used to trigger an EEM policy,
which can be grouped in a time window and also support Boolean policies. Support of
multiple-event correlation provides the ability to trigger a policy given specific events
occurring within a window of time. For example, you may not be concerned if a serial
interface changes state within a 24 hour period, but if the interface changes state several
time within a 1 minute interval (bouncing interface) this may be a reason for alarm.
Grouping within a time window offers an additional method to correlate events.

The syntax that defines multiple-event correlation is as follows:

■ Add a new optional tag keyword:

event tag n1 cli pattern “write mem.*” sync yes

The following syntax contains the event statements. This event statement is referenced
in the applet. Each of the statements will have a tag keyword that is unique to each
applet. In the preceding example, n1 is the tag keyword that is referenced in the
applet.

■ trigger: Use the trigger applet configuration command in applet configuration mode
to specify complex event configuration parameters. Through this, one or more events
can be tracked and the time period specified:

[no] trigger [occurs occurs-val] [period period-val] [period-start period-
start-val] [delay delay-val]

■ occurs-val: (Optional) Number of times the total correlation is repeated before
raising an event. If this field is not specified, an event is raised after the first
occurrence.

■ period-val: (Optional) The time interval which the number of occurrences in the
trigger statement should occur. If this is not provided in the CLI, no time period
is applied.

■ period-start-val: (Optional) This CRON specification field selects the beginning
of an event “correlation window.” If no period is specified, event monitoring is
enabled after the first CRON period occurs and remains enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5: Advanced Tcl Operation in Cisco IOS 181

The following example uses multiple tracking events with an EEM applet. In this exam-
ple, the EEM applet is triggered by two CLI events, n1 and n2. The event n1 is the write
memory command, and n2 is the copy running * command. The trigger for the script to
execute is based on either n1 or n2 events occurring. The action for the syslog policy is a
syslog message displaying CONFIG SAVED. The example follows:

event manager applet test1

event tag n1 cli pattern “write mem.*” sync yes

event tag n2 cli pattern “copy run.* start.*” sync yes

trigger occurs 1

correlate event n1 or event n2

action 1.0 syslog msg “CONFIG SAVED”

set 2.0 _exit_status 1

Execution of the script is as follows:

2811-2#wr mem

Building configuration...

[OK]

*Dec 22 02:23:33.463: %HA_EM-6-LOG: test1: CONFIG SAVED

2811-2#

2811-2#copy running-configs startup-config

Destination filename [startup-config]?

%Error opening flash:running-configs (No such file or directory)

2811-2#

*Dec 22 02:23:44.167: %HA_EM-6-LOG: test1: CONFIG SAVED

2811-2#

Using the clear Command

Tcl policy execution waits for user-defined triggers. After the trigger, the system waits for
actions to be executed. Occasionally, the script may be in a pending state for a long time,
perhaps because of the commands that need to be executed, the trigger criteria, or the
logic of the script. In such cases, the show event manager policy pending command will
display which script is pending. In addition, as of Cisco IOS Software Release 15.0 (which
supports EEM 3.1), a new show event manager policy active command shows the EEM
policies currently running. To clear a pending script, you just issue a clear command.

www.it-ebooks.info

http://www.it-ebooks.info/

182 Tcl Scripting for Cisco IOS

Summary

This chapter really showed the power of Tcl in IOS, specifically how to program an IOS
device to be an SNMP server, how to save information to a file, and how to configure the
device to be an HTTP server. In addition, you can provide event correlation and clear
events. To scale to a large deployment of EEM, you can use a central server to maintain a
repository of scripts that can automatically downloaded to the IOS device.

References

RFC 3164: http://www.ietf.org/rfc/rfc3164.txt

To clear the event, use the following command to clear the specified policy or all policies:

Router#event manager scheduler clear {policy job-id all}

You can clear a single policy by adding the policy number after the policy keyword. If all
policies need to be cleared, use the all keyword, as follows:

Router#event manager scheduler clear all

Clearing policies with the event manager scheduler clear command is a great alternative
to rebooting the router.

Note The clear command was not introduced until EEM Version 2.4.

Note Before executing the clear command, you must see the policies that are pending to
make sure active scripts are not impacted. Use the show event manager policy active com-
mand to verify the pending policies, as follows:

Router#show event manager policy active

Key: p - Priority :L - Low, H - High, N - Normal, Z - Last

s - Scheduling node :A - Active, S - Standby

default class - 1 script event

no. job id p s status time of event event type name

1 1 N A running Wed Jan 6 22:38:34 2010 none Web_Server.tcl

www.it-ebooks.info

http://www.ietf.org/rfc/rfc3164.txt
http://www.it-ebooks.info/

Chapter 6

Tcl Script Examples

This chapter covers the following topics:

■ Creating an Application from Start to Finish

■ Using Tcl to Troubleshoot Network Problems

■ Creating a Web Application for Remote SNMP Graphing

This chapter focuses on how to create your own Tcl application from start to finish. It
includes information about creating a flowchart, how to format your code, adding com-
ments, and so on. This chapter also contains three examples to help you get started writ-
ing your own applications.

Creating an Application from Start to Finish

The process of writing your own application might be a bit daunting at first glance,
especially if you have not had extensive programming experience. However, taking a
systematic approach and following the steps outlined in this chapter will have you off and
running in no time.

The sections that follow describe how to create the Multiprotocol Label Switching
(MPLS) virtual private network (VPN) application that is used as the sample code.

Determine What You Want to Accomplish

The first step in writing any application is to determine what you want to accomplish, or
what needs could be met by creating an application.

This chapter demonstrates how to write an application to simplify the MPLS VPN con-
figuration of a “standalone” device through the use of a web front end. This application
should provide enough detail to allow a user to easily add or remove configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Direction of flow

Start and end of program

Input or output

Processing function

Decision

Connector

Figure 6-1 Flowchart Symbols

184 Tcl Scripting for Cisco IOS

parameters without an in-depth understanding of the intricacies of the command-line
interface (CLI).

This particular application will be more complex because the code will be written using
Tcl and HTML.

Creating a Flowchart

After deciding on the application, the next step is to create a flowchart. The flowchart
provides a general overview on how the application should function and will act as the
foundation from which to begin.

Figure 6-1 shows a few standard symbols that are used when creating a flowchart, includ-
ing the following:

■ Direction of flow: This indicates which way information will flow in the program.

■ Start and end of program: Self-explanatory.

■ Input or output: This symbol represents information either being input or output.
For example, it could be information received from the keyboard (input) or displayed
to the screen (output).

■ Process function: The process function corresponds to the manipulation of informa-
tion.

■ Decision: This symbol indicates a location in the program where a decision needs to
be made. It generally represents an answer to a question such as a yes/no, true/false,
or potentially might have numerous responses.

■ Connector: The connector is used to associate specific locations within a flowchart
and is commonly used when a flowchart is represented over multiple pages.

The flowchart representing the MPLS VPN application is relatively simple. After the
application starts, pertinent information is collected from the router’s running-configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Start

Collect
information
from router

Parse collected
information

Finish

Display
information

and input boxes

Create user input
dialog boxes

Gather user
input

Display
collected

information

Apply configuration
changes to router

Figure 6-2 Flowchart for MPLS VPN Application

Chapter 6: Tcl Script Examples 185

This information is then processed along with user input dialog boxes and displayed.
After the user enters information, those changes are applied to the device and then
displayed.

Figure 6-2 shows the flowchart for the MPLS VPN application.

Deciding What the User Interface Should Look Like

Now that you have a general idea of what the application is supposed to do, you need to
decide what the output should look like and what user information should be collected.
This requires the most thoughtful consideration, because making changes to the display
generally requires a significant amount of work.

www.it-ebooks.info

http://www.it-ebooks.info/

186 Tcl Scripting for Cisco IOS

Begin by listing the information that needs to be present in the output. Because this is an
MPLS VPN application, the following parameters would be beneficial:

■ Virtual Routing and Forwarding / Route Distinguisher (VRF/RD) information, name,
and number

■ Import/export numbers

■ VRF interface status

■ Label interface and status

■ Border Gateway Protocol (BGP) neighbors and status

■ BGP configuration

Next, list the information that you need to gather from the user:

■ VRF name

■ RD

■ Import and export information

■ Interface, IP address, and mask

■ BGP autonomous system number

■ Neighbor IP address

■ Whether the neighbor should be a route reflector client and the source interface

■ Whether the VRF interface should be redistributed in BGP

■ Label Distribution Protocol (LDP) interface, IP address, and mask

■ Whether this information should be added or removed from the configuration

Because this is a web-based application, the output is almost limitless. If you organize the
information in sections, by function, this will be the most helpful for the user. Consider
the data that needs to be displayed and collected. Which requires the most space? How
can it be sectioned and arranged?

One method is to create an object for each one of the related items. This can be accom-
plished using your favorite graphics program or even using paper and pencil. Manipulate
each object until you are satisfied with the output. Remember, this is just a template to
follow. As you begin writing code, it might be easier to change the way the information is
displayed instead of spending hours trying to make your program fit the template.

Figure 6-3 is the graphic representing what you initially wanted the output to look like.
Yes, this was created before the application was written!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 187

MPLS-VPN Configuration Application

VRFs name /RD

RED 1:1
GRN 1:2
BLU 1:3

Import/Export

ImportVRF

Export

Interface(s)

Interface

Gig1/0
Gig2/0
Gig3/0

1:1 - IMP
1:1 -
EXP

Gig1/0

BGP AS# 65000

Label

Interface

Neighbor

Source

Neighbor(s)/RR Client

LoopBack 0

RR Client

Add Remove

VRF Configuration:

BGP/LDP Configuration: PE PDevice Type:

192.168.0.1
192.168.0.2 – RR client

Gig1/0
Gig2/0
Gig3/0

Redist Conn

Figure 6-3 MPLS VPN Application Display: First Draft

Write the Code in Pseudo-Code

Performing this step is not always necessary, especially if you have experience creating
applications, but if you are newer to programming, this will help you tremendously by
keeping you on track!

Logically consider the steps required to complete the entire task. Using the flowchart and
the user interface will provide the foundation for the program.

Step 1. Start the program.

Step 2. Start the web interface.

Step 3. Display the application title: MPLS-VPN Configuration Application.

Step 4. Collect the VRF/RD information and display it in a scrolling window at the
top left portion of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

188 Tcl Scripting for Cisco IOS

Step 5. Gather the associated import and export information per VRF and display it
in a scrolling window at the top center of the screen.

Step 6. Acquire the VRF interface configuration and display it in a scrolling window
at the top right portion of the screen.

Step 7. Create a user input dialog box for adding a VRF, import, and export informa-
tion.

Step 8. Display a scrolling window for interface selection.

Step 9. Generate a radio button for the selection of redistributing connected routes.

Step 10. Present an Add and Remove button.

Step 11. Display the section title BGP/LDP Configuration.

Step 12. Create radio buttons for Provider Edge/Provider (PE/P) device types.

Step 13. Collect the BGP autonomous system number (ASN) from the configuration
and display it.

Step 14. Allow the user to select the source interface for the BGP neighbor association.

Step 15. Generate a scrolling window with the label interfaces highlighted with a
radio button.

Step 16. Display the BGP neighbor information and whether it is a route-reflector client.

Step 17. Present a selection for the user to input a BGP neighbor IP address.

Step 18. Display a radio button selection for route-reflector client.

Step 19. Present an Add and Remove button.

Step 20. When the user selects Add or Remove, transfer the user input variables to
another Tcl program.

Step 21. Correlate the transferred variables.

The second Tcl program, which performs the processing function “apply configuration
changes to router,” will require its own flowchart. Before beginning that step, it would be
prudent to start your first program to make sure you have all the variables. As you will
see, it will be easier to change the program to accommodate the information that needs
to be transferred.

Before You Begin

As you begin to create your program, it is imperative that you perform testing in a lab
environment. During the creation of the MPLS VPN application, no animals were
harmed, but because of infinite programming loops, the router had to be rebooted more
times than we are willing to admit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 189

Caution It is imperative that you perform testing in a lab environment.

Every program should begin with the brief description, the author, licensing information,
and other pertinent facts:

MPLS-VPN Configuration Application written by Ray Blair

This application is used to configure and individual device as an MPLS-VPN

P/PE device.

Copyright 2010 Ray Blair. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list

of conditions and the following disclaimer in the documentation and/or

other materials

provided with the distribution.

THIS SOFTWARE IS PROVIDED BY RAY BLAIR ``AS IS’’ AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RAY BLAIR OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are

those of the

authors and should not be interpreted as representing official policies,

either expressed

or implied, of Ray Blair.

For comments or suggestions please contact the author at rablair@cisco.com

www.it-ebooks.info

http://www.it-ebooks.info/

190 Tcl Scripting for Cisco IOS

To make the program easier to read and understand, you need to follow three primary rules:

Step 1. Use tabs and spacing to facilitate readability. For example, when using control
statements such as if, while, for, and so on, indent the commands within the
control statement as follows:

if {[$VAR1] != 0 && [$VAR2] == 0} {

if [catch {cli_open} RESULT] {

error $RESULT $errorInfo

} else {

action_syslog msg “This is the result \n $RESULT “

}

}

Vertically aligning the control statement with the associated } makes the pro-
gram much easier to follow.

Step 2. Using capital/uppercase letters or a combination for user-defined variables
makes the program much easier to read. In the example in the preceding step,
you can quickly see that the actual commands are lowercase and the variables
are uppercase or a combination of upper- and lowercase. Bottom line: This is
what I prefer, but use what you are comfortable with.

Step 3. Finally, and most important, include lots of comments within the application.
If you add comments while you are writing your code, you will not forget to
go back and add comments later. I have written programs in the past and was
in too much of a hurry to add comments. Attempting to modify the code,
months or even days later can be an arduous process without comments.

Starting to Program the Application

The next section steps through configuring the web server and writing the code. You
can always use the cut-and-paste method, but examining each line of code will not only
help you write your own applications, it will provide you with practice reading someone
else’s code.

Configuring the Web Server

Using the web server script from Chapter 5, “Advanced Tcl Operation in Cisco IOS,” you
will modify two parameters. The first being the port and the second the file location or
directory. Modifying the port will obfuscate the location of the service, and creating a
directory for the files will aid in organizing the files on the IOS device. Make the follow-
ing changes to the web server Tcl script:

set svcPort 8082

catch {open [file join flash:/TCL/ $filename] r} output

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 191

Do not forget to start the service on the device:

Router#event manager run Web_Server.tcl

Be patient, it will take some time to start.

Tip Opening Tcl server sockets takes precedence over other ports that might be open on
the IOS device. For example, if you open a server socket on port 23 (Telnet), the Telnet serv-
ice on the IOS device will be unavailable and you will not be able to gain access via Telnet.

Writing Code for the MPLS VPN Script

The beginning should contain comments indicating who is to blame, what the application
does, licensing restrictions, and liability:

MPLS-VPN Configuration Application written by Ray Blair

This application is used to configure and individual device as an MPLS-VPN

P/PE device.

Copyright 2010 Ray Blair. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list

of conditions and the following disclaimer in the documentation and/or

other materials

provided with the distribution.

THIS SOFTWARE IS PROVIDED BY RAY BLAIR ``AS IS’’ AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RAY BLAIR OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

www.it-ebooks.info

http://www.it-ebooks.info/

192 Tcl Scripting for Cisco IOS

The views and conclusions contained in the software and documentation are

those of the

authors and should not be interpreted as representing official policies,

either expressed

or implied, of Ray Blair.

For comments or suggestions please contact the author at rablair<indexterm

startref=”inddle01063” class=”endofrange” significance=”normal”/>:}]

As you read in the section “Write the Code in Pseudo-Code,” earlier in this chapter, you
need to display the application title. You will be do so in the HTML section. Step 4 is
where you need to collect information from the IOS device. You must experiment to
determine the best way to capture the information. You could do so via the show
running-config command, the show ip vrf command, or several others. You obviously
want to make this as easy as possible. The one used here is show ip vrf detail | include ;.

Another decision you must make is whether to write a Tcl script to implement the appli-
cation or an Embedded Event Manager (EEM) policy. For this particular application, you
can leverage the existing web server introduced in Chapter 5, which is implemented as an
EEM policy. Thus, the application itself will be an EEM policy.

The next commands prepare the IOS device to gather information using a show command:

if [catch {cli_open} RESULT] {

error $RESULT $errorInfo

} else {

array set cli1 $RESULT

}

if [catch {cli_exec $cli1(fd) “en”} RESULT] {

cli_close $cli1(fd)

error $RESULT $errorInfo

}

Note The commands within the Cisco IOS CLI are used to determine the best method to
gather information.

Using the show ip vrf detail | include ; command, collect and store the output in the vari-
able VRFs.

For example:

Router#show ip vrf detail include ;

VRF BLU; default RD 1:4; default VPNID <not set>

VRF GRN; default RD 1:2; default VPNID <not set>

VRF Orange; default RD 1:3; default VPNID <not set>

VRF PURPLE; default RD 1:1992; default VPNID <not set>

VRF RED; default RD 1:1; default VPNID <not set>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 193

if [catch {cli_exec $cli1(fd) “show ip vrf detail include ;” } RESULT] {

error $RESULT $errorInfo

} else {

set VRFs $RESULT

}

if [catch {cli_close $cli1(fd) $cli1(tty_id)} RESULT] {

error $RESULT $errorInfo

}

To determine how many VRFs are configured on the IOS device, you will use the variable
named COUNT and set the value to 1:

set COUNT 1

The variable ALL_VRF_INFO is cleared:

set ALL_VRF_INFO ““

You need to determine whether there is enough information in the output to continue. In
this case, if the length of the string is greater than 10, you can be confident that there is
valid information to gather:

while {[string length $VRFs] > 10} {

The next statement is relatively complex because there are nested commands. The object
is to collect only the information that you need and throw away the rest. This will require
some trial and error, and a good way to create the appropriate code is using the Tcl shell
on the IOS device. Set the VRFs variable as follows:

Router(tcl)#set VRFs [exec “show ip vrf detail include ;”]

VRF BLU; default RD 1:4; default VPNID <not set>

VRF GRN; default RD 1:2; default VPNID <not set>

VRF Orange; default RD 1:3; default VPNID <not set>

VRF PURPLE; default RD 1:1992; default VPNID <not set>

VRF RED; default RD 1:1; default VPNID <not set>

Starting in the middle and working outward, the command string first looks for the first
occurrence of an element in a string. Using the Tcl shell, enter the following command:

Router(tcl)#string first “VRF “ $VRFs

0

The result is 0, indicating the first element in the string, remember that the count starts at
0 and not 1.

Next, use the expr command to evaluate the statement, as follows:

Router(tcl)#expr [string first “VRF “ $VRFs] + 4

4

www.it-ebooks.info

http://www.it-ebooks.info/

194 Tcl Scripting for Cisco IOS

This is entire statement defines the start value for the string range command. Now, define
the end value using the following combined command:

Router(tcl)#expr [string first “; default RD” $VRFs] - 1

6

In the following line, the string range will assemble elements 4 through 6, which contain
the value BLU:

VRF BLU; default RD 1:4; default VPNID <not set>

The results are as follows:

Router(tcl)#string range $VRFs [expr [string first “VRF “ $VRFs] + 4] [expr

[string first “; default RD” $VRFs] - 1]

BLU

Finally, you want to set the variable VRF($COUNT) or VRF(1) to the VRF name of BLU.
The variable COUNT is used to minimize the number of lines of code. Because it is a
variable, it will be used for every VRF, as follows:

Router(tcl)#set VRF($COUNT) [string range $VRFs [expr [string first “VRF “ $VRFs]

+ 4] [expr

[string first “; default RD” $VRFs] - 1]]

BLU

As you can see, using the Tcl shell of the IOS device makes writing the program much
easier:

set VRF($COUNT) [string range $VRFs [expr [string first “VRF “ $VRFs] + 4]

[expr [string

first “; default RD” $VRFs] - 1]]

Tip Using the Tcl shell on the IOS device will expedite the programming and trou-
bleshooting process.

The result of the next command is as follows:

Router(tcl)#set RD($COUNT) [string range $VRFs [expr [string first “; default RD

“ $VRFs] + 12] [expr [string first “; default VPNID” $VRFs] -1]]

1:4

set RD($COUNT) [string range $VRFs [expr [string first “; default RD “ $VRFs] +

12] [expr [string first “; default VPNID” $VRFs] -1]]

A temporary variable named ITEM is used to store the results BLU 1:4:

set ITEM “$VRF($COUNT)
 $RD($COUNT)
”

Did you notice the additions? The , , and the
 are HTML commands.
This book was not written to go into the detail of HTML programming, because there
are many other resources available. However, we will cover some of the basics. The

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 195

and indicate the start and end of text that is to appear in bold, and the
 is a
line break.

The concat command concatenates the variable ITEM to the variable ALL_VRF_INFO,
and stores it in the variable ALL_VRF_INFO:

set ALL_VRF_INFO [concat $ALL_VRF_INFO $ITEM]

Because you’ve collected all the information that you need from the first line of the show
ip vrf detail | include ; command, you have to clear that line or the while statement will
result in an endless loop and you will have to reboot your IOS device. By replacing the
VRFs variable using the string range command starting with the first newline statement
(\n) to the end of the string (string length), you can successfully remove the first line, as
follows:

Router(tcl)#set VRFs [string range $VRFs [expr [string first “\n” $VRFs] +1]

[string length $VRFs]]

VRF GRN; default RD 1:2; default VPNID <not set>

VRF Orange; default RD 1:3; default VPNID <not set>

VRF PURPLE; default RD 1:1992; default VPNID <not set>

VRF RED; default RD 1:1; default VPNID <not set>

The result has removed the line VRF BLU; default RD 1:4; default VPNID <not set>:

set VRFs [string range $VRFs [expr [string first “\n” $VRFs] +1] [string length

$VRFs]]

The variable COUNT is incremented in the next step. As a result, the previous code can
be reused:

incr COUNT

}

When the while loop completes, you must keep track of the number of virtual routing
and forwarding instances to be used throughout the program:

set NUM_OF_VRFS $COUNT

Note Commands that have been previously been commented on will not contain a
detailed explanation.

if [catch {cli_open} RESULT] {

error $RESULT $errorInfo

} else {

array set cli1 $RESULT

}

if [catch {cli_exec $cli1(fd) “en”} RESULT] {

error $RESULT $errorInfo

}

www.it-ebooks.info

http://www.it-ebooks.info/

196 Tcl Scripting for Cisco IOS

Store the show running-config output in a variable called CONFIG. You can replicate
this process from the Tcl shell using the following command (only the first portion of the
configuration is shown):

Router(tcl)#set CONFIG [exec “show running-config”]

Building configuration...

Current configuration : 5546 bytes

!

version 12.4

service timestamps debug datetime msec

service timestamps log datetime msec

!

hostname Router

!

boot-start-marker

boot system ftp Public/FTP/c2800nm-adventerprisek9-mz.124-24.T1.bin 192.168.1.50

boot-end-marker

!

logging message-counter syslog

!

aaa new-model

!

!

!

!

aaa session-id common

clock timezone PST -8

!

!

ip cef

!

!

no ip domain lookup

ip vrf BLU

rd 1:4

route-target export 1:4

route-target import 1:4

!

ip vrf GRN

rd 1:2

route-target export 1:2

route-target import 1:2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 197

!

ip vrf Orange

rd 1:3

route-target export 1:3

route-target import 1:3

!

ip vrf PURPLE

rd 1:1992

route-target export 1:1992

route-target import 1:1992

!

ip vrf RED

rd 1:1

route-target export 1:1

route-target export 1:2

route-target export 1:3

route-target import 1:1

route-target import 1:2

route-target import 1:3

!

no ipv6 cef

!

multilink bundle-name authenticated

!

!

The show running-config command is executed, and the result is stored in the variable
CONFIG:

if [catch {cli_exec $cli1(fd) “show running-config” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG $RESULT

}

if [catch {cli_close $cli1(fd) $cli1(tty_id)} RESULT] {

error $RESULT $errorInfo

}

Initialize the variable COUNT to 1 and the clear IMPORT_EXPORT variable:

set COUNT 1

set IMPORT_EXPORT ““

You might have noticed that many of the variables contain an underscore (_). This is done
strictly for convenience, so that when you select the text using a double-click, the entire
variable is selected. Many applications treat a hyphen (-) similar to a space, requiring you
to highlight the entire variable.

www.it-ebooks.info

http://www.it-ebooks.info/

198 Tcl Scripting for Cisco IOS

In the next section, you need to gather the appropriate information to populate the
import/export table. Although there are several ways to collect the data, using the
running-configuration is relatively simple.

Comparing the variable COUNT with the number of VRFs saved previously, you have a
way to retrieve the information from the running-configuration:

while {$COUNT < $NUM_OF_VRFS} {

The next statement uses the string first command, but uses an additional parameter
called startIndex. The startIndex parameter indicates at what position in the string to
start the search. It might appear confusing because the string first command is used two
times within the same statement. In English, this command would read “set the variable
BEGIN to the first new line element in the string CONFIG using the starting position of
ip vrf $VRF($COUNT) or ip vrf BLU.” By entering the command in the Tcl shell, you
can see that the variable BEGIN is set to 619:

Router(tcl)#set BEGIN [string first “\n” $CONFIG [string first “ip vrf

$VRF($COUNT)” $CONFIG]]

619

set BEGIN [string first “\n” $CONFIG [string first “ip vrf $VRF($COUNT)”

$CONFIG]]

The next command is rudimentary. The variable END is set to the first ! found in the
CONFIG string beginning at the variable BEGIN. The output from the Tcl shell shows
that the variable END is set to 681:

Router(tcl)#set END [string first “!” $CONFIG $BEGIN]

681

set END [string first “!” $CONFIG $BEGIN]

The string IMP_EXP_STRING is set to the range of characters in the CONFIG variable
from the value of BEGIN + 1 and END – 1, as follows:

Router(tcl)#set IMP_EXP_STRING [string range $CONFIG [expr $BEGIN +1] [expr $END

-1]]

rd 1:4

route-target export 1:4

route-target import 1:4

set IMP_EXP_STRING [string range $CONFIG [expr $BEGIN +1] [expr $END -1]]

The next statement verifies the existence of route-target within the string
IMP_EXP_STRING. If the variable exists, the subsequent commands will be initiated:

if {[string first “route-target “ $IMP_EXP_STRING]} {

The following two commands could be combined into a single statement. Sometimes,
having several lines makes the program easier to understand.

This statement sets the variable BEGIN to the first occurrence of “route-target”:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 199

Router(tcl)#set BEGIN [string first “route-target “ $IMP_EXP_STRING]

10

set BEGIN [string first “route-target “ $IMP_EXP_STRING]

To glean the correct information to display, you need to remove the rd identifier. You can
do so using the following statement:

Router(tcl)#set IMP_EXP_STRING [string range $IMP_EXP_STRING [expr $BEGIN -1]

[expr $END -1]]

route-target export 1:4

route-target import 1:4

set IMP_EXP_STRING [string range $IMP_EXP_STRING [expr $BEGIN -1] [expr

$END -1]]

It would be redundant to show route-target in every line. You can easily remove these
with the regsub command, as shown:

Router(tcl)#regsub -all {route-target } $IMP_EXP_STRING “
” IMP_EXP_STRING

2

After the command is entered, the output is 2. This indicates the number of occurrences
that were changed. You also added the HTML commands to create bold text and add a
line break:

regsub -all {route-target } $IMP_EXP_STRING “
” IMP_EXP_STRING

The variable ITEM is configured to display the VRF name and import and export infor-
mation, as shown here:

Router(tcl)#set ITEM “ $VRF($COUNT) $IMP_EXP_STRING
”

 BLU
export 1:4

import 1:4

set ITEM “ $VRF($COUNT) $IMP_EXP_STRING
”

The concat command concatenates the variable ITEM to the variable
IMPORT_EXPORT, and stores it in the variable IMPORT_EXPORT:

set IMPORT_EXPORT [concat $IMPORT_EXPORT $ITEM]

}

Increment the variable COUNT:

incr COUNT

}

The next portion of code collects the VRF interface status:

if [catch {cli_open} RESULT] {

error $RESULT $errorInfo

www.it-ebooks.info

http://www.it-ebooks.info/

200 Tcl Scripting for Cisco IOS

} else {

array set cli1 $RESULT

}

if [catch {cli_exec $cli1(fd) “en”} RESULT] {

error $RESULT $errorInfo

}

To verify the output and manipulate the variables in the Tcl shell, use the following
command:

Router(tcl)#set VRF_INTERFACE_CONFIG [exec “show ip vrf interfaces”]

Interface IP-Address VRF

Protocol

Lo4 10.4.4.1 BLU up

Lo1007 192.168.92.38 GRN up

Lo1018 172.17.123.9 GRN up

Lo3 10.3.3.1 Orange up

Lo1004 unassigned PURPLE up

Se0/0/0 10.55.55.5 PURPLE down

Lo1001 172.18.134.3 RED up

if [catch {cli_exec $cli1(fd) “show ip vrf interfaces” } RESULT] {

error $RESULT $errorInfo

} else {

set VRF_INTERFACE_CONFIG $RESULT

}

if [catch {cli_close $cli1(fd) $cli1(tty_id)} RESULT] {

error $RESULT $errorInfo

}

Set and clear variables:

set VRF_INTERFACE_OUTPUT ““

set COUNT 1

Use the number of VRFs as a counter:

while {$COUNT < $NUM_OF_VRFS} {

Perform the subsequent functions as long as the variable VRF_INTERFACE_CONFIG
contains information for the selected VRF. Using the Tcl shell shows that there is perti-
nent information in the string:

Router(tcl)#regexp -all $VRF($COUNT) $VRF_INTERFACE_CONFIG

1

while {[regexp -all $VRF($COUNT) $VRF_INTERFACE_CONFIG] > 0} {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 201

Search through the string VRF_INTERFACE_CONFIG for the first location of the name
“Protocol”, add 10 to that value, and set the result to the variable BEGIN. In this exam-
ple, the value is 82, as shown here:

Router(tcl)#set BEGIN [expr [string first “Protocol” $VRF_INTERFACE_CONFIG] + 10]

82

set BEGIN [expr [string first “Protocol” $VRF_INTERFACE_CONFIG] + 10]

Set the variable END to the expression of the location of the first new line in string
VRF_INTERFACE_CONFIG starting with the location of the first occurrence of
VRF(COUNT) or BLU in string VRF_INTERFACE_CONFIG, as follows:

Router(tcl)#set END [expr [string first “\n” $VRF_INTERFACE_CONFIG [expr [string

first $VRF($COUNT) $VRF_INTERFACE_CONFIG $BEGIN]]]]

163

set END [expr [string first “\n” $VRF_INTERFACE_CONFIG [expr [string

first $VRF($COUNT) $VRF_INTERFACE_CONFIG $BEGIN]]]]

Set the variable VRF_INTERFACES to the range of characters from BEGIN – 1 or 82 to
END or 183, as shown:

Router(tcl)#set VRF_INTERFACES [string range $VRF_INTERFACE_CONFIG [expr $BEGIN

-1] $END]

Lo4 10.4.4.1 BLU up

set VRF_INTERFACES [string range $VRF_INTERFACE_CONFIG [expr $BEGIN -1]

$END]

Remove the VRF name from the string, as shown:

Router(tcl)#regsub -all $VRF($COUNT) $VRF_INTERFACES “ “ VRF_INTERFACES

1

The puts command indicates how the variable VRF_INTERFACES was changed:

Router(tcl)#puts $VRF_INTERFACES

Lo4 10.4.4.1 up

regsub -all $VRF($COUNT) $VRF_INTERFACES “ “ VRF_INTERFACES

Remove the spaces, as follows:

Router(tcl)#regsub -all { } $VRF_INTERFACES “ “ VRF_INTERFACES

32

Router(tcl)#puts $VRF_INTERFACES

Lo4 10.4.4.1 up

regsub -all { } $VRF_INTERFACES “ “ VRF_INTERFACES

www.it-ebooks.info

http://www.it-ebooks.info/

202 Tcl Scripting for Cisco IOS

Using the variable ITEM, add the VRF name, interface parameters, and HTML commands:

set ITEM “ $VRF($COUNT)
 $VRF_INTERFACES
”

Concatenate the gathered information into the variable VRF_INTERFACE_OUTPUT:

set VRF_INTERFACE_OUTPUT [concat $VRF_INTERFACE_OUTPUT $ITEM]

Remove the current line so the next line can be processed, as shown:

Router(tcl)#set VRF_INTERFACE_CONFIG [string replace $VRF_INTERFACE_CONFIG [expr

$BEGIN -1] [expr $END]]

Interface IP-Address VRF Protocol

Lo1007 192.168.92.38 GRN up

Lo1018 172.17.123.9 GRN up

Lo3 10.3.3.1 Orange up

Lo1004 unassigned PURPLE up

Se0/0/0 10.55.55.5 PURPLE down

Lo1001 172.18.134.3 RED up

set VRF_INTERFACE_CONFIG [string replace $VRF_INTERFACE_CONFIG [expr

$BEGIN -1] [expr $END]]

}

If there is no additional information to retrieve for the VRF, increment the count to check
the next VRF:

incr COUNT

}

This section of code assembles information to display the status label interface, using the
show mpls interfaces | exc Operational command, as follows:

Router(tcl)#set LDP_INTERFACE_CONFIG [exec “show mpls interfaces exc

Operational”]

GigabitEthernet0/0 Yes (ldp) No No No Yes

GigabitEthernet0/1 Yes No No No No

if [catch {cli_open} RESULT] {

error $RESULT $errorInfo

} else {

array set cli1 $RESULT

}

if [catch {cli_exec $cli1(fd) “en”} RESULT] {

error $RESULT $errorInfo

}

if [catch {cli_exec $cli1(fd) “show mpls interfaces exc Operational” } RESULT]

{

error $RESULT $errorInfo

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 203

} else {

set LDP_INTERFACE_CONFIG $RESULT

}

if [catch {cli_close $cli1(fd) $cli1(tty_id)} RESULT] {

error $RESULT $errorInfo

}

Clear the variable LDP_INTERFACES:

set LDP_INTERFACES ““

To confirm that there is valid data in the variable, you will look though the string for
either a Yes or a No. The following output reveals that there are 10 occurrences:

Router(tcl)#regexp -all {Yes No} $LDP_INTERFACE_CONFIG

10

while {[regexp -all {Yes No} $LDP_INTERFACE_CONFIG] > 0} {

Set the variable END to the first newline in the string LDP_INTERFACE_CONFIG start-
ing at character 12, as shown here:

Router(tcl)#set END [string first “\n” $LDP_INTERFACE_CONFIG 12]

72

set END [string first “\n” $LDP_INTERFACE_CONFIG 12]

Set the variable ITEM to the string range of variable LDP_INTERFACE_CONFIG start-
ing a 0 to the value of END or 72, as shown:

Router(tcl)#set ITEM [string range $LDP_INTERFACE_CONFIG 0 $END]

GigabitEthernet0/0 Yes (ldp) No No No Yes

set ITEM [string range $LDP_INTERFACE_CONFIG 0 $END]

Check to see whether Yes or No is the last parameter in the string ITEM. Set the variable
END to the last item in the string to minus 3 if the last item is Yes or minus 2 if the last
item is No. This accounts for the number of characters in each word. From the previous
example, we see the value is Yes. Given the following expression, you see that END
should be set to 56:

Router(tcl)#expr [string last Yes $ITEM] - 3

56

if {[expr [string last Yes $ITEM]] > [expr [string last No $ITEM]]} {

set END [expr [string last Yes $ITEM] - 3]

} else {

set END [expr [string last No $ITEM] -2]

}

www.it-ebooks.info

http://www.it-ebooks.info/

204 Tcl Scripting for Cisco IOS

Replace everything in the string ITEM except for the interface name and status, as
shown here:

Router(tcl)#set ITEM [string replace $ITEM [expr [string first “ “ $ITEM]] $END]

GigabitEthernet0/0 Yes

set ITEM [string replace $ITEM [expr [string first “ “ $ITEM]] $END]

Add the line break to the output:

Router(tcl)#set ITEM “$ITEM
”

GigabitEthernet0/0 Yes

set ITEM “$ITEM
”

Concatenate the collected information into the LDP_INTERFACES string:

set LDP_INTERFACES [concat $LDP_INTERFACES $ITEM]

Remove the current line in the string, as shown:

Router(tcl)#set LDP_INTERFACE_CONFIG [string replace $LDP_INTERFACE_CONFIG 0

[string first “\n” $LDP_INTERFACE_CONFIG 3]]

GigabitEthernet0/1 Yes No No No No

set LDP_INTERFACE_CONFIG [string replace $LDP_INTERFACE_CONFIG 0 [string

first “\n” $LDP_INTERFACE_CONFIG 3]]

}

This section pulls the BGP VPNv4 neighbor information and status of the BGP relation-
ship using the show ip bgp vpnv4 all summary command:

Router(tcl)#set BGP_NEIGHBORS [exec “show ip bgp vpnv4 all summary”]

BGP router identifier 192.168.254.254, local AS number 65065

BGP table version is 7, main routing table version 7

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd

10.93.130.225 4 65065 311 324 7 0 0 05:10:18 0

192.50.50.50 4 65065 0 0 0 0 0 never Active

192.168.100.1 4 65065 0 0 0 0 0 never Active

192.168.200.1 4 65065 0 0 0 0 0 never Active

if [catch {cli_open} RESULT] {

error $RESULT $errorInfo

} else {

array set cli1 $RESULT

}

if [catch {cli_exec $cli1(fd) “en”} RESULT] {

error $RESULT $errorInfo

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 205

if [catch {cli_exec $cli1(fd) “show ip bgp vpnv4 all summary” } RESULT] {

error $RESULT $errorInfo

} else {

set BGP_NEIGHBORS $RESULT

}

if [catch {cli_close $cli1(fd) $cli1(tty_id)} RESULT] {

error $RESULT $errorInfo

}

Clear the variable BGP_NEIGHBOR_OUTPUT:

set BGP_NEIGHBOR_OUTPUT ““

Set the variable BEGIN to the location just beyond the “PfxRcd” statement in the vari-
able BGP_NEIGHBORS, as shown:

Router(tcl)#set BEGIN [expr [string first “PfxRcd” $BGP_NEIGHBORS 1] + 8]

206

set BEGIN [expr [string first “PfxRcd” $BGP_NEIGHBORS 1] + 8]

While there is a . in the variable BGP_NEIGHBORS, continue processing the subsequent
commands:

while {[regexp -all {.} $BGP_NEIGHBORS] > 0} {

If the value of BEGIN is less than 10, set it to 0:

if {$BEGIN < 10} {

set BEGIN 0

}

If a new line is present in the BGP_NEIGHBORS string, after the location of BEGIN + 20,
process the subsequent commands, as follows:

Router(tcl)#string first “\n” $BGP_NEIGHBORS [expr $BEGIN + 20]

288

if {[string first “\n” $BGP_NEIGHBORS [expr $BEGIN + 20]]} {

Set the variable END to the first newline value in the BGP_NEIGHBORS string, after the
location of BEGIN + 20, as shown here:

Router(tcl)#set END [string first “\n” $BGP_NEIGHBORS [expr $BEGIN + 20]]

288

set END [string first “\n” $BGP_NEIGHBORS [expr $BEGIN + 20]]

Otherwise (else), set the variable END to the penultimate value in the string
BGP_NEIGHBORS:

} else {

set END [expr [string length $BGP_NEIGHBORS] - 1]

}

www.it-ebooks.info

http://www.it-ebooks.info/

206 Tcl Scripting for Cisco IOS

Set the temporary variable ITEM to the string range as follows:

Router(tcl)#set ITEM [string range $BGP_NEIGHBORS $BEGIN $END]

10.93.130.225 4 65065 311 324 7 0 0 05:10:18

0

set ITEM [string range $BGP_NEIGHBORS $BEGIN $END]

If the string length of ITEM is less than 0, exit from the while loop:

if {[string length $ITEM] < 10} {break}

BGP uses the term active to convey that it is actively attempting to establish a connec-
tion with a neighbor. To minimize confusion, change Active to DOWN. The following
if/else statement verifies the existence of the word Active in the variable ITEM and
changes it to DOWN:

if {[regexp -all {Active} $ITEM] == 0} {

Replace everything in the string with the exception of the BGP neighbor IP address, as
shown:

Router(tcl)#set ITEM [string replace $ITEM [expr [string first “ “ $ITEM]] $END]

10.93.130.225

set ITEM [string replace $ITEM [expr [string first “ “ $ITEM]] $END]

Add the word UP and the HTML command for a line break:

set ITEM “$ITEM UP
”

Concatenate ITEM with BGP_NEIGHBOR_OUTPUT:

set BGP_NEIGHBOR_OUTPUT [concat $BGP_NEIGHBOR_OUTPUT $ITEM]

} else {

If the BGP neighbor is Active set the output to DOWN, including the appropriate HTML
commands:

set ITEM [string replace $ITEM [expr [string first “ “ $ITEM]] $END]

set ITEM “$ITEM DOWN
”

set BGP_NEIGHBOR_OUTPUT [concat $BGP_NEIGHBOR_OUTPUT $ITEM]

}

Replace the current line in the BGP_NEIGHBORS variable, as shown:

Router(tcl)#set BGP_NEIGHBORS [string replace $BGP_NEIGHBORS 0 $END]

192.50.50.50 4 65065 0 0 0 0 0 never Active

192.168.100.1 4 65065 0 0 0 0 0 never Active

192.168.200.1 4 65065 0 0 0 0 0 never Active

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 207

set BGP_NEIGHBORS [string replace $BGP_NEIGHBORS 0 $END]

Set the value of the variable BEGIN to -1. During the beginning of the while statement, it
will be reset to 0:

set BEGIN -1

}

The following portion of code gathers the BGP configuration and displays it within a
window. We are using the previous show running-config command to reduce the amount
of time it takes for the script to run.

To maintain the integrity of the CONFIG variable, copy it to the variable BGP_CONFIG:

set BGP_CONFIG $CONFIG

If the string variable BGP_CONFIG contains router bgp, execute the subsequent com-
mand:

if {[regexp -all {router bgp} $BGP_CONFIG] > 0} {

If the string variable BGP_CONFIG contains address-family, execute the subsequent
command:

if {[regexp -all {address-family} $BGP_CONFIG] > 0} {

Set the variable BEGIN to the first match of router bgp in the string variable
BGP_CONFIG, as shown:

set BEGIN [string first “router bgp” $BGP_CONFIG]

Set the variable END to the last match of exit-address-family in the string variable
BGP_CONFIG, as shown:

Router(tcl)#set END [string last exit-address-family $BGP_CONFIG]

1202

set END [string last exit-address-family $BGP_CONFIG]

Collect the BGP configuration information and place the results in the variable
BGP_CONFIG_RESULTS, as shown:

Router(tcl)#set BGP_CONFIG_RESULTS [string range $BGP_CONFIG $BEGIN [expr $END +

18]]

router bgp 65065

no synchronization

bgp log-neighbor-changes

neighbor 10.93.130.225 remote-as 65065

neighbor 192.50.50.50 remote-as 65065

neighbor 192.50.50.50 route-reflector-client

neighbor 192.168.100.1 remote-as 65065

www.it-ebooks.info

http://www.it-ebooks.info/

208 Tcl Scripting for Cisco IOS

neighbor 192.168.100.1 update-source Loopback0

neighbor 192.168.100.1 route-reflector-client

neighbor 192.168.200.1 remote-as 65065

no auto-summary

!

address-family vpnv4

neighbor 10.93.130.225 activate

neighbor 10.93.130.225 send-community extended

neighbor 192.50.50.50 activate

neighbor 192.50.50.50 send-community extended

neighbor 192.168.100.1 activate

neighbor 192.168.100.1 send-community extended

neighbor 192.168.100.1 route-reflector-client

neighbor 192.168.200.1 activate

neighbor 192.168.200.1 send-community extended

exit-address-family

!

address-family ipv4 vrf RED

no synchronization

exit-address-family

!

address-family ipv4 vrf PURPLE

no synchronization

exit-address-family

!

address-family ipv4 vrf Orange

no synchronization

exit-address-family

!

address-family ipv4 vrf GRN

no synchronization

exit-address-family

!

address-family ipv4 vrf BLU

no synchronization

exit-address-family

set BGP_CONFIG_RESULTS [string range $BGP_CONFIG $BEGIN [expr $END + 18]]

The final step is to replace the end of line value with the corresponding HTML break
command:

regsub -all {\n} $BGP_CONFIG_RESULTS {
} BGP_CONFIG_RESULTS

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 209

The very last step before configuring the HTML section is to collect the BGP ASN. You
can do so using the following command:

Router(tcl)#set BGP_AS [string range $BGP_CONFIG_RESULTS 11 [expr [string first

“<br” $BGP_CONFIG_RESULTS] - 1]]

65065

set BGP_AS [string range $BGP_CONFIG_RESULTS 11 [expr [string first

“<br” $BGP_CONFIG_RESULTS] - 1]]

}

The Tcl script is now at an end. The remainder of the program is HTML.

Configuring HTML

The following sets the header variable and will display in the title bar of your browser.
Notice the quotes?

set header “<html>

<head>

<title>MPLS-VPN Configuration Application:</title>

</head>

The title of the application, MPLS-VPN Configuration Application, is displayed at the
top center of the page, using a font type of Arial and a font size of 6:

<div align=’center’>

MPLS-VPN Configuration Application

</div>

</html>

The end quotes signify the end of the header. The header will display using the last line in
the configuration, “puts $httpsock $httpheader$header$config$footer”:

”

The next section of HTML code is the “config” portion.

set config “

The text VRF Information is displayed with the following characteristics:

<div align=’left’ style=’color: gray; font-family: arial; font-size: 18pt;

MARGIN: 10px 10px’>

VRF Information:

</div>

Displaying text was the easy part. Now you are going to make the program more interest-
ing by creating a scrolling window for the VRF information. This window is aligned to the
left side of the screen, using the following parameters. The variable ALL_VRF_INFO is an
ordered list using the and options. The output will look similar to Figure 6-4.

www.it-ebooks.info

http://www.it-ebooks.info/

210 Tcl Scripting for Cisco IOS

<div align=’left’ style=’overflow: scroll; border-right-style: solid; font-fam-

ily: arial; font-size: 10pt; border-right-width:1px; WIDTH: 250px; FLOAT: left;

HEIGHT: 200px; MARGIN: 10px 10px’>

VRF name / RD

$ALL_VRF_INFO

</div>

The center scroll window contains the import and export information
IMPORT_EXPORT:

<div align=’left’ style=’overflow: scroll; border-right-style: solid; font-fam-

ily: arial; font-size: 10pt; border-right-width:1px; WIDTH: 230px; FLOAT: left;

HEIGHT: 200px; MARGIN: 10px 10px’>

Import / Export

$IMPORT_EXPORT

</div>

The right scroll window contains the VRF interface status information
VRF_INTERFACE_OUTPUT:

<div align=’left’ style=’overflow: scroll; border-right-style: solid; font-fam-

ily: arial; font-size: 10pt; border-right-width:1px; WIDTH: 300px; FLOAT: left;

HEIGHT: 200px; MARGIN: 10px 10px’>

VRF Interface Status

$VRF_INTERFACE_OUTPUT

</div>

The numerous breaks move the position for the next text beyond the scroll windows:

Figure 6-4 ALL_VRF_INFO Ordered List

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 211

Display the VRF Configuration text:

<div align=’left’ style=’color: gray; font-family: arial; font-size: 18pt;

MARGIN: 10px 10px’>

VRF Configuration:

</div>

In this section, you need to create multiple text boxes for input of user information:

Using the following command, you will send the collected information to the MPLS-
CFG.tcl script. This script will be initiated when Submit button is selected:

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

You need to create an input box that allows the user to add the VRF name. This text box
will initially display VRF_Name when selected. The name will clear allowing the user to
add information. If the information is deleted, the original VRF_Name is returned to the
text box:

<input type=’text’ name=’VRF_Name’ value=’VRF_Name’

onblur=’init_field(this,\”VRF_Name\”);’ onFocus=’clear_field(this,\”VRF_Name\”);

‘ style=’WIDTH: 200px; font-family: arial; font-size: 10pt’>

This text box allows the user to add RD information:

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’RD’ value=’RD’ onblur=’init_field(this,\”RD\”);’

onFocus=’clear_field(this,\”RD\”);

‘ style=’WIDTH: 200px; font-family: arial; font-size: 10pt’>

This text box allows the user to add import information:

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’Import’ value=’Import’

onblur=’init_field(this,\”Import\”);’ onFocus=’clear_field(this,\”Import\”);

‘ style=’WIDTH: 200px; font-family: arial; font-size: 10pt’>

This text box allows the user to add export information:

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’Export’ value=’Export’

onblur=’init_field(this,\”Export\”);’ onFocus=’clear_field(this,\”Export\”);

‘ style=’WIDTH: 200px; font-family: arial; font-size: 10pt’>

Add a break to position the next text box:

www.it-ebooks.info

http://www.it-ebooks.info/

212 Tcl Scripting for Cisco IOS

This text box allows the user to add VRF interface information:

<div align=’left’>

<color=’black’>

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’Interface’ value=’Interface’

onblur=’init_field(this,\”Interface\”);’

onFocus=’clear_field(this,\”Interface\”);

‘ style=’WIDTH: 250px; font-family: arial; font-size: 10pt’>

This text box allows the user to add the IP address of the VRF interface:

<font-family: arial; font-size: 18pt>

<color=’black’>

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’IP_Address’ value=’IP_Address’

onblur=’init_field(this,\”IP_Address\”);’

onFocus=’clear_field(this,\”IP_Address\”);

‘ style=’WIDTH: 250px; color:#000000; font-family: arial; font-size: 10pt’>

This text box allows the user to add IP address mask of the VRF interface:

<input type=’text’ name=’Mask’ value=’Mask’ onblur=’init_field(this,\”Mask\”);’

onFocus=’clear_field(this,\”Mask\”);

‘ style=’WIDTH: 250px; color:#000000; font-family: arial; font-size: 10pt’>

Add a break to position the next text box:

Display a radio button that allows the user to select yes or no as to redistributing routes:

<div align=’left’ style=’color: black; font-family: arial; font-size: 12pt;

MARGIN: 10px 10px’>

Redistribute Connected:

<input type=’radio’ name=’Red_Connected’ value=’yes’ /> yes

<input type=’radio’ name=’Red_Connected’ value=’no’ checked=’checked’ /> no

</div>

Add two breaks to position the next text box:

Display BGP / LDP Information:

<div align=’left’ style=’color: gray; font-family: arial; font-size: 18pt;

MARGIN: 10px 10px’>

BGP / LDP Information:

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 213

This scroll window contains the LDP interface information LDP_INTERFACES:

<div align=’left’ style=’overflow: scroll; border-right-style: solid; font-fam-

ily: arial; font-size: 10pt; border-right-width:1px; WIDTH: 220px; FLOAT: left;

HEIGHT: 200px; MARGIN: 10px 10px’>

Label Int / Operational

$LDP_INTERFACES

</div>

This scroll window contains the BGP neighbor information BGP_NEIGHBOR_OUTPUT:

<div align=’left’ style=’overflow: scroll; border-right-style: solid; font-fam-

ily: arial; font-size: 10pt; border-right-width:1px; WIDTH: 220px; FLOAT: left;

HEIGHT: 200px; MARGIN: 10px 10px’>

BGP Neighbors

$BGP_NEIGHBOR_OUTPUT

</div>

This scroll window contains the BGP configuration information
BGP_CONFIG_RESULTS:

<div align=’left’ style=’overflow: scroll; border-right-style: solid; font-fam-

ily: arial; font-size: 10pt; border-right-width:1px; WIDTH: 340px; FLOAT: left;

HEIGHT: 200px; MARGIN: 10px 10px’>

BGP Configuration

$BGP_CONFIG_RESULTS

</div>

Reposition the output to format the display appropriately:

Display the BGP Configuration: text:

<div align=’left’ style=’color: gray; font-family: arial; font-size: 18pt;

MARGIN: 10px 10px’>

BGP Configuration:

</div>

This text box will display the BGP ASN if present or allow the user to add or delete
the BGP ASN:

<div align=’left’>

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’BGP_AS’ value=’$BGP_AS’

onblur=’init_field(this,\”$BGP_AS\”);’ onFocus=’clear_field(this,\”$BGP_AS\”);

‘ style=’WIDTH: 230px; font-family: arial; font-size: 10pt’>

This text box provides a location for the user to enter the IP address of the BGP
neighbor:

www.it-ebooks.info

http://www.it-ebooks.info/

214 Tcl Scripting for Cisco IOS

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’Neighbor’ value=’Neighbor’

onblur=’init_field(this,\”Neighbor\”);’ onFocus=’clear_field(this,\”Neighbor\”);

‘ style=’WIDTH: 230px; font-family: arial; font-size: 10pt’>

This text box provides a location for the user to enter the source interface for the BGP
neighbor configured previously:

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’Source_Int’ value=’Source_Int’

onblur=’init_field(this,\”Source_Int\”);’

onFocus=’clear_field(this,\”Source_Int\”);

‘ style=’WIDTH: 250px; font-family: arial; font-size: 10pt’>

</div>

Display Route Reflector Client text:

<div align=’left’ style=’color: black; font-family: arial; font-size: 12pt; MAR-

GIN: 10px 10px’>

Route Reflector Client:

Display a radio button that allows the user to select yes or no as to the neighbor being a
route-reflector client:

<input type=’radio’ name=’RR_Client’ value=’yes’ /> Yes

<input type=’radio’ name=’RR_Client’ value=’no’ checked=’checked’ /> No

</div>

Realign the location of the next display:

Display LDP Configuration text:

<div align=’left’ style=’color: gray; font-family: arial; font-size: 18pt;

MARGIN: 10px 10px’>

LDP Configuration:

</div>

This text box provides a location for the user to enter the label interface:

<div align=’left’>

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’Label_Int’ value=’Label_Int’

onblur=’init_field(this,\”Label_Int\”);’

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 215

onFocus=’clear_field(this,\”Label_Int\”); ‘ style=’WIDTH: 230px; font-family:

arial; font-size: 10pt’>

This text box provides a location for the user to enter the IP address of the label interface:

<form name=’MPLS-CFG’ action=’MPLS-CFG.tcl’ method=’GET’ target=’_blank’>

<input type=’text’ name=’IP_Address’ value=’IP_Address’

onblur=’init_field(this,\”IP_Address\”);’

onFocus=’clear_field(this,\”IP_Address\”);’ style=’WIDTH: 230px; font-family:

arial; font-size: 10pt’>

This text box provides a location for the user to enter the IP address mask of the label
interface:

<input type=’text’ name=’Mask’ value=’Mask’

onblur=’init_field(this,\”Mask\”);’ onFocus=’clear_field(this,\”Mask\”);’

style=’WIDTH: 250px; font-family: arial; font-size: 10pt’>

</div>

The following breaks reposition the next location to display information:

Display Configuration: text:

<div align=’left’ style=’color: black; font-family: arial; font-size: 14pt; MAR-

GIN: 10px 10px’>

Configuration:

<input type=’radio’ name=’ADD_REMOVE’ value=’yes’ checked=’checked’ /> Add

<input type=’radio’ name=’ADD_REMOVE’ value=’no’/> Remove

</div>

The following break repositions the next location to display information:

This quote ends the “config” section:

”

The following configuration clears and repopulates the text box fields:

set footer “

<script>

function clear_field(field, value) {if(field.value == value) field.value = ‘’;}

function init_field(field, value) {if(field.value == ‘’) field.value = value;}

</script>

<input type=’submit’ style=’color: red value=’Deploy Changes’>

“

www.it-ebooks.info

http://www.it-ebooks.info/

216 Tcl Scripting for Cisco IOS

This section sets the HTTP header information.

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: binary

“

This last line of code displays the httpheader, header, config, and footer sections of the
application:

puts $httpsock $httpheader$header$config$footer

You must copy the script to the TCL directory on the IOS device (for example,
flash:/TCL/).

Using your browser, enter the IP address of the IOS device as follows and check the
damage:

http://192.168.0.186:8082/MPLS-VPN.tcl

If the configuration was re-created correctly, the display will be similar to that shown in
Figure 6-5.

Writing Code for the MPLS CFG Script

The MPLS-VPN.tcl application will collect the user input information and pass it to the
MPLS-CFG.tcl script.

The following 16 parameters are passed to the MPLS-CFG.tcl script:

■ VRF_Name

■ Route_Dist

■ Import

■ Export

■ VRF_Interface

■ VRF_IP_Address

■ VRF_Mask

■ Red_Connected

■ BGP_AS

■ Neighbor

■ Source_Int

■ RR_Client

www.it-ebooks.info

http://192.168.0.186:8082/MPLS-VPN.tcl
http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 217

Figure 6-5 Complete MPLS VPN Configuration Application

■ Label_Int

■ Lab_IP_Address

■ Lab_Mask

■ Add_Config

Now that you have all the parameters that will be passed to the configuration script, it is
time to create a flowchart that shows how you will use that information. The flowchart
shown in Figure 6-6 went through several iterations, thoughtful consideration, and testing
of the code before being presented here.

www.it-ebooks.info

http://www.it-ebooks.info/

218 Tcl Scripting for Cisco IOS

Tip To minimize your time coding, having a well thought-out flowchart is essential!

The first section of the code parses the variables sent from the MPLS-VPN.tcl application.
Each parameter is sent in order and defined in the MPLS-CFG.tcl script as a unique value.

The following command set the variable COMMANDS to all the elements in the list for 0
to the end using the lrange command:

set COMMANDS [lrange $parmlist 0 end]

Each parameter is assigned to a unique variable, using variable names representative of
each parameter for easy of programming:

set VRF_Name [lindex $COMMANDS 1]

set Route_Dist [lindex $COMMANDS 3]

set Import [lindex $COMMANDS 5]

set Export [lindex $COMMANDS 7]

set VRF_Interface [lindex $COMMANDS 9]

set VRF_IP_Address [lindex $COMMANDS 11]

BGP
No NoNo

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes Yes

Yes Yes

Neighbor?

Source Int?

LDP Int?

RR Client?

Add Neighbor Add VRF

Parse Variables

Start

Add Source
Interface

Add RR Client

Add LDP,
IP/Mask

No

No

No

No

Yes

Yes

Yes

Yes

RD?

Imp or Exp?

Red Conn?

Interface

Add RD

Add Imp
or Exp

Add Int/IP/Mask

Add Red
to BGP

No

No

No

No

Yes

Yes

Yes

Yes

RD?

Imp or Exp?

VRF only?

Interface

Remove RD

Remove Imp
or Exp

Remove VRF
from Interface

Yes Remove
Neighbor

Yes Remove
Interface

Remove VRF

VRF? VRF?

No

BGP-AS
Neighbor?

No

LDP Int?

Add?

Finish

Figure 6-6 Flowchart for MPLS-CFG.tcl Application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 219

set VRF_Mask [lindex $COMMANDS 13]

set Red_Connected [lindex $COMMANDS 15]

set BGP_AS [lindex $COMMANDS 17]

set Neighbor [lindex $COMMANDS 19]

set Source_Int [lindex $COMMANDS 21]

set RR_Client [lindex $COMMANDS 23]

set Label_Int [lindex $COMMANDS 25]

set Lab_IP_Address [lindex $COMMANDS 27]

set Lab_Mask [lindex $COMMANDS 29]

set Add_Config [lindex $COMMANDS 31]

Initialize the variable for maintaining changes to the configuration:

set CONFIG_CHANGES ““

Initialize the terminal interface for making configuration changes:

if [catch {cli_open} RESULT] {

error $RESULT $errorInfo

} else {

array set cli1 $RESULT

}

Enter enable mode on the IOS device:

if [catch {cli_exec $cli1(fd) “en”} RESULT] {

error $RESULT $errorInfo

}

Enter configuration mode on the IOS device:

if [catch {cli_exec $cli1(fd) “config terminal”} RESULT] {

error $RESULT $errorInfo

}

The first decision block in the flowchart is to verify if the changes on the IOS device will
be added to or removed from the configuration. If elements are to be added to the con-
figuration, execute the subsequent step:

if {[string compare “yes” $Add_Config] == 0} {

Continue to execute the subcommands if the parameter in the variable name
“VRF_Name” is something other than “VRF_Name”. This indicates that the user entered
a value in the “VRF_Name” input text box:

if {[string compare “VRF_Name” $VRF_Name]} {

Add the VRF to the configuration:

if [catch {cli_exec $cli1(fd) “ip vrf $VRF_Name” } RESULT] {

error $RESULT $errorInfo

www.it-ebooks.info

http://www.it-ebooks.info/

220 Tcl Scripting for Cisco IOS

} else {

To keep track of the configuration changes, the variable string CONFIG_CHANGES is
used:

set CONFIG_CHANGES [concat $CONFIG_CHANGES “ip vrf $VRF_Name
”]

}

If an element in the “RD” variable is present, execute the subcommands and capture the
results in the CONFIG_CHANGES variable:

if {[string compare “RD” $Route_Dist]} {

if [catch {cli_exec $cli1(fd) “rd $Route_Dist” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “rd $Route_Dist
”]

}

}

If an element in the “Import” variable is present, execute the subcommands and capture
the results in the CONFIG_CHANGES variable:

if {[string compare “Import” $Import]} {

if [catch {cli_exec $cli1(fd) “route-target import $Import” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “route-target import

$Import
”]

}

}

If an element in the “Export” variable is present, execute the subcommands and capture
the results in the CONFIG_CHANGES variable:

if {[string compare “Export” $Export]} {

if [catch {cli_exec $cli1(fd) “route-target export $Export” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “route-target export

$Export
”]

}

}

If an element in the VRF_Interface variable is present, execute the subcommands, includ-
ing adding the IP address and network mask, bringing up the interface and capturing the
results in the CONFIG_CHANGES variable:

if {[string compare “Interface” $VRF_Interface]} {

if [catch {cli_exec $cli1(fd) “interface $VRF_Interface” } RESULT] {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 221

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “interface $VRF_Interface

”]

}

if [catch {cli_exec $cli1(fd) “ip vrf forwarding $VRF_Name” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “ip vrf forwarding

$VRF_Name
”]

}

if [catch {cli_exec $cli1(fd) “ip address $VRF_IP_Address $VRF_Mask” }

RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “ip address

$VRF_IP_Address $VRF_Mask
”]

}

}

If the Redistribute Connected check box is set to “yes”, execute the subcommands and
capture the results in the CONFIG_CHANGES variable:

if {[string compare “yes” $Red_Connected] == 0} {

if [catch {cli_exec $cli1(fd) “router bgp $BGP_AS” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “router bgp $BGP_AS

”]

}

if [catch {cli_exec $cli1(fd) “address-family ipv4 vrf $VRF_Name” }

RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “address-family ipv4

vrf $VRF_Name
”]

}

if [catch {cli_exec $cli1(fd) “redistribute connected” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “redistribute

connected
”]

}

}

}

www.it-ebooks.info

http://www.it-ebooks.info/

222 Tcl Scripting for Cisco IOS

If an element in the “BGP_AS” variable is present, execute the subcommands and capture
the results in the CONFIG_CHANGES variable. As long as BGP has been configured on
the IOS device, the subelements will be executed:

if {[string compare “BGP_AS” $BGP_AS]} {

The command mpls ip is entered on the IOS device to validate that it has been config-
ured. Entering this more that one time will not cause a problem on the IOS device:

if [catch {cli_exec $cli1(fd) “mpls ip”} RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “mpls ip
”]

}

if [catch {cli_exec $cli1(fd) “router bgp $BGP_AS” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “router bgp $BGP_AS
”]

}

If an element in the “Neighbor” variable is present, execute the subcommands and cap-
ture the results in the CONFIG_CHANGES variable. Notice that the configurations are
also applied within the “vpnv4” address family:

if {[string compare “Neighbor” $Neighbor]} {

if [catch {cli_exec $cli1(fd) “neighbor $Neighbor remote-as $BGP_AS” }

RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “neighbor $Neighbor

remote-as $BGP_AS
”]

}

if [catch {cli_exec $cli1(fd) “address-family vpnv4” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “address-family vpnv4
”]

}

if [catch {cli_exec $cli1(fd) “neighbor $Neighbor activate” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “neighbor $Neighbor

activate
”]

}

if [catch {cli_exec $cli1(fd) “neighbor $Neighbor send-community extended” }

RESULT] {

error $RESULT $errorInfo

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 223

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “neighbor $Neighbor

send-community extended
”]

}

To allow additional changes at the appropriate location in the configuration, it is impera-
tive that you “exit” from the address family:

if [catch {cli_exec $cli1(fd) “exit” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “exit
”]

}

}

If an element contains a source-interface value, execute the subcommands and capture
the results in the CONFIG_CHANGES variable:

if {[string compare “Source_Int” $Source_Int]} {

if [catch {cli_exec $cli1(fd) “neighbor $Neighbor update-source $Source_Int”

} RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “neighbor $Neighbor

update-source $Source_Int
”]

}

}

If the neighbor was selected to be a route-reflector client, execute the subcommands and
capture the results in the CONFIG_CHANGES variable:

if {[string compare “yes” $RR_Client] == 0} {

if [catch {cli_exec $cli1(fd) “neighbor $Neighbor route-reflector-

client” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “neighbor $Neighbor

route-reflector-client
”]

}

if [catch {cli_exec $cli1(fd) “address-family vpnv4” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “address-family

vpnv4
”]

}

if [catch {cli_exec $cli1(fd) “neighbor $Neighbor route-reflector-

client” } RESULT] {

www.it-ebooks.info

http://www.it-ebooks.info/

224 Tcl Scripting for Cisco IOS

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “neighbor $Neighbor

route-reflector-client
”]

}

}

}

If an element in the “Label_Int” variable is present, execute the subcommands and cap-
ture the results in the CONFIG_CHANGES variable:

if {[string compare “Label_Int” $Label_Int]} {

In the event that this IOS device is an MPLS VPN “P-type” device only, you need to
make sure that MPLS has been added in the global configuration:

if [catch {cli_exec $cli1(fd) “mpls ip”} RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “mpls ip
”]

}

if [catch {cli_exec $cli1(fd) “interface $Label_Int”} RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “interface $Label_Int
”]

}

if [catch {cli_exec $cli1(fd) “mpls ip”} RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “mpls ip
”]

}

if [catch {cli_exec $cli1(fd) “no shutdown”} RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “no shutdown
”]

}

If the IP address and mask are present for the label interface, execute the subcommands
and capture the results in the CONFIG_CHANGES variable:

if {[string compare “IP_Address” $Lab_IP_Address] && [string compare “Mask”

$Lab_Mask]} {

if [catch {cli_exec $cli1(fd) “ip address $Lab_IP_Address $Lab_Mask” }

RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “ip address

$Lab_IP_Address $Lab_Mask
”]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 225

}

}

}

The else section of the configuration is associated with the first decision in the flow-
chart: add or remove configuration. Because the script checks only for additions, the
only other alternative is removal of elements within the IOS configuration:

} else {

The following if statement looks for an element in the “VRF_Name” variable and any
value entered in the “Route_Dist”, “Import”, “Export”, or “VRF_Interface” and will exe-
cute the subcommands and capture the results in the CONFIG_CHANGES variable. This
statement eliminates the accidental removal of a VRF if any other parameters are entered:

if {[string compare “VRF_Name” $VRF_Name] && [string compare “RD”

$Route_Dist] != 0 [string compare “Import” $Import] != 0 [string compare

“Export” $Export] != 0 [string compare “Interface” $VRF_Interface] != 0} {

if [catch {cli_exec $cli1(fd) “ip vrf $VRF_Name” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “ip vrf $VRF_Name
”]

}

If the variable Route_Dist is present, execute the subcommands, which removes the route
distinguisher from the VRF and captures the results in the CONFIG_CHANGES variable:

if {[string compare “RD” $Route_Dist]} {

if [catch {cli_exec $cli1(fd) “no rd $Route_Dist” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “no rd $Route_Dist
”]

}

}

If an element in the “Import” variable is present, execute the subcommands and capture
the results in the CONFIG_CHANGES variable:

if {[string compare “Import” $Import]} {

if [catch {cli_exec $cli1(fd) “no route-target import $Import” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “no route-target import

$Import
”]

}

}

www.it-ebooks.info

http://www.it-ebooks.info/

226 Tcl Scripting for Cisco IOS

If an element in the “Export” variable is present, execute the subcommands and capture
the results in the CONFIG_CHANGES variable:

if {[string compare “Export” $Export]} {

if [catch {cli_exec $cli1(fd) “no route-target export $Export” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “no route-target export

$Export
”]

}

}

If the “VRF_Interface” element variable is present, execute the subcommands and capture
the results in the CONFIG_CHANGES variable. This sequence of commands removes the
VRF from the selected interface and also automatically removes the IP address:

if {[string compare “Interface” $VRF_Interface]} {

if [catch {cli_exec $cli1(fd) “interface $VRF_Interface” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “interface

$VRF_Interface
”]

}

if [catch {cli_exec $cli1(fd) “no ip vrf forwarding $VRF_Name” } RESULT]

{

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “no ip vrf

forwarding $VRF_Name
”]

}

}

}

If the only element in the “VRF Configuration:” section is the “VRF_Name”, remove the
VRF entirely and capture the results in the CONFIG_CHANGES variable:

if {[string compare “VRF_Name “ $VRF_Name] && [string compare “RD” $Route_Dist]

== 0 && [string compare “Import” $Import] == 0 && [string compare “Export”

$Export] == 0 && [string compare “Interface” $VRF_Interface] == 0 } {

if [catch {cli_exec $cli1(fd) “no ip vrf $VRF_Name “ } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “no ip vrf $VRF_Name
”]

}

}

If the “BGP_AS” and “Neighbor” variables are present, remove the BGP neighbor and
capture the results in the CONFIG_CHANGES variable:

if {[string compare “BGP_AS” $BGP_AS] && [string compare “Neighbor” $Neighbor]} {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 227

if [catch {cli_exec $cli1(fd) “router bgp $BGP_AS” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “router bgp $BGP_AS
”]

}

if [catch {cli_exec $cli1(fd) “no neighbor $Neighbor” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “no neighbor $Neighbor

”]

}

}

If the variable “Label_Int” is present, remove the LDP from the selected interface and
capture the results in the CONFIG_CHANGES variable:

if {[string compare “Label_Int” $Label_Int]} {

if [catch {cli_exec $cli1(fd) “interface $Label_Int”} RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “interface $Label_Int
”]

}

if [catch {cli_exec $cli1(fd) “no mpls ip”} RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG_CHANGES [concat $CONFIG_CHANGES “no mpls ip
”]

}

}

}

Exit from configuration mode, to capture the running-configuration:

if [catch {cli_exec $cli1(fd) “end” } RESULT] {

error $RESULT $errorInfo

}

Capture the running-configuration and store it in the variable CONFIG:

if [catch {cli_exec $cli1(fd) “show running-config” } RESULT] {

error $RESULT $errorInfo

} else {

set CONFIG $RESULT

}

if [catch {cli_close $cli1(fd) $cli1(tty_id)} RESULT] {

error $RESULT $errorInfo

}

www.it-ebooks.info

http://www.it-ebooks.info/

228 Tcl Scripting for Cisco IOS

Replace all the newline elements with the HTML line break. If this is not done, the con-
figuration will display as a single string:

regsub -all {\n} $CONFIG {
} CONFIG

Begin the HTML section of the script and display Configuration: at the top of the screen:

set stats “

<div align=’left’ style=’color: black; font-family: arial; font-size: 18pt;

overflow: hidden; MARGIN: 10px 10px’>

Configuration:

</div>

Create a scroll window and display all the configuration changes that were completed:

<div align=’left’ style=’overflow: scroll; border-right-style: solid; font-fam-

ily: arial; font-size: 10pt; border-right-width:1px; WIDTH: 360px; FLOAT: left;

HEIGHT: 480px; MARGIN: 10px 10px’>

Configuration Changes

$CONFIG_CHANGES

</div>

Create a scroll window and display the entire IOS configuration:

<div align=’left’ style=’overflow: scroll; border-right-style: solid; font-fam-

ily: arial; font-size: 10pt; border-right-width:1px; WIDTH: 520px; FLOAT: left;

HEIGHT: 480px; MARGIN: 10px 10px’>

Full Configuration

$CONFIG

</div>

“

Finally, here is the very last line, which displays the configuration changes and the config-
uration:

puts $httpsock $httpheader$stats

Troubleshooting as You Go

If you replicated both the MPLS-VPN.tcl and MPLS-CFG.tcl scripts exactly and placed
them on your IOS device, you would miss out on the fun of troubleshooting and the
errors you see in Figures 6-7 and 6-8.

There is not much information from the output to direct you where to begin troubleshoot-
ing, especially when the only message you receive is “Error in script.” Fortunately, you
can use another tool. Strategically adding syslog or “puts” messages within your script
will provide you with the information necessary to troubleshoot effectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 229

Figure 6-7 Error in Script

Figure 6-8 Error in Script: Missing Close Brace

In this example, we place the following command just before the last line in the configu-
ration, “puts $httpsock $httpheader$stats”:

action_syslog msg “Here are the configuration changes: \n $CONFIG_CHANGES”

Open a session to the router (Telnet, in this example) and enable logging for debug mes-
sages and turn on terminal monitoring, as shown here:

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#logging monitor debugging

Router(config)#logging on

Router#terminal monitor

The output from the router is captured as shown:

Router#

file name: MPLS-CFG.tcl

Parameters:

VRF_Name=Gray&RD=9%3A9&Import=9%3A9&Export=9%3A9&Interface=Interface&IP_Address=

IP_Address&Mask=Mask&Red_Connected=no&BGP_AS=65065&Neighbor=Neighbor&Source_Int=

Source_Int&RR_Client=no&Label_Int=Label_Int&IP_Address=IP_Address&Mask=Mask&ADD_

REMOVE=yes

*Jan 4 18:58:42.300: %SYS-5-CONFIG_I: Configured from console by on vty9

(EEM:Web_Server.tcl)

*Jan 4 18:58:43.812: %HA_EM-6-LOG: Web_Server.tcl: Here are the configuration

changes:

ip vrf Gray
 rd 9:9
 route-target import 9:9
 route-target

export 9:9
 mpls ip
 router bgp 65065

The output displays the text Here are the configuration changes: with the associated
parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

230 Tcl Scripting for Cisco IOS

You can place syslog action messages throughout your script and monitor the status of
variables and counters, or to determine whether your script is actually executing a partic-
ular set of instructions. This will be an invaluable tool as you write and debug scripts.

Other useful Cisco IOS debug commands include the following:

■ debug event manager action cli

■ debug event manager tcl cli_library

■ debug event manager tcl commands

Using Tcl to Troubleshoot Network Problems

Troubleshooting network issues is both an art and a science. It requires skills in knowing
where to collect data, gathering the appropriate information, analyzing all the informa-
tion, and applying the solution to resolve the issue. One of the more time-consuming
steps is collecting information. Leveraging Tcl will help to ensure data is collected in a
timely manner. You can resolve network challenges significantly faster when information
is readily available. This section shows how to use Tcl scripts to troubleshoot network
problems.

Syslog messages are generated under specific conditions and used to track the operation
of a network device. Detecting syslog messages in a timely manner can result in a proac-
tive approach to solve network problems. The next example provides a script that
detects a syslog message indicating a change in an Open Shortest Path First (OSPF)
neighbor relationship, collects information from the IOS device, and sends it to a partic-
ular e-mail address.

The environment variables used in this script are syslog message, syslog pattern, show
command output, e-mail, directory, and policy. The script activation and the output can
be easily modified by changing the environment variables.

The Tcl script is written as follows:

::cisco::eem::event_register_syslog pattern $_syslog_pattern

Verify that all the environment variables exist. If any of them are not available, print out
an error message and quit:

if {![info exists _email_server]} {

set result \

“Policy cannot be run: variable _email_server has not been set”

error $result $errorInfo

}

if {![info exists _email_from]} {

set result \

“Policy cannot be run: variable _email_from has not been set”

error $result $errorInfo

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 231

}

if {![info exists _email_to]} {

set result \

“Policy cannot be run: variable _email_to has not been set”

error $result $errorInfo

}

if {![info exists _email_cc]} {

#_email_cc is an option, must set to empty string if not set.

set _email_cc ““

}

if {![info exists _show_cmd]} {

set result \

“Policy cannot be run: variable _show_cmd has not been set”

error $result $errorInfo

}

if {![info exists _syslog_pattern]} {

set result \

“Policy cannot be run: variable _syslog_pattern has not been set”

error $result $errorInfo

}

namespace import ::cisco::eem::*

namespace import ::cisco::lib::*

Execute the show command and collect the information:

if [catch {cli_open} result] {

error $result $errorInfo

} else {

array set cli1 $result

}

if [catch {cli_exec $cli1(fd) “en”} result] {

error $result $errorInfo

}

if [catch {cli_exec $cli1(fd) $_show_cmd} result] {

error $result $errorInfo

} else {

set cmd_output $result

}

www.it-ebooks.info

http://www.it-ebooks.info/

232 Tcl Scripting for Cisco IOS

if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo

}

Generate an e-mail with the output of the show command:

set routername [info hostname]

if {[string match ““ $routername]} {

error “Host name is not configured”

}

if [catch {smtp_subst [file join $tcl_library email_template_cmd.tm]} result] {

error $result $errorInfo

}

if [catch {smtp_send_email $result} result] {

error $result $errorInfo

}

The script needs to be copied to the IOS device, and the environment variables are con-
figured in configuration mode, as shown.

Specify where the e-mail should be sent:

Router(config)#event manager environment _email_to Sent-To@e-mail-server

Configure the command to be captured when the syslog pattern is seen:

Router(config)#event manager environment _show_cmd show cdp neighbor

Specify from whom the e-mail should be sent:

Router(config)#event manager environment _email_from Sent-From@e-mail-server

Set the syslog pattern that triggers the script. You will track the state of the OSPF neigh-
bor relationship using the syslog message %OSPF-5-ADJCHG:

Router(config)#event manager environment _syslog_pattern %OSPF-5-ADJCHG

Set the environment variable of the e-mail server:

Router(config)#event manager environment _email_server Sent-From@e-mail-server

:password@IP-Address

Configure the file location of the script:

Router(config)#event manager directory user policy “flash:/”

Specify the name of the script:

Router(config)#event manager policy syslog_email.tcl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 233

Monitoring the Console for Events

Monitoring the console of the IOS device, you can verify the functionality of the script
when the syslog event occurs. The following is the output from our router:

TCLRouter#

*Oct 26 00:17:51.048: cli_history_entry_add: free_hist_list size=0,

hist_list size=7

*Oct 26 00:17:51.048: check_eem_cli_policy_handler: command_string=show ip

ospf neighbor

*Oct 26 00:17:51.048: check_eem_cli_policy_handler: num_matches = 0,

response_code = 1

*Oct 26 00:17:52.892: OSPF: 192.168.1.178 address 192.168.0.178 on

GigabitEthernet0/0 is dead

*Oct 26 00:17:52.892: OSPF: 192.168.1.178 address 192.168.0.178 on

GigabitEthernet0/0 is dead, state DOWN

The OSPF neighbor relationship expired:

*Oct 26 00:17:52.892: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.1.178 on

GigabitEthernet0/0 from FULL to DOWN, Neighbor Down: Dead timer expired

*Oct 26 00:17:52.892: OSPF: Neighbor change Event on interface

GigabitEthernet0/0

*Oct 26 00:17:52.892: OSPF: DR/BDR election on GigabitEthernet0/0

*Oct 26 00:17:52.892: OSPF: Elect BDR 0.0.0.0

*Oct 26 00:17:52.892: OSPF: Elect DR 192.168.254.254

*Oct 26 00:17:52.892: DR: 192.168.254.254 (Id) BDR: none

*Oct 26 00:17:52.892: fh_fd_syslog_event_match: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_data_syslog: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_syslog_event_match: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_data_syslog: num_matches = 0

*Oct 26 00:17:52.892: syslog_pubinfo_enqueue: matched

pattern=”%OSPF-5-ADJCHG”, matched message=”

*Oct 26 00:17:52.892: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.1.178 on

GigabitEthernet0/0 from FULL to DOWN, Neighbor Down: Dead timer expired”

The syslog event match was detected:

*Oct 26 00:17:52.892: fh_fd_syslog_event_match: num_matches = 1

*Oct 26 00:17:52.892: fh_fd_data_syslog: num_matches = 1

*Oct 26 00:17:52.892: fh_fd_syslog_event_match: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_data_syslog: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_syslog_event_match: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_data_syslog: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_syslog_event_match: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_data_syslog: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_syslog_event_match: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_data_syslog: num_matches = 0

www.it-ebooks.info

http://www.it-ebooks.info/

234 Tcl Scripting for Cisco IOS

*Oct 26 00:17:52.892: fh_fd_syslog_event_match: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_data_syslog: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_syslog_event_match: num_matches = 0

*Oct 26 00:17:52.892: fh_fd_data_syslog: num_matches = 0

*Oct 26 00:17:52.892: fh_send_server_sig_hndlr: received a pulse from syslog

on node0/0 with fdid: 3

*Oct 26 00:17:52.892: fh_send_syslog_fd_msg: msg_type=64

*Oct 26 00:17:52.892: fh_send_syslog_fd_msg: sval=0

The event is published by the script:

*Oct 26 00:17:52.892: fh_send_server_sig_hndlr: received

FH_MSG_EVENT_PUBLISH

*Oct 26 00:17:52.892: EEM: server processes multi events: timewin=1,

sync_flag=0, ec_index=0, cmp_occ=1

*Oct 26 00:17:52.892: EEM: ctx=6:(6,1,1)

*Oct 26 00:17:52.892: EEM: server processes multi events: corr_res=1,

cur_tcnt=1, cmp_tcnt=1

*Oct 26 00:17:52.892: fh_schedule_policy: prev_epc=0x00000000;

epc=0x49BA816C

*Oct 26 00:17:52.892: EEM server schedules scripts

*Oct 26 00:17:52.892: EEM server schedules one event: policy_type=script

epc=49BA816C.

*Oct 26 00:17:52.892: EEM: server schedules a policy:

policyname=tmpsys:/eem_policy/syslog_email.tcl

*Oct 26 00:17:52.892: spawn script tmpsys:/eem_policy/syslog_email.tcl

The EEM server policy sends an e-mail:

*Oct 26 00:17:52.892: EEM policy tmpsys:/eem_policy/syslog_email.tcl has

been scheduled to run

*Oct 26 00:17:52.892: fh_spawn: -FMRUN -FMSAFE tmpsys:/lib/tcl/base.tcl

tmpsys:/eem_policy/syslog_email.tcl

*Oct 26 00:17:52.892: fh_tcl_spawn: argc=5, argstr=-FMRUN,

stdin=null:/syslog_email.tcl, stdout=syslog:/info/noscan/syslog_email.tcl,

stderr=syslog:/err/noscan/syslog

_email.tcl, priority=4

*Oct 26 00:17:52.896: pid for spawned process is 312. fdid: 3 sn: 13 jobid:

18

*Oct 26 00:17:52.900: fh_tcl_esi_open: fd=8

*Oct 26 00:17:52.900: fh_tcl_esi_open: fd=9

*Oct 26 00:17:52.900: fh_tcl_get_mode: mode = 1, StartupScript =

tmpsys:/lib/tcl/base.tcl, RealScript = tmpsys:/eem_policy/syslog_email.tcl

*Oct 26 00:17:52.900: fh_set_tclpath_global: tcl_library is set to

tmpsys:/lib/tcl

*Oct 26 00:17:52.900: fh_set_tclpath_global: auto_path is set to

tmpsys:/eem_lib_user tmpsys:/eem_lib_system

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 235

Figure 6-9 Script-Generated E-mail

*Oct 26 00:17:52.916: fh_io_msg: received FH_MSG_API_INIT; jobid=33,

processid=312, client=23, job name=EEM TCL Proc

*Oct 26 00:17:52.916: fh_register_evreg_cmds: tctx=49BF7FE4, dummy=1

*Oct 26 00:17:52.916: fh_tcl_compile_policy: evaluating policy:

startup_scriptname=tmpsys:/lib/tcl/base.tcl, real_scriptname=tmpsys:

/eem_policy/syslog_email.tcl

*Oct 26 00:17:52.920: fh_tcl_slave_interp_init: interp=4937EF34,

tctx=49BF7FE4, fh_mode=1, real=tmpsys:/eem_policy/syslog_email.tcl,

curr=syslog_email.tcl

*Oct 26 00:17:52.932: fh_register_evreg_cmds: tctx=49BF7FE4, dummy=1

*Oct 26 00:17:53.328: [fh_cli_debug_cmd]

*Oct 26 00:17:53.328: %HA_EM-6-LOG: syslog_email.tcl : DEBUG(cli_lib) :

CTL: cli_open called.

*Oct 26 00:17:53.328: [fh_tty_open_cmd]

*Oct 26 00:17:53.332: [fh_sys_reqinfo_routername_cmd]

*Oct 26 00:17:53.344: [fh_tty_read_cmd]

*Oct 26 00:17:53.344: [fh_tty_read_cmd] size= 12

*Oct 26 00:17:53.344: [fh_tty_prompt_cmd]

*Oct 26 00:17:53.392: OSPF: Build router LSA for area 0, router ID

192.168.254.254, seq 0x8000000A, process 1

*Oct 26 00:17:53.392: OSPF: No full nbrs to build Net Lsa for interface

GigabitEthernet0/0

*Oct 26 00:17:53.392: OSPF: Build network LSA for GigabitEthernet0/0, router

ID 192.168.254.254

The script generates an e-mail, as shown in Figure 6-9.

Using this script as a foundation, you could write many other scripts to accomplish dif-
ferent troubleshooting tasks. As another example, you could monitor for high CPU usage,
which you could detect via a high CPU syslog messages. This detection could then trig-
ger a script to collect show proc cpu output and e-mail the results. Besides sending
e-mail, you could build a script that makes a configuration change based on a particular
error condition. For example, you could shut down a particular interface upon the receipt
of a certain number of errors.

www.it-ebooks.info

http://www.it-ebooks.info/

236 Tcl Scripting for Cisco IOS

You can use Tcl scripts to collect information from a device or perform more intelligent
tasks, such as making changes under specific conditions. As you become more familiar
with Tcl in IOS, the options will expand almost infinitely.

Creating a Web Application for Remote SNMP Graphing

Earlier chapters examined how to collect information from the local device using Simple
Network Management Protocol (SNMP). This next example uses remote SNMP get to
collect interface output information from a PIX firewall. This information will be saved to
a file on the local IOS device in an Extensible Markup Language (XML) format and dis-
played in a graphical format using a free charting application.

The script begins with setting variables for the SNMP server or the PIX firewall and the
SNMP community string. The use of variables means that whenever you need to make a
change to the SNMP server or SNMP community string, you have to make that change in
only one location in the code. This could also be accomplished by using environment
variables or passing information from another script:

set SNMP_SERVER 192.168.0.190

set SNMP_STRING Public

The count is used to determine how many samples to collect:

set COUNT 0

The XML data must be formatted appropriately for display. You will concatenate addi-
tional information that will be saved to a file called Data.xml:

set XML_Data “<graph caption=’Interface Statistics’ xAxisName=’Time’

yAxisName=’PPS’ showNames=’1’ decimalPrecision=’0’ formatNumberScale=’0’> \n”

The Data.xml is initially deleted to keep the file size manageable:

file delete -force flash:/TCL/Data.xml

Setting the while count to 13 will enable the collection of 12 samples. This could be
another value assigned to a variable to make changes to the script easier:

while {$COUNT < 13} {

Open the CLI:

if [catch {cli_open} RESULT] {

error $RESULT $errorInfo

} else {

array set cli1 $RESULT

}

if [catch {cli_exec $cli1(fd) “en”} RESULT] {

error $RESULT $errorInfo

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 237

Collect the current count of the interface output statistics (ifOutUcastPkts.2) using a
remote SNMP get with version 2c on the PIX firewall and store that information in the
variable OUT_Packets:

if [catch {cli_exec $cli1(fd) “snmp get v2c $SNMP_SERVER $SNMP_STRING timeout 1

oid ifOutUcastPkts.2” } RESULT] {

error $RESULT $errorInfo

} else {

set OUT_Packets $RESULT

}

Note This example uses the SNMP Server Manager feature, which is not enabled by
default. To enable the feature, enter the following configuration commands before using
the Tcl script:

Router(config)#snmp-server manager

Capture the current time and save it in the variable CLOCK. This will be used to corre-
late the time with the output statistic from the PIX firewall:

if [catch {cli_exec $cli1(fd) “show clock” } RESULT] {

error $RESULT $errorInfo

} else {

set CLOCK $RESULT

}

Close the session:

if [catch {cli_close $cli1(fd) $cli1(tty_id)} RESULT] {

error $RESULT $errorInfo

}

Using the string range command, you can collect only the (hour:minute:second) parame-
ters necessary for display:

set CLOCK [string range $CLOCK 2 9]

If the counter is 0, this is the first time through the operation and you need to set a base-
line. Because the SNMP object ifOutUcastPkts.2 is a cumulative count, you will want to
monitor the change:

if {$COUNT == 0} {

The elaborate use of the string range command collects only the numeric value and saves
it in the variable OUT_Packets_Current:

set OUT_Packets_Current [string range $OUT_Packets [expr [string first “= “

$OUT_Packets] + 2] [expr [string first “\n” $OUT_Packets [expr [string first “= “

$OUT_Packets] + 2]] - 1]]

} else {

www.it-ebooks.info

http://www.it-ebooks.info/

238 Tcl Scripting for Cisco IOS

If this is not the first time through the operation, set the previous output counter to the
variable OUT_Packets_Base:

set OUT_Packets_Base $OUT_Packets_Current

set OUT_Packets_Current [string range $OUT_Packets [expr [string first “= “

$OUT_Packets] + 2] [expr [string first “\n” $OUT_Packets [expr [string first “= “

$OUT_Packets] + 2]] - 1]]

To get the difference or change in the packet counter, you have to subtract the previous
count from the current count and store that in the variable OUT_Packets_Graph:

set OUT_Packets_Graph [expr $OUT_Packets_Current - $OUT_Packets_Base]

The collected time and interface output count information is added to the XML_Data
variable:

set XML_Data [concat $XML_Data “<set name=’$CLOCK’ value=’$OUT_Packets_Graph’

color=’black’ /> \n”]

}

Increment the variable COUNT to keep track of how many samples are collected:

incr COUNT

The after command is to delay the operation of the script. This example uses a value of
4950 milliseconds. This allows for 50 milliseconds to run through the operation and still
collect data every 5 seconds:

after 4950

}

End the string XML_Data with “</graph>”:

set XML_Data [concat $XML_Data “</graph>”]

Open the file flash:/TCL/Data.xml for reading and writing:

set FILE [open flash:/TCL/Data.xml RDWR]

Copy the XML_Data string into the file:

puts $FILE $XML_Data

Close the file handle:

close $FILE

The code that follows is for generating the HTML output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 239

Set the title and parameters for charting the collected information:

set chart “<html>

<head>

<title>SNMP Remote Collection of Interface Statistics</title>

</head>

<body bgcolor=’ffffff’>

To display the graph, we are using free charting software by FusionCharts. The file
FCF_Line.swf must be saved to a location on the Cisco IOS device and the path to the
location of the file must also be specified unless it is placed in the local directory, as in
the following example. The data is stored in the file Data.xml (from the script), and a
pointer to the file is used for the charting software. Another option includes specifying
the size of the chart (in this example, 500 by 900):

<OBJECT classid=’clsid:D27CDB6E-AE6D-11cf-96B8-444553540000’

codebase=http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#

version=6,0,0,0’ width=’900’ height=’500’ id=’Column3D’ >

<param name=’movie’ value=’FCF_Line.swf’ />

<param name=’FlashVars’

value=’&dataURL=Data.xml&chartWidth=900&chartHeight=500’>

<param name=’quality’ value=’high’ />

<embed src=’FCF_Line.swf’

flashVars=’&dataURL=Data.xml&chartWidth=900&chartHeight=500’ type=’application/

x-shockwave-flash’ pluginspage=’http://www.macromedia.com/go/getflashplayer’ />

</object>

</body>

</html>

“

Set the title:

set header “<html>

<head>

<title>SNMP Remote Collection of Interface Statistics</title>

</head>

<div align=’left’>

SNMP Remote Collection of Interface

Statistics

</div>

</html>

“

Empty footer:

set footer “

“

www.it-ebooks.info

http://www.it-ebooks.info/

240 Tcl Scripting for Cisco IOS

HTML header information:

set httpheader “HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Content-Transfer-Encoding: binary

“

Display the output:

puts $httpsock $httpheader$header$chart$footer

Copy the script (in this example, it is named Remote-SNMP.tcl and the FCF_Line.swf)
file to the IOS device. Using your web browser, using the IP address of your IOS device,
enter the following:

http://192.168.0.186:8082/Remote-SNMP.tcl

It will take approximately 60 seconds for the script to collect the information and display
it onscreen. The output should look like Figure 6-10.

Adding charts to your applications can prove very useful. For example, you can combine
charts with interface or CPU utilization, error statistics, IP service level agreement (SLA),
or whatever your desire. This information can also be used to troubleshoot network
problems or for capacity planning.

Figure 6-10 SNMP Remote Collection of Interface Statistics

www.it-ebooks.info

http://192.168.0.186:8082/Remote-SNMP.tcl
http://www.it-ebooks.info/

Chapter 6: Tcl Script Examples 241

Summary

In this chapter, you learned how to create an application from start to finish, how to trou-
bleshoot your applications, and how to use your applications for troubleshooting. Using
these examples or writing your own, users no longer need to understand command syn-
tax to be able to easily make complex configuration changes or gather information for
display in a user-friendly format.

References

RFC 2863: The Interface Group MIB

RFC 5424: The Syslog Protocol

Cisco Beyond (a repository for user-contributed EEM policies):
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6815/product_p
romotion0900aecd8055c188.html

Cisco Embedded Automation Systems: http://www.cisco.com/go/easy

Charting software: http://www.fusioncharts.com/

www.it-ebooks.info

http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6815/product_promotion0900aecd8055c188.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6815/product_promotion0900aecd8055c188.html
http://www.cisco.com/go/easy
http://www.fusioncharts.com/
http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Security in Tcl Scripts

This chapter covers the following topics:

■ Introduction to PKI Infrastructure

■ Using Digital Signatures to Sign a Tcl Script

■ Tcl Script-Failure Scenario

■ Scaling Tcl Script Distribution

From the early days of programming, those with nefarious intent have attempted—and in
many cases successfully integrated—additional code into programs that have caused
serious consequences to the unsuspecting user. Because a Tcl script is a program running
on an IOS-based device, additional code added to the script could potentially send pass-
words via e-mail, erase the saved configurations or IOS images, cause the device to reload
periodically, and so on. The capability to protect scripts against this type of attack is
paramount!

Cisco IOS Software Release 12.4(15)T introduced a new feature to improve security for
Tcl scripts. The purpose of this security feature is to provide a method for signing a Tcl
script that proves the script has not been modified since the time it was signed by the
author. It relies on techniques and methods of existing public key cryptography libraries.

Introduction to PKI Infrastructure

Public key infrastructure (PKI) is used to provide a scalable method for certificate/key
exchange and is commonly used for secure exchange data (confidentiality), to ensure that
the data has not been modified in transit (integrity), to authenticate the origin, and for
nonrepudiation.

PKI enables you to send messages with confidentiality and sign messages that are guaran-
teed to be genuine. Confidentiality allows for conducting secret communication via a

www.it-ebooks.info

http://www.it-ebooks.info/

244 Tcl Scripting for Cisco IOS

public channel; however, it is not needed because the Tcl script is not secret and can be
viewed by anyone who has access.

Even though confidentiality is not needed, we do require Tcl scripts to have a digital sig-
nature to guarantee they are truly genuine and have not been tampered with. PKI
enables you to generate a digital signature that is connected to the Tcl script and guaran-
tees it is genuine.

Because PKI is well established, it can be leveraged to provide the security needed for
signing Tcl scripts. Many applications already take advantage of PKI and leverage the
security it provides, including SSL/HTTPS, IPsec, and S/MIME. You are probably famil-
iar with purchasing items online, filing tax returns online, and software licensing, all of
which use PKI and secure protocols.

Using PKI will provide assurance that a script has not been tampered with and give you
the confidence to implement a signed script in a production environment.

PKI Prerequisite

To use PKI, a public/private key pair must first be established. Generally, the longer the
key, the higher the level of security provided by that key.

A private key is simply a long string of characters, typically 512. As the name indicates,
this key is not to be shared and must always be kept private.

The public key is public and distributed to anyone.

The public/private key pairs are simple to generate and the private key is (nearly) impossi-
ble to derive from the public key. Although any security algorithm can be broken given
enough time and CPU cycles, longer keys make this task infeasible.

Confidentiality with PKI

When sending messages through a public channel, you can use PKI to encrypt the data
so that only the intended recipient can decrypt it. The sender of an encrypted message
can encrypt the data but cannot decrypt the data after it has been encrypted. The recipi-
ent’s public key is used to encrypt the data. The data is sent to the recipient, and once it
is received is decrypted with the recipient’s private key. This process is unidirectional. For
two-way encrypted communication to occur, two key pairs are needed. Each sender
encrypts data using the correct public key of the intended recipient. This process is also
referred to as asymmetric encryption.

As shown in Figure 7-1, Alice will be sending Bob an encrypted message. The process is
as follows:

Step 1. For Alice to send any encrypted information to Bob, she must have Bob’s
public key.

Step 2. Alice uses Bob’s public key to encrypt the message she wants to send to Bob.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Security in Tcl Scripts 245

Bob’s Private KeyBob’s Public Key

Encrypted MessageOriginal Message

+ +
Thisissuch
agreatencr
yptionalgor
ithmnoone
couldeverfi
gureitout!

Hi Bob, I
hope you enjoy
the Tel book.

Hi Bob, I
hope you enjoy
the Tel book.

Figure 7-1 PKI Infrastructure

Step 3. Even if someone captures the information in transit, it is undecipherable with-
out Bob’s private key, or at least a tremendous number of CPU cycles used to
break the private key.

Step 4. When Bob receives the information, he uses his own private key to decrypt
the original message that Alice sent.

Digital Signatures with PKI

Digital signatures enable you to ensure that information is not altered in transit from
sender to recipient. You can do so by creating a hash or signature of the original data.

The entire message must remain intact. Even if 1 bit of the data is changed, the entire
message integrity is violated. When you sign a check, for example, you are verifying the
authenticity with your unique signature. If the amount of the check is changed from your
written and numeric values, this represents an obvious violation.

To provide the integrity check, the entire data being sent is run through a hashing func-
tion. In simple terms, the hashing function produces a unique result for any given input
data, of a known length. Common hashing functions include message digest 4 (MD4),
message digest 5 (MD5), and secure hash algorithm (SHA). The hashed data result can be
sent using the PKI confidentiality process described earlier. In this way, the message
integrity is preserved from sender to recipient.

Figure 7-2 shows how Alice can send a message with a digital signature:

www.it-ebooks.info

http://www.it-ebooks.info/

246 Tcl Scripting for Cisco IOS

Step 1. Alice runs the original message through a hash function, creating a unique value.

Step 2. Alice encrypts the hash value with her private key, resulting in the digital
signature.

Step 3. The signature is attached to the message.

Step 1. For Bob to verify that Alice is indeed the originator of the message, Bob must
have Alice’s public key.

Step 2. Bob will extract the signature from the message.

Step 3. The message will be hashed using the same process that Alice used, and a
result will be generated.

Step 4. The signature will also be decrypted using Alice’s public key, and a hash value
will be generated.

Step 5. Bob will then compare the message hash value to the signature value. If they
match, Bob can be reasonably certain that the message is unaltered.

Alice’s Private KeyHash ValueHash Function

++

Original Message

Hi Bob, I
hope you enjoy
the Tel book.

Signed Message

Hi Bob, I
hope you enjoy
the Tel book.

86753098675309
H B b IBob
ophop ype
th
p
h

y
thhee

Hi Bob, I
hope you enjoy
the Tel book.

Bob
you enen
Tel book

en
k.

enjoou e
Tel book

u e
l book

yu
boo

j
k

Figure 7-2 Signing Digital Signatures

Alice’s Public KeyDecryption

Message

Hi Bob, I
hope you enjoy
the Tel book.Signed Message

Signature

Hi Bob, I
hope you enjoy
the Tel book.

+

Hash ValueHash Function

+ 86753098675309

Hash Value

86753098675309

H B b IBob
ophop ype
th
p
h

y
thhee

Hi Bob, I
hope you enjoy
the Tel book.

Bob
you enen
Tel book

en
k.

enjoou e
Tel book

u e
l book

yu
boo

j
k

Figure 7-3 Verifying Digital Signatures

Figure 7-3 shows how Bob can verify the integrity of a message.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Security in Tcl Scripts 247

Using Digital Signatures to Sign a Tcl Script

Two prerequisites must be met to sign a Tcl script:

■ A digital certificate must be made available on the router that will perform the signa-
ture check of the Tcl script. The digital certificate is stored in the IOS running-config-
uration and may also be saved in the nonvolatile random-access memory (NVRAM)
of the router.

■ The Tcl script must have been signed with the private key that matches the public key
available in the digital certificate. The signature is provided in a special format and is
in plain text directly after the Tcl commands in the script.

If Tcl script signature checking is enabled, different actions can take place when a Tcl
script is executed. If the signature of the Tcl script matches the digital certificate, the Tcl
script will be executed immediately. If the signature fails to be verified, the following
choices are available, depending on the IOS configuration:

■ The script can be immediately stopped.

■ The script can be allowed to run even though the signature check failed, in a special
“safe” Tcl mode. The “safe” TCL mode has a reduced number of keywords available
and is thought to be less dangerous than the full Tcl mode.

■ The script can be allowed to run normally. This can be used for testing purposes,
but would rarely be used in an actual live network. In effect, this turns off the secu-
rity check.

To digitally sign a script, an IOS image containing the crypto feature set must be used.
This means the image name contains the k9 feature set. For example, the following image
contains the crypto feature: c7200-adventerprisek9-mz.

The following example details how to correctly sign a Tcl script with a digital signature,
using a UNIX host as the certificate authority (CA) server. As an alternative, a CA can
also be created using other operating systems or can be hosted commercially.

A CA is a trusted third party that maintains, verifies, enrolls, distributes, and revokes
public keys. It is for that very reason that the CA must be secure.

The previous examples assumed that Bob or Alice had the other’s public key. But how
does Bob know that the key he has is really from Alice? There are a couple of answers to
that question:

■ Alice and Bob exchanged public keys out-of-band. This works fine in a small environ-
ment, but when there are hundreds or thousands of devices, manually exchanging
keys becomes difficult.

■ A CA is used to maintain all certificates.

www.it-ebooks.info

http://www.it-ebooks.info/

248 Tcl Scripting for Cisco IOS

This is where a CA really shows its value. The CA maintains the public keys or certifi-
cates, usually in an X.509 format. Key exchange is as follows:

Step 1. Before Bob can verify Alice’s public key, he must have the CA public key,
which should be exchanged out-of-band.

Step 2. When Bob needs Alice’s public key, he sends a request to the CA.

Step 3. The CA signs Alice’s public key with the CA private key, consequently verify-
ing the origination and sends it to Bob.

Step 4. Bob uses the CA public key to validate Alice’s public key.

You must complete the following steps to sign a Tcl script:

Step 1. Decide on the final Tcl script contents (myscript).

Step 2. Generate a public/private key pair.

Step 3. Generate a certificate with the public key.

Step 4. Generate a detached S/MIME pkcs7 signature for the script you created
(myscript) using the private key.

Step 5. Modify the format of the signature to match the Cisco style for a signed Tcl
script and append it to the end of the script you created (myscript).

Note The name of the script will be referred to as myscript throughout this example.

Step 1: Decide on the Final Tcl Script Contents (Myscript)

Finalize any last-minute changes needed to the script text file. After the Tcl script has
been signed, no more changes may be made.

Step 2: Generate a Public/Private Key Pair

The private key must always be kept private! Failure to do so would allow anyone in pos-
session of the private key to sign Tcl scripts as if they were written by the original author.

To generate a key pair, you can use the open source project OpenSSL. Executable ver-
sions of the OpenSSL are available for download at http://www.openssl.org

Note The versions of utilities mentioned in this chapter were run on Windows XP in the
Cygwin environment. Cygwin is a UNIX-like environment for Windows.

$ uname -a

CYGWIN_NT-5.1 joe-wxp01 1.5.25(0.156/4/2) 2008-06-12 19:34 i686 Cygwin

$ openssl version

OpenSSL 0.9.8k 25 Mar 2009

www.it-ebooks.info

http://www.openssl.org
http://www.it-ebooks.info/

Chapter 7: Security in Tcl Scripts 249

$ expect -version

expect version 5.26

$ xxd -version

xxd V1.10 27oct98 by Juergen Weigert

Using a UNIX host or similar, run the following command to generate a key pair (this
example uses a 2048-byte key):

$ openssl genrsa -out privkey.pem 2048

Generating RSA private key, 2048 bit long modulus

..+++

...+

++

e is 65537 (0x10001)

$

As you can see from the directory, the following file has been created:

$ ls -l

total 5

-rw-r--r-- 1 joe mkgroup-l-d 114 May 28 10:23 myscript

-rw-r--r-- 1 joe mkgroup-l-d 1679 May 28 10:23 privkey.pem

$

The new file is called privkey.pem and contains both the private key and public key. The
file needs to be kept in a secure location because it holds the private key.

Next, extract the public key from the key pair file:

$ openssl rsa -in privkey.pem -pubout -out pubkey.pem

writing RSA key

$

As you can see from the directory, the following file has been created:

$ ls -l

total 6

-rw-r--r-- 1 joe mkgroup-l-d 114 May 28 10:23 myscript

-rw-r--r-- 1 joe mkgroup-l-d 1679 May 28 10:23 privkey.pem

-rw-r--r-- 1 joe mkgroup-l-d 451 May 28 10:25 pubkey.pem

$

Now there are two separate files, one that contains the pair of keys (privkey.pem) and
another file that contains only the public key (pubkey.pem).

www.it-ebooks.info

http://www.it-ebooks.info/

250 Tcl Scripting for Cisco IOS

Step 3: Generate a Certificate with the Key Pair

To create a certificate, we must answer a few questions. These answers will be stored
along with the certificate, in case any concerns arise later about where the certificate
comes from:

$ openssl req -new -x509 -key privkey.pem -out cert.pem -days 1095

You are about to be asked to enter information that will be incorporated into your certifi-
cate request. What you are about to enter is what is called a distinguished name (DN).
There are quite a few fields, but some may be left blank.

For some fields there will be a default value. If you enter a period (.), the field will be
left blank:

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:California

Locality Name (eg, city) []:San Jose

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Acme Inc.

Organizational Unit Name (eg, section) []:Central Unit

Common Name (eg, YOUR name) []:Joe

Email Address []:joe@xyz.net

As you can see from the directory, the following cert.pem file has been added:

$ ls -l

total 10

-rw-r--r-- 1 joe mkgroup-l-d 1639 May 28 10:26 cert.pem

-rw-r--r-- 1 joe mkgroup-l-d 114 May 28 10:23 myscript

-rw-r--r-- 1 joe mkgroup-l-d 1679 May 28 10:23 privkey.pem

-rw-r--r-- 1 joe mkgroup-l-d 451 May 28 10:25 pubkey.pem

$

The certificate has now been generated in the file cert.pem. This certificate will later be
transferred to the IOS router for the router to perform the signature check on the signed
Tcl script.

Step 4: Generate a Detached S/MIME pkcs7 Signature for Myscript
Using the Private Key

When the script is signed, a new file is generated called myscript.pk7, which contains the
signature:

$ cat myscript

puts hello

puts “argc = $argc”

puts “argv = $argv”

puts “argv0 = $argv0”

puts “tcl_interactive = $tcl_interactive”

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Security in Tcl Scripts 251

$

$ openssl smime -sign -in myscript -out myscript.pk7 -signer cert.pem -inkey pr

ivkey.pem -outform DER –binary

$

The myscript.pk7 file has been added:

$ ls -l myscript.pk7

-rw-r--r-- 1 joe mkgroup-l-d 1856 May 28 10:30 myscript.pk7

$

To validate that the signature matches the myscript certificate we generated earlier, per-
form the following:

$ openssl smime -verify -in myscript.pk7 -CAfile cert.pem -inform DER -content

myscript

puts hello

puts “argc = $argc”

puts “argv = $argv”

puts “argv0 = $argv0”

Verification successful

puts “tcl_interactive = $tcl_interactive”

$

The “Verification successful” message indicates that myscript matches the contents of the
signature.

Step 5: Modify the Format of the Signature to Match the Cisco Style
for Signed Tcl Scripts and Append It to the End of Myscript

Now that a signature for myscript has been generated, we still need to make some for-
matting changes to put myscript in the correct format for Cisco IOS to understand.

The format of a signed Tcl script is as follows:

Actual Tcl script contents in plain test

...

#Cisco Tcl Signature V1.0

#Actual hex data of the signature

The signature portion of myscript is inserted after the hash character (#). Tcl always treats
this as a comment. If this script is executed on an IOS router that does not know about
Tcl script signature checking, the router will simply ignore these commented lines.

The signature must be converted to a hex format instead of binary:

$ xxd -ps myscript.pk7 > myscript.hex

$

www.it-ebooks.info

http://www.it-ebooks.info/

252 Tcl Scripting for Cisco IOS

The directory listing shows that the file was created:

$ ls -l myscript.hex

-rw-r--r-- 1 joe mkgroup-l-d 3774 May 28 10:42 myscript.hex

$

Next, a helper script is used to place the #Cisco Tcl Signature V1.0 and the # characters
in the new signature file.

You can show the contents of the file by using the cat command:

$ cat my_append

#!/usr/bin/expect

set my_first {#Cisco Tcl Signature V1.0}

set newline {}

set my_file [lindex $argv 0]

set my_new_file ${my_file}_sig

set my_new_handle [open $my_new_file w]

set my_handle [open $my_file r]

puts $my_new_handle $newline

puts $my_new_handle $my_first

foreach line [split [read $my_handle] “\n”] {

set new_line {#}

append new_line $line

puts $my_new_handle $new_line

}

close $my_new_handle

close $my_handle

$

Initiate the helper script using the following syntax:

$./my_append myscript.hex

$

The directory listing shows the myscript.hex and myscript.hex_sig files:

$ ls -l myscript.hex*

-rw-r--r-- 1 joe mkgroup-l-d 3774 May 28 10:42 myscript.hex

-rw-r--r-- 1 joe mkgroup-l-d 3865 May 28 10:56 myscript.hex_sig

$

Lastly, the signature file and the script file must be concatenated:

$ cat myscript myscript.hex_sig > myscript.tcl

$

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Security in Tcl Scripts 253

The directory listing shows that the file was created:

$ ls -l myscript.tcl

-rw-r--r-- 1 joe mkgroup-l-d 3979 May 28 10:58 myscript.tcl

$

The signed Tcl script has finally been generated (myscript.tcl)!

The following script combines many of the preceding steps and will help to automate
the process:

#!/bin/sh

the next line restarts using tclsh \

exec tclsh “$0” “$@”

proc PrintUsageInfo {} {

puts {usage: signme input_file [-c cert_file] [-k privkey_file]} }

set cert_file cert.pem

set privkey_file privkey.pem

if {$argc == 0} {

PrintUsageInfo

exit -1

}

set state flag

set cnt 0

foreach arg $argv {

switch -- $state {

flag {

switch -glob -- $arg {

\-c {

set state cert

}

\-k {

set state key

}

default {

if {$cnt == 0} {

set filename $arg

} else {

PrintUsageInfo

www.it-ebooks.info

http://www.it-ebooks.info/

254 Tcl Scripting for Cisco IOS

exit -1

}

}

}

}

cert {

set cert_file $arg

set state flag

}

key {

set privkey_file $arg

set state flag

}

}

incr cnt

}

if {![string equal $state flag]} {

PrintUsageInfo

exit -1

}

if {[catch {set commented_signed_hex [exec openssl smime -sign -in $filename \

-signer $cert_file -inkey $privkey_file -outform DER -binary | xxd -ps \

| sed s/^/#/]} err]} {

puts stderr “Error signing $filename - $err”

exit -1

}

set signature_tag “\n#Cisco Tcl Signature V1.0”

if {[catch {set fd [open $filename a+]} err]} {

puts stderr “Cannot open $filename - $err”

exit -1

}

puts $fd $signature_tag

puts $fd $commented_signed_hex

close $fd

puts “$filename signed successfully.”

exit

To take advantage of the newly signed script, the IOS device must be configured with a
certificate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Security in Tcl Scripts 255

After logging in to the IOS device and establishing access to configuration mode, com-
plete the following steps:

Step 1. Configure and enroll in a trust point using the cert.pem file. At the prompt,
paste the certificate into the terminal. That is, paste the contents of the
cert.pem file beginning after “-----BEGIN CERTIFICATE-----”and ending
before “-----END CERTIFICATE-----”.”:

PE11(config)#crypto pki trustpoint TCLSecurity

PE11(ca-trustpoint)#enrollment terminal

PE11(ca-trustpoint)#crypto pki authenticate TCLSecurity

Enter the base 64 encoded CA certificate.

End with a blank line or the word “quit” on a line by itself

-----BEGIN CERTIFICATE-----
MIIEjDCCA3SgAwIBAgIJANOb35p5QONbMA0GCSqGSIb3DQEBBQUAMIGKMQswCQYD

VQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTERMA8GA1UEBxMIU2FuIEpvc2Ux

EjAQBgNVBAoTCUFjbWUgSW5jLjEVMBMGA1UECxMMQ2VudHJhbCBVbml0MQwwCgYD

VQQDEwNKb2UxGjAYBgkqhkiG9w0BCQEWC2pvZUB4eXoubmV0MB4XDTA5MDUyODE3

MjY1OVoXDTEyMDUyNzE3MjY1OVowgYoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpD

YWxpZm9ybmlhMREwDwYDVQQHEwhTYW4gSm9zZTESMBAGA1UEChMJQWNtZSBJbmMu

MRUwEwYDVQQLEwxDZW50cmFsIFVuaXQxDDAKBgNVBAMTA0pvZTEaMBgGCSqGSIb3

DQEJARYLam9lQHh5ei5uZXQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB

AQDXjtFzWDXyHftgy7i75HczyvAFh10E2oB/tTC9WA5mih2L8ZMGTu+705LYP0E+

TlhVadastpYSEEVPOrdWiUuqLIoFKV7LE6KsEcKTuGRQp0tEGhfQrPyBuCcpuzO5

FZv7mpCJMvhXzW/wioAvFLE4vuXHHdAhsdK2dD1nOHmljvsx3hJ+Us6PKTnU1BNU

HpSReM6T9hH321Wakt9D4Q+qXW6T3IE2pD6tzvTZouLKXD7BMXjoNjMe6vIzlwmY

b7E2Txwui6YtPcJK15pRcl1+DozT9iGj43ps6glAIUfjtjCPEoQBblWeqNAHVYWn

WDP4FXg9H7z4xjocDuKJm+bBAgMBAAGjgfIwge8wHQYDVR0OBBYEFOb3HxpTyQcw

7YH4JwE2rdZUx4HnMIG/BgNVHSMEgbcwgbSAFOb3HxpTyQcw7YH4JwE2rdZUx4Hn

oYGQpIGNMIGKMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTERMA8G

A1UEBxMIU2FuIEpvc2UxEjAQBgNVBAoTCUFjbWUgSW5jLjEVMBMGA1UECxMMQ2Vu

dHJhbCBVbml0MQwwCgYDVQQDEwNKb2UxGjAYBgkqhkiG9w0BCQEWC2pvZUB4eXou

bmV0ggkA05vfmnlA41swDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOCAQEA

F+W1JWf56IJPjYT0f2MForE3/gsKMgUvMh+kyf4Fcgvdh4WuKUEwTVBHpHglOYyL

XfNZe6ILf9e3SgmXsqJOwAu/qK8d5uMwZ4d8TVoZqN1QmJPhvBcp7WZS8EvMVAWU

vwo8SUgDUY1QzXPa5R333T0k1Vo+wxc7c4zftH/gbbqrGGgP5EAlXKvX75Z/dafv

d/jPl4DniOlwz54ieRwjRU7B9w80Oa8EQeGRnsuNBcXRYqNoHJMRQK2xelqBL//8

10TEQeAoN3WjHBkqLXjf6HasnhfnwoNpNEn+ni5xN5uigbmuBzS1TCeevve/Y0ix

NnU3fSYpIOnb1tZLBbYY7A==

-----END CERTIFICATE-----
Certificate has the following attributes:

Fingerprint MD5: 856A9FF2 23AF24B0 8422B4FC 1E9E4153

Fingerprint SHA1: 35248814 47468190 4A1A3B6C 9D60C2A8 0B99BB0C

% Do you accept this certificate? [yes/no]: yes

Trustpoint CA certificate accepted.

% Certificate successfully imported

www.it-ebooks.info

http://www.it-ebooks.info/

256 Tcl Scripting for Cisco IOS

Verify that the trust point was accepted correctly:

PE11#show crypto pki trustpoints

Trustpoint TCLSecurity:

Subject Name:

e=joe@xyz.net

cn=Joe

ou=Central Unit

o=Acme Inc.

l=San Jose

st=California

c=US

Serial Number: 0x0D39BDF9A7940E35B

Certificate configured.

It looks correct because we see the expected information that was entered when we gen-
erated the certificate.

Step 2. Configure the IOS device to require that all Tcl scripts be verified against the
certificate before running. In this example, if a script does not pass the securi-
ty check, it will not be allowed to execute:

PE11(config)#scripting tcl trustpoint name TCLSecurity

PE11(config)#scripting tcl securemode

PE11(config)#scripting tcl trustpoint untrusted terminate

All Tcl scripts that are run on the router must now perform a signature check.

Alternatives for executing scripts include the following:

■ Execute: Run the script even if the Tcl script fails verification

■ Safe-execute: Execute the script in safe mode when the Tcl script fails verification.

Step 3. After copying the script myscript.tcl to disk0: of the IOS device, you can ini-
tiate it using the following command:

PE11#tclsh disk0:myscript.tcl

hello

argc = 0

argv =

argv0 = unix:myscript.tcl

tcl_interactive = 0

Tcl Script-Failure Scenario

In the event the script has been modified, the signature will detect that there was a
change and prevent it from executing.

The following example shows that the script was modified and consequently forbidden
from being executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7: Security in Tcl Scripts 257

The first line of the script has been changed from “puts hello” to “puts hellox,” and the
file has been copied to the IOS device as myscript-changed1char.tcl. Attempting to run
the script elicits the following response:

PE11#tclsh disk0:myscript-changed1char.tcl

Invalid Signature

PE11#

*May 28 19:45:28.115: %SYS-6-SCRIPTING_TCL_INVALID_OR_MISSING_SIGNATURE: tcl

signing validation failed on script signed with trustpoint name TCLSecurity,

cannot run the signed TCL script.

As you can see from the preceding output, the Tcl script security is a valuable feature
for protecting the contents of a Tcl script. If any portion of the contents of the Tcl script
has been modified by anyone, from the time the script was initially written to the time it
is run on the router, the change will be detected and the script will be forbidden from
executing.

For smaller company networks, it might be acceptable to have a network administrator
manually install the certificate in all routers that need to run the script. The certificate is
copied to a local storage such as slot0: or disk0: or any other valid file system attached to
the router. In addition, copies of the Tcl script can also copied to these local storage
devices attached to the router.

To deploy scripts in a larger network, take advantage of the capability of IOS software to
use a TFTP server as a repository and allow all IOS devices to download Tcl scripts from
the TFTP server.

Scaling Tcl Script Distribution

In the next example, a central TFTP server has been deployed in the network using an IP
address of 192.168.1.81. In this case, the IOS device downloads the Tcl script across the
network using TFTP. The signature checking is still performed, thus retaining a high level
of security while using an unsecure transfer protocol:

PE11#tclsh tftp://192.168.1.81/myscript.tcl

Loading myscript.tcl from 192.168.1.81 (via Serial2/0.111): !

[OK - 4046 bytes]

hello

argc = 0

argv =

argv0 = tftp://192.168.1.81/myscript.tcl

tcl_interactive = 0

If the script has been modified, we receive the same results as before:

PE11#tclsh tftp://192.168.1.81/myscript-changed1char.tcl

Loading myscript-changed1char.tcl from 192.168.1.81 (via Serial2/0.111): !

[OK - 4047 bytes]

Invalid Signature

www.it-ebooks.info

http://www.it-ebooks.info/

258 Tcl Scripting for Cisco IOS

*Mar 27 23:40:35.543: %SYS-6-SCRIPTING_TCL_INVALID_OR_MISSING_SIGNATURE: tcl

signing validation failed on script signed with trustpoint name TCLSecurity,

cannot run the signed TCL script.

The public certificate is stored locally in the router’s NVRAM and consequently is taking
up valuable memory space. You may find yourself in a situation where the IOS device is
running out of memory. To minimize the impact on NVRAM, you can use the service
compress-config command to reduce the certificate’s overhead on NVRAM:

PE11(config)#service compress-config

PE11(config)#end

PE11#write

Warning: Attempting to overwrite an NVRAM configuration previously written

by a different version of the system image.

Overwrite the previous NVRAM configuration?[confirm]

*Mar 27 23:47:45.323: %SYS-5-CONFIG_I: Configured from console by console

[confirm]

Building configuration...

Compressed configuration from 5689 bytes to 3535 bytes[OK]

Caution You might also need to erase the NVRAM and rewrite it, to further reduce the
amount of data stored in NVRAM. Do so with extreme caution, because you might lose
the entire configuration!

Instead of using a central TFTP server as a repository for Tcl scripts, you can use other
protocols to transmit the Tcl Scripts from a central server, including FTP, RCP, SCP,
HTTP, and HTTPS.

Summary

Ensuring that Tcl scripts have not been modified is critical to maintaining the integrity of
the network infrastructure. If a script is changed, the ramifications could be disastrous!
Fortunately, digitally signing a Tcl script is not a difficult task and offers a mechanism
from which you can be confident in the integrity of the script.

References

SUN public key infrastructure overview:
http://www.sun.com/blueprints/0801/publickey.pdf

OpenSSL documentation: http://www.openssl.org/docs/apps/openssl.html

Cygwin home page: http://www.cygwin.com/

Signed Tcl scripts:
http://www.cisco.com/en/US/docs/ios/12_4t/netmgmt/configuration/guide/sign_tcl.html

www.it-ebooks.info

http://www.sun.com/blueprints/0801/publickey.pdf
http://www.openssl.org/docs/apps/openssl.html
http://www.cygwin.com/
http://www.cisco.com/en/US/docs/ios/12_4t/netmgmt/configuration/guide/sign_tcl.html
http://www.it-ebooks.info/

Appendix A

Cisco IOS Tcl Commands Quick
Reference

This appendix includes only those Tcl commands specific to Cisco IOS. If a command is
not mentioned, it indicates the command acts identically in Cisco IOS Tcl as Tcl running
on other operating systems.

Tcl Cisco IOS Commands

The sections that follow describe the parameters, output, usage, and examples of Tcl
Cisco IOS commands.

hostname Command

Required parameters: None

Optional parameters: None

Returns: A string

Usage: Returns a string with the current Cisco IOS device hostname

Example:

Router(tcl)#hostname

Router

Note The hostname can only be retrieved, but not changed using hostname command.
Use the ios_config command to change the hostname.

www.it-ebooks.info

http://www.it-ebooks.info/

260 Tcl Scripting for Cisco IOS

ios_config Command

Required parameters: “configuration command”

Optional parameters: None

Returns: Nothing

Usage: Modify the Cisco IOS running-configuration using any valid configuration
command

Example:

Router(tcl)#ios_config “hostname Router”

log_user Command

Required parameters: None

Optional parameters: 0 or 1

Returns: The current value, either 0 or 1

Usage: Control whether Tcl displays the returned value for each command. If you want to
see the returned value, set log_user to 1 by entering log_user 1. If you do not want to
see the returned value for each command, set log_user to 0 by entering log_user 0. If
you want to display the current value of log_user and not modify it, enter log_user.

Example:

Router(tcl)#set a 100

100

Router(tcl)#log_user 0

0

Router(tcl)#set a 101

Router(tcl)#

Note For deeper levels of subcommands, simply continue to add additional commands in
a new set of quotation marks. For example:

Router(tcl)#ios_config “ip sla 1” “icmp-echo 10.2.3.4” “frequency 30” “end”

Router(tcl)#show running-config | begin ip sla

ip sla 1

icmp-echo 10.2.3.4

frequency 30

!

You should always complete the command sequence with the end statement. This will mini-
mize locking of the configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 261

snmp_getbulk Command

Required parameters: community_string, non_repeaters, max_repetitions oid

Optional parameters: oid2, oid3, ...

Returns: The value of SNMP Management Information Base (MIB) object values, with
Extensible Markup Language (XML) tags

Note The snmp commands were introduced in Cisco IOS Software Release 12.3.(7)T.

Usage: Query the local Cisco IOS router SNMP MIB object values, getting a large block
of data with a single command. The snmp_getbulk command speeds the process of gath-
ering MIB object data. The community_string variable acts as a primitive password
mechanism and needs to match the currently configure Simple Network Management
Protocol (SNMP) community string.

The parameter non_repeaters should be set to 0, and max_repetitions should be set to
the number of object identifiers (OIDs) you want to gather. Keep in mind that there is a
hard limit of 2700 characters of data retrieval. The oid is the SNMP object identifier to
be queried. XML tagging is used to clarify the OID number being returned with oid ver-
sus the actual contents being returned with val.

Example: Query a single OID:

Router(tcl)#snmp_getbulk public 0 10 ifDescr.0

{<obj oid=’ifDescr.1’ val=’Ethernet0/0’/>}

{<obj oid=’ifDescr.2’ val=’Ethernet0/1’/>}

{<obj oid=’ifDescr.3’ val=’Ethernet0/2’/>}

{<obj oid=’ifDescr.4’ val=’Ethernet0/3’/>}

{<obj oid=’ifDescr.5’ val=’Ethernet1/0’/>}

{<obj oid=’ifDescr.6’ val=’Ethernet1/1’/>}

{<obj oid=’ifDescr.7’ val=’Ethernet1/2’/>}

{<obj oid=’ifDescr.8’ val=’Ethernet1/3’/>}

{<obj oid=’ifDescr.9’ val=’Serial2/0’/>}

{<obj oid=’ifDescr.10’ val=’Serial2/1’/>}

Router(tcl)#

Example: Query multiple OIDs, start from middle of table instead of beginning:

Router(tcl)#snmp_getbulk public 0 4 ifDescr.6 ifSpeed.6

{<obj oid=’ifDescr.7’ val=’Ethernet1/2’/>}

{<obj oid=’ifSpeed.7’ val=’10000000’/>}

{<obj oid=’ifDescr.8’ val=’Ethernet1/3’/>}

{<obj oid=’ifSpeed.8’ val=’10000000’/>}

www.it-ebooks.info

http://www.it-ebooks.info/

262 Tcl Scripting for Cisco IOS

{<obj oid=’ifDescr.9’ val=’Serial2/0’/>}

{<obj oid=’ifSpeed.9’ val=’1544000’/>}

{<obj oid=’ifDescr.10’ val=’Serial2/1’/>}

{<obj oid=’ifSpeed.10’ val=’1544000’/>}

Router(tcl)#

snmp_getid Command

Required parameters: community_string

Optional parameters: None

Returns: The value of SNMP MIB object under the system branch

Usage: Query specific local Cisco IOS device SNMP MIB object values, which can be
used as a quick identifier for the IOS device. The values returned are System.1.0 through
System.6.0 from SNMPv2 MIB:

- — system (1) object Details

| |
| | -- sysDescr (1)

| |
| | -- sysObjectID (2)

| |
| + -- sysUpTime (3)

| |
| | -- sysContact (4)

| |
| | -- sysName (5)

| |
| | -- sysLocation (6)

The community_string variable acts as a primitive password mechanism and needs to
match the currently configure SNMP read community string.

Note At the time of this writing, SNMPv3 will not function and is currently being
addressed.

Example:

Router(tcl)#snmp_getid public

{<obj oid=’system.1.0’ val=’Cisco IOS Software, 2800 Software (C2800NM-ADVENTER-

PRISEK9-M), Version 12.3(14)T7, DEVELOPMENT TEST SOFTWARE

Technical Support: http://www.cisco.com/techsupport

Copyright (c) 1986-2007 by Cisco Systems, Inc.

Compiled Fri 29-Jun-07 22:48 by prod_rel_team’/>}

{<obj oid=’system.2.0’ val=’products.1’/>}

{<obj oid=’sysUpTime.0’ val=’5078’/>}

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 263

{<obj oid=’system.4.0’ val=’’/>}

{<obj oid=’system.5.0’ val=’Router’/>}

{<obj oid=’system.6.0’ val=’’/>}

Router(tcl)#

snmp_getnext Command

Required parameters: community_string, oid

Optional parameters: oid2, oid3, ...

Returns: The value of the next SNMP MIB object value

Usage: Query the local Cisco IOS router SNMP MIB object values, getting the next OID
value after the supplied OID. Allows for querying of one or more MIB objects at a time.
The community_string variable acts as a primitive password mechanism and needs to
match the currently configure SNMP community string. The oid is the SNMP object
identifier to be queried. XML tagging is used to clarify the OID number being returned
with oid versus the actual contents being returned with val.

Example: Query a single OID:

Router(tcl)#snmp_getnext public ifDescr.1

{<obj oid=’ifDescr.2’ val=’Ethernet0/1’/>}

Router(tcl)#

Example: Query multiple OIDs:

Router(tcl)#snmp_getnext public ifDescr.1 ifSpeed.1

{<obj oid=’ifDescr.2’ val=’Ethernet0/1’/>}

{<obj oid=’ifSpeed.2’ val=’10000000’/>}

Router(tcl)#

snmp_getone Command

Required parameters: community_string, oid

Optional parameters: oid2, oid3, ...

Returns: The value of the requested SNMP MIB object values, with XML tags

Usage: Query the local Cisco IOS router SNMP MIB object values, getting the value of
the requested OID. Allows for querying of one or more MIB objects at a time. The
community_string variable acts as a primitive password mechanism and needs to match
the currently configure SNMP community string. The oid is the SNMP object identifier
to be queried. XML tagging is used to clarify the OID number being returned with oid

versus the actual contents being returned with val.

Example: Query a single OID:

Router(tcl)#snmp_getone public ifDescr.1

{<obj oid=’ifDescr.1’ val=’Ethernet0/0’/>}

Router(tcl)#

www.it-ebooks.info

http://www.it-ebooks.info/

264 Tcl Scripting for Cisco IOS

Example: Query multiple OIDs:

Router(tcl)#snmp_getone public ifDescr.1 ifSpeed.1

{<obj oid=’ifDescr.1’ val=’Ethernet0/0’/>}

{<obj oid=’ifSpeed.1’ val=’10000000’/>}

Router(tcl)#

snmp_setany Command

Required parameters: community_string, oid, enter, val

Optional parameters: oid2, enter2, val2, ...

Returns: The new changed value of the specified SNMP MIB object values if successful-
ly changed; otherwise, an error message is generated.

Usage: Change the value of local Cisco IOS router SNMP MIB object values, if they can
be written. Allows for the changing of one or more MIB object at a time.

The community_string variable acts as a primitive password mechanism and needs to
match the currently configure SNMP community string. For a set to work properly, the
supplied community_string must be configured to allow write access, such as the RW
access string, which indicates read-write access. In addition, the individual OID that you
are attempting to change must also support write access. Not every MIB object supports
being written to or changed.

The oid is the SNMP object identifier to be changed.

The type parameter is one of the choices outlined in Table A-1.

Note The valid range can be further limited, depending on the specific MIB object defi-
nition.

Example: Change the value of a single-integer OID, change the state of an interface from
shutdown to up:

Router(tcl)#snmp_setany public ifAdminStatus.7 -i 1

{<obj oid=’ifAdminStatus.7’ val=’1’/>}

Router(tcl)#

*Jan 19 00:30:02.595: %LINK-3-UPDOWN: Interface Ethernet1/2, changed state to up

*Jan 19 00:30:03.595: %LINEPROTO-5-UPDOWN: Line protocol on Interface

Ethernet1/2, changed state to up

Router(tcl)#

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 265

Table A-1 snmp_setany Valid Types, Meanings, and Valid Ranges

Supplied Type Meaning Valid Range

-i 32-bit signed numeric value -2147483648 to 2147483647

-u 32-bit unsigned numeric value 0 to 4294967295

-c 32-bit unsigned numeric value,
must always increase

0 to 4294967295

-g 32-bit unsigned numeric value, can
increase or decrease

0 to 4294967295

-o Octet string, in hex, separated
by spaces and enclosed in “ ”

00 to FF

-ipv4 IPv4 address, separated by .
and enclosed in “ ”

0.0.0.0 to 255.255.255.255

-oid Object identifier, number
separated by . and enclosed in “ “

Any numeric values

Example: Change the value of a single display string OID, change the description of an
interface:

Router(tcl)#snmp_setany public ifAlias.1 -d “this is a new description for e0/0”

{<obj oid=’ifAlias.1’ val=’this is a new description for e0/0’/>}

Router(tcl)#show running-config interface ethernet 0/0

Building configuration...

Current configuration : 117 bytes

!

interface Ethernet0/0

description this is a new description for e0/0

no ip address

shutdown

no cdp enable

end

Router(tcl)#

tcl_trace Command

Required parameters: {variable | vdelete | vinfo}:

■ variable variable-name {r | w | u} command

■ vdelete variable-name {r | w | u} command

■ vinfo variable-name

Optional parameters: None

www.it-ebooks.info

http://www.it-ebooks.info/

266 Tcl Scripting for Cisco IOS

Returns:

■ tcl_trace variable: Returns nothing

■ tcl_trace vdelete: Returns nothing

■ tcl_trace vinfo: Returns one or more lists of commands that will be called when the
variable is accessed

Usage for tcl_trace variable: Calls a procedure when a variable is read, written, or unset.
The procedure can be used in debugging a Tcl script. If a large or complicated script is
being developed, insert tcl_trace in the script as needed. It will provide information
about the variable being accessed or changed.

Usage for tcl_trace vdelete: Delete the linkage to a procedure called when a variable is
read, written, or unset. Only the linkage previously created with the tcl_trace variable is
deleted, not the actual procedure.

Usage for tcl_trace vinfo: Show the linkage between a variable and what procedure will
be called when the variable is read, written, or unset. The return value contains one or
more lists. The first list, if present, shows the procedure called when the variable is read.
The second list, if present, shows the procedure called when the variable is written. The
third list, if present, shows the procedure called when the variable is unset.

Example: Create a user procedure whenever a variable is read, written, or unset, as fol-
lows.

This procedure will be called whenever the variable is read:

proc myReading {var1 var2 var3} {

Display the variable name being read:

#var1 will contain the variable name

#var3 will contain either “r” if $var1 is being read

“w” if $var1 is being written

or “u” if $var1 is being unset

if {[string eq $var3 “r”]} {puts “reading $var1”}

}

This procedure will be called whenever the variable is written:

proc myWriting {var1 var2 var3} {

Display the variable name being read:

#var1 will contain the variable name

#var3 will contain either “r” if $var1 is being read

“w” if $var1 is being written

or “u” if $var1 is being unset

if {[string eq $var3 “w”]} {puts “writing $var1”}

}

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 267

This procedure will be called whenever the variable is unset:

proc myUnset {var1 var2 var3} {

Display the variable name being read:

#var1 will contain the variable name

#var3 will contain either “r” if $var1 is being read

“w” if $var1 is being written

or “u” if $var1 is being unset

if {[string eq $var3 “u”]} {puts “unset $var1 “}

}

Now enter them into the Cisco IOS device in Tcl mode:

Router#tclsh

Router(tcl)#proc myReading {var1 var2 var3} {

+> if {[string eq $var3 “r”]} {puts “reading $var1”}

+>}

Router(tcl)#proc myWriting {var1 var2 var3} {

+> if {[string eq $var3 “w”]} {puts “writing $var1”}

+>}

Router(tcl)#proc myUnset {var1 var2 var3} {

+> if {[string eq $var3 “u”]} {puts “unset $var1 “}

+>}

Next, specify the variable to trace:

Router(tcl)#tcl_trace var a r myReading

Router(tcl)#

Router(tcl)#tcl_trace var a w myWriting

Router(tcl)#

Router(tcl)#tcl_trace var a u myUnset

You can now check which procedure will be called under what conditions:

Router(tcl)#tcl_trace vinfo a

{u myUnset} {w myWriting} {r myReading}

Next, read, write, and unset the variable:

Router(tcl)#set a 11

writing a

11

Router(tcl)#set b $a

reading a

11

Router(tcl)#unset a

unset a

www.it-ebooks.info

http://www.it-ebooks.info/

268 Tcl Scripting for Cisco IOS

Finally, delete one aspect of the tcl_trace linkage to the procedure:

Router(tcl)#tcl_trace vinfo a

{u myUnset} {w myWriting} {r myReading}

Router(tcl)#tcl_trace vdelete a r myReading

Router(tcl)#tcl_trace vinfo a

{u myUnset} {w myWriting}

Router(tcl)#

tclsh Command

Required parameters: None

Optional parameters: script_name

Returns: Execution of the script

Usage: Runs the specified Tcl script if included; otherwise, the interactive Tcl shell will
be invoked.

Example: The following example creates a Tcl script that sorts the interfaces and defines
an alias command to facilitate operation.

The script sorts the output of the show ip int brief command:

set a [split [exec “show ip int brief”] “\n”]

set b [lsort $a]

set c [llength $b]

set d 0

while {$d < $c} {

puts [lindex $b $d]

incr d

}

The alias command will minimize the number of characters required to run the command:

Router#configure terminal

Router(config)#alias exec sorted tclsh flash:INT_LIST.tcl

Router(config)#end

Router#sorted

GigabitEthernet0/0 192.168.0.186 YES NVRAM up up

GigabitEthernet0/1 10.0.0.1 YES NVRAM up down

Interface IP-Address OK? Method Status Protocol

Loopback0 192.168.254.254 YES NVRAM up up

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 269

Loopback1001 172.18.134.3 YES NVRAM up up

Serial0/0/0 10.101.101.1 YES NVRAM down down

Serial0/0/1 10.25.24.2 YES NVRAM down down

tclquit Command

Required parameters: None

Optional parameters: None

Returns: Nothing

Usage: Exits out of tclsh mode

Example:

Router(tcl)#tclquit

Router#

Note The exit command can be used as an alternative to tclquit.

typeahead Command

Required parameters: A string of characters enclosed in double quotes (“ ”)

Optional parameters: None

Returns: Nothing

Usage: Characters are inserted in front of the current cursor position.

Example: The following is a script that will clear the interface counters and automatically
type “enter” at the prompt:

typeahead “\n”

exec {clear counters}

The current cursor position has been prefilled with the text that was typed and passed
into the typeahead command. The file has been saved as CLEAR.tcl to the flash: file sys-
tem. On initiating the script, the counters are cleared:

Router#tclsh flash:CLEAR.tcl

Router#

000105: Feb 1 04:41:51.607: %CLEAR-5-COUNTERS: Clear counter on all interfaces

by rablair on vty1

Example: The following is a script that will delete a file provided as an input parameter to
the script and automatically type “enter” at each prompt:

www.it-ebooks.info

http://www.it-ebooks.info/

270 Tcl Scripting for Cisco IOS

typeahead “\n\n”

exec “delete [lindex $argv 0]”

The current cursor position has been prefilled with the text that was typed and passed
into the typeahead command. The file has been save as delete.tcl to the flash: file system.
On initiating the script, the file named “flash:test” is deleted:

Router#dir flash:test

Directory of flash:/test

8 -rw- 72 Apr 7 2010 02:41:32 +00:00 test

64008192 bytes total (4575232 bytes free)

Router#tclsh flash:delete.tcl flash:test

Router#dir flash:test

%Error opening flash:/test (File not found)

Router#

Cisco Tcl Default Variables

This section covers the variables with default values found only in the Tcl interpreter built
in to Cisco IOS Software. If a variable is not mentioned, it indicates the variable has the
same purpose in Cisco IOS Tcl as Tcl running on other operating systems.

sys_type Variable

Type: Array

Meaning: Contains the operating system information

Example contents:

Router(tcl)#array get sys_type

os ios

Router(tcl)#

tclDefaultLibrary Variable

Type: String

Meaning: Unused variable, can be ignored

Example contents:

Router(tcl)#puts $tclDefaultLibrary

NULL

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 271

Table A-2 tcl_traceExec Variable Numeric Values

tcl_traceExec Value Meaning

0 No debugging is displayed (the default).

1 Print the names of procedures as the are being called.

2 Print the name of any command being called and it is input vari-
ables.

3 Print the result of each byte-code being executed.

tcl_traceExec Variable

Type: Numeric

Meaning: Used for debugging Tcl scripts. If it is set to 2, it will display the Tcl command-
level debugging. If it is set to 3, it will show the operation of the Tcl script compilation
during script execution. Table A-2 outlines the different numeric values and their mean-
ings.

Example contents and usage:

Using the following script named count-to-one.tcl on the local storage of the Cisco IOS
device:

set b 2

set c 0

proc count {b c} {

while {$c < $b} {

puts “$c “

incr c

}

}

count $b $c

Set the tcl_traceExec to 0 and run the script as normal:

Router(tcl)#set tcl_traceExec 0

0

Router(tcl)#source flash:count-to-one.tcl

0

1

Router(tcl)#

www.it-ebooks.info

http://www.it-ebooks.info/

272 Tcl Scripting for Cisco IOS

Next, set tcl_traceExec to 2 and run the script. You can see the name of the procedure
(count) being executed:

Router(tcl)#set tcl_traceExec 1

1

Router(tcl)#source flash:count-to-one.tcl

Calling proc count

0

1

Router(tcl)#

Next, set tcl_traceExec to 2 and run the script. You can see the name of the procedure
(count) being executed and any Tcl command, such as puts:

Router(tcl)#set tcl_traceExec 2

2

Router(tcl)#source flash:count-to-one.tcl

Calling proc count

3: (15) invoking puts

0

3: (15) invoking puts

1

Router(tcl)#

Next, set tcl_traceExec to 3 and run the script. You can see the same information pro-
vided by setting tcl_traceExec to 2 and the results of Tcl byte-code compilation.
Variables are shown as they are being accessed. The output could be used to track down
problems with the byte-code compiler:

Router(tcl)#set tcl_traceExec 3

3

Router(tcl)#source flash:count-to-one.tcl

Calling proc count

3 : 0 (0) loadScalar1 1 # var “c”

3 : 1 (2) loadScalar1 0 # var “b”

3 : 2 (4) lt

3 : 1 (5) jumpFalse1 19 # pc 24

3 : 0 (7) push1 0 # “puts”

3 : 1 (9) loadScalar1 1 # var “c”

3 : 2 (11) push1 1 # “ “

3 : 3 (13) concat1 2

3 : 2 (15) invokeStk1 2

3: (15) invoking puts

0

3 : 1 (17) pop

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 273

3 : 0 (18) incrScalar1Imm 1 1

3 : 1 (21) pop

3 : 0 (22) jump1 -22 # pc 0

3 : 0 (0) loadScalar1 1 # var “c”

3 : 1 (2) loadScalar1 0 # var “b”

3 : 2 (4) lt

3 : 1 (5) jumpFalse1 19 # pc 24

3 : 0 (7) push1 0 # “puts”

3 : 1 (9) loadScalar1 1 # var “c”

3 : 2 (11) push1 1 # “ “

3 : 3 (13) concat1 2

3 : 2 (15) invokeStk1 2

3: (15) invoking puts

1

3 : 1 (17) pop

3 : 0 (18) incrScalar1Imm 1 1

3 : 1 (21) pop

3 : 0 (22) jump1 -22 # pc 0

3 : 0 (0) loadScalar1 1 # var “c”

3 : 1 (2) loadScalar1 0 # var “b”

3 : 2 (4) lt

3 : 1 (5) jumpFalse1 19 # pc 24

3 : 0 (24) push1 2 # ““

3 : 1 (26) done

Router(tcl)#

Tcl Variables Identical in IOS and Other Operating
Systems

This section contains variables found in IOS that might also be found in other operating
systems.

argc, argv, argv0 Variables

Type:

■ Numeric: argc

■ String: argv, argv0

Meaning: Provide access to arguments passed into the script as parameters. Parameters
make writing Tcl scripts more flexible because they allow the user to provide the input
data rather than hard-coding the data values. By using argument variables, you get access
to user input variables:

www.it-ebooks.info

http://www.it-ebooks.info/

274 Tcl Scripting for Cisco IOS

■ argc provides a count of how many arguments were passed in.

■ argv provides a string representation of all incoming arguments, not including the
name of the Tcl script.

■ argv0 provides access to the name of the Tcl script being executed, if the script is run
noninteractively.

Example contents and usage:

Use the following Tcl script named arg-demo.tcl on the local storage of the Cisco IOS
device:

puts “argc = $argc”

puts “argv = $argv”

puts “argv0 = $argv0”

Run the script from the Router# prompt, as follows:

Router#tclsh flash:arg-demo.tcl arg1 arg2 arg3

argc = 3

argv = arg1 arg2 arg3

argv0 = flash:arg-demo.tcl

Next, explore the same variables from within tclsh mode:

Router#tclsh

Router(tcl)#puts $argc

0

Router(tcl)#puts $argv

Router(tcl)#puts $argv0

tclsh

Router(tcl)#

tcl_interactive Variable

Type: Numeric

Meaning: Represents the current mode of operation, either interactive or noninteractive.
If the variable is 1, the user is in Tcl shell mode typing commands one by one. If the vari-
able is 0, the user is running a Tcl script directly with no user interaction. Changing the
value with set has no effect.

Example contents and usage:

If the following Tcl script named int.tcl is on the local storage of the Cisco IOS router

puts “tcl_interactive = $tcl_interactive”

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 275

You can execute the script from the Router# prompt:

Router#tclsh flash:int.tcl

tcl_interactive = 0

Explore the tcl_interactive variable from within tclsh mode:

Router#

Router(tcl)#puts $tcl_interactive

1

Note The output of 0 indicates that the script was initiated outside the Tcl shell, and an
output of 1 indicates the command was initiated from the Tcl shell.

tcl_patchlevel Variable

Type: String

Meaning: Shows the version of Tcl that is running. Currently, the latest version is 8.3.4.
The variable can be changed, but has no effect.

Example contents and usage:

TCL1(tcl)#puts $tcl_patchLevel

8.3.4

tcl_pkgPath Variable

This is an unused variable and can be ignored. Cisco IOS does not use this variable for
locating packages. See the section “Package Example” for a workaround for using pack-
ages with Cisco IOS.

Type: String

Meaning: Used to set the path that is searched looking for packages when a Tcl script
uses “package require.”

Example contents and usage:

TCL1(tcl)#puts $tcl_pkgPath

NULL

TCL1(tcl)#set tcl_pkgPath “flash:/TCL”

flash:/TCL

TCL1(tcl)#puts $tcl_pkgPath

flash:/TCL

TCL1(tcl)#

www.it-ebooks.info

http://www.it-ebooks.info/

276 Tcl Scripting for Cisco IOS

tcl_platform Variable

Type: Array

Meaning: Contains the operating system version, byte order, hardware, and operating
system information

Example contents and usage:

TCL1(tcl)#array get tcl_platform

osVersion 12.4 byteOrder bigEndian machine Router platform ios os {Cisco IOS}

user Cisco

tcl_version Variable

Type: String

Meaning: Shows the version of Tcl that is running. Currently, the latest version of Tcl that
is supported in Cisco IOS is 8.3.4. The variable can be changed, but has no effect.

Example contents and usage:

Router(tcl)#puts $tcl_version

8.3

Package Background

In a Tcl interpreter running in a UNIX environment, you can use the package command
to automatically load packages of Tcl code as needed. The purpose of the package sys-
tem is to allow modular code and code reuse. Groups of logically related procedures can
all be combined into one package. By combining functions together in a package, the
code author can quickly build a library of functions that can be easily inserted into
programs as needed.

In addition to the code grouping, it provides the benefit of code versioning. Packages
specify what version of code they provide. It is typically represented as major-

version.minor-version. Because the code might change over time, every modification
can be tracked with a new version number. If the change is internal only and does not
impact the incoming parameters used, the author might increment the minor version from
1.0 to 1.1. If a major change is done to the package, such that the incoming parameters are
modified, it is wise to increment the major version from 1.1 to 2.0. Another reason to
increment the major version is the removal or addition of procedures.

Code that provides functionality can declare the package name it provides with a call to
the package command:

package provide packagename major.minor

To include a package in a Tcl script, use the following command syntax:

package require packagename

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 277

If a Tcl script requires a particular version of a package, you can specify the version:

package require packagename major.minor

Package Example

In this example, you will create packages to compute the area of different shapes. The
packages are each in separate files, one for a circle, triangle, and a square. Whenever you
are writing a Tcl script that needs to deal with circle computations, you can simply
include the circle library with a call to package require circle. If the Tcl script is modified
to later handle squares, you can make a call to package require square. In this way, you
can have modular Tcl scripts that allow for code to be reused.

When building a package, it is a good practice to create the procedures in their own
namespace. Any new procedures and variables being defined by the package should not
be in the global namespace. That way it avoids naming collisions which could lead to
errors.

You now write the packages for computing the area of different shapes, in separate files
named circle.tcl, square.tcl, and triangle.tcl.

Circle.tcl Script

The circle.tcl script is as follows:

package provide circle 1.0

Create the namespace:

namespace eval ::circle {

Export commands:

namespace export circle

}

proc ::circle::area {radius} {

set pi 3.14159265

return [expr $pi * $radius * $radius]

}

Square.tcl Script

The square.tcl script is as follows:

package provide square 1.0

Create the namespace:

namespace eval ::square {

www.it-ebooks.info

http://www.it-ebooks.info/

278 Tcl Scripting for Cisco IOS

Export commands:

namespace export square

}

proc ::square::area {height} {

return [expr $height * $height]

}

Triangle.tcl Script

The triangle.tcl script is as follows:

package provide triangle 1.0

Create the namespace:

namespace eval ::triangle {

Export commands:

namespace export triangle

}

proc ::triangle::area {base height} {

return [expr 0.5 * $base * $height]

}

Creating the pkgIndex.tcl Script

Now that you have written the three package files, you can create a pkgIndex.tcl script.
This allows the Tcl command package require to find the correct Tcl scripts.

In this example, you will perform the steps in a UNIX environment, because of some lim-
itations of the Tcl interpreter in Cisco IOS, which are discussed later.

To create the pkgIndex.tcl file, make sure to start tclsh in the same directory where you
have created circle.tcl, square.tcl, and triangle.tcl:

<sjc-lds-019$~/tcl/mypackages>% ls

circle.tcl square.tcl triangle.tcl

Enter the Tcl interpreter:

<sjc-lds-019$~/tcl/mypackages>% tclsh

%

Now you will create the pkgIndex.tcl script with the Tcl command pkg_mkIndex. The
only required parameter is the directory path. If needed, you could specify a pattern to

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 279

search for. However, in this case, you accept the default and allow all packages to be
created:

% pkg_mkIndex .

% ls

circle.tcl pkgIndex.tcl square.tcl triangle.tcl

%

The following shows the contents of the newly created pkgIndex.tcl:

package ifneeded circle 1.0 [list source [file join $dir circle.tcl]]

package ifneeded square 1.0 [list source [file join $dir square.tcl]]

package ifneeded triangle 1.0 [list source [file join $dir triangle.tcl]]

The Tcl package index file, version 1.1 is generated by the pkg_mkIndex command and
sourced either when an application starts up or by a package unknown script. It invokes
the package ifneeded command to set up package-related information. Consequently,
packages will be loaded automatically in response to package require commands. When
this script is sourced, the variable $dir must contain the full path name of this file’s direc-
tory.

To use the file to automatically load the correct package, use the auto_path global vari-
able command. The auto_path variable should point to one directory level higher than
the directory containing pkgIndex.tcl. The pkgIndex.tcl is located in
/users/mydir/tcl/packages directory. Make sure the auto_path is set correctly:

% set auto_path “/users/mydir/tcl”

/users/mydir/tcl

%

The Tcl shell will automatically search all subdirectories below the auto_path level to
check for packages. To verify what packages are currently available, use the following
command:

% package names

Tcl

%

As expected, the Tcl package is the only one that is currently available and is built in to
the Tcl interpreter.

Now that you have created pkgIndex.tcl and set auto_path correctly, you can load the
circle package. Use the package require command to require the Tcl interpreter to auto-
matically use pkgIndex.tcl to find it:

% package require circle

1.0

%

www.it-ebooks.info

http://www.it-ebooks.info/

280 Tcl Scripting for Cisco IOS

As you can see, the circle package has been successfully loaded, and Tcl confirms the
version that was loaded. To verify what package names are available, use the following
command:

% package names

square triangle circle Tcl

%

The Tcl shell has now become aware of all the packages you created. To use a function
within the circle package, use the following command:

% ::circle::area {6}

113.0973354

%

Using Packages in Cisco IOS

In Cisco IOS, a few limitations apply to packages:

■ First, the auto_path is ignored in Cisco IOS. When package require is entered in the
Cisco IOS Tcl shell, it will not search subdirectories below the auto_path, as was the
case in the UNIX Tcl shell.

■ Another issue that occurs in Cisco IOS Tcl shell is that the Tcl command
pkg_mkIndex is not available. As a result of this limitation, you have to create the
pkgIndex.tcl file in a UNIX environment, and then copy the pkgIndex.tcl from UNIX
over to Cisco IOS.

■ You also need to modify the pkgIndex.tcl file slightly to point to the local storage
directory of the Cisco IOS router where the package files are going to be stored.

■ Finally, you make use of a Cisco IOS config command to have the packages automati-
cally made available.

This section demonstrates how to load the packages created earlier into a Cisco IOS envi-
ronment.

Decide the path on the Cisco router where the packages will be stored. In this case, you
will store them in the flash:/packages/ directory. Now modify the previously generated
pkgIndex.tcl to contain the directory variable.

The Tcl package index file, version 1.1, is generated by the pkg_mkIndex command and
sourced either when an application starts or by a package unknown script. It invokes the
package ifneeded command to set up package-related information. Packages will be
loaded automatically in response to the package require commands. When the script is
sourced, the variable $dir must contain the full pathname of this file’s directory:

set dir “flash:/package/”

package ifneeded circle 1.0 [list source [file join $dir circle.tcl]]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 281

package ifneeded square 1.0 [list source [file join $dir square.tcl]]

package ifneeded triangle 1.0 [list source [file join $dir triangle.tcl]]

Copy all three packages and pkgIndex.tcl to the Cisco IOS device to the flash:/package/
directory. After you have done so, you can enter a configuration command into Cisco
IOS to load the pkgIndex.tcl script, whenever the Tcl interpreter is started:

Router#config terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#scripting tcl init flash:/package/pkgIndex.tcl

Router(config)#end

Router#

Start the Tcl shell and verify which packages are available:

Router#tclsh

Router(tcl)#package names

square tbcload triangle circle Tcl

Router(tcl)#

To verify that you can call a procedure from within the newly added packages, use the
following command:

Router(tcl)#package require square

1.0

Router(tcl)#::square::area { 5 }

25

Router(tcl)#

By following the preceding steps, you can successfully use packages with the Cisco IOS
Tcl shell.

load Command Removed in Cisco IOS

In Cisco IOS, Tcl does not support the load command to extend the Tcl interpreter. In
UNIX, compiled C language functions can be loaded into the Tcl shell. The reason for the
removal in Cisco IOS is due to the lack of dynamic linking and the security implications
of combining C code in the Tcl interpreter. As a result, the load functionality has been
disabled in Cisco IOS. Using the load command results in an error message, as shown
here:

Router(tcl)#load myfile

dynamic loading is not currently available on this system

Router(tcl)#

www.it-ebooks.info

http://www.it-ebooks.info/

282 Tcl Scripting for Cisco IOS

Compiling Tcl Scripts into Byte-Codes

The Tcl interpreter in Cisco IOS supports the use of byte-code compiled scripts. Tcl
scripts consist of interpreted commands that can run on many different platforms, conse-
quently, machine-independent byte-code was developed to allow compilation to take
place on one machine and then later execute the code on another machine.

The only advantage to compiling the Tcl script is to hide the implementation details of a
Tcl script. Compiling byte-code helps limit access to the implantation details or source
code to the original author’s Tcl script.

If you develop a script and want to distribute it without revealing the contents, compil-
ing will reduce the chance that others can see the script. This is not foolproof. A deter-
mined hacker could possibly derive the original Tcl code from the compiled byte-code
version.

There is no significant performance gained at runtime by converting Tcl scripts to byte-
code.

To compile your Tcl script to byte-code format, obtain the free TCLPro compiler along
with the optional C language development kit. As of this writing, it is available from two
websites:

http://www.tcl.tk/software/tclpro/eval

http://sourceforge.net/projects/tclpro/files

If you are using Windows as a development platform, obtain version 1.5, because it does
not have a license check. Do not obtain the ActiveState version; it will produce byte-code
that is incompatible with Cisco IOS.

Note TCLPro 1.5 is also supported on Solaris and Linux.

Install tclpro141.exe and the optional C language development kit file named tcl-
prodev141.zip. Once installed, enter a command prompt and set the current directory to
the location of the Tcl script you want to compile. The following example compiles the
simple script named count-to-ten.tcl, the contents of which are as follows:

set b 11

set c 0

while {$c < $b} {

puts “$c “

incr c

}

www.it-ebooks.info

http://www.tcl.tk/software/tclpro/eval
http://sourceforge.net/projects/tclpro/files
http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 283

Invoke the Tcl byte-code compiler:

C:\Documents and Settings\user\My Documents\tcl\book>procomp count-to-ten.tcl

TclPro Compiler -- Version 1.4.1

Copyright (C) Ajuba Solutions 1998-2010. All rights reserved.

This product is registered to: John Lautmann

C:\Documents and Settings\user\My Documents\tcl\book>dir count-to-ten.*

Volume in drive C is System

Volume Serial Number is 8C49-4519

Directory of C:\Documents and Settings\user\My Documents\tcl\book

01/24/2010 11:30 PM 445 count-to-ten.tbc

01/24/2010 11:28 PM 87 count-to-ten.tcl

2 File(s) 532 bytes

0 Dir(s) 120,945,922,048 bytes free

C:\Documents and Settings\user \My Documents\tcl\book>

A new file has now been created, with the same name as the original script, but ending in
a .tbc extension rather than a .tcl extension.

Here are the contents of count-to-ten.tbc. Note that this is unreadable code:

TclPro::Compiler::Include

if {[catch {package require tbcload 1.3} err] == 1} {

error “The TclPro ByteCode Loader is not available or does not support the

correct version”

}

tbcload::bceval {

TclPro ByteCode 1 0 1.3 8.3

5 0 43 7 1 0 20 1 3 5 5 -1 -1

43

w0E<!:B`W!;btt!1#T=!-c,8-<E`<!5#|Tv0|8X!E?cW*.msrj(3!!
5

6SLm#-!

5

WT#mw%!

7

x

1

.v

i

11

x

1

www.it-ebooks.info

http://www.it-ebooks.info/

284 Tcl Scripting for Cisco IOS

/v

i

0

x

4

DP)*F

x

1

A!

x

0

1

L 1 21 16 40 12 -1

0

}

You transfer both files to the Cisco IOS router and verify they both work correctly:

Router(tcl)#source flash:count-to-ten.tcl

0

1

2

3

4

5

6

7

8

9

10

Router(tcl)#source flash:count-to-ten.tbc

0

1

2

3

4

5

6

7

8

9

10

Router(tcl)#

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A: Cisco IOS Tcl Commands Quick Reference 285

Both scripts provide identical results. If you look at the contents of count-to-ten.tbc, you
can see the contents are unreadable. As you can see using the TCLPro byte-code compil-
er, it enables you to easily hide the contents of any Tcl script and still be able to run the
script on a Cisco IOS device.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

actions, creating for EEM
applets, 70

adding ESM Tcl script filters,
137–139

append command, 13

applets (EEM), writing, 66–70

examples, 70, 72–74
default route monitoring, 83,

85–87
IP SLA route failover,

74–81, 83
NAT, 88–96

applications

MPLS VPN, writing, 191–217,
219–228

remote SNMP graphing, creating,
236–240

web server, configuring, 190

writing
description, 189–190
flowchart, creating, 184–185
pseudo-code, 187–188
user interface, designing,

185–186

argc variable, 273–274

argv variable, 273–274

argv0 variable, 273–274

array command, 24–26

arrays, 24–26

asymmetric encryption, 244

autoRefresh, displaying IP SLA
measurement results, 174–176

B-C

building packages, example,
277–278

certificates, generating, 250

Circle.tcl script, building
packages, 277

Cisco Beyond search engine,
147–150

Cisco IOS Exec-Mode Parser, 34–35

Cisco IOS software

embedded web server, 144–147
reverse engineering, 149–152
web page, creating, 152–160

EMM, 5, 8, 1391–144

www.it-ebooks.info

http://www.it-ebooks.info/

IP SLA, 160–162
entries, creating\removing,

170–174
measurements, adding to web

page, 162–174
measurements, displaying

results with autoRefresh,
174–176

packages, 280–281

subfacility, 112

syslog server parameters,
configuring, 113–116

Tcl interpreter, 34

Tcl restrictions, 4–5

clear command, 181–182

code versioning, 276

command substitution, 14

commands

append, 13

array, 24–26

clear, 181–182

entering into Tcl command
interpreter, 35–38

for, 22–23

foreach, 23

hostname, 259

if, 26–27

incr, 13–14

ios_config, 260

lappend, 18

lindex, 18

linsert, 18

llength, 19

log_user, 260

lrange, 20

lreplace, 20

lsearch, 19–20

lsort, 20–21

package, 276

pkg_mkIndex, 278

proc, 21

service compress-config, 258

snmp_getany, 264–265

snmp_getbulk, 261–262

snmp_getid, 262–263

snmp_getnext, 263

snmp_getone, 263

switch, 27

tclquit, 269

tclsh, 33, 268–269

tcl_trace, 265–268

typeahead, 269–270

while, 23

compile programming language, 1

compiling Tcl scripts into byte-codes,
282–285

confidentiality with PKI, 244–245

configuring

syslog servers
parameters, 113–116
writing to files, 124–128, 130

web servers for applications, 190

copying Tcl scripts to Cisco IOS
device, 38–41

CPU utilization checking, EEM
example, 104–109

creating

flowcharts, 184–185

pkgIndex.tcl script, 278–280

D

default route monitoring, EEM applet
example, 83–87

description of application, writing,
189–190

288 Cisco IOS software

www.it-ebooks.info

http://www.it-ebooks.info/

digital signatures

signing Tcl scripts, 247–248
certificate, generating, 250
key pairs, generating, 248–249
myscript signature, formatting,

251, 253–256
myscript signature, generating,

250–251
with PKI, 245–246

displaying

EEM policies, 96

ESM Tcl script filters, 137–139

distribution of Tcl scripts, scaling,
257–258

E

EEM (Embedded Event Manager), 4

applets
examples, 70–96
writing, 66–70

Cisco IOS support, 5, 8

event detectors, 57–59
software release support,

60–65
policies, 56

displaying, 96
programming with Tcl, 97–98
script refresh policy, 177–178

scripts, examples
checking CPU utilization,

104–109
checking for interface errors,

98–104
EEM server, 56

embedded web server (Cisco IOS),
144–147

reverse engineering, 149–152

web pages
creating, 152–157
IP SLA measurements, adding,

162–174

IP SLA measurements,
displaying with autoRefresh,
174–176

user input, adding, 157–160
EMM (Embedded Menu Manager),

139–144

enabling SNMP on Cisco IOS device,
47

ESM (Embedded Syslog
Manager), 130

filters, displaying/adding,
137–139

global variables, 134–135

syslog messages
filtering, 130–134
rebuilding from components,

136–137
event detectors, 57–65

event triggers (EEM), object tracking
as, 69

events

multi-event correlation support,
180–181

SNMP proxy event detector, 178

examining Cisco IOS device
configuration with Tcl, 41–43

examples

of EEM applets, 70, 72–74
default route monitoring,

83–87
IP SLA route failover,

74–81, 83
NAT, 88–96

of EEM scripts
CPU utilization, checking,

104–109
interface errors, checking for,

98–104
of MPLS VPN application, writing

code, 190–228

of package building, 277–278

of syslog scripts, 116–121

examples 289

www.it-ebooks.info

http://www.it-ebooks.info/

F

fetching Tcl scripts from remote
device, 41

files, 28–30

filtering syslog messages, 130–134

filters (ESM), adding/displaying,
137, 139

flowcharts, creating, 184–185

for command, 22–23

foreach command, 23

formatting myscript signature, 251,
253–256

G-H-I

global ESM variables, 134–135

GOLD (Generic Online Diagnostics)
event detector, 58

hostname command, 259

HTTP server application, obtaining,
147–150

if command, 26–27

incr command, 13–14

interface error checking, EEM
example, 98–104

interpreted programming language, 1–2

ios_config command, 260

IP SLA (service-level agreement),
160–162

entries, creating\removing, 170–174

measurements
adding to web page, 162–174
results, displaying with

autoRefresh, 174–176
route failover, EEM applet example,

74–81, 83

J-K-L

key pairs, generating,
248–249

lappend command, 18

lereplace command, 20

limitations of packages in
Cisco IOS, 280

lindex command, 18

linsert command, 18

lists, 17

lappend command, 18

lindex command, 18

linsert command, 18

llength command, 19

lrange command, 20

lreplace command, 20

lsearch command, 19–20

lsort command, 20–21

llength command, 19

loading packages in Cisco IOS,
280–281

log_user command, 260

lrange command, 20

lsearch command, 19–20

lsort command, 20–21

M

measuring performance with IP SLA,
160–176

messages, syslog, 112

filtering, 130–134

sending to a file,
121–130

MIBs, 44–47

290 fetching Tcl scripts from remote device

www.it-ebooks.info

http://www.it-ebooks.info/

modifying

Cisco IOS device configuration with
SNMP, 51–53

router configuration with Tcl, 43

monitoring IOS device console,
233–236

MPLS VPN application, writing,
191–228

multi-event correlation support,
180–181

myscript signature

formatting, 251–256

generating, 250–251

N-O

NAT (network address translation),
EEM applet example, 88–96

network problems, troubleshooting,
230–232

IOS device console, monitoring,
233–236

NMS tools, 8

object tracking as event trigger
(EEM), 69

obtaining free web server application,
147–150

Ousterhout, John K., 1

P

package command, 276

packages

building, example, 277–278

limitations in Cisco IOS, 280

loading in Cisco IOS, 280–281

performance, measuring with IP SLA,
160–161

adding measurements to web page,
162–174

displaying results with autoRefresh,
174–176

pkgIndex.tcl script, creating, 278–280

pkg_mkIndex command, 278

PKI, 243–244

confidentiality, 244–245

digital signatures, 245–246
signing Tcl scripts, 248–256

policies (EEM), 56

displaying, 96

programming with Tcl, 97–98

script refresh policy, 177–178

procedures, 21

for command, 22–23

foreach command, 23

while command, 23

proc command, 21

programming EEM policies, 97–98

pseudo-code, writing, 187–188

Q-R

querying Cisco IOS device
configuration with SNMP, 48–51

rebuilding syslog messages from its
components, 136–137

regular expressions, 20

remote SNMP graphing web applica-
tion, creating, 236–240

removing IP SLA entries, 170–174

restrictions of Tcl in IOS, 4–5

reverse engineering embedded Cisco
IOS web server, 149–152

router configuration, modifying with
Tcl, 43

RPC requests, 179–180

RPC requests 291

www.it-ebooks.info

http://www.it-ebooks.info/

S

scaling Tcl script distribution,
257–258

scenarios, Tcl script failure, 256–257

scope creep, 9

script refresh policy, 177–178

scripts

clearing, 181–182

compiling into byte-codes, 282–285

copying to Cisco IOS device, 38–41

example syslog script, 116–121

failure scenario, 256–257

fetching from remote device, 41

search engines, Cisco Beyond, 147–150

security

digital signatures, signing Tcl scripts,
247–256

PKI, 243–244
confidentiality, 244–245
digital signatures, 245–246

sending syslog messages to a file,
121–130

service compress-config command,
258

severity levels, syslog, 112

show commands, creating web pages,
154–157

signing Tcl scripts with digital
signatures, 247–248

certificate, generating, 250

key pairs, generating, 248–249

myscript signature, formatting,
251–256

myscript signature, generating,
250–251

silent drops, 8

SNMP (Simple Network Management
Protocol), 44–47

Cisco IOS device configuration,
modifying, 51–53

Cisco IOS device configuration,
querying, 48–51

enabling on Cisco IOS device, 47

MIB variables, checking, 44

proxy event detectors, 178

snmp_getany command, 264–265

snmp_getbulk command, 261–262

snmp_getid command, 262–263

snmp_getnext command, 263

snmp_getone command, 263

software release support for EEM,
60–65

square.tcl script, building
packages, 277

storing variables, 12

subfacility, 112

substituting commands, 15–17

switch command, 27

syslog, 112

ESM
filters, adding/displaying,

137–139
global variables, 134–135
messages, filtering, 130–134

messages, 112
rebuilding from its compo-

nents, 136–137
sending to a file, 121–128, 130

server parameters, configuring,
113–116

sys_type variable, 270

T

Tcl

Cisco IOS device configuration,
examining, 41–43

IOS restrictions, 4–5

292 scaling Tcl script distribution

www.it-ebooks.info

http://www.it-ebooks.info/

Tcl byte-code compiler, compiling
scripts into byte-codes, 283–285

Tcl interpreter, 34

Cisco IOS commands, entering,
35–38

Cisco IOS Exec-Mode Parser, 34–35

Tcl scripts. See scripts

Tcl shell, Cisco IOS Exec-Mode
Parser, 34–35

tclDefaultLibrary variable, 270

tclquit command, 269

tclsh command, 33, 268–269

tcl_interactive variable, 274–275

tcl_patchlevel variable, 275

tcl_pkgPath variable, 275

tcl_platform variable, 276

tcl_tracecommand, 265–268

tcl_TraceExec variable, 271–273

tcl_version variable, 276

Tk (Tool Kit), 2

triangle.tcl script, building
packages, 278

troubleshooting

network problems, 230–236

Tcl, 8

typeahead command, 269–270

U-V

user input, adding to web page,
157–160

user interface

creating for application, 185–186

designing, 185–186

variables, 12

argc, 273–274

argv, 273–274

argv0, 273–274

storing, 12

substituting, 15–17

sys_type, 270

tclDefaultLibrary, 270

tcl_interactive, 274–275

tcl_patchlevel, 275

tcl_pkgPath, 275

tcl_platform, 276

tcl_traceExec, 271–273

tcl_version, 276

viewing, 13

verifying creation of files, 29

viewing variables, 13

W

web application for remote SNMP
graphing, creating, 236–240

web pages

creating with embedded Cisco IOS
web server, 152–157

IP SLA measurements
adding, 162, 164–174
results, displaying with

autoRefresh, 174–176
user input, adding, 157–160

web servers

configuring for application, 190

embedded Cisco IOS web server
reverse engineering, 149–152
web page, creating, 152–160

free applications, obtaining, 147–150

Tcl as, 144–147

while command, 23

writing

applications
description, 189–190
pseudo-code, 187–188

writing 293

www.it-ebooks.info

http://www.it-ebooks.info/

EEM applets, 66–68
actions, 70
object tracking as event

trigger, 69
MPLS VPN application code,

191–228

X-Y-Z

XML

EMM, 139–144

RPC requests, 179–180

294 writing

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents
	Introduction
	Chapter 1 The Origin of Tcl
	Tcl and Cisco IOS Software
	Embedded Event Manager and Tcl
	Restriction of Tcl in IOS
	Tcl with EEM Support in IOS

	Using Tcl Scripts in the Network
	Troubleshooting Problems
	Monitoring the Network
	Adding Intelligence to Cisco IOS Protocols

	Summary
	References

	Chapter 2 Tcl Interpreter and Language Basics
	Simple Variables in Tcl
	Storing Variables
	Viewing Variables
	The append Command
	The incr Command
	Representation of Variables in Tcl
	Lists

	Procedures
	for Command
	foreach Command
	while Command

	Arrays
	if Command
	switch Command
	Files
	Summary
	References

	Chapter 3 Tcl Functioning in Cisco IOS
	Understanding the Tcl Interpreter in Cisco IOS
	Using Cisco IOS Exec-Mode Parser in the Tcl Shell
	Entering an IOS Command into the Tcl Command Interpreter

	Using Tcl to Enter Commands
	Copying a Tcl Script to a Cisco IOS Device
	Fetching a Cisco IOS Tcl Script from a Remote Device

	Using Tcl to Examine the Cisco IOS Device Configuration
	Using Tcl to Modify the Router Configuration
	Using Tcl with SNMP to Check MIB Variables
	Other Uses of SNMP
	Enabling SNMP on a Cisco IOS Device
	Querying the Configuration of a Cisco IOS Device Using SNMP
	Modifying the Configuration of a Cisco IOS Device Using SNMP

	Summary
	References

	Chapter 4 Embedded Event Manager (EEM)
	EEM Architecture
	Policies
	EEM Server
	Event Detectors

	Software Release Support for EEM
	Platform and IOS Considerations for EEM

	Writing an EEM Applet
	Practical Example of an Event Trigger
	Using Object Tracking as an Event Trigger
	Creating Applet Actions
	Examples of EEM Applets

	Using EEM and Tcl Scripts
	Programming Policies with Tcl
	Tcl Example Used to Check for Interface Errors
	Tcl Example Used to Check the CPU Utilization

	Summary
	References

	Chapter 5 Advanced Tcl Operation in Cisco IOS
	Introduction to the Syslog Protocol
	Configuring Syslog Server Parameters in Cisco IOS
	Syslog Tcl Script Example
	Syslog Tcl Script Sample Output

	Sending Syslog Messages to a File
	Syslog Server Script Procedures
	Syslog Server Script Body

	Putting the Syslog Script into Operation
	Introduction to Embedded Syslog Manager
	Filtering Syslog Messages
	ESM Global Variables
	Rebuilding a Syslog Message from Its Components
	Displaying/Adding ESM Tcl Script Filters

	Introduction to Embedded Menu Manager
	Using Tcl as a Web Server
	Obtaining a Free Web Server Application
	Reverse Engineering the Web Server
	Creating Your Own Simple Web Page
	Creating a Web Page Using IOS show Commands
	Adding User Input to the Web Page

	Introduction to IP SLA
	Adding the IP SLA Measurement to the Web Page

	Tcl Script Refresh Policy
	SNMP Proxy Event Detector
	Remote-Procedure Call Requests
	Multiple-Event Support for Event Correlation
	Using the clear Command
	Summary
	References

	Chapter 6 Tcl Script Examples
	Creating an Application from Start to Finish
	Determine What You Want to Accomplish
	Creating a Flowchart
	Deciding What the User Interface Should Look Like
	Write the Code in Pseudo-Code
	Before You Begin
	Starting to Program the Application
	Troubleshooting as You Go

	Using Tcl to Troubleshoot Network Problems
	Monitoring the Console for Events

	Creating a Web Application for Remote SNMP Graphing
	Summary
	References

	Chapter 7 Security in Tcl Scripts
	Introduction to PKI Infrastructure
	PKI Prerequisite
	Confidentiality with PKI
	Digital Signatures with PKI

	Using Digital Signatures to Sign a Tcl Script
	Step 1: Decide on the Final Tcl Script Contents (Myscript)
	Step 2: Generate a Public/Private Key Pair
	Step 3: Generate a Certificate with the Key Pair
	Step 4: Generate a Detached S/MIME pkcs7 Signature for Myscript Using the Private Key
	Step 5: Modify the Format of the Signature to Match the Cisco Style for Signed Tcl Scripts and Append It to the End of Myscript

	Tcl Script-Failure Scenario
	Scaling Tcl Script Distribution
	Summary
	References

	Appendix A: Cisco IOS Tcl Commands Quick Reference
	Index
	A
	B-C
	D
	E
	F
	G-H-I
	J-K-L
	M
	N-O
	P
	Q-R
	S
	T
	U-V
	W
	X-Y-Z

