
1/5

tm manual page - Tcl Built-In Commands
tcl.tk/man/tcl/TclCmd/tm.htm

NAME

tm 4 Facilities for locating and loading of Tcl Modules

SYNOPSIS

::tcl::tm::path add ?path...?
 ::tcl::tm::path remove ?path...?

 ::tcl::tm::path list
 ::tcl::tm::roots paths

DESCRIPTION

This document describes the facilities for locating and loading Tcl Modules (see MODULE
DEFINITION for the definition of a Tcl Module). The following commands are supported:
::tcl::tm::path add ?path...?
The paths are added at the head to the list of module paths, in order of appearance. This
means that the last argument ends up as the new head of the list.
The command enforces the restriction that no path may be an ancestor directory of any
other path on the list. If any of the new paths violates this restriction an error will be
raised, before any of the paths have been added. In other words, if only one path
argument violates the restriction then none will be added.

If a path is already present as is, no error will be raised and no action will be taken.

Paths are searched later in the order of their appearance in the list. As they are added to
the front of the list they are searched in reverse order of addition. In other words, the
paths added last are looked at first.

::tcl::tm::path remove ?path...?
Removes the paths from the list of module paths. The command silently ignores all paths
which are not on the list.

::tcl::tm::path list
Returns a list containing all registered module paths, in the order that they are searched
for modules.

::tcl::tm::roots paths
Similar to path add, and layered on top of it. This command takes a single argument
containing a list of paths, extends each with <tclX/site-tcl=, and <tclX/X.y=, for major
version X of the Tcl interpreter and minor version y less than or equal to the minor version
of the interpreter, and adds the resulting set of paths to the list of paths to search.
This command is used internally by the system to set up the system-specific default
paths.

https://www.tcl.tk/man/tcl/TclCmd/tm.htm

2/5

The command has been exposed to allow a build system to define additional root paths
beyond those described by this document.

MODULE DEFINITION

A Tcl Module is a Tcl Package contained in a single file, and no other files required by it.
This file has to be sourceable. In other words, a Tcl Module is always imported via:

source module_file

The load command is not directly used. This restriction is not an actual limitation, as
some may believe. Ever since 8.4 the Tcl source command reads only until the first ^Z
character. This allows us to combine an arbitrary Tcl script with arbitrary binary data into
one file, where the script processes the attached data in any it chooses to fully import and
activate the package.

The name of a module file has to match the regular expression:

([_[:alpha:]][:_[:alnum:]]*)-([[:digit:]].*)\.tm

The first capturing parentheses provides the name of the package, the second clause its
version. In addition to matching the pattern, the extracted version number must not raise
an error when used in the command:

package vcompare $version 0

FINDING MODULES

The directory tree for storing Tcl modules is separate from other parts of the filesystem
and independent of auto_path.
Tcl Modules are searched for in all directories listed in the result of the command
::tcl::tm::path list. This is called the Module path. Neither the auto_path nor the
tcl_pkgPath variables are used. All directories on the module path have to obey one
restriction:

For any two directories, neither is an ancestor directory of the other.

This is required to avoid ambiguities in package naming. If for example the two directories
<foo/= and <foo/cool= were on the path a package named cool::ice could be found via the
names cool::ice or ice, the latter potentially obscuring a package named ice, unqualified.

Before the search is started, the name of the requested package is translated into a
partial path, using the following algorithm:

All occurrences of <::= in the package name are replaced by the appropriate directory
separator character for the platform we are on. On Unix, for example, this is </=.

Example:

https://www.tcl.tk/man/tcl/TclCmd/source.htm
https://www.tcl.tk/man/tcl/TclCmd/load.htm
https://www.tcl.tk/man/tcl/TclCmd/source.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm

3/5

The requested package is encoding::base64. The generated partial path is
<encoding/base64=.

After this translation the package is looked for in all module paths, by combining them
one-by-one, first to last with the partial path to form a complete search pattern. Note that
the search algorithm rejects all files where the filename does not match the regular
expression given in the section MODULE DEFINITION. For the remaining files provide
scripts are generated and added to the package ifneeded database.

The algorithm falls back to the previous unknown handler when none of the found module
files satisfy the request. If the request was satisfied the fall-back is ignored.

Note that packages in module form have no control over the index and provide scripts
entered into the package database for them. For a module file MF the index script is
always:

package ifneeded PNAME PVERSION [list source MF]

and the provide script embedded in the above is:

source MF

Both package name PNAME and package version PVERSION are extracted from the
filename MF according to the definition below:

MF = /module_path/PNAME2-PVERSION.tm

Where PNAME2 is the partial path of the module as defined in section FINDING
MODULES, and translated into PNAME by changing all directory separators to <::=, and
module_path is the path (from the list of paths to search) that we found the module file
under.

Note also that we are here creating a connection between package names and paths. Tcl
is case-sensitive when it comes to comparing package names, but there are filesystems
which are not, like NTFS. Luckily these filesystems do store the case of the name,
despite not using the information when comparing.

Given the above we allow the names for packages in Tcl modules to have mixed-case,
but also require that there are no collisions when comparing names in a case-insensitive
manner. In other words, if a package Foo is deployed in the form of a Tcl Module,
packages like foo, fOo, etc. are not allowed anymore.

DEFAULT PATHS

The default list of paths on the module path is computed by a tclsh as follows, where X is
the major version of the Tcl interpreter and y is less than or equal to the minor version of
the Tcl interpreter.

https://www.tcl.tk/man/tcl/UserCmd/tclsh.htm

4/5

All the default paths are added to the module path, even those paths which do not exist.
Non-existent paths are filtered out during actual searches. This enables a user to create
one of the paths searched when needed and all running applications will automatically
pick up any modules placed in them.

The paths are added in the order as they are listed below, and for lists of paths defined by
an environment variable in the order they are found in the variable.

SYSTEM SPECIFIC PATHS

file normalize [info library]/../tclX/X.y
In other words, the interpreter will look into a directory specified by its major version and
whose minor versions are less than or equal to the minor version of the interpreter.
For example for Tcl 8.4 the paths searched are:

[info library]/../tcl8/8.4
[info library]/../tcl8/8.3
[info library]/../tcl8/8.2
[info library]/../tcl8/8.1
[info library]/../tcl8/8.0

This definition assumes that a package defined for Tcl X.y can also be used by all
interpreters which have the same major number X and a minor number greater than y.

file normalize EXEC/tclX/X.y
Where EXEC is file normalize [info nameofexecutable]/../lib or file normalize
[::tcl::pkgconfig get libdir,runtime]
This sets of paths is handled equivalently to the set coming before, except that it is
anchored in EXEC_PREFIX. For a build with PREFIX = EXEC_PREFIX the two sets are
identical.

SITE SPECIFIC PATHS

file normalize [info library]/../tclX/site-tcl
Note that this is always a single entry because X is always a specific value (the current
major version of Tcl).

USER SPECIFIC PATHS

$::env(TCLX_y_TM_PATH)
A list of paths, separated by either : (Unix) or ; (Windows). This is user and site specific
as this environment variable can be set not only by the user's profile, but by system
configuration scripts as well.

$::env(TCLX.y_TM_PATH)
Same meaning and content as the previous variable. However the use of dot '.' to
separate major and minor version number makes this name less to non-portable and its
use is discouraged. Support of this variable has been kept only for backward compatibility
with the original specification, i.e. TIP 189.

5/5

These paths are seen and therefore shared by all Tcl shells in the $::env(PATH) of the
user.

Note that X and y follow the general rules set out above. In other words, Tcl 8.4, for
example, will look at these 10 environment variables:

$::env(TCL8.4_TM_PATH) $::env(TCL8_4_TM_PATH)
$::env(TCL8.3_TM_PATH) $::env(TCL8_3_TM_PATH)
$::env(TCL8.2_TM_PATH) $::env(TCL8_2_TM_PATH)
$::env(TCL8.1_TM_PATH) $::env(TCL8_1_TM_PATH)
$::env(TCL8.0_TM_PATH) $::env(TCL8_0_TM_PATH)

SEE ALSO

package, Tcl Improvement Proposal #189 <Tcl Modules= (online at https://tip.tcl-
lang.org/189.html), Tcl Improvement Proposal #190 <Implementation Choices for
Tcl Modules= (online at https://tip.tcl-lang.org/190.html)

https://www.tcl.tk/man/tcl/TclCmd/package.htm

1/11

TIP 189: Tcl Modules
core.tcl-lang.org/tips/doc/trunk/tip/189.md

Abstract

This document describes a new mechanism for the handling of packages by the Tcl Core
which differs from the existing system in important details and makes different trade-offs
with regard to flexibility of package declarations and to access to the filesystem. This
mechanism is called "Tcl Modules".

Background and Motivation

The current mechanism for locating and loading packages employed by the Tcl core is
very flexible, but suffers from a number of drawbacks as well. These are at least partially
the result of the flexibility, and thus not easily solved without giving up something.

One problem with the current mechanism is that it extensively searches the filesystem for
packages, and that it has to actually read a file (pkgIndex.tcl) to get the full information for
a prospective package. All of these operations take time. The fact that "index scripts" are
able to extend the list of paths searched tends to heighten this cost as it forces rescans of
the filesystem. Installations where directories in the auto_path are large or mounted from
remote hosts are hit especially hard by this (network delays). All of this together causes a
slow startup of tclsh and Tcl-based applications.

"Tcl Modules" on the other hand is designed with less flexibility in mind and to allow
implementations to glean as much information as possible without having to perform lots
of accesses to the filesystem.

Additional benefits of the proposed design are a simplified deployment of packages, akin
to the way starkits made application deployment simple, and from that an easier
implementation and management of repositories.

It does not come without penalties however.

The simplified design has no "index scripts". While this does away with extending
the list of paths for searching, it also does away with the ability of packages to
check preconditions, like the version of the currently executing Tcl interpreter.
Dependencies of packages (in module form) on particular versions of Tcl have to be
managed differently and outside of them.

https://core.tcl-lang.org/tips/doc/trunk/tip/189.md

2/11

"Tcl Modules" is defined to be an extension of the existing package mechanism and
does not replace it. This means that any failure to find a package as a module has
to cause a fall back to the regular package mechanism. It also sets a limit on how
much of our goals we can reach: searching for packages which are not installed will
stay relatively slow, and dominated by the filesystem scan of the regular search.
This implies that "Tcl Modules" will be best suited in installations where the number
of regular packages is low, and contained in a small part of the overall filesystem.

On the gripping hand, the only regular packages required will be packages
supporting the virtual filesystems employed by modules (more on that later),
so a transformation of a installation based on a set of regular packages to the
form above is quite feasible.

Specification

Introduction

Modules are regular Tcl Packages, in a different guise. To ease explanations, first a
summary of the existing mechanism:

Packages are identified through "pkgIndex.tcl" files and the "index script" they
contain. These files are read and define the "provide script", which tells Tcl how to
actually load the package. In other words, the provide script tells whether to use the
"source" or "load" command, which file to specify as an argument to that
command, etc. However as "pkgIndex.tcl" contains a regular tcl script, it can do
more than that and actually influence the environment, i.e., the package search
itself, in several ways:

* It may choose to not register the package if conditions for the package are
not met, like being run by a too old version of Tcl.

* It may extend the list of paths used to search for packages. This implies that
a package is able to modify the behaviour of the package search (usually
extending the search) even before it is loaded, and even if it will not be loaded
at all.

The above is very flexible, but comes at a price. The filesystem is not only searched, but
files have to be read as well to build up the in-memory index of packages. And this is
iterated if index files change/extend the list of paths to search.

Tcl Modules simplifies the above considerably, by cutting down on the number of
indirections involved. It only searches for module files and records their location, but does
not read them. The search is only performed when required, on a limited part of the
filesystem. This makes locating and importing packages in module form easier and faster.

3/11

The price is that packages in module form cannot prevent registration in an interpreter not
of their choice, nor can they influence the package search itself before they are actually
used.

The remainder of this document will cover the following topics

What constitutes a Tcl Module ?

How are they found ?

How are they indexed, i.e. entered into the package database ?

Module Definition

A Tcl Module is a Tcl Package contained in a single file, and no other files required by it.
This file has to be sourceable. In other words, a Tcl Module is always imported via:

source module_file

The "load" command is not directly used. This restriction is not an actual limitation, as we
may believe. Ever since 8.4 the Tcl source command reads only until the first ^Z
character. This allows us to combine an arbitrary Tcl script with arbitrary binary data into
one file, where the script processes the attached data in any it chooses to fully import and
activate the package. Please read [190] "Implementation Choices for Tcl Modules" for
more explanations of the various choices which are possible.

The name of a module file has to match the regular expression

([[:alpha:]_][:[:alnum:]_]*)-([[:digit:]].*)\.tm

The first capturing parentheses provides the name of the package, the second clause its
version. In addition to matching the pattern, the extracted version number must not raise
an error when used in the command

package vcompare $version 0

This additional check has several benefits. The regular expression pattern is a bit simpler,
and the full version check is based on the official definition of version numbers used by
the Tcl core itself.

Finding Modules

Remember the check for a valid module in last section, and notice that any filename
matching this name pattern is going to be treated by the TM system as if it's a Tcl module,
whether it really is or not. This means it's a bad idea for any non-Tcl module files that
might match that pattern to end up in a directory where TM will be scanning. This
suggests that the directory tree for storing Tcl modules ought to be something separate
from other parts of the filesystem. This further implies that a new search path over just
these separate storage areas would be better than Yet Another Use of $::auto_path.

https://core.tcl-lang.org/tips/doc/trunk/tip/190.md

4/11

Therefore: Modules are searched for in all directories listed in the result of the command
"::tcl::tm::path list" (See also section 'API to "Tcl Modules"'). This is called the "Module
path". Neither "auto_path" nor "tcl_pkgPath" are used.

All directories on the module path have to obey one restriction:

For any two directories, neither is an ancestor directory of the other.

This is required to avoid ambiguities in package naming. If for example the two directories

foo/
foo/cool

were on the path a package named 'cool::ice' could be found via the names 'cool::ice' or
'ice', the latter potentially obscuring a package named 'ice', unqualified.

Before the search is started, the name of the requested package is translated into a
partial path, using the following algorithm:

All occurrences of '::' in the package name are replaced by the appropriate directory
separator character for the platform we are on. On Unix, for example, this is '/'.

Example:

The requested package is encoding::base64. The generated partial path is

encoding/base64

After this translation the package is looked for in all module paths, by combining them
one-by-one, first to last with the partial path to form a complete search pattern. The exact
pattern and mechanism is left unspecified, giving the implementation freedom of choice
as to what glob searches to perform, how much of them, and when.

Independent of that, the implemented algorithm has to reject all files where the filename
does not match the regular expression given in the previous section. For the remaining
files "provide scripts" are generated and added to the package ifneeded database.

The algorithm has to fall back to the previous unknown handler when none of the found
module files satisfy the request. If the request was satisfied no fall-back is required.

Provide and Index Scripts

Packages in module form have no control over the "index" and "provide script"s entered
into the package database for them. For a module file MF the "index script" is

package ifneeded PNAME PVERSION [list source MF]

and the "provide script" embedded in the above is

source MF

5/11

Both package name PNAME and package version PVERSION are extracted from the
filename MF according to the definition below:

MF = /module_path/PNAME'-PVERSION.tm

Where PNAME' **is the partial path of the module as defined in section 'Finding
Modules' before, and translated into **PNAME by changing all directory separators to
'::', and module_path is the path (from the list of paths to search) that we found the
module file under.

Note that we are here creating a connection between package names and paths. Tcl is
case-sensitive when it comes to comparing package names, but there are filesystems
which are not, like NTFS. Luckily these filesystems do store the case of the name,
despite not using the information when comparing.

Given the above we allow the names for packages in Tcl modules to have mixed-case,
but also require that there are no collisions when comparing names in a case-insensitive
manner. In other words, if a package 'Foo' is deployed in the form of a Tcl Module,
packages like 'foo', 'fOo', etc. are not allowed anymore.

Regular packages have no problem with the names of their files, as their entry point has a
standard name ("pkgIndex.tcl") and its contents can be adjusted according to the
filesystem they are stored in.

API to "Tcl Modules"

"Tcl Modules" is implemented in Tcl, as a new handler command for package unknown.
This command calls the previously installed handler when its own search fails, thereby
ensuring proper fall-back to the regular package search.

All code and data structures implementing "Tcl Modules" reside in the namespace
"::tcl::tm".

A namespace variable holds the list of paths to search for modules, but is not officially
exported. All access to this variable is done through the following public commands:

6/11

::tcl::tm::path add PATH

The path is added at the head to the list of module paths.

The command enforces the restriction that no path may be an ancestor
directory of any other path on the list. If the new path violates this restriction
an error will be raised.

If the path is already present as is, no error will be raised and no action will be
taken.

Paths are searched in the order of their appearance in the list. As they are
added to the front of the list they are searched in reverse order of addition. In
other words, the paths added last are looked at first.

::tcl::tm::path remove PATH

Removes the path from the list of module paths. The command is silently
ignored if the path is not on the list.

::tcl::tm::path list

Returns a list containing all registered module paths, in the order that they are
searched for modules.

::tcl::tm::roots PATH_LIST

Similar to path add, and layered on top of it. This command takes a list of
paths, extends each with tclX/site-tcl, and tclX/X.y, for major version X of the
tcl interpreter and minor version y less than or equal to the minor version of
the interpreter, and adds the resulting set of paths to the list of paths to
search.

This command is used internally by the system to set up the system-specific
default paths. See section Defaults for their definition, and that their structure
matches what this command does.

The command has been exposed to allow a buildsystem to define additional
root paths beyond those defined by this document.

We do not provide APIs for rescanning directories, clearing internal state and such. The
official interface to this functionality is "package forget" and special interfaces are neither
required nor desirable.

Discussion

Restriction to "source"

7/11

This has already been discussed in the specification above.

For more discussion I again refer to [190] "Implementation Choices for Tcl Modules"
which explains the various implementation choices in much more detail.

Preconditions

It has already been mentioned in section 'Background and Motivation' that preconditions
in "index scripts" are lost, one of the penalties of the simplified scheme specified here.

Their existence was most important to installations with multiple versions of Tcl coexisting
with each other as they could share the directory hierarchy containing packages between
the various Tcl cores. This is not possible anymore, at least not in a simple manner.

For the majority of installations however, i.e. those without only one version of Tcl
installed, or controlled environments like the inside of starkits and starpacks, this loss is
irrelevant and of no consequence.

For more discussion please see [191] "Managing Tcl Package and Modules in a Multi-
Version Environment" which explains the various choices a sysadmin has in much more
detail.

Package Metadata

An area possibly made harder by Tcl Modules is the storage and query of package
metadata. [59] was one way of handling such information, by storing them in the binary
library of packages which have such. Another approach was to store them in the package
index script, using a hypothetical package about command.

The latter approach has the definite advantage that it was possible to query the database
of metadata for a particular package without having to actually load said package, as a
load may fail if the Tcl shell used to query the database does not fulfil the preconditions
for that package.

Both approaches listed above assume that it makes sense to query the database of
metadata for all installed packages from a plain Tcl shell. In other words, to use the
standard Tcl shell also as the tool to directly manage an installation.

It is possible to extend the proposal made in this document to handle metadata as well.
We already reserved the namespace ::tcl::tm for use by us, so it is no problem to extend
the public API with commands to locate all installed packages, their metadata, and to
perform queries based on this. This will require an additional specification as to how
metadata is stored in/by Tcl Modules, and it will have to be understood that these
extended management operations can take considerably more time than a package
require, as they will have to scan all defined search paths and all their sub directories for
Tcl Modules, and have to extract the metadata itself as well.

https://core.tcl-lang.org/tips/doc/trunk/tip/190.md
https://core.tcl-lang.org/tips/doc/trunk/tip/191.md
https://core.tcl-lang.org/tips/doc/trunk/tip/59.md

8/11

Deployment

The fact that a Tcl Module consists only of a single file makes its deployment quite easy.
We only have to ensure correct placement in one of the searched directories when
installing it locally, but nothing more.

Regarding the usage of Tcl Modules in a wrapped application, please see [190]
"Implementation Choices for Tcl Modules". This is highly dependent on the
implementation chosen for a specific Tcl Module and thus not discussed here, but in the
referred document.

Package Repositories

At a very basic level, the physical storage, any directory tree containing properly placed
files for a number of modules can serve as a package repository for the modules in it. In
other words, from that point of view an installation is virtually indistinguishable from a
repository, and their creation and maintenance is very easy

Note however that the higher levels of a repository, like indexing package metadata in
general, or dependence tracking in particular, licensing, documentation, etc. are not
addressed here and by this.

This requires standards for package metadata, format and content, topics with which this
document will not deal.

Defaults

The default list of paths on the module path is computed by a tclsh as follows, where X is
the major version of the Tcl interpreter and y is less than or equal to the minor version of
the Tcl interpreter.

https://core.tcl-lang.org/tips/doc/trunk/tip/190.md

9/11

System specific paths

* file normalize [info library]/../tcl_X_/X.y

In other words, the interpreter will look into a directory specified by its
major version and whose minor versions are less than or equal to the
minor version of the interpreter.

Example: For Tcl 8.4 the paths searched are

* [info library]/../tcl8/8.4

* [info library]/../tcl8/8.3

* [info library]/../tcl8/8.2

* [info library]/../tcl8/8.1

* [info library]/../tcl8/8.0

This definition assumes that a package defined for Tcl X.y can also be
used by all interpreters which have the same major number X and a
minor number greater than y.

* file normalize EXEC/tcl_X_/X.y

Where EXEC is [file normalize [info nameofexecutable]/../lib] or [file
normalize [::tcl::pkgconfig get libdir,runtime]]

This sets of paths is handled equivalently to the set coming before,
except that it is anchored in EXEC_PREFIX. For a build with PREFIX =
EXEC_PREFIX the two sets are identical.

Site specific paths.

* file normalize [info library]/../tcl_X_/site-tcl

10/11

User specific paths.

* $::env(TCL_X_.y_TM_PATH)

A list of paths, separated by either : (Unix) or ; (Windows). This is user
and site specific as this environment variable can be set not only by the
user's profile, but by system configuration scripts as well.

These paths are seen and therefore shared by all Tcl shells in the
$::env(PATH) of the user.

Note that X and y follow the general rules set out above. In other words,
Tcl 8.4, for example, will look at these 5 environment variables

* $::env(TCL8.4_TM_PATH)

* $::env(TCL8.3_TM_PATH)

* $::env(TCL8.2_TM_PATH)

* $::env(TCL8.1_TM_PATH)

* $::env(TCL8.0_TM_PATH)

All the default paths are added to the module path, even those paths which do not exist.
Non-existent paths are filtered out during actual searches. This enables a user to create
one of the paths searched when needed and all running applications will automatically
pick up any modules placed in them.

The paths are added in the order as they are listed above, and for lists of paths defined
by an environment variable in the order they are found in the variable.

Installation

The installation of a Tcl module for a particular interpreter is basically done like this:

#! /path/to/chosen/tclsh
First argument is the name of the module.
Second argument is the base filename
set mpaths [::tcl::tm::path list]
... remove all paths the user has no write permissions for.
... throw an error if there are no paths left.
... provide the user with some UI if more than one path is left
... so that she can select the path to use.
set selmpath [ui_select $mpaths]
file copy [lindex $argv 1] \
 [file join $selmpath \
 [file dirname [string map {:: /} \
 [lindex $argv 0]]]]

Glossary

11/11

The following terms and definitions are used throughout the document

index script

A script used to index a package, or not. Usually contained in a file named
"pkgIndex.tcl". Can check preconditions for a package and contains package
specific code for setting up the package specific provide script.

provide script

This is a package specific script and tells Tcl exactly how to import it. In the
existing package system it is generated and registered by the index script. Tcl
Modules on the other hand generates it based on information gleaned from
filenames.

Reference Implementation

A reference implementation is available in Patch 942881 http://sf.net/tracker/?
func=detail&aid=942881&group_id=10894&atid=310894

http://sf.net/tracker/?func=detail&aid=942881&group_id=10894&atid=310894

1/5

TIP 190: Implementation Choices for Tcl Modules
core.tcl-lang.org/tips/doc/trunk/tip/190.md

Abstract

This document is an informational adjunct to [189] "Tcl Modules", describing a number of
choices for the implementation of Tcl Modules, pure-Tcl, binary, or mixed. It lists these
choices and then discusses their relative merits and problems, especially their interaction
with wrapping, i.e. when used in a wrapped application. The main point of the document
is to dispel the illusion that the restriction to the "source" command for the loading Tcl
Modules is an actual limitation. A secondary point is to make recommendations regarding
preferred implementations, based the merits and weaknesses of the various possibilities.

Implementation Choices

A small recap first: Tcl Modules are Packages in a single file, and only source is used to
import them into the running interpreter. These restrictions are the backdrop to all
implementations discussed here.

Packages Written in Tcl

These are easy.

A package which is implemented in a single file is already in the form required for a
Tcl Module and nothing has to be done at all.

 +--------------+
 | Tcl File |
 +--------------+

Most packages in Tcllibhttp://tcllib.sf.net can be of this form.

In the case of a package whose implementation is spread over multiple .tcl files the
solution is equally simple. Just concatenate all the files into one file when
generating the distribution. This is a trivial operation.

 +--------------++--------------+...+--------------+
 | Tcl File 1 Tcl File 2 Tcl File n |
 +--------------++--------------+...+--------------+

Some packages in Tcllibhttp://tcllib.sf.net can be of this form, or rewritten into
it.

https://core.tcl-lang.org/tips/doc/trunk/tip/190.md
https://core.tcl-lang.org/tips/doc/trunk/tip/189.md
http://tcllib.sf.net/
http://tcllib.sf.net/

2/5

The usage of an compiler/obfuscater like TclPro/Tcl Dev Kit on such Tcl Modules is
also no problem. While the result of these compilers contains binary, it is in encoded
form, and the file is still a proper Tcl script which can be handled by source. The
encoded binary is decoded by an adjunct package, tbcload, whose import is the
first action done by the script.

This also points us already to the general solution for binary packages, i.e.
usage of supporting packages to handle arbitrary data embedded or attached
in some way in/to an initialization script.

The usage of pure-Tcl Modules within wrapped applications poses no problems at all.

Also note that all of the choices available to binary packages, as explained in the next
section, are available to pure-Tcl packages as well.

Binary Packages

A binary package consists of a shared library, possibly with adjunct Tcl and data files.
These have to be bundled into a single file to be a Tcl Module.

The general approach to this is to combine an init script written in Tcl with binary data
attached to it, both sections separated by a ^Z character. This is possible since 8.4,
where source was changed to read only up to the first ^Z and ignore the remainder of the
file, whereas other file and channel operations will see it.

Embedding a Virtual Filesystem

The most obvious way of doing this is the any-kit approach: a small initialization script in
front which loads all required supporting packages and then uses them to mount an
attached virtual filesystem containing all the other files. After the mount any package
specific initialization can be performed, either in the initialization script itself, or in a
separate script file stored in filesystem. The latter is the recommended form as it keeps
the main initialization script small and package neutral i.e. it will be only filesystem
specific, and not package specific. These two tasks are kept separate, which is good
design in general, and becomes more important later on as well.

 +-------------||------------------------------------+
 | Init header ^Z VFS +------------+ +-----...-----+ |
 | ^Z | Shared lib | | Other files | |
 | ^Z +------------+ +-----...-----+ |
 +-------------||------------------------------------+

A concrete example of this are starkits, except that they use this technique to wrap an
application into a single file, and not a package.

When interacting with wrapping this approach runs into problems. It is not possible to
simply copy the module file into the wrapped application and then use it. The problem is a
limitation in most implementations of alternate filesystem: they are not able to mount a

3/5

virtual file again as a directory, i.e. nested mounting. This however is required when a Tcl
Module using the any-kit approach is placed into a wrapped application. It was thought for
a while that this could be a limitation in the VFS core of Tcl itself, but further investigation
proved this to be wrong. This proof came in the form of TROFS, the Tcl Read Only
Filesystem, by Don Porter. This filesystem supports nesting and thus shows that the Tcl
core is strong enough for this as well. It is the implementation of a filesystem which
determines if nesting is possible or not, and most do not support this.

See also SF bug report [941872] path<->FS function limitations http://sf.net/tracker/?
func=detail&aid=941872&group_id=10894&atid=110894 for more details on this and
other problems.

There are two ways to work around this limitation, while it exists. These are explained
below. However note that even if the limitation is removed we may still run into
performance problems because of a file accessed through several layers of file systems,
each with its own overhead. The workarounds we are about to discuss will help with this
as well by removing layers of indirection and are therefore of general importance.

The standard initialization script of the module is given code to recognize that it is
stored in a virtual filesystem, and will copy the whole file to a temporary location and
perform the mount on that. This workaround has to be done by every package.

The wrapper application used to create the wrapped application is extended with
code which works around the problem. It would basically convert the Tcl Module into
a regular package by copying the virtual filesystem in the module as a directory, and
adding all the necessary scripts, like "pkgIndex.tcl". Here the separation of
filesystem specific from package specific initialization comes into play as well as it
makes the unbundling much easier. The generated package index file can simply
refer to the same package initialization script as the filesystem specific header of
the bundled module.

It should be noted that unbundling is limited to the filesystems which are
recognized by the wrapper application. Because of this a combination of this
and the previous approach might be best, as it allows the module to function
even if the wrapper application was not able to unbundle it.

More a problem of taste might be that Tcl Modules in this form require additional
packages which implement the filesystem they use. This can be remedied in the future by
adding additional reflection capabilities to the Tcl core which would allow the
implementation of channel drivers, channels transformations, and filesystems in pure Tcl,
and then implementing simple filesystems based on that. This would also allow the Tcl
core itself to make use of filesystems attached to its shared libraries and executables.

Appending a Shared Library

https://core.tcl-lang.org/tips/doc/trunk/tip/941872.md
http://sf.net/tracker/?func=detail&aid=941872&group_id=10894&atid=110894

4/5

Should the binary package consist of only one shared library we can forgo the use of a
full-blown virtual filesystem and simply attach the shared library to the init script as is.
Instead of mounting anything the init script just has to copy the library to a temporary
place and then "load" it.

 +------------------------------||----------------+
 | Init script (p name, p size) ^Z Shared library |
 +------------------------------||----------------+

Tcl Modules implemented in this way will have no problems when used in a wrapped
application as they will always copy their relevant file to the native filesystem before using
it.

The disadvantage is that this is not a very general scheme. There are not that much
packages which consist of only one shared library and nothing else.

Note: Should we ever get loading of a shared library directly from memory or from a
location in another file, then copying the library to the filesystem won't be necessary
anymore either.

Appending a Library and a VFS

An extension of the last approach is to attach the virtual file system not to the init script,
but the shared library.

 +-------------||----------------++---------------------+
 | Init script ^Z Shared library // VFS +-----...-----+ |
 | ^Z // | Other files | |
 | ^Z // +-----...-----+ |
 +-------------||----------------++---------------------+

This approach has the same advantages as the last with regard to its interaction with
wrapping, i.e no problems, and additionally handles additional files coming with the
shared library. The initialization of the VFS happens in the init script, but after the shared
library has been loaded.

I have to admit that I am not sure if this will truly work. In essence the library will have to
be told about the directory for its files after its C level initialization has been run.

If the VFS is required during the C level initialization then the VFS has to be initialized
and mounted from within the shared library, i.e. at the C level. This is not very convenient
as we need an embedded Tcl script for this, and that makes the code of the library more
complicated than required.

Recommendations

We currently recommend usage of the any-kit approach for binary packages, despite its
problem with nested mounting. This approach has an existing implementation in the
metakit-based starkits and is thus well tested in general. The other two approaches are

5/5

currently purely theoretical, with neither any implementation, nor testing.

Regarding Tcl packages no recommendation is necessary as we have in essence only
one possibility for the more complex case, the simple concatenation of multiple files into a
single one.

1/2

TIP 191: Managing Tcl Packages and Modules in a
Multi-Version Environment

core.tcl-lang.org/tips/doc/trunk/tip/191.md

Abstract

This document is an informational adjunct to [189] "Tcl Modules", describing a number of
choices for the management of Tcl Modules in environments with more than one version
of the Tcl core installed. It lists these choices and then discusses their relative merits and
problems.

Background and Motivation

A regular package can perform checks in its "pkgIndex.tcl" file regarding the environment
the package would be loaded into should it be requested, and make the creation of its
"provide script" dependent on the result. In other words, it is able to prevent its
registration, making it invisible to the Tcl interpreter in question if the environment is not
right (for example, if the interpreter is too old a version of Tcl).

A Tcl module cannot do this as its "provide script" is generated by the module system.

In a controlled environment, like wrapped applications of any form this is a complete non-
issue as we can assume that only those modules are installed which are not only
required, but needed.

This is no problem either for installations with only one version of the Tcl core. It is
believed that this is currently the majority of cases.

The change breaks only environments with several coexisting Tcl installations which
share package directories among them and rely on the index scripts to prevent the
registration of packages in unsuitable interpreters.

Another situation where the change can break things is an environment with a single
version of the interpreter, and the version of that interpreter is changed, upgraded, or
downgraded. Packages for one version may not work anymore with the new version, or a
different version of the package has to be selected from among the installed versions.
This situation can be viewed as having multiple version of Tcl, however over time instead
of space.

For the environments with multiple versions of Tcl in space a number of possible solutions
are explained in the next section.

Choices

All solutions are done outside of the Tcl interpreter, in the filesystem.

https://core.tcl-lang.org/tips/doc/trunk/tip/191.md
https://core.tcl-lang.org/tips/doc/trunk/tip/189.md

2/2

Each interpreter has its own part of the filesystem. Modules required in several of
them are copied around. Modules not required are not copied. This is easy. It
requires more disk space; however that is cheap.

Same as above, but use hard- and/or soft-links instead of copying. Modules not
eligible somewhere are not linked.

This schema can also be used to maintain a central repository, which is just a
directory tree containing all module files in their proper locations. Then link the
packages which should be visible to an interpreter into their respective
directory trees.

This makes the creation of test environments with a known set of packages
very easy as well.

Keep the modules in several directory trees as wanted and/or needed by sharing
requirements and then set the list of search paths used by an interpreter to exactly
those trees which have the modules required/usable by it.

Changes over Time

Note that the default paths set down in [189] ease the management, as each Tcl shell will
not only have its own space, but also access to extensions for all minor versions which
came before it. This means that placing an extension into the directory for the smallest
version of Tcl supporting it will make this extension available to this minor version and all
the versions which come after and share the major version. This is the right thing almost
all of the time.

Only extensions using internal interfaces will have to be dealt with separately.

https://core.tcl-lang.org/tips/doc/trunk/tip/189.md

