

Tcl 8.5 Network Programming

Build network-aware applications using Tcl, a powerful
dynamic programming language

Wojciech Kocjan

Piotr Beltowski

BIRMINGHAM - MUMBAI

Tcl 8.5 Network Programming

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2010

Production Reference: 1250610

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-96-7

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

Credits

Authors
Wojciech Kocjan

Piotr Beltowski

Reviewers
Hemang Lavana

Dmitry V.Tishakov

Acquisition Editor
Douglas Paterson

Development Editor
Mehul Shetty

Technical Editors
Charumathi Sankaran

Rupal J

Indexer
Hemangini Bari

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreaders
Lesley Harrison

Aaron Nash

Graphics
Geetanjali Sawant

Production Coordinators
Aparna S. Bhagat

Arvindkumar Gupta

Cover Work
Aparna S. Bhagat

About the Authors

Wojciech Kocjan is a programmer having ten years of experience with Tcl.
His past experience includes both open source projects, involvement in commercial/
government projects, as well as working for international corporations.

Over the years, Wojciech has contributed and created multiple open source projects
related to Tcl. He is also the author of Learning Nagios 3.0, Packt Publishing and
multiple publications on IT related subjects.

I'd like to thank my wife Joanna and my son Kacper for all the help
and support during the writing of this book.

Piotr Beltowski is an IT and software engineer, and co-author of several US
patents and publications. He has a master of Science in Telecommunications, and
his technical experience includes various aspects of telecommunications, such
as designing IP networks or implementing support of network protocols. Piotr's
experience as Level 3 customer support lead makes him focused on finding simple
solutions to complex technical issues.

His professional career includes working in international corporations such as
IBM and Ericsson (as a contractor).

I would like to thank all my family and friends, especially Kasia and
Monika for all the help and support they gave me during the writing
of this book.

About the Reviewers

Hemang Lavana is the lead architect of Cisco's central test automation
infrastructure group that designs and develops Tcl and Eclipse-based tools. He
has over twelve years of architecture and design experience in developing high
performance, robust, and scalable products focusing on modularity and extensibility.

After graduating from the prestigious Indian Institute of Technology, Bombay,
Hemang earned a Ph.D. in Computer Engineering from North Carolina State
University. He has published several papers and articles in various conferences on
asynchronous, distributed and collaborative software for workflow automation. He
is also the author of the award winning software WebWiseTclTk.

Dmitry V.Tishakov was born in 1971 in Sevastopol (Russia, Crimea). He received
higher technical education at the Sevastopol device-building institute till 1994. In
2007, he completed his education from the Sevastopol Humanitarian University. He
is a qualified engineer (Systems Engineering), psychologist, and photographer.

Dmitry was engaged in the system engineering of physical experiments automation,
the automated "information gathering and processing" systems for atomic power
stations, and hardware-software training systems.

Besides having operational experience as a system administrator and a system
integrator, he also has operational experience in several areas, such as TV (the
Independent TV-broadcasting company, Kaliningrad, Russia), software development,
and the electro-technical industry. Since 2004, he has been working in the Tavrida
Electric industrial group (http://www.tavrida.com), which is on one of leaders in
the world of the electro-technical industry. Here he was involved in working out the
automated quality testing and monitoring systems for industrial controllers.

I would like to thank Graham Ellis, Well House Consultant
(Melksham, Wiltshire) for his answers to my questions when I
started learning Tcl/Tk technology several years ago.

Table of Contents
Preface 1
Chapter 1: Introducing Tcl 7

What is Tcl/Tk 8
Extensions 12
Tk 12

Installation 13
Windows 14
Unix-like systems 15
Installation of additional Tcl packages 16

Additional tools 17
Eclipse 18
Komodo 20
tkcon – an alternate Tcl shell 21

Tcl syntax 22
Tcl commands documentation syntax 22
Running the script 22
Running commands directly in the tclsh interpreter 24
Variables 24
Grouping 25
Nesting commands 26
Data types 26

Lists 28
Arrays 35
Dictionaries 37
Mathematical expressions—expr 38
Flow control and loop instructions 39
Defining your own commands 42

Summary 43

Table of Contents

[ii]

Chapter 2: Advanced Tcl Features 45
Tcl features 46

Working with time and date 46
Tcl data types 49
Global, namespace, and local variables 54
Stack frames 56

Object-oriented programming 62
Class definition 64
Inheritance 66
Object definitions 68
Using mixins 69
Forwarding methods 70
Additional information 72

Accessing files 73
Reading and writing files 73
Configuring channel options 77
File management 79
Filename related operations 81
File information 82
Listing files 84
Current working directory 86

Packages in Tcl 87
Package loading 87
Creating a package 88
Tcl modules 89

Event-driven programming 90
Tcl event types 90
Entering the event loop 91
Events and stack frames 92
Channel events 93
Timer and idle events 95
Robust scheduling with tclcron 97

Multithreaded applications 98
Managing threads 99
Shared variables 101
Transferring channels 103

Summary 103
Chapter 3: Tcl Standalone Binaries 105

Understanding the executable file structure 106
Learning the Metakit database 108

Working with MetaKit from Tcl 109

Table of Contents

[iii]

Learning more about virtual file systems 114
Getting into the details of VFS and Metakit 117

Learning Tclkit 118
Starkit and SDX 120

Creating a Starkit file 120
Internal structure of starkits 122

Using resource files in starkits 124
Putting additional packages into a starkit 124

Format of the starkit file 124
Interactions between different starkit files 125

Knowing the Starpack technology 126
Practical example—the Hibernator application 127
Advanced topics—self updating 129
Other solutions 132
Summary 133

Chapter 4: Troubleshooting Tcl applications 135
Logging 136

Log package 136
Initialization 137
Available log levels 137
Enabling or disabling log levels 139
Replacing the default implementation of the logging command 139
Recap of the log package 142

Logger package 142
Initialization 142
Available log levels 143
Enabling or disabling log levels 145
Tracing 148
Changing the implementation of the logging / tracing command 149
Appenders 151
Recap of the logger package 153

Audit 154
Recap of the audit package 157

Debugging 157
Tcl Dev Kit Inspector 158
Tcl Dev Kit Debugger 162

Local Debugging 162
Remote debugging 167
Recap of the Tcl Dev Kit Debugger 169

TclPro Debugger 170
Summary 172

Table of Contents

[iv]

Chapter 5: Data Storage 175
Internationalizations 176

Encoding issues 176
Translating your application into different languages 180

Using SQL and databases in Tcl 183
Connecting to MySQL 185
Connecting to PostgreSQL 187
Using SQLite 190

Managing databases from SQLiteStudio 193
Other databases 194

Handling XML in Tcl 194
Storing raw Tcl values 204
Summary 206

Chapter 6: Networking in Tcl 207
Using TCP sockets 208

Creating server sockets 209
Connecting over TCP 210
Using nonblocking sockets 212

Handling channel events 213
Transferring binary data 217

Transferring data using the fcopy command 220
Handling errors 222
Buffering 225
Using threads for networking 226

Using threads and thread pools 226
Connecting to our service 231

Using UDP sockets 234
Creating a UDP-based client 234
Implementing service using UDP 236
Sending reliable messages 238
Comparing TCP and UDP: streams vs. datagrams 242

Summary 245
Chapter 7: Using Common Internet Services 247

Handling e-mail 248
Learning MIME 248

Content type 248
Multipart messages 249

MIME in Tcl 250
Creating messages 251
Multipart elements 252

Table of Contents

[v]

Sending e-mails 255
Automated e-mail sending 257
Creating template based e-mails 257

Receiving e-mails 262
Using POP3 protocol in Tcl 263
Listing all messages 264
Retrieving e-mails using POP3 265
Parsing incoming e-mails 266

Transferring files and data 271
Resources and uri package 271
Using HTTP 273

Retrieving data over HTTP 273
Submitting information using GET and POST 276
Advanced topics 278
Cookies in Tcl 280
HTTP and encryption 282
Retrieving RSS information 282

Using FTP 286
Establishing connections 287
Retrieving files 287
Uploading files 288
Listing files and directories 289

Summary 292
Chapter 8: Using Additional Internet Services 293

Checking DNS 294
Using callbacks 296

Getting the current date and time 298
Using LDAP from Tcl 301

Authenticating users over LDAP 303
Modifying information in LDAP 305

Communicating with Tcl applications 307
Comm client and server 307
Performing commands asynchronously 310
Security aspects 311
Limiting available commands 314

Summary 317
Chapter 9: Learning SNMP 319

Introduction to SNMP 320
Learning SNMP protocol versions 321
Data objects 323
Working with SNMP and MIB 325
Setting up SNMP agent 330

Table of Contents

[vi]

Tcl and Scotty package 334
Obtaining Scotty 334
The TkIned application 336

Using Tcl for SNMP communication 339
Querying SNMP in Tcl 339
Performing asynchronous queries 343
Walking over MIB trees 344
Receiving traps 345
Sending traps 346
SNMP agent 347
Additional features 349

Summary 351
Chapter 10: Web Programming in Tcl 353

Tcl scripts as CGI application 355
Using ncgi package 357
Using html package 362

Introduction to TclHttpd 367
Installation 367

Retrieving source code from the CVS repository 368
Documentation 368
First run 369

Startup parameters 371
Default directory structure 371
Configuration 372
Performance 373

Programming TclHttpd server 373
Providing static content 373
Using CGI in TclHttpd 374
Mapping URL to application 374
Creating document type handlers 379

Using the watermark example 379
Creating custom templates 382

Learning domain handlers 386
Comparing domain handlers to application direct URLs 392
Creating session-based authentication 392

Using the TclHttpd template system 398
Securing access to resources 400
Debugging TclHttpd server 402
Embedding TclHttpd in your application 404

Summary 409

Table of Contents

[vii]

Chapter 11: TclHttpd in Client-Server Applications 411
Creating HTTP-based applications 412

Preparing source code structure 413
Creating our applications 417

Server-side 418
Client-side 419

Communication and registration 420
Server-side 420
Client-side 423

Storing information 426
Server side 426
Client side 430

Comm interface—spooling jobs 431
Testing our applications 433

Adding autoupdate to application 434
Server-side 435
Client-side 436

Extending your applications 442
Starkits as extensions 443
Building modules 443
Server side 446
Handling modules on client 452
Communication with server 456

Improving scalability and performance 460
Summary 462

Chapter 12: SOAP and XML-RPC 463
Tcl and standards for remote procedure calls 464
Connecting to XML-RPC services 465

Defining available methods 466
Specifying data types 467
Using XML-RPC 469

Using SOAP protocol 473
Creating Web Services 475

Setting up server 476
Creating a service 477
Specifying data types 479
Creating service methods 479
Defining data types 481
Using data types inside service 484

Connecting to SOAP based services 487
Invoking methods via commands 489
Invoking methods API using DoCall commands 490
Using complex data types 492

Summary 494

Table of Contents

[viii]

Chapter 13: SSL and Security 495
Learning Secure Socket Layer 496

Using SSL from Tcl 497
Generating self-signed certificates 501
Setting up and using public key infrastructure 503

Setting up certificates manually 504
Automating certificates from Tcl 510

Managing certificates from Tcl 516
Server side 517
Client side 522
Testing our solution 525

SSL and performance issues 526
Authorization and roles 527
Securing your application 528

Slave interpreters 528
Using slave interpreters 529
Sharing information with the slave interpreter 530
Creating and managing aliases 532
Deleting interpreters 534
Imposing limits on interpreters 534

Working with safe interpreters 537
Hiding and exposing commands 538
Default safe interpreter setup 540
Using Safe Base 541
Safe Base and filesystem access 542

Role-based authorization and interpreters 546
Creating interpreters using roles 546
Sample role definitions 548
Using role-based interpreters 550

Summary 551
Index 553

Preface
Tcl or Tool Command Language is a very powerful, but easy-to-learn dynamic
programming language, suitable for a very wide range of uses. Tcl is a mature yet
evolving language used by developers, from one man shops to large corporations. .

It is commonly used for rapid prototyping, scripted applications, GUIs, and testing.
Tcl is used on embedded-system platforms, both in its full form and in several other
small-footprinted versions. Tcl is also used for CGI scripting and as the scripting
language for the Eggdrop bot.

Tcl is popularly used today in many automated test harnesses, both for software and
hardware, and has a loyal following in the Network Testing and SQA communities.
According to the Tcl website, many have called it the "best-kept secret in the software
industry". It is used for rapid development, truly cross-platform GUIs, flexible
integration, elegant networking model, great I18N and thread support—all that
and it's easy to learn and easy to deploy!

This book will delve into the network programming capabilities of Tcl: one of the
best-kept secrets of the software industry.

What this book covers
Chapter 1, Introducing Tcl serves as a quick introduction to the Tcl world. It explains
what the Tcl is, how to install it and start using it. It presents some tools for making
development easy, such as Eclipse and Komodo. It describes Tcl language basics,
such as language syntax, data types, and the important commands. This and the
following chapters build a solid base for Tcl programming.

Preface

[2]

Chapter 2, Advanced Tcl Features focuses on advanced topics. More common
commands are introduced. The reader learns how to handle time, namespaces, and
use Tcl as an object-oriented programming language. A large part of the chapter is
dedicated to file I/O operations. The reader also learns how to create Tcl packages
or modules. Event loop and various types of events are also discussed. Threads are
introduced in the end.

Chapter 3, Tcl Standalone Binaries teaches you how to break free from the constraint of
having the Tcl interpreter installed, and how to build portable, standalone executable
applications written in Tcl. You will also learn about the Metakit database concepts
and its usage.

Chapter 4, Troubleshooting Tcl Applications focuses on topics related to "fixing" the
applications. First, the reader learns how to introduce, configure, and apply logging
information to the code. Later, the available tools and ways of debugging both local
and remote applications are presented.

Chapter 5, Data Storage discusses topics such as text data storage and processing.
Some of these include working with SQL databases (both remote systems such as
MySQL and Postgresql, and local ones like SQLite), processing XML data (parsing
and generation), handling plaintext data while focusing on common encoding issues.

Chapter 6, Networking in Tcl presents basic information about the TCP/UDP
networking abilities of Tcl, from both the client and server sides. Core concepts
and commands are discussed extensively along with examples.

Chapter 7, Using Common Internet Services teaches you how to send e-mails from Tcl,
build e-mails containing HTML and various kinds of messages. It discusses how to
retrieve, parse, and process e-mail messages, and also covers how to get data over
HTTP, read RSS feeds, and upload and download files over FTP.

Chapter 8, Using Additional Internet Services introduces the reader to additional
Internet protocols: querying information using DNS and querying the current date
and time over an NTP service. It also discusses LDAP and how to use it to query
information about user registries and how to authorize users. It describes the
comm protocol, which can be used to communicate between local and remote Tcl
applications. It presents how the protocol can be used and how the comm commands
can be made secure.

Chapter 9, Learning SNMP describes SNMP (Simple Network Management Protocol)
and its use for management of multiple types of devices – such as routers, switches,
modems, and servers. It introduces the reader to how data is structured in SNMP by
describing MIB (Management Information Base). It describes Scotty package, which
provides SNMP functionality to Tcl. Step-by-step instructions are given for retrieving

Preface

[3]

information and retrieving notifications from devices. It also describes how Tcl can
be used to create custom SNMP agents using the Scotty package. This chapter also
describes ICMP-related features; performing ping and trace routes.

Chapter 10, Web Programming in Tcl introduces Tclhttpd: a Tcl-based web server that
can be used standalone and embedded in other applications. Using it for providing
static files and web applications is described in detail. Built-in templating system
is shown as well. This chapter also gives information on other subjects, using CGI
scripts, handling specific types of files from Tcl, authorizing requests, and creating
custom template systems.

Chapter 11, TclHttpd in Client-Server Applications provides details on creating
HTTP-based client-server applications. It gives the reader a good understanding
of how such applications are created, by providing a step-by-step example of
building such an application. It also discusses building the client and the server as
standalone binaries and providing automatic updates of the client. This example is
then extended to show how modules can be added to allow additional code to be
deployed to clients on demand.

Chapter 12, SOAP and XML-RPC covers creating and using web services from Tcl. It
describes how to invoke methods over XML-RPC, along with an example of how this
can be done to automatically add blog posts. SOAP is also described. This chapter
shows how to create an SOAP-based web service and how such services can be used
from within Tcl.

Chapter 13, SSL and Security focuses on the security aspects of network programming.
It shows the reader how to secure communications and ensure that applications or
users can authenticate remote systems. Step-by-step instructions are given on how to
create a public key infrastructure and securely transfer keys to systems in the network.
The chapter also introduces the reader to Tcl's safe interpreter feature and how it can
be used to create a role-based security model for running unsecure Tcl code.

What you need for this book
The book is written so that both experienced and novice Tclers can find useful
information inside. It starts with a quick introduction to Tcl and its networking
support for those who are less familiar with them.

Authors focus on showing practical, yet simple examples for each module and
command described so that the reader understands how to use them when solving the
real life problems. The examples given are useful programs that try to solve real-world
needs. All sample programs are clear and concise, yet nothing essential is left out and
the programming style focuses on readability rather than on stylistic rigor or efficiency.

Preface

[4]

Who this book is for
This book is for Tcl developers who have basic knowledge of network programming
concepts, who want to add networking capabilities to their applications. Working
knowledge of Tcl and basic experience of network protocols will be useful. The reader
should be familiar with basic concepts used in modern networking—keywords such
as TCP, HTTP, or XML should not be a mystery. The book does not require advanced
knowledge of Tcl – the first few chapters will swiftly introduce the readers into it,
allowing them to refresh the information or gain a quick overview of the Tcl
language abilities.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Calculations in Tcl are done by using
a separate command called expr "

A block of code is set as follows:

proc createDict {} {
 set value [dict create]
 dict set value firstValue 1
 dict set value otherValue 2
 return $value
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

% puts [clock format [clock scan "12:45 +3 hours"]]
Tue Sep 22 15:45:00 CEST 2009

Any command-line input or output is written as follows:

set rows [mk::select myTag.people]

printRows myTag.people $rows

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "After a
successful installation, we can go to the Administrative Tools folder and run the
Services applet.".

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.com.
If you purchased this book elsewhere, you can visit http://www.
PacktPub.com/support and register to have the files e-mailed
directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration and help us improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on
our website, or added to any list of existing errata, under the Errata section of
that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introducing Tcl
The purpose of this chapter is to refresh your memory with some basic and
fundamental information about Tcl—what it is, what it is not, and why it was
created. It is not intended to make you learn Tcl from scratch or to replace or
duplicate the official Tcl documentation—there are a lot of sources, both online and
printed. However, it is to briefly summarize facts and allow the reader to easily "tune
in" to the topic of the book. If you are new to Tcl, after going through this chapter,
you will have an overview of the language and its basics, and it would be a good
idea to experiment with it, create your own scripts, and study sophisticated options
for the described commands before proceeding to further reading. If you are an
experienced Tcl programmer, you can probably skip this chapter.

This chapter discusses the origins of Tcl language—the fundamental idea behind
its creation, why it was created, and what kind of problems it addresses. It presents
Tcl concepts, describes the possibilities Tcl offers, and explains flexibility that
comes from a choice of extensions available for use. We also learn about the license
agreement it is distributed under and who is involved in this undertaking.

The chapter also talks about a range of enterprise-level platforms supported by Tcl.
Its strength comes from the portability it offers. We briefly describe how to obtain a
ready-to-use distribution to start your adventure with Tcl, along with its installation
on both Windows and Unix environments.

We also describe the tools you can use to develop your own code. To start doing
this, nothing more than a plaintext editor is required. However, you will save lots of
time and frustration by using an Integrated Development Environment (IDE). Both
Eclipse and Komodo are discussed, along with installation and configuration tips,
and the creation and execution of your first script.

Introducing Tcl

[8]

After that, we come to Tcl's syntax, giving you the basics of reading the code and
creating your first scripts. Once you have read this, you will be able to understand
the structure of the code, identify its blocks and particular instructions. You will
also get familiar with the basic data types and flow control structures offered by
the language.

What is Tcl/Tk
Basically, Tcl is yet another scripting language. It was created by Professor John
K. Ousterhout in 1988. Why would someone bother to create their own language?
John and his students created a set of tools for designing integrated circuits at the
University of California at Berkeley. Many of these tools had their own dedicated
command languages, allowing interaction with the user. As the primary focus was
on the tools, the command languages were often weakly designed, with odd syntax.
With the passing of time, the team realized they were missing an easy-to-use, simple,
and embeddable common command language that would allow various tools to
have a unified command syntax, and it was only a matter of time before Tcl came
into existence.

Consider building a complex application similar to the task of building a house.
All you need are bricks of different shapes and functionality, and some kind of
substance such as filler or glue to keep it all together. This filler is Tcl, and the bricks
are components exposed as commands. What more, you can use bricks (components)
provided by someone else (like factory), or you can create your own sophisticated
bricks that will do whatever you need them to do, and all these bricks are still joined
by the same substance—Tcl! Therefore, an application should be considered as a set
of components / modules / "bricks" of different characteristics and purposes, each
exposed as a command with standardized syntax and a Tcl script that joins them
all. Now when creating your program, you do not have to 'reinvent the wheel' by
implementing another to learn the error-prone command language—you can simply
embed Tcl inside it. Tcl strongly supports and forces componentization of your
application. It allows you to configure and control every application module so
that it fits your needs.

Tcl is a scripting language with a UNIX-shell like syntax, where all operations are
commands. Yes, let's say that again—it's all about the commands here. Everything
in Tcl is a command. It comes with a set of built-in commands that implement basic
ideas that every programming language simply has to have, namely variables, flow
control, or procedures. But this is where the magic begins, as you will see later in the
second chapter, the flexibility of Tcl allows us to easily extend it with object-oriented
programming concepts.

Chapter 1

[9]

Tcl is supported on a wide range of platforms, including Microsoft Windows, Mac
OS, Linux, Solaris, HP-UX, AIX and others. You can get a full list of supported
platforms at: http://www.tcl.tk/software/tcltk/platforms.html

Tcl is a dynamic scripting language—this means the source code you write using Tcl
is not compiled in to binary file that may be executed on its own. On the contrary,
it is stored 'as is'—in form of a set of instructions (commands) written in one or
more plaintext files, interpreted at runtime by the Tcl interpreter. The interpreter
is nothing more than a normal binary application that can understand and process
scripts it is provided with. A support for a specific platform means that there is an
interpreter for this platform.

Each running Tcl interpreter should be considered as a separate virtual machine
having its own internal state that is consequently modified by subsequent commands
read from standard input. The commands can also be read from the file, so you
can execute your existing script, which will eventually lead the virtual interpreted
machine to a new state and then interact with it dynamically.

It is possible to use Tcl entirely in an interactive manner by entering commands
manually instead of executing an earlier created script. In order to do this, you
simply run the interpreter and enter commands via the simple, standard shell—after
the prompt (by default it is % character). This ability adds great flexibility into
both experimenting with and rapidly developing the code. This shell application
is commonly called tclsh, but for example, in case of the ActiveTcl distribution
(described later in this chapter), the name tclsh85 is used to reflect Tcl version it
supports. The following screenshot illustrates the shell's start as well as the execution
of some basic commands:

The Tcl command info patchlevel returns Tcl's version information and exit
terminates the interactive interpreter shell.

Introducing Tcl

[10]

As Tcl scripts are nothing more than plaintext files, you do not need any special
tools to develop them. All you need is a text editor with which you can create or
modify Tcl files. If tclsh is executed with the filename, the shell is not shown, and
the interpreter executes the script that is read from that file. The following screenshot
illustrates this:

The script file called main.tcl constitutes the entire script in this example. Its
content is the very much used "Hello World" example:

#my first Tcl script
puts "Hello World one more time!"

The first line demonstrates how comments are made in Tcl—it starts with the #
character, and the second line contains the command put with the string attribute
enclosed within quotation marks. This command will send the provided string
to standard output.

To execute it, we pass the file to Tcl interpreter tclsh85.

Along with tclsh comes another application called wish, which basically has the
same functionality. The main difference is that it preloads the Tk package and, in
case of MS Windows, creates a separate window-based shell rather than using the
system console.

Early implementations of Tcl interpreters were internally based on string
representation of executed script that resulted in sluggish execution and poor speed.
In later versions, a "just-in-time" compiler was added, which converts the Tcl script,
on the fly, into the byte code language (BCL) internal representation—a concept
used in languages such as Java. Such a byte code representation of the script is next
executed by the interpreter, which significantly improves its performance. It is also
possible to save compiled script for future usage, with the typical extension .tbc.
The main benefit to using bytecode files is that the source code is hidden—it does
not give any real performance improvements.

Chapter 1

[11]

Based on what we discussed till now, any Tcl program consists of one or more
scripts plus an interpreter. Such a form allows easy and rapid development,
meaning that you simply need to modify one of your scripts with text editor, but
it also has its own drawbacks. It is much easier to distribute your program as a
standalone, ready-to-execute binary file. Distribution of Tcl source files would be
really awkward—for example, you may be not able to install the interpreter because
of your system administrator's policy. Besides, how many times have you wanted to
try out some interesting Java application only to get angry when you realized that to
run it, you have to download dozens of megabytes and install Java virtual machine?
If you consider this a "not so elegant" solution and are in favor of standalone
applications, here is the good news—it is possible to pack all your scripts along with
the interpreter into one binary, executable file that is not different from "normal"
applications! We will discuss this in more detail in Chapter 3. It is quite possible
that you are already an unknowing user of such applications, as there are a
number of these available, for example, an excellent MP3 player called SnackAmp
(http://snackamp.sourceforge.net) or the encrypted passwords vault Password
Gorilla (http://www.fpx.de/fp/Software/Gorilla/).

Tcl language is a standard example of an open source idea. The BSD-style license
gives you all the freedom of usage; you can use and modify it in any way you
want—also, commercial usage is permitted (detailed license is available at
http://www.tcl.tk/software/tcltk/license.html). Both Tcl and Tk are
maintained by a world-wide community lead by the group of experts composing
Tcl Core Team. Anyone can propose improvements by using the Tcl Improvement
Proposal (TIP) feature and sending the proposal to TCT. The community's central
site is the Tcl Developer Xchange (http://www.tcl.tk/), which serves as a primary
source of Tcl-related information.

One of the most significant contributors is a Canadian Software Company called
ActiveState, which specializes in dynamic languages. It provides its own distribution
of Tcl called ActiveTcl and also offers various development tools (both of these are
discussed later in this chapter).

Across this book, we will present Tcl in its latest available version, which is 8.5 at the
time of writing this book. However, majority of information is valid for the version
8.4 and the previous versions. To sum it all up, Tcl is a mature scripting language
with a lot of extensions coming from the open source community, and it allows you
to quickly develop multi-platform command-line or GUI-based applications.

Introducing Tcl

[12]

Extensions
The great flexibility of Tcl comes from its ability to extend the available set of
commands known to the interpreter by adding additional extensions, that is, Tcl
packages. Packages can be written in pure Tcl, making them platform-independent,
or in native code like C/C++, which is then compiled for a specific target platform.
It is possible that a package will consist of both of these. There are a lot of packages
available on the Internet, both free of use and commercial. A good place to start
is Tcllib—Tcl Standard Library. This is a set of extensions written in pure Tcl,
available at http://tcllib.sourceforge.net/. Soon you will notice that we
will use various packages from this repository for the examples in this book.

What's more interesting is that if you find out that nobody created an extension
you would like to use, you will be able to create your own one and share it with
the community.

Tk
One of the extensions this chapter will cover is Tk, which was developed by
John Osterhout. Tk is a cross-platform GUI framework, which provides the same
functions for Tcl as AWT and Swing do for Java. In other words, it is a library that
contains a set of typical basic elements (widgets) such as buttons, frames, a canvas,
menus, and so on. Tk widgets are flexible in terms of their customization options;
almost every aspect may be defined at time of creation or modified later. One of
its features is a native "look and feel", which simply means that Tcl/Tk graphical
applications do not differ significantly from other native applications in terms of the
look and usage. As over the years, Tk appearance started to fall behind the looks
of modern operating systems, a number of extensions were created. Also worth
mentioning is the Tile Widget Set (http://tktable.sourceforge.net/tile/),
which brings re-implementation of some Tk core widget, as well as addition of a few
new widgets. Tile is also an engine that allows the usage of themes. According to the
Tile documentation:

A theme is a collection of elements and styles that determine the look and feel of
the widget set.

Tile has been incorporated into Tk core functionality in version 8.5, which means
it is now available in all Tcl/Tk distributions. Although many Tk widgets have
corresponding newer Tile equivalents, they can coexist in one application and
the developer has the freedom of choice as to which version to use.

Chapter 1

[13]

As an example, have a look at the following screenshot of SnackAmp that illustrates
Tcl's possibilities in the field of GUI applications:

Tk became so popular that it is no longer Tcl-specific. It is now possible to use it in
other scripting languages like Perl or Python.

Installation
Source releases for Tcl/Tk along with configuration, compilation, and installation
instructions are available at http://www.tcl.tk/software/tcltk/download.html,
so everyone can compile the interpreter for themselves. Typically, you don't want
to waste your time doing this, especially when someone has done it before, and the
fastest and easiest way is to get precompiled binaries for your platform. Among the
various distributions of Tcl, ActiveTcl is considered as one of the best. It is available
at ActiveState's site http://www.activestate.com/activetcl/. Not only does
it contain Tcl and Tk, but it also offers a large number of extensions. The unique
strength of the ActiveTcl distribution is that it covers a wide range of enterprise-level
operating systems by offering binaries for Windows, Linux, Mac OS X, Solaris, and
HP-UX. In this chapter, we will focus on installation under Windows XP and Ubuntu
Linux. As almost every Linux distribution comes with its own set of Tcl binaries,
users of these systems usually have more choices.

At the time of writing this book, the latest stable release of ActiveTcl is 8.5.7.0.

Introducing Tcl

[14]

Windows
In the case of Microsoft Windows, ActiveTcl is substantially the only choice.
Installation is simple; the installer is distributed in the form of an executable file
(named as something like ActiveTcl8.5.7.0.290198-win32-ix86-threaded.exe).
Once you download and run it, you will be presented with a graphical installation
wizard similar to the one shown in the following screenshot:

On subsequent screens, you will be presented with a detailed ActiveTcl License. You
will also be able to specify installation directory—associate the application with the
.tcl extension and configure some of the other details. For the rest of this chapter,
we will assume that Tcl is installed in the C:\Tcl directory.

The installer updates system variable PATH with the path to the directory where
Tcl binaries are located, that is C:\Tcl\bin. It allows you to execute commands like
tclsh85.exe anywhere, without specifying the directory's full path. Note that, as
usual, you are advised against using a path containing whitespaces.

Chapter 1

[15]

Unix-like systems
We will consider Unix-compatible systems using Ubuntu 9.04 Linux as a popular,
easy-to-get example. In the case of these systems, you have more choices than you
do with Windows. One of the choices you have is to install ActiveTcl (there is a
good chance it supports your platform), another is to search for a precompiled Tcl
distribution. Ubuntu, for example, comes with a significant number of optional
packages of additional software prepared by the community. Among them are of
course binary compilations of Tcl. It is possible that your system already has the
Tcl distribution installed, but even if not, it is extremely easy to install it, because
Ubuntu will be able to suggest what packages should be installed based on the
commands that these packages provide for the system. The following is a
screenshot of such a situation:

The user wants to execute the tclsh command to get Tcl interactive shell. The
package that provides this command is not yet installed, and the system informs the
user what packages are available. In this case, we have decided to choose tcl8.5
and install it using the command-line command as follows:

sudo apt-get install tcl8.5

Introducing Tcl

[16]

Once installed, you can run the tclsh command to get the interactive Tcl shell
as follows:

To verify the detailed version of Tcl interpreter which you have just installed, use the
info patchlevel command.

Tk comes in a separate Ubuntu package. You will be notified of this if you attempt to
run an application that requires it, for example wish. Similarly, it can be installed with:

% sudo apt-get install tk8.5.

Installation of additional Tcl packages
Just like core Tcl installation, extensions, that is Tcl packages, can also be installed
in two ways: the first is to get the source code of an extension and build (compile) it,
and the second one is to find, download, and install a pre-built package.

In order to be able to use the extension in your script, it must be available for
the interpreter. There are several locations where Tcl can search for it, and these
locations are kept in the special Tcl variable called auto_path. You can learn its
value by starting the Tcl shell and executing the following command:

puts $auto_path

Chapter 1

[17]

The puts command prints the content of the specified variable to standard output. In
the case of Windows, the output appears as:

Now that you know this, you can put the packages you require under the
C:\Tcl\lib location to make them available for the interpreter. The concept
of the $auto_path variable and other packages will be described in more detail
in the next chapter.

ActiveTcl comes with a handy utility called Teacup. This utility allows for easy
installation of prebuilt Tcl extensions from external remote repositories called Tcl
Extension Archives. These archives, also known as Teapot, are centrally managed
sites. Currently, there is one public Teapot maintained by ActiveState. By using
Teacup, you can install the package you need into your local repository and then use
it in your scripts. It will automatically solve dependencies, localize package(s), and
download and install them.

Additional tools
In these days of rapid application development, using plaintext editors like notepad
or vi can be really inconvenient and time consuming. Luckily, there is far better
alternative— an Integrated Development Environment (IDE). IDEs are tools that
allow efficient code creation and editing, support testing your code from within the
editor, and usually also offer debugging capabilities.

At the time of writing this book, there are two IDEs worth mentioning: Eclipse and
Komodo. Both support syntax highlighting and coloring, auto completion, creating
launch configurations, managing projects and dependencies, and have many other
useful features.

Introducing Tcl

[18]

Eclipse
It is hardly possible that you have not heard about Eclipse nowadays. An open
source IDE supporting a wide variety of languages, extensible with plugins is
considered as one of the best programming environments, and it is all free. Due to
the fact that Eclipse was developed in Java, the CPU/memory requirements may be
slightly higher than in case of native applications, but in return, it is available for the
Windows, Linux, and Mac platforms.

First you have to install the Java Runtime Environment (JRE), we strongly suggest
installing latest version available (at the moment it is version 6 Update 17), you can get
it from http://java.com. We will discuss Eclipse Classic 3.5.0 available for download
at http://www.eclipse.org/downloads/. The installation process is simple—just
download and unzip the file to a location of your choice and run eclipse.exe.
The full description of Eclipse is out of scope of this book, we will present only the
necessary steps to get it running for Tcl development purposes.

By default, Eclipse supports only Java development, so we have to install an
additional extension called the Dynamic Languages Toolkit (DLTK) for Tcl support.
In order to do this it, you have to navigate to the Help | Install New Software…
menu. A new window will show up, as shown in the following screenshot:

Chapter 1

[19]

First, select the Galileo site from the list at the top. Eclipse will download a list of
all available extensions from this site; this may take a while. Once the list is visible,
expand Programming Languages and select Dynamic Languages Toolkit – TCL
Development Tools. Once you click on Next, Eclipse will automatically resolve
dependencies and select all the necessary plugins to install. In this case, it will choose
to install the DLTK Core and Eclipse Modelling Framework (EMF) extensions, as
shown in the following screenshot:

Following this, Eclipse will download and install all the necessary files, and ask you
to restart. Once it is done, you have to configure installed Tcl interpreters. Eclipse
requires at least one interpreter in order to be able to run scripts. To configure it,
navigate to Window | Preferences to open the preferences dialog, and then go to
Tcl | Interpreters. Click the Add… button on this pane, and then Browse… and
navigate to the interpreter binary, which is installed at C:\Tcl\bin\tclsh85.exe.
Once done, you should have configured the default interpreter like here, as shown
in the following screenshot:

Introducing Tcl

[20]

Now you have your Eclipse fully configured to create and run Tcl scripts! To get a
taste of working with Eclipse, let's create the same Hello World example. Navigate
to File | New | Project… and choose Tcl Project from the Tcl category and then
create a project named TclHelloWorld—it will be shown in the Script Explorer view
(by default, on the left of the Eclipse window). The next step is to right-click on the
project name in this view and select Tcl File, and name it main.tcl. As a template,
select Tcl File. Eclipse will create the file with a specific header that we will explain
later. Add the puts command to that script, just as you did in the previous example.
Now it is time to execute the script—right-click on it and select Run As | Tcl Script.
The output of this execution will be visible in the Console view. The following
screen illustrates it:

Komodo
Komodo, available for download at http://www.activestate.com/komodo, comes
in two flavors: free Komodo Edit and paid Komodo IDE. Both support a wide range
of scripting languages, including PHP, Ruby, Python, and of course Tcl. The first one
is a simple editor with syntax checking and coloring, and also Project Management
abilities. The second one extends the offered functionality as it comes with a debugger.

Chapter 1

[21]

Similar to Eclipse, you can create a project (using File | New | New Project…)
and a file inside it (right-click on project name in the left pane and select Add | New
file…). The new file is created based on a language-specific template, which comes
with the universal header described later in this chapter.

To run the script, navigate to Tools | Run Command… and enter tclsh85 %F in the
Run dialog, and then click on the Run button.

tkcon – an alternate Tcl shell
If you find the standard Tcl shell too primitive, you must definitely have a look
at tkcon —a standard console replacement with many useful features including a
command history and syntax highlighting. What is even more interesting is that it is
implemented as another Tcl package, and therefore it is perfectly possible to embed
tkcon in to your Tcl application. The following is a screenshot of tkcon console, with
the puts $auto_path command's output:

Introducing Tcl

[22]

Tkcon is, by default, included in the ActiveTcl distribution. To install it on
Ubuntu, enter:

% sudo apt-get install tkcon .

In order to run it, simply execute the command tkcon.

Tcl syntax
Tcl scripts are nothing more than plaintext files saved with 16-bit Unicode encoding.
Such a script consists of one or more commands that are executed by the interpreter
at runtime.

Each line of the script (with exceptions described as follows) consists of the
command and zero or more command arguments, all separated by whitespaces
(spaces or tabs).

If the line starts with the # character, it is considered to be a comment and not
processed by the interpreter.

If the line ends with the \ (backslash) character, the next line is considered to be a
continuation of current one. This is useful for breaking long lines and improving
the readability of the code.

You can also join separate commands using ;, as shown in the following example:

puts "one"; puts "two"

Tcl commands documentation syntax
The comprehensive documentation for Tcl 8.5 is located at http://www.tcl.
tk/doc/. This section does not intend to replace or compete with it, but to briefly
introduce Tcl's grammar and rules. Therefore, we strongly recommend reading
the documentation, especially the descriptions of the main commands.

Running the script
Let's revisit the main.tcl script which was introduced earlier in this chapter:

#my first Tcl script

puts "Hello World one more time!"

Chapter 1

[23]

The first line is the comment. The second line has the puts command with one
parameter —the text string—in quotations marks. As we mentioned previously,
you can run the script with:

tclsh main.tcl

However, in some cases, it would be far more comfortable to run it as a standalone
program. On Windows, you can associate the .tcl extension with the Tcl interpreter
to achieve this. On Unix, the script will look like:

#!/usr/bin/tclsh

#my first Tcl script

puts "Hello World one more time!"

The first line starts with the #! sequence, often referred to as shebang. The presence
of these two characters at the very beginning of the executable file informs the
system's program loader that the file is a script and also specifies the interpreter
which should be used to run it. In this case, the first line issues an instruction to Unix
shell, specifying that the script should be interpreted by /usr/bin/tclsh. As the #
character itself is often a comment marker, the line will be ignored by the interpreter.
However, it is not a good idea to hardcode the path, because it may be different for
other systems, thus making our code not non-portable. A better solution is:

#!/bin/sh

#my first Tcl script \

exec tclsh "$0" $@"

puts "Hello World one more time!"

In this case, the script is interpreted by standard sh shell. This shell is unable to run
Tcl commands, but it will run the exec command perfectly, effectively launching
tclsh, passing the script name and other arguments (if any). The trick is that we do
not want the Tcl interpreter to process the exec command, as it was intended for
sh only. In order to avoid this problem, the previous line ends with \, so both the
second and third lines of that script are treated like comments by the interpreter.

Recently, also another solution has gained popularity, that is:

#!/usr/bin/env tclsh
#my first Tcl script

puts "Hello World one more time!"

The env command searches for tclsh using system PATH variable and executes it,
therefore, no direct path to it is required.

Introducing Tcl

[24]

Running commands directly in the tclsh
interpreter
In the case of "one-liner" examples, we can also easily enter them directly into the Tcl
shell—you will recognize them by the % prompt character. It is worth mentioning
that the shell offers hints about the syntax of any command. This is extremely useful
if you don't quite remember the required arguments or their order:

% puts

wrong # args: should be "puts ?-nonewline? ?channelId? string"

The syntax of such a hint is commonly used throughout the Tcl documentation.
Question marks indicate optional arguments (in this example, –nonewline or
channelId are both optional).

Variables
As with any other language, Tcl allows us to define variables. Let's consider the
following example:

set myVariable "someValue"

puts $myVariable

The first command set creates a variable named myVariable and sets its value to
somevalue. The second command, that is puts, prints the variable's value on the
screen. myVariable is the variable name and the $ operator is used to get its value.
When the interpreter starts processing the second line, it will first substitute all the
variable values, so the line will effectively be puts "someValue", and then it will
execute it. This will result in the following output:

someValue

To delete a variable, use the unset command:

% unset myVariable

% puts $MyVariable

can't read "MyVariable": no such variable

Chapter 1

[25]

Grouping
In an earlier example, we used "" to group Hello world one more time! into one single
argument. Without it, we would get a syntactical error, as each word would be
treated as separate argument for the puts command:

% puts Hello world one more time!

wrong # args: should be "puts ?-nonewline? ?channelId? string"

It is also worth mentioning that whitespaces could be also escaped using the
\ character, as shown in the following example:

% puts Hello\ world\ one\ more\ time!

Hello world one more time!

If the argument consists of only one word, grouping is not necessary, but it's
still possible.

The text inside quotation marks is processed before being passed to the command.
What this it means is that all references to variables are replaced with the variable's
values, for example:

% set var World; puts "Hello $var"

Hello World

The substitution gets complicated if you don't want to have any whitespace between
the variable's value and the text that follows. In this case, you can end the variable
name with '\' or put it into {}, as in the following example:

% set var World; puts "Hello $vars!"

can't read "vars": no such variable

% puts "Hello $var\s!"

Hello Worlds!

% puts "Hello ${var}s!"

Hello Worlds!

The third option is the preferred one because of its readability.

Grouping is also possible with curly braces, that is, {}. The difference is that text inside
the quotation marks is evaluated, and the text inside {} is not, consider the following:

% set var World; puts {Hello $var}

Hello $var

In the second case, $var was not substituted with its real value World, because it was
inside {}.

Introducing Tcl

[26]

One more unique feature of curly braces is that they allow multiple lines inside them.
In the code:

% puts {Hello

World!}

Hello

World!

The new line character that terminates the first line is not processed, and therefore,
it also breaks the output into two lines. Of course, it is legal to also use \:

% puts {Hello\

World!}

Hello World!

Nesting commands
The ability to execute commands wouldn't be very valuable if there wasn't some way
to provide the result of one command to another. In Tcl, we can use [] to execute a
command and capture its return value:

% set var [info patchlevel]; puts "Current patchlevel is: $var"

Current patchlevel is: 8.5.6

In this example, the output of the info patchlevel command is used as the value
for the var variable. It is also perfectly possible to use [] inside quotation marks,
as its content will be processed by the interpreter:

% puts "Current patchlevel is: [info patchlevel]"

Current patchlevel is: 8.5.6

Data types
Basically, every variable in Tcl can be considered as a string. The internal
representation of such a variable depends on its execution state (see Chapter 2,
Advanced Tcl features for more details). Being a dynamic language, Tcl converts the
value of a variable to a suitable type at runtime. Let's consider the following example:

% set x "2"; expr $x + 3

5

% set x "text"; expr $x + 3

invalid bareword "text"

in expression "text + 3";

Chapter 1

[27]

We introduce the new Tcl command expr that allows arithmetic operations. In this
example, the string "2" is converted to an integer by expr and it returns correct
value, but the string text causes an error, because it cannot be converted.

To operate on strings, the string command is extremely useful. The convention
of this command is that it accepts a subcommand name as the first argument. For
example, if we assume that str is a Hello World! string, in order to get its length,
you can use:

% string length $str

12

Also, in order to reverse it, use:

% string reverse $str

!dlroW olleH

The String match command can be used to verify if the given string matches the
pattern. The pattern is basically another string, but apart from normal characters,
some special sequences can be also used:

Sequence Interpretation
? Matches any, exactly one character
* Matches 0 or more of any of the characters
[chars] Matches exactly one character, only that specified inside [] brackets. It is

possible to use the [a-z] syntax to match all characters in this range, in this
case from 'a' to 'z

\ Allows escaping of any of the special characters, such as ?, *, [or] and
treats them as normal characters to be match with

The command returns 1 if the string is successfully matched and it returns 0 otherwise:

% set str aStringToMatch

% string match *ToMatch $str

1

% string match ?StringToMatch $str

1

% string match {[a-c]StringToMatch} $str

1

% string match {[b-c]StringToMatch} $str

0

Introducing Tcl

[28]

Note that in the last two cases, this pattern is put into curly braces to prevent the
interpreter from considering the content of the [] braces as a command to be executed.

Describing every string subcommand is beyond the scope of this chapter, the details can
be found in the manual at http://www.tcl.tk/man/tcl8.5/TclCmd/string.htm.

It is worth mentioning at this point that depending on the context, the variable's
value may be treated as a text string, a number, or a logical value, just as we will
see in the following examples.

More than pure strings, Tcl introduces the concept of two interesting data
types—lists and arrays (hashmaps).

Lists
A Tcl list holds an ordered sequence of elements such as strings, other lists, and other
variables. To create a list, you can use the list command:

set myList [list element1 element2 element3]

In this example, we create a list using three elements, separated with whitespaces,
and assign the list to the myList variable.

What is interesting is that there is no straight demarcation between the list and the
string, and therefore, the following code also creates a list:

set myList "element1 element2 element3"

Curly braces are also possible here. The conclusion is that every string may be
considered as a list. The advantage of using the list command is that it takes care
of correct formatting, adding braces and backslashes when necessary. Consider
either of the following two commands:

set myList "one two {another list here}"

set myList {one two {another list here}}

They will create a list in which the third element will be another list consisting
of elements specified in curly braces. The same effect can be achieved using the
list command:

set myList [list one two [list another list here]]

From the user's point of view, a list is both a string and a list, because there is no
visible difference:

% puts $myList

one two {another list here}

Chapter 1

[29]

As you can see, the list command added the {} braces at the correct points.

So why even bother with lists? Lists allow you to organize and structure your data,
and the benefits of using them are that Tcl offers a set of commands that operates
on lists. Lists tend to be extremely useful in typical scripts, therefore, we will briefly
review the possible operations on them.

To get the number of elements in your list, use llength. This command takes one
parameter, that is, the list. The output is the number of elements in the list.

% llength [list one two three]

3

The command lindex retrieves an element from a list. In basic usage, it takes the list
and the index of the element as arguments. Just as in other programming languages,
indexes start from zero in Tcl.

% set myList [list one two three]; lindex $myList 0

one

We can also specify the index as the special keyword end, which indicates the last
element. For example:

% set myList [list one two three]; lindex $myList end

three

We can also specify end-<n>, which indicates the nth element from the end. The
value end-0 is the same as the end value; the value end-1 specifies the last but one
item and so on. For example:

% set myList [list one two three]; lindex $myList end-1

two

If the retrieved element is another list, lindex also has the ability to retrieve its
element by providing additional indexes:

% set myList [list one two [list another list here]]; lindex $myList
2 0

another

In this example, the third element (its index value is 2) of myList is, in turn, another
embedded list, and we retrieve its first element—string another—by specifying an
additional index value to lindex—0.

Introducing Tcl

[30]

The lrange command returns a subset of the original list. It accepts the list as
the first argument followed by the index of the first and last items that should be
included in the new list. Both the first and last elements are included in the resulting
list. The index can be in the form of an integer or in the end or end-<n> forms.

This command returns a new list consisting of elements that is the start to
end indexes:

% set myList {1 2 3 4 5}; puts [lrange $myList 1 3]

2 3 4

In this case, 1 is the starting index and 2 the ending one, so the returned list consists
of the second and third elements of the original list.

We can use the lappend command to add one or more elements to an existing list.
It accepts the variable name of the list, followed by any number of elements to be
added to the list. The command inserts new elements at the end of the specified
variable and does not return the new list—instead, it is automatically set as the
new value of the specified variable.

For example:

% set myList {one two}; lappend myList 3 4; puts $myList

one two 3 4

This command can also be used to create new lists if the variable passed as the first
argument does not exist.

The linsert command can be used to insert one or more elements into a list at the
specified index. Unlike lappend, it takes the value of the list as its first argument,
followed by the index to insert elements at and any number of elements to insert.
For example:

% set myList {1 5}; set myList [linsert $myList 1 2 3 4]; puts
$myList

1 2 3 4 5

As for any other list-related command, the index can be in the form of an integer or
in the end or end-<n> forms.

The lset command allows you to replace the values of elements with new ones. It
accepts a variable name, and one or more indexes, followed by the new value to set.
The changed list is stored back in the variable specified as the first argument.

Chapter 1

[31]

For example, we can specify a single index to modify the nth element of a list:

% set myList {1 2 3}; lset myList 1 0; puts $myList

1 0 3

Similar to lindex, this command can access and modify elements of sub-lists.
For example:

% set myList [list one two [list another list here]]; lsert myList
end 0 new; puts $mylist

One two {new list here}

The lreplace command is also similar to it, but allows replacing a set of elements.
It accepts the list as the first argument, the start and end indexes to replace, and
the new items to insert instead of the specified elements. The command removes
elements between start and end inclusively and inserts new items in their place.
Like linsert, it does not alter an existing list, but returns a new one. For example:

% set myList {1 2 3 4 5}; puts [lreplace $myList 1 3 0 0]

1 0 0 5

In case you don't specify new replacement items, the command will only remove
elements within a range:

% set myList {1 2 3 4 5}; puts [lreplace $myList 1 3]

1 5

The lsort command can be used to sort lists in Tcl. For example:

% set myList {5 1 3 4 2}; puts [lsort $myList]

1 2 3 4 5

It is also possible to modify the sorting order by specifying additional options,
for example -decreasing:

% set myList {5 1 3 4 2}; puts [lsort -decreasing $myList]

5 4 3 2 1

Introducing Tcl

[32]

By default, the elements are compared as text values—therefore, when sorting 9, 10,
11, and, 2, the result would be 10, 11, 2, and 9. The following switches allow us to
define how elements are compared, which affects the output of the sorting operation:

Switch Description Example
-ascii Compares elements as text; this is the

default if no switch has been specified
List: {a b c 9 10 11 2}
Sorted: {2 9 10 11 a b c}

-integer Compares elements as integer values List: {9 10 11 2}
Sorted: {2 9 10 11}

-real Compares elements as floating point values List: {11.0 2.0 9 1.2 1}

Sorted: {1 1.2 2.0 9 11.0}
-dictionary Compares elements using dictionary-style

comparison; see the following paragraph
for more details

List: { Di beta al Beta}
Sorted: {al Beta beta Di}

Dictionary-based sorting is similar to text-based comparison, except that character
case is ignored here. An exception is when both the elements are the same, in that
case, the uppercase elements are put before lowercase elements. If strings contain
numbers, they are compared as integers, not characters. For example, when sorting 9,
10, 11, and 2 using the -dictionary switch, the result would be 2, 9, 10, and 11.

We can also tell lsort to use all elements in the list as sub-lists and compare them
only using specified elements of these sub-lists, by using the -index option. The
value for the option can be a single index or a list of indexes, where each element
of the index list indicates an index in a sub-list. For example:

puts [lsort -integer -index 1 {{Alpha 2} {Beta 1} {Gamma 3}}]

{Beta 1} {Alpha 2} {Gamma 3}

Another option is to use your own custom implementation of the comparison
algorithm. To do so, you have to define a command that accepts two arguments
(items from the list that is being sorted) and returns the integer value by complying
to the following rules:

The value is negative when the first argument is considered to be lower than
the second
The value is 0 when both arguments are considered equal
The value is a positive value when the first argument is higher than the
second one

•

•
•

Chapter 1

[33]

It is illustrated in the following example:

proc compareStrings {s1 s2} {
 return [expr {[string length $s1] - [string length $s2]}]
}

set animals [list snake crocodile monkey cat]

puts "default: [lsort $animals]"
puts "custom: [lsort -command compareStrings $animals]"

We have the animals list that contains some animal names. The default
implementation will sort it in the alphabetical order, but we will be able to define our
own implementation in the form of the compareString procedure, which will sort it
in the order of the word's length:

default: cat crocodile monkey snake
custom: cat snake monkey crocodile

An interesting property of the lsort command is that when two elements are
considered as the same, their order in the output is the same as the order in which
they were taken as inputs. This can be used to sort lists of lists using multiple orders.
We need to sort the list by each element we want it to be sorted using, but in the
reverse order.

For example, we can sort a list where each element is a sub-list consisting of first
name, last name, and age. If we want to order it by the last name and the decreasing
order of age for the same last names, we need to sort it by age first and later by the
last name:

set list {{John Doe 32} {Joe Smith 29} {Jane Doe 35}}
set list [lsort -integer –decreasing -index 2 $list]
puts [lsort -dictionary -index 1 $temp]

The result of this sort would be:

{John Doe 32} {Jane Doe 35} {Joe Smith 29}

You can search through your list to find the element(s) that match your pattern
using lsearch:

% set myList {zero one two three}; puts [lsearch $myList three]

3

Introducing Tcl

[34]

This command looks for the element three in myList, and returns the index of the
first occurrence of the searched element—3 (or -1 if element is not found). It will be
able to accept options such as:

-glob—specifies that a pattern is in the glob-style (similar to file mask, see
the string match command's description for details: http://www.tcl.tk/
man/tcl8.5/TclCmd/string.htm)
-regexp—similar to the previous option, but the pattern is compliant with
the regular expression's syntax (http://www.tcl.tk/man/tcl8.5/TclCmd/
re_syntax.htm)
-inline—the command will return the value of the element found instead of
the index
-all—the command will return a list of all matching occurrences, instead of
just the first one

These options can be combined together; for your convenience, here is an example of
their usage:

set myList {zero one two three}

puts "First match (glob) : \
 [lsearch -glob $myList *t*] -> \
 [lsearch -inline -glob $myList *t*]"
puts "First match (regexp): \
 [lsearch -regexp $myList e$] -> \
 [lsearch -inline -regexp $myList e$]"
puts "All matches (glob) : \
 [lsearch -all -glob $myList *t*] -> \
 [lsearch -all -inline -glob $myList *t*]"
puts "All matches (regexp): \
 [lsearch -all -regexp $myList e$] -> \
 [lsearch -all -inline -regexp $myList e$]"

The expression *t* will match any string containing the letter t and the regular
expression e$ will match any string that ends with the letter e.

The output will be:

First match (glob) : 2 -> two
First match (regexp): 1 -> one
All matches (glob) : 2 3 -> two three
All matches (regexp): 1 3 -> one three

•

•

•

•

Chapter 1

[35]

The command lassign allows you to assign values from the list to different
variables on a single line. For example:

lassign {1 2 3} a b c

The effect of this command is equal to the execution of the following:

set a 1
set b 2
set c 3

The first argument is a list, and the consecutive arguments are names of the
variables. If there are more variables than list elements, the remaining elements
will be set to empty strings.

Arrays
Another important data type for storing a set of values is an array. In Tcl, arrays are
essentially associative maps, because any string value is permitted as an array key
(index). Consider the following example:

set myArray(key1) element1
set myArray(key2) element2
set myArray(3) element3

After looking at the first line, the interpreter knows that the myArray variable
will be an array, because of presence of the () braces. Inside these braces, the array
key key1 is written, and it is mapped to the string element1. We have three keys
overall—key1, key2, and 3 (note that the last one is different from the first two,
but still valid)—that point to three values: element1, element2, and element3
respectively. The key name can contain any character, and also spaces (of course,
with the correct syntax, for example, by using the Esc key with a backslash).

To manipulate array variables, use the array command with the appropriate
operator and arguments. The most common operations are:

The command array exists returns the value 1 only when the variable passed as
an argument exists and is an array:

% array exists myArray
1
% array exists fictionalArray
0

Introducing Tcl

[36]

Otherwise, the command will return 0.

We can use the array unset command to delete an array:

% array exists myArray
1
% array unset myArray; array exists myArray
0

We can also delete a specified key or keys by specifying the pattern to match the keys
that we want to delete as follows:

array unset myArray prefix,*

This will delete all the elements of an array that starts with prefix,.

You can convert an array into a list using array get:

% array get myArray
index1 element1 index2 element2 3 element3

The list it returns consists of name-value pairs. This means that for each element
in the array, this command returns its name as an element followed by its value as
another element.

We can also use array get to get specific elements of an array, by adding a pattern
to match keys, similar to array unset. For example:

array get myArray prefix,*

This will return information only for keys starting with prefix,.

To reverse this operation and set one or more keys in an array from the name-value
pairs, we can use array set command:

% array set anotherArray "1 first 2 second"

% array exists anotherArray

1

If you want to get a list of key names existing in a particular array, the array names
command comes handy:

% array names myArray

index1 index2 3

Similarly, we can get only a subset of names by running:

array names myArray prefix,*

This will return only the keys which start with prefix,.

Chapter 1

[37]

array size
array size returns the number of key-value mappings:

% array size myArray

3

Although arrays are popular and commonly used, there are some drawbacks to
using them. They are not Tcl objects on their own, but rather a collection of variables,
a way in which a particular variable name can store zero or more key-value relations:

set myarray(somekey) "my value"

If we set an array key with the previous command, myarray is not a variable
by itself, but rather each key and value pair is stored as a Tcl object. From the
programming perspective, this has little impact. However, once you set an array,
you cannot pass it as a variable; for example:

set myarray(somekey) "my value"
return $myarray

The preceding code will raise an error (we will present return later in this chapter).
However, it is okay to reference it via the variable name in commands such as upvar,
variable, which are explained later throughout Chapter 2.

Also, only one dimensional arrays are supported—so the syntax like myArray(1)(2)
is incorrect. This can be bypassed by using some specific key name convention, for
example with the '.' or ':' characters:

set my3DArray(0.0.0) element1
set my3DArray(0.0.1) element2
set my3DArray(1.0.1) element3

Effectively, my3DArray can be treated as a three-dimensional array, with indexes
separated by the character (or string) of your choice.

Dictionaries
To address the previously mentioned drawbacks of arrays, a new data type
was introduced, which is quickly gaining acceptance and popularity among Tcl
developers—dictionary. Dictionaries are somewhat similar to arrays in that they
keep mapping between key and value, but a dictionary is treated as an object.
Dictionaries can also be truly multi-dimensional. The other difference is that
dictionaries are significantly faster than arrays.

Introducing Tcl

[38]

The new command dict was introduced to operate on dictionaries. The command
is natively present in Tcl 8.5, but it can be also used in Tcl 8.4 by adding the
dict package.

To create a dictionary, use the dict create command with the equal number of
arguments; alternately, keys and values:

set myDict [dict create key1 value1 key2 value2 key3 value3]

The previous line creates a dictionary with three mappings and stores it in the
myDict variable.

This command also allows us to create multi-level dictionaries:

set a [dict create 1 [dict create 2 [dict create 3 value]]]

Here, in dictionary a, the key 1 is mapped to other dictionary which has key 2
mapped to the third dictionary, wherein key 3 is mapped to value.

To access the mapped value, you can use the dict get command:

% dict get $myDict key2

value2

% dict get $a 1 2 3

value

The second command's invocation in this example demonstrates how to access
a third-level variable.

These are only the basics, there are also many other operations available for
dictionaries, these can be compared to the operations for arrays described earlier,
because their concepts are similar. For the complete documentation of the dict
command, you can refer to http://www.tcl.tk/man/tcl8.5/TclCmd/dict.htm.

Mathematical expressions—expr
There is a separate command called expr that handles all mathematical and logical
operations. The command accepts an expression to evaluate. An interesting detail
is that this expression can be passed as one argument, or as unlimited number of
arguments. The following calls to expr will return the same result:

expr "3 + 7 * 2"

expr 3 + 7 * 2

expr {3 + 7 * 2}

expr 3+7*2

Chapter 1

[39]

All the preceding operations return the value 17 as the result.

In case of logical expressions, values of arguments, such as 1 (or any other numeric
non-zero value), true, TRUE, yes or YES are considered as logical true, and 0, false,
FALSE, no, and NO as logical false. The following is an example of a logical AND
(the && operator) and OR (the operator || operator):

% expr yes && no

0

% expr yes || no

1

Flow control and loop instructions
Like almost any other language, Tcl has a set of commands—conditional and
iterational—to control the flow of the program.

Flow control
The first one is the command if:

set condition 1

if {$condition} {

 puts "condition is true"

} else {

 puts "condition is false"

}

Depending on the boolean value of the condition variable, the first or the second
part of the command is executed. In this case, the output is:

condition is true

Note that the entire if command call could be written in one line:

if {$condition} {puts "condition is true"} else {puts "condition is false"}
The first argument is an expression representing a logical condition. The value is
evaluated in the same way as in case of the expr command.

It is possible to skip else and the second script body, or to add more conditions
by using elseif with another condition, and a script to execute in case the
condition is true.

Introducing Tcl

[40]

The second command switch allows us to decide what action should be taken based
on the value passed; for example, consider the following example code:

set value second
switch $value {
 first {puts "first value"}
 second {puts "second value"}
 default {puts "some other value"}
}

As the value of value variable is second, the second script body is passed to the
Tcl interpreter, resulting in the output second value on the screen.

It is possible to skip the default section. Also, more than one acceptable value
separated by the – character may be defined for each of the sections:

switch $value {
 1 – 1st - first {puts "first value"}
 2 – 2nd - second {puts "second value"}
 default {puts "some other value"}
}

The values 1, 1st, or first will all match with the first section.

Finally, it is possible to use patterns that we have used with string match
command to match the appropriate section, by specifying the –glob option
with the switch command:

switch -glob $value {
 *st {puts "first value"}
 *nd {puts "second value"}
 default {puts "some other value"}
}

In this case, both the values second and 2nd would match with the second option.

Loops
Tcl offers three commands that allow the iterational execution of code: for,
while, and foreach.

The following example presents the usage of the for command:

for {set x 1} {$x < 4} {incr x} {puts "$x execution"}

Chapter 1

[41]

The first argument is a code snippet executed at the beginning of the loop (in this
example, it defines the counter variable x and initializes it with value 1). The second
one is a condition that is checked to be logically true before each loop (if the counter
is smaller than 4) and the third is the condition which is evaluated after each
loop—in most cases, to increase the counter (for example, using the command incr).
The last part of the statement is the body of the loop. The output of the example is:

The while command operates in a similar fashion, with the exception that the
condition is evaluated after each loop, not before, and there is neither a start nor
"after each loop" code section present. The equivalent of the previous example
code written with while is:

set x 0
while {$x < 3} {incr x; puts "$x execution"}

The last command is foreach. The idea behind this command is to pass one
(or more) lists, and the loop's body is executed for every element of the list:

The following example shows using two lists at the same time. In every loop,
consecutive elements from both lists are assigned to the variables amount and item:

What is interesting here is that the lists are not required to be of the same length. If
one of them is shorter, the empty value is used instead of using missing elements.

Introducing Tcl

[42]

foreach also allows us to fetch multiple variables in one shot—for example, to put
all data in a three-column table in HTML, it's just as easy as:

foreach {c1 c2 c3} $data {
 append html "<tr><td>$c1</td><td>$c2</td><td>$c3</td></tr>"
}

Here $data is a list.

It is possible to control the flow of loops with the commands break and continue.
Using the first one will cause the loop to exit permanently, even when the end
condition is not met. The second command causes the skipping of the current loop
and the immediate start of the next one, or the end of the loop if the command that
was skipped was the last one.

Defining your own commands
Up until this moment, we have been using only commands delivered by 'someone'. It
is time to create our own command for the first time:

proc myCommand {name} {
 return "Hello $name, have a nice day!"
}

We use the proc command to define a new command (procedure) called myCommand.
proc accepts three arguments: the procedure name, a list of arguments for this
procedure, and its body. Note that just like any other argument, these have to be
separated by whitespaces. In this case, myCommand accepts only one argument—name.
The implementation is simple, because the command returns some greetings as its
execution result. You can use this command in the same way as the others:

Chapter 1

[43]

Summary
Tcl is a mature language and it is easy to use. It covers a wide range of domains,
ranging from task automation to fully-featured GUI applications. Its syntax is a bit
different from other languages, but once mastered, it becomes clear and logical.
The wide set of available extensions along with the ability to define your own
commands means there are virtually no limits in terms of extending the capabilities
it offers. This fact combined with its support for various platforms makes Tcl a truly
swiss-army-knife equivalent among programming languages. Often considered as
'just' another scripting language, trifled and underestimated, Tcl may really surprise
you with its abilities and potential.

In this chapter, we have learned:

The origins, concepts, and possibilities provided by the Tcl language
Which platforms it supports, and how to get and install the
Tcl interpreter
About some of the tools available to ease the development of Tcl code
The syntax and fundamental commands of the language

Having read this chapter, you are now ready to continue to the next one, which will
teach you some more advanced Tcl features. Not only will you learn about the many
technical details of the interpreter itself, but you will also become familiar with file
operations, the packaging system, event loops, and threads.

•
•

•
•

Advanced Tcl Features
Now that we know Tcl basics a lot better, it is time to learn some of Tcl's more
advanced functionality. This chapter focuses on some aspects of Tcl that will be
needed for the chapters that follow throughout the book.

This chapter talks about how Tcl works internally, what we need to be aware of and
how we can leverage it to our needs. It introduces in detail how Tcl evaluates code,
substitutes variables, and evaluates embedded commands. It also talks about the
different types of variables and how they can be used within our code.

We also describe how to work with files in Tcl. This chapter covers how to read and
write files, and introduces the concept of channels within Tcl and how different types
of channels work. We also show how to copy, rename, and delete files and directories,
get information about them, and how to learn about platform-specific issues.

After that, you will see how the Tcl packaging system works and how we can extend
it and create reusable packages. It mentions the package system, which is how
Tcl has been doing things for a long time. It also introduces us to the Tcl modules
concept, which was included in Tcl 8.5 and changes the way some of the packages
are built and found on a system.

We also dive into the idea of the event loop, one of Tcl's most powerful features—what
it is, the different types of events, how Tcl receives them, and how to use them in our
applications. We learn about file events, timer events, and scheduling periodic jobs.

This chapter also gives us a good idea of how threads can be used from within Tcl.
It talks about how we can create child threads, communicate with them, and share
information between threads. It also shows some examples of how we can use Tcl
threads to implement a system where a child thread performs data manipulation,
while the main thread is responsible for data management.

Advanced Tcl Features

[46]

Tcl features
The previous chapter introduced the basics of the Tcl language. We learned the
basics of strings, lists, dictionaries, and integer and floating-point numbers. This
section introduces some of the more advanced Tcl features— working with the time
and date, data, namespaces, and stack frames.

Learning some of these features is required if you wish to understand and use Tcl
and its features in a better way—especially meta programming, which can be used
to create our own syntax and alter a program's flow control. This is one of Tcl's
powerful features.

Working with time and date
When writing applications in Tcl, we'll often need to work in the context of date and
time. One example is reading a file's access time, another one calculating how much
time is left until, for example, next Sunday at 4 AM. Tcl uses the Unix timestamp for all
date and time manipulations. This is a common approach which assumes that all dates
and times are specified as a number of seconds since midnight on the 1st January 1970
GMT. This is similar to how most operating systems track time. An interesting fact is
that regardless of which time zone you are currently in, the actual number of seconds
is the same everywhere. The only thing that changes is that when it gets converted to
actual time and date, the local time zone is then taken into account.

The Tcl command clock can be used for the majority of date and time related
operations. Finding out the current time is done using the clock seconds command,
which returns a Unix timestamp value. Taking this value at various times can be
used to calculate how many seconds have passed, for example:

% set earlier [clock seconds]set earlier [clock seconds]

1253652955

% set now [clock seconds]set now [clock seconds]

1253652998

% expr {$now - $earlier}expr {$now - $earlier}

43

Chapter 2

[47]

The timestamp idea, although simple and elegant, is not clear when it comes to
interpreting the value. The date and time can be converted to a more readable
form by using the clock format command, which takes a timestamp as the first
argument and formats it as a string. The command also accepts several options,
including -gmt, requiring a Boolean value as argument, which allows it to work
with a GMT time and date. We can also specify the format in which the date and/or
time should be presented. The format string may include various tokens that will be
replaced to appropriate values, some of them are:

Format Description Example
%Y 4 digit year 2009
%m Number of months 09
%d Number of days 22
%H Number of hours 20
%M Number of minutes 56
%S Number of seconds 38

All formatting possibilities and other options can be found on the clock command's
manual page at:
http://www.tcl.tk/man/tcl8.5/TclCmd/clock.htm

For example, this is how the same timestamp can be printed out in different ways:

% puts [clock format $now]

Tue Sep 22 22:56:38 CEST 2009

% puts [clock format $now –format "%Y-%m-%d - %H:%M"]

2009-09-22 22:56

% puts [clock format $now -gmt 1]

Tue Sep 22 20:56:38 GMT 2009

Tcl can also do the opposite—read a textual representation of a date and convert it to
a timestamp. This can be done using the clock scan command, which accepts and
automatically detects many different types of date and time specification. Text can
also specify only a date or only time, in which case it is scanned. For example:

% puts [clock scan "Tue Sep 22 22:56:38 CEST 2009"]

1253652998

% puts [clock scan "2009-09-22 22:56:38"]

1253652998

Advanced Tcl Features

[48]

By default, clock scan parses text basing on the current date and time—so if the text
contains only a time, today's date will be used. By adding the -base option, we can
specify what timestamp should be taken as the base timestamp for our operations.
For example, scanning just a time can produce different results with different bases:

% puts [clock format [clock scan "12:40"]]

Tue Sep 22 12:40:00 CEST 2009

% set base [clock scan {2009-10-01}]

% puts [clock format $base]

Thu Oct 01 00:00:00 CEST 2009

% puts [clock format [clock scan "12:40" -base $base]]

Thu Oct 01 12:40:00 CEST 2009

Besides parsing actual date and time values, clock scan is also able to parse and
understand an argument that specifies a difference in time, in which case it is based
on the current or provided date and time. The syntax is <number> <units>.
For example:

% puts [clock format [clock seconds]]

Tue Sep 22 22:56:38 CEST 2009

% puts [clock format [clock scan "1 hour -15 minutes"]]

Tue Sep 22 23:41:38 CEST 2009

% puts [clock format [clock scan "45 minutes"]]

Tue Sep 22 23:41:38 CEST 2009

Note the flexibility of the input format, we specified the 45 minute interval in various
ways here. The clock scan command can also do parsing according to the format in
which a given date and time is specified:

% puts [clock scan "20090922225638" -format "%Y%m%d%H%M%S"]

1253652998

It is also possible to combine multiple date and time specifications, in which case Tcl
will parse each part individually and combine the results based on the order of the
statements. For example, we can pass an arbitrary value and then a difference:

% puts [clock format [clock scan "12:45 +3 hours"]]

Tue Sep 22 15:45:00 CEST 2009

Using clock scan for parsing user input allows us to create a powerful mechanism
for scheduling, or providing when certain operations can be performed.

Chapter 2

[49]

An interesting feature of Tcl's date and time handling is the ability to handle the
stardate notation that was used in the Star Trek movies and series. We can use %Q
formatting to print out the stardate. For example:

% puts [clock format [clock seconds] -format %Q]

Stardate 63723.9

We can also reverse this operation by running:

% puts [clock format [clock scan "Stardate 63723.9"]]

Mon Sep 21 21:36:00 CEST 2009

Stardates are calculated from 1946-01-01, each year incrementing the date by 1000, the
day of year is then divided by number of days in a year (for example, Dec 31st 1946
maps to value of 997). Current time of day is then divided by the entire day's duration
and added as value between 0 and 1—for example, noon is specified as 0.5.

Even though this is an interesting gadget in Tcl, it is not a good idea to store a date or
time in this way.

For more details on the clock command, please see the corresponding manual page at:
http://www.tcl.tk/man/tcl8.5/TclCmd/clock.htm

Tcl data types
As seen in the previous chapter, Tcl provides only a few data types and every data
type can be converted to or from a fundamental type, that is, a string. This approach
is geared towards the dynamic typing concept where the programming language
does not perform strict type checking, therefore, not limiting the way an application
manipulates its data. Having a small subset of data types and conforming to a
common approach throughout many Tcl extensions helps in achieving this goal.

In essence, Tcl offers the following object types:

String / binary data: It consists of zero or more bytes or Unicode characters
and can store any data.
Integer value: An integer, stored as either 32 bit or 64 bit, depending on
needs; starting with Tcl 8.5, it can store integer numbers of any size, which
can be used in many algorithms and/or encryption code; examples, for
example 12, 7321322.
Floating point value: A floating point value, stored as double-precision
internally; for example: 3.14159265.

•

•

•

Advanced Tcl Features

[50]

List: It consists of zero or more Tcl objects, and can always be converted
from and to a string, accessed via large number of list-related commands;
for example: {element0 {sublist {item with spaces}}}.
Dictionary: It allows us to store zero or more key-value relations, where a
key can have only one value, where the value can be any valid Tcl object
(including a Tcl list), accessed via dict command and its subcommands.

Arrays are not first-class objects in Tcl, and therefore, are not mentioned in the
list. First class objects are data that can be passed directly. They can be used in
commands such as set and return.

Arrays themselves are not such objects—they can be passed by their names using
a command such as upvar, but it is not possible to return an array—for example,
the following will not work:

proc createArray {} {
 set value(firstValue) 1
 set value(otherValue) 2
 return $value
}

This command will fail with the error that the variable value is an array. Dictionaries
can be used as first-class objects which work in the same way as arrays—storing
key-value information that can be set and retrieved in a fast way. Dictionaries can
be passed between procedures, for example:

proc createDict {} {
 set value [dict create]
 dict set value firstValue 1
 dict set value otherValue 2
 return $value
}

Each data type can be represented as a string and each type can be compared with
any other type, although sometimes, internally, they are converted to strings when
comparing values of different types.

Lists and dictionaries work in such a way that each element they keep is another
object of a different data type, for example, a list contains zero or more elements
of any data type, this is similar for dictionaries where each value is an object of
specified data types. It is also true for arrays, where each element of an array is
also any data type.

•

•

Chapter 2

[51]

For binary, string, integer, and floating-point values storing a value of particular
type and manipulating it is done through commands to manipulate strings and/or
binary data.

Internally, Tcl stores data in the most efficient way and converts it as needed.
When programming in Tcl, we don't need to know how data is currently stored.
All operations will convert data as needed—converting a string to integer, a list,
dictionary, or whatever is needed.

If a conversion to the required data type is not possible, an error is thrown—for
example, when converting some text to integer, an error will be thrown because it's
not an integer value. Otherwise, all conversions are done without us knowing about it.

For example, we can set a variable by running:

set variable 12345678

When run, it will set the value of the variable to 12345678, which most probably
will be stored as a string. Following that, we can run:

incr variable

At this point, Tcl will convert this to an integer and increment the value, using
integers for internal calculations. Next, when we do the following:

puts $variable

Tcl will print the value of 12345679, but will keep an integer representation of the
value internally.

Similarly, strings are converted to lists whenever list operations are performed,
such as invoking commands llength, lindex, or any other command that
operates on lists.

Calculations in Tcl are done by using a separate command called expr. Due to how
Tcl syntax is defined, it would be difficult to allow users to specify calculations in
readable way.

Expressions passed to expr are written in ways similar to any other programming
language such as C or Python. They should always be passed as a single argument,
enclosed in braces. Variables and commands inside the expression will be
substituted. For example:

% set somevar 12 ; puts [expr {4 + $somevar * 13}]

160

Advanced Tcl Features

[52]

Evaluation of expressions is done so that priorities of various operands are taken
into account, for example, multiplication being done before addition, as shown in
the previous example.

More details about expr command, acceptable expressions and operands can be
found in its manual page at:
http://www.tcl.tk/man/tcl8.5/TclCmd/expr.htm

One of the most interesting aspects of Tcl is how commands are built and evaluated.
The main principle of the language is that at evaluation time, all commands are
built as lists, with the exception that newline characters and semi-colons are treated
as command separators. This means that we can build commands as lists and they
can be evaluated using the eval command, which then returns result from the
command. For example:

set mycommand [list clock]

lappend mycommand format

lappend mycommand [clock seconds]

lappend mycommand -format "%Y-%m-%d %H:%M:%S"

puts [eval $mycommand]

The preceding code will cause the current date and time to be printed to the standard
output. One thing worth noting is that in this example the result from clock
seconds is appended to the list during building of the command, so running puts
[eval $mycommand] at different times will always print out the time and date from
when the mycommand variable was built.

In the preceding example, the command clock second is evaluated only once,
but the clock format is run each time eval $mycommand is invoked. For example,
when running:

set value 0

set mycommand [list incr]

lappend mycommand value

puts [eval $mycommand]

puts [eval $mycommand]

The script will invoke the incr value command each time eval $mycommand is run.
The output from the script will be as follows:

1

2

Chapter 2

[53]

The eval command can be used to evaluate lists or commands. For lists, it evaluates
a list as single command, where the first element is the command name and each
element of the list. If the specified argument is not a list, it evaluates it as one or
more Tcl commands from it—similar to how the source command loads a script.

One of the major benefits of using lists to build commands is that any Tcl code can
easily build other Tcl code. A simple example can be building one invocation of
a command with all arguments specified either as result of other operations, for
example, invoking file delete with result from glob command, which returns
a list of files as a list.

The following command will fail:

file delete [glob /path/*] [glob /other/path/*]

Tcl will pass all files in /path as a single argument and all files in /other/path as
the second argument. If the files /path/file1 and /path/file2 were present, an
error that file /path/file1/path/file2 could not be deleted will be thrown.

In this case, instead of iterating over a list and deleting a single item at a time,
we can do:

set command {file delete}

set command [concat $command [glob /path/*]]

set command [concat $command [glob /other/path/*]]

eval $command

As we can see, this method can also be used to add multiple results in a single
command invocation. This can be used, for example, to perform batch operations
for something such as storage systems, where such an approach results in
better performance.

Tcl 8.5 also introduces another way of adding results from a command, that is,
as multiple arguments to another command. If a command placed in brackets is
preceded by {*} statement, its result is added to results as a list, where each element
is added as another argument. In all other cases, results' commands in brackets are
passed as a single argument. For this particular example, we can simply run:

file delete {*}[glob /path/*] {*}[glob /other/path/*]

This will also cause the command to get all results from both invocations of the glob
command as multiple arguments.

Advanced Tcl Features

[54]

Global, namespace, and local variables
As with any other languages, Tcl has several types of variables—global, local or
namespace variables. Global variables are the ones that are defined and accessible at
the global stack frame, for example, when the Tcl interpreter loads main script. They
can also be made accessible from any place using the global command, passing as
arguments one or more global variable names that should be made available.
For example:

proc printValue {} {
 global somevalue
 puts "somevalue=$somevalue"
}
set somevalue 1
printValue

Local variables are variables that are used within a procedure and are only available
for code in this procedure and for this particular invocation of a procedure. The
following example will not work as expected, because the variable used is local:

proc addItem {item} {
 lappend items $item
 puts "All items: $items"
}
addItem "Item1"
addItem "Item2"

For both invocations of addItem, it will only print out the currently added item for
all items in the list, because the items variable is local and Tcl does not keep track
of it across invocations.

Namespaces in Tcl make it possible to keep commands, variables, and any other
metadata within a namespace context. All namespaces have separate commands and
variables, which allow us to create reusable code that will not interfere with code in
different namespaces.

This can be used to keep libraries or pieces of our code separated so that they do not
interfere with each other. For example, if all the multiple pieces of our application
define a command called addItem, there will be a collision and one of them will
overwrite the other one. Keeping each part of the application or reusable components
in separate namespaces makes it possible to resolve such conflicts, such as queue::
addItem. Namespace names are separated by double colons; in previous case, the
namespace is called queue and addItem is a command within that namespace.

Chapter 2

[55]

Namespaces are created by invoking the namespace eval command, which creates
a namespace if it does not exist yet and can be used to evaluate code within that
namespace. For example:

namespace eval queue {}

A namespace variable can be made accessible to procedures inside this namespace
by using the variable command, specifying a variable name as the only argument.
This is similar to the global command, which makes a global variable available in
a procedure, but the variable is specific to the namespace that current command is
created in.

Converting the previous example to namespaces we get:

proc queue::addItem {item} {
 variable items
 lappend items $item
 puts "All items: $items"
}
queue::addItem "Item1"
queue::addItem "Item2"

This example will now work correctly, because the variable items is now a
namespace variable in the queue namespace. It is also possible to access the variable
outside of the namespace itself by using a fully qualified name for the variable—for
example, we can add the following at the end of previous example:

puts "All items after adding: $::queue::items"

This will correctly print both items added to the queue. We have used ::queue
for a namespace name as adding :: indicates that we mean the namespace queue
within the global namespace. As namespaces can be nested, it is safer to specify the
namespace names as fully qualified names.

Global variables in this context are variables bound to global namespace. Therefore,
they can always be accessed in the same form as variables for any other queue. In
order to access the global variable somevalue, we can refer to it as ::somevalue.
For example:

proc printValue {} {
 puts "somevalue=$::somevalue"
}
set somevalue 1
printValue

Similar to first example in this section, it will write somevalue=1 to standard output.

Advanced Tcl Features

[56]

In addition to this, TclOO objects have their own per-instance variables that can be
accessed from within TclOO objects. This subject is described in more detail in the
next section.

Stack frames
The stack frame is the context in which current Tcl code is evaluated, and it defines
what variables are available, the namespace in which code is evaluated, and many
other things. When Tcl loads the main script, that script is evaluated in the global
stack frame, which is stack frame 0. Whenever a command is invoked, it creates a
new stack frame for this command. For example:

proc proc1 {} {
 proc2 "world!"
}
proc proc2 {text} {
 puts "Hello $text"
}
proc1

The main code is evaluated in stack frame 0, proc1 is evaluated in stack frame 1, and
proc2 is evaluated in stack frame 2. This mechanism handles values such as local
variables, which are bound to specific stack frame.

When running inside proc2, this is how stack frame would appear:

Stack frame Command
0 (global) proc1

1 proc2 "world!"

2 puts "hello world!"

The following table is a list of all stack frames and what commands they are running
at the time when the puts command is invoked. The variable text, which is an
argument to proc2 is available in stack frame 1. The puts command is invoked
using this variable, so the actual command is run using contents of this variable.

Stack frames are created only for invocations of procedures, object methods, and
other operations that require local variables—operations such as iterations with
for, foreach, or while commands are performed within the same frame stack.

It is possible to evaluate commands or use variables from different stack frames
using upvar and uplevel commands. The first command allows us to map a
variable from a different stack frame as the local one in the current stack frame.

Chapter 2

[57]

The commands upvar and uplevel are used for many different purposes, from
referencing variables by their names to creating new control structures. In these
cases, we need to use variables from the previous stack frame.

For example, if we were to write a simple command called forsequence that takes a
variable name, and the minimum and maximum values, we would use it as follows:

forsequence i 1 20 {
 puts "I=$i"
}

We could implement the command so that the command which is provided as the
last argument is evaluated in previous stack frame as follows:

proc forsequence {varname min max command} {
 upvar $varname var
 for {set var $min} {$var <= $max} {incr $var} {
 uplevel 1 $command
 }
}

The uplevel command allows us to run any command in a different stack frame.
For both commands, the first argument can a specify level or how many levels up
the operation should be done. If no argument is specified, it defaults to 1 level up.
The argument can be:

A number; in which case it specifies the number of stack frames up in
the stack.
A number prefixed by # character; in which case the number specifies
the stack frame.

For example, while being in the proc2 stack frame (stack frame 2), #1 indicates the
stack frame (stack frame 1) of proc1, and 2 would indicate the global stack frame
(stack frame 0 – 2 levels up).

The upvar command requires us to specify one or more pairs of variable names,
where the first variable name is the variable name in other stack frame context and
the second variable name is the variable name for the local stack frame context.

•

•

Advanced Tcl Features

[58]

The following is an example of using upvar to work on variables from different
stack frames:

proc proc1 {} {
 set othervalue 1
 proc2
}
proc proc2 {} {
 upvar 2 somevalue sv
 upvar #1 othervalue ov
 puts "sv=$sv ov=$ov"
}
set somevalue 12
proc1

This would cause sv=12 ov=1 to be written to standard output, as proc2 is able
to access variables from other stack frames.

Another example can be writing a command that extends the Tcl's incr command. If
the variable is already set, it is incremented by the specified number; otherwise, the
variable is set to the default value. For example:

proc incrOrSet {variable increment defaultValue} {
 upvar 1 $variable var
 if {[info exists var]} {
 incr var $increment
 } else {
 set var $defaultValue
 }
}

The preceding example first maps the variable whose name is specified as the first
argument (variable) to the local variable var. It then checks if that variable exists,
referencing it as the local variable var. If it exists, it is incremented by a specified
number; otherwise it is set to the default value.

The uplevel command allows us to evaluate commands in different stack frames.
This can be used for various reasons—from running commands in the caller's stack
frame to creating new control structures entirely in Tcl.

Chapter 2

[59]

All arguments are concatenated as a command to be evaluated, although, it is
recommended to pass the command as one argument. For example:

proc proc1 {} {
 set value 1
 proc2
}

proc proc2 {} {
 uplevel 1 {puts "Value=$value"}
}

proc1

This will cause Value=1 to be printed out as the puts statement is evaluated within
the stack frame of proc1, even though it is within proc2.

A more practical example can be creating a procedure that runs code only if certain
flags are enabled:

proc runIf {constraint command} {
 global allconstraints
 if {$constraint in $allconstraints} {
 uplevel 1 $command
 }
}

The preceding example will run the command specified as the second argument
if the constraint specified by first variable is set. Constraints are checked against
the global variable allconstraints—the operator in returns true if the value of
$constraint is in the $allconstraints list.

For instance, the following example would check whether the platform the code is
running on is win32 and load the registry package if this is true:

runIf platform-win32 {
 package require registry
}

While this example simplifies this a bit, the same approach is used in Tcl's test suite
package called tcltest—constraints specify whether a certain test is to be run or not
and whether it is used to skip tests in specific cases or not, for the platform that the
test suite is running on.

Advanced Tcl Features

[60]

While the same thing could be accomplished with a simple if command in this case,
this example also applies to more complex scenarios. Creating custom commands to
implement flow control and optional execution, which is similar to the if command
can be used to optimize Tcl performance. For example, we can define the
following procedure:

proc debugCode {code} {
 uplevel 1 $code
}

We can then add debug statements as follows:

proc sampleCommand {} {
 set value [calculateValue]
 debugCode { puts "Value = $value" }
 return $value
}

For production code, we can disable running such code by defining the procedure as
empty and accepting any arguments—for example:

proc debugCode {args} {}

In this case, when running our code in a test environment, we'll receive information
about the value on standard output. When running this code in production nothing
will be printed out. Tcl optimizes this so that production code will automatically skip
debugCode statements while testing code will evaluate them. This is in turn much
faster than using an if command directly. This mechanism is used by Tcl logging
packages which are described in more detail in Chapter 4.

Both upvar and uplevel operate within the namespace of the stack frame that
we are referring to. For example, if our current function is within the namespace
myexample::ns2 and the previous stack frame was in the myexample namespace,
referencing one level up would cause names to be looked up from the myexample
namespace. For example:

namespace eval myexample {}
namespace eval myexample::ns2 {}

proc myexample::testproc {} {
 return [ns2::testproc]
}

proc myexample::ns2::testproc {} {
 variable localvar
 upvar 1 ns2::localvar referencedvar
 set referencedvar "This was set as referenced"

Chapter 2

[61]

 return $localvar
}

puts [myexample::testproc]

This script will output the text "This was set as referenced" text since upvar
referenced the myexample::ns2::localvar variable and localvar was mapped to
the exact same variable. The uplevel command works in a similar way, if our code
were to invoke uplevel with the command set ns2::localvar "Something", then
the same variable would be modified.

Usually upvar and uplevel are used to work in the context of the previous stack
frame and/or reference variables by the names by which they were accessible in the
other stack frames, but it is possible to use upvar to map any variable to any other
variable name. It is often used for creating state data as an array, passing the array
name to different functions, and using upvar to reference it under a different name.
For example:

namespace eval myqueue {}

set myqueue::queueid 0

function to create a myqueue instance
proc myqueue::create {} {
 variable queueid
 # initialize unique identifier
 set id ::myqueue::[incr queueid]

 # map variable to access our data as local variable d
 upvar #0 $id d

 set d(items) {}
 set d(itemcount) 0

 return $id
}

proc myqueue::add {id item} {
 # map variable to access our data as local variable d
 upvar #0 $id d

 lappend d(items) $item
 incr d(itemcount)

}

proc myqueue::get {id item} {
 # map variable to access our data as local variable d
 upvar #0 $id d

Advanced Tcl Features

[62]

 # throw an error if no data currently exists
 if {$d(itemcount) == 0} {
 error "No items currently in queue"
 }

 # get and remove first item from queue
 set item [lindex $d(items) 0]
 set d(items) [lrange $d(items) 1 end]
 incr d(itemcount) -1

 return $item
}

sample usage – add 2 items to queue and retrieve them
set id [myqueue::create]
myqueue::add $id item1
myqueue::add $id item2

puts [myqueue::get $id]
puts [myqueue::get $id]

The output from this example would be as follows:

item1

item2

The example above shows how upvar is commonly used to achieve a lightweight
mechanism for keeping data across invocations and making it possible to reuse it. The
example is trivial (and can be implemented simply by using a list, without identifiers
and arrays), but it shows how this mechanism can be used for keeping data.

Object-oriented programming
Object-oriented programming has been a feature Tcl offered for several years with
additional packages. This was possible due to the fact that Tcl syntax is easily
extendable. Those packages include Incr Tcl, which is available from http://
incrtcl.sourceforge.net/itcl/, XOTcl available from http://media.wu-wien.
ac.at/ and Snit which can be obtained from http://www.wjduquette.com/snit/.

However, with the release of version 8.5, Tcl now comes with an object-oriented
programming functionality included called TclOO. When Tcl 8.6 is out, TclOO
will soon be part of core language. In Tcl 8.5 it is an extension to the language,
but leverages 8.5 extensions to support it.

Chapter 2

[63]

This is a set of additions that allows us to build a class hierarchy on its own. TclOO
is designed so that it is possible to build wrappers so that it works the same as Incr
Tcl, XOTcl, or Snit. So, for those of you that use any OO extension, it might be the
right time to switch. For those of you that don't know any OO system yet, start with
TclOO if your applications need to work on Tcl 8.5 and newer.

One of major features that TclOO offers is multiple inheritance. This means that a
class can inherit from more than one class. For example, a class that implements a
network server for queuing data would inherit classes for supporting queues and
classes for network connectivity. TclOO also allows multiple classes to derive from
same base classes.

In addition to inheritance, TclOO also supports mixins. For classes they work similar
in a way to inheritance, but mixins can also be applied to individual objects. Mixins
can be added and removed dynamically. This means that we can add all methods
and functions of a class on the fly to an object. Mixins are explained in more detail
later in the chapter.

TclOO also offers method forwarding—this means that a method of an object can be
forwarded to a different command, passed to an object as any method for that object,
or as a specified method for that object.

If you are familiar with object-oriented programming in languages such as C++ or
Java, Tcl's object-oriented system is different from it.

As Tcl is a dynamic language, TclOO is more dynamic and offers more features that
are common for scripting languages, but which compiled languages usually lack.
TclOO offers features such as modifying definitions per-object, for example adding
method forwarding, mixins, or changing method definition for a specific instance of
an object. Examples of how this can be done can be found later in this chapter.

Tcl does not offer features such as defining interfaces or virtual classes, which are
used commonly in technologies such as Java, C++, and .NET. In Tcl world, creating
an interface simply means defining set of methods and parameters they accept.
Implementing a class that has all the methods is sufficient. The object itself does not
even need to be written in TclOO. After that, any code can use this class/object by
invoking the defined interface. This approach is in sync with Tcl's dynamic design.

Advanced Tcl Features

[64]

Class definition
Let's start by creating a simple counter class that will allow incrementing, getting the
current counter, and resetting it:

oo::class create counter {
 constructor {} {
 my Resetcounter
 }

 method Resetcounter {} {
 # map variable "c" as local variable and set to 0
 my variable c
 set c 0
 }

 method increment {} {
 # map variable "c" as local variable and increment
 my variable c
 incr c
 }

 method getvalue {} {
 # return current value
 my variable c
 return $c
 }
}

We start by creating new class called counter. Then we define a constructor, which
invokes the method Resetcounter to set the counter to 0. The command my is used to
invoke methods for the current instance of an object. Also, the command my variable
can be used to map an object specific variable as local variable, so my variable c
means that the object-specific variable c becomes available for a specified method.

The increment method increases the value of the counter and getvalue returns it.
We can now create an instance of this class by invoking <className> new. It creates
a new object instance and returns its unique identifier, which is also a command
name using which we can run methods of this object. For example, to create two
counters and increment them, we can do the following:

set c1 [counter new]
set c2 [counter new]
$c1 increment
$c2 increment
$c1 increment
puts [$c1 getvalue]

Chapter 2

[65]

This will create two counter instances and store their identifiers/commands in
variables c1 and c2. We then increment c1 twice and c2 once. The result is 2
being printed out. In order to delete both objects, we can simply invoke the
built-in destroy method:

$c1 destroy
$c2 destroy

The following diagram shows how public methods are mapped to the counter class.
Items in bold indicate public methods while those in italics indicate private methods;
the arrows indicate the path in which each method is looked up:

In this case, all public methods are simply mapped to counter class. Method
Resetcounter is not public and, therefore, is not available from public API.

Besides creating a whole class along with its definition, it is also possible to define
parts of a class independently using oo::define command. It needs an existing class
name as the first argument and either an additional definition as one argument or
a definition inlined as multiple arguments. For example, we can define a setvalue
method in two ways, one option is:

oo::define counter {
 method setvalue {value} {
 my variable c
 set c $value
 }
}

And the other possibility is:

oo::define counter method setvalue {value} {
 my variable c
 set c $value
}

Advanced Tcl Features

[66]

Inheritance
We can create classes that inherit from other classes—for example, if we want
to make a counter that also resets its count after being read, we can do this:

oo::class create resetablecounter {
 # declare class we inherit from
 superclass counter
 method getvalue {} {
 # get result from our counter class
 set result [next]
 my Resetcounter
 return $result
 }
}

This causes our class to inherit everything from the counter class—in TclOO this
means that counter is a superclass to resetablecounter. We also override the
getvalue method. We use the next command, which calls commands from the
superclass and is discussed in more detail later in this chapter. Next we run the
Resetcounter method to reset the counter. We are invoking the superclass to get
and reset the actual value so that if the implementation of the counter class changes,
we will still be able to use the underlying implementation.

We can see how methods are inherited from the counter class in the
following diagram:

The object constructor and increment method are mapped to the counter class.
The method getvalue is created in the resetablecounter class and, therefore, its
implementation in the counter is not invoked automatically. However, our code
invoked the next command to explicitly invoke getvalue from the counter class.

Chapter 2

[67]

At this point, it is worth mentioning that the concept by which variables in TclOO
work differs from the concepts of object-oriented programming from C++ or Java.
Variables are set up at each object level and are not differentiated or protected by the
class that created them. This way our resetablecounter class can access data from
the counter class. On the other hand, there is no explicit need to create variables and
they can be added on the fly. When destroying an object, all its variables are deleted.

TclOO also introduces a mechanism for invoking commands from within the object
and from external code. By default, all methods are accessible from both inside of an
object (by invoking my <methodName>) and from outside of an object (by invoking
$c1 <methodName> for our example). This can be changed by adding unexport or
export to class definition. For example, we can create a class that doesn't allow the
increment method to be invoked from outside of object methods by doing:

oo::class create timedcounter {
 superclass counter

 constructor {} {
 # here we should set up some timer event to increment
 # the counter periodically
 }

 unexport increment
}

Often our classes will inherit from multiple base classes. In this case, we need to
specify more than one superclass. In this case all methods are looked up in all base
classes along with all their direct and indirect base classes. If a method is implemented
by multiple classes, then the order in which classes are specified determines which
one is run. However, the command next will look into other base classes as well, so
one base class can retrieve information from other base classes. For example:

oo::class create testclass {
 method getvalue {} {
 puts "In testclass"
 next
 }
}

oo::class create testcounter {
 superclass testclass counter
}

Advanced Tcl Features

[68]

In this case, running getvalue from testcounter class will cause In testclass
to be printed to standard output and the method would return current value.
Internally, TclOO will cause getvalue from testclass to be invoked, which
then invokes the method from the counter class using next command.

The next command can also be used for methods that accept parameters. In this
case, we need to run next with parameters that are expected by the base class, which
can be different than currently accepted arguments. For example, assuming our
counter class already has a setcounter method that accepts the new value as an
argument, we can override it to write new value and run the implementation from
the base class in the following way:

oo::class create othercounter {
 superclass counter
 method setvalue {value} {
 puts "Setting value to $value"
 next $value
 }
}

Object definitions
TclOO works in such a way that both classes and objects can define and/or override
methods by using the oo::objdefine command. It accepts an object name and the
definition that should be added.

For example, in order to add additional code to the getvalue method of only
a specified instance of a class, we can do the following:

oo::objdefine $c1 {
 method getvalue {} {
 puts "Hello world from getvalue for this object only"
 next
 }
}

We are using the next command, because from the TclOO perspective, an
object-specific implementation of a method is treated in the same way as though
a subclass would override a particular method, so next invokes the same method
within the class for this object.

Chapter 2

[69]

Using mixins
Mixins in TclOO work in a way similar to inheritance. When our class mixes in
another class, all methods available from that class are also available from within
our class. The main difference is that when our class inherits a base class, methods
from our class override methods in the base class. Mixins work in the opposite
way—methods from a mixin override methods from our class so that mixins can
interact with our class.

For example, we can build a mixin that caches results based on arguments:

oo::class create cache {
 method perform {args} {
 my variable cachedata

 # key for caching data,
 #for now we assume it's all arguments
 set key $args

 # if we don't know the results yet, run actual method
 if {![info exists cachedata($key)]} {
 set cachedata($key) [next {*}$args]
 }

 return $cachedata($key)
 }
}

This mixin is generic enough, so it can cache any class that performs calculations
when the perform method is invoked. Now we can define our class that will use
the cache mixin to increase performance:

oo::class create complexcalculation {
 # use caching mechanism
 mixin cache

 method perform {a b} {
 # simulate long running calculations
 # by waiting for 0.5 second
 after 500
 return [expr {$a + $b}]
 }
}

Advanced Tcl Features

[70]

The following shows how cache and complexcalculation classes are related:

In this case, even though the complexcalculation class refers to cache, from
method lookup perspective, the implementation in cache class has higher priority.
Therefore, invoking perform actually calls the method from the cache class.
Implementation in cache calls perform from complexcalculation using
next command.

Our class definition specifies a list of mixins that should be included for each
instance of an object. In this case, it contains only one mixin—our cache class. When
invoking perform method, calculations will take 0.5 second to perform due to delay,
first time it is invoked with specific arguments. Next time the mixin will simply
return a cached value without our method actually being implemented.

Another difference is that mixins can be applied to an individual object,
while inheritance needs to be carried out for the entire class. For example, our
complexcalculation class might be implemented without the mixin cache
statement in the class definition and later on we can do the following to apply
caching to only specific objects.

This way we can enable caching by invoking the oo::objdefine $object mixin
cache command—it sets mixins to our cache class. Invoking the oo::objdefine
$object mixin command will disable caching by setting no mixins for this object.
Note that even if a class definition specifies a list of mixins, we can explicitly disable
it—for example, disable cache on specific instances for debugging purposes. This
gives more flexibility than static inheritance.

Forwarding methods
Method forwarding is a feature that allows specifying that a method of a class will
be forwarded to another command, another object or a specific method in an object.
While forwards can easily be implemented as methods, this takes the burden of
maintaining and passing arguments correctly off the developer of this class.

Chapter 2

[71]

Let's assume we have a class called eventhandler that allows a generic set of
operations, such as adding and removing a command to be run when something
occurs. If we inherit this class in our code, we could only have one type of event.
So it makes more sense to create one or more objects and forward all calls to these
objects. For example:

oo::class create messagingserver {
 # forward method log to
 # mainlogger command in global namespace
 forward log ::mainlogger
 constructor {} {
 # create forwarded method when user
 # connects and disconnects from our server
 oo::objdefine [self] forward \
 userconnected [eventhandler new]
 oo::objdefine [self] forward \
 userdisconnected [eventhandler new]
 }

 destructor {
 # delete event handler objects
 userconnected destroy
 userdisconnected destroy
 }
}

This causes our class to have the method log which forwards it to the mainlogger
command—outside of object definition and common for all instances of an object.
This can be defined for the entire class because forwarding is done in the same way
for all objects.

It will also cause the methods userconnected and userdisconnected to forward
all parameters to that object—meaning that the first parameter will be the method to
invoke for that object and all remaining arguments will be passed as arguments to
that method.

As we need to create an object instance, we need to do that from inside the
constructor—as objects are created with unique identifier for each instance of
messagingserver instance, we need to perform this for each object separately and
from within our constructor. The self command returns the current object identifier
so that we can invoke oo::objdefine to add method forwarding definition from
a constructor.

Advanced Tcl Features

[72]

The following diagram shows how each of publicly available methods maps to other
objects and procedures:

The method log actually invokes the mainlogger command from the :: namespace.
userconnected and the userdisconnected methods invoke methods from
other objects.

Additional information
While some of the approaches might seem different from known solutions (such as
objects in C++, Java, or Python), mechanisms in TclOO offer much more flexibility
to the developer. As one of key Tcl aspects is that it is a dynamic language, its
object-oriented programming syntax also offers similar flexibility.

TclOO also offers a feature called filters, which control and filter method invocations.
It can be used to achieve highly advanced features such as caching and aspect
programming. While this topic is beyond the scope of this book, we recommend
readers doing advanced object-oriented programming in Tcl investigate this feature,
and in particular, read the http://wiki.tcl.tk/20308 page, which shows how
to extend the oo::class to add aspects.

More information about TclOO features can be found in the following Tcl
manual pages:

http://www.tcl.tk/man/tcl8.6/TclCmd/my.htm

http://www.tcl.tk/man/tcl8.6/TclCmd/object.htm

http://www.tcl.tk/man/tcl8.6/TclCmd/next.htm

http://www.tcl.tk/man/tcl8.6/TclCmd/define.htm

http://www.tcl.tk/man/tcl8.6/TclCmd/class.htm

•

•

•

•

•

Chapter 2

[73]

Accessing files
Tcl allows us to read from and write to files by using channels. A channel can be
an open file, but it can also be a network socket, a pipe, or any other channel type.
Depending on the type of the channel, it can support reading from it, writing to it,
or both.

Tcl comes with three default channels—stdin, stdout, and stderr. These channels
correspond to the standard input, standard output, and standard error channels of
operating systems. Standard input can be used to read information from the user,
standard output should be used to write information to user, and standard error is
used to write errors. Depending on how our application is run, these channels can
be redirected from/to files.

In the case of Microsoft Windows and applications using the GUI version of Tcl,
invoked using the wish or tclkit commands, standard channels are not available.
This is because graphical applications in Microsoft Windows do not have standard
consoles. In such cases, an equivalent of these channels is created that allows
interacting with the user from Tk console window. For example:

The puts command in this form is described in more detail later in this section.

Reading and writing files
The open command can be used in order to open a file for reading and/or writing.
It can be invoked either with just the filename, the filename and the open mode as
well as filename, open mode and permissions, when creating a new file. Permissions
are ignored on Microsoft Windows systems and default to 0666 if they are not
specified on all other systems. Permissions are combined with the mask set up for
current process, usually set by the umask system command. This is similar to how
all file creation operations work on Unix systems. The open command returns the
name of the newly opened channel—it can be used for all commands that operate
on channels.

Advanced Tcl Features

[74]

The open mode is a string specifying the access mode, defaulting to r if it is not
specified. Mode r opens the file for reading only. Mode r+ opens file for reading
and writing; the file must already exist. The w mode opens the file for writing only,
truncating it if the file already exists, and creating it if it does not exist. The w+ mode
opens the file in same mode as w mode, but allows both reading and writing. The a
mode opens the file for writing only, setting the current pointer in file to end if the
file already exists, and creating the file if it does not exist. The a+ mode opens the
file in same mode as a mode, but allows both reading and writing.

The following table summarizes each of the modes, which operations are permitted,
and any additional activity that takes place:

Mode Readable Writable Initial position Must exist Is truncated
r Yes No Beginning of file Yes No
r+ Yes Yes Beginning of file Yes No
w No Yes Beginning of file No Yes
w+ Yes Yes Beginning of file No Yes
a No Yes End of file No No
a+ Yes Yes End of file No No

The columns "Readable" and "Writable" describe which operations can be performed
on a file. "Initial position" specifies whether the initial position after opening the file
is its beginning or end. "Must exist" specifies whether the file has to exist at the point
when open command is called. "Is truncated" specifies whether a file is created as an
empty file if it already exists when open command is called.

The open command can also be used to run external processes. In this case, the first
argument should be command name prefixed by a pipe character (|). An additional
argument might specify the open mode, otherwise Tcl will open the application in
read-only mode. For example:

set chan [open "|route"]
while {![eof $chan]} {
 gets $chan line
 puts "Route information: > $line <"
}
close $chan

The commands gets and eof used to read information are described in more detail
later in this chapter.

Chapter 2

[75]

They can be used to parse information from external commands as well as to interact
with a text-based application or command. In order to write to an application, we
need to pass r+ as the mode to the open command. Then we can use gets to read
a channel and use puts to write to it.

In many cases, it is enough to use exec command, which allows running processes
and reading their output. It accepts system command and its parameters as arguments
to the command. By default, exec returns standard output as result of the command
and if anything is written to standard error, exec throws an error with this data. For
example, we can rework the preceding example to a simpler one by using exec:

foreach line [split [exec "route"] \n] {
 puts "Route information: > $line <"
}

The split command converts output to a list of lines that the route system
command writes to standard output.

The exec as well as open commands are used for running a system command;
streaming one command to another command handles majority of shell-like syntax
for redirecting and conditional execution. For example, we can redirect input, output,
or error streams and can redirect them in a way similar to shell commands. The
following example runs ifconfig and grep to return only lines with IP addresses,
which can then be parsed.

set text [exec /sbin/ifconfig 2>/dev/null | grep "inet addr"]

The exec command also throws an error if a child exits with non-zero code. For
example, we can try to run the command route with invalid parameters:

exec false

On Unix systems, the false command always exits with code 1. This command
would cause an error child process that is exited abnormally to be thrown.

Please see http://www.tcl.tk/man/tcl8.5/TclCmd/exec.htm for more details on
the use of the exec command and flow control.

Reading from a channel can be done either by using gets or read command. The
first command reads a single line from a channel and can be invoked with only the
channel name, in which case it returns string read from the channel. It can also be
invoked with the channel name and variable name, in which case it reads a line,
and that string is written to specified variable and a returns number of bytes read.
The read command can be used to either read all remaining data, if invoked with
channel name only, or the specified number of bytes, if invoked with a channel
name and number of bytes.

Advanced Tcl Features

[76]

Writing to a channel can be performed using puts command. The command can
be invoked with only one argument, which causes the specified argument to be
printed to standard output. It can also be invoked with a channel name and a second
argument, which causes the second argument to be written to the channel. Specifying
the -nonewline option as the first argument causes puts not to append a newline
character at the end, which is done by default.

Often, a puts command only adds data to a buffer associated with a channel
and writes actual data to disk if the buffer is full. If a write should be performed
immediately, the flush command can be used. This command is invoked with
the channel name as its only argument. Invoking the command will cause all
buffers to be written. Buffering is discussed more in the section focusing on the
fconfigure command.

An example usage for flush is to make sure data is sent to a channel. For example,
in order to make sure text is written to standard output, we can do the following:

puts –nonewline "Enter your first name: "
flush stdout
gets stdin firstName

This command will print out Enter your first name: and then read user's input from
standard input. As standard output is configured to buffer data, the text would not
be printed without first invoking flush stdout.

In order to move to the current location in a file, we can use the seek command. This
command accepts a channel as the first argument, followed by the position we want
to move to. Optionally, we can also specify the origin of the offset. It can be either
start, current or end; if skipped, it defaults to start. In first case, the position
indicates an offset from the beginning of a file. The current position is relative to the
current position in the file and end means that offset is relative to end of the file. This
makes sense only if the position is a non-positive number.

The eof command is used to verify if end of the file has been reached for a channel.
This is usually checked inside a while statement, to iterate until EOF has been
reached. All channels opened by open command as well as all other channels in
Tcl need to be closed with a close command.

set chan [open "/tmp/myfile" w]
puts $chan "Tcl version: [info tclversion]"
puts –nonewline $chan "Additional line"
puts $chan " of text"
close $chan

set chan [open "/tmp/myfile" r]
while {![eof $chan]} {

Chapter 2

[77]

 gets $chan line
 puts "Line: > $line <"
}
close $chan

The result would be as follows:

Tcl version: 8.5

Additional line of text

Tcl channels also are configurable, which means that they have standard and
non-standard options that we can get or set. Typical functions include file encoding,
newline handling, the End of File character, buffering, and blocking mode versus
non-blocking mode. Non-standard options vary depending on the type of the
channel—serial ports, network connections, and other channels have options
specific to their type.

Configuring channel options
You can get and set all options using the fconfigure command. If this command is
run with only a channel name, it returns a list of all options along with their values.
Running fconfigure with a channel and option name returns this option's current
value, and passing both the name and new value causes the option's value to be set
to what we specified.

One of the most commonly used options is whether a channel is blocking or
non-blocking, which is set by the option -blocking and its value is a Boolean value.
A blocking channel causes each attempt to read more data than currently available
to block until that data is available—for example, a gets command will return only
after an entire line can be read. A non-blocking channel returns as much data as is
currently available and does not wait for more. By default, channels are in blocking
mode, so -blocking is set to 1.

Tcl channels work in such a way that each channel has an output buffer. It is used
when writing data to a channel and depending on configuration, data can either be
buffered or written to disk. Option -buffering specifies type of buffering that will
be done for this channel. If the value is full, then Tcl will always buffer data and
only write when its internal buffer is full. If it is set to line, Tcl will write data to the
channel after each newline character. Setting it to none will always cause Tcl to write
data to channel. By default, all channels have -buffering set to full, except for
standard input, standard output, and standard error channels, which are set to line,
line, and none respectively.

Advanced Tcl Features

[78]

We can also set the size of the buffer that Tcl will use with the -buffersize option.
It specifies the maximum number of bytes that Tcl should use for the internal output
buffer. It is also affected by the -buffering option, which determines when Tcl
writes data to the channel.

Tcl channels offer native translation of newline characters and different encodings. A
channel can be configured as binary file or any encoding that Tcl handles and various
modes for handling newline characters. By default, channels are configured to use
system native encoding (which is determined depending on operating system and
environment) and use native newline translation (CR LF on Windows, LF on Unix).

The -translation option defines how newline translation is done and/or whether
a file is in binary mode. It can be one of the following values:

Translation mode Description
lf ASCII character 10
cr ASCII character 13
crlf ASCII characters 13 followed by 10
auto Automatic detection (for input only)
binary Binary translation of all data

The binary option tells Tcl that it should ignore any translation (including encoding
handling) and treat a channel as binary.

It is also possible to specify a list of two elements, where the first element means how
newlines are read and the second one determines how newlines are written—for
example, {auto crlf} means that reading is determined automatically, but CR
and LF is always used for writing. This translation value is the default for Tcl on
Microsoft Windows.

In addition to this, the option -encoding allows us to specify the encoding used for
reading and writing to a channel. For example, in order to read a channel in UTF-8,
we need to configure the channel to use utf-8 encoding. To work with file in UCS-2,
we need to specify encoding unicode. Available encoding names can be retrieved
using the encoding names command, which is explained in more detail in Chapter 5.

Chapter 2

[79]

You can modify both the -translation and -encoding options as you are reading a
file—so it is possible to read the first line of an XML file with utf-8 encoding and see
whether it contains encoding information. If it does, we can change the encoding and
read the remaining part of the file with the correct encoding. For example:

open a file and read its first line
set chan [open "/path/to/file.xml" r]
fconfigure $chan –translation auto –encoding utf-8
gets $chan line

call a function that checks if first line is <?...?>
and if it is, returns the encoding we should use
set encoding [getHeaderEncoding $line]
if {$encoding == ""} {
 # if we found no <? ...?> line, let's read entire file
 seek $chan 0 start
} else {
 fconfigure $chan –encoding $encoding
}

set xml [read $chan]
close $chan

Now, let's parse $xml somehow (see chapter 5)

Internationalization related issues are explained in more detail in Chapter 5. For more
information about encoding handling in Tcl, please see the corresponding manual
page at:
http://www.tcl.tk/man/tcl8.5/TclCmd/encoding.htm

For more details about all standard options, please see the fconfigure command
manual page at:
http://www.tcl.tk/man/tcl8.5/TclCmd/fconfigure.htm

File management
Besides reading and writing to files, Tcl offers an additional command that aids in
managing and working with files— the file command. This command has multiple
subcommands, which allow copying, renaming, deleting, getting and modifying
information about files. One of main features that file offers is ability to copy,
rename, and delete files as well as directories.

Advanced Tcl Features

[80]

The file copy command can be used to copy one or more files or directories. The
last argument to this command is the target and all previous arguments are items to
copy. If only one item to copy is specified and the target does not exist, then the file
or directory is copied as the target. For example:

file copy /etc/passwd /tmp/passwd

If /tmp/passwd does not exist, then /etc/passwd will be copied as /tmp/passwd. If
/tmp/passwd is an existing file, the command will fail, unless -force is specified as
the first argument, as follows:

file copy –force /etc/passwd /tmp/passwd

If multiple source items to copy are specified or the target is an existing directory,
then all items will be copied into the target directory. In the example above, if /tmp/
passwd is a directory, then /etc/passwd will be copied as /tmp/passwd/passwd.
Similar to previous case, unless -force was specified, file copy will fail in case of
any existing files.

On systems that support symbolic links, file copy handles them correctly, which
means that they will be copied as links instead of copying the targets that the links
point to.

The renaming of files and moving them to different directories can be achieved
using the file rename command. Similar to doing a file copy, the last argument is
the target and all previous ones are source items that should be renamed or moved.
If only one item is specified and the target does not exist, then the source item
is renamed as the target. If multiple source items are specified or the target is an
existing directory, all source items are moved to the target directory while preserving
their name.

The file delete command is used to delete files and/or directories. It takes one or
more arguments, each of them being either a file or directory name. For example:

file delete /tmp/passwd

Tcl will not delete non-empty directories and will raise an error in this case. Deleting
directories recursively requires -force to be specified as the first argument.
Using this option also causes Tcl to try and modify the permissions of items when
permissions prevent them from being deleted. This, of course, is limited by the
operating system, so Tcl won't be able to delete other users' files, unless it is run by
an administrator. Tcl will ignore any attempt to delete a non-existent file, and it will
not raise an error.

Chapter 2

[81]

In order to create a directory, we need to invoke the file mkdir command.
For example:

file mkdir /tmp/some/new/directory

This command creates a directory as well as all parent directories that do not exist.
So, even if the directory /tmp was empty, Tcl will create /tmp/some, then /tmp/
some/new, and finally /tmp/some/new/directory appropriately.

Filename related operations
The file command also offers multiple commands for platform-dependant
management of file names. This can be used to effectively manage filenames, and
handle joining paths so that different path types and different path separators are
properly handled. The file join command joins all arguments into a full path. The
file split command does the opposite—splits a path into a list of elements. For
Unix systems the separator is /, while for Windows both / and \ are acceptable.
Tcl uses / on both Windows and Unix when possible, though. On a Unix system,
splitting and joining paths returns values similar to these:
% puts [file split /home/user/../tcluser/bin]puts [file split /home/user/../tcluser/bin]

/ home user .. tcluser bin

% puts [file �oin / home user .. tcluser bin]puts [file �oin / home user .. tcluser bin]

/home/user/../tcluser/bin

% puts [file �oin / home user /home tcluser bin]puts [file �oin / home user /home tcluser bin]

/home/tcluser/bin

The last example shows that file join distinguishes paths that are absolute and if
an element is an absolute path, the previous ones are discarded, similar to how all
file accessing works. For Windows systems, the logic is a bit different to support
multiple volumes—so C:/Tcl/bin/tclsh85.exe would be split into the elements
C:/ Tcl bin and tclsh85.exe.

Using the file command we can also do typical path related activities in an easy
way; file tail provides a convenient way to get the file name only, which is
an equivalent of doing a file split and retrieving last element. We can also get
the path to a parent directory by using the file dirname, which is equivalent to
splitting, then removing the last element from the list, and finally running file
join to get the path back. For example:
% puts [file tail /home/tcluser/bin]

bin

% puts [file dirname /home/tcluser/bin]

/home/tcluser

Advanced Tcl Features

[82]

Similar to splitting and joining, these commands work regardless of whether the files
and/or directories exist, and handle issues specific to the different operating systems.

Often, paths contain special entries such as .. that indicate that a parent directory
should be used. The file normalize command can be used to normalize paths so
that they are always full paths. In order to convert a path to use native file separator,
we can use the file nativename command. For example:
% puts [file normalize [file �oin C:/WINDOWS .. Tcl bin tclsh85.exe]]

C:/Tcl/bin/tclsh85.exe

% puts [file nativename C:/Tcl/bin/tclsh85.exe]

C:\Tcl\bin\tclsh85.exe

Tcl also makes it possible to retrieve file extensions. The command file extension
returns file's extension, along with last dot character preceding it. The command
file rootname returns the opposite—returns filename up to but not including
the dot and all characters after it. For example:
% puts [file extension mybinary-1.1.exe]

.exe

% puts [file rootname mybinary-1.1.exe]

mybinary-1.1

File information
The additional subcommands of the file command are available to gather
information about files. In order to get all of the information about a specified file or
directory, you need to use the file stat command appending a path to an item and
an array name as arguments. Information about the specified file will be set in the
specified array.

The following elements of the array are set:

Key Description
type Type of entry—file or directory
size For files—size of file in bytes; for directories, value depends on operating system
atime Last access time, as unix timestamp
ctime File creation time, as unix timestamp
mtime File modification time, as unix timestamp
gid Unix group identifier owning the file
uid Unix user identifier owning the file
mode Unix file permissions

Chapter 2

[83]

Values for the keys gid, uid, and mode are specific to Unix systems and are set
to reasonable defaults on systems that do not support Unix file permissions. The
owning user and group are specified as their integer identifiers.

For example, on Unix, this command would return information similar to following:

% file stat /etc/passwd myarray

% puts "Type=$myarray(type) Size=$myarray(size)"

Type=file Size=987

On Unix, performing file stat command on a symbolic link will return
information about item that the symbolic link refers to. In order to access information
about the actual symbolic link, the file lstat command should be used.

Symbolic links can also be read and created using the file readlink and file
link commands accordingly. The first one returns information about the target a
link points to for symbolic links and throws an error if either the file/directory does
not exist or is not a symbolic link. The command file link creates a link, either
symbolic or hard. It needs to be invoked with the new item to be created as the
first argument and the source element as the second argument. In order to make a
symbolic link the -symbolic flag needs to be provided before arguments. To create
a hard link, the -hard flag needs to be provided. An attempt to create a link that is
not supported on a particular operating system will raise an error. Currently, Unix
platforms support symbolic links to files and directories and hard links to files.
Modern Microsoft Windows systems allow symbolic links to directories and hard
links to files on the NTFS filesystem. These are not done as Windows shortcuts
(*.lnk files) and Tcl treats shortcut file as any other file.

For example, the following commands can create and read symbolic links on Unix:

% puts [file link –symbolic /tmp/passwd /etc/passwd]

/tmp/passwd

% puts [file readlink /tmp/passwd]

/etc/passwd

Getting and modifying the last accessed and last modification date can be done using
the file atime and file mtime commands. When run with just a path as the first
argument they return the appropriate time, as a Unix timestamp. When both a path
and new value are specified, the appropriate time is set to a new value. Please note
that not all operating systems and filesystems support setting this value and not all
systems track it with the same granularity—in some cases, the new value will not be
the same as the value that was set by the script.

Advanced Tcl Features

[84]

Tcl also supports getting and setting operating system specific information about
files and directories, using the file attributes command. When run with only the
path to a file or directory, it returns a list of attribute name and value pairs, which
can be used to retrieve all available attributes for an item. When run with a path and
attribute name, it returns the current value for that attribute for the specified file or
directory. When run with a path, attribute name and value, it sets a new value for
that attribute for specified file or directory. For example, on Unix systems, we can
work with ownership and permissions using this command:

% file attributes /tmp/passwd

-group tcluser -owner tcluser -permissions 00644

% file attributes /tmp/passwd -group admin -permissions 0660

% file attributes /tmp/passwd -permissions

00660

Tcl can also provide information about read/write access to particular items. The
commands file readable, file writable return whether a particular file or
directory can be read from or written to. For directories, this returns information
about the ability to access files within that directory and the creation of new
directories in that directory. In addition to this, the commands file isfile and
file isdirectory can be used to check whether an item is a file or a directory.

Listing files
Listing items in a filesystem can be achieved by using the glob command. Each
argument can be specified as a pattern of items to match or options that apply that
to further patterns. The command returns a list containing all matched items in a
filesystem or, by default, throws an error if no matches were found with any of
the patterns.

Patterns can be specified as any character that the filename needs to match or a
special character—? means any single character; * means zero or more characters.
{ab,cd} matches any of the strings inside braces, split by a comma; in this case, it
matches either a string containing ab or cd. [abcx-z] means any character inside the
brackets, where x-z means any characters between x and z, inclusive; in this case,
it matches a, b, c, x, y, or z. The form \x matches the character x and can be used to
escape characters such as braces or brackets. Patterns can work with multiple levels
of directories, for example by doing */*.tcl which will match all files with .tcl
extension in all sub-directories of current directory.

The following will return similar information on many Unix systems:
% puts [glob /etc/pass*]

/etc/passwd /etc/passwd.bak

Chapter 2

[85]

Specifying the base directory for matching patterns can be done using the
-directory flag. This causes all further patterns to be evaluated relative
to the specified directory. For example:

% puts [glob –directory /etc pass*]

/etc/passwd /etc/passwd.bak

Passing the flag -join causes all remaining arguments to be treated as one argument
and to be joined in the same way as file join does. For example:

% puts [glob –�oin /usr bin *grep]

/usr/bin/egrep /usr/bin/grep

When the -directory option was specified, adding the -tails option as well causes
the results list to contain only paths relative to one of the options. For -directory,
it causes only paths relative to this option's value to be returned, and for -path, it
causes the last element of the -path option to be appended as the first element in
all paths returned. For example:

% puts [glob -tails -directory /etc pass*]

passwd passwd.bak

We can also look for specific types of entries by using the -types option. It accepts a
list of one or more file types. When multiple types are passed, glob looks up entries
that are of any of the specified types. We can pass the d type to find directories, or
f to find files. In addition, on Unix systems, we can use l for a symbolic link, p for
a named pipe, and s for Unix sockets. In addition, b and c types can be used to find
block and character device entries, used to access devices on Unix systems.

We can also look for specific types of entries by using the -types option. It accepts a
list of one or more file types. When multiple types are passed, glob looks up entries
that are of any of the specified types. The following values can be used:

Type Description
f File
d Directory
l Symbolic link
p Named pipe
s Unix socket
b Block device
c Character device

The values l, p, s, b, and c are only used on Unix systems that provide support for
those kinds of file types.

Advanced Tcl Features

[86]

In order to find symbolic links and directories in /tmp, we can do the following:

% puts [glob -type {d l} /tmp/*]

/tmp/hsperfdata_root /tmp/vmware-root /tmp/passwd

Besides file types, this option also accepts the permissions that a file needs to have.
In case multiple access rights are specified, only entries having all of the access rights
are returned. This can be r for readable, w for writable, x for executable, and hidden
for hidden files on Microsoft Windows.

In order to find writable and executable files in /tmp, we can do the following:

% puts [glob -type {f w x} /tmp/*]

/tmp/sess1248

The package fileutil provides more high-level functionalities, such as recursive file
lookups, searching for text within files, and so forth. It is available as part of the tcllib
package, which is delivered with ActiveTcl installations. Please visit http://tcllib.
sourceforge.net/doc/fileutil.html for more details on its available functionality.

Current working directory
All applications have the concept of the current working directory. This is the
directory that is used as the base for any path that we specify—for example, if our
working directory is /tmp, then opening the file tempfile will cause /tmp/tempfile
to be opened. Specifying a full path—such as opening /etc/passwd will always the
cause proper file to be opened. When starting the application, this is usually the place
where the program running our application was. In many cases, our application will
want to get current working directory or change it according to its needs.

Changing the current working directory in Tcl can be done using the cd command.
It accepts one argument which specifies the new directory name. The command pwd
can be used to return the full path to current working directory. For example:

% set oldwd [pwd]

% cd ~

% puts [pwd]

/home/tcluser

% cd $oldwd

This example stores the current directory, goes to the user's home directory, prints it,
and returns to the original directory.

Chapter 2

[87]

Packages in Tcl
Tcl offers a mechanism to look for and create packages—reusable pieces of code,
either bundled with Tcl, created as additional projects or code you write and want
to use in multiple applications. Packages are meant to provide an easy to use
mechanism for using additional libraries—either your library or third-party libraries.
Packages are identified using a package name and version.

Package name can be any string, but a good practice is to name the package using
lowercase only and using the same name as the namespace used. For example,
functionality to work with base64 encoded data is called base64 and all commands
are in the base64 namespace.

Versions are one or more numbers separated by dots, where the first leftmost one
indicates major versions, and remaining ones indicate additional versioning, with
the leftmost being most significant, and the rightmost least significant. Tcl compares
versions by separating the numbers using dots and comparing each part as numbers.
version 3.2 is considered to be higher than 2.3 and version 10.1 is considered higher
than 9.1. Tcl and Tk themselves are versioned in the same way.

Any code can be made into a package and this process is described in more detail
later in this chapter.

Package loading
Operations related to the package system are accessible via the package command
and its subcommands. In order to load a package, we need to invoke the package
require command, specifying a package name and, optionally, the minimum
version that is required.

If not specifying a version, the latest one is automatically loaded. If specifying a
version to load, the package version that is larger or equal to the required version,
with same major version as the required version is loaded. For example, if the
package md5 is available in 1.3, 1.4.4, and 2.0.7 versions, then requiring any
version would load the 2.0.7 version; and requiring 1.0 would load version 1.4.4.

If you are using ActiveTcl, then its documentation contains a full list of available
packages along with documentation for each of the packages. This book only
covers a small subset of all available Tcl packages.

Tcl package lookup works by having a variable that lists all directories Tcl should
look for packages in. It then goes into each subdirectory of that directory and checks
if the pkgIndex.tcl file exists and loads it. A list of these directories is stored in
the global auto_path Tcl variable. In order to add a directory, it is enough to add
it using lappend ::auto_path /path/to/new/directory.

Advanced Tcl Features

[88]

Creating a package
Creating one or more Tcl packages is a trivial task and requires creating a
directory, either in Tcl's lookup path, or in a place that we will later add to the list
of directories. Our package can be stored in any directory. We need to have a file
called pkgIndex.tcl, which is a script that should invoke the package ifneeded
command, along with the name of the package, its version and the Tcl code to invoke
to initialize a package. The scripts that provide a package need to invoke package
provide command, providing package name and version as arguments.

While it is possible to create the pkgIndex.tcl file manually, Tcl provides a
mechanism for building this file, which the authors recommend. Let's assume we
want to build a package called mypackage, 1.0 version that will create a namespace
called mypackage and an add command in it. What we need to start with is to set up
a directory for our test packages and another for this particular package—for this
example, we'll assume /tmp/packages and /tmp/packages/mypackage1.0 for the
package. First create a file called /tmp/packages/mypackage1.0/mypackage.tcl
containing the following code:

namespace eval mypackage {}

proc mypackage::add {a b} {
 return [expr {$a + $b}]
}

package provide mypackage 1.0

Next run the following command in any Tcl interpreter:

% pkg_mkIndex /tmp/packages/mypackage1.0

This will cause /tmp/packages/mypackage1.0/pkgIndex.tcl to be created.
Every time you change your package names, package versions or filenames,
the pkgIndex.tcl file will need to be rebuilt using the previous example.

Now in the same or new session of Tcl interpreter, type in the following commands:
% lappend ::auto_path /tmp/packages

/opt/ActiveTcl-8.5/lib /tmp/packages

% package require mypackage

1.0

More complex packages can include multiple files. If multiple files state that they
provide the same package in the same version, then pkgIndex.tcl file will indicate
that all those files need to be loaded. If multiple files provide different packages or
different versions of the same package, then this will be reflected in the pkgIndex.tcl
file as well.

Chapter 2

[89]

For larger packages, the authors recommend building multiple smaller packages
and having one larger package that only requires the remaining ones—for example,
mypackage::add and mypackage::sub will provide actual commands and main
mypackage command will just load the actual ones.

Tcl modules
Tcl 8.5 also introduces a new concept called Tcl modules. This is a simplification of
packaging system we previously mentioned, which assumes that all packages reside
in individual files. Tcl will load this file by loading this script, so it either needs to be
a Tcl script or it can be a Starkit archive with a native library embedded in it. Starkit
archives are introduced in Chapter 3.

The main reason for creating a modules system in Tcl is to be able to clearly map the
directory structure to package names, similar to how it is done in languages such as
Java or Python—by knowing the package name you can easily find directory and the
files that define a particular package.

The path and filename reflect the actual package name and version. For example, the
package mypackage with version 1.1 would reside in a file called mypackage-1.1.tm.
If the package name contains one or more :: strings, then those are used to map
packages to directories. For example, mypackage::common::misc version 1.2 package
would need to reside in mypackage/common directory with name misc-1.2.tm.

Loading a module does not differ in any way from loading a package—all we need
to do is run the package requiremypackage and Tcl will find and load it in the same
way regardless of whether it is a package or module.

Tcl looks for these modules in different set of directories so that the package lookup
mechanism is separated from the modules lookup. In order to add a directory where
modules should be looked for, we need to invoke the tcl::tm::add command with
a directory where files should be looked for. For example, to create a package called
mypackage with version 1.1, we can create directory called /tmp/tclmodules and
create a file called mypackage-1.1.tm in it with the following contents:

namespace eval mypackage {}

proc mypackage::add {a b} {
 return [expr {$a + $b}]
}

package provide mypackage 1.1

Advanced Tcl Features

[90]

Then we can run the following code to test it:

% tcl::tm::add /tmp/tclmodules
% package require mypackage
1.1

Even though, internally, Tcl packages and modules differ slightly from each other
in how they are handled, the authors have decided not to distinguish those two
concepts where it is not necessary and always use the term package, whether Tcl
uses modules or packages to load it.

Event-driven programming
Tcl is designed to use an event-driven model. This means that everything that should
happen is either scheduled for a particular time or when an event occurs, such as
data being read, a new connection is made, or an external application or database
sends a notification. This means that your files, networking, and timers work in the
same thread and use events to perform actions when something occurs. For example,
in an application with user interface, an action can be bound to user clicking on a
button, which causes specific code to be run whenever the user clicks on the button.
Similarly, a network server will set up a listening connection and run specific code
when a new connection is established. Similarly, whenever application can read or
write to a network connection, the particular code can be run.

It is common to develop an application that is event driven. This means that in most
cases the application will only do things when an event takes place or will perform
scheduled tasks. For example, a server will take actions whenever a new connection
comes in and will clean up its information once a day.

Tcl fits this way of creating applications very well. It comes with a built-in event loop
that is used by all Tcl components. In addition to this, a large number of packages
available for Tcl support working in an event-driven way—for example, many
networking clients and servers allow defining what should be done when a process
is finished or when a new request comes in. Commands that are invoked when an
event takes place are often called callbacks.

Tcl event types
Different types of Tcl events are as follows:

File/channel events—occur when a file or a channel (such as pipe, network
connection, or serial port) can be read or written to
Timer events—occur after specified time, used for periodic activity

•

•

Chapter 2

[91]

Idle events—these events are run as soon as there are no different types of
events in the event queue
GUI events—used in applications that use Tk for their user interface, these
events are generated when the user generates an action—such as clicking on
a button

In addition to events generated by Tcl itself, packages often provide higher level
events. For example, network related packages handle channel related events to
handle communication and invoke callbacks whenever it makes sense. A package to
manage downloads over the network would invoke a callback whenever a download
is completed or an error occurs.

Entering the event loop
In order for Tcl to process events, it needs to enter the event loop. When Tcl is
started up, by default, it either sources the script file it was run with or it goes
into interactive mode. In the majority of cases, this does not cause Tcl to enter the
event loop. The best way to make sure that Tcl goes into the event loop once your
application is initialized is to add the following command at the end of your script:

vwait forever

Normally, the command vwait enters the event loop and waits for the variable
specified, because its argument is modified—in this case, it means that Tcl will be
processing events until the variable forever is modified. However, vwait forever
is an idiom that many programmers add to the end of their script when they actually
don't want to wait for a variable, but just want to enter the event loop.

In some cases when your script exits, Tcl will enter the event loop anyway, so
it might not be required. Usually, this means Tk applications and running your
applications from within TkCon. We can add the following check to see if Tk is
loaded, and only enter event loop if it is not available:

if {[info commands tk] == ""} {
 vwait forever
}

This checks if the tk command exists, and only invokes vwait if no Tk is available.
If your application sources additional scripts or plugins, these should not enter the
event loop themselves, because then actual loading of the script is blocked. It should
only be invoked in the main script of your application.

•

•

Advanced Tcl Features

[92]

Events and stack frames
All commands that are run as different types of events are always run at the global
level—this is the same level that your application is loaded at. It also means that if an
event initialization was done in a specific procedure or with various local variables,
when the event is invoked, these variables will not be present. For example:

proc myFunction {} {
 set value 100
 puts "Current value: $value"
 after 1000 {puts "Value: $value"}
}
myFunction
vwait forever

This will schedule the puts "Value: $value" command to be executed one second
after myFunction command is called. The after command causes a command to be
evaluated after a specified time in milliseconds and is described in more detail in the
coming sections of this chapter. The code will fail because the variable value is not
accessible at this time and the value global variable was never defined. It is correct
to use namespace variables and preferably a separate procedure for the actual event:

Namespace eval example {}

proc example::eventfunction {} {
 variable value
 puts "Value: $value"
}

proc example::function {} {
 variable value
 set value 100
 puts "Current value: $value"
 after 1000 example::eventfunction
}

example::function
vwait forever

This will cause the texts Current value: 100 and Value: 100 to be written
to standard output as namespace variables are used in this case.

Chapter 2

[93]

Channel events
Channel events are triggered whenever a channel can be read from or written to.
Usually this is used for network connections, Unix sockets, and running processes
using the open command. It is also used with non-blocking channel in majority
of cases.

Channel events allow us to set up certain commands to be run whenever there is
something to read or whenever we can write to a channel so that our code does not
block other events from being processed—for example, so that while we are waiting
for more data from a remote peer, scheduled events can still run.

Setting up events is done using the fileevent command. It accepts a channel as
the first argument and an event type as the second argument—which can be either
readable or writable, depending on which event we are interested in. If run with
those two parameters, it returns the currently configured command to be run. We
can also pass a new command that should be run whenever the specified event for
this channel occurs. Usually this is combined with building commands as lists so that
we can pass additional arguments such as the channel name to the command that
will be run.

The following is an example of an echo server that sends each line back to the remote
connection by using events:

proc echoHandler {chan} {
 if {[eof $chan]} {
 close $chan
 } else {
 gets $chan line
 puts $chan $line
 flush $chan
 }
}

proc echoAccept {chan remotehost remoteport} {
 # set buffering to line and non-blocking mode
 fconfigure $chan –buffering line –blocking 0

 # initialize readable event
 fileevent $chan readable [list echohandler $chan]
}

socket –server echoAccept 12345

Advanced Tcl Features

[94]

This example also initializes a TCP server on TCP port 12345. Networking is discussed
in more detail in Chapter 6. However, for the purpose of this example, we need to
know two things—socket -server command sets up a listening connection and runs
command, as yet another channel related event, to echoAccept command, adding
new channel, remote host and remote port information as additional parameters. Next,
this command sets up an event that runs echoHandler with the channel passed as an
argument. It checks whether an end of file has been received, which happens when the
remote peer closes the connection, and closes this channel if that happened. Otherwise,
the command sends the same line that was read back to the remote peer.

Similarly the writable event can be used to send large chunks of data to a
channel—if we wanted to send more data than our channel buffer can send, Tcl
would need to wait until this data is sent—in which case all other events would
not be processed until this operation was completed. Using the writable event,
we can receive an event whenever we can write more data to a channel and send
it in smaller chunks.

For both types of events, it is important to delete an event if we no longer want to
handle this—for instance, if we won't read or write when an event occurs, Tcl will
keep on invoking our event handler until we've read/written data. You can delete
an event handler by invoking fileevent with the channel, event type, and an empty
string as the third parameter.

For example, the command to send large data to a channel by temporarily setting
an event can be done in this way:

proc sendMoreData {chan data} {
 # write first 4096 bytes of data to channel
 puts –nonewline $chan [string range $data 0 4095]
 flush $chan

 # trim data to contain remaining part of original data
 set data [string range $data 4096 end]
 if {[string length $data] > 0} {
 # if we have more data to write, set up next writable event
 fileevent $chan writable [list sendMoreData $chan $data]
 } else {
 # otherwise remove an event
 fileevent $chan writable ""
 }
}

proc sendData {chan data} {
 # set up initial event – we do not write now
 # since channel might not be accepting more data at the moment
 fileevent $chan writable [list sendMoreData $chan $data]
}

Chapter 2

[95]

The previous example uses the writable event to write data whenever it is possible.

In many cases we will want to send data from one channel to another—for example,
sending file contents over a socket. Tcl offers a command that allows synchronous
(blocking) or asynchronous (using event system) copying of data from one channel
to another. This can be done using the fcopy command. It accepts an input channel
and an output channel as the first two arguments. If no other argument is specified, it
copies data from the input channel to the output channel in blocking mode. Adding
the -size option after those arguments we can specify the number of bytes that
should be copied, in which case either all of the file is copied or only the specified
number of bytes is copied, whichever comes first.

If we want fcopy to work in background, we need to specify a -command option
along with a command as parameter. In this case fcopy will return immediately,
set up sockets to work in non-blocking mode and start copying data. As soon as
the copying is complete or an error occurs, the specified command is run, with one
or two arguments appended. First argument specifies number of bytes copied. If
no error occurred, only one argument is appended. If an error has occurred, the
command is run with the error string added as the second argument.

Timer and idle events
Being able to perform certain tasks periodically is important, for example,
periodically removing old entries from a database, sending daily reports. Tcl and
its event loop offers a convenient way to run commands after specified time—it is
possible to add a command to be run, remove it from the event queue, and query
items currently in event queue. This functionality is accessible using after command.

In order to schedule a command to be run after some time, append the time (in
milliseconds from now) and the command to be run, for example:

after 2000 {puts "Welcome back"}
puts "Hello"
vwait forever

What will happen is first a Hello text will be printed out, followed by a Welcome
back message two seconds later.

Advanced Tcl Features

[96]

Such invocation of after returns a unique identifier for this event. This can be
used to cancel a timer event from running by invoking after cancel with the id.
For example:

set id [after 2000 {puts "Welcome back"}]
puts "Hello"
after cancel $id
vwait forever

What will happen is the Hello message will be printed out, but Welcome back will not
be printed as it has been cancelled. after cancel also accepts the command that was
scheduled, and if it is found in the timer event queue, it is removed. For example:

proc myCommand {} {
 puts "My Command was invoked"
}
after 1000 myCommand
after cancel myCommand

In this example, myCommand will never be invoked—even though we did not store
what the first after command returned, after cancel has removed the actual
myCommand invocation from timer event queue.

If we want to add something to queue so that it is processed whenever the event loop
is processing events, we can use the after idle command. It accepts a command
to be run, similar to scheduling something to be run after specified period of time.
For example:
after idle myCommand

The after command can also be used to wait for a specified amount of time without
entering the event loop—it might be useful if our script needs to wait for something
or a period of time, and we do not need to process other events during that time.
In this case, the time in milliseconds needs to be added as the only argument to the
command. For example, to wait for 5 seconds, we need to run this command:
after 5000

In many cases, what our application actually wants is to run a command at a
specified time. In this case, we need to use the clock scan and clock seconds
commands, and calculate after what time our command should be run. For example,
to run a command at 8 p.m. we can do the following:

set seconds [clock scan "20:00"]
set seconds [expr {$seconds—[clock seconds]}]
if {$seconds < 0} {
 incr seconds 86400
}
after [expr {$seconds * 1000}] myTaskCommand

Chapter 2

[97]

In order to periodically run a command the following code should be inside the
scheduled command so it will reschedule the next event when done. In many cases,
such as old data cleanup, it is okay to run the command when an application starts
and schedule our command to after the entire application is started by adding
after 1000 ourCommand. If the function should only be run at proper schedules, for
example when doing daily reports, scheduling should be split from the actual task.
For example:

proc myTaskCommand {} {
 puts "Task is being performed..."
 scheduleMyTaskCommand
}

proc scheduleMyTaskCommand {} {
 set seconds [clock scan "03:00"]
 set seconds [expr {$seconds – [clock seconds]}]
 if {$seconds < 0} {
 incr seconds 86400
 }
 after [expr {$seconds * 1000}] myTaskCommand
}

Robust scheduling with tclcron
The Tcl community offers a package that provides robust scheduling capability
called tclcron. It uses the after and clock scan commands internally. It allows
us to register commands to be run in more intuitive ways.

The tclcron manual page can be found at http://dqsoftware.sourceforge.net/
tclcron_man.html; download information can also be found on this page.

To add a command we want to run, we need to invoke the tclcron::schedule
command, passing a command to be run as the first argument, the type of schedule
as the second parameter, and arguments after that. The two most basic types of
schedules are once and every. The first one schedules a task only once and second
one invokes it repeatedly. For example:

proc everyCommand {} {
 puts "Every 30 seconds"
}

proc onceCommand {} {
 puts "Once in 40 seconds"
}

tclcron::schedule everyCommand every 30 seconds
tclcron::schedule onceCommand once 40 seconds

Advanced Tcl Features

[98]

This will cause Every 30 seconds to be printed out after half a minute has passed.
Once in 40 seconds will be printed out 10 seconds after that and then first text
will be repeated every 30 seconds.

Both schedule types accept all valid clock scan input which makes them very
powerful while being intuitive to read. For example:

tclcron::schedule databaseCleanup every 03:00
tclcron::schedule weeklyReport every sunday 04:00
tclcron::schedule cacheCleanup every 15 minutes

This will cause databaseCleanup to be invoked every day at 3 A.M. and
weeklyReport to be invoked each Sunday at 4 A.M. The command cacheCleanup
will be invoked every 15 minutes.

Similar to after, tclcron::schedule returns a unique identifier that can be used
to remove a command from being invoked by running tclcron::unschedule. This
identifier can also be used to query the next planned invocations of a scheduled
command by using the tclcron::schedules command, returning Unix timestamp
of each time the command would be run. It needs an identifier as the first argument.
We can also specify the maximum number of timestamps we want to receive as the
second argument. In addition to this, we can specify a timestamp after which we will
no longer be interested in the schedule as a third argument.

For example, to find out how a particular schedule would be run and then remove it
from the schedule, we can do the following:

set id [tclcron::schedule {} every 2 days]

foreach time [tclcron::schedules $id 100 [clock scan "+3 months"]] {
 puts "Next planned run: [clock format $time]"
}

tclcron::unschedule $id

Multithreaded applications
Even though Tcl is designed to work efficiently in a single-threaded environment, it
is possible to create separate threads in Tcl. While it can be used for performing any
action, it is usually used for operations that take a lot of time to complete.

Threads in Tcl require that Tcl is built with threading enabled and has the package
Thread installed, which is true for all ActiveTcl installations. Tcl builds from
various operating system distributions may or may not be built with thread
support enabled—in this case, the Thread package may not be present.

Chapter 2

[99]

Managing threads
Tcl uses that approach that each thread is a separate entity and data is not normally
shared across threads. It is possible to send commands to be evaluated in a thread,
either waiting for them to finish or by having them performed asynchronously.
In order to create a thread, we need to first load the Thread package and use the
thread::create command:

package require Thread
set tid [thread::create]

This causes a new thread to be created and its ID stored in variable tid.

We can then use the thread::send command to tell a thread to evaluate Tcl code:

thread::send $tid {after 2000 ; puts "Printed after two seconds"}
thread::send –async $tid {after 2000 ; puts "Printed in the
background"}

The first command tells the thread to wait for two seconds, and print text to standard
output. The thread::send command causes the main thread to wait for the
command to finish, actually performed in the other thread. The second command
asks the thread to run the command, but it does not wait for the command to
complete. Instead, command is run in the background. Asynchronous commands are
mainly used for jobs that do not need to pass results back to the application or they
that use thread::send to send results back to the original thread.

All calls to thread::send add the commands to event loop queue, so there is no
possibility that a command's execution will cause a race condition and it does not
need to be synchronized in any way. Internally, thread communication adds idle
events to the target thread's event loop so threads need to be in the event loop for
this to work. When a thread is created using thread::create, it goes into the
event loop so unless the thread blocks at some operation, this is not an issue.

Threads in Tcl do not share any data, unlike most languages, including Java, C/C++,
and Python. It is common to use a two-way messaging approach, where we tell a
thread to do something using the thread::send -async command and the thread
sends results back also using thread::send -async. This approach prevents many
of the most common mult-ithreaded programming issues such as deadlocks, and has
the benefit that it is much easier to maintain.

Advanced Tcl Features

[100]

A typical example is that the main thread initializes the thread and then sends
it commands:

namespace eval example {}

proc example::initializeThread {} {
 variable childtid
 set childtid [thread::create]
 thread::send $childtid {source childscript.tcl}
 thread::send $childtid [list \
 set example::mainthreadid [thread::id]]
}

proc example::parseDataDone {result} {
 # handling of parsed data
}

proc example::parseData {data} {
 variable childtid
 thread::send –async $childtid [list \
 example::childParseData $data]
}

example::initializeThread
example::parseData {data goes here}

And childscript.tcl, which is then loaded by child thread, should look like this:

namespace eval example {}

proc example::parseDataActual {data} {
 # this actually does time-consuming calculations
 # and returns newly created data
}

proc example::childParseData {data} {
 variable mainthreadid
 set result [parseDataActual $data]
 thread::send –async $mainthreadid [list \
 example::parseDataDone $result]
}

Chapter 2

[101]

The example will work in the following way—when somebody invokes parseData
in main thread, it sends that data to the previously created thread in an asynchronous
way and the main thread continues. The child thread receives it in childParseData. It
then passes it to parseDataActual procedure, which performs the actual calculations
and returns the results. When that happens, an asynchronous event is sent to the
main thread with the result, and the child thread can then either parse the next events
in its queue or will wait for new tasks to be sent. The main thread will then save the
calculated data or pass it to the remaining parts of the application.

Shared variables
Even though variables are not shared in Tcl, the Thread package offers a mechanism
for keeping data that is shared across threads, called thread shared variables (tsv).
This works in a similar way to Tcl arrays—there are multiple tsvs and each of them
can contain multiple keys. A tsv array does not need to be setup— the first operation
that sets a key in an array automatically creates this array.

The command tsv::set can be used to set an item and needs to be invoked with
the array name, key name, and a new value to set. Getting current value can be
done using tsv::get command. The command tsv::unset is used to unset either
an entire array or a specified key for this array—if only the array name is specified,
the entire array is deleted; if both the array name and key name are specified, only
a specific key is deleted. Increasing integer numbers can be done using tsv::incr,
specifying array and key name. For example:

package require Thread
tsv::set myarray counter 1
tsv::incr myarray counter
puts "Counter: [tsv::get myarray counter]"

This will cause 2 to be printed out, as after incrementing, this will be the new
counter value. As multiple threads can potentially be accessing your tsv variables
at the same time, the Thread package uses a locking mechanism when performing
operations. For this reason, tsv::incr is safer to use than a combination of tsv::
get, incrementing using expr and tsv::set—it might happen that both threads get
the current value, and if so, increase it by one and save it. In this case, both will get 1
as the input value, increment it to 2 and set this value—while after both increment it,
the value of those operations should be 3.

Advanced Tcl Features

[102]

In order to make sure that for your entire operation on a tsv array, no other thread
will be able to access it, you can use tsv::lock. The first argument should be name
of the array to lock and the second should be the command to execute. For example,
a secure alternative to tsv::incr is:

tsv::lock {
 set value [tsv::get myarray counter]
 incr value
 tsv::set myarray counter $value
}

While basic operations for tsv arrays are provided by the Thread package, locking is
useful in cases where your application performs non-basic operations and concurrent
access to data should be prohibited while your operation takes place.

It is possible to operate on particular keys for tsv arrays as on regular Tcl lists using
the same commands in the tsv namespace—tsv::lappend, tsv::lindex, tsv::
llength, tsv::lreplace, tsv::lsearch, and tsv::lset. The only difference
with their Tcl lists counterparts is that tsv::lreplace saves results back to the tsv
array instead of returning a new list. In addition to these commands, tsv::lpush
can be used to insert a new element to a list. It requires specifying an array and key
name, followed by the item to insert and optionally the position to insert the element
at. Here 0 means the first element in the list, 1 the second element, and so on. If a
position is skipped, it is inserted as first element of the list. Command tsv::lpop can
be used to retrieve and remove an element from a list. When invoked with only array
and key name, it retrieves first element. If the element index is specified, the element
at this position is retrieved—where 0 means the first element in the list, 1 the second
element, and so on.

It is also possible to retrieve information about array names, key names within a
specified array. Command tsv::names returns a list of all arrays and tsv::array
names returns a list of all keys for a specified array. For example, to list
all arrays and their keys, run:

foreach arrayname [tsv::names] {
 foreach keyname [tsv::array names $arrayname] {
 puts "Array $arrayname, key $keyname"
 }
}

Chapter 2

[103]

Transferring channels
Tcl channels are associated with an interpreter, which means that a channel created
in the main thread will not be accessible to other threads. It is possible to transfer
a channel using thread::transfer command. It is invoked with the target thread
id and channel name as arguments. For example, to create a thread each time a
connection is accepted, the following code could be used:

proc acceptConnection {channel} {
 set threadid [thread::create]
 initializeThread $threadid
 thread::transfer $threadid $channel
 thread::send $threadid [list handleChannel $channel]
}

After a channel has been passed to a thread, the channel will no longer be accessible
to the originating thread. In order to make it accessible again in the main thread, it
needs to be transferred back from the thread that currently owns it to originating
thread, also using the thread::transfer command in the exact same way, but
using thread the id of originating thread.

Summary
In this chapter, we learned about some of Tcl features that are needed in order
to progress to more advanced topics covered from next chapter on.

We've presented how Tcl handles dates and times, which is very similar to other
programming languages. However, the ability to parse human readable date, time,
and scheduling definitions is something specific to Tcl and is considered to be a very
powerful feature.

We also talked about the internals of Tcl, and how variables and data types are
managed, focusing on the fact that even though Tcl can store everything as a string,
internally it optimizes objects based on the way we access them throughout our code.

We also discussed object oriented programming and how Tcl 8.5 standardizes the
approach and provides mechanisms for compatibility with other implementations
of object-oriented programming in the Tcl world.

This chapter also goes through file-related operations—from reading and writing
files, through file operations such as up to getting information about specific files
and querying the filesystem.

Advanced Tcl Features

[104]

We've also described a packaging system in Tcl, which is a bit more complicated
than what many languages offer. However, it also is very powerful, which you will
be able to notice in detail in the next chapter which will focus on the topic of building
standalone binaries that include packages.

Events and threads were also a major part of this chapter. While Tcl's approach of
using events over threads is very different from many other languages, this approach
allows us to build code that is more maintainable and has problems caused by
threading and concurrency issues. For those tasks that need threads, we also showed
how that can be achieved and gave some practical advice on building applications
that use working threads for long running operations.

While some of our readers might be familiar with some of these topics, certain things
had to be mentioned, because we're going to use them frequently throughout this
book. Others needed to be covered to give you a better understanding of Tcl and
its internals.

Tcl Standalone Binaries
How many times have you installed the application you need and found out that,
as a side effect, it created a lot of files under different locations? The beginnings
are usually promising—you download a single-file executable installer and start
it, only to see that it extracts its contents to the location that the file was ran from.
And have you ever tried to change the location of the already installed software? If
you are looking for guaranteed troubles, go ahead. Then, you decide that you need
to remove it, only to find out that even after following the recommended way of
uninstalling it, some files and other data—such as application data, registry entries,
file associations—remain on the system.

Why is there such a lack of flexibility? Why are there a lot of self-executable
installers, but not ready-to-use applications? Is it really so hard to create a portable,
one-file application? Have you ever wondered how such binaries are being
developed and what their internal structure is? If you have, this chapter will bring
you answers to these questions, explain how to do this using the Tcl language.

A few years ago, when Tcl was nothing more than just another scripting language
for me, a friend showed me an application he had made. It was a normal .exe file,
looking completely identical to any other software, and I was astonished to learn that
it was developed entirely in Tcl in less than two hours! In fact, seeing that application
inspired me to learn Tcl. Years have passed, but I still admire the charm and the
elegant simplicity of this technology.

Our main objective, the Holy Grail of this chapter, is a self-contained, fully-functional
single-file binary application. We will learn through step-by-step tutorials how to
reach that goal using the most popular solution—the Starpacks technology which
was developed by the Netherlands based company Equi4 Software (http://www.
equi4.com). The choice of Starpacks is obvious when you realize that not only are
the components freely available as open source software, they also provide a high
degree of flexibility and support for a wide range of platforms.

Tcl Standalone Binaries

[106]

First, the internal structure of such files will be presented with an explanation of
how one file may contain many files in it. The underlying Metakit database will be
introduced, but the real 'magic' is related to the Virtual File System (VFS), which
allows us to treat the content of the database as a normal file system that contains
a number of files.

We will also answer the question of how it is possible for a Tcl-based application to
run on a system where no Tcl interpreter is installed. The trick is that the interpreter
will now be a part of that application itself, and in our case, the solution is
called Tclkit.

Following that, the Starkit, Starkit Developer eXtensions (SDX), and Starpack
mechanisms will be explained and discussed in detail in order to finally describe
how create our standalone application.

Finally, having learned about all the technologies that we have in hand, we will
review all the constraints and possible workarounds.

We will also mention alternative solutions to SDX.

This chapter will conclude with a real-life scenario example utilizing all the
described techniques.

Understanding the executable file
structure
In the context of normal files, two basic types exist—data and executable.

1. Data: These files contain raw data, which can be interpreted and used by
software which understands the format of the data. Although the format of
such files may be platform-specific, there is a pretty good chance that it is
portable and can be used under other operating systems, either directly or
after some conversion. Plain Tcl scripts (that is *.tcl files) are considered to
be data files, because they need to be interpreted by the actual Tcl binaries in
order to be run. On Unix systems, such scripts are correctly run by specifying
the binary name, but the script itself cannot be run on its own.

Chapter 3

[107]

2. Executable: An executable file contains a set of instructions that are executed
by the system when you run the file. The instructions are usually formatted
in machine code (assembler), which is directly related to the type of
hardware platform and operating system you are using. Yes, there are also
other kinds of files that appear to be executable, such as scripts, but in fact,
these are just data files containing instructions for the scripting language's
interpreter (for example Tcl), not for the CPU itself. The format of binary files
is complex and depends on the operating system; describing it in detail is
beyond the scope of this book.

In reality, an executable file contains not only binary instructions, but also various
kinds of data (metadata) such as headers. At the end of this chapter, you will
learn how to create an executable binary that will contain both the Tcl interpreter
(executable) and your custom data (such as scripts, Tcl extensions, images, icons, and
so on). To be more specific, these data are stored in a convenient structure referred
to as the virtual file system (VFS). Just like a normal file system, the VFS allows us to
have files and directories, but the difference is that they are not stored directly on the
hard drive, but inside the file it contains, in a fashion similar to ZIP archives.

The overall structure of the executable file we are targeting will be similar to the
following image:

Looking at this, a basic question arises—how will the software that is intended to
use this custom data be able to determine where it starts? At the end of entire file,
the size of the custom data is written, so if you know the total size of the file and
the size of the data part, it is easy to calculate the offset where the data starts.

The data could written in almost any format, but as you may have noticed already,
Tcl-ers do not like to reinvent the wheel, and they also tend to reuse existing solutions
and adapt them to their needs. In this case, the Metakit database was chosen.

Before you start creating your own standalone executable programs, we will explain
the core technologies required to achieve this goal, starting with a description of
Metakit as a database. Then we will talk about the Tcl's virtual file system, which
allows us to use the Metakit database as a container for files.

Tcl Standalone Binaries

[108]

Learning the Metakit database
Metakit is an embeddable database library which was created by the Netherlands
based programmer Jean-Claude Wippler (Note that he is also one of the authors of
TclKit, so it's no surprise that these two technologies are commonly used together.).
In this section, we are going to explain how it works. This information is not crucial
for building the standalone binaries, so you may skip it, but we do recommend that
you take the time to get more familiar with it for at least one reason—whenever you
use the TclKit, you will already have a Metakit within easy reach, so it is always
useful to know about the possibilities it offers.

Metakit's main features are:

Extreme portability—the entire database is stored in one file
Platform independence—the file containing the database can be used directly
on any other platform (such as Unix, Windows, Macintosh, and others)
without any conversion
High efficiency in typical operations, thanks to the specific internal format
The ability to embed it in C++, Python, and Tcl based applications
Support for transactions
A small footprint—the library itself has a size of about 125 KB

The Metakit database format involves relational and hierarchical concepts.
It introduces slightly different terminologywhen compared to typical
relational databases.

•
•

•
•
•
•

Chapter 3

[109]

The most basic concept is a view, and it is nothing more than collection of rows
(similar to a "table of records" in database terminology). A specific row is pointed out
by an index (its values start from zero). Each row consists of a fixed number of cells,
so basically a view is an RxC matrix, where 'R' is the number of rows and 'C' the
number of columns (each cell belongs to some column). All cells belonging to
the same column share the same data type (that is, they are homogenous):

string
numeric
raw data (untyped)
subview (nested view)

A subview is nothing more than a view nested inside another view. The availability
of such nesting gives great flexibility to Metakit, and is also its biggest difference
from traditional relational databases.

What is interesting is that data from a column is stored contiguously in the Metakit
file. This is the opposite of a traditional database organization, where data is stored
in a row-like perspective— where data from one specific row are adjacent to each
other. The Metakit way means that the performance of adding / deleting rows is
lower, but in return, loops iterating on data from a column are extremely fast.

The complete documentation of Metakit, along with downloads and support
information is available at http://www.equi4.com/metakit/index.html.

Working with MetaKit from Tcl
Mk4tcl is an extension that allows operations on Metakit databases from Tcl scripts.
The homepage, containing full documentation, is located at http://www.equi4.
com/metakit/tcl.html. We do not intend to duplicate it, we will just review the
most important Tcl commands introduced by this extension.

If you are using the prepared Tcl distribution, there is a good chance that the
extension is already a part of it. Otherwise, you will have to download the extension
from its homepage and install it. To start using the extension, you have to load it in
your script using:

package require Mk4tcl

To operate on data files, use the mk::file command with the appropriate
arguments. Mk4tcl introduces the concept of a tag—that is, an identifier for
an opened data file.

•
•
•
•

Tcl Standalone Binaries

[110]

To create or open an existing Metakit file, use mk::file open, for example:

mk::file open myTag myDatabase.mk

Here the tag is named myTag and the data file myDatabase.mk. Note that unless
you use the option –nocommit, all pending changes will be saved to file when
it is closed.

Other uses of mk::file include:

mk::file close myTag—closes the data file identified by myTag
mk::file commit myTag—commits all changes, this is useful when
–nocommit is used. The other scenario when this may be useful is if you
want to explicitly commit data—for example, before some time-consuming
operations take place. Autocommit is done within the event loop, so it
wouldn't occur in this situation, and if the user aborts the program, the
data can be lost.
mk::file rollback myTag—drops all pending changes
mk::file views myTag—returns a list of views defined in the data file

To specify a view or a row with in a view, you can use a path. The way to construct
a path can be easily described using the following examples:

myTag.myView—specifies the top-level view called myView in database
referred to by using myTag
myTag.myView!R—specifies a row; R is a row number, starting from zero
myTag.myView!R.subview—denotes an entire subview in the row
R of myView
myTag.myView!R.subview!S—denotes row S in a subview in row
R of myView

To operate on a view, use the mk::view command. In the following commands,
myTag.myView is an example of the path denoting the view, and it will sometimes
be referred to by using path to make the syntax more readable:

mk::view size myTag.myView returns the number of rows in the view
named myView in the data file identified with myTag
mk::view layout myTag.myView returns the current data structure of the
view named myView in the data file identified with myTag

•

•

•

•

•

•

•

•

•

•

Chapter 3

[111]

The same layout command may be used to define a data structure:
mk::view layout myTag.people {name birthYear:I}

This command defines a people view with two columns—name and birth
year. Note that the second one is of type integer (with suffix :I). The other
suffixes are:

:S—string (default type)
:L—64-bit integer (long) value
:F—single-precision floating point value (32 bits)
:D—double-precision floating point value (64 bits)
:B—binary (un-typed) value

If the suffix is not specified, it defaults to a string.
To define a people view with the subview addresses (containing the
columns city, street, and number), use the following command:

mk::view layout myTag.people {name birthYear:I {addresses {city
street number:I}}}

What is more interesting is that this command may also be used to
dynamically change the structure of the existing view— to add new or
remove existing columns without losing other data.
The command mk::view delete myTag.myView deletes the view.

Once you have opened the data file and defined the view, it is time to operate on the
data. You can start operating on rows with the mk::row command:

mk::row append myTag.myView appends new rows, for example:
mk::row append myTag.people name "John Smith" birthYear 1945

Note that you can also refer to a new, as yet undefined column, thereby
effectively creating it. By default, the type of that column's data is string,
unless an appropriate suffix is used.
mk::row delete path deletes the row pointed to by the path.
mk::row create creates a temporary row stored in memory and returns
a unique path:
set tempPath [mk::row create name "Will Bush" birthYear 1980]

mk::row insert path 1 tempPath inserts a temporary row into the view
in a position specified by path. 1 is the number of copies (the row may be
inserted in multiple copies)

•

°

°

°

°

°

•

•

•

•

Tcl Standalone Binaries

[112]

mk::row replace path tempPath replaces the row with a new one
mk::row delete path deletes the row

To get values from the row, use the mk::get path command. It returns a list of
column names and values.

To set values in an already existing row, you can use the mk::set path command
like this:

mk::set path name "George S." birthYear 1978

The path must denote the row number (in the myTag.myView!R format). If that row
does not exist, it will be created. If you use a value higher than the index of the last
row, the gap will be filled in with rows of empty values.

Knowing all this, lets consider the following example code:

package require Mk4tcl

proc printRows {path rows} {
 foreach i $rows {
 puts [mk::get $path!$i]
 }
}

mk::file open myTag myDatabase.mk

mk::view layout myTag.people {name birthYear:I}

mk::row append myTag.people name "George S." birthYear 1978
mk::row append myTag.people name "John Gray" birthYear 1973 sex male
mk::row append myTag.people name "Jeniffer Snake" birthYear 1982 sex
female
mk::row append myTag.people name "Judith Brow" birthYear 1987 sex
female
mk::set myTag.people!9 name "Johnny B." birthYear 1977 sex male

This set of instructions will create a database stored in the myDatabase.mk file and
put inside it a total of 10 rows.

For easy selection of rows, use the mk::select path ?options? command. The
command returns a list of row numbers that matched the selection criteria, which was
specified in the options arguments. By default, the command will select all rows:

set rows [mk::select myTag.people]

printRows myTag.people $rows

•

•

Chapter 3

[113]

The previous command will result in the following output:

name {George S.} birthYear 1978 sex {}

name {John Gray} birthYear 1973 sex male

name {Jeniffer Snake} birthYear 1982 sex female

name {Judith Brow} birthYear 1987 sex female

name {} birthYear 0 sex {}

name {} birthYear 0 sex {}

name {} birthYear 0 sex {}

name {} birthYear 0 sex {}

name {} birthYear 0 sex {}

name {Johnny B.} birthYear 1977 sex male

There is no point in doubling the documentation and describing all options of
mk::select. Instead, we will show an example of the usage of some of them:

Use –min and –max to specify a range of allowed values:

set rows [mk::select myTag.people -min birthYear 1975 -max
birthYear 1985]

printRows myTag.people $rows

This will result in selecting all the people born within 1975 and 1985:
name {George S.} birthYear 1978 sex {}
name {Jeniffer Snake} birthYear 1982 sex female
name {Johnny B.} birthYear 1977 sex male

Use –exact for an exact match:
set rows [mk::select myTag.people -exact sex female]

printRows myTag.people $rows

The preceding command will find all women:
name {Jeniffer Snake} birthYear 1982 sex female
name {Judith Brow} birthYear 1987 sex female

•

•

Tcl Standalone Binaries

[114]

You can also use wildcard matching with –glob:
set rows [mk::select myTag.people -glob name J*]

printRows myTag.people $rows

The result of this command will be:
name {John Gray} birthYear 1973 sex male
name {Jeniffer Snake} birthYear 1982 sex female
name {Judith Brow} birthYear 1987 sex female
name {Johnny B.} birthYear 1977 sex male

Also, in order to use regular expressions, we use the following command:
set rows [mk::select myTag.people -regexp name John.*]

printRows myTag.people $rows

The matching rows are:
name {John Gray} birthYear 1973 sex male
name {Johnny B.} birthYear 1977 sex male

Learning more about virtual file systems
Tcl, like almost every programming language, allows you to operate on files and
directories existing in the underlying file system. In the 'good old days', the Tcl
interpreter was able to operate only on native filesystems specific to the operating
system it was compiled for. From version 8.4, Tcl incorporates the concept of virtual
file systems (VFSs). The idea is to separate normal Tcl commands from the real file
system calls. Such separation makes it easy to add support for additional filesystems,
because all that is required is to create appropriate drivers. VFS allows us to redirect
all FS related calls to the driver responsible for the proper handling of these calls.

Luckily for us, there is already a Tcl extension called tclvfs (http://sourceforge.
net/projects/tclvfs/) that offers a number of drivers for various virtual file
systems. The word 'virtual' means that the code operates in a unified manner on files
/ directories located inside something that seems to be a normal, native filesystem,
but in reality, the filesystem could be anything - for example an FTP share or the
contents of a .zip file. The real power of this solution is that you do not have to use
any special commands to handle it once it is mounted.

•

•

Chapter 3

[115]

Supported by tclvfs, VFSs are categorized as separate packages located in the vfs
namespace. Before starting operations on any VFS, you have to mount it first. Two
types of mount are available: a VFS can be mounted as a directory at the specified
path, or more generally, the entire protocol is mounted. This second case is referred
to as urltype, and it allows file paths starting with ftp://, http://, or file://.
See the examples below in the FTP section.

The most important types of supported VFS are:

FTP: Allows you to operate on files on FTP server as though these files
were stored in a local directory. To start using it, use the package require
vfs::ftp or package require vfs::urltype commands. Consider the
following example:
package require vfs::ftp

vfs::ftp::Mount ftp ftp://ftp.kernel.org/pub/linux/kernel/v2.6
v2.6

file copy v2.6/linux-2.6.31.4.tar.bz2 .

In this case, we mount the FTP directory containing kernel sources as a
virtual v2.6 local directory (so this is the first type of mount), and then copy
a file from it using the standard file copy command to the current directory.
The second type of mount would be like this:
package require vfs::urltype

vfs::urltype::Mount ftp

file copy ftp://ftp.kernel.org/pub/linux/kernel/v2.6/linux-
2.6.31.4.tar.bz2 .

Here you can assume that after the second line, a new kind of drive
was created—ftp://, and any access to that drive causes the underlying
tclvfs library to connect to the FTP server and make it available for usage.
Effectively, it will also result in a call to package require vfs::ftp, so
there is no significant difference between the two types of mounts.
HTTP—this is similar to FTP and basically it is enough to replace ftp with
http in previous examples.
ZIP—allows access to files stored inside the compressed ZIP archive (note
the urltype access does not apply here). Consider archive test.zip; to list
its contents, the following could be used:
package require vfs::zip

set test_mnt [vfs::zip::Mount test.zip test.zip]

puts [glob test.zip/*]

vfs::zip::Unmount $test_mnt test.zip

•

•

•

Tcl Standalone Binaries

[116]

The example code mounts the archive as virtual test.zip directory, lists its
contents using the glob command, and unmounts the archive in the end. The
output from that code is:
test.zip/README.txt
As you can see, the archive contains the README.txt file.
Note that the main drawback of support for ZIP files is that they offer only
read-only access, so while reading their contents is easy, modifying it using
only vfs is impossible.
MK4—it is possible to use a Metakit database as a container for files and
directories, thanks to the mk4vfs driver. In this way, such a database can be
considered as an archive similar to a zip file. The driver offers full support for
reading and writing files, so the Metakit database is a perfect candidate for
keeping the files on our yet-to-be-created one file application.
The following example shows the creation of empty archives, copying a file
into it, and verifying if it's there:
package require vfs::mk4

vfs::mk4::Mount C:\\myKit.mk myKit

file copy C:\\README.txt myKit

puts [glob myKit/*]

vfs::unmount myKit

The output from that code is:
myKit/README.txt

The first command, package require vfs::mk4, loads the appropriate
VFS driver (mk4vfs). Next, we mount the Metakit database file located at
C:\myKit.mk (note that the backslash character needs to be escaped with
another backslash) to be available at the myKit mountpoint. If the file does
not exist, it will be created. The README.txt file, containing the text "hello
World!", is copied into the myKit mountpoint (and effectively into .mk file),
and then we list its contents to check if the file is really there. The last line
unmounts the database, causing all pending operations to commit. The
.mk file created in this example will be the subject of investigation in the
next section.

At the moment, Metakit has become a standard when it comes to storing and
accessing files in an efficient and elegant way, but we are living in a fast-changing
world and there is a possibility that soon some other, better solution will become
popular and supplant the current one.

•

Chapter 3

[117]

Getting into the details of VFS and Metakit
The good news is that it is not required for you to know or remember the internal
structure of a Metakit database used with mk4vfs, because from the script level, you
operate on its contents in a normal way, as you would on other file structures. If you
feel that you do not need to know more about it, you can go directly to the next section.

Why was Metakit chosen as the practical implementation of the VFS container? It is
the nested subviews feature that makes it a perfect candidate to reflect directories
and files, as you will see in the next example.

So what really happens when you write a file into a directory that is mapped to
a Metakit database? An appropriate VFS driver, in this case mk4vfs, captures the
request to save files and stores them transparently in the database. Based on the
knowledge that you already gained from this chapter, you can easily have a look
into this database to get some idea of how the files are stored. The following simple
code is one of the possibilities:

package require Mk4tcl
mk::file open myKit C:\\myKit.mk
puts –nonewline "layout of myKit: "
puts [mk::view layout myKit]
puts -nonewline "size of myKit.dirs: "
puts [mk::view size myKit.dirs]
puts "contents of first dirs entry:"
puts [mk::get myKit.dirs!0]
puts "contents of first files entry:"
puts [mk::get myKit.dirs!0.files!0]
mk::file close myKit

The code produces the following output:

layout of myKit: {dirs {name parent:I {files {name size:I date:I
contents:B}}}}

size of myKit.dirs: 1

contents of first dirs entry:

name <root> parent -1

contents of first files entry:

name README.txt size 12 date 1256126970 contents {hello World!}

Tcl Standalone Binaries

[118]

What the code does may be described as a reverse-engineering of mk4vfs operations.
Instead of going through the specification, we inspect the database directly to
understand its layout. First we load the package Mk4tcl and open the myKit.mk
database. Next we would like to learn what the layout of the database is, so
mk::view layout myKit comes handy. Let's analyze its output carefully:

{dirs {name parent:I {files {name size:I date:I contents:B}}}}

We see that myKit.mk contains one view called dirs. This view (table) consists of
the columns with name (by default, it is simply a string), parent (integer value),
and the nested subview named files. The names are self explanatory. The dirs
view represents the entire directory structure inside this virtual folder. name is the
directory name and parent points to a directory at a higher level (the number in the
dirs row represents that directory).

Each directory has a subview called files where all the files belonging to this
directory are stored. Each row in this subview consists of:

name—keeps the file name (string)
size—size of the file (integer)
date—creation date (stored as an integer)
contents—contents of the file (binary raw data)

Next, the entire number of rows is printed out using mk::view size myKit.dirs
command—in this case, there is only one entry corresponding to the top-level root
directory. mk::get myKit.dirs!0 is used for getting the first directory entry:

name <root> parent -1

mk::get myKit.dirs!0.files!0 returns the entry for the only file in this directory:

name README.txt size 12 date 1256126970 contents {hello World!}

The filename is README.txt, its size is 12 bytes, and its content is the text
'hello World!'.

Learning Tclkit
Tclkit is another piece of technology without which our puzzle can't be completed.
Basically, it is a single executable file that contains inside it a normal Tcl interpreter
along with a set of extensions, such as:

Tk—for graphic interfaces
IncrTcl—for object-oriented programming—currently, it is an optional
part of TclKit

•

•

•

•

•

•

Chapter 3

[119]

TclVFS—the virtual file system, explained earlier; Tclkit contains drivers
only for ZIP and MetaKit
Metakit—this was also explained earlier

The beauty and power of Tclkit comes from fact that it does not require installation,
and that it is supported on a wide set of platforms, including:

AIX
FreeBSD
various distribution of Linux on architectures including x86, PowerPC, S/390
and others
HPUX
IRIX
MacOS Classic and MacOS X
Solaris
Windows

Tclkit may be obtained from the http://www.equi4.com/tclkit/index.html
website.

At the time of writing this book, the latest version contains Tcl version 8.5.2. In the
rest of this section, we will consider examples on the Windows platform. In this case,
the Tclkit filename is strictly tclkit-win32.upx.exe (it is compressed internally
with the UPX packer). Due to some differences between Windows and other
platforms, an additional version with console support (but without Tk) is available
as tclkitsh-win32.upx.exe. Running these examples on Unix platforms should
require very little or no change, except for specifying different binary names.

Let's revisit the example from the Chapter 1, Introducing Tcl, which prints the "Hello
World" message. Running it with Tclkit is as simple as running it with a normal
tclsh interpreter:

•

•

•
•
•

•
•
•
•
•

Tcl Standalone Binaries

[120]

Starkit and SDX
As you could see in the previous example, Tclkit can be used as a replacement for
tclsh, because it is able to run .tcl scripts. This feature, although useful, is nothing
new. What is really innovative is that Tclkit is also capable of executing Starkits.

What is Starkit? It is a technology that allows you to pack (or wrap) the entire
directory structure containing your scripts and other files crucial for your application
into a single file with a virtual system inside of it. Having read the previous sections
of this chapter, it won't be a surprise for you that Metakit, along with the appropriate
VFS driver, is used to achieve this goal.

The structure and naming convention of directories and files to pack is precisely
defined, so Tclkit will be able to locate appropriate scripts inside it and start
your application.

The word 'Starkit' also refers to any file created with this technology. Such a file
contains your application, is very portable, installation-free, and has no external
dependencies. As a convention, these files are named using the .kit extension.

Creating a Starkit file
To create a Starkit file (we will also refer to it simply as 'starkit'), you may use the
utility called SDX available at http://www.equi4.com/starkit/sdx.html. What
is interesting is that SDX is nothing more than another application delivered in the
form of Starkit, and the file is simply called sdx.kit.

SDX accepts a number of command-line options, where the most important ones are:

qwrap—a convenient way for the quick creation of the .kit file, when your
application comes in the form of a single-file Tcl script
lsk—lists the content of a .kit file
unwrap—unpacks a .kit file, so you can easily inspect its contents with the
file manager of your choice
wrap—allows the creation of .kit files based on a strictly defined directory
structure that reflects VFS contents

Let's focus on the quick creation of the starkit first. Surely, you still remember our
"Hello World" example, constituted from one single file named main.tcl. It is a
perfect candidate to be wrapped into a .kit file. For better readability, we will
rename main.tcl as hello.tcl, in order to more clearly reflect what the script does.
To wrap up our example, put Tclkit and SDX in the same directory, and use the
following command:

•

•

•

•

Chapter 3

[121]

c:\workspace\TclHelloWorld>tclkitsh-win32.upx.exe sdx.kit qwrap hello.tcl

5 updates applied

Once finished, you will notice that a new file called hello.kit is created. Now you
can verify if it is working according to your expectations:

c:\workspace\TclHelloWorld>tclkitsh-win32.upx.exe hello.kit

Hello World one more time!

At first glance, there is no logical reason to wrap this script, because you simply
replace one file with another—but you will see what the differences are in a
later section.

To unpack the file you have just created, use the unwrap command:

c:\workspace\TclHelloWorld>tclkitsh-win32.upx.exe sdx.kit unwrap hello.
kit

5 updates applied

As a result of this command, the hello.vfs directory is created. This directory
reflects the contents of the virtual file system stored inside hello.kit. What you
will obviously notice first is that this directory contains more files than just hello.
tcl. As mentioned before, the structure of starkit's VFS is strictly defined, so SDX's
qwrap command works like a wizard and adds all the necessary files and directories.
The structure will be explained in more detail later.

Although the qwrap command is handy, it does not cover more complex variants.
Imagine the opposite situation: instead of retrieving the full VFS structure from
the .kit file, you would actually wrap your already prepared directory tree
along with sources of your valuable application. This is where the wrap command
becomes handy:

c:\workspace\TclHelloWorld>tclkitsh-win32.upx.exe sdx.kit wrap hello2.kit
hello.vfs

5 updates applied

The wrap command runs with two parameters—the name of the file to create and
the name of the directory to wrap. Therefore, in this case, we simply wrapped the
hello.vfs directory into the hello2.kit starkit file. Note that we describe the latest
available version of SDX at the time of writing; the earlier releases had a slightly
different syntax for this command.

Tcl Standalone Binaries

[122]

The second parameter can be skipped. In this case, if first parameter is in the form
of <app-name>.kit. The wrapper will search for the <app-name>.vfs directory
to wrap, so the command line will be:

c:\workspace\TclHelloWorld>tclkitsh-win32.upx.exe sdx.kit wrap hello.kit

5 updates applied

It is important to notice that, by default, the starkits produced by SDX are read-only.
If you would like your application to have the ability to modify or write files inside
a wrapped VFS, you will have to specify the –writable flag:

c:\workspace\TclHelloWorld>tclkitsh-win32.upx.exe sdx.kit wrap hello.kit
-writable

5 updates applied

Internal structure of starkits
If you are thinking seriously about using Starkit technology, the structure of VFS
inside it can not be any mystery to you. Let's first inspect the hello.vfs directory
from the previous example, and then discuss how to improve it with additional
files crucial for your application.

The top-level directory contains:

The main.tcl file—this script is interpreted once the VFS has been mounted
at start time.
The lib directory—this holds additional packages required for your
application. Every package is kept in a separate subdirectory. The most
important thing is that, by default, your application is also automatically
converted to a package. The naming convention for such a package is
app-your_application_name, so in this case, the name is app-hello.

Let's focus on main.tcl first. In our case, this file was generated automatically
by SDX's qwrap command, and its contents are:

 package require starkit
 starkit::startup
 package require app-hello

•

•

Chapter 3

[123]

The first line is obvious and causes the starkit package to be loaded. This package
is an integral part of Tclkit, responsible for proper handling of the entire Starkit
technology. Once this package is loaded, the starkit::startup command is
available to be called. The command performs two important actions:

It modifies the auto_path variable, so it includes the lib subdirectory,
effectively causing all packages stored there to be available for
your application.
It sets starkit::topdir variable. The value of this variable is a (virtual)
path that points to the directory where main.tcl is located.

After the starkit::startup command is run, we can assume that the packages from
the lib subdirectory can easily be loaded—regardless of whether we run main.tcl
from hello.vfs, a starkit, or a Starpack (which is described later). This feature
provides great flexibility for code development—you don't have to generate a starkit
after each change, because you will still be able to run the script in the normal way.

The starkit::startup command also returns a value that may be used to
distinguish how the script was invoked. It returns the following values:

unwrapped—the script was executed in a normal way, using the command
tclkit hello.vfs/main.tcl

starkit—the script is executed as a part of starkit, using the command
tclkit hello.kit

starpack—the script is executed as a part of Starpack (discussed in the next
section), for example, hello.exe
sourced—the script was sourced from the another script using the command
source hello.vfs/main.tcl

This value can be used for altering the operations of the script depending on the way
it was executed.

At this point, package require app-hello can be called successfully, causing
your wrapped application code to be executed. What really happens is that the
pkgIndex.tcl file is sourced. Its content is:

package ifneeded app-hello 1.0 [list source [file join $dir hello.
tcl]]

Therefore, effectively, it sources the hello.tcl file. If you look inside it, you will
find that this is basically the original file you wrapped in, with a slight modification
to the first line:

package provide app-hello 1.0
puts "Hello World one more time!"

•

•

•

•

•

•

Tcl Standalone Binaries

[124]

The line with the package information was automatically added by qwrap.

It is important to mention at this point, that this structure is not obligatory. The
mandatory items are only the main.tcl file and, in case you want to use some
packages that are not built into Tclkit, the lib directory. You can put your entire
application code into main.tcl, or some other files inside the VFS structure of your
choice. You could even sacrifice the starkit::topdir variable (while handling
the lib directory) and not use the starkit package at all. However, we do not
recommend such a daring move—coding standards were not invented only to be,
but also to facilitate understanding and development for other people. Just imagine
what would happen if you wanted to maintain some weird code written by a bold
programmer who believes standards are not his concern!

Using resource files in starkits
Often, your application will consist not only of script files, but also other items
as well—for example, graphical images or sound files. There is no problem in
putting additional files and directories inside the contents of the VFS, and the wrap
command will put them all inside the starkit file. Assuming you placed a file, say
image.jpg in a VFS subdirectory called images (images/image.jpg), you can refer
to it in your scripts as follows:

$starkit::topdir/images/image.jpg

Putting additional packages into a starkit
As mentioned earlier, the starkit::startup command extends the $auto_path
variable so it includes the lib directory. Therefore, adding additional packages is
nothing more than putting them into this directory. Then the extension is available
and you can use it in your code in the standard Tcl way:

package require <name_of_extension>

Format of the starkit file
If you display hello.kit (or any other .kit file) with any text viewer/editor, you
will notice that it starts like a normal script file:

#!/bin/sh
\
exec tclkit "$0" ${1+"$@"}
package require starkit
starkit::header mk4 –readonly

Chapter 3

[125]

After this header comes the binary data (that forms the content of the Metakit
database lying below the VFS). Such a header allows you to run .kit files directly
on any Unix-like system by simply adding executable permissions and putting tclkit
in your system path. On a Windows system, you will have to associate the .kit
extension with a Tclkit program in order to achieve this functionality.

When the header is interpreted by Tcl, the starkit package is loaded. This package
is included in all Tclkit versions. The last line causes the starkit package to mount the
VFS and start processing the files stored inside it.

Interactions between different starkit files
Your application does not have to be limited to only one starkit file. It is possible
to use the Tcl command source with .kit files, for example:

source hello.kit

It may seem a little magical at first, but as we already mentioned, a .kit file starts
with normal Tcl script commands, and after interpreting the data, it effectively
executes main.tcl inside that starkit. If that script includes a call to the starkit::
startup command, it will expand the auto_path variable including libraries
(extensions) from the new .kit file, and also replace the starkit::topdir
variable's value (so it is important to store its value before sourcing):

set topdir $starkit::topdir
source hello.kit
set starkit::topdir $topdir

The main disadvantage is that the entire main.tcl file will be executed, and if
you just want to make packages from another .kit file available, this is undesired
behavior. In such a situation, instead of sourcing the .kit file, it is better to:

vfs::mk4::Mount /path/to/file.kit /path/to/file.kit -readonly
append ::auto_path /path/to/file.kit /path/to/file.kit/lib

The first line mounts the hypothetical file.kit file (located at /path/to) at the
mountpoint named /path/to/file.kit (that's right, a good standard in case of VFS
is to mount it under the same name as the original file containing it). On the other
hand, the second line extends the auto_path variable.

Starkit files are perfect candidates for delivering ready-to-use pieces of code like
extensions/packages. This idea is implemented in terms of sdarchive (found at
the website http://tcl.tk/starkits), which is nothing more than a collection
of ready-to-download and ready-to-use starkits. If your application uses a lot of
packages, it is up to you to decide whether to put all of them into one main .kit
file or use some starkits from sdarchive.

Tcl Standalone Binaries

[126]

Knowing the Starpack technology
As mentioned in the previous section, the starkit file has a small header containing the
initialization script that executes the externally available tclkit. What would happen
if we replaced this header with a binary code of Tclkit? In such cases, we would get a
Starpack, a self-contained starkit, and a Tcl interpreter—all in one single file. This is
the solution we are searching for in this chapter—a standalone executable file without
any dependencies that does not require installation or configuration!

A Starpack file can be created in the standard way using the wrap command, but
with the additional flag –runtime, which specifies what Tclkit binary should be
put together with the starkit that is being produced. A typical usage is:

c:\workspace\TclHelloWorld>tclkitsh-win32.upx.exe sdx.kit wrap hello.exe
–runtime tclkitsh-win32.upx.copy.exe

5 updates applied

Note that the Tclkit specified with –runtime must be different from the one actually
executing this command, because a running Tclkit instance cannot copy itself. In this
case we simply copied it, but here comes the beauty of this solution—you can use
any Tclkit you want to, even for other platforms like Linux or Solaris. Therefore, you
will be able to produce versions for different systems without even having access
to them!

By default, when the output filename is of the form <app-name>.exe, or simply
<app-name> in case of non-Windows platforms, SDX will search for the
<app-name>.vfs directory holding the contents of your application.

After executing the hello.exe program, you will notice that it works in the same
way as the .kit version:

c:\workspace\TclHelloWorld>hello.exe

Hello World one more time!

The benefits of using Starpacks are:

The cleanest and the most elegant way of distribution and deployment—you
deliver your entire application in the form of one file.
The installation is as simple as downloading / copying the file
Uninstalling the software is as simple as deleting the file
No dependency problems—all the required libraries are stored inside
Starpack's VFS

•

•
•
•

Chapter 3

[127]

Complete transparency and maturity—end users may not even be aware that
the application is written in Tcl
The time required to wrap your application is extremely less once you know
the rules

The limitations of using Starpacks are:

Starpack's size is larger than Starkit's, because the entire Tclkit interpreter is
embedded inside it.
A Starpack file will work only on the platform that the instance of Tclkit used
to create that starpack was compiled for.
Starpacks are incapable of modifying themselves, and the VFS structure is
read only. If you really need to store some information, such as configuration
information for your application, you will have to save it in some external
file. We will address this issue in the next section called Advanced topics—
self updating.
Due to the VFS limitation, some Tcl commands, such as exec to run
programs inside VFS will not work correctly.
The practical Metakit database size limit is around 1 GB.

Practical example—the Hibernator
application
Some time ago, I discovered that I needed a convenient way to hibernate my
Windows-controlled PC after a specified amount of time. Of course, there were
plenty of ways to achieve this, but what I really needed was an easy-to-use timer-like
application, and that is why Hibernator was created.

Describing in detail how this application works is beyond the scope of this book, as
we do not focus on GUI creation, but Hibernator is a perfect example of a portable
standalone Tcl application that is successfully run almost every day. If you are
interested in how the graphical interface is created, feel free to inspect the source
of this application.

•

•

•

•

•

•

•

Tcl Standalone Binaries

[128]

All the required files are stored in the Hibernator directory, displayed in the
following structure:

The hibernator.vfs directory holds the entire virtual file system of the application,
and contains mandatory items such as the lib directory and the main.tcl initial
script file.

The lib directory contains two packages. One of them, named hibernator, is
my application. The other one is the Tcl Windows API extension called twapi
(you can find more information on this at http://twapi.magicsplat.com/). This
extension is needed to call appropriate actions—such as hibernate, suspend, or
power off—directly on the Windows operating system. As mentioned earlier, all
packages in lib are visible to the Tcl interpreter (thanks to the modification made
to the $auto_path variable). Therefore, to use the functions offered by twapi, it is
enough to do the following in any other file (for example, hibernator.tcl):

package require twapi
twapi::suspend_system -state hibernate

This command call causes the OS to hibernate.

The res directory holds additional files—in this case, it is a small icon warn.ico. This
file may be referred to from anywhere in the application with the following path:

$starkit::topdir/res/warn.ico

Chapter 3

[129]

The build.bat file contains nothing more than the appropriate invocation of the
SDX extension, to build Hibernator standalone application:

tclkitsh-win32.upx.exe sdx.kit wrap hibernator.exe -runtime tclkit-win32.
upx.exe

As the Hibernator! is a utility with a graphical interface and it requires Tk,
tclkit-win32.upx.exe is used at runtime. After successful wrapping, the program
is ready for use. Once you run it, you will be presented with the following window:

The GUI is simple, because the entire application is designed to be simple: on the left,
you can choose the desired action (such as Suspend, Hibernate, or PowerOFF). On
the right, you set the time left for completing this action, and at the bottom, you can
control the countdown: start/pause it, reset the counter, or exit the application.

The entire hibernator.exe file has less than 2 MB of space. The main part of this
size is the Tclkit (about 1.2 MB) and twapi—so, the entire package has 1.9 MB,
but this contains documentation and tests that can easily be compressed (note
that these can be removed, because they are not a crucial part of the extension).
Nowadays, when typical storage is counted in terms of hundreds of gigabytes and
the network link in Mbit/s, 2 MB may be considered as a small size.

Advanced topics—self updating
Imagine that you have just created your ideal, perfect application, wrapped into an
easy-to-use self-executing file and made it available for public. People start using
it, the count of downloads is getting higher every day, and suddenly you discover
a terrible bug causing your software to be barely usable! Your product goes from
'wonderful' to 'pitiful' within moments.

And what if you manage a network with thousands of computers, each of them
running your (defective) utility? Will you spend your entire weekend running
from one computer to another and replacing the software manually?

Tcl Standalone Binaries

[130]

Such scenarios have long been the worst nightmare of almost every software
developer. The solution? Of course, the possibility of bugs can't be eliminated, but
you can take care to minimize the impact of bugs on your users, and to be able to
react as fast as possible by facilitating the process of replacing the bad software
with a working version with the help of a blessed feature called autoupdate.

Of course, software defects are not the only reason to create a newer version of your
application. You may new features to it, or make modifications, optimizations, and
improvements. As part of easing deployment and management, you may want
your application to automatically update itself. As the book deals with network
programming, we assume that the update will be available to download over the
network, and that every computer running the software is connected to that network.

Depending on how the application will work, there are different scenarios that we
will consider. One option is that it will be a daemon running in the background—in
this case, it is best to simply schedule periodic checking for updates, possibly with
some smart algorithm to prevent all instances being updated at once, and therefore,
generating network overload. The second option is an application that is started,
used and eventually closed—in this scenario, the most obvious solution is
to check for updates at start time.

Knowing the importance of automatic update, let's take a closer look at how to adopt
this in terms of Starpack files. For the sake of simplicity, in the rest of this section,
we assume that 'the update' that will be downloaded is a newer, full version of the
application—in other words, we will not consider incremental updates.

Why do we focus on Starpacks and not Starkits? Starkits have the ability to modify
their contents in terms of normal write operations to VFS, and that makes updating
them as easy as downloading new VFS contents and replacing the old ones.

Starpacks, however, do not provide for such a possibility. On many operating
systems (including all Microsoft Windows versions and many Unix variants), it
is not possible to write to a file that is currently being run—that is, to replace our
own binary file. Therefore, a typical approach is to use an additional binary for
performing the upgrade.

Assuming our executable is in <dirname> and is called <filename>, after detecting
and downloading an update, the steps to update our binary will be similar to
the following:

1. First of all, part of the autoupdate code will write a new version of the binary
as <dirname>/autoupdate-<filename>. Next, it will run <dirname>/
autoupdate-<filename>, optionally passing to it all arguments that were
passed to the original binary, and exit the main binary.

Chapter 3

[131]

2. Now the autoupdate binary (which writes to our main application's
executable file, because it is a separate file that is not being executed at the
moment) will copy <dirname>/autoupdate-<filename> as <dirname>/
<filename>. This can be implemented so that the initialization of the
application checks the filename, and if it matches a specific pattern, performs
the autoupdate actions. For example, we can check this by using:
set dirname [file dirname [info nameofexecutable]]

if {[regexp "^autoupdate-(.*)" \

 [file tail [info nameofexecutable]] - binaryname]} {

3. First, the name of the directory where the binary is located is stored in
the $dirname variable, as it will be useful later. The check is performed
by getting the name of the binary file (additionally, it is saved in
the $binaryname variable) and checking if the filename begins with
autoupdate-. If the filename matches with it, we'll perform autoupdate
actions as follows:

 after 5000

 set targetname [file join $dirname $binaryname]

The code waits for 5 seconds for the parent process to exit—this is a
relatively safe assumption, but some developers recommend using
a wait of of 30 seconds.

4. Next, the main binary will be overwritten, make sure it can be run on Unix
systems and eventually executed. Before that, we need to try and unmount
our autoupdate the binary's VFS; this is required in order to copy our binary,
otherwise Tcl would try to copy mounted VFS contents instead of the file
itself, because the mountpoint name and filename are the same.
 catch {vfs::mk4::Unmount exe [info nameofexecutable]}

 file copy -force [info nameofexecutable] $targetname

 catch {file attributes $targetname -permissions 0755}

 exec $targetname {*}$argv &

 exit 0

This will cause the autoupdate binary to exit and main binary to be run again,
but this time it will be a newer, updated version of the binary that is run. exe
is the name of a handle for the mounted VFS used internally by Tclkit.

Tcl Standalone Binaries

[132]

5. As a cleanup step you should delete the autoupdate binary from the main
binary if it exists at startup time. You can simply add the following code
to check if the initial condition of a file with a name matching the
autoupdate- prefix is met:
} else {

 set autoupdatename [file join $dirname \

 autoupdate-[file tail [info nameofexecutable]]

 if {[file exists $autoupdatename]} {

 after 5000

 catch {file delete -force $autoupdatename}

 }

}

There is a delay of 5 seconds before trying to delete the autoupdate binary.
This is needed because of the delay between the beginning of the new
process and the termination of the old one.

Other solutions
The Starpack/Starkit technology has gained huge popularity over the years, and is
the "number one" solution when it comes to creating a single standalone executable
file, and you will most likely be pleased with it, but it is worth mentioning, at least,
some of the available alternatives.

One of them is a freeWrap program, available at http://freewrap.sourceforge.
net/. Binary compilations are available for both Windows and Linux systems, but
you can also attempt to compile the source code (also available on the website)
on other platforms. Basically, the functionality of freeWrap is similar to Starpack
technology: it can create executable files with Tcl/Tk and your wrapped application,
and it has similar constraints such as the lack of the ability to modify its contents.
Also, its licence allows you to use it free of charge. Personally, I found it hard
to use and feel that there is no reason to leave Starpack in favor of freeWrap.

An other solution is TclApp, which comes as a part of ActiveState's TclDevKit
package. You may consider it as a more advanced, commercial version of SDX. It
also operates on starkit/starpack files. The GUI version of TclApp is also available,
which make the entire process a bit easier for novice users. In general, it facilitates
various tasks related to the creation of the output file. For example, the management
of packages to include and even the selection of a program icon.

Chapter 3

[133]

Summary
This chapter presented how to create a completely standalone single-file executable
application entirely in Tcl, using Starpack technology. There are three core items that
made this solution possible:

1. The Metakit database with its unique ability to nest subviews inside a view
2. The VFS feature that allows you to use the Metakit database as a normal

file system
3. Tclkit—a complete Tcl interpreter compiled into one file

The beauty and power offered by this solution can't be underestimated. You can
deliver virtually any application in terms of a single file that does not require
installation/un-installation, doesn't mess up the user's operating system, and is
extremely easy to deploy and use as it does not have any external dependencies.
It is hardly possible to imagine or propose a better, easier-to-use solution.

What is also important, from a developer's point of view, is that the Starkit/Starpack
technology does not have a significant impact on the way you create your code due
to the low number of constraints it requires.

Throughout this chapter, you have been made familiar with Metakit database and
VFS concepts. You also learned how to create Starkits/Starpacks, the benefits and
constraints of this technology, and how to bypass them, if possible.

The next chapter will introduce you to concepts that are usually ignored at the
beginning, only to be found as invaluable at the end—logging and debugging of an
application. Experienced programmers already know these can save your life; and
novices will soon learn the value of these concepts.

Troubleshooting Tcl
applications

It is not uncommon for a developer to eagerly start to write a code, then to realize
the brilliant idea that just came to your mind. You quickly implement the basics of
the program and add functionalities one by one, each time running the code to check
if it works as you wish. So far so good, but eventually you come to the point when
adding additional functionality breaks existing functions for no obvious reason.
Suddenly, your fast development stops because instead of coding you are reviewing
sources and adding printouts, wherever possible, to get an idea what could have
gone wrong.

Does that sound familiar? Well, you are not the only one who faces such problems.
Luckily there are some well-known techniques to speed up investigation of the
problem, and make it as less painful as possible. These techniques are logging
and debugging.

The concept of logging is similar to adding printouts to your code, but in a more
ordered and unified way. At runtime, the logging subsystem produces information,
commonly referred to as logs or traces, which are basically a record of program
flow. Such a record can be saved to a file, written directly to the console, emailed to
a specified address, or used in some other way. It is up to you how many logging
entries you put in your code. It may seem to be a waste of time in the beginning, but
at the end you will either add them anyway, or abandon your project as it becomes
too complex to maintain and develop further. In this chapter, we will describe
logging with the usage of the log and logger packages, both coming from the
tcllib collection. We will also mention an alternative audit package that serves
the same purpose, but from a different perspective.

Troubleshooting Tcl applications

[136]

While logging allows you to analyze program flow after it finishes, debugging is a
different concept. It allows you to take a look inside the working program, stop its
execution at a specified point, and check the values of internal variables. The good
news is that you do not have to put anything special in your code to debug it, but
you have to use special tool that may seem to be awkward and complicated at the
beginning. This chapter will describe the Tcl Dev Kit Debugger, and its older, freely
available version—TclPro Debugger. We will also present the Tcl Dev Kit Inspector,
which may be considered as an extended 'remote console', and discuss how it
differs from a typical debugger.

Additionally, we will discuss proper handling of errors that may occur during the
execution of your application, and how to prevent them from crashing it.

Logging
In the next few sections, we will describe a few logging packages that you may use
in your code—log, logger ,and audit. Of course these are not the only options
available, but they give a good orientation in the topic. The first one—log, is the
simplest one whereas the other two are more advanced.

In general, when it comes to adding log entries in the code, the question of
performance impact arises, as too many calls to logging commands may significantly
slow down the application. Tcl has the ability to completely ignore empty procedures
(they are compiled to the no operation instruction at the bytecode level), and both
logger and audit are able to take advantage of this feature, by aliasing unused
commands to procedures with an empty body. Therefore, disabling the logging by
setting the log level to minimum will result in almost same performance as for code
without any logs.

Log package
One of the oldest libraries created for logging purposes is the log package,
coming from the tcllib package collection. The manual page is available at
http://tcllib.sourceforge.net/doc/log.html. The good news is that if
you are using ActiveTcl, there is good chance that you do not need to install any
additional items, because you already have the log package in your distribution.
If you have any trouble, we recommend installing all Tcllib libraries with the
following command:

teacup install tcllib

For more information about Teacup and how to use it, please refer to the appropriate
section in Chapter 2, Advanced Tcl features.

Chapter 4

[137]

Initialization
No special initialization is required. All you need to do to start using this package is
to invoke the command package require log.

Available log levels
This simple library defines eight levels of logging, in the following order starting
from the most important one:

Level name Suppressed by default Default output
emergency No stderr
alert No stderr
critical No stderr
error No stderr
warning Yes stdout
notice Yes stdout
info Yes stdout
debug Yes stdout

The four highest log levels are enabled by default, the other ones are disabled
(suppressed) to avoid generating too much information.

Consider the following code:

package require log
set availableLevels [log::levels]

set availableLevels [lsort -command log::lvCompare -decreasing \
 $availableLevels]

foreach level $availableLevels {
 log::log $level "message logged on $level level"
}

foreach level $availableLevels {
 puts "---"
 puts "Level name: $level"
 puts "Is suppressed: [log::lvIsSuppressed $level]"
}

Troubleshooting Tcl applications

[138]

The first line loads the log package, to make it available for use. All commands
provided by this package are located in the log namespace.

The command log::levels returns a list of all available log levels. Note that the
list is NOT ordered according to the levels' importance. To get the list in the order
presented in table, we sort it using lsort command. The log package provides a
handy comparison command log::lvCompare, which is compatible with lsort
(refer to Chapter 1, Introducing Tcl, for more details on lsort command).

Using this list, we first attempt to log a message on each level. To do this, we call
log::log command that accepts two parameters: a level and a message:

log::log levelName message

Having done this, for each level the code displays information about its suppression
state, using the command log::lvIsSuppressed levelName.

The code produces the following output (standard error output is in bold):

As you can see, only the four messages on the highest levels get logged, because
lower levels are suppressed.

Chapter 4

[139]

Enabling or disabling log levels
To enable or disable particular logging levels, the following commands may be used:

log::lvSuppress levelName ?suppress?—the first parameter is the name of
level to alter. The second parameter is optional, and can take the values 0
or 1. If a value is omitted, the default value is 0. The command disables the
specified level when suppress value is 1, or enables it when value is 0.
log::lvSuppressLE levelName ?suppress?—similar to previous one, with the
only difference being that the state of the specified level and all lower levels
is altered. For example, the command: log::lvlSuppressLE alert 1 will
effectively disable all levels but emergency.

Each log level is capable of producing output to a specified channel. As mentioned
earlier, by default these channels are stdout or stderr, but it is possible to specify
a custom channel:

log::lvChannel levelName channel—the first parameter is the name of
level to alter. The second parameter is the channel where logs should be
produced to.
log::lvChannelForall channel—similar to previous one, but alters all
log levels.

Replacing the default implementation of the
logging command
When log::log is invoked, it first checks if the given level is enabled; if it is, then it
calls log::Puts internal command, passing to it the level name and message text. This
command automatically selects the appropriate channel, and writes a log entry to it.

By default, the log format produced by the log::Puts command is simple and each
entry consists of a line as follows:

levelName message

Luckily, it is possible to replace log::Puts with a custom command, where some
more sophisticated format and other message processing may be introduced:

log::lvCmd levelName commandName—the first parameter is the name of
level, for which you want to replace the log writing command. The second
parameter is a command name. Note that this command should accept
two parameters: the level of the message and the message text.
log::lvCmdForall commandName—similar to previous one, but alters all
log levels.

•

•

•

•

•

•

Troubleshooting Tcl applications

[140]

Knowing all this, we can implement modifications that would allow us to write well
formatted logs to text file:

package require log
set availableLevels [log::levels]
set availableLevels [lsort -command log::lvCompare -decreasing \
 $availableLevels]

log::lvSuppressLE alert 0
set channel [open "messages.log" a]
log::lvChannelForall $channel
log::lvCmdForall myPuts

proc myPuts {lvl msg} {
 set now [clock seconds]
 set date [clock format $now]
 set channel [log::lv2channel $lvl]
 puts $channel [format "\[%s\] \[%-9s\] %s" \
 $date $lvl $msg]
 flush $channel
}

foreach level $availableLevels {
 log::log $level "some message"
}

The code starts in the same way as in the previous example. All log levels are enabled
with log::lvSuppressLE alert 0. A channel related to the file messages.log is
created and the reference stored in the channel variable. This channel is set for all
levels with log::lvChannelForall $channel. Next, also for all levels, the writing
command is replaced with myPuts.

The myPuts command accepts two variables—log level (lvl) and message text
(msg). It retrieves the current date (and stores it in the date variable), channel for the
specified log level (and stores it in channel), performs some formatting on the lvl
string in order to achieve the fixed length of that variable, and finally writes a log
entry with the puts command.

Chapter 4

[141]

As a result, the messages.log file is created with the following
well-formatted content:

Of course, it is also possible to send logs over the network using the socket channel.
To do this, we have to modify only one line in the code (now it can be called 'client
code'), the one defining channel:

set channel [socket localhost 1234]

We also need some kind of log server that will accept an incoming connection
and logs:

proc logServer {channel addr port} {
 puts "Receiving logs from $addr:$port"
 while {![eof $channel]} {
 puts [gets $channel]
 }
}
socket -server logServer 1234
vwait forever

This simple code will accept connections on port 1234 and just print logs to the
console for demonstration purposes. Once the server and the client code are
executed, the output on the console where the server was started will be similar to:

For more details on networking in Tcl, such as how to program a socket, refer to
Chapter 6, Networking in Tcl of this book.

Troubleshooting Tcl applications

[142]

Recap of the log package
In summary the log package offers a simple but still flexible mechanism for logging
purposes. Its main disadvantage is that it is not able to read / write configuration,
and lacks the ability to define more than one loggers, or at least targets (channels)
for messages; for example, concurrent logging to multiple files and consoles with
different formatting. These constraints can be bypassed to certain degree, with more
sophisticated design of custom writing command and additional configuration code,
but still it would be better to have it already included in package itself.

Logger package
The logger package is more advanced compared to the previous one. It also comes
as a part of Tcllib bundle and you will already have it if you are using the ActiveTcl
distribution. The documentation of the package is located at http://tcllib.
sourceforge.net/doc/logger.html, but unfortunately it is not consistent and
some information is incorrect or missing. The content of this paragraph is based not
on the documentation, but on real life experience with the package in version 0.9.

The main difference in comparison to the log package, is that it introduces the
ability to create many instances of the logger, each one with different configuration,
which allows precise fine-tuning of the logger to reflect your needs. These instances
are referred to as services, and we will use both terms interchangeably across this
paragraph. Moreover, the instances can be organized hierarchically, which allows
inheritance of configuration from the parent instance. Such a solution provides
enough flexibility for even most demanding applications. Imagine that your complex
application consists of various blocks (components). By creating separate loggers for
each part, you gain an ability to easily inspect the behavior of only one component,
instead of having to review logs from the entire program.

Another improvement is the ability to collect information, about entering and
exiting to particular procedures along with data passed to it. Such behavior is called
tracing, and collected logs are called traces. What's really important here is that this
functionality leverages Tcl's native tracing mechanism. Therefore, changes in code
are not required, and it does not generate any overhead unless enabled, either.

Initialization
To create a logger instance, use the logger::init serviceName command, as in the
following example, where the instance is stored in the variable logger:

set logger [logger::init someService]

Chapter 4

[143]

What is really stored in logger variable is the name of the namespace created by this
command, for the particular service name. The command also imports some useful
logging commands into this namespace, as we will see in the following section.

In case of version 0.9 of the logger package, the namespace created for serviceName
is ::logger::tree::serviceName. Actually, serviceName is nothing more than
a part of a namespace and it may contain elements separated with ::. This clever
solution allows easy creation of hierarchical loggers:

logger::init parent
#... configuration of parent' logger goes here
logger::init parent::child

In this case, the second logger is simply referred to as a 'child' (although its full
name is parent::child) which inherits all the configuration of parent logger.
It is of course possible to fine-tune its configuration later.

Available log levels
Similar to log, there are eight log levels available. In contrast to the previous logging
package, to log on a particular level you have to use appropriate command from
the namespace described in the previous section. Luckily, the command names are
identical to level names. The following table itemizes all levels in order of importance:

level name logging command name
emergency ${logger}::emergency message
alert ${logger}::alert message
critical ${logger}::critical message
error ${logger}::error message
warning ${logger}::warning message
notice ${logger}::notice message
info ${logger}::info message
debug ${logger}::debug message

The level names are almost identical to those coming from log, with an exception
of the warn level, which was called warning. In summary, logging any message is
as simple as invoking:

${logger}::notice "this is test message"

Troubleshooting Tcl applications

[144]

By default, all levels are enabled but this behavior may be changed for newly
created loggers with the usage of the logger::setlevel command which will
be described later.

Once you start logging with these commands, you will quickly notice that using
a variable name each time, in this example of logger, is not too convenient. The
package authors also, noticed this and made it possible to import all logger service
commands to the namespace of your choice, with the logger::import command.
Typical usage of this command is:

logger::import –all –namespace targetNamespace serviceName

In this form, the command will import all logger commands related to the
serviceName instance into the targetNamespace namespace. All parameters except for
service name are optional. If the –namespace parameter is omitted, the commands
would be imported into the current namespace. Skipping –all would cause logger
to import only logging commands (emergency, alert , and so on.). When the option
is specified, all commands (including some additional, described later) are imported.

Other possible parameters are:

-prefix prefixName—the imported commands have a prefix prepended to
their names specified as prefixName.
-force—overwrites existing commands. If this option is not used and any
of the commands imported already exist, the logger::import command
will fail.

The import command is handy, but you will probably not use it. There is another,
far better command—initNamespace:

logger::initNamespace namespaceName ?level?

The functions of the previously described commands are combined into this one,
as follows:

It creates a service with a name based on namespaceName
It imports all logging commands into the namespace namespaceName
It sets the logging level either to warn or to level, if specified

•

•

•
•
•

Chapter 4

[145]

Enabling or disabling log levels
The logger package offers two possibilities for altering the log level: you can either
change it for a particular logger instance, or globally (for all existing loggers):

global command instance command description
logger::enable
level

${logger}::enable
level

Enables logging at the specified
level and all higher levels

logger::disable
level

${logger}::disable
level

Disables logging at the specified
level and all lower levels

logger::setlevel
level

${logger}::setlevel
level

Enables logging at the specified
level and all higher, and
disables all lower levels

Additionally, the logger::setlevel command may be used to define the default
log level for all newly created loggers.

Knowing everything that has been described up to this point, we can illustrate it
with the following example:

package require logger
set logger [logger::init someService]
${logger}::debug "message logged on 'debug' level"

logger::import -all -namespace someService someService
someService::debug "another message logged on 'debug' level"
someService::emergency "message logged on 'emergency' level"

set child [logger::init someService::child]
logger::import -all -namespace someService::child \
someService::child

puts "Known log levels: [logger::levels]"
puts "Known services: [logger::services]"

proc listLevels {} {
 foreach service [logger::services] {
 puts "Current loglevel for $service is: \
 [${service}::currentloglevel]"
 }
}

listLevels

Troubleshooting Tcl applications

[146]

someService::setlevel notice
puts "after parent logger level change..."
listLevels

someService::child::enable debug
puts "after child logger level change..."
listLevels

someService::alert "this message will be logged"
someService::child::debug "and this one too"
someService::debug "but this one will be not"

someService::delete

The first lines demonstrate the creation of a logger instance for someService,
for example logging on the debug level using this instance, then importing the
relevant commands into the someService namespace, and again example logging
to demonstrate the benefits of that import.

Next, a child logger named someService::child is created and similarly, its
commands are imported into the someService::child namespace.

Subsequently, the code will print out all available log levels owing to logger::levels
command, and all defined logger instances (services) up to this point, using the
logger::services command. Both of these commands return results in the form
of a Tcl list.

Then the procedure listLevels is defined. Its purpose is to print the enabled log level
for every created logger. To get this information, ${service}::currentloglevel
command is used, where the service variable is the service name (see the following
section for more information).

The procedure is used next, each time the log level is altered for parent or child
logger to see how it affected overall configuration.

At the end, the parent logger and its child are removed using delete command. This
also cleans up all the resources used by that service.

The output of this example is as follows:

[Wed Dec 09 19:13:31 CET 2009] [someService] [debug] 'message logged
on 'debug' level'
[Wed Dec 09 19:13:31 CET 2009] [someService] [debug] 'another message
logged on 'debug' level'
[Wed Dec 09 19:13:31 CET 2009] [someService] [emergency] 'message
logged on 'emergency' level'

Chapter 4

[147]

Known log levels: debug info notice warn error critical alert
emergency
Known services: someService someService::child
Current loglevel for someService is: debug
Current loglevel for someService::child is: debug
after parent logger level change...
Current loglevel for someService is: notice
Current loglevel for someService::child is: notice
after child logger level change...
Current loglevel for someService is: notice
Current loglevel for someService::child is: debug
[Wed Dec 09 19:13:31 CET 2009] [someService] [alert] 'this message
will be logged'
[Wed Dec 09 19:13:31 CET 2009] [someService::child] [debug] 'and this
one too'

Analyzing this output, we can clearly see that altering the parent logger has a direct
impact on child instance—changing the logging level on the parent from debug to
notice in both of them. However, changes in the child logger are not propagated
to the parent, so after the someService::child::enable debug command, only the
child logger changes its logging level to debug. We can also notice the rather obvious
behavior that messages, logged on the level which is not currently enabled, are
simply discarded.

The implementation of listLevels command should be improved, in order to make
it more universal:

proc listLevels {} {
 foreach service [logger::services] {
 puts "Current loglevel for $service is: \
 [[logger::servicecmd $service]::currentloglevel]"
 }
}

The previous implementation worked only because of importing logger commands
into namespaces, named identically to the corresponding services. To make it
independent of the fact whether logger::import command was executed or not,
additional command is used:

logger::servicecmd serviceName

This command returns the same value as logger::init—full namespace, where the
logger package put all commands related to the particular instance for a specified
service name.

Troubleshooting Tcl applications

[148]

Tracing
As mentioned earlier, this library allows the tracing of command execution. To achieve
it, the ${logger}::trace command with appropriate parameters must be used:

${logger}::trace on : enables tracing. The mechanism is independent of
logging, so enabling / disabling any log levels does not affect the ability to
trace. Also, it uses some unique features of Tcl 8.4 and later, so the command
will fail on earlier versions. ${logger}::trace off disables tracing.
${logger}::trace add procName : causes procedure(s) (the command
accepts more than one procedure name) to be 'monitored'. If the procedure
identified by procName is called, appropriate tracing information is generated.
It is also possible to add all procedures from given namespace: ${logger}::
trace add –ns namespaceName
${logger}::trace remove procName : similar to add, removes one
(or more) procedures from monitoring. Similarly,
${logger}::trace remove –ns namespaceName
removes all procedures from the specified namespace.
${logger}::trace status : returns a list of monitored procedures. This
command may be also called with an additional parameter, the name of the
procedure, to verify if it is monitored or not.

The operation of the tracing mechanism is illustrated by the following example:

package require logger
set logger [logger::init someService]

proc second {} {}
proc first {} {second}
${logger}::trace on
${logger}::trace add first second
puts "monitored procedures are: [${logger}::trace status]"
first
${logger}::delete

Two dummy procedures, first and second are created and are registered for
tracing. In the next step, we verify this by printing the status of tracer, and finally call
the first command to observe the generated information (tracing.tcl is the script
name that is being executed):

monitored procedures are: ::first ::second
[Wed Dec 09 19:20:56 CET 2009] [someService] [trace] 'enter {proc ::
first level 1 script tracing.tcl caller {} procargs {}}'
[Wed Dec 09 19:20:56 CET 2009] [someService] [trace] 'enter {proc ::
second level 2 script tracing.tcl caller ::first procargs {}}'

•

•

•

•

Chapter 4

[149]

[Wed Dec 09 19:20:56 CET 2009] [someService] [trace] 'leave {proc ::
second level 2 script tracing.tcl caller ::first status ok result {}}'
[Wed Dec 09 19:20:56 CET 2009] [someService] [trace] 'leave {proc ::
first level 1 script tracing.tcl caller {} status ok result {}}'

Changing the implementation of the
logging / tracing command
Every time you log a message, for example on debug level:

${logger}::debug "message"

what really happens is that debug (or other command) verifies if the log level is
enabled, and if it is, then the appropriate underlying command is called.

For each log level of every instantiated logger, it is possible to replace the standard
implementation of that underlying command with your custom one. Let's consider
the following example first:

package require logger

proc myLogProc {txt} {
 puts ">>> $txt <<<"
}

proc listLogProcs {logger} {
 puts "== log procedures for $logger =="
 foreach level [logger::levels] {
 puts "$level --> [${logger}::logproc $level]"
 }
}

set logger [logger::init someService]
listLogProcs $logger
${logger}::debug "test message"
${logger}::logproc debug myLogProc
listLogProcs $logger
${logger}::debug "test message"

set anotherLogger [logger::init anotherService]
listLogProcs $anotherLogger
${anotherLogger}::delete
${logger}::delete

Troubleshooting Tcl applications

[150]

The output is as follows:

== log procedures for ::logger::tree::someService ==
debug --> ::logger::tree::someService::debugcmd
info --> ::logger::tree::someService::infocmd
notice --> ::logger::tree::someService::noticecmd
warn --> ::logger::tree::someService::warncmd
error --> ::logger::tree::someService::errorcmd
critical --> ::logger::tree::someService::criticalcmd
alert --> ::logger::tree::someService::alertcmd
emergency --> ::logger::tree::someService::emergencycmd
[Wed Dec 09 21:44:32 CET 2009] [someService] [debug] 'test message'
== log procedures for ::logger::tree::someService ==
debug --> myLogProc
info --> ::logger::tree::someService::infocmd
notice --> ::logger::tree::someService::noticecmd
warn --> ::logger::tree::someService::warncmd
error --> ::logger::tree::someService::errorcmd
critical --> ::logger::tree::someService::criticalcmd
alert --> ::logger::tree::someService::alertcmd
emergency --> ::logger::tree::someService::emergencycmd
>>> test message <<<
== log procedures for ::logger::tree::anotherService ==
debug --> ::logger::tree::anotherService::debugcmd
info --> ::logger::tree::anotherService::infocmd
notice --> ::logger::tree::anotherService::noticecmd
warn --> ::logger::tree::anotherService::warncmd
error --> ::logger::tree::anotherService::errorcmd
critical --> ::logger::tree::anotherService::criticalcmd
alert --> ::logger::tree::anotherService::alertcmd
emergency --> ::logger::tree::anotherService::emergencycmd

The first code defines two procedures: myLogProc which acts as simple
implementation of logging command for debug level, and listLogProcs which
prints implementing commands for all levels for the specified logger.

To retrieve the current command that will be executed on specified level,
we use
${logger}::logproc levelName
command. As we can see in the output, for example: for debug level the
default command name is debugcmd.
To change it, the additional parameter must be supplied:
${logger}::logproc levelName newCommandName.
In our example, we changed the procedure for debug from debugCmd to
myLogProc, and this change can be verified by using listLogProcs again
or by simply logging a message on this level.

•

•

Chapter 4

[151]

At the end of the code, we verify that the procedure has been altered for only one
logger, by instantiating the other one and listing implementations.

In a similar way, you can change the implementation of the trace logging command.
To do this, run logproc with trace as the first parameter:

${logger}::logproc trace newCommandName

There is one significant difference—the new command (that will handle traces) will
be called each time with a list variable as its argument, and not a text one. The list
consists of two elements. The first one is enter or leave keyword that is rather
self explanatory. The second item is a dictionary that contains the following
name-value pairs:

Name (key) Value
proc The name of the procedure that was entered or left
level The stack level for that procedure; stack frames are discussed in more

detail in Chapter 2, Advanced Tcl features
script The name of the file where the procedure is defined. May be empty

in case of interactive mode
caller The name of procedure which is calling the procedure being

currently traced. May be empty in case the procedure is called from
the global scope

procargs A dictionary containing the names and values of arguments passed
to the procedure

status Only valid in the 'leave' case—the Tcl return code of the procedure,
this is returned by the rarely used return –code code command.
For example, values are: OK (or 0) or ERROR (1)

result Only valid in the 'leave' case—the return value of the procedure

Appenders
In contrast to the previously described log package, you are not required to create
your own logging procedure when you want to use the custom format of your log
entries. The package logger::utilities makes it possible to easily create such
procedures in predefined, template-based way, and names them appenders. In this
paragraph, we will also refer to them as formatters as this is their main application.

Troubleshooting Tcl applications

[152]

Appenders are created per service (logger instance). Use logger::utils::
applyAppender with following options to create one:

-appender type : A mandatory option used to specify the type of the
appender (described in the following section). Allowed values for type
are: console, fileAppend.
-service serviceName : A non-mandatory option used to specify the instance
of the logger (identified by serviceName) to which the formatter should
be appended.
-serviceCmd logger : An alternative way to identify the logger instance. This
non-mandatory option accepts the same values as returned by logger::init .
-levels levelsList : if specified, applies the formatter only to messages
logged on levels listed in the levels list. Otherwise all levels are included.
-appenderArgs args : args is the list of arguments passed directly to the
created appender.

One of the common arguments passed to the appender via the–appenderArgs option
is the–conversionPattern pattern. This optional argument allows us to define a
custom format (pattern) of the logged messages. Basically, this is a normal string
that may contain special identifiers which will be expanded properly at runtime.
The default pattern is: [%d] [%c] [%M] [%p] %m. The following table lists all items
allowed to occur in pattern string:

Identifier Expanded to
%c Fully qualified name of logger instance (service)
%C Short name of logger instance
%d Current date (yyyy/MM/dd hh:mm:ss)
%H Hostname
%m Message
%M Procedure name where the log event occurred ('global' in case of global scope)
%p Level (priority) of the log event
%P pid of the current process

Two types of appenders exist:

console: this type of appender writes logs directly to the console—standard
output and standard error.
fileAppend: logged messages are sent to the channel (it may be a file
channel, or the network one). The channel is passed as the appender option
(-appenderArgs): -outputChannel channel.

•

•

•

•

•

•

•

Chapter 4

[153]

To conclude the appenders description, let's have a look at working example:

package require logger
package require logger::utils

set fl [logger::init firstLog]
set sl [logger::init secondLog]

logger::utils::applyAppender -appender fileAppend \
 -appenderArgs "-outputChannel [open log.txt a]" \
 -serviceCmd $fl
logger::utils::applyAppender -appender console \
 -appenderArgs {-conversionPattern {\[%d\] %c:%p \"%m\"}} \
 -service secondLog

${fl}::notice "first logger message"
${sl}::notice "second logger message"

Two log services are created: firstLog and secondLog. The namespaces created for
both of them are stored respectively in variables fl and sl.

Then the file appender (writing to log.txt file) is created and attached to the first
logger, which is identified with $fl value.

After this, the console formatter is created with an example custom pattern [%d]
%c:%p "%m". This appender is applied to the second logger, thanks to the secondLog
value for service option.

Consecutively, both loggers are used to log sample messages to verify if appenders
work correctly. The log.txt file will then contain a line:

[2009/12/12 19:39:49] [firstLog] [global] [notice] first logger message

and the second log will be sent to the console as:

[2009/12/12 20:09:02] secondLog:notice "second logger message"

Recap of the logger package
The logger package is far more advanced than log. It allows us to create many
logger instances (called services) with a different configuration. Appenders offer
a convenient and flexible way to store log entries in the format of your choice.

However, it is still missing out the ability to read / write current configuration. Also,
the available documentation is laconic and contains errors.

Troubleshooting Tcl applications

[154]

Audit
Another library worth mentioning is the one named audit. The documentation
and all necessary files are located at http://dqsoftware.sourceforge.net/
audit_index.html. Audit was created as a result of disappointment and a lack
of some functionality in existing solutions. It is targeted for usage in long-running
applications, working on servers, for example it allows logfile rotation. The library
is very laconic and offers only essential information. It is closer to log than logger
in terms of variety of features, yet offers a sufficient logging functionality. To start
using it, you have to download and place it in your library directory, pointed by
$auto_path variable.

The audit logger is able not only to save logs to text a file but also to create a special
dump file, which may then be loaded in to a special graphical browser. What is
more, the logger does not have to be initially configured to write to any files. As a
part of its internal operations, it stores data in the memory and offers a possibility
to write it later. For example, only in case some error occurs.

Let's analyze its usage starting with the following example:

package require audit::audit

audit::configure -level 9 -logfile log.txt
audit::audit main 5 "starting"
proc proc1 {} {
 audit::audit proc1 3 "message from proc1"
 proc2
}

proc proc2 {} {
 audit::audit proc2 3 "message from proc2"
}

proc1

audit::audit main 5 "ending"

The first line loads the package, after which some configuration must be done using
the audit::configure command. The most important parameters for this command
are (all are optional):

-limit integerValue—defines the limit of log entries stored in the memory.
Its default value is 20,000.
-level level— defines logging level. By defaults logs are disabled—level set
to 0. Audit accepts level values from 1(most important) to 9 (least important).

•

•

Chapter 4

[155]

-logfile fileName—the logs (in human readable format) will be written
to a file named filename. An empty value '''' disables writing to file.
-logfilecount integer—the number of files with previous logs to keep
during the log rotation process. By default the number is 10.
-datafile fileName—the dump will be written to file named filename. An
empty value "" disables writing to file. Such a dump may be later viewed in
the Audit browser.
-datafilecount integer—the number of files with previous dumps to keep
during the log rotation process. By default the number is 10.

In this example, we enable all logging levels (by specifying value 9) and configure it
to be written to the log.txt file.

To log anything, use the audit::audit command:

audit::audit type level message ?varlist? ?parameter1? ?value1? ?parameter2?
?value2? ?..?

The accepted arguments are:

Argument Meaning
type Any string identifier like method name
level Level of log
message Message to be logged
varlist List of variables to dump
parameter value Additional parameters and its values to store

The content of the log.txt file after running the previous example is as follows:

09-12-16 19:23:34.4203 | main | 5 | 0 | starting
09-12-16 19:23:34.4221 | proc1 | 3 | 1 | message from proc1
09-12-16 19:23:34.4223 | proc2 | 3 | 2 | message from proc2
09-12-16 19:23:34.4225 | main | 5 | 0 | ending

The first field contains the time of the log event, after which the value is specified
as type, then level on which the message was logged, stack frame, and finally
the message.

To force log rotation, as mentioned earlier, you can use the command
audit::logroll. The best application is to call this method periodically; for
example, from Tclcron (described in detail in Chapter 2, Advanced Tcl features).

•

•

•

•

Troubleshooting Tcl applications

[156]

The following example will demonstrate the usage of the Audit browser:

package require audit::audit

audit::configure -level 9
audit::audit main 5 "starting"
proc testProc {msg args} {
 audit::audit testProc 3 "message from testProc"
 anotherTestProc $msg $args
}

proc anotherTestProc {msg args} {
 audit::audit anotherTestProc 3 "message from anotherTestProc" \
{msg args} currentTime [clock format [clock seconds]]
}

testProc "Some test" name1 value1 name2 value2

audit::audit main 1 "some message"
audit::audit main 5 "ending"
audit::saveAudit audit.sav

This code is similar to the previous one, with the exception that no log file is defined
at the beginning. Therefore, the information is stored in memory and at the end,
the method audit::saveAudit is used to save a binary dump to the audit.sav
file. Also, some additional information is passed to the audit::audit command
to illustrate how they can be analyzed later.

To start the Audit browser, run browser.tcl file located among audit package files.
The following screenshot shows the browser window with the audit.sav file loaded:

Chapter 4

[157]

The main window shows a list of logged events in a similar format to the text file
logs; each one can be clicked to obtain more information in lower windows. In this
screenshot, event logged in anotherTestProc procedure is selected. It's also possible
to search for entries by selecting the appropriate minimum and maximum levels,
typing the text to search for in the type or message columns.

First, the lower window shows all parameters and its values logged with the
audit::audit command. The next one contains the names and values of the
variables, also put in with that command. The last one shows the stack trace, that the
list of all procedures (along with their arguments) being currently executed when the
log event occurred. Double clicking on any of items in lower part of the window will
open an additional window, which will show detailed information about the selected
item—such as being able to see the variables as a list or name-value pairs.

Recap of the audit package
The idea that stands behind audit is quite different compared to previous loggers.
The package is designed to be suitable for long running server side applications (log
rotation), and it also allows to dump logs only in some particular conditions for the
end user software. You can easily imagine an on-error popup window that allows
the user to send a dump to the application's authors with one mouse click.

Moreover, the graphical browser outperforms any other solution in the context of
ease of usage and the level of details provided, allowing you to find out the source
of the problem with as little effort and time as possible.

Debugging
While logging techniques save information about execution flow to allow you to
analyze it later, debugging offers a different concept. It allows you to interact with a
live, running application, review and modify its internal state, and halt execution at
points of your choice using breakpoints.

The best graphical debugging tools, Inspector and Debugger, are offered by
ActiveState as a part of the Tcl Dev Kit bundle, available at http://www.
activestate.com/tcl_dev_kit/. There is a 21-day free trial period, so you do not
need to buy it blindly. In this chapter, we will describe the tools offered by version
5.1.0. We will also describe its ancestor, the free TclPro Debugger (version 1.4),
available at http://www.tcl.tk/software/tclpro/. Although it is based on old
Tcl 8.3, it is still a free alternative worth considering.

Troubleshooting Tcl applications

[158]

Tcl Dev Kit Inspector
Before we focus on debuggers, we will first discuss the Tcl Dev Kit Inspector, which
is not really a thorough-bred debugging application. It allows you to connect to a
running program via a comm port and analyze its components. The comm package
is described in Chapter 7, Using Common Internet Services, so we will not dive in to
its details here. All you need to know is that the application itself must load a comm
package, and configure it for listening on a specific port (across this book, we use
value 1991 as the example port), or use the default value (returned by the
comm::comm self command).

Across this and the next few paragraphs, we will base our description on the simple
client that is the server code example. Here is the server code:

namespace eval ::server {}

proc ::server::initCounter {name} {
 variable counter
 set counter($name) 0
}

proc ::server::incrementCounter {name value} {
 variable counter
 if {[info exists counter($name)]} {
 incr counter($name) $value
 }
}

proc ::server::getAvg {} {
 variable counter
 set sum 0
 foreach name [array names counter] {
 incr sum $counter($name)
 }

 return [expr {$sum / [array size counter]}]
}

package require comm
comm::comm config -local 0 -port 1991
vwait forever

Chapter 4

[159]

The concept is simple—the server application will allow the creation of variables
named counters (with command server::initCounter), modification of its value
(with server::incrementCounter), and retrieval of average value (server::
getAvg). Each counter has a name and is stored in counter array. The server code
defines appropriate procedures, initializes comm to listen on port 1991, and enters
event loop.

The client code is also simple and boils down to remote execution of
server commands:

package require comm

set id 1991

comm::comm send $id ::server::initCounter "testA"
comm::comm send $id ::server::initCounter "testB"
comm::comm send $id ::server::incrementCounter "testA" 8
comm::comm send $id ::server::incrementCounter "testB" 16
comm::comm send $id ::server::incrementCounter "testC" 10
puts [comm::comm send $id ::server::getAvg]

What we will do here is start a server process, and then execute some client code
once to allow it to modify internal server application state. Once it is done, we can
start the Inspector.

The first action to perform is to connect Inspector to our server application, by
choosing File | connect to comm port and entering 1991 as the value (please note
that it will use the same type of connection as the one between our example
client-server, so effectively we are reusing comm port). Unfortunately, the inspector
allows only local connections as there is no possibility of entering an IP address.
Advanced users may bypass this limitation by using SSH tunnelling. If the target
machine has a running SSH server (which is usually the case for applications
running on Unix servers), it is enough to execute the following (we assume the
target IP is 192.168.1.1):

Windows: plink -L 1991:127.0.0.1:1991 user@192.168.1.1 plink
is a command-line interface for Windows SSH client PuTTY, available at:
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Unix: ssh -L 1991:127.0.0.1:1991 user@192.168.1.1

This command will tunnel the local port 1991 to the remote machine's port—also
1991, as a result allowing remote usage of Inspector.

•

•

Troubleshooting Tcl applications

[160]

Inspector allows you to take a look into the application. For example, you are able
to review all defined procedures as follows:

In the preceding screenshot, the getAvg procedure is selected (in Procs pane) and
displayed (in Value pane). The bottom Value window is editable and you are given
the possibility to redefine your procedure by editing its code, and clicking the
Send button.

Chapter 4

[161]

The following screenshot shows how to check value of the counter variable:

Note that the value is presented in the form of a ready-to-execute Tcl command that
would set this value. Just as in the previous case, the Value window is editable, so you
can easily modify the value of the variable. For example, change 8 to 12 and click the
Send button.

You are also able to call any command of your choice, just as it would be called inside
the application. All you need to do is to enter the command in the Command text
field, and click Send. For example, the call to server::getAvg command will return
the value 14 (the average of the values 12 and 16, as we already modified value of the
testA counter):

Troubleshooting Tcl applications

[162]

The preceding examples give you a taste of the possibilities offered by Inspector.
Apart from the described components, there is also a possibility to inspect:

The defined namespaces and items inside it
Global items
Classes and objects created with incr Tcl
GUI elements such as windows, images, menus, and canvas
Items declared with the after command

To sum up, Inspector offers you the ability to view the minute details of the
application while it is running, to check, and to modify its internal state.

Tcl Dev Kit Debugger
Debugger is a full featured application that offers a complex set of features, aimed
at finding and fixing bugs in your Tcl code. In this paragraph, we will describe
how to debug our example server code. As usual, we do not intend to copy the
documentation, but to present the potential offered by this tool. For more details,
please refer to Tcl Dev Kit User Guide.

Debugger has the ability to work in two modes:
1. Local Debugging—the debugger and debugged code are executed on the

same physical machine
2. Remote Debugging—the application that is a subject to debug connects

remotely over TCP/IP network to the debugger

Local Debugging
Once you start Debugger and choose File | New Project… from menu, you are able
to select the debugging mode. In this case, we select Local Debugging and load the
server code:

•
•
•
•
•

Chapter 4

[163]

What this means is that the debugger will launch the server code (server.tcl)
locally on the same computer, where it is run. The project may be saved, allowing
us to keep your breakpoints and watch variables for later usage.

Once the code is loaded, you will be able to start interacting with it. Debugger offers
typical scenario for this kind of application features:

The ability to execute the code, line by line with stepping function
Display of defined variables on all stack frames, along with stack information
The ability to define line and variable breakpoints:

A line breakpoint will cause the application to stop, once the
execution reaches the specified line
A variable breakpoint will cause the application to stop on
any modification of specified variable

The ability to modify internal state of the application by using Eval Console
Measurements of coverage and profiling of the code

If there are more details, the code (server.tcl) will not simply be executed. The
debugger will modify it transparently, enabling the debugging process to take
place—this mechanism is called instrumentation. By default, all the code would
be instrumented, but you have the possibility of explicitly excluding some of its
parts. You may do this on the second tab of new project wizard (or later in
File | Project Settings…):

•
•
•

°

°

•
•

Troubleshooting Tcl applications

[164]

For example, you can precisely define which procedures should be left
uninstrumented, or even ignore entire source files. The excluded code will still be
executed of course, but you won't be able to use debugging features like setting
breakpoints inside it. You may wonder why to bother yourself with such exclusions:
for example, it would improve the performance of your code, or allow you to omit
some parts like loading some libraries.

The following screenshot shows the Debugger with loaded and started
server.tcl code:

The upper toolbar contains buttons for stepping the application, stopping / and
restarting it, and for displaying various additional windows, consecutively:

The Breakpoint window contains a list of all defined breakpoints.
The Eval Console window, is similar to the typical Tclsh console. This
console allows you to enter and execute the Tcl commands, and effectively
modify the runtime state of the application.

•
•

Chapter 4

[165]

The Procedures window contains a list of all procedures defined.
The Watch Variables window offers the ability to watch values of the
variables of your choice.
The Code Coverage window.

The upper left pane holds the list of available stack frames. The right pane contains
all variables and their values for the selected stack frame. It also offers you the
possibility of creating a variable breakpoint (marked with the letter V), by clicking
on the left margin of the variable:

Double clicking on any variable from this pane will open an additional Data Display
window, where you can easily display the value of the variable in different formats
(Hex, Octal, Unicode and so on).

It is worth noting that the version of the Debugger we used, at the time of writing,
had problems when a breakpoint was defined for the array variable. Once the
execution of that variable came to modification, the error can't read "counter":
variable is array was shown.

The debugger may also fail when some core Tcl commands are renamed or
redefined. For example, the comm package renames the vwait command that
causes an appropriate warning once executed in Debugger.

The main pane displays the code for selected stack frame. By clicking on the left
margin, you are able to define line breakpoints denoted by a dot (as shown in line
10 in the example screen). Once the server was launched and the breakpoint was
defined, we executed the client code that caused the server::incrementCounter
procedure to be executed. As a result, the execution was stopped at line 10. The
yellow arrow on the left points to the line where the execution is currently stopped.
Once you decide to continue the execution with stepping functionality, you will
notice the arrow moves to next line.

•
•

•

Troubleshooting Tcl applications

[166]

The client code (presented at the paragraph describing Inspector) attempts to
increase the value for the counter named testC. However, once the average value
is retrieved, it is calculated only from the first two counters. Quick debug action
helps solve this issue:

Having declared a breakpoint at line 10, all we have to do is to wait until the name
argument has the value testC. Once this happens, we can step to the next line, and
using the Eval Console we can quickly check whether the if condition is fulfilled or
not. As you can see, it is not fulfilled, and a quick look at the counter variable in the
Variables pane proves that indeed the counter testC was never initialized. Once we
return to client code, we check for the following:

comm::comm send $id ::server::initCounter "testB"

This line is missing indeed. This example 'bug' is trivial, as the client code is short
and simple, but in the case of a complex application the odds of missing such a
command may be pretty high.

Chapter 4

[167]

Remote debugging
Remote debugging does not differ significantly from the local mode. The main
difference is that the debugger and application are communicating via the TCP/IP
network protocol.

The architecture of remote debugging is interesting: it is the debugged application's
responsibility to connect to the debugger that is configured to listen on some specific
port (let's use 1999 as an example value):

In order to connect (attach) to the listening debugger, the application must be
modified. Tcl Dev Kit comes with the tcldebugger_attach package that offers all
requisitive commands for the application to attach to the debugger. This package
must be accessible for the debugged code, so you will probably have to copy it to
the target machine.

You may either modify the application code itself or create some wrapper code
that will do all that is necessary, and run the original script (see the User Guide
for details). We choose second example as it is more elegant. Assuming that our
original server code is stored in server.tcl file, we will create a new script with
the following content:

package require tcldebugger_attach

debugger_init 127.0.0.1 1999

source server.tcl

As you can notice, basically only one command is required to enable
remote debugging:

debugger_init host port

The host parameter is the address of the machine where Debugger listens on the
specified port.

Troubleshooting Tcl applications

[168]

If you were to decide to modify the original server.tcl script, the start would be
the same, but additionally you would have to encapsulate all the server code into
the debugger_eval procedure call:

package require tcldebugger_attach
debugger_init 127.0.0.1 1999

debugger_eval {
namespace eval ::server {}

proc ::server::initCounter {name} {
 #body of the procedure
}

proc ::server::incrementCounter {name value} {
 #body of the procedure
}

proc ::server::getAvg {} {
 #body of the procedure
}

package require comm
comm::comm config -local 0 -port 1991
vwait forever
}

Once the application is attached to the debugger, you can interact with it in the
normal way, identical to local mode, but in this case the interaction is transparently
over the network.

The package also offers you the ability to programmatically define breakpoints with
the debugger_break command, which behaves similar to a line breakpoint. For
example, lets add it to the ::server::incrementCounter command:

proc ::server::incrementCounter {name value} {
 variable counter
 if {[info exists counter($name)]} {
 debugger_break
 incr counter($name) $value

Chapter 4

[169]

When the execution hits this line of code, the result is as follows:

Note that you are still able to define breakpoints in the normal way, using the GUI.
Usage of debugger_break may be particularly useful in the case of dynamically-
generated code, where you wouldn't be able to set a breakpoint otherwise.

If the debugger is not started and is not listening then the application will
continue its operations in the normal way, and debugging related commands
will have no effect.

Recap of the Tcl Dev Kit Debugger
The Tcl Dev Kit Debugger is a simple but powerful tool that provides all the
necessary functionality typical for this kind of application. Although it lacks some
sophisticated options like conditional breakpoints (stop the execution only if
some condition is met; for example, variable name has value testC), and in some
circumstances it may fail (described in User Guide), there is no doubt it is the
best Tcl debugger currently available.

Troubleshooting Tcl applications

[170]

The ability of remote debugging is especially important in the case of network
programming, which is essence of this book. What's more, the debugger also offers
the ability to perform code profiling, analyze the code coverage, and identify Hot
Spots, that is the code fragments that have been executed multiple times. These
features allow you to focus on the most critical parts of the application, and fine-tune
and optimize the performance of them. For example, you may be dealing with the
long running processes of a server application that are handling large volume of data,
and reducing the CPU usage or response time may be a matter of life and death.

TclPro Debugger
TclPro Debugger is an older ancestor of its commercial successor, the Tcl Dev Kit
Debugger. They both share almost identical user interface and functionality, but
as the TclPro Debugger is no longer actively developed (at the time of writing the
latest version is 1.4.1 which was released on 2000-11-21), it is based on an old Tcl
version, 8.3, which is its main disadvantage. The upside is that it is freely available
from the http://www.tcl.tk/software/tclpro/ website. It also comes with a
comprehensive user guide.

For example, the attempt to debug our example server code failed:

Chapter 4

[171]

It may be considered as a proof that Tcl Dev Kit Debugger is more mature and
advanced solution. However, there are still many situations where the free TclPro
Debugger will work fine and satisfy your requirements. In general, this debugger
will fail in cases when the subject of instrumentation is the code containing features
specific to Tcl versions newer than 8.3, like 8.4 or 8.5. For example, {$item in
$itemlist} or {$string eq $otherstring}. Consider the following code:

set animals [list cat cow aligator dog]

if {"dog" in $animals} {
 puts "dog is also an animal!"
}

This code is perfectly fine and will execute correctly with the Tcl 8.5 interpreter:

However, an attempt to run it in the debugger will finish with error:

Troubleshooting Tcl applications

[172]

You may try changing the interpreter used by the debugger in the Project Settings
to the newer one, but the TclPro Debugger will complain about incorrect syntax:

You can still disable the instrumentation of procedures / files that contain these
commands. This way the debugger will skip syntax checking of commands that are
potentially using features of Tcl 8.4 or newer, and will only inspect code you want to
debug. Though this limits your functionality, which might be a reason to upgrade
to the TclDevKit package that does not have such issues.

Summary
This chapter explored the concepts that would not be required in the "perfect
world"—troubleshooting, which is basically finding out why your application
does not work as expected.

First, we described the available solutions for logging and tracing your Tcl
application. From the log, logger ,or audit packages, you may chose the one that
closest fulfils your expectations and requirements. We've shown how each of the
packages work and what the key differences are between them.

Next, we described a variety of tools that allow you to take a good look at the
internals, and analyse and interact with the running application. Starting from the
TclDevKit Inspector, which is a tool that allows you to view the internal components
of the application. It is a lightweight tool that can easily be used to connect to a
running application, view or modify its parameters, and disconnect from it.

We then moved on to using a full-fledged TclDevKit Debugger with all its richness
of features. We've shown how to use it to find and resolve a simple problem, and
how to use it to debug remote applications.

Chapter 4

[173]

In this chapter, we have learned:

The available solutions for logging in Tcl
How to configure and use it—how to create loggers, define log levels, write
your logs to file or channel
How to trace the execution of your code
How to gain an insight into the running application by using the Inspector
How to debug your application in both the local and remote way
The key differences between the free TclPro Debugger and the paid
ActiveState Tcl Dev Kit Debugger

After this chapter, troubleshooting and finding bugs in the code should be less
painful, and allow you to spend more time on developing the functionality,
not fixing it.

In the next chapter, we will focus on another fundamental concept: data storage,
including topics such as accessing SQL databases, processing XML documents,
and more.

•
•

•
•
•
•

Data Storage
It is not an overstatement to say that every software application processes some kind
of data. Without data, an application's functionality would be rather modest, after all.
Data can come from different sources—such as user input, network communication,
and so on. It can also be stored locally on behalf of the application.

Knowing that data handling is an inevitable part of your code, this chapter will focus
on it, and particularly on textual data. If you ask "why?", the answer is simple: binary
data is rather simple and therefore simply boring—it is simply a sequence of bytes, and
they can represent virtually anything. In case of text data, the situation differs—there
are some common practices and libraries for processing it, and that's what we are
going to discuss further. There is also a trend to prefer text data over binary in many
cases—the success of text-based XML, for example, proves this.

The first topic will focus on the internationalization of your application. We will
discuss the issues with proper encoding of your text data, and how to avoid common
pitfalls. We will then briefly present how to create a multi-language program using
the powerful package offered by Tcl—msgcat.

The next item will cover accessing relational databases using SQL. We will present
how to access MySQL or PostgreSQL databases, and then we will focus on the Holy
Grail of the Tcl database world, that is the SQLite database engine. Originally created
by Tcl users for Tcl users, it was later widely recognized beyond that loop, and
became a popular solution used in many programming languages and by many
corporations, such as Adobe, Apple, Google, and Sun.

We will conclude by touching the topic strictly related to networking and data
exchange—XML. The XML format is very relevant in case of transmitting text data
over the network. With the focus on the tdom package, we will present how to parse
XML data and access particular information stored inside it. You will also learn how
to create an XML document.

Data Storage

[176]

Finally, we will discuss the possibility of storing raw, unformatted Tcl data
structures such as lists or dictionaries inside the flat text files. The way Tcl treats such
structures makes this task simple, and therefore a handy, yet primitive, solution.

Internationalizations
Almost every computer software application communicates somehow with the user or
support person in terms of human-readable text messages. When you start developing
an application, you may be tempted to use the easiest form, for example using puts
(or some other command) command with the message in your native language. It may
work pretty well in the case of small, one-evening applications, but when it comes to
mature-level software that is going to be presented to the world, you will soon search
for an easy way to make your application speak in different languages.

Encoding issues
Internally, Tcl uses Unicode to store any string data in memory. We assume the reader
is familiar with Unicode and UTF-8 terms, and describing it is beyond the scope of this
book. For more information, you can visit http://www.unicode.org or simply search
the network for interesting articles, because the topic is widely covered.

As UTF-8 encoding solves most of the problems with internationalization (the term
is often abbreviated to i18n for easier reading, as there are 18 characters in this word
between 'i' and 'n'), Tcl may be considered a mature solution in this matter. You do
not even have to remember about any encoding issues as long as you operate on
Tcl string data.

Basically, Tcl reads all files using the system encoding (for example, for those using
English in Windows, it is Windows-1252) and converts them to Unicode. The same is
in case of writing—by default, data is converted to system encoding.

It may (and based on general experience, it will) happen that you want to read
the contents of a file that is encoded in a different format than that of the system.
Therefore, you will have to alter the default conversion by reconfiguration of data
channel, and to do this, you can use the Tcl command:

fconfigure $channelId –encoding encodingName

Chapter 5

[177]

channelId is nothing more than the identifier of the channel returned by the open
command. When you select the encoding by specifying its name—encodingName—
Tcl will treat incoming data as if it is encoded in the specified format and convert it
to Unicode, and it converts outgoing data from Unicode to the target encoding. The
encoding names command returns a list of all available encoding names. If you
skip encodingName, the fconfigure command will return the current encoding for
specified channel.

Let's illustrate what is written up to this moment with an example. Assume
that we have two text files—utf8.txt and cp1250.txt, encoded in UTF-8 and
Cp1250, respectively. The following code sample shows how Tcl will behave
when reading them:

puts "system encoding is Cp1250, so the file will be read correctly:"
puts [read [open cp1250.txt r]]

puts "\nand this one will be malformed:"
puts [read [open utf8.txt r]]

puts "\nall known encodings are:"
puts [encoding names]

puts "\nafter proper configuration of encoding for the channel:"
set channelId [open utf8.txt r]
fconfigure $channelId -encoding utf-8
puts [read $channelId]
close $channelId

The output is:

system encoding is Cp1250, so the file will be read correctly:
This file is encoded with Cp1250 and contains some Polish characters:
zażółć gęślą jaźń

and this one will be malformed:
This file is encoded with UTF-8 and contains some Polish characters:
zaĹĽĂłĹ‚Ä‡ gÄ™Ĺ›lÄ… jaĹşĹ„

Data Storage

[178]

all known encodings are:
cp860 cp861 cp862 cp863 tis-620 cp864 cp865 cp866 gb12345 gb2312-
raw cp949 cp950 cp869 dingbats ksc5601 macCentEuro cp874 macUkraine
jis0201 gb2312 euc-cn euc-jp macThai iso8859-10 jis0208 iso2022-
jp macIceland iso2022 iso8859-13 jis0212 iso8859-14 iso8859-15
cp737 iso8859-16 big5 euc-kr macRomania macTurkish gb1988 iso2022-
kr macGreek ascii cp437 macRoman iso8859-1 iso8859-2 iso8859-3
macCroatian koi8-r iso8859-4 ebcdic iso8859-5 cp1250 macCyrillic
iso8859-6 cp1251 macDingbats koi8-u iso8859-7 cp1252 iso8859-8 cp1253
iso8859-9 cp1254 cp1255 cp850 cp1256 cp932 identity cp1257 cp852
macJapan cp1258 shiftjis utf-8 cp855 cp936 symbol cp775 unicode cp857

after proper configuration of encoding for the channel:
This file is encoded with UTF-8 and contains some Polish characters:
zażółć gęślą jaźń

The system encoding in this case is Cp1250, so the cp1250.txt file does not require
any special action to be read properly. Ironically, when reading from a file in UTF-8,
which is the core encoding for Tcl, the channel must be properly configured, otherwise
the data is corrupted by incorrect conversion, as it is treated as encoded in Cp1250, not
UTF-8. You can also see that the list of supported encodings is quite impressive.

Apart from altering configuration for the channel, Tcl also offers the possibility
to convert a string to different encoding with the following commands:

encoding convertfrom encodingName $string

encoding convertto encodingName $string

The command syntax may strike you as confusing, but it is self explanatory; it
always converts from encodingName to Unicode or from Unicode to encodingName.
If the name of the encoding is omitted, the current default system encoding will be
used. To clear up any confusion, let's illustrate it with one-liner example:

puts [encoding convertfrom cp1250 "za\xBF\xF3\xB3\xE6 g\xEA\x9Cl\xB9 �a\
x9F\xF1"]

In this code, \x and any following octal digits correspond to the appropriate
character codes in Cp1250 standard, so the string is in Cp1250 encoding and after
conversion it becomes UTF-8 encoded, which allows it to be printed correctly:

zażółć gęślą jaźń

In a similar way we can read the file utf8.txt mentioned earlier:

set channelId [open utf8.txt r]
fconfigure $channelId -encoding binary
set data [read $channelId]
puts [encoding convertfrom utf-8 $data]

Chapter 5

[179]

Once the data is read in binary mode, it is treated as an array of bytes, so although
the file content itself is encoded in UTF-8, puts $data would produce garbage, as
each byte would be treated as separate character code, and in UTF-8 characters may
be encoded in more than one byte. Usage of the encoding convert from utf-8
command allows us to correctly decode the binary data into human readable content:

This file is encoded with UTF-8 and contains some Polish characters:
zażółć gęślą jaźń

In most cases Tcl does not have any problems with correct detection of system
encoding. In the rare cases when it fails, it will fall back to ISO 8859-1. At any time
you can retrieve the detected encoding with the command encoding system. There
is also the possibility to force system encoding other than the detected one with
encoding system encodingName command, but it is generally best not to alter this.

As mentioned earlier, by default Tcl reads files using system encoding. This is also
true when it comes to loading additional scripts with source command, so generally
it is advised that all script files should be encoded with the default system encoding.

When it comes to using some Unicode characters, you can always write them in the
form \uxxxx, where xxxx should be replaced with correct, four digit hexadecimal
character Unicode code value.

If you have your Tcl script encoded in the format other than system one, you
may use the following workaround (let's assume script.tcl file is encoded
in UTF-8):

set channel [open script.tcl r]
fconfigure $channel –encoding utf-8
set script [read $channel]
close $channel
eval $script

What this does is read the content of file using correct encoding conversion into
a variable, and next pass this variable to eval command.

Starting from Tcl 8.5, the source command may be instructed about the encoding of
the file that is to be sourced. For example, to force our script.tcl file to be read as
UTF-8 encoded, all we have to do is:

source -encoding utf-8 script.tcl

Data Storage

[180]

Translating your application into different
languages
Tcl offers such a solution in the shape of the msgcat package (short for message
catalog). The functionality it offers is so vital that the package is shipped with
every Tcl interpreted since version 8.1. The manual may be found among the
full documentation of Tcl—at the time of writing, the manual is located at
http://www.tcl.tk/man/tcl8.5/TclCmd/msgcat.htm.

The basic concept is simple—you have to translate every string used in your
application to the languages you are going to support. All translations should
be stored in a directory (the name is your choice; in this chapter we assume it is
messages). If a translation is missing, the untranslated source string will be used.
For every language there should be one corresponding file with a .msg extension.
The name of each file is directly related to the locale identifier for the language it
contains. The following formats of locale identifier are supported:

language_country_modifier—for example en_GB_Funky
language_country—for example en_GB
language—for example en

The language and country codes are defined in standards ISO-639 and ISO-3166,
and the modifier may be a string of your choice. If there is more than one .msg
file for given language, the best matching file is used. For example, if the system
locale is "en_US", and we have both an en.msg and an en_US.msg files, the second
one would be used. If only en.msg is present, then this file would be chosen as the
best (and only) match.

Each of the translation files contains a set of calls to the command defining
translations for every string used in your application. The command is:

::msgcat::mcset locale string translation

locale parameter is in the same format as described earlier
string is a source, untranslated string
translation is a translated string; if the relevant translation has been is
omitted, the source string will be used

•

•

•

•

•

•

Chapter 5

[181]

In reality, each translation file will be evaluated as a normal Tcl script, so it should be
encoded in UTF-8. For example, let's assume that we want to define translations for
the Polish and Spanish languages. The messages directory will contain two files:

pl.msg:
::msgcat::mcset pl "Hello World" "Wita� świecie"

es.msg:
::msgcat::mcset es "Hello World" "Hola Mundo"

Each of these contains a translation of "Hello World" string to the
appropriate language.

To start using translations, all you have to do is load the translation with the
command ::msgcat::mcload directory_name (the parameter specifies directory
where translations are located). Next, you use the::msgcat::mc string command,
which will substitute string with appropriate translation.

The following example illustrates the usage of msgcat package:

package require msgcat

puts "system locale : [msgcat::mclocale]"
puts "system preferences: [msgcat::mcpreferences] \n"

foreach locale {pl_PL es en} {
 msgcat::mclocale $locale
 msgcat::mcload [file join [file dirname [info script]] messages]
 puts "current locale are: [msgcat::mclocale]"
 puts "current preferences are: [msgcat::mcpreferences]"
 puts "Translated message is: [::msgcat::mc "Hello World"]"
}

Basically the code sets each different locale: Polish, Spanish, and English, and allows
verification that the string "Hello World" has been appropriately translated. The
output of this example is:

system locale : pl
system preferences: pl {}

current locale are: pl_pl
current preferences are: pl_pl pl {}
Translated message is: Witaj Świecie
current locale are: es
current preferences are: es {}
Translated message is: Hola Mundo
current locale are: en
current preferences are: en {}
Translated message is: Hello World

•

•

Data Storage

[182]

The command msgcat::mclocale returns the current locale identifier (by default,
system locale), but it can be also used to set a new locale, as depicted in the example.
Note that after each change of the current locale, the command ::msgcat::mcload
must be called again, to find and load the matching translation file.

Another command, msgcat::mcpreferences, returns an ordered list (starting from
the most specific) of locale identifiers that will be used to match the .msg file. As you
can see, the preferences list for the locale pl_PL is: pl_pl pl {}, so the most preferred
translation file would be pl_pl.msg, then pl.msg and finally no translation at all.

It is worth noting that the msgcat package is aware of namespaces. What this
means is that translations from different namespaces are handled separately, which
prevents possible side effects between different packages, which may arise if both
packages were to try translating the same string to a different message. What is
more, if the translation is not found in the current namespace, msgcat will search
for it in the parent namespaces until the global namespace is reached. Here is an
example of such a behavior—the content of translation file:

::msgcat::mcset pl "test message" "wiadomość testowa"
::msgcat::mcset pl "test message2" "wiadomość testowa2"
namespace eval ::test {
 ::msgcat::mcset pl "test message" "to jest wiadomość testowa"
}

Example code:

package require msgcat

msgcat::mclocale pl
msgcat::mcload [file join [file dirname [info script]] messages]

puts [::msgcat::mc "test message"]
puts [::msgcat::mc "test message2"]

namespace eval ::test {
 puts [::msgcat::mc "test message"]
 puts [::msgcat::mc "test message2"]
}

The output:

wiadomość testowa
wiadomość testowa2
to jest wiadomość testowa
wiadomość testowa2

Chapter 5

[183]

As you can see, the "test message" translation will vary based on the namespace, and
the translation of "test message2" is obtained from the global namespace, as the test
namespace does not contain the definition for it.

It is worth noting that the::msgcat:mc command can accept additional parameters
apart from the string to translate, and in such a case, the Tcl format command is used
for parameter substitution. It also enables a different order of supplied values in the
output string, as shown in the following example:

The translation:

::msgcat::mcset pl "January" "Styczeń"
::msgcat::mcset pl "date: the %d of %s" "Data: %2\$s, dnia %1\$d"

The code:

package require msgcat

foreach locale {pl en} {
 msgcat::mclocale $locale
 msgcat::mcload [file join [file dirname [info script]] messages]
 puts [::msgcat::mc "date: the %d of %s" 15 [::msgcat::mc January]]
}

The output clearly shows the different positions of the supplied arguments,
depending on the locale:

Data: Styczeń, dnia 15
date: the 15 of January

Using SQL and databases in Tcl
It would be hard to talk about data storage and not mention relational databases. In
this section, we will briefly review how Tcl interacts with different databases. We
assume the reader is familiar with database concepts and SQL. If not, you can either
skip this section, or learn about the topic from other sources first.

For demonstration purposes, in every database described, we will setup a database
named Bookstore with the following tables and sample data:

CREATE DATABASE Bookstore

CREATE TABLE Books
(
title varchar(255),

Data Storage

[184]

isbn varchar(255),
PRIMARY KEY (isbn)
);

CREATE TABLE Persons
(
name varchar(255),
surname varchar(255),
CONSTRAINT pk PRIMARY KEY (name, surname)
);

CREATE TABLE Authors
(
book_id varchar(255),
name varchar(255),
surname varchar(255),
FOREIGN KEY (book_id) REFERENCES Books(isbn),
FOREIGN KEY (name, surname) REFERENCES Persons(name, surname)
);

INSERT INTO Persons VALUES ('Piotr','Beltowski');
INSERT INTO Persons VALUES ('Wojciech','Kocjan');

INSERT INTO Books VALUES ('Tcl Network Programming','978-1-849510-96-
7');
INSERT INTO Books VALUES ('Learning Nagios 3.0','978-1-847195-18-0');

INSERT INTO Authors VALUES ('978-1-847195-18-0', 'Wojciech','Kocjan');
INSERT INTO Authors VALUES ('978-1-849510-96-7', 'Wojciech','Kocjan');
INSERT INTO Authors VALUES ('978-1-849510-96-7', 'Piotr','Beltowski');

The structure of the tables and data are meant to reflect the current achievements of
the authors of this book.

In the following sections we are going to discuss databases that can be divided into
two general types:

Client-server databases such as MySQL or PostgreSQL. In this case, the
connection is done over network (in case of remote db) or local socket to the
database server that is running as completely separate program. This solution
is more flexible, but vulnerable to connectivity problems or low network
performance that can really be a bottleneck. The main benefit is that the
server where the database is running usually offers reasonable computing
performance, so performing operations on large volume of data shouldn't be
a problem. It also allows more efficient use of multiple applications using the
same database.

•

Chapter 5

[185]

Embedded databases such as SQLite and mk4tcl. However, the latter
does not support SQL and therefore is beyond the scope of this chapter.
Such a database runs as a part of your application and is closed once you
terminate the application. The data is usually stored in a local file or even in
memory. This type of database is perfect for use when you are developing a
standalone, single-user application.

Connecting to MySQL
MySQL is one of the most popular free databases. To work with it from Tcl, you can
use the mysqltcl package that constitutes Tcl interface towards the database. The
home page of this extension is located at http://www.xdobry.de/mysqltcl/index.
html, and you can find the full manual here. Below we will briefly present how to
use this package.

Assume that the database is installed on localhost, port 3306, the user name is root
and the password is toor. To start working with it, we will first have to connect to it:

package require mysqltcl

set m [::mysql::connect -host localhost -port 3306 -user root -password
toor]

The first line loads the package, the next one connects to the database using the
mysql::connect command, and stores the connection handle in m variable for
future usage. The options for the connecting command are rather self explanatory.

To select the database, use the mysql::use command with the handle and the
DB name:

::mysql::use $m Bookstore

Assume we want to retrieve the details (title and ISBN number) of the books
authored by Wojciech Kocjan. To facilitate this, first store the appropriate SQL
query in the query variable:

set query "SELECT Books.title, Books.isbn FROM Books, Authors WHERE
Authors.surname = 'Koc�an' AND Books.isbn = Authors.book_id"

•

Data Storage

[186]

To send the query to the server, we will use the mysql::sel function. This
command is only for SELECT queries, and accepts the following parameters:
the connection handle, the query string, and optionally:

-list—this command will return the list of lists, where every list
corresponds to one resulting row. For example:
puts [::mysql::sel $m $query -list]

The preceding command will output:
{{Learning Nagios 3.0} 978-1-847195-18-0} {{Tcl Network
Programming} 978-1-849510-96-7}

-flatlist—all rows will be concatenated into one single list:
puts [::mysql::sel $m $query -flatlist]

And it returns:
{Learning Nagios 3.0} 978-1-847195-18-0 {Tcl Network Programming}
978-1-849510-96-7

Such a list may be a perfectly suitable for use with a foreach statement,
to iterate over the results.

If the third parameter is omitted, the resulting rows can be retrieved using the
following commands:

mysql::fetch—at every call to this command, retrieves one row of
the result:
mysql::sel $m $query

while {[llength [set row [mysql::fetch $m]]]>0} {

 puts "[lindex $row 0] --> [lindex $row end]"

}

And the output is:
Learning Nagios 3.0 --> 978-1-847195-18-0

Tcl Network Programming --> 978-1-849510-96-7

mysql::map—this command maps every column from the resulting row to
the variable and executes the provided script, from which these variables can
be accessed. For example lets map the columns to variables named title
and isbn, and then print them out:
mysql::sel $m $query

mysql::map $m [list title isbn] {

 puts "$title --> $isbn"

}

•

•

•

•

Chapter 5

[187]

The result will be the same as in previous example:
Learning Nagios 3.0 --> 978-1-847195-18-0

Tcl Network Programming --> 978-1-849510-96-7

Both of these commands process one row at a time.

There is also another way to retrieve the result, with mysql::receive. The major
difference is that this command does not buffer (cache) any data on the client side,
but receives it directly from the server. This offers much better performance when a
large number of results is received from the server.

When compared to fetch and map, it is not required to call sel first, as it accepts the
query string directly:

mysql::receive $m $query [list title isbn] {
 puts "$title --> $isbn"
}

The output is identical to previous script. The command is very similar to foreach
in the sense that it accepts a list of variables to assign values to.

If you would like to execute some SQL query other then SELECT, use mysql::exec:

::mysql::exec $m "INSERT INTO Persons VALUES ('John','Smith')"
::mysql::exec $m "INSERT INTO Authors VALUES ('978-1-849510-96-7',
'James T.','Kirk')"

This command returns the number of affected rows. The second call to the command
will fail, as there is no record for James T. Kirk in the Persons table, so a foreign key
constraint fails. To avoid execution interruption, you could use the appropriate
catch clause.

Once you have finished working with the database, it is a good idea to disconnect
and free the resources, by using the command:

mysql::close $m

Connecting to PostgreSQL
The support for PostgreSQL database is far better, than the support for MySQL,
because we can choose from 2 available:

The first one is pgtcl (http://pgtcl.projects.postgresql.org/), and its
newer version pgtcl-ng (http://pgtclng.projects.postgresql.org/).
This extension is built using native code, so you have to pick the correct
version for your platform, or compile one from the source code. Once you do
this, you will be rewarded with the high performance of this solution.

•

Data Storage

[188]

The second extension is pgintcl (http://pgintcl.projects.postgresql.
org/). This one is written in pure Tcl language, so it is portable and
independent of the operating system and hardware you are using. Internally
it uses TCP/IP protocol to connect to and carry on a dialogue with the
database (so it is tightly related to the version of PostgreSQL protocol). The
main disadvantage of this extension is its performance—it is slower than the
previous extension, because native binary code will always perform better
than Tcl-based code.

The good news is that both of these extensions share almost the same command set,
so from the programmer's point of view there is almost no difference in usage. The
first one, pgtcl, is loaded with:

package require Pgtcl

While to use pgintcl you have to call:

package require pgintcl

As usual, we are not going to duplicate the extension's manual it's already written
by the extension's authors, and you can find it on appropriate homepages, but to
make the reader aware of such a solution and get him familiar with it, we will be
presenting the following example code:

package require pgintcl

set p [pg_connect -conninfo {dbname=bookstore host=127.0.0.1 port=5432
user=root password=toor}]

set query "SELECT Books.title, Books.isbn FROM Books, Authors WHERE
Authors.surname = 'Kocjan' AND Books.isbn = Authors.book_id"

pg_select $p $query result {
 puts "$result(title) --> $result(isbn)"
}

pg_execute -array result $p $query {
 puts "$result(title) --> $result(isbn)"
}

set handle [pg_exec $p "INSERT INTO Persons VALUES ('John','Smith')"]
puts [pg_result $handle -status]

set handle [pg_exec $p "INSERT INTO Authors VALUES ('978-1-849510-96-
7', 'James','T. Kirk')"]
puts [pg_result $handle -status]

pg_disconnect $p

•

Chapter 5

[189]

In this case, we use pgintcl, but as mentioned before, you can easily switch
to pgtcl by modifying the first line.

The example itself does the same operations as in case of the one presented in
MySQL section.

First it connects to the database by calling pg_connect. The –conninfo argument
specifies the list of connection options in form of key=value pairs. The full list of
options may depend on version of the database, but the most common options are:

Key Description
dbname The name of the database to connect to
host The host name or address where the server is

running and listening for connections
port The TCP port to connect to
user The username used for the authorization
password The user's password

If the values contain spaces, they should be entered in single quotes, following the
typical escaping rules (\\ for \ and \' for ')

The next command, pg_select, is used to execute the query and work on the results.
The command accepts the following attributes:

The handle for the connection, returned by pg_connect
The query string (this command accepts only SELECT queries)
The name of the array, where the results of the query will be stored. Array
keys are named after appropriate columns of returned rows.
The script that will be executed for each row of the returned data. The
script can be omitted, which makes sense in cases where only one row
will be returned.

Next, another type of command—pg_execute—is used. The syntax is similar to the
syntax of the previous command, but the order of arguments is different—first you
have to specify the array name, which is done with –array argument. This command
also accepts queries other than SELECT, and in such a case it simply returns the
number of affected rows. In the case of a SELECT query, the (optional) script is
executed for every row.

•
•
•

•

Data Storage

[190]

Once retrieving of the data is demonstrated, we attempt to execute some other
types of query—in this case INSERT. To send a command to the database server,
use the pg_exec command, with the handle and appropriate command string. The
command returns another handle, this time to the result object, which can be further
examined with the pg_result command. To use pg_result, you have specify the
mentioned handle and which of the result attributes you would like to retrieve. For
example, pg_result $handle –status will return the status (for other options,
see the manual).

In our example the first INSERT query will succeed, and the next one will fail, which
maps directly to the code's output:

Learning Nagios 3.0 --> 978-1-847195-18-0
Tcl Network Programming --> 978-1-849510-96-7
Learning Nagios 3.0 --> 978-1-847195-18-0
Tcl Network Programming --> 978-1-849510-96-7
PGRES_COMMAND_OK
PGRES_FATAL_ERROR

At the end, we close connection to the database server with pg_disconnect.

Using SQLite
SQLite is a free SQL database engine that has gained wide popularity among Tcl
users. The reason for this is that it does not require installation or configuration,
or dedicated server—you just start using it locally as an embedded database. It is
fast, compact, efficient and very handy when it comes to rapid prototyping of the
application, and this is the task which often happens in Tcl world. The details
of SQLite can be found on its home webpage http://www.sqlite.org/.

What is particularly important from a Tcler's point of view is that SQLite was originally
created as a Tcl extension, so it is supported in Tcl from the very beginning. It was
meant to be very easy to use from Tcl code, and of course provides a comprehensive
interface in terms of Tcl commands. As you will see, the usage is so simple that
eventually even the most zealous antagonist will start using it as a default way
to store application data.

To start using it, you have to load the appropriate package:
package require sqlite3

SQLite stores all data in database files. The file name can be anything, but by
convention the extension for the file is .db. The following command connects
to the file bookstore.db (or creates one if it does not exist) and defines the
command named bs for handling the database from that file:

sqlite3 bs bookstore.db

Chapter 5

[191]

Note that if you do not specify an absolute path to the file, it will be created in the
current working directory of your Tcl interpreter. There is also the possibility to
create and use a database that is stored in memory—in this case, instead of the
filename, use :memory: as the name.

Once the database is opened, it is accessible via the command defined in the opening
call; in our example the command is bs. Note that you have complete freedom in
choosing the command name. What is more, you can open the same database more
than once, each one with different command. You can consider a command name as
the equivalent of a connection handle. Such a command provides a set of methods,
where the most important is named eval. This method allows executing SQL queries
on the database. The syntax is as follows:

bs eval sqlQuery ?arrayName? ?script?

sqlQuery is a string containing an SQL query. Usually it is put in curly
brackets {} to avoid Tcl substitution, because SQLite has the unique feature
of understanding Tcl variables, so even though the variable will not be
substituted by Tcl interpreter, the database engine will replace it properly
with the correct value.
arrayName is an optional name of the array where the columns from each
result row will be stored (see the example below). Column names are used
as array keys. Note that not every SQL query must return results.
script is an optional Tcl script that will be executed for each result row.

Using the eval method is simple. For example to create a table called Books, all you
need to do is:

bs eval {
 CREATE TABLE Books
 (
 title varchar(255),
 isbn varchar(255),
 PRIMARY KEY (isbn)
);
}

Of course all SQL commands could be placed in a single bs eval call. In the rest
of this paragraph we assume that bookstore.db database is populated with the
example SQL structures presented at the beginning. Note that by default SQLite does
not honor FOREIGN KEY constraints, and it must be enabled (the best option is to do
it right after opening database) with the command:

bs eval {PRAGMA foreign_keys = ON;}

•

•

•

Data Storage

[192]

If the SQL query does return some results, the eval method will return a flat Tcl list
containing all result records, suitable for using in a foreach loop:

set query "SELECT Books.title, Books.isbn FROM Books, Authors WHERE
Authors.surname = 'Kocjan' AND Books.isbn = Authors.book_id"
puts [bs eval $query]

The result from this query is as follows:

{Learning Nagios 3.0} 978-1-847195-18-0 {Tcl Network Programming} 978-
1-849510-96-7

The following illustrates how to use a script passed as additional argument for eval:

bs eval $query {
 puts "$title --> $isbn"
}

The script contained in {} is executed for every row. To access the returned data, use
the variables named after appropriate column names. Note that instead of column
names, identifiers specified with the SQL keyword AS can be used:

set query2 "SELECT Books.title AS TheTitle, Books.isbn AS ISBN_Number
FROM Books, Authors WHERE Authors.surname = 'Kocjan' AND Books.isbn =
Authors.book_id"
bs eval $query2 {
 puts "$TheTitle --> $ISBN_Number"
}

Using the array name is also trivial:

bs eval $query result {
 puts "$result(title) --> $result(isbn)"
}

In this case, the array name is result, and the keys for the array are named title
and isbn. In all three examples, the output produced will be the same:

Learning Nagios 3.0 --> 978-1-847195-18-0
Tcl Network Programming --> 978-1-849510-96-7

As mentioned before, eval handles any SQL query, for example a query of
type INSERT:

bs eval {INSERT INTO Persons VALUES ('John','Smith')}

Chapter 5

[193]

In the case of such queries, eval does not return any value, but it can throw an
error. For example, if the presented line were called second time, the PRIMARY KEY
constraint would cause a failure, resulting in:

columns name, surname are not unique
 while executing
"bs eval {INSERT INTO Persons VALUES ('John','Smith')}"

As usual, such Tcl errors can be handled programmatically by using a
catch command.

SQLite's origins in Tcl brings interesting feature—you are able to use Tcl variables
directly in SQL queries:

set a 2
set b 3
set c "1+1"

puts [bs eval {SELECT $a + $b, $c}]

This will output: 5 1+1

When a query is put in curly braces, variables are not expanded by Tcl, but SQLite
is able to map them to Tcl variables—its one of the reasons why SQLite3 is so
popular in the Tcl world.

To close the database, use the close method:

bs close

As a result, the command controlling the database—in this case bs—is also deleted.

Managing databases from SQLiteStudio
SQLite database is so popular among Tcl users that a group of management tools
aimed to facilitate the daily work were created. We would like to present one of
them - SQLiteStudio, created by Pawel Salawa, available at http://sqlitestudio.
one.pl/. Why do we mention this particular tool? It is a free, advanced, GUI based,
cross-platform database manager, written in Tcl and offered in the form of a single
standalone executable binary file (thanks to Starpack technology). What is more,
you can easily download the source code and analyze it. SQLiteStudio offers you
a number of features:

Open an existing database file or create new one
View and modify the structure of a database, for example to add new tables

•
•

Data Storage

[194]

Display and modify (add, delete, edit) data values stored in the database
Work with triggers, views and indexes

For illustration, in the below screenshot the bookstore.db database is loaded into
SQLiteStudio, and data from table Books is displayed:

Other databases
There are of course a lot of other database engines, and the majority of them
have some kind of Tcl bindings—for example Oratcl for Oracle or db2tcl for
DB2. We should also keep in mind that Tcl world has another interesting database
solution—Metakit, described in Chapter 3.

The last thing to mention is that you are also able to use ODBC data sources, by
using tclodbc extension (http://sourceforge.net/projects/tclodbc/). It
is supported for Unix and Windows, and allows you to connect to any database
management system that provides ODBC interface.

Handling XML in Tcl
This section assumes that the reader is familiar with terms like XML,
DOM, SAX, XPath and others related.

•
•

Chapter 5

[195]

Just as with almost every modern programming language, Tcl offers comprehensive
set of tools designed to facilitate the use of the XML standard. Basically Tcl is born
to work with XML, thanks to native support for Unicode encoding. There are a lot
of extensions for handling XML documents, but without a doubt one of the most
important is tDOM (http://www.tdom.org). The power of this extension comes
from the fact it is implemented in C language, therefore it is fast and efficient, with
reasonable memory consumption; the extension supports XPath, XSLT and optional
DTD validation. From a practical point of view it is also easy to get, as it is included
in the ActiveTcl distribution.

The name of this extension clearly indicates that it works as an XML Document
Object Model (DOM) parser. In other words, the document is treated as a tree-like
structure. While we will focus on DOM, it is worth noting that tDOM is also able to
act like an event-driven, SAX parser.

Across this section, we will use the following example XML document that pretends
to define this book:

<?xml version="1.0" encoding="UTF-8"?>
<books>
 <book isbn="978-1-849510-96-7">
 <title>Tcl Network Programming</title>
 <authors>
 <author>Piotr Bełtowski</author>
 <author>Wojciech Kocjan</author>
 </authors>
 </book>
</books>

The document is saved in test.xml file. We do not intend to replicate the
comprehensive tDOM manual available on the website, but rather to give a
taste of using tDOM.

To start working with tDOM, we have to load the package first:

package require tdom

Next it is time to parse the XML document, which will affect the creation of complete
DOM tree in the memory, using the dom parse command:

set channel [open test.xml]
fconfigure $channel -encoding utf-8
set doc [dom parse [read $channel]]
close $channel

Data Storage

[196]

As the test.xml file is encoded in UTF-8, the input channel must be correctly
configured. The basic syntax of the parse command is dom parse $xml, where xml
is the variable that holds the entire xml document. This command is also able to read
directly from the channel (the encoding must still be configured correctly):

set doc [dom parse -channel $channel]

The command returns a Tcl command object (stored in doc) that provides a wide set
of methods allowing interaction with the DOM document object that was created
as a result of the parse action. The methods can be called according to pattern: $doc
methodName ?arg …?

There is a convenient wrapper method tDOM::xmlReadFile that automatically
handles encoding and some often annoying actions such as closing channels. The
previous code sample can be expressed in one line:

set doc [dom parse [tDOM::xmlReadFile open.xml]]

As mentioned before, the DOM object is a tree-like structure, and the basic term is a
node. Essentially, every XML tag in the document will be mapped to a corresponding
node. By calling the appropriate commands on a DOM object (referred via $doc) you
are able to get Node command object(s) that will allow direct interaction with nodes
(again with the appropriate methods set). For example, let's inspect the authors of
the book:

set authors [$doc getElementsByTagName authors]

puts "<authors> has child nodes: [$authors hasChildNodes]"
set author [$authors firstChild]
puts [[$author firstChild] nodeValue]
set author [$author nextSibling]
puts [[$author firstChild] nodeValue]

First, we retrieve all nodes having the name authors. In this case it is only one
element, but more generally the command $doc getElementsByTagName tagName
would return a Tcl list of elements. From this moment $authors refers to the
<authors> node, and we are able to execute on it methods appropriate for nodes:

hasChildNodes returns the boolean value 0 or 1 depending on the whether
the node has child nodes
firstChild returns the first child node of the node the method is executed on
nodeValue returns the value of the node
nextSibling returns the next sibling node to the node the method is
executed on

•

•

•

•

Chapter 5

[197]

It is important to note that the first $author value corresponds to <author>Piotr
Bełtowski</author>, and [$author firstChild] returns a text node from its insides,
which contains the text "Piotr Bełtowski". Knowing all that, it is not a surprise that
the output thus far is:

<authors> has child nodes: 1
Piotr Bełtowski
Wojciech Kocjan

The method nodeValue allows us not only to get the value, but also to set a new one:

[[$authors firstChild] firstChild] nodeValue "John Smith"

To verify that the value has been changed, let's print the authors again but in a
different way:

foreach author [$authors childNodes] {
 puts [[$author firstChild] nodeValue]
}

As expected, the output is:

John Smith

Wo�ciech Koc�an

The method childNodes returns a list of child nodes, so it is made to iterate over it.

The node can be deleted:

[$authors lastChild] delete

So now the list of authors will be shorter:

set authors [$doc selectNodes /books/book/authors]
foreach author [$authors childNodes] {
 puts [[$author firstChild] nodeValue]
}

This time in the command: $doc selectNodes xpathQuery we used XPath
expression /books/book/authors" to address all (in this case there is only one)
<authors> elements.

Data Storage

[198]

Describing the XPath syntax is out of the scope of this book, but for quick
introduction here are some examples:

Xpath expression Result
/ Selects the root node
/tag Selects the root node element(s) "tag"
/tag1/tag2 Selects all "tag2" elements that are direct children of the root node

"tag1" element
//tag Selects all "tag" element no matter of their real position in the

document
/tag/text() Selects the text content from all "tag" root node elements; in this case

the value is returned instead of XML node

For more information visit http://en.wikipedia.org/wiki/XPath or read the
tutorial at http://www.w3schools.com/XPath/xpath_syntax.asp.

The same result can be achieved more easily by directly addressing the appropriate
text nodes:

set authorNames [$doc selectNodes \
/books/book/authors/author/text()]
foreach authorName $authorNames {
 puts [$authorName nodeValue]
}

In both cases, the output is the same:

John Smith

Talking about XPath, its syntax is completely normal, with one remark that square
brackets [] have a special meaning in Tcl, so they have to be escaped correctly.

Thus far we have learned how to modify or remove nodes, so let's add some
new authors:

set element [$doc createElement author]
$element appendChild [$doc createTextNode "Jean-Luc Picard"]
$authors appendChild $element

The method $doc createElement elementName creates an element of the given
name—in this case the name is "author". Next, we create a text node with the content
"Jean-Luc Picard" using $doc createTextNode text method. The text node is
appended to the author element, and the element is finally added as a child
of <authors>.

Chapter 5

[199]

The tDOM package offers many ways to achieve the same result, and for example the
author could be added using much shorter, but not so elegant way:

$authors appendXML "<author>James T. Kirk</author>"

appendXML takes a raw XML string as an input argument, parses it and creates an
appropriate DOM sub-tree that is subsequently merged into the main document tree.

To verify that the authors were added we could again print the list of names, but this
time let's convert entire DOM tree back to an XML document using asXML method:

puts [$doc asXML]

And the result is indeed:

<books>
 <book isbn="978-1-849510-96-7">
 <title>Tcl Network Programming</title>
 <authors>
 <author>John Smith</author>
 <author>Jean-Luc Picard</author>
 <author>James T. Kirk</author>
 </authors>
 </book>
</books>

XML elements do not only have a value, but it also may have attributes. The
corresponding node command object offers the following methods to handle them:

$node attributes—returns the list of all attributes existing for node $node
$node hasAttribute attributeName—returns the Boolean value 0 or 1
depending on whether the attribute of name attributeName exists for
the node $node
$node getAttribute attributeName ?defaultValue?—returns the attribute
value. The command will fail if the attribute does not exist, unless it is
provided with a defaultValue that would be returned in this case.
$node setAttribute attributeName value—sets the new value of the
attribute. This command will create the attribute if it does not already exist.
$node removeAttribute attributeName—removes the attribute.

Knowing this, we can play with book's attributes:

set book [$doc selectNodes /books/book]
if {[$book hasAttribute isbn]} {
 puts [$book getAttribute isbn]
}
puts [$book getAttribute notExisting "attribute not defined!"]
$book setAttribute year 2010

•

•

•

•

•

Data Storage

[200]

First the code will print out the value of the isbn attribute, and then it will attempt
to get the value of the notExisting attribute, resulting in the output:

978-1-849510-96-7

attribute not defined!

Finally, it creates a new year attribute, so puts [$doc asXML] will now write:

<books>
 <book isbn="978-1-849510-96-7" year="2010">
 <title>Tcl Network Programming</title>
 <authors>
 <author>John Smith</author>
 <author>Jean-Luc Picard</author>
 <author>James T. Kirk</author>
 </authors>
 </book>
</books>

Memory conservation may be a goal, particularly in case of large XML documents,
so once we finish working with the DOM document object, we should always delete
it and free the memory it was using:

$doc delete

Until now we were working on an existing XML document, but we already know
how to programmatically create nodes. The following example shows how to build
the text.xml file from the scratch:

package require tdom

set doc [dom createDocument books]
set root [$doc documentElement]
set book [$doc createElement book]
$book setAttribute isbn "978-1-849510-96-7"

set title [$doc createElement title]
$title appendChild [$doc createTextNode "Tcl Network Programming"]
$book appendChild $title

set authors [$doc createElement authors]
$book appendChild $authors
set authorNames [list "Piotr Bełtowski" "Wojciech Kocjan"]

foreach authorName $authorNames {
 set author [$doc createElement author]

Chapter 5

[201]

 $author appendChild [$doc createTextNode $authorName]
 $authors appendChild $author
}

$root appendChild $book
set channel [open test.xml w]
fconfigure $channel -encoding utf-8
$doc asXML -channel $channel
close $channel

The code is pretty self explanatory, similar to parse method, asXML can also produce
output to the channel specified with –channel. While looking at this code sample,
you have probably noticed that it is not too readable when it comes to being able
to quickly determine what the produced XML will be. Luckily, there is far more
legible alternative:

package require tdom

set doc [dom createDocument books]
set root [$doc documentElement]

dom createNodeCmd elementNode book
dom createNodeCmd elementNode title
dom createNodeCmd elementNode authors
dom createNodeCmd elementNode author
dom createNodeCmd textNode text

$root appendFromScript {
 book -isbn "978-1-849510-96-7" {
 title {text "Tcl Network Programming"}
 authors {
 author {text "Piotr Bełtowski"}
 author {text "Wojciech Kocjan"}
 }
}}
puts [$doc asXML]

What we do here is to use dom createNode nodeType commandName command.
As a result, a special Tcl command named after commandName is defined. When
used, such a command will generate a DOM node of type nodeType, named after
commandName. The most common node types are:

elementNode—will create normal DOM node
textNode—will create text node
commentNode—responsible for creating a comment

•

•

•

Data Storage

[202]

The created command cannot be used anywhere in the code, but only in a script
supplied for the $node appendFromScript script method.

The invocation of every created command for element node is simple: it may take
zero or more pairs of attribute names and values (the attribute name may be, but
does not require, preceded by '-' character) and an optional Tcl script that may
create the node's content and must be in the format accepted by appendFromScript
method, as this will be recursively called. Commands generating text or comment
nodes are simpler, as they accept only the text data to be inserted into it.

For example, a call to: author {text "Wojciech Kocjan"} will cause the creation
of a text node, that will be appended as a child of <author> node, resulting in
<author>Wojciech Kocjan</author>.

The result of both code samples described above is identical:

<books>
 <book isbn="978-1-849510-96-7">
 <title>Tcl Network Programming</title>
 <authors>
 <author>Piotr Bełtowski</author>
 <author>Wojciech Kocjan</author>
 </authors>
 </book>
</books>

But the readability of the second example is better, especially when correct
indentation is preserved in appendFromScript script argument.

tDOM is capable of parsing HTML documents (that are often not compliant with XML
specification). To achieve it, use –html option for parse command. For example, the
HTML code for www.google.com in Poland is rather simple:

<HTML><HEAD><meta http-equiv="content-type" content="text/
html;charset=utf-8">
<TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1>
The document has moved
here.
</BODY></HTML>

And using the following code (the http package is described in Chapter 7):

package require tdom
package require http

set html [http::data [http::geturl "http://www.google.com"]]
set doc [dom parse -html $html]
puts [$doc asXML]

Chapter 5

[203]

We are able to parse it, effectively obtaining the following XML document:

<html>
 <head>
 <meta http-equiv="content-type" content="text/
html;charset=utf-8"/>
 <title>302 Moved</title>
 </head>
 <body>
 <h1>302 Moved</h1>

The document has moved
here
.
 </body>
</html>

The attempt to do the same without the –html option would cause an error:

error "mismatched tag" at line 2 character 26
">302 Moved</TITLE></H <--Error-- EAD><BODY>
<H1>302 Moved</H1>
The docum"
 while executing
"dom parse $html"
 invoked from within
"set doc [dom parse $html]"

The functionality of parsing HTML may be really helpful in terms of network
programming—you can easily imagine a situation where you want to grab some
information from a web page. A combination of tDOM and appropriate XPath queries
may work some miracles, while the code will be less than brief. The following
example will display links returned from a search for the 'tDOM' key word using
the Bing search engine:

package require tdom
package require http

set token [http::geturl "http://www.bing.com/search?q=tDOM"]
set html [http::data $token]
http::cleanup $token
set doc [dom parse -html $html]

foreach node [$doc selectNodes //div/h3/a\[@href\]] {
 puts [$node getAttribute href]
}

Data Storage

[204]

And as we expect, the output is:

http://www.tdom.org/

http://tdom.com/

http://www.tdom.org/domDoc.html

http://www.phpclasses.org/browse/package/5690.html

http://packages.qa.debian.org/t/tdom.html

http://acronyms.thefreedictionary.com/TDOM

http://groups.yahoo.com/group/tdom/

http://www.ohloh.net/p/tdom

http://packages.debian.org/tdom

http://packages.debian.org/unstable/interpreters/tdom

As we only outlined the usage of the tDOM package, for more details please consult
the manual (http://www.tdom.org) and freely available examples on the Web,
especially on the Tcl wiki webpage (http://wiki.tcl.tk).

It is worth noting that there is another popular package for processing XML
documents, named TclXML (http://tclxml.sourceforge.net). The functionality it
offers is comparable to tDOM's, some elements of TclXML are written in pure Tcl, and
that may be considered as a merit when it comes to supporting some platforms where
C-based tDOM may not be available. On the other hand, tDOM has key features such as
superior performance and lower memory consumption that can not be overestimated.

Storing raw Tcl values
In some cases, you may decide not to use any additional packages, yet you will need
to save some data for future usage. In Tcl, it is easy to store data structures like lists
or dictionaries in flat text file.

First, let's demonstrate how to write to and read from a list:

set book1 [list {Learning Nagios 3.0} 978-1-847195-18-0]
set book2 [list {Tcl Network Programming} 978-1-849510-96-7]
set books [list $book1 $book2]

puts [lindex [lindex $books end] 0]

set channel [open data.txt w]
puts $channel $books
close $channel

Chapter 5

[205]

set channel [open data.txt r]
set books [read $channel]
close $channel

puts [lindex [lindex $books end] 0]

books variable is a list of two lists, each one containing the title and ISBN number,
respectively. Before saving, we print out the name of the second book. Then, the
$books is written to data.txt file, and in the next lines its contents are read and
stored again into the books variable. It is the unique Tcl feature that allows treating
lists as normal text strings and vice versa, therefore after reading the file we are able
to access the variable in a list-like way and print the same title again, for verification:

Tcl Network Programming
Tcl Network Programming

Next, let's do the same thing, but with a dictionary object:

dict set books book1 title {Learning Nagios 3.0}
dict set books book1 isbn 978-1-847195-18-0
dict set books book2 title {Tcl Network Programming}
dict set books book2 isbn 978-1-849510-96-7

puts [dict get $books book2 title]
set channel [open data2.txt w]
puts $channel $books
close $channel

set channel [open data2.txt r]
set books [read $channel]
close $channel

puts [dict get $books book2 title]

Thanks to Tcl's way of internally treating of structures like lists or dictionaries, no
additional conversion or serialization is required. As you can see, the procedure is
identical, basically puts and read commands handle all the storage issues. In this
case, the output is identical as in previous example:

Tcl Network Programming

Tcl Network Programming

Data Storage

[206]

Limitations
Note that such a way of storing and retrieving data works only with text
information. If you have some other kind of data in your list, for example
handles to objects, its meaning would be lost.
Encoding
We did not mention encoding in this section, it will not be necessary if
you are using only one platform. If you are aiming for cross platform
portability, we recommend the following configuration of the channel:
fconfigure $channel -translation lf -encoding binary

Another option is to set encoding to utf-8, which will preserve all
Unicode data as well as binary data. For example:
fconfigure $channel -translation lf -encoding utf-8

Summary
After this chapter, topics related to text data storage and processing should not be a
mystery for you any more. In particular, you have learned:

How to handle different text encoding, dependent on the region you live in,
and how to create a multi-language, internationalized application with
msgcat package.
How to work with SQL databases based on the example of MySQL and
PostgreSQL. We learned how to access these databases, then we focused on
SQLite, as it is a particularly interesting solution, thanks to its ease of use and
the powerful features it offers.
At the end, the last important topic was covered—how to work with XML
data in terms of Tcl language. We presented how to parse and access
information of your choice from an XML document, thanks to the tDOM
package. Next, we also mentioned how to create such a document from
the scratch, and additionally, how to use tdom to access HTML data.

All the chapters up to this moment constitute solid base for the main objective of
the book—network programming in Tcl. The next and all remaining chapters
are directly related to this topic, gradually introducing you to more advanced
networking concepts.

•

•

•

Networking in Tcl
This chapter covers fundamental topics related to networking in the Tcl language,
with a focus on the TCP and UDP protocols. It outlines the basic abilities offered by
Tcl, and the following chapters will gradually approach more advanced topics. The
entire subject is far too extensive to be described in one book. We assume the reader
has basic knowledge of these protocols and IP networking in general, and is familiar
with core concepts such as client, server, peer, connection, and other similar ones.

The importance of network programming cannot be underestimated nowadays.
Even if your application does not interact with the network directly, there is a set of
tasks or features such as checking the online availability of the updates that implies
the 'network awareness' of your software. The programming language you are going
to use to develop this software should allow the handling of network operations in
an easy and convenient fashion, and yes, Tcl is such a language, as it fits in well with
the Internet philosophy.

In general, reading or writing from/to a file and sending/receiving data over/
from the network are similar concepts, because of the universal abstract concept of
channels. When you open a file in Tcl, you operate on the channel leading to that
file—you read data from that channel, and write to that channel. When you open a
TCP connection to the server, you also get a channel that is essentially identical in
usage; you can also read from and write to it. Moreover, for all types of channels,
you use the same set of commands such as puts, gets or read. This is the beauty
of the Tcl architecture that makes networking so simple.

Of course, some differences must occur, as the underlying devices are significantly
different between a file on the disk and the connection over a network. This chapter
is going to present how to deal with such network communication.

Networking in Tcl

[208]

In this chapter, we will learn about:

Tcl native support for TCP—starting from most basic usage, more advanced
items like nonblocking sockets along with event programming are presented.
A separate section is dedicated to issues related to correct error handling,
because in case of network communication, such situations are not rare.
Finally, networking using threads is discussed.
Programming based on UDP protocol is presented on the basis of the TclUDP
package. You will be able to get acquainted with both its similarities to
and its differences from TCP programming, with the focus on avoiding
possible pitfalls.

This chapter contains simple yet practical examples that not only illustrate the
presented topics, but also form a good starting ground for further implementation
of the network-related part of your application. As usual, we strongly encourage
the reader not to settle for these examples, but to actively search for more examples
over the Internet and write his/her own, as this is the best practical way to gain
experience about the topic.

We will focus on the TCP and UDP protocols, but the Tcl architecture makes it
extremely easy to operate on any protocol thanks to the ease with which it can be
extended by additional packages. Support for UDP is a good example here, because
it is provided by an external extension named TclUDP. By default, only TCP handling
is built into the core of the Tcl interpreter.

Using TCP sockets
TCP communication forms the basis of modern networking, so it is no surprise that
we will start with it. The basic Tcl command to use in this topic is socket, and it
is built into the Tcl interpreter core. A socket is an abstract term representing the
endpoint of a bidirectional connection across the network. In this chapter, we will
often use the terms socket and channel interchangeably, although the channel term
is more general (not every channel is a socket, but every socket is a channel). We
do this because the execution of socket will result in using channels—the effect of
executing this command is usually opening the connection over the TCP protocol
(socket supports only TCP) and returning a channel identifier, which may be
used for sending or receiving data through that newly created channel, in terms of
commands like read or puts. The command may be used in two flavors in order
to create client-side or server-side sockets.

•

•

Chapter 6

[209]

Client sockets serve as the connection opened from a client application to a server
of your choice. On the contrary, a server socket does not connect to anything by
itself, its primary task is to listen for incoming connections. Such connections will be
accepted automatically, and a new channel will be created for each of them, enabling
communication to each of the connecting clients.

Let's explain the details of TCP networking based on simple, yet working example
code consisting of two parts: a server and a client.

Creating server sockets
First look at the server code stored in the server.tcl file:

socket -server serverProc 9876
puts "server started and waiting for connections..."

proc serverProc {channelId clientAddress clientPort} {
 puts "connection accepted from $clientAddress:$clientPort"
 puts "server socket details: [fconfigure $channelId -sockname]"
 puts "peer socket details: [fconfigure $channelId -peername]"
 after 5000 set cont 1; vwait cont

 puts $channelId "thank you for connecting to our server!"
 close $channelId
}
vwait forever

To create the listening socket, you have to use the socket command in the
following format:

socket –server procedureName ?options? port

The last argument is the value of the port on which the server will listen for
connections. Throughout this chapter, the value 9876 will be used. Before this value,
you can use optional parameters. To be more specific, only one option is available:
-myaddr address, and it can be used if the computer where you run your server
program has more than one IP interface, so you can specify on which IP address
the server should accept connections.

The first parameter is the name of the command that will be called once a new
connection is established. In our example, this procedure is called serverProc. The
procedure has to accept three arguments: the identifier of the channel which can be
used to send or receive data to/from the client program, the client IP address, and
the port.

Networking in Tcl

[210]

The procedure serverProc first prints out some details about the client—its IP
address and port. Next, it prints information about the server and client sockets,
illustrating the usage of fconfigure command (described later in this paragraph).
After this, some time-consuming data processing is simulated, by forcing the
execution to be suspended for 5 seconds. After that time, it writes a 'thank you'
message to the channel, effectively sending it to the client and closing the channel
(and thereby, a TCP network connection).

The server socket will listen for the connection only when the Tcl event loop is
enabled (otherwise, the the program would end), so the last line enters the event
loop with the vwait forever command.

The typical output produced by that code is:
c:\tcl_book\chapter6\TCPsockets\firstExample>tclsh85 server.tcl

server started and waiting for connections...

connection accepted from 127.0.0.1:1234

server socket details: 127.0.0.1 localhost 9876

peer socket details: 127.0.0.1 localhost 1234

As you can see, the server socket details returned by fconfigure $channelId –
sockname reflect the actual configuration of that socket.

Note that the port from which client connection comes is generally random. In this
case it was forced to 1234, however. You can also see that both the server and client
were executed on the same machine, effectively using 127.0.0.1 as the IP address.

Connecting over TCP
The client code, saved in client.tcl file, is as follows:

set serverChannel [socket –myport 1234 localhost 9876]
set startTime [clock seconds]
puts "client socket details: [fconfigure $serverChannel -sockname]"
puts "peer socket details: [fconfigure $serverChannel -peername]"
puts [read $serverChannel]
puts "execution has been blocked for [expr [clock seconds] -
$startTime] seconds"
close $serverChannel

Chapter 6

[211]

First let's present the output produced by this client code:
c:\tcl_book\chapter6\TCPsockets\firstExample >tclsh85 client.tcl

client socket details: 127.0.0.1 localhost 1234

peer socket details: 127.0.0.1 localhost 9876

thank you for connecting to our server!

execution has been blocked for 5 seconds

What happens in the client code is that in the first line we create a TCP connection
towards the localhost:9876 socket and save the channel reference in the
serverChannel variable. We also store the current time (expressed in seconds) to
calculate how long we had to wait for the answer from the server. The code prints
out some details about the connection. In general, fconfigure allows us to get/set
various options for a channel. As the types of channels may be very different (the
vs.network file), at first glance, the task seems to be impossible. The beauty of this
command is that although it operates on an abstract term of channels, depending
on the underlying type, it supports a wide set of options. In the case of network
channels, the command has new configuration options:

-sockname—returns the details about the 'closer' end of the connection, that
is about the socket used by the client: the IP address, the name of the host,
and the number of the port. The data is returned as a three-element list. In
this example, the client connects to the server from the port 1234, because this
value was forced along with the –myport option for the socket command.
In general, if this option is omitted, its value would be randomly chosen by
the operating system.
-peername—similar to previous option, but the data returned is related to
second end of the connection. We can see that we are indeed connected to port
9876, the same one where the server is listening for connections. This option
can not be used on the channel identifier returned directly by the socket
–server command, as it is not connected to anything and cannot be used
to send or receive any data—it will only listen for incoming connections.
-error—returns the current error status for the connection. If there is no
error, an empty string is returned.

Next, we read data from the network connection as we would do for any other type
of channel—in this case, using the read command. This command reads all the
data until the end-of-file marker (in this case, caused by close $channelId being
executed on the server's side).

As we know, the server waits for 5 seconds before sending any answer. This
effectively causes blocking of the entire client application, because execution
hangs at the read command waiting for the data. In many cases such a behavior
is unacceptable; therefore an alternative was introduced—nonblocking sockets.

•

•

•

Networking in Tcl

[212]

Using nonblocking sockets
The concept of a nonblocking socket is rather simple—instead of executing the
command that would wait for (and therefore block), and eventually read the data,
you just register a procedure that should be called when there is some data to be read
(in other words, when the channel becomes readable). It is the duty of the underlying
nonblocking I/O subsystem to call this procedure. The advantages are obvious—your
code does not block, is more responsive (which is crucial in the case of GUI-based
applications) and may do some other work in the meantime. It can also handle
multiple connections at the same time. As for the drawbacks, the code may become
a bit more complicated, but this is not something you could not handle.

First, let's modify the server code a little:

socket -server serverProc 9876
puts "server started and waiting for connections..."

proc serverProc {channelId clientAddress clientPort} {
 after 5000 set cont 1; vwait cont

 puts -nonewline $channelId "12345"
 flush $channelId
 after 5000 set cont 1; vwait cont
 puts $channelId "6789"
 flush $channelId
 after 5000 set cont 1; vwait cont
 puts $channelId "thank you for connecting to our server!"
 close $channelId
}
vwait forever

Now it returns 2 lines, wherein the first line is produced in two phases—first it sends
12345, but without the end-of-line character (the -nonewline option for puts), and
after 5 seconds, the rest of line 6789. Following that it sends the line identical to the
earlier one (also without the newline character), and closes the connection. Each time,
the flush command is executed to make sure the data is sent—otherwise, the data
could be buffered. Effectively, it takes 15 seconds to finish sending the data, and we
would like to have client code that will not be blocked for that long.

The following is the client-side code that will not be blocked, due to usage of
event programming:

set serverChannel [socket -async localhost 9876]
fconfigure $serverChannel -blocking 0
fileevent $serverChannel readable [list readData $serverChannel]

Chapter 6

[213]

proc readData {serverChannel} {
 global end
 set startTime [clock seconds]
 set data [read $serverChannel]
 if {[eof $serverChannel]} {
 close $serverChannel
 set end 1
 break
 }
 puts "read: $data"
 puts "execution has been blocked for [expr [clock seconds] -
 $startTime] seconds"

}
vwait end

The first line is almost identical to that of the previous example, with the difference
that the –async option is used. This option causes the socket command to not wait
until the connection is established, and to exit immediately. This may matter in the
case of slow, overloaded networks.

The next line causes the channel to be switched from the default blocking mode to
nonblocking. In this mode, the command operating on this channel will not block—for
example read will return only the data that is available at the moment in the input
buffer, without waiting for the "end of the file" notification. The nonblocking mode
will only make sense when Tcl enters the event loop, which is why the last line calls
vwait end, effectively causing the interpreter to wait until the end variable is written.

Handling channel events
Once we know that reading commands will not wait for data, there must be another
way to cause the client to react once the data is available. The fileevent command
is useful for achieving this. By using this command, you can have your code
executed only when some event related to the channel occurs. The command
accepts the following as parameters:

The channel identifier
writable or readable, corresponding to the appropriate event
The code to execute once that event has occurred:

fileevent $serverChannel readable [list readData $serverChannel]

•

•

•

Networking in Tcl

[214]

For example, the preceding code causes the readData command to be executed
always when the channel becomes readable, that is, when there is some data to be
read from it.

Handling the writable event is important when creating the socket with the –async
option. As mentioned before, the socket command will end immediately, and the
socket creation may be delayed (due to some network operations). Therefore, once it
is ready to transmit your data, you will be notified with that event.

The readData command reads the data using the read command, calculates the time
spent on this task, and if the channel was closed, also correctly closes this side of the
channel and sets the end variable to 1, which causes the client code to leave the event
loop and end as a result.

The closure of the channel is detected using the eof command—eof $serverChannel
returns 1 if the end of file event occurred during the most recently read operation on
the channel.

The output from this client-side code is:

c:\tcl_book\chapter6\TCPsockets\firstExample>tclsh85 client_async1.tcl

read: 12345

execution has been blocked for 0 seconds

read: 6789

execution has been blocked for 0 seconds

read: thank you for connecting to our server!

execution has been blocked for 0 seconds

What we have achieved is that there is no single line in the code which would block
waiting for any network connection related event. The output clearly illustrates that
read does not block, but returns any data that came from the server.

More interesting is the behavior of the gets command. As we know, this command
reads the entire line from the channel or the blocks. In nonblocking mode, when
there is data available for reading, but it does not constitute the full line, gets will
return an empty string without removing this data from the input buffer. Let's
modify the readData procedure slightly:

proc readData {serverChannel} {
 global end
 puts "noOfChars: [gets $serverChannel data]"
 puts "fblocked: [fblocked $serverChannel]"
 puts "eof: [eof $serverChannel]"

Chapter 6

[215]

 if {![fblocked $serverChannel]} {
 if {[eof $serverChannel]} {
 close $serverChannel
 set end 1
 break
 }
 puts "read: $data"
 }

}

We have removed the time calculations and replaced read with gets. The procedure
also introduces us to the fblocked command. The command returns 1 in case there is
some data to read from the channel, but it is not sufficient for the reading command.
The typical example is just gets, which attempts to read the entire line, and when
only the characters 12345 without newline character at the end are available, the gets
command will read an empty string and return -1 as the read character count, leaving
the data in the buffer, and causing fblocked to report properly.

c:\tcl_book\chapter6\TCPsockets\firstExample>tclsh85 client_async2.tcl

noOfChars: -1

fblocked: 1

eof: 0

noOfChars: 9

fblocked: 0

eof: 0

read: 123456789

noOfChars: 39

fblocked: 0

eof: 0

read: thank you for connecting to our server!

noOfChars: -1

fblocked: 0

eof: 1

Detecting the end of transmission may be a little tricky. In the current example, the
server at the end sends the entire line (with the newline character at the end), so gets
is able to read it properly. Following that, the channel is closed, resulting in another
execution of the readData procedure on the client's side. This time gets also returns
-1 as the number of characters read, but the channel is not blocked, and eof indicates
that the connection is terminated.

Networking in Tcl

[216]

So far so good, but what if the server sends the last line without the newline marker:

 puts -nonewline $channelId "thank you for connecting to our
server!"
 flush $channelId
 close $channelId

In this case, the client would get the following:

c:\tcl_book\chapter6\TCPsockets\firstExample>tclsh85 client_async2.tcl

noOfChars: -1

fblocked: 1

eof: 0

noOfChars: 9

fblocked: 0

eof: 0

read: 123456789

noOfChars: -1

fblocked: 1

eof: 0

noOfChars: 39

fblocked: 0

eof: 1

As you can see, the last call to gets resulted in 39 characters of data being read.
However, in parallel, it caused eof to report 1, effectively causing the read data
to be discarded. This allows a mistake in the logic of the readData function, which
checks for the end of file first. A better design would include checking if gets
returns a value other than -1:

proc readData {serverChannel} {
 global end
 set noOfChars [gets $serverChannel data]
 puts "noOfChars: $noOfChars"
 puts "fblocked: [fblocked $serverChannel]"
 puts "eof: [eof $serverChannel]"
 if {![fblocked $serverChannel]} {
 if {$noOfChars!=-1} {
 puts "read: $data"
 }
 if {[eof $serverChannel]} {

Chapter 6

[217]

 close $serverChannel
 set end 1
 break
 }
 }
}

This makes the usage of fblocked redundant, because gets returns -1 also when it
was unable to read the entire line. Finally, the procedure would look like:

proc readData {serverChannel} {
 global end
 set noOfChars [gets $serverChannel data]
 if {$noOfChars!=-1} {
 puts "read: $data"
 }
 if {[eof $serverChannel]} {
 close $serverChannel
 set end 1
 break
 }
}

Transferring binary data
Up until this moment, we have been sending text data without paying attention
to the formatting. When network communication occurs between potentially
heterogenic systems, this subject must be considered more carefully. Let's illustrate
these concepts using the example of uploading files to the server. For the sake of
simplicity, the communication will be one way only, and for every file the following
information will be sent:

The file name encoded in UTF-8
The size of the file
The binary content of the file

The protocol we have just proposed allows you to send any number of files using
a single TCP connection. On the server side, the uploaded files will be stored in the
uploaded directory.

•

•

•

Networking in Tcl

[218]

Firstly, let's look at the client-side code:

set serverChannel [socket -async 127.0.0.1 9876]

fconfigure $serverChannel -blocking 0
fileevent $serverChannel writable [list socketWritable $serverChannel]

set end 0

set files [list tcl_logo.gif Tcl.png]

proc socketWritable {serverChannel} {
 variable files
 variable end
 if {[llength $files]!=0} {
 set fileName [lindex $files 0]
 set files [lreplace $files 0 0]
 uploadFile $fileName $serverChannel
 } else {
 close $serverChannel
 set end 1
 }

}

proc uploadFile {fileName serverChannel} {
 fconfigure $serverChannel -encoding utf-8
 fconfigure $serverChannel -translation auto
 fileevent $serverChannel writable ""
 set fileSize [file size $fileName]
 puts "uploading file $fileName of size $fileSize"
 puts $serverChannel $fileName
 puts $serverChannel $fileSize
 set fileInput [open $fileName r]
 fconfigure $fileInput -translation binary
 fconfigure $serverChannel -translation binary
 fcopy $fileInput $serverChannel -size $fileSize \
 -command [list fileUploaded $fileInput $serverChannel]
}

Chapter 6

[219]

proc fileUploaded {fileInput serverChannel size} {
 puts "the file was successfully uploaded"
 close $fileInput
 fileevent $serverChannel writable \
 [list socketWritable $serverChannel]
}

vwait end

In this case, we are uploading two graphical files, both containing the Tcl logo (taken
from http://www.demailly.com/tcl/about/logos.html and from Wikipedia
respectively). The names of these files are stored in files list.

Every time the TCP channel opened to the server becomes writable, the
socketWritable procedure is called. If there are any files on the list to be sent,
the procedure pops the first element from the files list and calls the uploadFile
procedure; otherwise, it closes the connection and writes the end variable, effectively
causing the client code to exit the event loop and terminate.

The uploadFile procedure first configures the data encoding for the channel. As
usual, fconfigure is used to set two new options: -encoding (described in detail in
Chapter 5, Data Storage) and -translation. The second option is related to the fact
that—for historical reasons—on various platforms newline characters are presented
differently. Internally, Tcl always stores the newline indicator as a single LF (line feed,
the ASCII code 0x0A), just as on Unix systems. However, on other systems, the
following combinations are used:

CRLF on Windows and DOS
CR on Mac OS

CR is the carriage return character, coded as 0x0D.

For every read or written newline character, Tcl will convert it from/to the form
specified by the channel configuration. The valid values for –translation are:

cr, crlf, or lf—corresponds to the appropriate combinations of CR, CRLF,
or LF characters respectively.
auto—the format is chosen automatically depending on the underlying
platform where the script is executed. This is the default value of the
translation mode.
binary—the translation of newline characters is disabled, and the channel
encoding is set to binary, that is, any additional character conversions are
disabled. This mode is extremely important when you are sending binary
data, which could be easily damaged by the unnecessary conversion.

•

•

•

•

•

Networking in Tcl

[220]

It is worth noting that fconfigure allows separate configuration of the input and
output modes by specifying two values. The configuration of the channel encoding
or translation can be modified dynamically at any time. We will use this later to set
the socket channel to binary mode after the filename and size have been sent, but
before the file data is sent.

In our example, we set the translation mode to lf, so effectively, no translation will
occur, because this is the way Tcl stores newline characters. The encoding is set to
UTF-8.

Following this, file events for the network channel are temporarily disabled, and the
filename and size are sent to the server, both as the separate lines (no –nonewline
option for puts).

Transferring data using the fcopy command
To copy the content of the file, a handy command called fcopy will be used,
which copies data from an input channel to an output channel. The format
of the command follows:

fcopy inputChannel outputChannel ?-size numberOfBytes? ?-command
commandName?

By default, the command will copy the data until end of file occurs, but this behavior
can be altered by specifying the –size parameter—in this case, the command will
copy only a numberOfBytes.

Normally, the command would block until the copying operation is completed,
but in case the –command parameter is used, it will end immediately and the
commandName command will be called once the data is copied.

In our example, we are using both options: we copy only the exact amount of bytes,
that is, the size of the file, and on completion, the fileUploaded procedure will
be called. The input channel allows us to read data from the file (returned by the
open command). The output is the TCP channel to the server. Both channels are
configured as binary at the moment.

During the fcopy operation, no other input/output operations are allowed on the
involved channels, which is why we disabled the writable events earlier.

Once the file content is sent to the server using the TCP socket channel, the
fileUploaded procedure closes the file channel and restores the handling of
the writable events, allowing the repetition of the entire operation for the next
filename in the list.

Chapter 6

[221]

The server code that is able to understand the protocol described is:

socket -server serverProc 9876

proc serverProc {channelId clientAddress clientPort} {
 while {true} {
 fconfigure $channelId -encoding utf-8
 fconfigure $channelId -translation lf
 set fileName [gets $channelId]
 set fileSize [gets $channelId]
 if {[eof $channelId]} {
 puts "end of transmission"
 break
 }
 puts "incoming file $fileName of size $fileSize"
 set fileOutput [open "uploads/$fileName" w]
 fconfigure $fileOutput -translation binary
 fconfigure $channelId -translation binary
 fcopy $channelId $fileOutput -size $fileSize
 puts "file copied"
 close $fileOutput
 }
 close $channelId
}
vwait forever

All server logic is contained in the serverProc procedure. The server is designed to
accept transmission of multiple files, so it enters an "infinitive" loop (while {true}).
In each iteration, the channel is first configured to read text data from it. Then the
name and size of file that is about to be uploaded are read. If any of these operations
encounter the end of the file, the loop will be ended by calling the break command.

Following that, the file output channel is opened (all the incoming files will be stored
in the uploads directory), and both this and the network channel are set to binary
mode. Then the job of copying the data is done by the fcopy command, this time
working in the blocking mode, because the –command parameter was not specified.
Finally, the iteration ends with closure of the file.

If you exit the loop, the network channel will be closed and the serverProc
procedure terminated.

Networking in Tcl

[222]

The result of running the described example is illustrated in the following screenshot:

Handling errors
Network operations are especially vulnerable to various kinds of errors, so if
you wish to create reliable application, proper handling of such a situation is
indispensable. The basis of this is appropriate reaction to a writable event. The
issue is that the channel is considered writable not only when it is possible to write
to it, but also if some error occurred on the underlying device/file. Once an error
occurs, your script will get a bunch of writable events to handle. Therefore, the proper
implementation of the handler command must check the error condition, using the
fconfigure $socket –error command.

Let's discuss error related issues using the following example:

if {[catch {
 set serverChannel [socket -async somehostname.com 9876]
} e]} {
 puts $e
 exit 1
}
fconfigure $serverChannel -blocking 0
fileevent $serverChannel writable [list socketWritable $serverChannel]
fileevent $serverChannel readable [list socketReadable $serverChannel]

Chapter 6

[223]

set timer [after 5000 [list timeout $serverChannel]]

proc timeout {serverChannel} {
 fileevent $serverChannel writable ""
 catch {close $serverChannel}
 puts "custom timeout"
}

proc socketWritable {serverChannel} {
 variable timer
 set error [fconfigure $serverChannel -error]

 switch $error {
 "connection timed out" -
 "connection refused"
 {
 after cancel $timer
 catch {close $serverChannel}
 }
 ""
 {
 puts "all OK"
 after cancel $timer
 }
 default
 {
 puts $error
}
 }
}

proc socketReadable {serverChannel} {
 set error [fconfigure $serverChannel -error]
 if {$error == ""} {
 catch {gets $serverChannel}
 if {[eof $serverChannel]} {
 puts "the remote peer closed the connection"
 catch {close $serverChannel}
 }
 }
}

vwait forever

Networking in Tcl

[224]

The socket command may throw an error—for example, if the specified target
host domain name is invalid. In order to handle it properly, the catch command
must be used.

Another important issue is timeouts. The network may be slow, or the target server
may be unresponsive. If you do not want to rely on system defaults, there is no other
way to specify your user-defined timeout value in Tcl. However, a little trick with
after may be used. In our example, we decided that we would like to terminate it
5 seconds after the initial attempt to connect—the timeout procedure was executed
to do so. First, we need to unregister ourselves from any new writable events and
then close the channel. Note that the closing operation may also throw some errors
(for example, the channel may already have been closed), so it is good practice to
wrap it into catch. The same applies to commands such as gets or puts. So that
we can cancel the timer in case the connection is successful, we store it in the
$timer variable.

Once the writable event occurs, the socketWritable procedure is called. First, the
current error status of the $serverChannel socket is retrieved by calling fconfigure
$serverChannel –error, and then it's stored in the $error variable. If there is no
error, an empty string is returned, and in the consecutive switch block, the "all OK"
message is printed and the timeout timer is cancelled. If the returned string is not
empty, it means that some error occurred, for example:

Connection refused—the server refused the connection
Connection timed out—the system-defined timeout has occurred

In case of these errors, the timer is cancelled and the channel closed manually. For
any other non-empty error messages, the script (default section) will simply print
out the error message, but of course, the appropriate clean-up actions can also be
done here.

The other important situation is detecting that the remote peer has closed the
connection. This case can only be handled in the procedure called for readable
events—socketReadable in this example. This procedure first checks for errors,
just as socketWritable does. Following that, some input operation must be called
(in this case, gets), because without it, the eof command would not notify that the
EOF state occurred, as mentioned earlier,. Once it is detected, the channel is closed.
Note that any concurrent puts $serverChannel operations will throw an error if the
channel was closed, so this should also be handled properly with a catch.

•

•

Chapter 6

[225]

The following table sums up the most common issues along with the ways of
detecting them:

Issue Detection
Initial connecting issues •	 socket may throw errors (for example, when the specified

port is already being used by another application)
•	 writable event along with appropriate error information

from fconfigure -error
Peer disconnected Detectable only in the readable event handler using eof
Transmission errors Handled transparently by the TCP protocol

Buffering
When you are working with channels of various types, and especially the network
type, all modern programming languages take advantage of buffering techniques
that increase performance and make I/O operations more effective. As already
mentioned in Chapter 2, Advanced Tcl features, Tcl is no exception. From the sender's
point of view, the buffering is an automated process, where the data written with
a puts command is not sent over the channel immediately, but rather gathered in
internal memory (buffer) and transmitted in bulk, making the communication
more effective. Each channel has its own buffer.

Basically, there are two commands allowing direct interaction with output buffers.
The first is fconfigure with appropriate options—it allows either buffering
configuration or reading of the existing parameters (assuming that $channel
is a valid channel handle):

fconfigure $channel –buffering mode—allows you to set the buffering for
$channel in one of the following modes:

full—the data will be stored in the buffer until it is
completely full (or until the flush command is executed) and
then sent to the channel
line—the data is flushed (sent) any time the newline
character occurs in input data
none—the data is flushed automatically after each
output operation
If the mode is omitted, the command will return the actual
value of the buffering mode.

fconfigure $channel –buffersize size—allows you to define the size of
the buffer, between ten bytes and one million bytes. Returns the current size
if the last parameter is omitted.

•

°

°

°

°

•

Networking in Tcl

[226]

In many cases of network programming, you would like the data to be sent right
after you write it to the channel, so the none mode is useful here. All the more, it
helps beginners to avoid some confusion—they may start writing networking code
and may spend a considerable amount of time wondering why the data is not sent
immediately or received in bulk different from those defined by the sender. Unless
performance becomes an issue, setting buffering to none may be considered to be
the best option.

The second command is flush $channel, and the result of calling it is a dump of
the data stored in the buffer directly to the channel represented by the $channel
handle. The command will block if the channel is in the blocking mode, until the
data is transmitted.

Using threads for networking
Many languages focus on blocking the network model and using threads to
handle each connection individually. Tcl also allows this model, using threads and
transferring channels between threads. This concept was introduced in Chapter 2.

Using threads provides the benefit of being easier to write. However, it consumes
more resources and makes it more difficult to provide scalability to a high number
of simultaneous connections.

However, in some cases, it is a good idea to use this model for network connections
in Tcl. One example can be when operations related to each connection can be blocked
for a long period of time and/or a large amount of data processing needs to occur.
Using threads allows one blocking operation not to block other ones from being
completed and allows us to take advantage of newer CPUs that offer multiple cores,
which can be more effective for data computations. As each thread or process can
only use up one core of a processor, using multiple threads will allow us to perform
calculations on multiple cores and/or processors.

Using threads and thread pools
For the purpose of this book, we'll create an example that uses threads and Tcl's
thread pool. We'll use the thread pool to process requests from clients. Thread pools
allow us to run commands within separated threads. It passes the specified job to
the first available thread or spawns a new thread if it is needed. Jobs are specified as
Tcl scripts to be run, so it is intuitive to use them. We also provide initialization and
clean-up scripts for the thread.

Chapter 6

[227]

The requests that the clients send will be read from the main thread and once read,
the request itself along with the channel is passed to child thread, which handles the
request and sends back the response. This optimizes how child threads are used—we
do not need to make a thread wait until all data is readable, but instead use a single
thread for reading all the incoming data.

The request is sent in such a way that a line indicating the number of bytes to read,
as plaintext, is sent first and is followed by the specified number of bytes of the
request itself.

Let's start with creating the server. We'll need to set up our namespace and load the
Thread package first:

package require Thread

namespace eval tpserver {}

Next we'll set up a new thread pool. We use the command tpool::create for
this purpose, which returns the new thread pool's identifier. We store it in
tpserver::tpool variable for later use.

set tpserver::tpool [tpool::create \
 -initcmd [list source server-threads.tcl]]

Several options can be passed to the tpool::create command. The options
-initcmd and -exitcmd specify commands that will be run in the new thread after
it is created and before it is deleted accordingly. The options -minworkers and
-maxworkers define how many threads should be running, and their values default
to 0 and 4 accordingly. This means that, at most, four threads will be used and no
thread will be created if not required. The -idletime option specifies a time
(in seconds) after which a thread is terminated if it is not used. If not specified,
threads are deleted as soon as they have no jobs to perform.

For this example, we specify a command to run to initialize the thread and use
the default values for the remaining options. Child threads that will be used for
operations will need to have their own code, which is responsible for handling
requests. We have the thread source file called server-threads.tcl, which
contains the code to run and respond to requests.

We now need to write the code for handling incoming connections. This code will
be running in the main thread and will read the request using events. After reading
the request, we'll add a job to the thread pool.

Networking in Tcl

[228]

We start by setting the channel to the nonblocking mode and set up automatic
translation of newline characters. We also set up a readable event so that
whenever anything is sent, the command is run:

proc tpserver::accept {chan args} {
 fconfigure $chan -buffering none -blocking 0 \
 -translation auto

 fileevent $chan readable \
 [list tpserver::readInfo $chan]
}

We'll then execute the command for reading the first line that specifies number
of bytes. We check if the end of file has been received first. If so, we will close
the channel and exit.

proc tpserver::readInfo {chan} {
 if {[eof $chan]} {
 catch {close $chan}
 return
 }

Following that, we try to read the line. If a complete line is not available, the gets
command will return -1 and we'll wait for next readable event.

 if {[gets $chan line] < 0} {
 return
 }

In the next step we try to remove all the whitespace around the number of bytes and
check if it is a valid integer. If not, we close the channel immediately and return.

 set bytes [string trim $line " \r\n"]
 if {![string is integer -strict $bytes]} {
 catch {close $chan}
 return
 }

After getting a valid number of bytes to read, we convert the channel into binary
mode and set up a new readable event, which will read the specified amount
of bytes.

 fconfigure $chan -translation binary

 fileevent $chan readable \
 [list tpserver::readData $chan $bytes ""]
}

Chapter 6

[229]

The command for reading data accepts the number of bytes left to be read and the
data read so far. For the initial event, we'll set up the specified number of bytes and
empty the buffer. The subsequent events will be set up with data read so far until the
specified number of bytes has been read.

The command to read data also begins by checking if the end of the file has
been reached:

proc tpserver::readData {chan numBytes data} {
 if {[eof $chan]} {
 catch {close $chan}
 return
 }

Next we try to read data from the channel. If that fails, we close the channel
immediately and return.

 if {[catch {
 set d [read $chan $numBytes]
 }]} {
 catch {close $chan}
 return
 }

Following that, we append the data that was read to the buffer and calculate the new
number of bytes remaining—by taking the difference between the number of bytes
read now and the previous value.

 append data $d
 set numBytes [expr {$numBytes - [string length $d]}]

If we have read the entire request, we remove the readable event and invoke the
command to handle the request:

 if {$numBytes <= 0} {
 fileevent $chan readable [list]
 tpserver::handleRequest $chan $data
 } else {

Otherwise, we set up a new readable event with the current data buffer and the
remaining number of bytes to read:

 fileevent $chan readable \
 [list tpserver::readData $chan $numBytes $data]
 }
}

Networking in Tcl

[230]

When a complete request has been read, we will use the thread pool to deploy it. We
first invoke the tls::detach command, which detaches a channel from the current
thread. After this command, the current thread can no longer access the channel.

proc tpserver::handleRequest {chan data} {
 variable tpool

 thread::detach $chan

We then post a new job to be performed in the thread pool—the command to handle
the response to a request along with request already read. We specify the channel
to use and the request.

 tpool::post -nowait -detached $tpool \
 [list tpserver::respond $chan $data]
}

After that, this connection is handled by one of the threads in the thread pool.

Finally, we need to set up a listening connection to accept the requests:

socket -server tpserver::accept 12345

We now need to set up the server-threads.tcl file that handles responding
to the requests.

We'll start by creating the respond command. It needs to attach to the channel using
the tls::attach command. After running this command, the specified channel can
be used like any other channel in this thread.

proc tpserver::respond {chan data} {
 thread::attach $chan

We will then run the command to handle the response and catch any potential
errors. If the command does not fail, the result variable will store the value
returned by the respondHandle command. If there are any errors, result will
store the error information.

 set c [catch {
 respondHandle $data
 } result]

In the next step, we try to send the results as a list of two elements—the result from
the catch command and the result or error, depending on value of the c variable.

 catch {
 puts -nonewline $chan [list $c $result]
 flush $chan
 }

Chapter 6

[231]

We wrap writing output in a catch command because the write might fail, either
because the client has already closed the channel or because of network issues.

Finally, we try to close the channel:
 catch {close $chan}
}

We then need to write the command that handles the request itself.
proc tpserver::respondHandle {data} {
 return [eval $data]
}

While the respondHandle command can perform any action, for the purpose of this
example, it simply evaluates the Tcl code sent by a remote peer.

Finally, we need to create a client that will allow us to send a command to any
host and port, and will allow us to specify a callback to be run whenever results
are available.

Connecting to our service
We'll start by creating a namespace for our client.

namespace eval tpclient {}

Following that, we'll create the command to send a request to the server. It accepts
the host and the port, the request and callback data to invoke when results are
retrieved, or if sending the request fails.

The callback will be run with two additional arguments specified—whether an
error was encountered (true indicating an error and false indicating a successful
request), followed by either error information or the result from the server.

We start by trying to open a TCP connection to a remote system and setup a channel
for sending binary data:

proc tpclient::sendRequest {host port data callback} {
 if {[catch {
 set chan [socket $host $port]
 fconfigure $chan -blocking 0 -buffering none \
 -translation binary

Then we send the request by sending the length of the request followed by the
request itself:

 puts -nonewline $chan \
 "[string length $data]\n$data"

Networking in Tcl

[232]

Finally, we set up a readable event to read results as soon as they are available:

 fileevent $chan readable [list \
 tpclient::readResponse $chan "" $callback]

If any of these operations fail, we close the channel if it was open and invoke the
callback, specifying an error:

 }]} {
 catch {close $chan}
 {*}$callback true "Unable to connect"
 }
}

The command to read the response is written in a similar way to the command to
read a request on the server—it reads the data and passes the current buffer
to the next readable event. We also pass the callback command as the argument.

We start by trying to read data from the channel:

proc tpclient::readResponse {chan data callback} {
 if {[catch {
 set d [read $chan]
 }]} {

If the read fails, the callback is invoked with an error indication.

 catch {close $chan}
 {*}$callback true "Unable to read data"
 return
 }

Otherwise, we append the newly read data to the buffer and check if the end of file
message has been received:

 append data $d

 if {[eof $chan]} {

If the end of file has been reached, we close the channel. We then take the first index
of the resulting list as an indication of an error and the actual data as the second
element of the list and invoke the callback with this data:

 catch {close $chan}
 set error [lindex $data 0]
 set data [lindex $data 1]
 {*}$callback $error $data
 } else {

Chapter 6

[233]

Otherwise, we set up a new readable event with the current buffer:

 fileevent $chan readable [list \
 tpclient::readResponse $chan $data $callback]
 }
}

Further, we can invoke the command to send a request to the server, specifying the
expr {1+1} command to be run and the requestCallback command to be run as
the callback:

tpclient::sendRequest 127.0.0.1 12345 \
 {expr {1+1}} \
 requestCallback

We used 127.0.0.1, but if the server is located on any other machine, its IP address
or hostname should be specified.

The callback itself simply prints either an error indication or a result from
the command:

proc requestCallback {error data} {
 if {$error} {
 puts "Error: $data"
 } else {
 puts "Result: $data"
 }
 exit 0
}

Depending on whether the server (saved in server.tcl in the source code
examples for this chapter) is running or not, the result should be either one
of the following commands:

c:\tcl_book\chapter6\TCPsockets\threads>tclsh85 client.tcl

Error: Unable to connect

or:

c:\tcl_book\chapter6\TCPsockets\threads> tclsh85 client.tcl

Result: 2

Networking in Tcl

[234]

Even though this example only does 1+1, using a thread pool to perform tasks can
be useful if you need to offer functions that either use blocking functions (such as
getting data from a database) or use CPU intensive operations (such as calculating an
MD5 from a large file). Imposing limits on the number of threads itself prevents us
from using up all available resources on one type of functionality.

Documentation for the Thread package as well as thread pools can be found on Tcl's
wiki page - http://wiki.tcl.tk/thread in the Documentation section.

Using UDP sockets
TCP support is built in to the core of the Tcl interpreter. To be able to use the UDP
protocol, you have to use an external package. The default choice is usually the
TclUDP extension, which is available from http://sourceforge.net/projects/
tcludp/ (it also comes as a part of ActiveTcl bundle; if you don't have it, install it
with teacup install udp).

In contrast to TCP, which is a connection-oriented protocol, UDP is connection-less.
This means that every data package (datagram) travels from one peer to another on its
own, without a return acknowledgement or retransmission in the case of lost packets.
What is more, one of the peers may send packages that are never received (for example
if the second peer is not listening at the moment), and there is no feedback information
that something is going wrong. This implies a difference in the design for handling the
transmission, which will be illustrated in the following example.

Creating a UDP-based client
Lets consider a simple 'time server', where the server sends the current time to
any client application that subscribes for such notifications, of course using UDP
connectivity. The format of each datagram will be rather simple: it will contain
only the current time expressed in seconds.

First let's have a look on client code:

package require udp

set s [udp_open]
fconfigure $s -buffering none
fconfigure $s -remote [list 127.0.0.1 9876]
puts -nonewline $s "subscribe"

proc readTime {channel} {

Chapter 6

[235]

 puts "Time from server: [read $channel]"
}
fileevent $s readable [list readTime $s]

vwait forever
close $s

As you have probably figured out, the first line loads the TclUDP extension. The next
line creates a UDP socket, using the udp_open command, and stores its reference in
the s variable. The UDP protocol uses ports in the same way as TCP. If we executed
udp_open 1234, the port value 1234 would be specified, but if omitted, the operating
system would assign a random port. Note that if you specify a port that is already
being used by any other program, an error will be generated.

Next, we set the buffering mode to none, meaning that the output buffer will be
automatically flushed after every output operation. We will discuss buffering
issues more deeply later in this example.

The newly created UDP socket is not connected to anything, as the UDP is
connection-less. Such a socket is able to receive packets as they arrive at any time from
any source, without establishing a data connection of any type. To have datagrams
be sent to a specific destination, you should use the fconfigure command with a
new option (introduced by TclUDP) –remote, along with a two-item list containing
the target address and port: fconfigure $s -remote [list 127.0.0.1 9876]. In this
example the server will be executed on local host (so you are able to run it even if you
are not part of a network). Note that you can call this command any time you wish,
causing successive datagrams to be sent to different peers.

Now it is time to send a message to the server – in this case simply a string
containing 'subscribe'. If –nonewline is omitted, puts would generate 2 datagrams
(the second one containing the newline character) – it is likely that the puts
implementation will write data twice to the buffer (the message, and then the new
line character), and as the buffering is set to none, it is flushed immediately after each
write. The other solution would be to set buffering to full and call flush $s after
each socket write.

The handling of incoming data is implemented based on event programming.
The line:

fileevent $s readable [list readTime $s]

defines that every time the socket has some data to read (is readable), the command
readTime with $s as an argument is called. The command itself is simple – it
prints to the screen every piece of data that comes from the socket, read with
the read $s command.

Networking in Tcl

[236]

Implementing service using UDP
The code for the server is a bit more complicated, due to a need to track
subscribed clients:

package require udp

set clients [list]

proc registerClient {s} {
 global clients
 lappend clients [fconfigure $s -peer]
}

proc sendTime {s} {
 global clients
 foreach peer $clients {
 puts "sending to $peer"
 fconfigure $s -remote $peer
 puts -nonewline $s [clock seconds]
 }
 after 1000 [list sendTime $s]
}

set server [udp_open 9876]
fconfigure $server -buffering none
fileevent $server readable [list registerClient $server]

sendTime $server
vwait forever

The list named clients will hold an entry for each subscribed client; each entry is
also a list containing IP address and port, so it suits perfectly for the fconfigure
$s –remote command.

The server opens a UDP socket on port 9876. We would like to avoid the word 'listens'
in this context, as this socket does not differ in any way from the one used by the
client. By contrast, TCP requires a special server type socket, for listening purposes.

On every incoming data even, the registerClient procedure is executed. The
command appends to the client's list information about the originator of the data
(usually referred to as a peer) that has just arrived. This information is retrieved
with fconfigure $s –peer. Although it may seem that this data is defined for the
socket (represented by $s), in reality it refers to the most recent datagram received
by this socket.

Chapter 6

[237]

Every one second the procedure sendTime is called. The purpose of this command
is to send the current time to all subscribed clients, so it iterates over the clients
list, and for each one it first configures the socket with the target address and port
(fconfigure $s -remote $peer), and then sends a datagram containing the time
in the form of the output from the clock seconds command.

The server code is simple, it runs forever and there is no way to unsubscribe from
receiving the data, but it demonstrates how to work with UDP in Tcl.

The following picture shows an example of the execution of the server
(timeServer.tcl) and two clients (timeClient.tcl):

Networking in Tcl

[238]

The first client connects from the port 4508, and the second one (started a few
seconds later) from 4509.

The most important observation is that UDP sockets are handled identically on both
the client and server, so the name 'server' is actually contractual.

It is worth mentioning that although we do not focus on this feature in this chapter,
TclUDP supports multicasting and broadcasting of UDP packets. For details of how
to perform this, please consult the package's manual.

Sending reliable messages
The UDP protocol lacks reliability, which is one of its main differences compared to
TCP. Applications using UDP must either accept the fact that some of the datagrams
may be lost, or implement equivalent functionality on their own. The same is true of
topics like the order of incoming packets and data integrity.

The implementation of such logic could be as follows in the following example that
follows — the sender calculates the MD5 checksum of the data, and sends both to the
receiver. The receiver calculates the checksum again and compares it to the received
one – and in the case of equality, sends acknowledgment (in this example, the
checksum is sent back). The sender will repeatedly attempt to send the data until
the confirmation is received, or the permitted number of attempts has been reached.

The sender code is as follows:

package require udp
package require md5

set s [udp_open]
fconfigure $s -buffering none
fconfigure $s -remote [list 127.0.0.1 9876]

proc randomData {length} {
 set result ""
 for {set x 0} {$x<$length} {incr x} {
 set result "$result[expr { int(2 * rand()) }]"
 }
 return $result
}

proc sendPacket {chan contents {retryCount 3}} {
 variable ackArray

 if {$retryCount < 1} {

Chapter 6

[239]

 puts "packet delivery failure"
 return
 }

 set md5 [md5::md5 -hex $contents]

 # if ack received, remove ack and do not send again
 if {[info exists ackArray($md5)]} {
 puts "packet successfully delivered"
 unset ackArray($md5)
 return
 }

 puts "sending packet, # of retries: $retryCount"
 puts "packet content: $md5$contents"
 puts -nonewline $chan "$md5$contents"
 flush $chan

 # handle retries
 incr retryCount -1
 after 1000 sendPacket [list $chan $contents $retryCount]
}

proc recvAckPacket {chan} {
 variable ackArray

 set md5 [read $chan]
 puts "received ack: $md5"
 set ackArray($md5) 1
}

sendPacket $s [randomData 48]
after 5000 sendPacket $s [randomData 48]
after 10000 sendPacket $s [randomData 48]

fileevent $s readable [list recvAckPacket $s]

vwait forever

Networking in Tcl

[240]

The main logic is located in the sendPacket procedure. The last parameter is
the number of retries left to deliver the data. The procedure calculates the MD5
checksum of the data to be sent (stored in contents variable) and first checks if the
appropriate acknowledgment has already been received – if the array ackArray
contains the entry for the checksum (that is concurrently an acknowledgment), it is
removed and the datagram is considered to have been delivered. If it is not, then the
checksum along with the data is sent to the receiver, and a sendPacket is scheduled
to be executed again after one second, every time with retries counter decreased. If
the procedure is called when the counter is equal to zero, the delivery is considered
to be negative.

The acknowledgments are received by the procedure recvAckPacket, which simply
stores it into ackArray, allowing sendPacket to find it and react appropriately.

The helper procedure randomData allows the generation of a random string of zeroes
and ones of a given length.

Note that this example does not cover the topic of received packets order.

The receiver code:

package require udp
package require md5

set server [udp_open 9876]
fconfigure $server -buffering none
fileevent $server readable [list recvPacket $server]

proc recvPacket {chan} {
 variable readPackets
 set data [read $chan]
 puts "received: $data"
 set md5 [string range $data 0 31]
 set contents [string range $data 32 end]

 if {$md5 != [md5::md5 -hex $contents]} {
 #the data are malformed
 puts "malformed data"
 return
 }

 # send an ack anyway, because original
 # might not have been received by other peer
 fconfigure $chan -remote [fconfigure $chan -peer]
 #simulate the ack package lost over network

Chapter 6

[241]

 if {10*rand() > 7} {
 puts -nonewline $chan $md5
 flush $chan
 }

 # check if this packet is not a duplicate
 if {[info exists readPackets($md5)]} {
 return
 }

 set readPackets($md5) [clock seconds]

 # handle packet here...
}

proc periodicCleanup {} {
 variable readPackets

 set limit [clock scan "-300 seconds"]

 foreach {md5 clock} [array get readPackets] {
 if {$clock < $limit} {
 unset readPackets($md5)
 }
 }

 after 60000 periodicCleanup
}
vwait forever

The receiver will send back the acknowledgement each time the correct datagram
is received, that is when the checksums sent (first 32 chars) and calculated locally
are equal. It also stores in the readPackets array the time of arrival of each packet,
which allows us to detect duplicated data and processing it only once. To make
the example more vivid, about 70% of data loss is simulated by randomly not
sending confirmations.

Networking in Tcl

[242]

The receiver also implements some simple logic for periodic clean up of the received
datagrams log, to prevent it from becoming too huge and memory consumptive.

The result of running the example can be as depicted:

In this example, the first datagram was delivered successfully on the first attempt,
the second one's delivery failed despite 3 attempts, and the last one was delivered
on the second try.

Comparing TCP and UDP: streams vs.
datagrams
Although from the Tcl point of view UDP sockets are identical in usage to normal
sockets, you have to be aware of the differences. When you use file or TCP sockets,
you operate on streams of data. Issues like buffering or the order of the data do not
concern you. TCP features fit perfectly into the channel philosophy: the protocol
offers reliable delivery of the stream of bytes in the correct order; transmission errors
are detected and corrected automatically (with packet retransmission); flow and
congestion control regulate the capacity of the channel.

Chapter 6

[243]

In the case of UDP, the situation is different. You have to keep in mind that
essentially everything you write to the UDP socket will end up in the datagram
(UDP packet). In theory, a UDP datagram can carry 65507 bytes of data, but TclUDP
has its own internal limit set to 4096 bytes. Therefore you should pay attention to the
buffering settings:

The buffer size (fconfigure -buffersize) must not be larger than 4096
If the buffering mode is set to none, you should not write (puts) data larger
than 4096 bytes to a UDP socket in one operation, otherwise the data will
be lost
In the case of buffering mode being set to full and the buffer size lower than
4096, you can write any amount of data you want, but note that the data will
be split into pieces with the maximum size equal to the buffer size

The described behaviour can easily be illustrated with the following example: the
sender code uses a buffer of the maximum possible size, 4096 bytes, and sends data
of increasing size:

package require udp

set s [udp_open]
fconfigure $s -buffersize 4096
fconfigure $s -remote [list 127.0.0.1 9876]

proc randomData {length} {
 set result ""
 for {set x 0} {$x<$length} {incr x} {
 set result "$result[expr { int(2 * rand()) }]"
 }
 return $result
}

puts -nonewline $s [randomData 512]
flush $s
puts -nonewline $s [randomData 2048]
flush $s
puts -nonewline $s [randomData 8192]
flush $s
close $s

•

•

•

Networking in Tcl

[244]

The function randomData produces strings of the specified length. First, 512 bytes is
sent – the flush command makes sure that the buffer content is sent to the channel,
and then packets of 2048 and 8192 bytes, similarly.

The receiver code prints on the screen the size of every received datagram:

package require udp

set server [udp_open 9876]
fconfigure $server -buffering none
fileevent $server readable [list recvPacket $server]

proc recvPacket {chan} {
 set data [read $chan]
 puts "received length: [string length $data]"
}
vwait forever

When both are executed, the output is as follows:

C:\tcl_book\chapter6\UDPSockets\largeData>tclsh85 receiver.tcl

received length: 512

received length: 2048

received length: 4096

received length: 4096

As you can see, the last bulk of data sent by the sender has arrived in form of
two datagrams. If we modify the sender code—increase the output buffer size
to 5000 bytes:

fconfigure $s -buffersize 5000

The receiver's output is:

C:\tcl_book\chapter6\UDPSockets\largeData>tclsh85 receiver.tcl

received length: 512

received length: 2048

received length: 3192

In this case, the 8192 bytes data bulk is split into two parts:

The first one has a size of 5000 bytes (the buffer was completely filled upon
writing, and then flushed) and is lost, as it exceeds the maximum datagram
data size allowed by TclUDP
The second one, of size 3192 bytes (that is the rest of the packet: 8192 – 5000 =
3192) arrives successfully

•

•

Chapter 6

[245]

The example clearly shows some of the pitfalls of using UDP, although from a Tcl
perspective it looks like a 'normal' channel able to send data, you must be aware of
the underlying mechanism and use it adequately.

In the case of a TCP socket, read would read data until the channel is closed
(for example, when the client disconnects). In case of a UDP socket, read reads data
from only one datagram at a time, as the datagrams are not connected to each other
and must be treated separately (does not form a stream of data).

To summarize, treating UDP sockets as channels has the following pros and cons:

Pros Cons
Consistent programming interface Confusing; even though it seems to be a channel, you

have to keep in mind that it is not
Common set of commands to
operate on the channel: read/
write/configure

Creation of datagram is not too intuitive – for
example to address it, you have to use fconfigure
as if you were configuring the channel

Summary
After reading this chapter you are able to establish basic network communication
using the TCP or UDP protocols, using Tcl code.

In this chapter, first, TCP connectivity was presented. Starting from the most basic
blocking operation mode, we moved to nonblocking network handling based
on event programming. Topics including binary data transfer, error handling or
buffering issues were discussed along with appropriate examples. At the end, an
alternative technique of programming based on threads was presented.

Next, the way how to handle UDP communication in Tcl was presented, with
TclUDP extension as the implementation. The comparison of TCP and UDP
philosophy was described, with the focus on the differences between streams and
datagrams. We mentioned the limitations of both the UDP protocol and TclUDP
package, and how to avoid some common pitfalls.

The contents of this chapter provided you with a knowledge of Tcl's philosophy
when it comes to programming network operations, and constitute a solid basis
for more advanced topics discussed in future chapters.

The next chapter will focus on using common internet services like FTP and HTTP
from the Tcl scripting level.

Using Common Internet
Services

By now we know that Tcl has the functionality to create networked applications. We
also know how to build simple client-server communication. However, as with any
programming language, being able to plug into existing protocols and communicate
using standards that other systems are using as well is very important. This chapter
talks about various standards, how Tcl fits into these technologies, and how to use
Tcl for various types of protocols and data encoding.

First, we'll show how to manage files remotely over File Transfer Protocol (FTP).
This can be used as the base for many operations, such as remote copies and
filesystem synchronization. We'll also learn how to download a file from a website
using Hypertext Transfer Protocol (HTTP), which can then be used to get content
from the Internet. This knowledge will also be valuable when we move on to
embedding and using web servers in our application in the chapters that follow.

We will also talk about communicating with users using e-mail, starting with
sending simple e-mails, followed by learning how to send attachments and multipart
types. Using this we'll show how to send and receive e-mails in order to do tasks
such as sending information to users and/or customers. You will also learn how to
read e-mails in your Tcl code, parse them, and how simple mechanisms can be built
to create an automated e-mail management system.

It's worth noting that whenever we're doing checks of any data retrieved
from remote systems, we should check if all conditions are satisfied instead of
checking for known problems; for example, we should check if the status is one
of the acceptable status values instead of checking if it is one of the known error
statuses. Troubleshooting Tcl applications and more recommendations for making
applications less error prone are described in more detail in Chapter 4, Troubleshooting
Tcl Applications.

Using Common Internet Services

[248]

Handling e-mail
Before working with e-mail, we need to understand a bit about how e-mail works,
as well as what it provides and what our application needs to perform on its own.
In general, e-mails are easy to understand—someone sends a message, the e-mailing
system takes care of delivering it to the correct target machine(s), and the recipients
are then able to retrieve that message. From the e-mail system's perspective, it does
not care about what the e-mail contains, as long as it knows who it is from and who
it should be delivered to.

From the user's perspective, he/she does not need to know how it is delivered—their
mail application delivers the message to the server handling their e-mail, and all
messages can be retrieved from that same server. When we interact with e-mails, it
works the same way for us. In the majority of cases, our application only needs to
interact with our e-mail server.

All e-mail messages are built using a common structure—each message consists of
headers that describe the message and the body. Headers describe who the message
is from, its recipients, and the subject of the message. They also provide the content
type, which tells e-mail applications what type of data the message contains. Message
headers can also contain a history of the servers it passed, additional information such
as the e-mail application used to generate this message, and any other information that
the e-mail application has added. The message body is the actual text and/or data that
was sent. Information about what is in the message body is described in the headers,
for example we can send plain text, HTML message, or simply an image.

Learning MIME
Multipurpose Internet Mail Extensions (MIME) is a standard that extends the
e-mail format. It defines how messages can include character sets other than 7-bit
ASCII in the message headers and body, and introduces the concept of multiple parts
of an e-mail along with attachments. Over time, MIME became such an integral part
of e-mail handling that all e-mails are now sent in accordance with MIME standards.

Content type
MIME introduced the concept of content type, which was originally meant for
defining types of files in an e-mail. This was introduced so that e-mail applications
could present the content of a message differently, depending on the actual file
type. This grew to other protocols and can now be referred to as the Internet media
type standard. The standard consists of two parts—MIME type and MIME subtype
separated by a slash. The content type describes the type of a piece of media, for
example, image. The subtype defines file format—for example, jpeg. In this example,
the MIME type is image/jpeg.

Chapter 7

[249]

A full list of standardized format types can be found on the following page:
http://www.iana.org/assignments/media-types/

Whenever an application needs to use its own content type, it is recommended that
an x- prefix is appended to the subtype—for example, application/x-tcl-dict
could be used to transmit a dictionary's contents.

The MIME standard defines several possibilities for embedding data that is
outside a 7-bit ASCII character set, that is, data such as binary files, messages using
different character sets, and so on. The Base64 standard is commonly used for
encoding binary files within an e-mail—this standard uses 64 characters only, and
requires 4 bytes to encode 3 bytes of actual data. This means that a 1M file will
use up over 1.3M when sent via e-mail. Base64 is described in more detail at:
http://en.wikipedia.org/wiki/Base64

The standard also defines the quoted-printable standard that is used for
sending 8-bit data. Characters outside of 7-bit character set are encoded as
multiple characters; this idea is described in more detail at:
http://en.wikipedia.org/wiki/Quoted-printable

For the purpose of this book, we do not need to go into details of how both Base64 and
quoted-printable encodings work.

Multipart messages
MIME also introduces the concept of multipart content. An e-mail message can
only consist of a single item. However, the MIME standard provides ways to send
multipart content by enclosing multiple items in a single message. It can also be used
recursively, one of the elements can also contain additional parts. We'll see this
in the following example:

There are multiple types of multipart contents:
multipart/related is used to send messages that should be treated as a
whole. The first part is the content that the e-mail application should use and
other parts are related to it, for example, images that are used in a HTML
message. However, adding a part that should be inline requires that this
element also has specific headers, which is discussed in more detail later
in this chapter.
multipart/mixed is used for sending mixed content types. It is up to the
e-mail application to decide how to handle this, but parts that it can show
inline will be shown within e-mail application, and parts that it cannot show
directly will be shown only as attachments. A typical example is attaching
images and documents—e-mail applications will show images inline, but
require documents to be opened in an external application.

•

•

Using Common Internet Services

[250]

multipart/alternative is used to define multiple parts, where each part is
an alternate version of the same content. A typical example is sending plain
text and HTML messages. E-mail applications choose the best format that
they can handle. Representations should be sent in a way they are ordered
by—preferable representation should be the last part.

Multipart content types allow each part to have its own individual headers—this is
required in order to define which content type each part is, along with how it should
be treated. Also, as each part can have its own type, each part can also be a multipart
element on its own.

The following diagram illustrates how both multipart/mixed, multipart/
alternative, and multipart/related can be used to send e-mail that contains
plain text message and HTML message, inlined images as well as attachments. This
is actually how the majority of e-mail applications will embed such a message. The
structure of the entire message would look as follows:

Now that we know how our e-mail might appear, let's proceed to building such
a structure from within Tcl.

MIME in Tcl
In order to send such an e-mail from within Tcl, we will need to use Tcl's mime
package. It is a part of the tcllib package and is available in ActiveTcl distributions
of Tcl.

This package allows the building and parsing of messages and handles all aspects
of a message—headers, content, and support for multipart messages. It also
handles conversion between various content encodings such as base64 and
quoted-printable. Thanks to this we'll only need to build the message parts
and combine them into a final message.

•

Chapter 7

[251]

Creating messages
The command mime::initialize is used to set up a part or the content of the entire
message. This command accepts one or more options and returns a new token that
identifies the new MIME part. Based on the options specified, there are two modes
in which it can be used— the first is to parse content (such as parse a received e-mail
message), and the second is to create content. We will focus on the second case and
leave parsing for sections that talk about receiving e-mail.

Whenever we want to create a MIME part we need to specify the -canonical option
and provide the content type for this part. Type is the MIME type described earlier.
There are three possibilities for creating MIME objects—from a file or from a string,
and when creating multipart content.

To create it from a file or a string, we need to specify the -file or -string
option and provide either the path to the file or the content of this part as
string or binary data. We should also specify the -encoding option that
states how content should be handled so that it can be passed over a 7-bit
protocol such as SMTP. For binary files, we should usually use base64
encoding and for text files, it is best to use quoted-printable.
When creating a MIME part, we can also specify one or more headers that
it should have by adding the -header option. This option can be specified
multiple times and each parameter to this option should be a list containing
a header name and corresponding value. These headers are then added to
the actual MIME body. Their names and corresponding values are part of
MIME's specifications. We'll cover a small subset that we need to know in
order to send an e-mail with both inlined elements and attachments.

For example, in order to create a simple plaintext element, we can run the
following command:

set token [mime::initialize -canonical "text/html" \
 string "Hello world!"]

If we want to send it, all we would need to do is use the smtp package:

smtp::sendmessage $token -recipients "someone@domain.com"

Sending e-mails is described in more detail later in this section—the preceding code
simply shows that both packages can be combined very easily.

•

•

Using Common Internet Services

[252]

Multipart elements
In order to multipart content, we should provide the -parts option to the mime::
initialize command. The value for this option should contain a list of all parts that
should be included in this multipart content. Parts are included in the same order as
provided in the list.

Let's walk through an exercise of building up an e-mail that we described earlier.

This code uses several files, mainly message.html and message.txt for the
text of the e-mail, companylogo.gif for logo that is used in message.html, and
attachment.jpg as an attachment.

The files as well as the complete source code for the example in this
section are located in the 01mime directory in the source code examples
for this chapter.

First we have to load the mime package and create an HTML part:
package require mime

create actual HTML part
(1.2.1.2.1 from diagram)
set part_html [mime::initialize -canonical "text/html" \
 -encoding quoted-printable -file message.html]

create logo as inlined image
(1.2.1.2.2 from diagram)
set part_logo [mime::initialize -canonical "image/gif" \
 -encoding base64 -file companylogo.gif \
 -header [list Content-Disposition "inline"] \
 -header [list Content-ID "companylogo.gif"] \
]

This code builds up two elements—a part containing HTML version of the message
and an image that we add, inline, in the message. Following that, we use these to
build up the multipart/related part (element 1.2.1.2 from preceding diagram)
that contains two elements created using the preceding code:

set part_htmlrelated [mime::initialize \
 -canonical multipart/related \
 -parts [list $part_html $part_logo]]

Next it's time to create a plain text version of the e-mail (element 1.2.1.1 from
diagram) and build the multipart/alternative element that binds the HTML
message and the plain text message into one piece, which is element 1.2.1.

set part_txt [mime::initialize \
 -canonical "text/plain" \
 -encoding quoted-printable -file message.txt]

Chapter 7

[253]

set part_alternative [mime::initialize \
 -canonical multipart/alternative \
 -parts [list $part_txt $part_htmlrelated]]

Finally, we create a part for the attachment (element 1.2.2 from diagram) and create
an element that combines the previously created container for the plain text and
HTML message along with the attachment—element 1.2 from diagram.

set part_attachment [mime::initialize \
 -canonical "image/jpeg" \
 -header [list Content-Disposition \
 "attachment; filename=attachment.jpg"] \
 -header [list Content-ID "attachment.jpg"] \
 -encoding base64 -file attachment.jpg]

set all [mime::::initialize -canonical multipart/mixed \
 -parts [list $part_alternative $part_attachment]]

This makes our code complete and a full version of the message is now ready.

There are three types of elements that we are building:

HTML and plain text messages: Their context is defined by multipart
elements they are included in, therefore, we only need to define content type.
JPEG image: It is an attachment, therefore, we need to provide more
information in the part headers—filename, Content-ID, and disposition.
Multipart elements: These are used to combine other types of elements into a
structure that we've described earlier.

Sending text messages also relates to character sets, encodings, and issues with
internationalization. When sending messages that contain characters outside of
7-bit ASCII, we need to be aware of two things.

First of all, Tcl sends both strings and file contents in binary form. If we want to
send text from a file, then that file needs to be encoded properly, using encodings
such as UTF-8. If we want to send text from Tcl, we need to convert that text
to proper encoding. Secondly, we need to specify the encoding of a part when
specifying the canonical type—usually this means appending a semi-colon and
charset=<charsetName>. For example:

set part_html [mime::initialize -canonical \
 "text/html; charset=UTF-8" \
 -encoding quoted-printable –string [encoding \
 convertto utf-8 "\u25ba Omega symbol: \u2126 \u25c4"]]

•

•

•

Using Common Internet Services

[254]

The previous example will cause our e-mail message to contain the text
► Omega symbol: Ω ◄ —in our example, \uxxxx means the Unicode characters
for ►, Ω, and ◄ accordingly.

The command encoding convertto converts text to specified encoding and is
described in more detail in Chapter 4. For more information about standardized
character encodings, please refer to: http://www.iana.org/assignments/
character-sets .

Next we have an inlined image—in this case, we need to define additional headers.
The first header is Content-Disposition, which specifies how this part should be
handled. Specifying inline means that this is an element that will be referenced
from the main document and should not be shown as an attachment. The second
header is Content-ID, which identifies and names an element. This is how an
element can then be referenced from other parts. Any references should be made in
the format of cid:<Content-ID>, so in our case, it would be cid:companylogo.gif.
For example, our message.html file can contain the following HTML tag:

Elements that are regular attachments should have Content-Disposition set to
attachment. Also, it is recommended to add filename=<name> to this parameter,
separated from the disposition type by a semi-colon. Content-ID in this case
specifies an attachment name and should be the same as the filename specified
in the Content-Disposition header. This is how the attachment.jpg file is sent.

There is also a difference between naming parts within an e-mail and actual
filenames. However, this example names files from MIME's perspective in the same
way as files are named on disk. It is common to add prefixes and/or suffixes to avoid
naming collisions, especially when a message contains parts from different sources.
For example, we add create inlined image in the following way:

set part_logo [mime::initialize -canonical "image/gif" \
 -encoding base64 -file "/path/to/template/logo.gif" \
 -header [list Content-Disposition "inline"] \
 -header [list Content-ID "template.logo.gif@$messageId"] \
]

We can then build the HTML to include such an image from Tcl by doing
something like:

set html ""

Chapter 7

[255]

It is a good idea to generate unique identifiers for each message and append them
to inlined parts' identifiers. This prevents poorly written e-mail applications from
having issues with forwarding or replying to e-mails with such images. It can be
done using the uuid package and the uuid::uuid generate command, but any
mechanism for generating a unique ID, such as from a related database entry,
will work.

Cleaning up a MIME item requires running the mime::finalize command and
passing the token of a MIME part to it. In order to delete all elements that are used in
that element recursively, we can add the -subordinates option with the value all.
For example:

mime::finalize $all -subordinates all

The preceding code will delete the token created for the entire message along with all
other elements we've created.

Information about all commands from mime package can be found in its
documentation available at:
http://tcllib.sourceforge.net/doc/mime.html

Sending e-mails
Now that we're able to build MIME parts and the contents of messages, we can send
our message. Messages are sent over the Simple Mail Transfer Protocol (SMTP),
which is the most popular standard for the delivery of e-mail messages. This is
the protocol that almost all e-mail applications use to send e-mail and all service
providers give you an SMTP server to send messages through.

From the Tcl perspective, we need to use the smtp package. This package uses the
same tokens as MIME to send messages, which means that if you have created a
message using the mime package, sending it requires only a few lines of code.

The package smtp offers a single command—smtp::sendmessage. This command
requires passing a token to MIME part and accepts additional options. The first
one is -servers, which is a list of SMTP servers to try. If this is not specified, then
message is sent using the SMTP server on the local machine. If the machine our code
is run on has an SMTP server, it is okay to not specify this option. If our SMTP server
is using a non-standard port, the option -ports can be used to specify which ports
we should try to connect to. For the majority of users, it is not necessary to use
this flag.

Using Common Internet Services

[256]

We can also specify additional headers that should be added when building this
e-mail by adding the -header option in one or multiple times. Similar to the mime
package, it accepts a list where the first element is the header name and the second
is the value. Usually when sending an e-mail, we want to set the From, To, and/or
the Cc and Subject header fields. For fields such as To and From, we need to specify
addresses in a specific way. If we want to specify both the full name and e-mail
address, it should be in the form of "[Full Name]" <email@address>. If only the
e-mail address is to be passed, it should be in the form of <email@address>.
Multiple items should be separated by a comma succeeded by a space. For example:

smtp::sendmessage $token -header \
 [list To "<someone@domain.com>, <another-address@domain.com>"]

We should pass the -originator option in order to specify address from which an
e-mail is sent. Specifying who the message should be delivered to can be done using
the -recipients option. If -originator is not passed, the value is taken from the
From or Resent-From header field. If -recipients was not specified, the value is
taken from the To, cc, Bcc, or Resent-To header fields and is concatenated to one
list. Please note that only headers specified to smtp::sendmessage are parsed, not
headers set in the MIME token provided to the command.

Based on the previous example, we can use the message we have just created and
add to it the code that will send it:

package require smtp

smtp::sendmessage $all \
 -recipients $recipient -originator $sender \
 -header [list Subject $mailsubject] \
 -header [list From "\"$senderName\" <$sender>"] \
 -header [list To "\"$recipientName\" <$recipient>"] \
 -servers $smtpservers

And a sample initialization of configuration variables needed for this code is
as follows:

set sender sender@localhost
set senderName "My Tcl Application"
set recipient recipient@localhost
set recipientName "My Tcl Application User"
set mailsubject "Screenshot of Eclipse and DLTK"
set smtpservers 127.0.0.1

Chapter 7

[257]

The complete example along with code from the previous example
that creates all MIME elements is located in the 02smtp directory
in the source code examples for this chapter.

If our SMTP server requires authentication, we will need to pass this information to
the smtp::sendmessage command. The options -username and -password can be
used to specify credentials and if server requires authentication, the smtp package
will use these. Usually authentication is needed if your e-mail server is being
accessed remotely. In these cases, the username and password are provided by
your ISP or network administrators.

Automated e-mail sending
Now that we know how to send an e-mail from start to end, we can move on to
more advanced issues. Often our application will just send e-mails sporadically.
However, there are many applications that mainly send e-mails. Many companies
run their business by sending customized information to their customers and need
a robust system that can send large volumes of e-mails, which handles failures
of e-mail servers and needs to be customizable from both business logic and
template perspectives.

If we plan on sending e-mail messages, we need to automate the process of building
them and creating a system that will allow other people to customize both content
and the appearance of our e-mails. We can either create a set of standalone tools or
libraries that we can then use in our applications, depending on our needs.

One of the most important things that such an application will offer is an easy way
to change contents of messages easily. In many cases, it is enough to have a separate
directory for content of a message along with standardized file naming.

Creating template based e-mails
For example, let's assume our messages are stored in a separate directory. Files called
message.txt and message.html will be used for body of the message. The subject of
the message is in the subject.txt file. All files starting with the inline_ prefix will
be included and contained within multipart/related along with a HTML version
of the message. We'll also assume our messages are in UTF-8 encoding, which allows
support for various encodings around the world.

Using Common Internet Services

[258]

We'll reuse some of the ideas from the previous code sample and make it more
generic. Let's start with creating a namespace, and create a procedure called
readText for reading text files. This procedure will also use the subst command to
allow substitution of commands and variables. We'll also load packages that we'll
use throughout this example and initialize the proper namespace, which is needed
before creating any procedures within that namespace:

namespace eval emailtemplate {}

package require mime
package require uuid
package require fileutil::magic::mimetype

proc emailtemplate::readText {filename messageId data} {
 set fh [open $filename r]
 fconfigure $fh -encoding utf-8 -translation auto
 set text [read $fh]
 close $fh

 set text [subst $text]

 return $text
}

This procedure also requires the messageId variable to be passed, which we'll
later use to add inline images in the correct way. Our code reads a file as UTF-8,
runs subst, and returns result of that command, which causes any occurrence of
[command] or $variable to be evaluated as if it was part of Tcl code.

For example, we can add this to our HTML part of the message:

Welcome [dict get $data firstname],

This causes value of firstname key from $data dictionary to be shown in bold.

Variable $data is passed to emailtemplate::readText command in the first place.
We can use it for passing data to our templates as dictionaries. For example, if we
were to send a notification that a payment is due, data would contain first name,
last name, and other information about the recipient, and the amount and payment
date. Our template would then include these values in the text by using dict get
command as seen in this section.

We've loaded the uuid and fileutil::magic::mimetype packages. The first one
is used to generate the message's unique identifier, whereas the second one is used
to get the MIME content type from files, so that these don't have to be specified
explicitly by e-mail template providers.

Chapter 7

[259]

Next we'll create a buildMessage procedure that builds a MIME part containing
each element based on directory where the template is placed and provided data. It
also accepts an optional list of attachments, which allows us to add additional files,
such as invoices as PDF files, if this is needed.

proc emailtemplate::buildMessage {directory data {files ""}} {
 set messageId [uuid::uuid generate]

The following steps are performed as part of emailtemplate::buildMessage:

The first step is to read the subject and both versions of messages. We'll also make
sure that the subject does not include any newline characters as this will create errors
when either building or parsing the message. We do this by splitting the subject into
a list of lines and choose the first element from that list.

 set subject [readText \
 [file join $directory subject.txt] $data]
 set msgtext [readText \
 [file join $directory message.txt] $data]
 set msghtml [readText \
 [file join $directory message.html] $data]

 set subject [lindex [split $subject \n] 0]

After we've read the subject and both types of messages, we now build the MIME
parts for these. Please note that, at this point, our messages are already formatted
using the data that was provided. This step is very similar to how it was previously
built for our first message.

 set part_text [mime::initialize \
 -canonical "text/plain; encoding=UTF-8" \
 -string $msgtext -encoding quoted-printable]

 set part_html [mime::initialize \
 -canonical "text/html; encoding=UTF-8" \
 -string $msghtml -encoding quoted-printable]

The third step is to build a list of parts for the multipart/related element that
contains an HTML message along with sending images inline. We create a list of
parts and add only one element to it for now—the actual HTML part.

 set parts_related [list $part_html]

Using Common Internet Services

[260]

We then list all files in the template directory beginning—matching inline_*
pattern. The variable file contains full path to the file and filename contains just
the filename.

 foreach file [glob -directory $directory \
 -nocomplain -type f inline_*] {
 set filename [file tail $file]

For each of these files, we'll find the proper MIME content type to use and add it
to the list of items. We specify that this item should be added inline and that its
identifier is <filename>@<messageId>.

 set ftype [fileutil::magic::mimetype $file]
 lappend parts_related [mime::initialize \
 -canonical $ftype -encoding base64 -file $file \
 -header [list Content-Disposition "inline"] \
 -header [list Content-ID "$filename@$messageId"] \
]
 }

Finally, we'll build a multipart/related element by combining HTML along with
the inline images and add this to a multipart/alternative element so that the
e-mail application reading this message can choose between plain text or HTML.

 set part_related [mime::initialize \
 -canonical "multipart/related" \
 -parts $parts_related]

 set result [mime::initialize \
 -canonical "multipart/alternative" \
 -parts [list $part_text $part_related]]

The steps that follow take place only if this procedure has been passed any
attachments. If this is the case, we create a new list of items for multipart/mixed.
We initialize it to just one element—the result from previous step, the complete
message containing plaintext, HTML, and images added inline.

Now we iterate through the list of attachments, taking two elements from the list at
a time. The first one is the path to attachment file and the second one is the name that
will be shown to the recipients.

 if {[llength $files] > 0} {
 set elements [list $result]
 foreach {file name} $files {

Chapter 7

[261]

For each of the attachments, we guess its MIME content type, and build its MIME
element and add that to the list of elements.

 set ftype [fileutil::magic::mimetype $file]
 lappend elements [mime::initialize \
 -canonical $ftype \
 -encoding base64 -file $file \
 -header [list Content-Disposition \
 "attachment; filename=$name"] \
 -header [list Content-ID "$name"] \
]
 }

Finally, we create a final multipart/mixed element that will contain the message
and all attachments.

 set result [mime::initialize \
 -canonical "multipart/mixed" \
 -parts $elements]
 }

The last thing is to set the Subject header to indicate the subject that was provided
by the template and return the element back to the caller of this procedure.

 mime::setheader $result Subject $subject

 return $result
}

This provides a complete mechanism for sending messages based on templates.

Setting the Subject header before sending the message is different from the previous
example. Although the From, To, Cc and Bcc fields should be set during the smtp::
sendmessage step, Subject and all other headers that are not related to message
delivery can be set before sending the message.

Now that we have completed our code for preparing the messages, we can proceed
with adding a small piece of code to send it:

set data [dict create firstname "John" lastname "Doe"]

set token [emailtemplate::buildMessage "template1" $data]

smtp::sendmessage $token \
 -recipients $recipient -originator $sender \
 -header [list From "\"$senderName\" <$sender>"] \
 -header [list To "\"$recipientName\" <$recipient>"] \
 -servers $smtpservers

Using Common Internet Services

[262]

This code is based on the same variables as the previous example. We're also
passing two values to the message—firstname and lastname. If we want to
send an attachment, all we need to do is add such a list to the emailtemplate::
buildMessage invocation similar to the following example:

set token [emailtemplate::buildMessage "template1" $data \
 [list "attachment/attachment.jpg" "screenshot.jpg"]]

The directory template1 is the location where the template of the e-mail is kept.
It has to contain subject.txt and message.txt, and message.html which are
the subject and content of the message in plain text and HTML respectively. The
directory can also contain files that should be embedded as part of the message.

The list provided as the last argument is the list of attachments to include. While
the actual file is called attachment.jpg, the user will actually see it named as
screenshot.jpg. It is common to use this approach, for example, when file names
are unique identifiers of the content, such as customerinvoice_0013_0143.pdf
while we want the user to see a more readable filename such as Invoice.pdf.

The example in this section is located in the 03emailtemplate
directory in the source code examples for this chapter. It also contains
a sample template that uses data variables for passing information.

Documentation on mime and smtp packages can be found on the tcllib project
website at SourceForge:
http://tcllib.sourceforge.net/doc/mime.html and
http://tcllib.sourceforge.net/doc/smtp.html

Receiving e-mails
In many cases, apart from sending e-mails, our application should also be able to
receive messages sent via e-mail. One example is that if we send out mass e-mails to
users, we might also want to be able to receive messages for unsubscribing from them
and process them. Also, our application can also receive "delivery failed" notifications
and process them—for example, starting with temporarily not sending messages and
ending with removing failing e-mail addresses from our records permanently.

One of the most flexible options is to set up a dedicated SMTP server that will
accept e-mails from other systems. This option, however, requires more setup
and is discussed in the next chapter.

A simpler option that will allow us to receive e-mails is to use existing servers and
read e-mails from them. This is similar to how e-mail applications work—the e-mail is
stored on a remote server and you receive and/or delete it whenever your computer
is online.

Chapter 7

[263]

For this purpose, we'll use the Post Office Protocol version 3 (POP3), which all
e-mail servers offer. In order to read e-mail over POP3, we need to know the POP3
server name, and the username and password required to access our account.
Usually, this is provided by our system administrators. For the majority of Unix
servers, the hostname, username, and password are the same as for accessing it over
SSH, Telnet, FTP, or any other protocol. POP3 works so that applications connect, list
and read messages, delete the ones they have already read, and then disconnect. This
is then repeated periodically.

POP3 uses positive integers to identify all messages. These messages range from 1 to
the number of messages—therefore, if our inbox has 23 messages, they are 1, 2, 3, ...,
23 accordingly. Throughout the entire connection to a POP3 server, each number is
guaranteed to point to the same message. Therefore, until we disconnect, message 19
will always point to the same message.

If we delete a message, we can no longer reference that particular message, but all
other messages will still have the same index—for example, if we delete message
4, messages from 5 and up will still have the same identifiers. Also, when new
messages arrive during our connection to the server, our connection will not be
able to access them.

POP3 is designed so that the application logs in, reads messages, and disconnects.
Our program might be doing this frequently, but it should always set up a new
connection to the server.

Using POP3 protocol in Tcl
Tcl offers a pop3 package that allows you to retrieve e-mails from POP3 servers.
Unlike SMTP, it is not integrated with the MIME package, but it can easily be used
along with MIME to process messages.

In order to initialize a connection, we need to run the pop3::open command by
providing it with the hostname, username, and password. Optionally, we can specify
the TCP port to connect to as the next argument, otherwise the POP3 default port
110 is the used. This command returns a channel that is used by all other commands
from this package.

For example, the following will connect to your Gmail account:

set h [pop3::open "pop.gmail.com" "user@gmail.com" "password"]

After that variable h will keep a handle, which we can use to issue commands later
on. This token is used by all other commands from the pop3 package and is always
passed to these commands as the first argument.

Using Common Internet Services

[264]

We can also provide this command with several options, which should be put before
the host name. The first one is -socketcmd, which allows us to specify the command
that should be used for creating the socket. Its main use is to support Secure Socket
Layer (SSL) and for providing a command that connects using a proxy server if this is
needed. While SSL is described in detail in Chapter 12, it is worth mentioning that if we
are using SSL, we also need to specify the port to use, which is 995 for POP3 over SSL.
For example:

set h [pop3::open –socketcmd tls::socket "pop.gmail.com" \
 "user@gmail.com" "password" 995]

Another flag is -msex, which takes a Boolean value and specifies whether the server
we are communicating with is a Microsoft Exchange server. If this is the case, the
POP3 package needs to work around some non-standard behavior that occurs
when communicating with a Microsoft Exchange server.

Having the channel to a mail server open, we can now retrieve information. The
command pop3::status can be used to find out about the total number of messages
and bytes used, and requires passing only the POP3 channel. It returns two
numbers— the first one being number of messages in your inbox and the second
one specifies the total number of bytes used by all messages. For example:

lassign [pop3::status $h] numMessages bytesUsed

This will retrieve the status and assign it to numMessages and bytesUsed variables.
The command lassign is described in more detail in Chapter 1. The number of
messages specifies both how many messages are present in our inbox as well as
the maximum value that we can use for specifying message identifier.

Listing all messages
We can also list all messages—by receiving either their sizes or their unique
identifiers. The command pop3::list returns a list of messages that we can access
as a list. The list consists of two elements for each message—its identifier (integer
number) and size in bytes. For example, in order to list size of all messages, we can
run the following:

foreach {id size} [pop3::list $h] {
 puts "Message $id has $size byte(s)"
}

The command pop3::uidl works similarly, but returns the unique identifier of a
message instead of the size. For example:

foreach {id uidl} [pop3::uidl $h] {
 puts "Message $id is $uidl"
}

Chapter 7

[265]

Both pop3::list and pop3::uidl can be run by specifying message number—in
this case, data is returned for a single message only.

Please note that unique identifiers might not be supported by all e-mail servers and
this command might return an error in this case. Otherwise, these identifiers allow
for identifications of e-mails across POP3 sessions. The POP3 standard does not
define the format of these identifiers, so our application should not assume anything
about it and about the ways of comparing identifiers.

Unique identifiers combined with a persistent storage can be used to track which
messages are new and should be processed, and which ones our application has
already processed. This is especially useful if our application does not delete
messages after receiving them.

Retrieving e-mails using POP3
Once we know which messages we want to retrieve, we can either retrieve just part
of the message or the entire message. In order to retrieve headers and part of the
message, we can use the pop3::top command. It accepts the POP3 channel, the
number of the message, and the number of lines from the actual message to retrieve.
For example, in order to retrieve the headers and 5 topmost lines from the first
message, we can run the following:

puts [pop3::top $h 1 5]

Retrieving an entire message or a group of messages can be achieved by using the
pop3::retrieve command, by specifying the channel name as the first argument
and the index of message as the second argument. This command always returns
a list of the messages, even if only one index was specified. For example, we can
retrieve and print the entire first message by running:

puts [lindex [pop3::retrieve $h 1] 0]

We can also specify two indexes—the first being the start index and the second being
the end index. In this case, the command will retrieve multiple messages and return
a list containing them. For example, we can retrieve messages 1, 2, and 3 by running:

pop3::retrieve $h 1 3

Using Common Internet Services

[266]

We can also specify special values for the start and/or end indexes. The special index
start means the first message and is the same as 1. The special index end specifies the
last message, based on how many messages are present on the server. For example:

set id 0
foreach msg [pop3::retrieve $h start end] {
 incr id
 puts "Message $id has [string length $msg] bytes"
}

This will print out the size of each message. The same values can be retrieved using
the pop3::list command, because in both cases, the message is handled in a binary
way—without encoding and/or newline translations.

Deleting one or more messages can be done using the pop3::delete
command. It accepts the channel name, followed by one or two indexes. Similar
to pop3::retrieve, if a single index is specified here, then only this message is
deleted. If two indexes are specified, then multiple messages are deleted. The special
keywords start and end can also be used. For example, deleting all messages can be
done by invoking:

pop3::delete $h start end

As the POP3 protocol does not support retrieving or deleting multiple messages
at a time, internally, both pop3::retrieve and pop3::delete iterate through the
specified range.

When we have finished working with our remote e-mails, we should close the
connection. The command pop3::close is used for this. The only argument it
needs is the POP3 channel name. For example:

pop3::close $h

Parsing incoming e-mails
After retrieving our messages, we can parse them to properly handle their content.
This can be done by using the mime package for this purpose, similar to how we
built messages.

In order to have the mime package parse an already built message, we can use the
mime::initialize command. It will parse the message, parse headers ,and split it
into appropriate parts if we don't provide the -canonical flag. For example:

set message [lindex [pop3::retrieve $h $id] 0]
set token [mime::initialize -string $message]

Chapter 7

[267]

It is a good idea to catch exceptions from mime::initialize, because if the message
is not correctly formatted, the command will throw an error. As our messages can
come from an unknown source, it is a good idea not to assume all messages can be
properly handled.

We can use the token to access information in it and subsequent parts. In order to
do this, we'll use three commands: mime::getheader, mime::getproperty, and
mime::getbody.

The first command can be used to retrieve MIME headers such as From, To, Subject
or Content-ID. The command mime::getproperty returns information about a
particular token. The property content specifies content type, encoding specified
content transfer encoding (base64 or quoted-printable), and size provides the size
of the content before decoding it. The parts property provides a list of subordinates
(children) of this node and it is only set if this node has children.

Both commands accept a MIME token as the first argument and, optionally, a
property or header name as the second argument. If a name is not specified, the
commands return a name-value pair list. Both commands also throw an error if a
header or property is not set for this token.

The command mime::getbody decodes and returns the body of a message or a
subordinate. It is used to extract the non-multipart elements of a message.

Let's use these methods in a more practical example. Assume we want to create an
application that will check e-mails, look for messages that have an attachment with
jobdata.raw filename and insert the contents of each of these attachments to a
database. We'll also keep track of messages we've already parsed and will not
delete them.

For the database, we'll use SQLite3, because it will not require the reader to set up
any database server. SQLite3 is included in ActiveTcl, so we should have it installed
already. More details about databases can be found in Chapter 5.

We'll start by initializing our code and database. We'll load the appropriate packages
and initialize the database:

package require pop3
package require tls
package require sqlite3
package require mime

if {![file exists "database.db"]} {
 sqlite3 db "database.db"

Using Common Internet Services

[268]

 db eval {
 CREATE TABLE emails
 (uidl TEXT, status INTEGER)
 }

 db eval {
 CREATE TABLE jobs
 (uidl TEXT, id INTEGER, jobdata TEXT)
 }
} else {
 sqlite3 db "database.db"
}

If the database file does not exist, we'll create the appropriate tables. If the database
exists, we'll assume it already has the proper tables set up. We're creating a table
called emails that keeps unique identifiers of messages we've already parsed and
a table called jobs which keeps track of jobs along with source messages.

As one of the first steps, we open the POP3 connection:

set h [pop3::open -socketcmd tls::socket \
 $hostname $username $password 995]

Now let's fetch the unique identifier information and iterate through it. We'll store a
list of IDs and unique identifiers that we do not know in the idlist variable, which
we'll initialize using an empty string:

set idlist [list]

read all messages and find out which ones we should process
foreach {id uidl} [pop3::uidl $h] {

Following that, we fetch information for this UIDL from our local database and see if
it is not empty:

 set status [lindex [db eval \
 {SELECT status FROM emails WHERE uidl=$uidl} \
] 0]
 if {$status == ""} {

If the status is empty, it means that the entry in the database does not exist— the
database returned 0 items and first element from this list is empty. In this case, we'll
add our message to the list of messages to process. Otherwise, we'll skip it. In both
cases, we'll also print out the status to standard output.

 lappend idlist $id $uidl
 puts "We'll process message $id ($uidl)"
 } else {

Chapter 7

[269]

 # this entry was already processed
 puts "Message $id ($uidl) was already processed\
 and has status $status"
 }

And that finishes our loop as well:

}

Now the idlist variable contains a list of messages that we need to process kept as
id-uidl pairs. We'll iterate through it and fetch the messages:

foreach {id uidl} $idlist {
 puts "Retrieving message $id"
 set message [lindex [pop3::retrieve $h $id] 0]
 if {[catch {
 set token [mime::initialize -string $message]
 } error]} {
 puts "Error while parsing message: $error"
 db eval {
 INSERT INTO emails (uidl, status)
 VALUES($uidl, "ERROR")
 }
 } else {

Our application retrieves a message and tries to parse it. If the parsing fails, we mark
this fact in our database. If not, we proceed to handling the message:

 set attachments [findAttachments $token jobdata.raw]
 set aid 0
 foreach attachment $attachments {
 incr aid
 set jobdata [mime::getbody $attachment]
 db eval {
 INSERT INTO jobs (uidl, id, jobdata)
 VALUES($uidl, $aid, $jobdata)
 }
 }

 set status "FETCHED; COUNT=[llength $attachments]"
 db eval {
 INSERT INTO emails (uidl, status)
 VALUES($uidl, $status)
 }
 mime::finalize $token -subordinates all

Using Common Internet Services

[270]

Once we have the token, we invoke findAttachments procedure. It's described
in the following code, but returns a list of all MIME tokens that are an attachment
and their filename is jobdara.raw. We'll go through this procedure in detail after
finalizing our main part of the application.

Next we need to close our condition and loop, and close the POP3 connection:

 }
}

pop3::close $h

Our helper procedure to find attachments looks like:

proc findAttachments {token filename} {
 set result [list]

 # if it is a multipart node, iterate over children
 # otherwise process this part
 if {[catch {
 set children [mime::getproperty $token parts]
 }]} {
 # getting parts failed - it's a leaf
 # in this case, get Content-ID header
 # and compare it to requested filename
 if {![catch {
 set contentID [mime::getheader \
 $token "Content-ID"]
 }]} {
 # if filename matches Content-ID
 if {$contentID == $filename} {
 lappend result $token
 }
 }
 } else {
 # for multipart/*, we'll iterate over children
 # to see if any of them contains the attachment
 foreach token $children {
 set result [concat $result \
 [findAttachments $token $filename] \
]
 }
 }
 return $result
}

Chapter 7

[271]

What we do here is try to get parts property for the token. If this fails, we proceed
with finding Content-ID header. If this does not fail, and is what we expected to
find, we add this token to results. If this part had children, we iterate through them
and recursively call our procedure again. We also combine results from all of these
calls so that it is possible to send multiple attachments, and/or they can be put in
various parts of the e-mail.

The example in this section is located in the 05pop3andmime
directory in the source code examples for this chapter.

Documentation on pop3 package can be found on the tcllib project website on
SourceForge: http://tcllib.sourceforge.net/doc/pop3.html

Transferring files and data
Transferring files over the Internet is one of the most common things that networked
applications do. In this section, we'll focus on two very popular protocols—
HyperText Transfer Protocol (HTTP) and File Transfer Protocol (FTP). The first one
is used to download websites, images, or other files from the Web and second one is
used to download or upload files. There are subtle differences between the two and
we'll need to go into a bit more detail to understand them.

HTTP is a for retrieving a single item over network. It allows us to retrieve a single
element and is a lightweight protocol. It also allows us to handle large numbers of
requests and is the protocol used for serving websites to web browsers. HTTP is
used for both static files (such as HTML pages, images, downloads, and so on) and
dynamic files (such as PHP or Tcl scripts building pages when users access them).

FTP protocol on the other hand is designed to transfer files over a network.
It features authentication, and offers a lot of features that are specific to file
management—creating directories, renaming and deleting items, listing contents
of a directory, and the idea of a working directory. FTP is also a more heavyweight
protocol and is less commonly used for offering downloads to wide audience.

Resources and uri package
Specifying locations of a resource on the Internet is done by specifying a
URL—Unique Resource Location. It consists of a protocol, an optional username, a
password, a hostname, and a port followed by the path to the resource. For example,
a URL could look like http://wiki.tcl.tk/tcllib

Using Common Internet Services

[272]

Tcl offers the uri package, which is part of Tcllib, and can be used to split and join
URLs from parts. These parts include scheme, user, pwd, host, port, path, query,
and fragment. Not all of these are always present in all types of URLs. The first one
is the only key only present and defines protocol that is used—for example, http and
ftp. Credentials are optional and are specified as user and pwd. The parts host and
port specify the hostname and port to connect to; port can be empty, which means
it is the default port for specified protocol. The location of the resource is specified as
path, and query is an optional part that defines a query sent via the URL (mainly for
http requests); fragment points to a fragment of a page and is also used only for the
HTTP protocol.

Currently, ftp, http, https, file, mailto, and news protocols are supported.

We can split a URL into elements using the uri::split command. It returns one
or more name-value pairs which represent each part. For example, we can do
the following:

set uridata [uri::split "http://wiki.tcl.tk/tcllib"]

foreach name {scheme user pwd host port path query fragment} {
 if {[dict exists $uridata $name]} {
 puts "$name = [dict get $uridata $name]"
 }
}

This will print the following result:

scheme = http
user =
pwd =
host = wiki.tcl.tk
port =
path = tcllib
query =

We can also create a URL by specifying various parts using the uri::join
command. It takes all arguments and parses them as name-value pairs, specifying
parts of the address it should generate. For example:

puts [uri::join \
 scheme http host www.packtpub.com port 80 path books \
]

The preceding code will print out the address http://www.packtpub.com/books.
Please note that port part was skipped, because 80 is the default port for the
HTTP protocol.

Chapter 7

[273]

We can also use the result from splitting and join it back by running:

puts [uri::join {*}[uri::split "http://www.google.com"]]

This will split the address into parts and pass that to the uri::join command—{*}
will cause all elements of the list to be appended as separate arguments, because the
command expects it.

The sample code shown in this section is located in the 06uri
directory in the source code examples for this chapter.

More information about the uri package can be found in its documentation
available at:
http://tcllib.sourceforge.net/doc/uri.html

Using HTTP
HTTP is a stateless protocol that uses a simple request-response message exchange
pattern. This means that whenever a client, such as our application, wants to access a
particular resource, it sends a HTTP request. The server then processes it and sends
back a response, usually being the requested response or information that it could
not be found or an error occurred.

HTTP works by sending a request to the server. A request describes whether we
are getting information or sending data to server, the path to the resource, and the
version of the protocol we're using. A request also consists of several headers, which
are name-value pairs and can either be standard or custom ones. Finally, a request
can also provide data that we are uploading to server.

Retrieving data over HTTP
After receiving and parsing the request, the web server returns the response. The
response consists of a status line, one or more headers, and the body of the response.
After the response is sent, the current connection is either closed or reused for the
next request. However, from the HTTP perspective, each of these requests is treated
independently.

Tcl comes with a http package built-in. This package offers a basic, but complete
HTTP client which can be used to perform both basic and more advanced operations.
The command http::geturl is used to initiate or perform a request and is the
starting point for performing HTTP operations. This command accepts a URL
followed by one or more options.

Using Common Internet Services

[274]

A commonly used option is -binary, which specifies whether the transfer should
be done in binary mode and defaults to false. By default, Tcl does newlines and
encoding conversions for text documents—therefore, if a server sends out some
HTML in UTF-8, Tcl converts that to proper string. If the -binary option is enabled,
this is not performed and all types of documents are retrieved as bytes, not depending
on whether it is a text document or not.

The http::geturl command always returns a token that can be used to get
information and data related to this query. For example, in order to get the
contents of Google's main page, we can simply run:

package require http
set token [http::geturl "http://www.google.com/"]
puts [http::data $token]

The second line receives the request and returns token that we can use later on.
The command http::data returns body of server's response, which we then print
to standard output.

The command http::cleanup should be used after we are done working with
a request. It will clean up all resources used for this request. For example:

http::cleanup $token

We can also save contents of the response directly to any open channel. For example:

set fh [open "google-index.html" w]
set token [http::geturl "http://www.google.com/" -channel $fh]
http::cleanup $token
close $fh

This will cause a response to be written to the specified channel and not stored in
memory. This can be used for downloading large files and/or if you plan to save
the contents of the response to a file.

There are important things that our previous example is missing, for example,
checking for errors. Although the http package will throw an error if the web server
is unreachable, there are cases when a web server will send a response stating that
a resource is unavailable or an error has occurred. In these cases, it is not translated
into an error as this might be the desired response from our application's perspective.

Chapter 7

[275]

We can check the status of handling the request by using the http::status
command. It will return one of the following values:

Status Description
ok Indicates that the HTTP request was completed successfully
eof Indicates that the server closed connection without replying
error Indicates an error

If the status is error, we can also retrieve actual error message using the
http::error command.

HTTP server sends status codes which specify the outcome of processing this
request. We can retrieve the status code using the http::ncode command. Usually,
it is sufficient to check if the code equals 200, which means that the request has been
processed correctly.

The most frequently used status codes are:

Code Description
200 The request has been successfully executed
206 The request has been successfully executed and result is partial content, used to

download parts of a file over HTTP
301 Moved permanently—indicates that resource has been permanently moved to a

new location; response header Location gives new location to resource
302 Moved temporarily—indicates that resource has been temporarily moved to a

new location; response header Location gives new location to resource
401 Unauthorized—indicates that a server has requested the client to authenticate
403 Forbidden—this indicates that access to this resource is forbidden
404 Not found—indicates that a specified resource cannot be found
500 Internal error—indicates that there was a problem serving this request; for

example, because HTTP server configuration is broken or module/script failed

For example, we can print out the status of our request by running:

switch -- [http::status $token] {
 error {
 puts "ERROR: [http::error $token]"
 }
 eof {
 puts "EOF reading response"
 }
 ok {

Using Common Internet Services

[276]

 puts "OK; code: [http::ncode $token]"
 puts "Data:"
 puts [http::data $token]
 }
}

We can also get all headers from an HTTP response by using the http::meta
command. It returns a list of name-value pairs that can be used as dictionaries
or arrays. For example, to get contents of the Location header, we can do
the following:

set code [http::ncode $token]
if {($code == 301) || ($code == 302)} {
 set newURL [dict get [http::meta $token] Location]
 # go to new location
}

The complete example is located in the 07httprequest directory in the
source code examples for this chapter.

Submitting information using GET and POST
We can also use the http package to submit information to a web server—for
automating things such as filling in forms. Data from a form can be formatted using
the http::formatQuery command. It can now be sent in two ways—either as part
of the path in the URL or sending data as separate data. The first case is done using
a GET request and an example is searching using Google, like http://www.google.
com/search?q=tcl —the query is passed after ? character. The other approach is
sending a POST request and the data is sent after the actual request.

POST is used for sending a larger amount of data and usually takes place when
the request is modifying/sending data. GET is usually used for reading information
as it can send smaller amount of data. POST requests are used for sending data,
they can send much larger amount of data and POST requests are not cached by
proxy servers.

For both GET and POST, data is sent as name-value pairs—q=tcl means value for
field q is tcl. Multiple values are separated using & character. Tcl offers a command
for generating such data, that is http::formatQuery. It accepts zero or more
name-value pairs as arguments and formats proper query as an output.

Sending data using GET requires that we append the query to actual URL,
for example:

set query [http::formatQuery q "Tcl Programming"]
set url "http://www.google.com/search?$query"

Chapter 7

[277]

Sending POST data requires passing the data as a -query option to http::geturl.
For example, we can do the following:

set query [http::formatQuery search "tcl programming"]
set url "http://www.packtpub.com/search"
set token [http::geturl $url -query $query]

This will cause a query to be sent as POST and data from -query will be sent.

By default, data is sent as encoded form data, it is also possible to send different
query data. Usually, this is accompanied by sending the appropriate query type to
the server. We can do this by adding the-type flag when sending the query. If a
type is not specified, it defaults to application/x-www-form-urlencoded, which
is the default MIME type for encoded form data. Many applications expecting XML
or JavaScript Object Notaktion (JSON) data require that data sent in XML/JSON is
sent with the appropriate MIME type in the headers of the request.

For example, we can send XML with accompanying data by doing:

http::geturl $url –command onCompleteXMLPost \
 -type "text/xml" \
 -query [$dom asXML]

This will cause the appropriate value for the Content-Type header to be sent in the
query. Details on XML and its handling can be found in Chapter 5 and show how to
read and write documents.

Examples related to basic HTTP functionality are placed in basic.
tcl file in the 07httprequest directory in the source code examples
for this chapter.

By default, http queries are done in a synchronous way, meaning that the http::
geturl command returns after the command has been executed. In many cases, it
is better to use an asynchronous approach, where the command exits instantly, uses
events to process requests, and issues our callback, which is a Tcl command that will
be run when the operation is completed.

The http package also offers advanced features such as passing additional headers
to requests. This can be done by providing both the-timeout and -command options
to the http::geturl command. In this case, the command returns immediately
and returns a token that will be used. Accessing the data should be done from
the command passed to the -command option. In asynchronous requests, http::
geturl might still throw an error, for cases such as "no existing hostname". It is
still recommended to catch such exceptions and handle them appropriately.

Using Common Internet Services

[278]

For example, in order to download the Google page asynchronously, we can do
the following:

if {[catch {
 set token [http::geturl "http://www.google.com/" \
 -timeout 300000 -command doneGet]
} error]} {
 puts stderr "Error while getting URL: $error"
}

Next we can create the command that will be invoked as the callback. It will be run
with an additional parameter—the token of the request. For example, our command,
based on previous examples, can be run as follows:

proc doneGet {token} {
 switch -- [http::status $token] {
 error {
 puts "ERROR: [http::error $token]"
 }
 eof {
 puts "EOF reading response"
 }
 ok {
 puts "OK; code: [http::ncode $token]"
 puts " Size: [http::size $token]"
 puts " Data:"
 puts [http::data $token]
 }
 }
 http::cleanup $token
}

The token can be used in the same way as we used it with synchronous requests.
We are also responsible for cleaning up the token, which is done in the last line
of the example.

Examples related to basic HTTP functionality are located in the
async.tcl file in the 07httprequest directory in the source code
examples for this chapter.

Advanced topics
The package http can also be used for more advanced features such as partial
content downloading, sending cookies, and HTTP-level authorization.

Chapter 7

[279]

The majority of these functions can be carried out using the -headers option passed
to the http::geturl command. This option accepts a list of one or more name-value
pairs. These can be any headers and values, but these should be headers that the
server can understand. For example, we can use it to send cookie values to a site or
authorize over HTTP for sites that use it.

There are two common ways that users are authorized within the Web—at the HTTP
level and using HTML forms and cookies. The first one provides the username and
password information as a HTTP header. The latter uses sending form data and
cookies to track users, and is mainly related to handling cookies properly at the
HTTP level.

For now, we'll focus on HTTP level authorization. A lot of web-based applications
and data are protected using this mechanism. Let's assume we want to retrieve data
from a specified URL. We need to connect to it without providing any credentials,
and at this point, the server should include HTTP status 401. The following code
would be a good start for checking if authorization is needed:

set token [http::geturl $url]
if {[http::status $token] != "ok"} {
 puts stderr "Error while retrieving URL"
 http::cleanup $token
 exit 1
}

if {[http::ncode $token] == 401} {

If this condition is true, we should resend our request. The server will provide the
WWW-Authenticate header in the response that will indicate the type of authentication
and realm, which specifies the descriptive name of the resource we are currently
trying to authenticate to. We can print it out by running:

 set realm [dict get [http::meta $token] \
 "WWW-Authenticate"]
 puts "Authenticate information: $realm"

Next we need to clean up the previous request and send a new one with proper
authentication information. Except for a few cases, the authentication type of Basic
is used by HTTP servers. It requires sending a <username>:<password> string
encoded as base64, preceded by the word Basic. We'll use the package base64
for this along with the base64::encode command:

 package require base64
 set authinfo [base64::encode ${username}:${password}]
 set headers [list Authorization "Basic $authinfo"]

Using Common Internet Services

[280]

The second line contains the Authorization header to be sent to the server, along
with the credentials as base64. Next we're sending a new request by doing:

 set token [http::geturl $url -headers $headers]
 if {[http::status $token] != "ok"} {
 http::cleanup $token
 puts stderr "Error while retrieving URL"
 exit 1
 }

We can then check if our current username and password were correct. If not, then
the status for a new request will also be 401:

if {[http::ncode $token] == 401} {
 puts stderr "Invalid username and/or password"
 http::cleanup $token
 exit 1
}

An example related to basic authorization is located in the auth.tcl
file in the 07httprequest directory in the source code examples for
this chapter.

Cookies in Tcl
An additional feature that headers are useful for is supporting cookies. While the
http package itself does not provide this functionality, it is easy to support this in
the majority of cases. Standards for setting and getting cookies define expiration
dates, and paths and domains that cookies should be valid for. However, in the
majority of code that we write, it is enough to assume that the cookie you're getting
is needed for all subsequent requests.

Cookies work in such a way that HTTP responses from servers may include one or
more Set-Cookie headers. These headers need to be parsed and all cookies should
be passed in the Cookie header. The server might send a response similar to this one:

Set-Cookie: mycookie=TEST0123; path=/
Set-Cookie: i=1; expires=Thu, 27-Oct-2011 11:07:24 GMT; path=/

This causes the cookie mycookie to be set to TEST0123 and i to be set to 1. Each
subsequent request to this server should include the following header:

Cookie: mycookie=TEST0123; i=1

All changes to existing cookies overwrite them and new cookies cause a new value
to be set, which is similar to behavior of arrays and dictionaries in Tcl. Writing code
that handles cookies without taking parameters into account is relatively easy.

Chapter 7

[281]

Let's start by writing a command that processes the HTTP response for cookies. We
define the namespace for our code, the reference variable specified by user, and
iterate over HTTP headers from the provided token:

namespace eval cookies {}

proc cookies::processCookies {varname token} {
 upvar 1 $varname d
 foreach {name value} [http::meta $token] {
 if {[string equal -nocase $name "Set-Cookie"]} {

If the header is Set-Cookie, we process its value by taking part only until the
first occurrence of a semi-colon and separating it into name and value using
regular expressions:

 set value [lindex [split $value ";"] 0]
 if {[regexp "^(.*?)=(.*)\$" $value \
 - cname cvalue]} {
 dict set d $cname $cvalue
 }
 }
 }
}

This will cause the dictionary that is stored in the varname variable to be updated.
Next, in all requests ,we need to pass all cookies. A small function to generate the
appropriate value for the Cookies header would look like:

proc cookies::prepareCookies {var} {
 set rc [list]
 dict for {name value} $var {
 lappend rc "$name=$value"
 }
 return [join $rc "; "]
}

Here we only take each cookie, append it, and join all cookies using a semi-colon
followed by a space. In order to use this to query Tcler's wiki we can do the following:

set c [dict create]
set h [http::geturl http://wiki.tcl.tk/]
cookies::processCookies c $h
http::cleanup $h

set query [http::formatQuery _charset_ utf-8 S cookie]
set h [http::geturl http://wiki.tcl.tk/_/search?$query \
 -headers [list Cookie [cookies::prepareCookies $c]] \
]

Using Common Internet Services

[282]

The first request gets the main page of the Wiki, which causes a cookie to be set. We
need to pass this cookie to the second request in order to be able to perform a search.
In this case, we're searching for the cookie string. Without passing the cookie from
previous request, this site will not allow us to perform the search.

An example related to basic authorization is located in the cookies.tcl
file in the 07httprequest directory in the source code examples for
this chapter.

HTTP and encryption
HTTP can handle both encrypted and unencrypted communication. The default is
not to encrypt the connection, which is in fact http protocol when specifying URLs.
It is also possible to use HTTP over SSL encrypted connection, which is usually
called https.

The Tcl package http allows registering additional protocols to run HTTP on with
the command http::register. It requires that we specify the name of the protocol,
default port, and command that should be invoked to create a socket. This is mainly
used for SSL connections. In order to enable the use of the https protocol, we need
to add the following code to our application:

package require tls
http::register https 443 tls::socket

The tls package provides SSL-enabled sockets to the Tcl language and it provides
the command tls::socket, which is an equivalent of the socket command, except
for enabling SSL for connection. SSL and security is described in more detail in
Chapter 12.

More information about the http package as well as remaining configuration
options can be found in its documentation at:
http://www.tcl.tk/man/tcl8.5/TclCmd/http.htm

Retrieving RSS information
Really Simple Sindication (RSS) is a format for publishing frequently updated
information, such as blog entries, news headlines, audio, and video in a standard
format. An RSS document (often also called a feed or channel) provides a list of
items recently published along with metadata about these items. RSS is provided by
an majority of content providers, such as portals, blog engines, and so on. Even
Packt Publishing has its own RSS feed that we'll use later on in an example.

Chapter 7

[283]

RSS itself is an XML document published over HTTP. This means that using the http
and tdom packages, we can easily retrieve and parse an RSS feed and find out about
recent documents. The RSS standard describes the structure of the XML document,
which we'll learn later. All we need to know is the URL to RSS feed to start with.
Information about the address to the RSS feed is usually stored in the website's
metadata. This as well is standardized and usually looks like this:

<link rel="alternate" type="application/rss+xml" href="/rss.xml"
title="Packt Publishing News" >

The previous example is from Packt Publishing's website. Your browser also
probably supports this and a small icon on the bottom or near address of the page
indicates that an RSS feed is present—clicking on it will go to the RSS feed and allow
you to subscribe to it from your browser and get the address of the actual RSS feed.

Packt Publishing website's RSS feed address is http://www.packtpub.com/rss.xml.
Tcler's Wiki is available at http://wiki.tcl.tk/, and it also has its feed available at:
http://wiki.tcl.tk/rss.xml

We'll start with Tcler's Wiki and its feeds. The feed looks as follows:

<?xml version='1.0'?>
<rss version='0.91'>
 <channel>
 <title>The Tcler's Wiki - Recent Changes</title>
 <link>http://wiki.tcl.tk/</link>
 <description>Recent changes to The Tcler's Wiki</description>
 <item>
 <title>tDOM</title>
 <link>http://wiki.tcl.tk/1948</link>
 <pubDate>Wed, 14 Apr 2010 01:05:27 GMT</pubDate>
 <description>Modified by CMcC (898 characters)
(actual description of the Wiki change goes here)
 </description>
 </item>
 <item>
 <title>WISH User Help</title>
 <link>http://wiki.tcl.tk/20914</link>
 <pubDate>Wed, 14 Apr 2010 00:59:10 GMT</pubDate>
 <description>Modified by pa_mcclamrock (194 characters)
(actual description of the Wiki change goes here)
 </description>
 </item>
 </channel>
</rss>

Using Common Internet Services

[284]

In order to read RSS, we need to find the <rss> tag and iterate over all <channel>
tags. The first one includes information about the RSS feed and each <channel>
instance can describe a different channel. It is possible that one RSS feed describes
multiple channels, although usually an RSS feed covers only one channel. Each
channel has a title, link, and list of items.

In order to get all items in a channel, we need to iterate over the <item> tags inside
the channel. Each item describes a single element in a feed, such as one entry on
a blog, in this case, one change in the wiki. Each item has a title, link, publication
date, and description. Many RSS feeds provide additional information, which can
be checked and handled properly if needed.

We can retrieve the RSS by simply doing:

set token [http::geturl "http://wiki.tcl.tk/rss.xml"]
if {[http::status $token] != "ok"} {
 puts "Error retrieving RSS file"
 exit 1
}
set data [http::data $token]
http::cleanup $token

We now have the RSS document in the data variable, and we can parse it
using tdom :

set dom [dom parse $data]

The tdom package is described in more detail in Chapter 5.

Now we can iterate over each channel by doing:

foreach channel [$dom selectNodes "rss/channel"] {

This will use the selectNodes method to find all channel tags. We can then find
the <title> tag in our channel and use asText method for that node to get title
of current channel and print it:

 set nodes [$channel selectNodes "title"]
 set title [[lindex $nodes 0] asText]

 puts "Channel \"$title\":"

We can now iterate over all items for a channel in similar way:

 foreach item [$channel selectNodes "item"] {
 set nodes [$item selectNodes "link"]
 set link [[lindex $nodes 0] asText]

 set nodes [$item selectNodes "title"]

Chapter 7

[285]

 set title [[lindex $nodes 0] asText]

 puts "- \[$link\] $title"
 }

We first use the selectNodes method to find <item> tags, iterate over them, get the
link and title by finding proper nodes and using the asText method. We then print
information on each element.

Finally we need to close the loop iterating over channels:

}

The source code in this section is located in the rss-basic.tcl file in
the 08rss directory in the source code examples for this chapter.

In many cases our applications will need to check and retrieve RSS periodically. In
such cases, it is a good idea to cache the RSS on disk or in memory. If our application
offers a web interface to consolidate multiple RSS channels or filter them to only
include specified items, this would be the best approach.

In order to do this, all we need to do is change how our DOM tree is created. We'll
start by setting URL of the feed and name of the file to store it:

set url "http://www.packtpub.com/rss.xml"
set filename "packtpub-rss.xml"

Next we can check if the local copy exists and if it was created in the last 30 minutes
by doing:

if {(![file exists $filename]) ||
 ([file mtime $filename] < [clock scan "-30 minutes"])} {

This checks whether the file does not exist or if it has been created earlier than 30
minutes ago. If any of these conditions are met, then we download the RSS by doing:

 set token [http::geturl $url -binary true]

 if {[http::status $token] != "ok"} {
 puts "Error retrieving RSS file"
 exit 1
 }

 set fh [open $filename w]
 fconfigure $fh -translation binary
 puts $fh [http::data $token]
 close $fh
 http::cleanup $token
}

Using Common Internet Services

[286]

This is similar to previous example and to the HTTP examples shown earlier. The
main difference is that we're downloading the file in binary mode. This prevents
the http package from converting the file's encoding.

We will use the tDOM::xmlReadFile command to read the RSS. This command
is part of the tdom package and handles encoding issues when reading files
such as detecting encoding. It also handles the Byte Order Mark (BOM) markers
that many RSS feeds have. This is a set of bytes at beginning of XML file that
specifies encoding of the file and is described in more detail at:
http://en.wikipedia.org/wiki/Byte_order_mark

In order to read and parse the file, all we need to do is:

set dom [dom parse [tDOM::xmlReadFile $filename]]

After that, we can use the same set of iterations as previously to list all entries in the
RSS feed:

foreach channel [$dom selectNodes "rss/channel"] {
 set nodes [$channel selectNodes "title"]
 set title [[lindex $nodes 0] asText]

 puts "Channel \"$title\":"
 foreach item [$channel selectNodes "item"] {
 set nodes [$item selectNodes "link"]
 set link [[lindex $nodes 0] asText]

 set nodes [$item selectNodes "title"]
 set title [[lindex $nodes 0] asText]

 puts "- \[$link\] $title"
 }
}

The source code in this section is located in the rss-file.tcl file in the
08rss directory in the source code examples for this chapter.

Using FTP
The File Transfer Protocol (FTP) is a stateful protocol for transferring files. It
requires logging in, keeps the connection alive across transfers, and is not a
lightweight protocol. It is mainly used for retrieving or transferring multiple files.

Tcl has a package called ftp, which is a part of Tcllib, and can be used to download
and upload files over FTP. It offers functionality for connecting, getting file
information, and uploading and downloading files.

Chapter 7

[287]

Establishing connections
The command ftp::Open can be used to set up a connection to an FTP server.
It accepts the server name, username, and password followed by any additional
options we might want to provide. It returns a token that we can later use for all
other operations.

The package ftp differs from the majority of Tcl packages in that its
commands start with uppercase, such as Open instead of open. This
is not common in the Tcl world, but is the case for the FTP package
for historical reasons.

Anonymous FTP connections require specifying anonymous as the username and
the e-mail as the password. For example, in order to open an anonymous connection
to ftp.tcl.tk, we can do:

set token [ftp::Open ftp.tcl.tk anonymous my@email.com]

An FTP session has a dedicated connection to the server. For each additional FTP
transfer such as listing files, downloading and uploading, additional connections are
made with the server for the purpose of each transfer. The FTP protocol uses two
modes for communication—active and passive. Active connections work in such a
way that FTP server connects to its client for sending data, passive connections work
the opposite way, the client connects to FTP server.

While the default for ftp package is to use active mode, it might be necessary to
use passive mode if our computer does not have a public IP address. Passive mode
is also the default for majority of clients as it works regardless of having a public
IP address, so it is a good idea to use passive mode whenever possible. Specifying
the mode can be done using the -mode flag appended to the ftp::Open command.
Acceptable values are active and passive. For example:

set token [ftp::Open ftp.tcl.tk \
 anonymous my@email.com -mode passive]

Retrieving files
Another important aspect of FTP we should be aware of is transfer type. Due to
how different operating systems store information, FTP differentiates between text
(ASCII) and binary files. We can do this using the ftp::Type command. It accepts
a token as the first argument and the transfer type as additional argument. It can be
either ascii or binary. To set our transfer type to binary, we can do:

ftp::Type $token binary

Using Common Internet Services

[288]

We can now retrieve files over FTP. We can use the command ftp::Get for this
purpose. It works in different modes depending on the arguments supplied. It first
accepts the token of the connection, followed by the path to the remote file. We run this
command without any arguments—in this case, the file will be downloaded with the
same name as the remote path. If we specify a local filename as the next argument, it
will be downloaded as that name. Instead, we can also specify -variable or -channel
options, followed by a value. This will cause file data to be downloaded to a variable
or saved in a specified channel. In case of a channel, it will not be closed after file
is retrieved.

For example, we can retrieve remote file tcl8.5.7-src.tar.gz from
pub/tcl/tcl8_5 remote directory as same file in local filesystem by doing:

ftp::Get "pub/tcl/tcl8_5/tcl8.5.7-src.tar.gz" \
 "tcl8.5.7-src.tar.gz"

Similarly, we can download a file to variable by doing:

ftp::Get "pub/tcl/tcl8_5/tcl8.5.7-src.tar.gz" \
 -variable fileContents

Please note that due to how this is implemented, the variable name is global and not
local to the code invoking ftp::Get command. It is best to use namespace-based
variables or object variables for this.

We can also resume an interrupted transfer by using the ftp::Reget command. It
requires that we specify a token, a remote filename and, optionally, a local filename.
If a local name is not specified, it is assumed to be the same as remote name. We can
also specify offsets at which to begin and end download at, but by default, Tcl will
download remaining part of the file.

For example, in order to complete transfer of tcl8.5.7-src.tar.gz file, we can
simply invoke:

ftp::Reget $token tcl8.5.7-src.tar.gz

Uploading files
Similarly, there are commands for putting and appending to remote files. The
command ftp::Put can be used to upload a file, while ftp::Append will append
data to an already existing file, which can be used to continue an interrupted
transfer. In both cases, the syntax is the same— the first argument is the token of the
FTP session to use, followed by either the local filename, -data or -channel options.
In the first case only a filename is needed, in the second option actual data or channel
to use needs to be specified. The last argument is the remote filename to use. If the
remote filename is missing, it is assumed to be the same as the local one.

Chapter 7

[289]

For example, to upload a file, we can do:

ftp::Put my-logs.tar.gz

In order to append data to a file,we can do:

ftp::Append –data "Some text\n" remote-logs.txt

When downloading or uploading data, it will be treated as binary data—that is, if
we are downloading text, we can use the encoding command to convert it from/to
proper encoding.

Listing files and directories
FTP also introduces the concept of the current directory for a specified FTP session.
We can change the directory by invoking the ftp::Cd command and retrieve the
current directory by invoking ftp::Pwd. The first command expects the FTP session
token and the path to the directory, which can be relative or absolute. The second
command always returns an absolute path, which can be used when comparing
and/or analyzing current location.

For example:
puts "Changing directory"
ftp::Cd $token "pub/tcl/tcl8_5"
puts "Changed to [ftp::Pwd $token]"

We can also retrieve information about remote files. The command ftp::FileSize
returns size of a file in bytes. The command ftp::ModTime returns the time when
a file was last modified, as Unix time. Both commands require a token to the FTP
session and a filename. For example:

set size [ftp::FileSize $token tcl8.5.7-src.tar.gz]
puts "tcl8.5.7-src.tar.gz is $size bytes"
set mtime [ftp::ModTime $token tcl8.5.7-src.tar.gz]
set mtext [clock format $mtime]
puts "tcl8.5.7-src.tar.gz last modified on $mtext"

We can also list the contents of a directory. The command ftp::NList can be used
to list all files and directories in the current or specified directory. It accepts a token
to the session and we can also provide directory to list. If this is not specified, listing
of current directory is performed. This command returns a list of all items found in a
directory, each element of a list being the name of the file or directory.

For example:
foreach file [ftp::NList $token] {
 puts $file
}

Using Common Internet Services

[290]

The command ftp::List returns a long listing of a directory. This returns a list of
items, where each item is represented by a line, similar to output of ls -l command
in Unix. For example:

foreach line [ftp::List $token] {
 puts $line
}

The preceding code would print out the following line, among others:

-rw-r--r-- 1 ftp ftp 4421720 Apr 15 2009 tcl8.5.7-src.tar.gz

While this provides much more information, we need additional code to parse such
lines. Let's start with creating a command for this:

proc parseListLine {line} {

First we try to search for filenames with spaces and remove symbolic link definitions
(which are in the form of filename -> actual_file it points to).

 if {[regexp {([^]|[^0-9])+$} $line name]} {
 # Check for links
 if {[set idx [string first " -> " $name]] != -1} {
 incr idx -1
 set name [string range $name 0 $idx]
 }
 }

Following that we remove any multiple spaces and create a list of items by splitting
the resulting string by spaces:

 regsub -all "\[\t\]+" $line " " line
 set items [split $line " "]

If we did not match the name with previous attempt, we assume that filename is the
last element:

 if {![info exists name]} {set name [lindex $items end]}

We then try to get the permissions and file size information, if possible:

 set perm [lindex $items 0]
 if {[string is integer [lindex $items 4]]} {
 set size [lindex $items 4]
 } else {
 lappend result ""
 }

Chapter 7

[291]

Based on the permissions we've extracted, we take the first character and gather the
actual file type based on it:

 switch -- [string index $perm 0] {
 d {
 set type "directory"
 }
 c - b {
 set type "device"
 }
 l {
 set type "symlink"
 }
 default {
 set type "file"
 }
 }

We then return a list that consists of the filename, type, size, and permissions:

 return [list $name $type $size $perm]
}

This code is based on ftp.tcl from the tclvfs package, which is licensed under the
BSD license. The package is available at:
http://sourceforge.net/projects/tclvfs/

We can then test it in the following way:

foreach line [ftp::List $token] {
 puts "\nOriginal line: $line"
 lassign [parseListLine $line] \
 name type size perm
 puts "Filename '$name' ($type), size $size, $perm"
}

In addition to this, we can also modify remote filesystem contents. The command
ftp::MkDir can be used to create a directory. It expects a token to the session as the
first argument and the name of the directory to create as the second argument.

The command ftp::Rename can be used to rename a file or directory. It requires a
token of the FTP session, and the old and new names.

The commands ftp::RmDir and ftp::Delete can be used to delete a directory or
file, respectively. Both accept token of the FTP session and name of the directory or
file to delete.

Using Common Internet Services

[292]

Closing a connection to an FTP server can be done using the ftp::Close command,
specifying token of the FTP session. For example:

ftp::Close $token

The source code in this section is located in the 09ftp directory in the
source code examples for this chapter.

More information about the ftp package as well as the remaining configuration
options can be found in its documentation in SourceForge project at:
http://tcllib.sourceforge.net/doc/ftp.html

Summary
Tcl can communicate with applications and devices using a variety of protocols
and talk to different types of hardware—embedded devices, routers, desktops,
and servers.

We can use e-mail to communicate with users and/or applications. Tcl allows us to
send and retrieve e-mails. It also offers mechanisms for parsing and building MIME
messages that include support for attachments, inlined images, multiple document
types, and different encoding systems.

We can use Tcl to transfer files over FTP and HTTP. We can use this to retrieve
information, communicate with server part of our application, download updates,
upload results as well as many other operations. We can also automate web-based
operations using HTTP client.

In this chapter, we have learned how to:

Send e-mails from Tcl
Build e-mails containing HTML and plain text message, attachments, and
inlined images
Retrieve, parse, and process e-mail messages
Get data over HTTP
Read RSS feeds
Upload and download files over FTP

The next chapter talks about some of additional network protocols and how they
can be used from Tcl. It describes how to query for DNS information, and retrieve
the current date and time from remote servers.

•
•

•
•
•
•

Using Additional Internet
Services

By now we know that Tcl has the functionality to create networked applications. We
also know how to build simple client-server communication functionality. However,
as with any programming language, being able to plug into existing protocols and
communicating using standards that other systems are using is very important. This
chapter talks about various standards, how Tcl fits into these (technologies), and how
to use Tcl for various types of protocols and data encodings.

We will also talk about communication with users using e-mail. We'll start with
sending simple e-mails, followed by learning how to send attachments and multipart
types. Using this we'll show how to send and receive e-mails in order to do tasks
such as informing users and/or customers. We'll also show how to read e-mails,
how to parse them and how simple mechanisms can be built to create an automated
e-mail management system.

This chapter also talks about many other protocols that we can use Tcl with.
We'll talk about using Lightweight Directory Access Protocol (LDAP) to look
up information and/or authenticate users, manually querying host names and
time servers.

We'll also show Tcl's comm protocol, which is an RPC mechanism that can be used
to invoke remote procedures on same or different machines. We'll show how this can
be used both for running commands remotely and locally. We'll also show how we
can introduce basic security features and how Tcl can be made to offer limited access
to commands.

When writing our applications, it is essential to remember that there are many cases
where all network-related functions may throw errors—a network can be down, the
server we are communicating with might not be responding or may prevent us from
gaining access due to invalid credentials, misconfiguration, or some other reason.

Using Additional Internet Services

[294]

At all stages of writing an application, you should remember to make sure that you
handle such errors properly. This is especially important for networked applications.
Packages for handling network communication take care of catching such errors. Our
application also needs to handle this properly and clean up all resources, inform the
user or create a log of such errors—and when it makes sense, the application should
retry communication periodically.

Also, when performing checks of any data retrieved from remote systems, we should
check if all the conditions are satisfied instead of checking for known problems.
For example, we should check if the status is one of the acceptable ones instead of
checking if the status is a known error status. Troubleshooting Tcl applications and
more recommendations for making applications error prone are described in more
details in Chapter 4, Troubleshooting Tcl Applications .

Checking DNS
 Tcl can be used to query Domain Name Servers using the dns package. This package
allows us to query for various domain-related information. The package is an
implementation of the DNS protocol client and it uses the DNS servers configured
on the system by default. Although, it can also be configured to use different
name servers.

The main command for querying DNS is dns::resolve, which returns a token
that can then be used to get results. This command should be invoked with the
query as the first argument and all options appended after it. The query can have
multiple formats—the first one being the hostname. It can also be specified as
dns:<hostname> or dns://<servername>/<hostname> where servername is
the name of DNS server sent to the query.

The result from a query can be multiple servers. For example, in order to check the
IP addresses of www.google.com, we can do the following:

package require dns

set token [dns::resolve "www.google.com"]

As DNS queries are always asynchronous, we should now wait for the query
to finish. The dns::wait command can be run to achieve this and accepts one
argument, which is the token that was returned by dns::resolve:

dns::wait $token

Chapter 8

[295]

 It is best to check whether the query has worked or not. Similar to the http package,
the dns::status command is used for this. The status can be ok, error, timeout,
or eof. For errors, the actual error message can be retrieved using the dns::error
command. . For example, we can check if DNS query succeeded by doing:

if {[dns::status $token] != "ok"} {
 puts "Problem querying DNS"
 exit 1
}

Now we can retrieve IP addresses from the query. We can do this using the
dns::address command:

set iplist [dns::address $token]
puts "Google.com IP addresses: [join $iplist ", "]."

Finally, we need to clean all the information related to this query by running:

dns::cleanup $token

Depending on query types, the results can be retrieved using different commands:

dns::name—for queries that return hostnames.
dns::address—for queries that return addresses.
dns::cname—for queries that return canonical names.
All these commands return a list of results with zero or more entries. The
command dns::result can be used to retrieve raw results as Tcl list. In this
case each element is a sublist with one or more name-value pairs that can
then used for dict command and/or array set.

For example, we can also query DNS servers that serve the google.com domain
by doing:

set token [dns::resolve "google.com" -type NS]
dns::wait $token
if {[dns::status $token] == "ok"} {
 puts "DNS servers: [join [dns::name $token] ", "]."
}

There are multiple types of queries that can be performed and they map to DNS
query types.

•

•

•

Using Additional Internet Services

[296]

Below is a table of commonly used query types:

Type Result type Comment
A dns::address IP addresses for specified hostname
PTR dns::name Reverse DNS (host name from IP address)
NS dns::name Name servers that should be asked about

specific domains
MX dns::name Mail servers that should be used when delivering an

e-mail to specified domain; each server specified as
<priority> <servername>
where lower priority indicates higher precedence

For example, in order to list the mail servers for the gmail.com domain, we can do
the following:

set token [dns::resolve "gmail.com" -type MX]
dns::wait $token
if {[dns::status $token] == "ok"} {
 set mxlist [dns::name $token]
 set mxlist [lsort -index 0 -integer $mxlist]
 puts "MX servers:\n[join $mxlist \n]"
 puts "--"
}

After retrieving the results we can sort them. We are using the fact that the format
of MX definitions can be treated as Tcl sublist. We tell lsort to sort the list, treating
each element as a sublist and compare using the first element of this sublist,
comparing items as integers. Finally, we join the list with each entry being a separate
line and print it out.

Using callbacks
By default, DNS queries are asynchronous and we used dns::wait to wait for the
results. In order to perform queries using callbacks, we can use the -command option
from dns::resolve command. Command is specified as a value for this parameter,
Callbacks described will be run with a DNS token appended as additional argument
after the query has been performed as specified.

Chapter 8

[297]

For example, from our previous example we know the IP addresses of all hosts
that were resolved for www.google.com. We can now query what names those
IP addresses resolve to by running:

set counter [llength $googleiplist]

foreach ip $iplist {
 dns::resolve "dns:$ip" \
 -type PTR \
 -command [list onResolveDone $ip]
}

vwait done

This will cause the onResolveDone command to be run after each IP address is
resolved. We've also set counter variable to track how many queries are left—initially
being number of IP addresses. The final line enters an event loop in order to avoid
exiting the application before our queries are completed.

The command we're invoking will print out the result, decrease the counter, and if it
was the last query, exit:

proc onResolveDone {ip token} {
 global counter
 set name [dns::name $token]
 if {[dns::status $token] == "ok"} {
 puts "$ip resolves do $name"
 } else {
 puts "Failed to resolve $ip"
 }
 dns::cleanup $name
 incr counter -1
 if {$counter == 0} {exit 0}
}

Examples of querying DNS in Tcl are located in the 01dns directory in the
source code examples for this chapter.

More information about the dns package, as well as the remaining configuration
options can be found in its documentation at the package's SourceForge project at:
http://tcllib.sourceforge.net/doc/dns.html

Using Additional Internet Services

[298]

Getting the current date and time
Tcl offers time package that can be used to query current time using either official
servers for providing it or local servers within our network.

One of the reasons is that applications that operate over the network need to know
and use the current time. For example, if multiple machines register events and/
or data updates based on the time they occurred, if their system clocks are not
synchronized, events might be reported out of order.

In majority of cases the system clock is synchronized so all applications use the
correct time, but in some cases it might only be possible for the application to
synchronize its time and handle it properly whenever sending a time.

The time package offers similar commands to dns and http ones. The query can be
run using the time::gettime and time::getsntp commands. The first command
queries the time using the Network Time Protocol (NTP) and second one uses the
Simple Network Time Protocol (SNTP), which is a simplified version of NTP. The
majority of servers on the Internet use SNTP.

Both commands take the time server as the first argument. Additional options can
be specified before the time server. Both commands also return a token that can be
used for invoking other commands to get information and/or finalize the query. By
default it works in synchronous mode, which means that the commands will exit
after the time is retrieved or a timeout occurs. For example:

package require time

set token [time::getsntp pool.ntp.org]

This will query the time from pool.ntp.org. This hostname is a pool of all publicly
available time servers and is updated dynamically, it should always point to a valid
time server on the Internet. These servers serve the SNTP protocol, which is why
we're using time::getsntp command. Details about publicly available time servers
and the project can be found on its home page at: http://www.pool.ntp.org/.

Next we should verify if an error has occurred. We can use the time::status
command which returns status of the query. The status can be one of ok, error,
timeout, or eof. For errors the actual error message can be retrieved using the
time::error command. For example:

if {[time::status $token] != "ok"} {
 puts "Error while retrieving time"
 exit 1
}

Chapter 8

[299]

The final step is to clean up our request. This can be done by invoking
time::cleanup command, which takes token as its only argument. We can then
show both the local and the remote time and print out both along with the difference
between them. Getting the time from the request can be done with time::unixtime
command, which accepts a token as an argument and returns a Unix timestamp,
which is the same as the clock command it operates with. For example:

time::cleanup $token

set remoteclock [time::unixtime $token]
set localclock [clock seconds]
set diff [expr {$remoteclock-$localclock}]

puts "Local time: [clock format $localclock]"
puts "Remote time: [clock format $remoteclock]"
puts "Difference: $diff secons(s)"

It is also possible to use the time package in an asynchronous way. We can provide
-command option and this command will be run whenever a query finishes and will
have token appended as argument, similar to dns and http commands. For example:

time::getsntp -command onGetDone pool.ntp.org

This will cause the command to exit instantly and call the onGetDone command as
soon as the query is completed. Our command can then use the token to parse the
time, for example:

proc onGetDone {token} {
 if {[time::status $token] != "ok"} {
 puts "Error while retrieving time"
 }
 set time [clock format [time::unixtime $token]]
 time::cleanup $token
 puts "Remote time retrieved: $time"
}

This command will work similarly to the previous example—it will check the status
of the query. If there was a problem, we print out an error message. If everything
went okay, we will print out the current time and exit.

An example of synchronizing the clock periodically is located in the
main.tcl file in the 02time directory in the source code examples
for this chapter.

Using Additional Internet Services

[300]

As mentioned earlier, just retrieving the time might not be very useful for our
application. Usually we want to make sure that all the time and date information
we're using is based on the same time, retrieved periodically. We can create a
procedure that periodically queries the time and stores the difference between
the local clock and the remote server. Let's start with defining the namespace and
creating the procedure:

package require time

namespace eval centraltime {}

proc centraltime::periodicUpdate {} {
 variable centraltimediff
 if {[catch {

We'll store the difference in the centraltimediff variable, which is referenced in
the first line of the command. We'll then run the entire retrieval process in a catch
to handle any errors. We can now proceed with retrieving information:

 set token [time::getsntp pool.ntp.org]
 if {[time::status $token] != "ok"} {
 puts stderr "Error synchronizing time"
 } else {
 set remote [time::unixtime $token]
 set localclock [clock seconds]
 set centraltimediff [expr {$remote—$localclock}]
 }

We're retrieving the current time over SNTP and if it succeeds, we store difference
between the remote and local clock in our variable. We can then finalize our catch
statement, clean up our request, and reschedule the next check for 10 minutes later:

 } error]} {
 puts stderr "Error while synchronizing time: $error"
 }
 catch {time::cleanup $token}
 after 600000 centraltime::periodicUpdate
}

We now have a function that will try to query the time server, store the time
difference if it succeeded, and reschedule the next check. We can also write a
function that will return expected current time:

proc centraltime::getCorrectTime {} {
 variable centraltimediff
 set result [clock seconds]

Chapter 8

[301]

 if {[info exists centraltimediff]} {
 incr result $centraltimediff
 }
 return $result
}

This command takes the current clock time, and if we know the last offset when
comparing the local and remote time, it applies the difference. We can use this as
replacement for the clock seconds command and get the time that we expect
other systems we communicate with to have.

An example of synchronizing the clock periodically is located in
the periodicsync.tcl file in the 02time directory in the source
code examples for this chapter.

More information about the time package as well as the remaining configuration
options can be found in its documentation at the package's SourceForge project page:
http://tcllib.sourceforge.net/doc/ntp_time.html.

Using LDAP from Tcl
Lightweight Directory Access Protocol (LDAP) can be used to retrieve and/or
modify a directory, in this case a directory is understood as a set of objects that are
organized in hierarchical way and have attributes, such as directory of users. LDAP
allows us to access this directory, query it, and modify certain attributes, based on
the level of privileges we have.

Often, LDAP is deployed in larger companies to provide centralized information
about users, along with their authentication details. This allows applications that
can work using LDAP to authenticate users and/or get additional information
about users.

LDAP operates on standardized attribute names and same names are used for the
same values in different LDAP implementations. For example:

o stands for organization
ou means organization unit
cn is canonical name
c is country

For contact information, these are mail, telephoneNumber, mobile among others.
Usually the best way to learn about the available fields is to retrieve a list of all
available fields for particular entry/entries and print them.

•

•

•

•

Using Additional Internet Services

[302]

The Tcl package ldap offers the functionality to query information over LDAP.
Similar to other protocol related packages, we start off by connecting to a service. We
can use the commands ldap::connect or ldap::secure_connect for this. The first
command connects over an unencrypted connection and the second connects using
SSL. Both commands require a hostname as the first argument. Specifying a port as
the second argument is optional and usually not needed.

For example:

set s [ldap::connect ldap.itd.umich.edu]

In order to query information we can use ldap::search command which returns
a list of all matching items. It accepts the following arguments:

The first argument is the handle to the LDAP session
The second is base object to query on
The third argument specified filter string
The fourth argument specifies list of attributes to retrieve – or an empty list
to retrieve all arguments.

Both the base object and filter string are specified in the form of name=value
separated by a comma, such as o=University of Michigan,c=US. This means
the organization name is University of Michigan and the country US.

For example we can perform a simple query similar to:

set base "o=University of Michigan,c=US"
set query "cn=*test*"

foreach item [ldap::search $s $base $query {}] {
 foreach {name value} [lindex $item 1] {
 puts "$name: [join $value ", "]"
 }
 puts ""
}

Each search result is a list that contains two elements: first one is a distinguished
name, which can be used to uniquely identify an object. It can be in the form of:

uid=username,c=US,o=University of Michigan

Second item is a list of name-value pairs, where name is the attribute name and value
is a list of values for this attribute. For example, if a user has 2 telephone numbers
which can be used to reach him/her, the value for the telephoneNumber attribute
would be a list of 2 items. For a single e-mail address, the value for the mail attribute
would be a one-element list.

•
•
•
•

Chapter 8

[303]

Closing the connection can be done using ldap::disconnect command, regardless
of whether it was set up over SSL or not. For example:

ldap::disconnect $s

LDAP allows users to authenticate themselves in order to perform various
operations. We can do this by invoking ldap::bind command. It requires that we
specify a handle to the connection, distinguish the name of the user to authenticate
and password to authenticate against. It authentication fails, an error is thrown. For
example we can log in by doing:

set dn " uid=username,c=US,o=University of Michigan"
set password "secret"
ldap::bind $s $dn $password

This might be needed before modifying, adding, or deleting objects.

Authenticating users over LDAP
Often, ldap::bind is used to authenticate users. However, since users are often asked
to type in other fields, such as e-mail, this needs a bit more complex. A typical example
is that authentication is based on user e-mail, since it uniquely identifies a user.

Let's write a generic command that does an ldap::search first, makes sure that it
gets a distinguished name for this user, and then authenticates him/her. We start
by running a query:

proc authenticateLDAP {s base query password} {
 set results [ldap::search $s $base $query {cn}]

We only retrieve cn field to reduce network and server resource usage.

We then need to make sure that exactly one item was found. If this was not the case,
the result is same as if the authentication failed:

 if {[llength $results] != 1} {
 # Multiple or no results found
 catch {ldap::disconnect $s}
 return false
 }

 set dn [lindex $results 0 0]

Using Additional Internet Services

[304]

If we got a single result, we get the distinguished name, which is the first element
of the first result. Next we try to authenticate and if the authentication fails,
report a failure:

 if {[catch {ldap::bind $s $dn $password}]} {
 catch {ldap::disconnect $s}
 return false
 } else {
 catch {ldap::disconnect $s}
 return true
 }
}

In all cases we've also disconnected the LDAP connection. Usually base is a
constant defining pool of objects (usually users) that we will be authenticating
against. The value for query is usually a combination of user input and a constant
value, for example, mail=<what the user specified>.

As users can specify any string, we need to make sure that it gets properly escaped.
LDAP standard specifies that backslash (\) character is used for escaping various
characters. Therefore, we can write a small command that escapes text
for LDAP:

proc escapeLDAP {str} {
 return [string map [list \
 "=" "\\=" " " "\\ " \
 "," "\\," "+" "\\+" \
 "+" "*" "\"" "\\\"" \
] $str]
}

This way if a user specifies *, we'll escape it to * which LDAP will treat, literally, as an
asterisk, not as wildcard matching. Next we can use such functionality to authenticate
users by asking for an e-mail and a password, and performing authentication:

puts "Enter your e-mail address:"
gets stdin mail

puts "Enter your password:"
gets stdin password

set s [ldap::connect ldap.itd.umich.edu]

set base "o=University of Michigan,c=US"
set query "mail=[escapeLDAP $mail]"

puts [authenticateLDAP $s $base $query $password]

Chapter 8

[305]

For the simplicity of the example we ask users to provide their username and
password using the gets command, which reads a line from standard input.
Usually this is done over a Tk or web based form.

Modifying information in LDAP
We can add items into LDAP by using the ldap::add and ldap::addMulti
commands. Both accept a handle as the first argument, followed by a distinguished
name of the new item and followed by a list of name-value pairs for attributes this
object should have.

The command ldap::addMulti treats each value as a list of actual values to add,
similar to what ldap::search returns whereas ldap::add treats the name-value
pair as specifying the actual value to add. The command ldap::addMulti is
the preferred way to add items to LDAP and using it makes LDAP related data
management in Tcl more consistent.

For example, the following command will cause the same entry to be added:

set dn "uid=newuser,ou=People,o=University of Michigan,c=US"
ldap::add $handle $dn {
 objectClass OpenLDAPperson
 cn {New User}
 uid newuser
 telephoneNumber 12345678
 telephoneNumber 12345679
}

ldap::addMulti $handle $dn {
 objectClass {OpenLDAPperson}
 cn {{New User}}
 uid {newuser}
 telephoneNumber {12345678 12345679}
}

The difference is that with ldap::addMulti all items need to be created as one
element list. Also, items that have multiple values are specified as multiple items
for ldap::add and as single list with multiple elements for ldap::addMulti.

Modifying existing objects can be done using ldap::modify and ldap::modifyMulti
commands. The difference is the same as between ldap::add and ldap::addMulti in
how attributes are passed, except that for ldap::modify it is not possible to change the
attribute to contain multiple values – it is always replaced with a single value.

Using Additional Internet Services

[306]

Both commands accept a handle as the first argument, followed by a distinguished
name of an element. The third argument is a list of name-value pairs with attributes
to replace. Specifying the attribute that was not previously set for this object will
set it to a new value, specifying an empty list of values will cause an attribute to be
removed if it was previously set. For example, in order to change phone number and
add mobile phone we can do:

ldap::modifyMulti $handle $dn \
 [list telephoneNumber {87654321} mobile {74201234}]

We can also specify a name-value pairs list of items to delete as fourth argument and
name-value pairs list of items to add as fifth argument. For example, to delete both
phone numbers we can do:

ldap::modifyMulti $handle $dn {} \
 [list mobile {} telephoneNumber {}]

Please note that ldap package needs name-value pairs for list of attributes to delete.
We can also add a new mobile phone number by doing:

ldap::modifyMulti $handle $dn {} \
 {} [list mobile {74201235]]

If we'll need to change a distinguished name of an object, we can do this using
ldap::modifyDN command. It accepts a handle to the LDAP connection, the
current distinguished name, and a description of changes to perform. For example:

ldap::modifyDN $handle $dn "uid=testuser"

This will cause uid part of the distinguished name to be changed to testuser while
preserving other attributes' values.

The command ldap::modifyDN can also take two more arguments. The first one
is whether to delete an old entry, if this is set to true, which is the default, this
operation is a move operation. If it is set to false, it will cause a copy of the current
object to be created. The second argument specifies a new base object. This can be
used to relocate objects to different branches of the object hierarchy.

For example, to create a copy of our user assigned to the UK we can do:

ldap::modifyDN $handle $dn "uid=newuser" false \
 "ou=People,o=University of Michigan,c=UK"

Chapter 8

[307]

Similarly we can also delete objects using the ldap::delete command. This
command takes a handle to the session and distinguished name as its arguments and
deletes an item. It throws an error if a specified object does not exist. For example, in
order to delete an object we can do:

ldap::delete $handle $dn

Examples of querying DNS in Tcl is located in the 03ldap directory in the
source code examples for this chapter.

More information about the ldap package as well as the remaining configuration
options can be found in its documentation on SourceForge project:
http://tcllib.sourceforge.net/doc/ldap.html.

Communicating with Tcl applications
Often, our application needs to be able to accept commands from a local and/or
remote application or troubleshooting utility. In many cases it is enough to set up
a service that will accept connections and evaluate commands sent over them.

We can do this by using the comm package that offers both client and server
functionality. This package allows many use cases – from a simple server that
evaluates all commands to a system that allows only certain tasks to be performed.
This package uses TCP connections so it is possible to handle both local and remote
connections. However, it is configurable whether connections from other computers
are allowed.

Using a comm package we can also connect to our application from applications
such as TclDevKit inspector from ActiveState, which can help in troubleshooting
daemon-like applications. This is described in more detail in chapter 4.

Comm client and server
Using the comm protocol requires the use of the comm::comm command by providing
an actual command to perform as its first argument.

One of the subcommands is config, which allows us to get and set the configuration.
It accepts either no arguments, in which case it returns list of name-value pairs
specifying all options and their values, or one or more arguments. Specifying only
the name of an option returns its current value. Specifying one or more name-value
pairs causes those to be set to specific values.

Using Additional Internet Services

[308]

The most important options are -port and -local. The first one allows us to specify
the TCP port to listen on, or to retrieve the port currently used – by default the
system assigns an available port. The second option allows us to specify whether
only local connections should be accepted or if both local and remote connections
are allowed – by default only local connections are accepted.

In most cases it is best to assign a port – either hardcoded or read from a
configuration file. However, in some cases it makes sense to have it assigned by the
operating system– in this case we can simply load comm package and get port that
was assigned by default. We can then read it using the self subcommand, which
returns the currently used port.

For example:

package require comm

puts "Comm port: [comm::comm self]"

If we want to define which port to use, we can simply set the -port option.
For example:

package require comm

comm::comm config -port 1991

For the purpose of this section we'll use port 1991 throughout all further examples.

Assuming that our application is in an event loop – for example by invoking vwait
forever, we can now send commands to it. We can do this by invoking the send
subcommand, specifying identifier of the application and command to run. In the
case of processes on the same system identifier is simply the port number – 1991 in
our case. In case of remote systems, identifier is a list containing port and hostname
– for example {1991 192.168.2.12}.

For example, in order to calculate 1+1 using remote interpreter we can do:

package require comm

set result [comm::comm send 1991 expr {1+1}]
puts "1 + 1 = $result"

Similarly calculating the same value using a remote computer can be done by
changing our client's code to:

set result [comm::comm send {1991 192.168.1.12} expr {1+1}]

Chapter 8

[309]

The remaining parts of the example are the same. In addition, the server needs to be
configured to accept remote connections:

comm::comm config -port 1991 –remote 1

We can also perform asynchronous operations that will not block the client until the
server completes the operation. One case is when our application only needs to send
a command without needing its result. In this case, we simply need to provide the
-async flag before the identifier of the remote system. For example:

comm::comm send -async 1991 {after 3000}

This will cause the remote system to wait for 3 seconds, but the send command
returns instantly.

Asynchronous commands can also be used to perform long running operations, or
for actions that will require user input. In this case we need to specify the -command
option followed by the command to be run when the results have been received.

This command will be run with name-value pairs containing information about both
the channel and the result appended to it. The item -result contains the result from
the command or the error description for errors. The item -code will specify result of
the command as 0 indicating successful evaluation of the command and 1 indicating
an error. In case of an error -errorinfo and -errorcode are set respectively to
indicate error information. More details on error information can be found in
Chapter 4. These items can be retrieved using dict command.

For example, in order to calculate the MD5 checksum of a large remote file we can run:
comm::comm send -command oncallback 1991 \
 {md5::md5 -hex [string repeat "Tcl Book" 16777216]}

And in order to define the command that handles the result we can do:

proc oncallback {args} {
 if {[dict get $args -code] != 0} {
 puts "Error while evaluating command"
 } else {
 puts "Result: [dict get $args -result]"
 }
}

This callback checks whether the command returned an error and if not, prints out
the result from the command.

Source code for both synchronous and asynchronous communication is
located in the 04comm-basics directory in the source code examples for
this chapter.

Using Additional Internet Services

[310]

Performing commands asynchronously
In many cases, we want our remote procedure to send a result that needs operations
which might not happen immediately, such as passing a request
to another machine or application.

A typical example can be sending a request to an other Tcl application over comm
or sending a request over HTTP. In such cases we can receive the result after long
period of time and we might want to return information to our caller when our
event handler returns.

In such cases we can use the return_async subcommand from the comm::comm
command in the Tcl interpreter that is the server for a particular connection. This
command returns a new command, usually called future that we can invoke later
on in order to pass the result.

In order to return a value we can invoke the return subcommand of the future
object. It accepts a value to return, optionally preceded by the return code, which
can be supplied by providing the -code option before the actual result.

For example, we can return the result after several seconds by doing:

proc returnAfter {after code value} {
 set future [comm::comm return_async]
 after $after [list $future return -code $code $value]
}

In this case, whatever we return from within the procedure will be ignored. Invoking
the return subcommand also cleans up the future object.

We can invoke the command from the client in the same way regardless if it uses
asynchronous return or if it returns instantly. For example we can run:

set v [comm::comm send 1991 returnAfter 3000 0 1]

Asynchronous returns are usually used when we need to invoke asynchronous
operations, such as sending an HTTP request. A good example might be how
to implement a comm proxy service:

proc proxy {id args} {
 set future [comm::comm return_async]
 comm::comm send -command [list proxyReturn $future] \
 $id {*}$args
}

Chapter 8

[311]

This command takes the id of the next hop as an argument and the remaining
arguments are treated as commands to pass on to the next hop. It also sets up
asynchronous return command which is used in proxyReturn procedure. It can
look like this:

proc proxyReturn {future args} {
 $future return -code [dict get $args -code] \
 [dict get $args -result]
}

This simply passes the result back to the client calling the proxy command. For
example assuming our proxy comm server is listening on port 1992, we can pass
the query to actual server on port 1991 by doing:

set v [comm::comm send 1992 proxy 1991 \
 returnAfter 3000 0 1]

We can also use multiple hops and over network – assuming we need to send all
requests first via comm on host 192.168.2.12 and further via host 10.0.0.1, we
can do:

set v [comm::comm send \
 {1991 192.168.2.12} proxy \
 {1991 10.0.0.1} proxy \
 returnAfter 3000 0 1]

All of the proxy comm servers will perform this operation without waiting so it is
possible to proxy multiple requests at a time this way, regardless of how much it
takes to complete the operation.

Source code for proxy based communication is located in the 05comm-
proxy directory in the source code examples for this chapter.

Security aspects
An obvious concern is that this allows everyone to send commands to be run – either
only from local machine or from the entire network. While for some operations
this is perfectly acceptable, there are cases where such a model might not work. An
example could be that if our system is shared among users – in this case anyone
knowing the port might send commands to our application. Another case is when
our application accepts commands from remote machines, unless access to the
network is strictly limited.

Using Additional Internet Services

[312]

The comm package allows the specification of hooks that are evaluated whenever an
event occurs. These can be used for both comm clients and servers.

We can set up a script that will be evaluated when an event occurs by invoking the
hook subcommand of the comm::comm command. It accepts event type and script
as its arguments. These can be used to authenticate and optionally reject incoming
connections, validating commands to evaluate as well as their responses.

Hook scripts can read various information using variables that are accessible while
it is running. These variables are:

Variable Description
chan Comm command that is associated with the event, by default it is comm::

comm; additional channels are described further in the section
id Id of the remote interpreter
fid Tcl channel associated with connection
addr IP address of the remote peer; used for authenticating remote connection
remport Port used by the remote peer; used for authenticating remote connection
cmd Command type for evaluating a script – sync or async
buffer Tcl command to evaluate
host Host to connect to; used by client hooks
port Port to connect to; used by client hooks

Not all variables are accessible for all hooks and availability is described along with
each of the events.

The event type incoming is run for listening connections whenever a remote
interpreter is connecting. It can be used to log incoming connections and/or reject
connections based on remote address. This hook can reject a connection by throwing
an error. This hook allows access to chan, fid, addr and remport variables.

For example, in order to accept connections only from hosts matching 127.* or
192.168.* pattern, we can add the following hook:

comm::comm hook incoming {
 puts "comm—Connection from $addr"
 if {(![string match "127.*" $addr])
 && (![string match "192.168.*" $addr])} {
 error "Connection from unknown host $addr"
 }
}

Chapter 8

[313]

This hook prints information about incoming connections to standard output. Then
if the addr variable (provided by comm package) does not match any of defined
patterns, an error is thrown. This error causes comm to close the connection and
pass this error to client.

Event type eval is run whenever a command is to be evaluated. It provides
information in chan, id, cmd and buffer variables. In this case it is possible to
modify command to evaluate, return any result from within the hook or throw
an error in case a specified command should not be run.

If the eval hook returns with an error, this error is passed back to the original client.
For example, in order to refuse all commands except for the known ones we can do:

comm::comm hook eval {
 if {[lsearch $::validcommands [lindex $buffer 0]] < 0} {
 error "Command not authorized"
 }
}

In this case, we search for first element of the command in global validcommands
variable – if it contains the command we allow execution of the command.

Usually it is a better idea to either pass the command to a procedure that will handle
it, which can do additional checks or make sure that only a subset of functionality is
exposed. For example we can rewrite the buffer variable to pass actual command as
argument by doing:

comm::comm hook eval {
 set buffer [list [list myhandler $buffer]]
}

This way we pass the original buffer as first argument to myhandler command. As
the comm package tries to concatenate all elements into a single list, we need to build
a list of lists so that our myhandler is invoked with just one argument. We can then
write a simple function that writes the actual command and result by doing:

proc myhandler {command} {
 puts "Evaluating '$buffer'"
 set rc [eval $command]
 puts "Result: '$rc'"
 return $rc
}

Using Additional Internet Services

[314]

This command prints out the command to execute, evaluates it and prints out results.

Another option is to evaluate the command on our own instead of having it done by
the comm package. We can use the return command inside the hook to force the comm
package to pass our result back to the client. For example, we can invoke myhandler
in the same way by doing:

comm::comm hook eval {
 return [myhandler $buffer]
}

It is also possible to use an asynchronous handler for commands that are evaluated
by our hook. For example, we can do the following:

proc myhandler {command} {
 if {$command == "asynctest"} {
 set future [comm::comm return_async]
 after 5000 [list $future return "After 5 seconds"]
 return
 }
 set rc [eval $command]
 return $rc
}

This command has a special case where if the command invoked is asynctest, we
return the result after 5 seconds. Otherwise we just evaluate whatever command
user provided and return it.

Source code for server side hooks is located in the 06comm-hooks
directory in the source code examples for this chapter.

Limiting available commands
In many cases it is good practice to limit the operations remote applications can
perform – provide only a set of commands that user can access and allow only access
to a subset that user has access to. We can even introduce an idea of a session identifier
– which is given when authenticating a user and can expire after some time.

For example we can work in the following way – first operation a user should
perform is authorizing using username and password. Next the server provides a
session identifier that can be used to invoke other commands. We can do this by
sending a session identifier as the first argument and assume that if session is not set,
remaining arguments are username and password. If the session is valid, we can
assume that the second argument is a command name and the remaining arguments
are passed to the command.

Chapter 8

[315]

We can create a command that handles buffer in this way by doing:

proc so::handle {buffer} {
 set session [lindex $buffer 0]
 if {$session == ""} {
 lassign $buffer session user pass
 set sid [authorize $user $pass]
 return $sid
 } elseif {[check $session [lindex $buffer 1]]} {
 return [so::service::[lindex $buffer 1] \
 {*}[lrange $buffer 2 end]]
 } else {
 error "Authorization failed"
 }
}

What the procedure does is check first element of a list – if it is empty, we assign
the second and third argument as the username and password and invoke the
authorize command, which returns a new session identifier or an empty string. If
the session is set, and if the user is authorized to run specified command, we run it
assuming it is in the so::service namespace – to avoid running commands outside
of the specified namespace. If the session is not valid or the user is not authorized to
run a specified command, we throw an error.

We also need to set up a hook for eval event:

comm::comm hook eval {
 return [so::handle [lrange $buffer 0 end]]
}

We're using the lrange command to make sure the user input is a valid list, just as
a precaution.

Our sample authorization command should authorize the user, generate a session
ID (for example using uuid package) and return it. A simple one, with a hardcoded
username and password could be as follows:

proc so::authorize {user password} {
 variable sessions
 if {($user == "admin") && ($password == "pass")} {
 set sid [uuid::uuid generate]
 set sessions($sid) $sid
 }
 return $sid
}

Using Additional Internet Services

[316]

This checks if the username is admin and the password is pass – if so, it sets up
a session and stores it in namespace variable sessions. We can also implement
a trivial checking by doing:

proc so::check {sid command} {
 variable sessions
 if {[info exists sessions($sid)]} {
 return true
 }
 return false
}

And now we have a safe comm based service that can be used to offer services. We
can also add a simple command on top of this infrastructure, for example:

proc so::service::add {a b} {
 return [expr {$a + $b}]
}

In order to use it we can now use the following code on the client:

set sid [comm::comm send 1991 {} admin pass]

if {$sid == ""} {
 error "Unable to authorize"
}

set v [comm::comm send 1991 $sid \
 add 1 2]

The main issue we need to implement is support for sessions to expire, for
example if no operation is performed for some time, session is removed from
sessions variable.

Source code for examples related to providing services on top of
the comm package is located in the 07comm-service directory in
the source code examples for this chapter.

Chapter 8

[317]

Summary
In this chapter, we've learned to use Tcl with different protocols that our application
can benefit from —synchronizing time with other servers, querying user information
and authenticating users over LDAP and perform DNS queries.

Tcl has its own protocol for remote procedure calls locally and remotely. This
can be used for both accessing our application from different processes and
troubleshooting. We can also use this for distributed computing of information.
In addition to this, the comm package can also be used to offer service-based
approach, including authentication.

In this chapter we have learned to:

Get DNS information
Get current date and time
Query and modify information over LDAP
Authorize users using LDAP
Creating and using networked applications using comm package

The next chapter shows how to embed a web server in our application, and how
this can be used to both create a simple web server as well as use HTTP protocol
for communication between our applications.

•
•
•
•
•

Learning SNMP
In this chapter, we'll learn about the Simple Network Management Protocol
(SNMP), which is often used for monitoring and gathering information from various
devices; such as routers, gateways, printers, and many other types of equipment.
We'll start by introducing SNMP and the various concepts surrounding it, which
will be useful for readers who do not have much experience with SNMP.

We'll talk about the Tcl package Scotty, which handles SNMP, and how it can be
used to query information from within our application. It also provides a Tk-based
GUI application that can be used for inspecting devices, discovering systems within
our network, and browsing data that can be retrieved over SNMP.

We'll show how Scotty can be used for retrieving SNMP values, and mapping
between raw values and readable representations. You will also learn how
to set any values that a particular device allows us to set.

This chapter also talks about SNMP traps and how they can be both sent and
received using Scotty. We'll find out how to send additional information along
with a trap and how to retrieve this information when handling an incoming trap.

We'll also implement our own SNMP agent, which will allow any SNMP-aware
application to query data from our application.

Finally, we'll show additional features package Scotty offers, such as ICMP
functionality. ICMP stands for Internet Control Message Protocol and is used for
diagnostics, routing, and troubleshooting of networks. It can be used to check how
much time it takes for a packet to get to a host and back, detect the route to an IP
address and other features needed for monitoring and troubleshooting networks.
We'll create a simple ping-and-traceroute application, which can be used in
applications which monitor network status.

Learning SNMP

[320]

Introduction to SNMP
The Simple Network Management Protocol is designed to be easy to implement and
provide a uniform way to access information on various machines. Before we can
use it from within Tcl, we need to understand how it works so that we know what
is happening when we are running commands and examples.

The SNMP protocol is designed so that the footprint of its services is minimal.
This allows devices with limited size of storage and operating memory to use the
protocol. SNMP uses the UDP protocol which requires much less resources to handle
than TCP. It also uses only one packet for sending a single request or response
operation so the protocol itself is stateless.

Each machine that is managed by SNMP has a running application that responds
to requests from it, and also other computers. Such an application is called an agent.
For UNIX systems, it is usually a daemon working in the background. Many devices
with embedded systems have SNMP support included in the system core. In all
cases, a device needs to listen to SNMP requests and respond accordingly.

All agents are managed by one or more machines called the SNMP manager. This is
a computer that queries agents for data and might also set their attributes. Usually
this is an application running in the background that communicates over SNMP
and stores the information in some data storage.

Usually SNMP uses UDP port 161 to communicate with the agent and 162 for sending
information from the agent to manager. In order to use SNMP, these ports need to be
correctly passed by all network routers and should not be filtered at the firewall.

Two types of communication are carried out in SNMP:

The first type is when a manager sends requests to an agent. In such cases,
these can be get requests, in which case the manager wants to retrieve
information from an agent. If the information needs to be modified, a
set request is sent out.
Another type of communication is traps. These are sent when an agent wants
to notify a manager about a problem. An agent needs to know the IP address
of the manager to send the information out to it. A manager needs to be
listening for SNMP traps and should react to them.

•

•

Chapter 9

[321]

The following is an illustration of possible SNMP communication types:

Learning SNMP protocol versions
SNMP has several versions that an agent can communicate over. SNMPv1 was the
first version of the protocol. It featured get, set, and trap operations. The standard
defined scalar data objects as well as tabular objects. It also featured the getnext
operation that can be used to iterate over tables of data objects.

The security model related with SNMPv1 is relatively unsophisticated. A get, set,
or getnext request is authenticated based on the IP address of the manager and the
community string that it uses. All SNMP devices communicating over SNMPv1 use a
community string for verifying the request—whether none, only get, or both get and
set operations can be performed. By default, the private community string allows
both reading and writing of information, and the public community string allows
reading only.

Learning SNMP

[322]

SNMP version 2 introduced improvements in terms of performance and security.
Instead of using get and getnext, it had a getbulk operation. This allows the
retrieval of all entries in a table in a single operation. It also introduces an inform
packet— this is a trap that must be acknowledged by the manager. This avoids a
problem where a trap is not received by a manager because a single UDP packet
failed to reach its destination. This version also introduced the party-based security
model, which did not gain wide acceptance as it was very complex.

The most common version 2 implementation is SNMPv2c—Community-Based
Simple Network Management protocol 2. It uses features of version 2 without
implementing the new security model, instead using the community string
mechanism that was introduced in SNMPv1.

The User-Based Network Management Protocol version 2, or SNMPv2u, is another
variant of SNMP version 2. It includes changes in security, but also does not include
all of the security features originally developed for SNMPv2. SNMP version 3
features an improved security model with authentication, privacy, and access
control. This version introduced much better security than that available in SNMPv2,
and one of its security frameworks uses the functionality from SNMPv2u. This
standard is now gaining more attention than SNMPv2; mostly because it offers
better security without the high level of complexity that SNMPv2 introduced.

Most SNMP server implementations that come with operating systems support
SNMPv1, SNMPv2c, and SNMPv3. Some devices support only SNMPv1 and
others also offer SNMPv2. Packets from different SNMP versions are incompatible,
so a device only using SNMPv1 will not recognize SNMPv2c packet. However,
an application that knows both SNMPv1 and SNMPv2 will understand an
SNMPv1 packet.

In many cases, devices that are used across your network will offer a different subset
of versions that they support. There are two strategies that can be used to work in
such an environment:

The first approach is to use a proxy agent. Some SNMP management
software uses SNMPv3 and devices that do not support this version will
need to have the packets translated. In such cases, all requests from the
manager are received by the proxy agent, which translates and passes them
to the actual agent, and sends the results to the manager. The proxy agent
receives traps from the actual agent. It then passes them to the manager as
a trap or inform packet using a newer SNMP version. The proxy agent is
usually an application on a computer, however, it can also be a physical
device that works as a proxy agent.

•

Chapter 9

[323]

Another approach is for the SNMP manager to use multiple versions of
SNMP, based on the device it is trying to get information from. Which
version should be used can either be defined in some form of database,
but SNMP also supports verifying which version can be used with a
particular device.

Often SNMP managers allow configuring which version of the protocol should be
used for specific devices.

Data objects
SNMP uses Object Identifiers (OIDs) to identify data objects that it refers to. They
define an object uniquely for a specified SNMP agent. They are identified by using
a hierarchical definition, in a fashion similar to how Internet domains work.

Object identifiers are a series of numbers separated by a period. Each number
represents a part of the tree. Often, the first number in the series is also preceded by a
period to indicate that this is an OID; this is not necessary, though. An example OID
can be .1.3.6.1.2.1.1.5.0, which maps to the system name of a machine.

As it is very hard to memorize, read, and compare OIDs written as series of numbers,
there is also a standard of naming and describing the object tree.

The standard is called Management Information Base (MIB) and it defines how
various parameters are defined—both how they are named and what types of values
these objects might return. Each MIB definition is a text file written in a subset of
ASN.1 (Abstract Syntax Notation One) notation. A file can describe a small or large
subset of the MIB trees.

As of now, the latest standard is MIB SMIv2 and it defines all commonly
used attributes along with additional information that can be used for
visualization applications.

MIB files describe fields that are used in SNMP. They define parent nodes in a
hierarchy, numeric identifier, and the type of data that this field is associated with.
SNMP uses the following basic data types:

String—a string, written as bytes, that can have 0 to 65535 bytes
Integer and Integer32—a signed 32-bit integer value
Counters32, Counter64—non-negative integers that increase, and after they
reach maximum value, they are reset to 0
Gauges—non-negative integers that can increase and decrease in a defined
minimum-maximum range

•

•
•
•

•

Learning SNMP

[324]

Time tick—defines a time span, where a value of 100 represents one second
IP address—represents an address from a protocol family; SNMPv1 only
supports IPv4

In many cases, a field is returned as an enumeration type integer—this means that
some predefined numbers represent several predefined values. A good example
might be the ifType field when defining network interfaces, as it specifies type of
a network interface. Some examples can be 23 for PPP4 connection or 6 for
Ethernet interfaces.

An example OID is .1.3.6.1.2.1.1.5.0. The following table describes each
element, both as a string and as the corresponding numbers:

Identifier Description
1 iso: ISO standard tree
3 org: Organizations; this node is a placeholder for all national and

international organizations
6 dod: Department of Defense; this is the node for U.S. department of

defense
1 internet: sub node for Internet; since originally Internet was a project

for U.S. military defense, its placeholder is under the dod sub-tree
2 mgmt: systems management node
1 mib-2: Management Information Base, version 2 root node
1 system: Operating system information
5 sysName: Name of this machine; usually a fully qualified domain name
0 Index of the elements; in this case it is always 0

The string representation of this OID is iso.org.dod.internet.mgmt.mib-
2.system.sysName.0. Often, it is also referred to as SNMPv2-MIB::sysName.0.

The .1.3.6.1.2.1 part of the OID defines root elements for all MIB-2 standardized
parameters. This means that all standard SNMP parameters that various devices
use are under this OID node or its descendants. This node is also called SNMPv2-MIB
namespace, therefore, the SNMPv2-MIB::sysName.0 OID also maps to the same object.

The MIB tree has a few major nodes that are the base for many other sub-trees that
might be significant to you under various circumstances:

.1.3.6.1.2.1 which stands for iso.org.dod.internet.mgmt.mib-2
This is the base for all attributes that are available on the majority of
SNMP-aware devices.

•
•

•

Chapter 9

[325]

.1.3.6.1.4.1 which stands for iso.org.dod.internet.private.
enterprise.
This is a root node for all corporations and companies that use their private
objects; this is used by companies such as Microsoft, Motorola, and many
other hardware and software vendors.
.2.16.840.1.113883 which stands for joint-iso-itu-t.country.
us.organization.hl7.
This is a root node for Health Level 7 and is used mainly in health care and
public health informatics.

The most important node is .1.3.6.1.2.1, which is used by all SNMP-aware
devices to report information. This part of the MIB tree is the root node for majority
of standard objects. It is also mandatory for all SNMP-enabled devices to provide
at least basic part of information in this sub-tree. For example, information such
as contact information, location, system name, and type should be provided by
all SNMP-aware devices.

SNMP can be used to retrieve different kinds of information. They are usually
grouped into various categories. All categories also have corresponding aliases that
they are usually referenced with, in order to avoid putting entire structure along
every OID definition or MIB name. All applications that offer communication over
SNMP allow specifying attributes using both OID and MIB names. Let's go over a
few of the most important sections of the MIB tree.

Information in IF-MIB, IP-MIB, IPv6-MIB, RFC1213-MIB, IP-FORWARD-MIB, TCP-MIB,
and UDP-MIB describes network connectivity: interfaces, IP configuration, routing,
forwarding, and TCP and UDP protocols. They support querying of the current
configuration as well as the currently active and listening sockets.

Data contained in SNMPv2-MIB and HOST-RESOURCES-MIB describes system
information and current parameters. It can contain information on disk storage,
current processes, installed applications, and the hardware that the computer is
running on.

Working with SNMP and MIB
Various operating systems come with different SNMP applications. Many hardware
vendors also offer additional software that manages multiple machines using SNMP;
for example, HP OpenView or Sun Management Center. For this and the following
sections, the Net-SNMP package, available from http://net-snmp.sourceforge.
net/ will be used.

•

•

Learning SNMP

[326]

Binaries for Microsoft Windows can be downloaded from the project's file repository
at: http://sourceforge.net/projects/net-snmp/files/net-snmp%20binaries/

Installers for 32-bit and 64-bit processors can be downloaded and Net-SNMP is
installed in C:\Usr by default, having binaries such as snmpget.exe in C:\Usr\bin.

This package is included in all Linux distributions and works with almost all Unix
operating systems.

In order to install this package on Ubuntu Linux, we need to run the
following command:

apt-get install snmp

For yum-based Linux distributions, the package is called net-snmp and the command
to install it is:

yum install net-snmp

Despite being named differently, both are actually packages for SNMP handling
based on the Net-SNMP package.

The Net-SNMP project homepage also offers binaries for several platforms, including
HP-UX and Fedora Linux. Fedora packages should also work on Red Hat Enterprise
Linux systems.

It is also possible to build everything from source for Unix operating systems such as
AIX, HP-UX, and Solaris. Exact instructions are provided on the project page.

After a successful installation, we should be able to run any SNMP-related command
like snmpget and check the Net-SNMP version by doing the following:

root@ubuntu:~# snmpget -V

NET-SNMP version: 5.3.1

Assuming we have a host with an SNMP agent set up and it accepts SNMP protocol
version 1, we can now try to communicate with it and query a few parameters:

root@ubuntu:~# snmpget -v 1 -c public 192.168.2.2 \
 iso.org.dod.internet.mgmt.mib-2.system.sysName.0

SNMPv2-MIB::sysName.0 = STRING: WAG354G

As you can see, the device returned that the system name is WAG354G. This is
actually a Linksys/Cisco router and the only way to access its information is over
the web interface or SNMP.

Chapter 9

[327]

The Net-SNMP package comes with a couple of useful commands that can be used
to check current values as well as perform a dump of part of whole MIB tree. These
vary from simple tools used to query a single attribute to very complex ones that
print out a df-like report of partitions on a remote system. There are also commands
for displaying tables and for setting parameters remotely.

Throughout this section and the next one, we'll mainly use SNMP version 1,
because it is supported by almost all SNMP-enabled devices. When using SNMP
in production, it's better to check which devices accept SNMP versions and use the
latest one that a device handles correctly.

The first command that is worth getting familiar with is snmpget. This allows you
to query a single attribute or multiple attributes, over SNMP.

The syntax of the command is as follows:

snmpget [options] IP-address OID [OID] ...

All Net-SNMP commands accept a huge amount of parameters. The following are
the ones we will be using throughout this chapter, or those worth knowing:

Option Description
-h Provides help
-V Prints Net-SNMP version
-c Specifies community name to use
-v Specifies SNMP version to use; should be one of 1, 2c, or 3
-r Specifies number of retries
-t Timeout in seconds
-O Output options; should be one or more of the following:

n—print OIDs as numerical values without expanding
them from MIB
e—print enum and OID fields as numbers instead of
string values
v—print values only instead of name = value format
f—print full OID names; does not permit shortcuts
like SNMPv2-MIB

•

•

•

•

Learning SNMP

[328]

The -O option allows us to retrieve values without MIB shortcuts being applied.
Therefore, we can see the entire branch. It also allows us to change the output
so that only values along with data types are printed out, instead of the object
names themselves.

snmpget –O ef -v 1 -c public rtr SNMPv2-MIB::sysOb�ectID.0
.iso.org.dod.internet.mgmt.mib-2.system.sysOb�ectID.0 =
OID: .iso.org.dod.internet.private.enterprises.ucdavis.ucdSnmpAgent.linux

All of these options can also be used with other Net-SNMP commands.

Net-SNMP also offers a command to iterate through entire or part of MIB tree. The
snmpwalk command accepts the same options as shown earlier. Most versions of
Net-SNMP's snmpwalk command do not need to be passed any OID to work. For
older versions in order to list the entire tree .1 can be specified as OID.

The following command will list entire MIB tree of a SNMPv1 agent:

root@ubuntu:~# snmpwalk -v 1 -c public 192.168.2.2

Depending on the underlying operating system and the SNMP agent itself, the actual
data will be different. Please note that if the device is not on a local network, then
this operation might take a long time to complete.

In order to retrieve only a part of the MIB tree, simply pass the prefix of the tree you
are interested in. For example:

root@ubuntu:~# snmpwalk -v 1 -c public 192.168.2.2 1.3.6.1.2.1.1

The previous command will limit the query to iso.org.dod.internet.mgmt.mib-
2.system node along with all its children. It will also be completed much faster than
querying the entire tree.

Walking over a part of a tree is mainly useful when trying to check which objects are
available on a remote device that does not respond quickly to SNMP requests—either
because of network lag or the computations required for some objects. It is also
commonly used to find out what values are available in a specific part of the MIB tree.

Another useful utility is the snmptable command. This allows you to list various
SNMP tables and shows them in a human readable form. The syntax is as follows:

snmptable [options] IP-address OIDprefix

For example, to list all TCP/IP connections, the following command can be used:

root@:~# snmptable -v 1 -c public 192.168.2.2 tcpConnTable
SNMP table: TCP-MIB::tcpConnTable

Chapter 9

[329]

connState connLocalAddress connLPort connRemAddress connRPort

 listen 0.0.0.0 23 0.0.0.0 0

 listen 0.0.0.0 80 0.0.0.0 0

 listen 0.0.0.0 199 0.0.0.0 0

Net-SNMP also allows you to set new object values which can be used to reconfigure
various devices. The snmpset command can be used to perform this. The syntax
is as follows:

snmpset [options] IP-address OID type value [OID type value] ...

The command accepts all the standard options, just like the snmpget command.
A single command invocation can be used to set more than one parameter by
specifying more than one set of OIDs to set. Each set operation needs to specify
the new value along with the data type it should be set to.

The value type can be one of the following:

Type Description
i Integer
u Unsigned integer
s String
x Hex string—each letter is specified as 2 hexadecimal digits
d Decimal string—each letter is specified as a 1-2 digit
n NULL object
o OID—for objects that accept object
t Timeticks
a IP address
B Series of bits

Most common types are String, Integer, and OID. The first two require you to pass
the number of a text that the object's value should be set to. Setting the OID type of
the object requires that you either provide the full OID identifier or a string that can
be matched by the MIB definitions.

An example of the code which can be used to set a system's contact name and
hostname is as follows:
root@ubuntu:~# snmpset -v 2c -c private 192.168.2.2 \
 SNMPv2-MIB::sysContact.0 s admin@net.home \
 SNMPv2-MIB::sysName.0 s RTR

SNMPv2-MIB::sysContact.0 = STRING: admin@net.home

SNMPv2-MIB::sysName.0 = STRING: RTR

Learning SNMP

[330]

Some attributes cannot be set via SNMP. It is not possible to modify objects that are
used for monitoring the system. These usually include IP address configuration,
counters, or diagnostic information—for example TCP/UDP connection tables,
process lists, installed applications, and performance counters. Many devices tend to
support command-line administration over SNMP and, in this case, the parameters
might be read-only.

MIB definitions specify which attributes are explicitly read-only. Using a graphical
tool to find out which attributes can be modified will ease the experience of
automatic device configuration over the SNMP protocol.

Setting up SNMP agent
The previous section talked about how to communicate with SNMP agents. If you
have a network device such as a router or WiFi, WiMax, or DSL gateway, it will most
likely already come with a built-in SNMP agent.

The next step is to set up SNMP agent on one or more computers so that we can use
SNMP to monitor servers or workstations. This way, the majority of the networked
equipment will allow querying data and/or monitoring from a single machine using
SNMP protocol.

Let's start with various Unix boxes. The SNMP agent is a part of Net-SNMP and
several distributions come with the command-line tools, libraries, and an SNMP
agent—usually as optional packages.

In our case, we will install the SNMP agent on Ubuntu Linux. To do this we will run
the following command:

apt-get install snmpd

This will cause the SNMP daemon from Net-SNMP to be installed. By default, the
Ubuntu Linux SNMP agent which comes from the Net-SNMP package accepts
connections on 127.0.0.1 only, which is the IP address that always reflects the same
machine we are on. This is due to security reasons, in many cases, an SNMP agent is
mainly used by tools like MRTG to gather usage statistics.

To change this we will need to either enter the IP address the SNMP agent should
listen on or remove it completely from the /etc/default/snmpd file, using the
SNMPDOPTS variable.

If the SNMP agent should listen on all available IP addresses, then the line should
look similar to the following example:

SNMPDOPTS='-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.pid'

Chapter 9

[331]

Changing this option requires restarting the SNMP agent by invoking the
following command:

/etc/init.d/snmpd restart

After a successful installation, the SNMP agent should be up and running and doing
a walk over the entire tree should produce some output.

To test the SNMP agent simply launch the following command on the same machine,
assuming Net-SNMP command line tools are installed:

snmpwalk -v 1 -c public 127.0.0.1

The agent that we have just installed supports SNMPv1, SNMPv2c, and SNMPv3
protocol versions. It also features an extensive security model that you can configure
in order to provide a more secure setup.

Net-SNMP agent allows you to define one or more OIDs along with all subnodes
that can be retrieved by specific security groups. These groups can be mapped to
specific communities that originate from all IPs, or specific IP addresses. Security
groups are also mapped using SNMP versions used by the remote machine.

A sample configuration that only allows read-only access from all hosts is:

com2sec readonly default public
group readonlyGroup v1 readonly
group readonlyGroup v2c readonly
group readonlyGroup usm readonly
view all included .1 80
access readonlyGroup "" any noauth exact all none none
syslocation Home

syscontact Administrator <admin@yourcompany.com>

The first line defines a mapping between community and readonly security group.
The lines that follow assign readonlyGroup access rights to it. Then it is assigned
access to read all objects from .1 OID node and its children. The last two lines
indicate system administrator and location where the machines are stored.

For SNMPv3, it is also possible to specify one or more users by calling the snmpusm
command. It allows real-time configuration of the user list for local or remote
SNMPv3 agents.

Learning SNMP

[332]

SNMP can also be set up on all modern Microsoft Windows operating systems.
As with Unix systems, the SNMP agent must be installed. In order to do this on
Windows XP and 2003 Server, we need to go to the Control Panel first. Then
we need to select the Add or Remove Programs applet and select Add/Remove
Windows Components option. The following window will appear:

Next, we need to select Management and Monitoring Tools as shown in the
preceding screenshot. We can also click the Details button and choose only the
Simple Network Management Protocol. The WMI SNMP Provider makes it
possible to retrieve SNMP parameters over WMI and can be left unchecked if
you do not need it.

The Windows SNMP agent exports information about the system similar to other
platforms. You can use it to query the underlying hardware, operating system
version, and network configuration along with currently active connections. It is also
possible to list active processes and monitor system load. The Windows SNMP agent
also exports all installed applications along with security patches from Microsoft.
This mechanism can be used to monitor whether all critical system patches are
installed, or it may be used to monitor compliance with software licenses.

Chapter 9

[333]

After a successful installation, we can go to the Administrative Tools folder and run
the Services applet. When selecting the SNMP Service and choosing Properties, the
service properties window along with SNMP configuration will appear:

The window has three additional tabs: Agent, Traps, and Security. The Agent
tab allows us to configure which parts are exported over SNMP and lets us set up
contact and location information.

The Security tab allows us to configure how SNMP information from this host can be
accessed. The Windows SNMP agent offers support for SNMPv1 and SNMPv2c, so the
security model is based on a community string and IP addresses for authentication.

The agent can either accept SNMP queries from all hosts or only specific hosts listed
in the bottom part of the tab. It is also possibile to specify one or more readable and
writable communities. By default, only queries on the public community string are
accepted and these allow read-only access.

The Traps tab allows configuring Windows to send or forward traps to specific
IP addresses and which SNMP community to use for communication.

Learning SNMP

[334]

Tcl and Scotty package
Tcl features a powerful engine for managing SNMP, MIB, and many additional
features called Scotty. It is an extension for Tcl that provides mechanisms for
querying information over SNMP, receiving SNMP traps, and even allows us to
create our own SNMP agents so that our application can be queried from other
SNMP-aware applications.

It also features an extensive GUI application called TkInEd (Tcl/Tk-based Interactive
Network Editor), which can be used to interactively discover, monitor, and graph
data using SNMP.

While Scotty is the name of the project, the underlying Tcl package that offers SNMP
and other network-related functionality is called Tcl Network Management (Tnm).
When talking about project in general, we'll mention Scotty. On the other hand,
when using it from Tcl, we'll use the package name Tnm.

Obtaining Scotty
Scotty can be downloaded as source code, is part of several Linux distributions, and
has pre-built binaries for Microsoft Windows systems and a port to Mac OS X is also
created. More information about Scotty can be found on its website at:
http://www.ibr.cs.tu-bs.de/projects/scotty/

The source code as well as project information and the project's bug tracker can be
found on its website at: https://trac.eecs.iu-bremen.de/projects/scotty/

Installing a pre-built version on Microsoft Windows requires copying Scotty to a
location where Tcl looks for packages, such as C:\Tcl. Information on installation
for the Mac OS X platform can be found at http://scotty.darwinports.com/.

Installing Scotty from source is a bit more complex and is usually needed for Linux
and other Unix-based systems. For the purpose of building it, we'll assume ActiveTcl
8.5 is installed in /opt/ActiveTcl-8.5 and Scotty the source code is already
unpacked in /usr/src/scotty. While some basic Unix administration skills might
be required, Scotty's compilation from source code resembles building any other
package and requires no additional Tcl skills.

As a prerequisite, we'll need development files for X11 and the gcc compiler. For
example, in order to install these on Ubuntu, you should run:

sudo aptitude install libx11-dev gcc make libc-dev

Chapter 9

[335]

The first thing we need to do is go to the /usr/src/scotty/unix directory, where
the configuration script is located, and run it. We'll need to pass location of Tcl and
Tk libraries to --with-tcl and --with-tk options. We will also use the --prefix
option to specify where the package should be installed.

The following is a sample invocation:
cd /usr/src/scotty

sh ./configure --prefix=/opt/ActiveTcl-8.5 \

 --with-tcl=/opt/ActiveTcl-8.5/lib \

 --with-tk=/opt/ActiveTcl-8.5/lib

After running the configuration script, we will need to build Scotty:
make

This process should cause the build to be complete in around a minute on modern
hardware. Then we'll need to install it:
make install

This will also cause MIB files to be generated and parsed, which will take
several minutes.

SNMP uses privileged UDP ports and the ICMP protocol. This means that any
application communicating over SNMP must be run by an administrative user.
Scotty provides an alternative that allows non-root users to communicate over
SNMP. It comes with binaries that are installed using suid-root—meaning that
whoever runs them will have administrator access on your system. These binaries
are only used if we use the Tnm package, and will be used by a non-root user.

These binaries are only used from within the Tnm package and do not cause a large
security issue. If you want to use Tnm as a non-root user, you should proceed with
the next step, which is installing these binaries:
make sinstall

If they are not installed everything will still work for the root user. However, all
other users will not be able to perform any communication using the Scotty package.

Scotty also comes with large number of examples on how to use its functions. They
can be found in the examples subdirectory and also come with a documentation of
what each of the examples do.

As Scotty is a large package and depends on specific Tcl features, it is not possible
to embed it in a Starkit or Starpack. While the majority of packages can easily be
embedded in a VFS, Scotty is one of the not so many packages that do not work
in this way.

Learning SNMP

[336]

The best choice is to set up ActiveTcl on systems where we want to use SNMP and
set up Scotty on these systems. Your Starkit can then be run using the tclsh binary
from ActiveTcl and by taking advantage of all packages set up for this ActiveTcl
instance, including Tnm package from Scotty.

An alternative is to use the MIBSmithySDK, which is a commercial Tcl implementation
of the SNMP protocol from Muonics. It is available at: http://www.muonics.com/
Products/MIBSmithySDK/. It can be wrapped in single-file binaries and offers a
compatibility wrapper that mimics Tnm package's API.

The TkIned application
TkIned comes as part of Scotty package. After building and installing Scotty,
it should be available in the same directory as other Tcl/Tk binaries—for our
example, the path would be /opt/ActiveTcl-8.5/bin and the file is called
tkined<version>; for example, tkined1.5.0. While the application offers an
extensive set of features, we'll focus on a small subset of features that can be used
to interactively play with your network and its SNMP features before actually
interacting with it from scripts.

After running it, we should see an empty diagram, a menu, and a toolbar similar
to the following screenshot:

Chapter 9

[337]

If you want to test how SNMP and Tnm work with your network, it is a good idea
to start by discovering machines within your network. Open the Tools menu and
choose IP Discover. This will cause a new menu IP-Discover to be shown—choose
Discover IP Network, provide your network address (such as 192.168.2.0), and
proceed. After some time, the application will show a separate window with results
similar to the following one:

Discover 192.168.2 from kubuntu [192.168.2.12]

9 nodes found on network 192.168.2 in 82 seconds.

9 routes traced in 3 seconds.

9 netmasks queried in 3 seconds.

5 snmp agents queried in 6 seconds.

9 ip addresses queried in 3 seconds.

1 networks discovered in 0 seconds.

0 gateways discovered in 0 seconds.

9 links discovered in 0 seconds.

19 tkined ob�ects created in 0 seconds.

Discover finished in 97 seconds

The UI will also show what hosts were discovered within your network, and display
a screenshot similar to the following:

Learning SNMP

[338]

In order to check what was discovered, you can right-click on an item, and then
choose Attribute and Edit…. This will show information about a node, such as its IP
address, SNMP information (if SNMP was detected), and any information returned
over SNMP. For example:

Fields such as SNMP:Config won't be visible for devices that are not SNMP aware
or that did not respond to the defaults that TkIned tries, such as using SNMPv1 and
public/private communities. Also, SNMP:Config is a direct mapping to SNMP
session configurations from Tnm package, which is described in this section, and can
be used when configuring how to talk to particular systems.

We can also set up graphing of specific values, for example, monitoring system usage
and/or network traffic. In order to do that we can either use the SNMP Monitor
package or IP Monitor, found in Tools. We can then set up graphs for any variable,
for specific interfaces and monitor round-trip time, which is the time it takes for a
message to get to a server and back. For example:

Chapter 9

[339]

We recommend that you get familiar with TkIned and explore its functionality.
However, as far as SNMP is concerned, the authors of this book have focused only
on the features that will aid you in using Tnm package and writing scripts that
communicate over SNMP.

Using Tcl for SNMP communication
Now that we have performed SNMP queries using TkIned, we can move on to using
Scotty from Tcl directly to communicate over SNMP.

Querying SNMP in Tcl
The Tnm package offers a large number of features. Main part of its functionality is
related to SNMP and MIB.

A quick example to query SNMPv2-MIB::sysContact value over SNMP can be
as follows:

set session [Tnm::snmp generator]
$session configure -address "192.168.2.2" \
 -version "SNMPv1" -community "private"
puts [$session get SNMPv2-MIB::sysContact.0]

This will create a connection handle, configure it to query the IP 192.168.2.2 over
SNMPv1 protocol and get sysContact value. This will print out something like
the following:

{1.3.6.1.2.1.1.4.0 {OCTET STRING} root@router}

This is a list of a single element, which is a sub-list with three elements—OID of the
item, data type, and actual value. In order to print out just the value we can get get
the third element from the first item by doing:

puts [lindex \
 [$session get SNMPv2-MIB::sysContact.0] 0 2]

All commands used in the previous example are shown and explained in more detail
later in this section.

All values related to SNMP are defined as varbind lists in Tnm. These are Tcl lists
that define one or more SNMP attributes. Each attribute is a single element in the list
and consists of three elements—OID, datatype, and value. An example answer from
querying for sysContact ({1.3.6.1.2.1.1.4.0 {OCTET STRING} root@router})
is a varbind list.

Learning SNMP

[340]

Another example of a varbind list that describes the speed of an interface along with
its type is:

{
 {1.3.6.1.2.1.2.2.1.5.1 Unsigned32 10000000}
 {1.3.6.1.2.1.2.2.1.3.1 Integer32 softwareLoopback}
 {1.3.6.1.2.1.2.2.1.2.1 {OCTET STRING} lo}
}

Regardless of whether a varbind list contains single or multiple elements, it always
assumes that one item in the list represents one OID—it is a common mistake to
specify a varbind list with a single item as a flat three-element list while it should be
a one-element list where that element is a sublist with three elements. When getting
an element, it is okay to provide only the first element as varbind list, which can
either be the OID or its name—for example:

{IF-MIB::ifSpeed.1 IF-MIB::ifType.1 IF-MIB::ifDescr.1}

When specifying or parsing a data type, it can be one of the following:

Tnm types Description
OCTET
STRING

An octet-based string, in Tcl, it is mapped to an 8-bit string; when setting a
value, characters outside of 8 bit are not handled properly.

OBJECT
IDENTIFIER

It specifies another OID; when retrieving Tnm extension, tries to convert
it from its numeric form to MIB representation; when setting a value,
both MIB and numeric representation can be supplied; for example
IF-MIB::ifMIB.

IpAddress IPv4 address; represented in typical IP notation, for example 192.168.2.2.
TimeTicks The time interval; specified in the form of nd hh:mm:ss.cc; the first

element is number of days, followed by number of hours, minutes, seconds,
and hundredths of a second; for example 12d 11:38:12.40; when
setting a value, Tnm allows you to skip number of days and/or number of
hundredths of second as well as accepts including number of days when
specifying hours; for example 132:20:00, which is an equivalent of 5d
12:20:00.00.

INTEGER,
Integer32,
Counter,
Counter32,
Gauge,
Gauge32,
Unsigned32

Integer values of different characteristics; types and gauges are read-only,
and cannot be set to any value.
Integer values can be set; they can also be mapped to named values
if the MIB definition specifies what each value maps to. For example,
softwareLoopback maps to specific integer value for network interface
type field
Counter, Counter32, Gauge, Gauge32, and Unsigned32 can only store
positive values. INTEGER or Integer32 values can be negative.

Counter64 64 bit counter that can only be read.

Chapter 9

[341]

Usually, we will be able to handle values and their meaning accordingly by knowing
the OIDs we are working with. However, in some cases, this might require the use of
the Tnm::mib command, which can be used to query MIB-related information.

We can convert an OID to its name by invoking name subcommand of Tnm::mib
command. For example:

% puts [Tnm::mib name 1.3.6.1.2.1.1.5.0]

SNMPv2-MIB::sysName.0

Subcommand oid does the opposite—it converts a label to an OID. Both
subcommands accept OIDs and names, so it is perfectly safe to invoke them if we
want to make sure an OID is specified.

A similar operation can be carried out for integer values that are mapped to string
representations. By using the scan and format subcommands, we can convert such
named integer values to and from integer representation. The OID/name of the
object whose value we want to convert, and the value, must be specified. This is
required because different values are mapped to different string representations
for various MIB objects. For example:

% puts [Tnm::mib scan IF-MIB::ifType softwareLoopback]

24

% puts [Tnm::mib format IF-MIB::ifType 24]

softwareLoopback

In this case, we need to make sure that what we are passing is either a string or an
integer representation—in some cases, especially with string or IP address-based
values passing an already scanned value to the scan subcommand will throw an error.

We can now proceed to communicating over SNMP with our devices and/or
computers. Let's assume we want to create a SNMP session. We'll start by running:

set session [Tnm::snmp generator]

This will create a new SNMP session command. The first argument sent to Tnm::
snmp command is the type of session. The generator session type is a session that
generates requests and/or gets responses—usually used for getting or setting values.

We now need to configure the IP address, protocol to use, and community string. We
can do that by running:

$session configure -address "192.168.2.2" \

 -version "SNMPv1" –community "private"

Learning SNMP

[342]

This configures our session to use SNMP version 1 and private community, which
can be used for my wireless router, for example, in order to both get and set
variables, such as the administrative e-mail contact.

Getting a value can be achieved by invoking the get subcommand of the session
object. This command accepts a varbind list. However, this is because when getting
we only need to specify the OID or name, querying a single element can be done by
just specifying its name or OID. This is an equivalent of specifying a list that contains
a sublist with just this element. For example, in order to retrieve the administrative
contact for a device we can do:

$session get SNMPv2-MIB::sysContact.0

This will return a list with single element that is a sub-list with three elements. In
order to extract an e-mail we can run the following command:

set addr [lindex \
 [$session get SNMPv2-MIB::sysContact.0] 0 2]

We can also retrieve multiple values by specifying multiple items in the varbind list.
For example, in order to retrieve multiple values and iterate them, we can run:

foreach item [$session get \
 {IF-MIB::ifSpeed.1 IF-MIB::ifType.1 IF-MIB::ifDescr.1}] {
 lassign $item oid type value
 set oidname [Tnm::mib name $oid]
 if {$type == "Integer32"} {
 set value "$value ([Tnm::mib scan $oid $value])"
 }
 puts "$oidname ($oid) = $value"
}

Our example iterates over each varbind list. The values retrieved are configuration
items of network interfaces— specifically, its speed (in bytes per second), type, and
descriptive name.

We can map OIDs to names using Tnm::mib name. Also, if the type of an item is
Integer32 then we map the value to integer value using Tnm::mib scan. The output
from this script would be similar to:

IF-MIB::ifSpeed.1 (1.3.6.1.2.1.2.2.1.5.1) = 10000000
IF-MIB::ifType.1 (1.3.6.1.2.1.2.2.1.3.1) = softwareLoopback (24)
IF-MIB::ifDescr.1 (1.3.6.1.2.1.2.2.1.2.1) = lo

Chapter 9

[343]

Performing asynchronous queries
It is also possible to use get in an asynchronous way by adding the script you want
to execute as an additional parameter. In this case, the command will return instantly
and whenever data is retrieved or an error occurred, our command will be invoked.
This command is modified. %V is replaced by resulting varbind list, %E is replaced
with error status, and %% is replaced by a single percent sign. In addition to this, %A
will be replaced by IP address of remote peer. Error status of noError indicates that
operation succeeded. All other values indicate an error.

In the case of callback scripts, the varbind list is not passed as list of lists, so it is best
to pass it as the last argument to a procedure and use the args parameter name in
the procedure to catch all remaining arguments to it.

For example, let's write a procedure to write the address and location in an
asynchronous way:

proc onComplete {error args} {
 if {$error == "noError"} {
 puts "Address: [lindex $args 0 2]"
 puts "Location: [lindex $args 1 2]"
 exit 0
 } else {
 puts "Error: $error"
 exit 1
 }
}

And in order to query this data using an SNMP session object, we need to do
the following:

$session get \
 {SNMPv2-MIB::sysContact.0 SNMPv2-MIB::sysLocation.0} \
 [list onComplete %E %V]

This causes SNMP to query in the background, so we might need to add the following
command after this to make sure our test script does not exit before data is retrieved:

vwait forever

We can also set the values of elements using the set subcommand. It can set
multiple values:

$session set [list \
 [list SNMPv2-MIB::sysContact.0 {OCTET STRING} $address] \
 [list SNMPv2-MIB::sysLocation.0 {OCTET STRING} $location] \
]

Learning SNMP

[344]

This will cause the contact address and location values of a device to be set to a
different value.

The previous example is located in the snmpget_set.tcl and
snmpget_async.tcl files in 01smtp-basics directory in the
source code examples for this chapter.

Walking over MIB trees
Tnm also supports walking over MIB trees. This is useful if you want to list multiple
entries such as network interfaces, configured IP addresses, routes or existing
connections. The subcommand walk can be used for this in a way similar to
foreach command from Tcl.

The first argument is the variable name which Tnm will set to varbind list of current
item and the second argument is the script to execute. We can also query multiple
elements and, in this case, they will be iterated over simultaneously.

For example, in order to enumerate network interfaces, we can run:

$session walk items {
 IF-MIB::ifIndex IF-MIB::ifDescr
 IF-MIB::ifType IF-MIB::ifOperStatus
} {
 set index [lindex $items 0 2]
 set descr [lindex $items 1 2]
 set type [lindex $items 2 2]
 set status [lindex $items 3 2]
 puts "Interface $index \"$descr\" ($type) is $status"
}

This code tells us to walk over the iteration over four items—for the interface index,
name, type, and its current status. The output of this script would be similar to
the following:

Interface 1 "lo" (softwareLoopback) is up
Interface 2 "eth0" (ethernetCsmacd) is up
Interface 3 "tunl0" (tunnel) is down
Interface 4 "gre0" (tunnel) is down
Interface 5 "ipsec0" (tunnel) is down

The following example is located in the snmpwalk.tcl file
in 01smtp-basics directory in the source code examples for
this chapter.

Chapter 9

[345]

Receiving traps
Aside from generator types of sessions which are used for querying data, the Tnm
package also provides different types of session. The listener type can be used to
listen for SNMP traps. They are used by SNMP agents to notify SNMP monitoring
software about critical conditions, errors, or other things that might require actions
to be taken.

Listener sessions are created in a way similar to generator sessions. For example,
creating an SNMPv1 session to receive traps can be done this way:

set session [Tnm::snmp listener]
$session configure -version SNMPv1

Please note that it is common to have an snmptrapd daemon running on your
system, which forwards traps depending on their type—in this case, Tnm will not be
able to listen for notifications and will throw an error. If this is the case, please make
sure you disable this service, for example, by invoking:

/etc/init.d/snmptrapd stop

Next we need to bind an event to this session so that our script is invoked whenever
a trap is received. This is done using the bind subcommand of the session. It requires
you to specify an empty argument as the first parameter. The reason for this is
explained later in this chapter. Following that, we specify event type, trap, in this
example. Finally, we need to supply our script. This script will be substituted in the
same way as callbacks just as with the get command. Therefore, we can use %V to
retrieve varbind list and %A to retrieve IP address of originator.

For example:

$session bind trap \
 [list ontrap SNMPv1 [list %A] %V]

This will cause the ontrap procedure to be invoked whenever a trap is received. Our
command will receive the SNMP version as the first argument, and IP address as the
second argument. In some cases, IP address can be empty; therefore, it is wrapped
in a list command. This is caused by Tnm, which passes arguments to scripts and it is
recommended that you implement bindings in this way.

In addition to this, SNMPv2 introduced inform packages, which are similar to traps,
but require a confirmation response. We can create another session for the SNMPv2c
(which is SNMPv2, community-based security) version by running:

set session2 [Tnm::snmp listener]
 $session2 configure -version SNMPv2c

Learning SNMP

[346]

We need to bind to the inform event as Tnm treats both types of packages separately:

$session2 bind inform \
 [list ontrap SNMPv2c [list %A] %V]

Now we can proceed by writing the ontrap procedure that handles trap / inform
packages:

proc ontrap {version ip args} {
 puts [clock format [clock seconds] -format %H:%M:%S]
 puts "Trap using $version from $ip:"
 foreach item $args {
 lassign $item oid type value
 set name [Tnm::mib name $oid]
 puts "$name = $value ($type)"
 }
 puts ""
}

This will cause text similar to the following to be printed out whenever an SNMP
trap is sent to our application.

20:45:35
Trap using SNMPv1 from 127.0.0.1:
SNMPv2-MIB::sysUpTime.0 = 284 (TimeTicks)
SNMPv2-MIB::snmpTrapOID.0 = IF-MIB::linkUp (OBJECT IDENTIFIER)
IF-MIB::ifIndex = 10 (Integer32)3

Sending traps
In order to test this, we can use the Tnm package to send trap and inform packages. In
order to do that, we need to create a notifier type of SNMP session by running:

set session [Tnm::snmp notifier]
$session configure -address "192.168.2.12" -community public
$session configure -version SNMPv1

This will create a SNMPv1 session that can send traps. All we need to do now is to
invoke the trap subcommand of this session. It accepts the OID of the trap to send as
its first argument. The third argument is a varbind list of all additional information
we want to provide.

In order to send a linkUp trap that sets ifIndex to 10, we can run the following:

$session trap IF-MIB::linkUp {
 {IF-MIB::ifIndex Integer32 10}
}

Chapter 9

[347]

Similarly, in order to send an SNMPv2c inform package, we need to set up a session
using the SNMPv2c protocol:

set session [Tnm::snmp notifier]
$session configure -address "192.168.2.12" -community public
$session configure -version SNMPv2c

Sending an inform package looks exactly the same, but uses the inform subcommand:

$session inform IF-MIB::linkUp {
 {IF-MIB::ifIndex Integer32 10}
}

While it is more common to listen for traps than to send them, there are instances in
which our application might forward events to other computers in the network.

The preceding example is located in the snmptrap_receive.tcl and
snmptrap_send.tcl files in 02snmp-traps directory in the source
code examples for this chapter.

SNMP agent
It is also possible to create your own SNMP agent using Tnm. This can be used to
have an application respond over SNMP. It can then be used with standard software
and hardware network-monitoring solutions. We can also create a proxy agent that
will send requests to other hosts and optionally perform calculations on some of the
fields. We can also use it to test other SNMP-aware software.

The first thing we need to do is to create a responder session by invoking the
Tnm::snmp responder command. For example:

set session [Tnm::snmp responder -port 5161 -community public]

In many cases, our system already has an SNMP daemon listening, so it is wise to
run our agent on a separate port. This way we won't collide with the system's SNMP
agent and can safely test everything as a non-root user on Unix systems.

Just this line is enough and our SNMP agent is now listening. You can check it by
running the following shell command:

snmpwalk -v1 -c public 127.0.0.1:5161

Learning SNMP

[348]

We should see basic subset of SNMP values returned. Here is a subset of the result:

SNMPv2-MIB::sysDescr.0 = STRING: Tnm SNMP agent version 3.0.0 (i686-
Linux-2.6.28-16-generic)
SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::enterprises.1575.1.1
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (477) 0:00:04.77
SNMPv2-MIB::sysContact.0 = STRING:
SNMPv2-MIB::sysName.0 = STRING:
SNMPv2-MIB::sysLocation.0 = STRING:
SNMPv2-MIB::sysServices.0 = INTEGER: 72

These values are bound to Tcl variables. Contact, name, location, and description are
bound to the Tcl array tnm_system. We can modify these by invoking:

set tnm_system(sysDescr) "My Tnm SNMP agent"
set tnm_system(sysContact) "root@net.home"
set tnm_system(sysName) "My test machine"
set tnm_system(sysLocation) "Rack 1"

We can also bind additional fields to be mapped to Tcl variables using the instance
subcommand of the session command. These will always be read whenever a
request comes in, so simply updating values is enough for them to be reflected
when querying over SNMP. For example:

$session instance \
 HOST-RESOURCES-MIB::hrSystemInitialLoadDevice.0 \
 hrLoad(device)

set hrLoad(device) 1234

This will cause OID HOST-RESOURCES-MIB::hrSystemInitialLoadDevice.0 to
be mapped to the Tcl variable hrLoad(device). This variable is always read as
global variable, so when setting it from a procedure, we either need to use command
global or reference it as ::hrLoad(device).

We can also bind strings to an OID in the same way:

$session instance \
 HOST-RESOURCES-MIB::hrSystemInitialLoadParameters.0 \
 hrLoad(params)

set hrLoad(params) "Unknown"

Chapter 9

[349]

As all these values are read, we can use the trace command to set a value before it
is actually returned by SNMP session. For example, we can set hrLoad(device) to a
random value each time it is read:

proc traceLoadDevice {args} {
 set ::hrLoad(device) [expr {int(rand() * 1000)}]
}

trace add variable hrLoad(device) {read} traceLoadDevice

The traceLoadDevice procedure its sets value to a random value within a range of
0 to 1000. Following that, we add a trace before hrLoad(device) is read to invoke
traceLoadDevice. More information about the trace command can be found in its
documentation which is available at http://www.tcl.tk/man/tcl8.5/TclCmd/
trace.htm.

The previous example is located in the snmpagent.tcl file in
03snmp-agent directory in the source code examples for this chapter.

Additional features
The Tnm package also offers access to ICMP functionality, available via Tnm::icmp
command. We can use it for including functionality such as monitoring, network
diagnostics, and troubleshooting.

Similar to SNMP, all commands are implemented as subcommands of this command.
The main difference is that, for ICMP, there is no concept of a session. All operations
are atomic and there is no need to keep a state.

One of the features of ICMP is the ability to ping one or more systems. This can be
used to check whether a machine is responding to ping requests, which usually is
equivalent to whether this machine is up and running. It can also be used to check
time needed for a packet to be sent to the machine and received back.

This command accepts a list of all hosts as its arguments. For example, in order to
pass all arguments to your script as list of hosts, we can do the following:

set result [Tnm::icmp echo $argv]

The result is a list of name-value pairs. For each host, we get a value. If it is empty,
it means that a host has not responded. Otherwise, the value is the number of
milliseconds after which a response was received. For example, in order to ping
192.168.2.2 and 192.168.2.20, we can run:

Tnm::icmp echo {192.168.2.2 192.168.2.20}

Learning SNMP

[350]

If the first IP is up and the second is down, the result would be similar to:

192.168.2.2 8 192.168.2.20 {}

In this case, the result means that it took 8 milliseconds to ping 192.168.2.2, and
that 192.168.2.20 has not responded.

We can easily iterate over results by doing the following:
foreach {ip value} $result {
 if {$value != ""} {
 puts "$ip is up"
 } else {
 puts "$ip is down"
 }
}

It is also possible to trace route to a particular computer or a set of computers.

Thr preceding example is located in the icmp_multiping.tcl file in
04icmp directory in the source code examples for this chapter.

It is also possible to trace the route to one or more IP addresses by using the ttl and
trace subcommands. These commands hop number to find and list hosts to check
against. The hop number is the distance in terms of machines that the IP packages
pass, from your computer. The index starts with 1, where 1 will probably indicate
your local router or modem.

The subcommand ttl returns the IP addresses of machines that have responded to
requests while trace returns the IP addresses of machines that packages have been
sent to. Usually both will return the same IP addresses; combining both can be used
to detect multi-homed systems.

Both commands return a list with two elements for each host— the IP address of
specified hop and the number of milliseconds it took between sending and receiving
packet from that machine. For example, we can write a simple route tracing
application by doing:

set i 0
set ip ""
while {$i < 256} {
 set old $ip
 lassign [Tnm::icmp trace $i $argv] ip ttl
 puts [format "%-20s%4s" $ip $ttl]
 if {$ip == $old} {

Chapter 9

[351]

 break
 }
 incr i
}

This example increases the i variable and gets the next hop for the specified IP
address or hostname. When the IP address returned is the same as the previous one,
this means that this is the last hop and we can now stop iterating. This example also
stops if the number of hops exceeds 256.

This example is located in the icmp_traceroute.tcl and
icmp_multitraceroute.tcl files in 12smtp directory
in the source code examples for this chapter.

Summary
Tcl has a powerful extension for communicating over SNMP. The Scotty package
covers all aspects of SNMP—all commonly used versions of the protocol and offers
all aspects of SNMP communication.

In this chapter, we learned:

TkIned application—this can be used as both a simple network monitoring
tool and base for learning SNMP.
Using Scotty for getting and setting SNMP values, for iterating over SNMP
tables and finding attributes that a particular device offers. This can be used
to, periodically or on demand, query data from devices or automatically
configure devices.
How to send and receive traps—this is especially useful if we need to
support devices that communicate only over SNMP, such as routers, printers,
and embedded devices. We can also send traps from our application, which
can be used to notify our monitoring system if something is wrong.
To set up SNMP agent so that our application can be monitored and/or
queried using SNMP. This can be an integration point with monitoring
systems that communicate over SNMP, such as Cacti or Nagios.

Readers are encouraged to play with the application more, and learn SNMP using it.
It can also be used to discover devices and computers within our network that we
can test it on.

The next chapter introduces the embedded Tcl web server that can be used for
communicating with users and across applications using HTTP. It also shows how
it can be used to build a website and serve content similar to other web servers.

•

•

•

•

Web Programming in Tcl
In this chapter, we will introduce you to concepts related to web programming in
Tcl. To be more specific, server-side web programming—processing the requests
coming from clients via the HTTP protocol and responding to these requests.

The invention of HTTP and HTML revolutionized the perception of Internet and had
a significant impact on the way we are using it today. These technologies became so
common that it is almost impossible to imagine our day-to-day life without them.
It is no wonder that every modern language is web-enabled, that is it offers a rich
variety of libraries and extensions facilitating the web programming. Tcl, of course,
is one of these languages, but it offers more than that—a high grade, stable and
efficient web server written entirely in Tcl, able not only to serve the content, but also
easily extendable, so it may be boldly considered as a kind of application server. The
existence of such a solution proves the maturity of Tcl as the tool that can be used to
develop complex solutions.

We assume the reader is familiar with the basic concepts of web programming, and
abbreviations such as HTTP, HTML, CGI, or MIME are not a mystery. Otherwise,
although we attempt to use simple language and easy-to-understand examples,
we recommend reading about them before proceeding with this chapter, as it will
significantly help you to get more familiar with topics covered in this chapter. The
amount of available sources of such knowledge is so high that there would be no
point to repeating this information once again.

In this chapter, the following topics will be covered:

First, we will discuss how Tcl code can be used as CGI scripts—the solution
was once very popular, and even now is important for historical reasons.
CGI is a strict interface that defines how a web server can cooperate with an
application (written in the language of your choice) to generate an answer.
The interface is so simple that any language could be used, but Tcl offers
some extensions to facilitate CGI scripting development, particularly the
package ncgi, which we will present.

•

Web Programming in Tcl

[354]

Next we will take a closer look at html package that is designed to make the
generation of HTML output easier. It is only one of many extensions offered
by Tcl world, so you may consider it an incentive to learn about others and
choose the solution that will suit you the best.
Finally, we will focus on TclHttpd—a mature web server written entirely
in Tcl. Make no mistake here—it is not just a 'toy' or proof of concept. For
example, the entire Tcl wiki (http://wiki.tcl.tk) is running on top of it.
As a matter of fact, the Tcl language, thanks to its well-designed and efficient
I/O system and event programming, suits the purpose of concurrent
handling of multiple HTTP requests quite well. For example, take AOLserver
(http://www.aolserver.com)—a Tcl-enabled web server that is used
in mature business-grade implementations around the world. It is not a
coincidence that from a variety of languages Tcl was chosen to shape
this product.
Talking about TclHttpd, we will present how to obtain, install, configure,
and run it. After having a look at its basic capabilities, we dive into extending
the server with your custom code. You will learn how to use CGI here, and
map a URL to a Tcl procedure, so its invocation is as simple as one mouse
click in web browser. We will show you how to create a document handler;
a piece of code that processes and generates the content served to the client,
effectively allowing you to extend the server in any way you would like to.
Next, we will discuss domain handlers, which are pieces of code responsible
for handling the website sub-domains of your choice. Then, you will become
familiar with rapid development of websites based on a template system,
which allows you to mix HTML and Tcl code together.
Once you learn how to program the TclHttpd server, we will show you how
to debug it, and finally how to embed it into your application, effectively
making it web-enabled. You will be presented with a real-life example of
when the server is successfully incorporated into standalone executable
distribution created with the Starpack technology—that's right, you can have
your program in one binary file, and it can be accessed via the web browser!
Here is where the flexibility and richness of techniques, available in Tcl,
allow you to create impressive solutions.

We do not in tend to mirror the official documentation of described libraries/
packages, but to show the possibilities and applications they offer through simple
yet interesting examples of usage. For every example, the complete source code and
other resource files are available in the source code examples for this chapter.

•

•

•

Chapter 10

[355]

Tcl scripts as CGI application
The Common Gateway Interface (CGI) is the standardized way the CGI-compliant
web server can use external application to do some tasks, and essentially to generate
the HTML output to the client. We do not intend to describe CGI itself—as it is
beyond the scope of this book, but to focus how Tcl can be arranged here. The full
specification of CGI, is described in detail in RFC 3875 (http://www.ietf.org/rfc/
rfc3875.txt).

The CGI standard defines that the application may be written in any language. The
communication between the server and the application is as follows:

The input for the application is provided in terms of environmental variables
(see CGI manual for detailed list of these variables). In the case of HTTP
POST request, the content of that request is available as standard input.
The application writes the resulting document to standard output. This
output must contain at least the HTTP header defining the MIME type
of the document, and the content.

To sum up, all operations boil down to reading standard input and/or
environmental variables, and writing to standard output.

The following is simple example of a Tcl script that may serve as application CGI:

#!C:/tcl/bin/tclsh85.exe
puts "Content-type: text/html"
puts ""

puts "<pre>"
parray ::env
puts "\nStandard input:"
puts [read stdin]
puts "</pre>"

All this code does is write to the standard output all environmental variables
available (in form of Tcl $env variable) and the contents of standard input. For
the sake of clarity, we do not even care about the correct HTML formatting of
the output—fortunately, the web browser will still display it correctly.

You can run this code with any web server that is able to handle CGI applications
correctly. Consult your server's manual for details on how to enable and
configure CGI.

•

•

Web Programming in Tcl

[356]

For demonstration purposes, we decided to use Apache, coming in the form of a
portable XAMPP distribution (http://www.apachefriends.org/en/xampp.html). In
this case, no special configuration was required. Assuming the distribution is installed
in C:\xampp directory, all you have to do is save the code in the c:\xampp\cgi-bin\.
We decided to name it cgi_example.tcl. Once you start the web server, you can
access the application using http://127.0.0.1/cgi-bin/cgi_example.tcl:

In a typical use-case scenario, the web browser sends some user entered data to the
application. Two options are possible:

The data is sent using an HTTP GET query. For example, if you decide to
send a variable named "key" of value "value", you could simply type in the
browser: http://127.0.0.1/cgi-bin/cgi_example.tcl?key=value. In the
code, you can access this data by reading the QUERY_STRING environmental
variable, which will contain all the characters from the URL after the question
mark ('?'); each new key=value is separated by an ampersand character ('&')

•

Chapter 10

[357]

The data is sent using HTTP POST query, for example, by this simple
HTML form:
<form action="/cgi-bin/cgi_example.tcl" method="POST">
 <input type="hidden" name="key" value="value" />
 <input type="submit" />
</form>

In this case the QUERY_STRING is empty, and the data is available on standard
input. The encoding of the data depends on the encoding type used by the
browser that is sending the query. The default type is application/x-
www-form-urlencoded, but if you are uploading some files, the type
multipart/form-data must be used. In the HTML page code, the
encoding type is specified using the enctype attribute of the form tag.

To work with this data, you would have to detect which HTTP request method has
been used (by reading env(REQUEST_METHOD) variable) and read the data from the
appropriate source (standard input or env variable). Note that they are encoded,
so you have first to check what type of encoding was used (by checking the
env(CONTENT_TYPE) variable) and decode them adequately.

Of course, you are not limited to outputting only text/html type of data; you can
produce the response of any allowed MIME data. For example, you could create a
script that adds a watermark to an image and returns it—in this case, the content
type would be like image/* (for example image/png or image/jpeg), and then the
binary data would be written.

The source code of the examples presented in this section
is located in the in the 01cgi directory in the source code
examples for this chapter.

Using ncgi package
All these tasks, although simple, are really annoying and error prone when it comes
to doing them on your own; fortunately, there is a package named ncgi. What the
package does is to provide an abstract overlay over the CGI interface, boiling down
the entire operation to the invocation of a few commands from the :ncgi namespace
in your Tcl script. The package is part of the tcllib library, and you can find its
documentation at http://tcllib.sourceforge.net/doc/ncgi.html. To illustrate
its usage, let's revisit and modify the previous example. We will use simple a HTML
form to upload both text (name, surname, age) and binary (file) data:

<form action="/cgi-bin/ncgi_example.tcl" method="POST"
enctype="multipart/form-data">
Name:
<input name="name" value="John" />

•

Web Programming in Tcl

[358]

Surname:
<input name="surname" value="Smith" />

Age:
<input name="age" value="54" />

Image:
<input type="file" name="file">

<input type="submit" />
</form>

The following screenshot shows the form:

Upon upload, the ncgi_example.tcl CGI script will be executed. The file contains
the following code:

#!C:/tcl/bin/tclsh85.exe
package require ncgi

::ncgi::parse

::ncgi::header
set keys [::ncgi::names]
puts "<pre>"
puts "query data names: $keys \n"
foreach key $keys {
 if {$key eq "file"} {
 puts "uploaded file details:"
 puts "client sent: [::ncgi::importFile -client $key]"
 puts "type: [::ncgi::importFile -type $key]"
 puts "saved as: [::ncgi::importFile -server $key uploaded.png]"
 } else {
 puts "$key: [::ncgi::value $key]"
 }
}
puts "</pre>"

Chapter 10

[359]

What the file does first is load ncgi package. All commands from that package are
accessible in the::ncgi namespace. The ::ncgi::parse command, once executed,
performs all the behind-the-scene magic—it automatically reads data from the CGI
environment and decodes it appropriately, so you don't have to bother about it
anymore. You may have no idea how HTTP/CGI works, and you'll still be able to
successfully code the CGI script! You have to call this command first, before you start
accessing the uploaded data. The command takes care of all aspects like detecting
the encoding type and using it to decode the data correctly—in our example, it
transparently handles the support of multipart/form-data, which would be quite
awkward to perform manually.

After the incoming request was parsed with ::ncgi::parse, we get the list of
uploaded data names using ::ncgi::names and store it into the keys variable.
Next, for each data we print its name and value, except the image—we print image
file details and save them as the uploaded.png file. The details of uploaded file are
retrieved using the following commands:

::ncgi::importFile -client key—returns the full path and name of the
file as it is on the client's side. The last parameter—key—it is the appropriate
name of input field used in uploading HTML form. In our example, the client
uploaded the file C:\to_upload.jpg from the local drive.
::ncgi::importFile -type key—returns the MIME type of the file,
allowing to process it appropriately.
::ncgi::importFile -server key uploadedFileName—saves the
uploaded file as uploadedFileName (in our case, as uploaded.png) and
returns that name. Note that it is your responsibility to remove the created
file when it becomes dispensable.

In fact, before we start printing anything to the standard output, the HTTP response
header must be written to it. In the earlier example, it was done manually:

puts "Content-type: text/html"
puts ""

But ncgi package offers handy command ::ncgi::header that automates it. By
default, it outputs only Content-type header with text/html value, but you are
able to alter this behavior by specifying additional (optional) parameters:

 ::ncgi::header contentType additionalHeaders

contentType is a new value of type to send to the browser
additionalHeaders is a list of additional headers to send, in the form of
name-value pairs

•

•

•

•

•

Web Programming in Tcl

[360]

The response produced by the script to standard output is sent by the server to the
web browser, as shown in the next screenshot:

We do not intend to describe all of ncgi commands—interested readers will find
them in the package's manual. Some of the most useful are:

::ncgi::cookie cookieName—returns the value of the cookie
named cookieName.
::ncgi::setCookie options—writes the HTTP cookie header to stdout.
This command must be called before other commands that write headers
(for example ::ncgi:header). The argument options are a list of option
names and values:

–name name —specifies the cookie name.
–value value—the value of the cookie.
–expires date—the expiration date.
–path path—the cookie's path attribute.
–domain domain—the domain attribute.

::ncgi::import name ?tclName?—imports the data identified by name
from the HTTP query as the tclName variable (or as name, if tclName is
omitted), for easy access to the script. There is also a command that allows
importing a set of variables: ::ncgi::import ?names?, where names is a
list of variable names to import. If that parameter is omitted, all variables
are imported.

•

•

°

°

°

°

°

•

Chapter 10

[361]

As the cookies are commonly used, let's have a closer look at them. The following
example will either ask the user for his name, or print a welcome message if the
cookie name is set:

#!C:/tcl/bin/tclsh85.exe
package require ncgi

::ncgi::parse
set name ""
if {[::ncgi::exists name]} {
 set name [::ncgi::value name]
 ::ncgi::setCookie -name name -value $name
} else {
 set name [::ncgi::cookie name]
}
::ncgi::header

if {$name != ""} {
 puts "Hello, $name"
} else {
 puts "<form action=\"/cgi-bin/ncgi_example2.tcl\" method=\
"POST\">"
 puts "Enter your name:
<input name=\"name\" />
"
 puts "<input type=\"submit\" />"
 puts "</form>"
}

The code is rather simple. If the name parameter is sent to the script, its value is used
to set a cookie of the same name.

Next, depending on whether the cookie is set or not, one of the following screens
may be presented:

Web Programming in Tcl

[362]

If you refresh the page multiple times, you will still get the greeting message, as your
name is already stored as a cookie.

The source code of the examples presented in this section is located in the
in the 02ncgi directory in the source code examples for this chapter.

Using html package
The package ncgi significantly eases server-side programming in Tcl, but there is
still a need to manually generate the output—and by manually we mean that you
have to take care of every output character on your own. Tcl programmers tend to
make life as simple as it can be so it is easy to guess that there are some solutions
for creating HTML code. One of them is the html package, also a part of tcllib
(http://tcllib.sourceforge.net/doc/html.html).

As usual, instead of duplicating the manual, we will present the abilities of the
package in some simple yet working example code:

#!C:/tcl/bin/tclsh85.exe
package require ncgi
package require html

::ncgi::parse
::ncgi::header

::html::author "Piotr Bełtowski"
::html::keywords "html tcl package learning"
::html::description "example web page that illustrates \
the usage of html (and ncgi) package"
puts [::html::head "package html example"]
puts [::html::bodyTag]
if {[::ncgi::exists name]} {
 puts [::html::h3 "thank you for posting the data:"]
 puts [::html::tableFromList [::ncgi::nvlist] border="1"]
} else {
 puts [::html::openTag form \
 action="/cgi-bin/html_example.tcl"]
 puts [::html::h3 "please fill in the form:"]
 puts [::html::nl2br "Name:\n \
 [::html::textInput name John]"]
 puts [::html::nl2br "Surame:\n \
 [::html::textInput surname Smith]"]

Chapter 10

[363]

 puts [::html::nl2br "Age:\n \
 [::html::textInput age 54]"]
 puts [::html::submit "Submit"]
}
puts [::html::end]

We assume this code is saved as html_example.tcl in CGI directory (cgi-bin in
the case of Apache).

The code starts in similar way as previous examples, by parsing the HTTP request
and writing the HTTP response header to the standard output, respectively with ::
ncgi::parse and ::ncgi::header commands.

In general, the commands from the html package do not produce any standard
output on their own, but return an HTML fragment string. That is why in the
example these commands are usually surrounded by a puts invocation. This allows
us to create HTML text, storing it in a variable, and performing more advanced
processing such as caching HTML text. The second thing about them, as you have
already noticed, they are all available in ::html namespace.

The problem of generating the HTML content is that every tag has to be eventually
closed, which may be cumbersome in the case of deeply nested tags. The package
solves this problem in an interesting way: the information of every opened tag (for
example <html>) is stored (pushed) on some kind of stack. At the end, all you have
to do is call the appropriate command that pops the tag back from the stack and
generates an appropriate closing sequence (like </html>).

The command ::html::head pageTitle generates the <head> section with the
title set to pageTitle. It also creates the <html> tag, pushing the information about
it on the stack mentioned before. In a real web page, the <head> tag usually contains
additional information. To put them there, all you have to do is to call some commands
earlier, before generating the <head> section. In our example, we use the following:

::html::author string—this command will result in a string (that, as the
command name suggests, may contain details about the author of the web
page), which will be put as the comment into the <head> element
::html::keywords and ::html::description—calling these commands
will place their arguments into the appropriate <meta> tags (keywords and
description) that will be a part of <head>

There is also a more general command ::html::meta that allows you to create
virtually any <meta> tag.

•

•

Web Programming in Tcl

[364]

Once we have dealt with the <head> section, we create opening <body> tag with the
::html::bodyTag. Again, this command will store information about any unclosed
tags in the stack.

Now it is time for some logic. The same CGI script will either generate a simple form
to be filled-in, or will present the results from the form. Using ::ncgi::exists
name we check if the HTTP request contains a variable named name. If yes, we
assume that the form was submitted, and generate some kind of summary page:

The<h3> tag is created using the ::html::h3 tagContent command. All such
tags from <h1> to <h6> have corresponding commands, named adequately.
Next, a two-column HTML table is created using the ::html::tableFromList
command. Its first argument must be a list of name-value pairs—in our case,
we get this using ::ncgi::nvlist, which produces a list of all query variables
in complaint format. The second (optional) argument is a string that will be put
inside the <table> tag, so it should contain the appropriate tag's attributes.

In case no data was sent to our script, it will respond with an HTML form. First the
<form> tag is created using ::html::openTag. This command allows you to create
any tag—its first parameter is a tag name, and the second—the tag's attributes. As
you probably guessed, it also pushes the tag on the stack, allowing it to be closed
later. We want the form to invoke the same current script on submission, so the
action target /cgi-bin/html_example.tcl is used. In case you would like to use
a web server other than Apache, or in different configuration, please consult the
server's manual on how to access your CGI script.

Our form will ask the user for three input data values: name, surname, and age,
proposing as default values John Smith, 54. To achieve this, some <input> elements are
created using ::html::textInput, with the variable's name and the default value as
parameters. Note that this command will set the <input> size attribute to the value 45
by default. It is a bug that should be fixed in future releases of the library.

In order to avoid manual encoding of new lines using
 tags, we use
::html::nl2br that converts all new line characters (\n) occurrences to that tag.
In this example, it is a bit over the top, but may be really useful in the case of
generating more complex web pages.

Finally, an <input> element of type submit is created with "Submit" as the label on
the button, by using ::html::submit "Submit" command.

Now it is time to close all opened tags—we can do it almost magically with
::html::end; this command will pop all unclosed tags from the stack and produce
the appropriate HTML content to close them. There is also another command—::
html::closeTag—that pops from the stack and closes only one tag.

•

•

Chapter 10

[365]

Having said all that, let's see the generated HTML code along with its appearance in
the web browser. First, the page with the form to send:

<html><head>
 <title>package html example</title>
 <!-- Piotr Bełtowski -->
 <meta name="keywords" content="html tcl package learning">
 <meta name="description" content="example web page that
illustrates the usage of html (and ncgi) package">
</head>

<body bgcolor="white" text="black">

<form action="/cgi-bin/html_example.tcl">
<h3>please fill in the form:</h3>

Name:
 <input type="text" name="name" value="John" size="45">

Surname:
 <input type="text" name="surname" value="Smith"
size="45">

Age:
 <input type="text" name="age" value="54" size="45">

<input type="submit" name="submit" value="Submit">

</form>
</body>
</html>

The preceding code should produce a screenshot like the following one:

Web Programming in Tcl

[366]

The page presenting the uploaded data is as follows:

<html><head>
 <title>package html example</title>
 <!-- Piotr Bełtowski -->
 <meta name="keywords" content="html tcl package learning">
 <meta name="description" content="example web page that
illustrates the usage of html (and ncgi) package">
</head>

<body bgcolor="white" text="black">

<h3>thank you for posting the data:</h3>

<table border="1"><tr>
 <td>name</td>
 <td>John</td>
</tr>
<tr>
 <td>surname</td>
 <td>Smith</td>
</tr>
<tr>
 <td>age</td>
 <td>54</td>
</tr>
<tr>
 <td>submit</td>
 <td>Submit</td>
</tr>
</table>
</body>
</html>

The screenshot produced with the preceding code is:

Chapter 10

[367]

As you can see, the produced HTML code, although simple, is clean and correct.
Using the html package you may probably not be able to produce perfect, 100% valid
HTML code in all cases, but in most applications, the results should be satisfying.
The package offers many more commands than described here, and we encourage
the reader to study the manual to get acquainted with its full possibilities.

The source code of the examples presented in this section is located in the
in the 03html directory in the source code examples for this chapter.

Introduction to TclHttpd
The possibilities offered by Tcl go far beyond plain CGI scripting—the entire
web server can be written using this language. But before you eagerly start writing
your own, know that this task was already done by Brent Welch, the author of
TclHttpd—the powerful web server completely implemented using the Tcl
language. The author claims that at the beginning the entire code had about 175
lines. Tcl's input/output subsystem is well crafted, and it offers maximum usability
with minimum coding.

The homepage of TclHttpd is located at http://www.tcl.tk/software/tclhttpd/.
The latest available officially released version 3.5.1 was released on May 27th, 2004.
This is both bad and good information: the code is pretty old and not actively
supported, but it reached the maturity level long time ago. The code has its years, but
you can't question its usability.

The source code of the examples presented in this section is located in the
in the 04tclhttpd directory in the source code examples for this chapter.

Installation
You can download the server from http://sourceforge.net/projects/tclhttpd/
in two ways:

tclhttpd3.5.1.tar.gz (or tclhttpd351.zip)—contains the server code
tclhttpd3.5.1-dist.tar.gz (or tclhttpd351dist.zip)—contains the
server code, a full Tcl/Tk distribution of version 8.4.5, TclLib version 1.6,
and the Thread extension (2.5.2)

•

•

Web Programming in Tcl

[368]

In most cases, you will already have a Tcl interpreter installed and configured on
your system, and for the rest of the chapter, we will focus on this option. The version
of server we describe requires Tcl version 8.3 or higher, with the Tcl Standard
Library (TclLib) installed (as the server makes use of some of its packages). If you
have set up ActiveTcl 8.4 or 8.5, it also contains all the packages that TclHttpd needs;
all that you need to do is use it now!

The entire installation process is simply to download and unpack the compressed
archive. After unpacking, the server's files will be found in the tclhttpd3.5.1
directory—you may rename it and put it anywhere you like, and in our examples
we assume it is moved to C:\ tclhttpd location. We will also refer to this as the
"home directory".

It is also worth mentioning that TclHttpd server is available in form of a Starkit
one-file distribution—tclhttpd3.5.1.kit.

Retrieving source code from the CVS repository
The source code of the server is stored in the SourceForge cvs. It contains a newer,
never released version 3.5.2 that fixes some known bugs. If you wish to use this
version, the following are the command-line instructions to run. When prompted
for a password, hit the Enter key.

cvs -d:pserver:anonymous@tclhttpd.cvs.sourceforge.net:/cvsroot/tclhttpd
login

cvs -z3 -d:pserver:anonymous@tclhttpd.cvs.sourceforge.net:/cvsroot/
tclhttpd co -P tclhttpd

The code will be downloaded to the tclhttpd subdirectory of current folder.

Documentation
The server comes with documentation, moreover, with a complete chapter
from Brent Welch book, dedicated to TclHttpd—you can find it in the directory:
htdocs/book/TCLHTTPD.html

Chapter 10

[369]

First run
The start of the server is done by running the httpd.tcl script located in the bin
directory of the TclHttpd home directory (in our example it is C:\tclhttpd\bin\
httpd.tcl).

Once launched, the server is available by default on the 8015 port. You can also see a
randomly generated password (in this execution, it was rf4lohm7.np), allowing
you to access debug information. See http://127.0.0.1:8015/hacks.html for
more details.

When accessed via the web browser, the server presents its default homepage:

Web Programming in Tcl

[370]

When you first run TclHttpd, there is a pretty good chance you may witness some
trivial yet annoying problems, especially on MS Windows.

First, the default configuration assumes that the server will store its log and runtime
files in the /tmp directory. It is quite a good default value in a Unix environment
where that directory usually exists, but on Windows you will get an error like:

Error processing main startup script "C:\downloads\tcl\
tclhttpd3.5.1.kit\bin\httpdthread.tcl".
couldn't open "/tmp/tclhttpd.default": no such file or directory

The solution is either to create the C:\tmp directory (because the Tcl 'understands'
the philosophy of Windows paths; /tmp will eventually be translated to C:\
tmp), or to use the 3.5.2 version, where the bug seems to be fixed (although it is
still attempting to write to /var/run/tclhttpd/tclhttpd.pid). As previously
mentioned, version 3.5.2 can be retrieved from the CVS repository.

The second issue may be related to running the server from the.kit distribution,
and occurs on Windows. TclHttpd offers some debugging mechanisms, and as
mentioned earlier, at each start, it generates a random password that allows access to
this functionality. This password is written to standard output at startup. The problem
is that if you are using MS Windows and Tclkit as the runtime, you will not be able
to see that output, and in particular the password. The solution is to instead use
the command-line version of Tclkit—Tclkitsh, which is able to handle this situation
correctly. However, you will lose the ability to see the GUI (not a real loss anyway).
Version 3.5.2 offers a circumvention of the problem—the password is printed in the
GUI window.

Talking about the GUI, if run with wish instead of tclsh, the TclHttpd will
display a simple graphical window with some basic information and counters
(computername is the name of the computer on which it is executed):

Note that the screenshot was taken from the version 3.5.1, so the password is
not displayed.

Chapter 10

[371]

Startup parameters
The httpd.tcl script can be run with additional parameters that override the
default configuration of the server. The most important ones are:

Parameter Description
-port portNnumber Overrides the default port value.
-docRoot directoryPath Defines the root directory for the top level URL

(like http://127.0.0.1:8015/). By default, it is
htdocs in the server home directory.

-config configFileName Specifies the configuration file to use. The default
config is tclhttpd.rc.

-library directoryPath Defines the directory where the custom code should
be stored—all files from this location are sourced by
the server at startup. By default, it is custom in the
server home directory.

Such a form of invocation is useful for the quick change/customization of
configuration. If you need the changes to be permanent, you should rather modify
(or create new) configuration file (described as follows).

Default directory structure
When you unpack downloaded server distribution, you will observe a lot of files and
directories inside it. Fortunately, only some of them are crucial and worth knowing.
The most important subdirectories of the server home directory are:

Subdirectory Description
bin Contains the file httpd.tcl that starts up the server,

tclhttpd.rc that holds the default configuration. Also, the mini
subdirectory has a minimalistic version of server that may be a
base for your modifications and development

custom Your custom Tcl code should go here—on startup, the server
will source every file from this directory

htdocs Constitutes the base for / URL hierarchy. All documents that
should be accessible via HTTP should be located here, for
example, the file htdocs/test/test.txt will be accessible with
http://127.0.0.1:8015/test/test.txt.

htdocs/cgi-bin All CGI scripts go here
lib TclHttpd Tcl source files are stored here

Web Programming in Tcl

[372]

Configuration
When started, the server first reads the configuration. The config file—by default,
it is tclhttpd.rc . This file is looked for in the same directory where httpd.tcl
resides. As mentioned earlier, you can force TclHttpd to use an other file using the
–config command-line attribute. Of course, it should have the same format, so you
will probably make a copy of the default one and enter your modifications, rather
than writing from the scratch.

The tclhttpd.rc is well commented. Its syntax will appear similar to you—
basically, it is a Tcl script that runs the internal Config command to set configuration
properties. For example, the following line configures the HTTP port value to 8015:

Config port 8015

Some other important configuration items include:

config file entry Description
Config gui 1 Enables simple GUI. Change to 0 to disable it.
Config LogFile path Defines location where to save log files.

Internally, the configuration is stored in the::Config array.

The second way of configuration is to use some commands in scripts loaded
by the server. For example, you can register another document root directory
(C:\tclhttpd\htdocs2) to be available at the specified URL prefix (/backup):

Doc_AddRoot /backup C:\\tclhttpd\\htdocs2

Therefore, all the content of that directory is available as a subtree of
http://127.0.0.1:8015/backup/.

Chapter 10

[373]

Performance
As for the performance of TclHttpd, not too much data is available. According
to information from Brent Welch (http://www.tcl.tk/software/tclhttpd/
tclhttpd-tcl2k.pdf), the author of the server, it runs about 2-3 times slower when
compared to other servers like Apache or IIS. This is a good result, when you take
into consideration that those servers are not created in scripting languages, and
have many performance improvements. Keep in mind that the data was gathered
some time ago and is probably not too accurate. Nevertheless, the performance of
TclHttpd should be enough for most applications.

Programming TclHttpd server
Providing the static content to the client, although crucial, is not the most passionate
feature of modern web servers. The entire magic and source of extreme success of
WWW in today's world comes from server-side programming and the ability to
deliver dynamically generated responses—it may include a web page, image, or any
other type of media.

In this section, we are going to present how TclHttpd, being the fully-featured web
server, is able to fulfill these challenges.

Providing static content
There is not much to write about it. The basic feature of the type of content referred
to as static is that it does not depend on the request's parameters—the client is
always served with exactly the same content they had requested, and usually, it is
taken directly from the server's file system. Needless to say, TclHttpd is able to do
this. For example, the graphical file located at htdocs/images/lake.gif will always
be served as the answer to a request for http://127.0.0.1/images/lake.gif.
A feature as important, as boring!

Web Programming in Tcl

[374]

Using CGI in TclHttpd

Note that running external Tcl scripts from a Tcl-based web server
is a really bad idea and we present it only to prove that the CGI
interface works here. In the next section, you will get to know how
to embed your Tcl code in a far more elegant and efficient way.

TclHttpd is able to handle CGI applications correctly. You have to place your
application in the htdocs/cgi-bin directory to make it work. The way this
application is created has no meaning here—it must be executable in the underlying
operating system, so it may even be a Tcl script. You can verify it quickly with the
example at the beginning of this chapter, cgi_example.tcl:

Mapping URL to application
Here is where the interesting part begins. TclHttpd offers you the ability to
create Application Direct URLs. In other words, you are able to map an URL
to a particular Tcl procedure.

Chapter 10

[375]

Does this sound a bit similar to CGI? It may, but this solution brings you much more
flexibility and ease of implementation. Running the code inside the same process
has a lot of benefits, for example, caching the data as a Tcl variable for usage on the
next invocation. Also, the performance is far better, as the procedure will execute in
the already running Tcl interpreter, rather than spawning a new one. When you run
an external application using a CGI interface, it works outside the TclHttpd server
environment, so you are not able to alter its internal state or perform any other action
that is beyond the CGI specification.

The idea is that once the HTTP request for a particular resource occurs, a Tcl
procedure of your choice will be called. The arguments of the procedure will be
automatically obtained from the query data, along with the following rules:

The name of the argument must match the name of the request parameter.
If the corresponding parameter is missing, the argument will be assigned
with an empty string or the default value (if defined).
If the last argument of the procedure is named args, all superfluous
query parameters will be assigned to it in the form of a list containing
name-value pairs.

After a call, the procedure should return HTML or any other value that should be
delivered to the HTTP client. TclHttpd offers a set of commands that may be used,
for instance, to set the content type of the output, so no manual coding of HTTP
headers is required.

Let's consider this functionality in the following example:
Direct_Url /app_example Test

proc Test {{name John} {surname Smith} {sex male} address args } {
 set result "<h1>Welcome !</h1><pre>"
 foreach {key} {name surname sex address args} {
 append result "$key: [set $key]\n";
 }
 foreach key [::ncgi::names] {
 append result "\n(ncgi) $key: [::ncgi::value $key]"
 }
 append result "</pre>"
 return $result
}
proc Test/printenv {} {
 set result "<pre>"
 foreach {key value} [array get ::env] {
 append result "$key -> $value\n";
 }
 append result "</pre>"
 return $result
}

•
•

•

Web Programming in Tcl

[376]

To make it do anything, you have to save it in the custom subdirectory (in our
environment, it is C:\tclhttpd\custom) as the Tcl script of any name
(for example, app_example.tcl) and restart the server.

Direct_Url is one of the commands offered by TclHttpd. It allows defining that
any access to /app_example URL (http://127.0.0.1/app_example) will result in
a call to Test procedure. You should be careful in case the URL overlaps with static
resources reachable at the same location, and rather avoid such a situation.

The procedure takes a set of arguments. Some of them, name, surname, and sex have
default values, and others—address—do not. The last argument named args will
hold all additional parameters from the query. Once called, the procedure will print
a welcome message and a list of arguments along with their values:

Note that:

As expected, variables not present in a HTTP query (in this example, we use
GET query for better readability) have a default value assigned
The value from the query for the name argument is used instead of
default one
It is perfectly legal to also use the ncgi package here

Apart from the Test procedure, we have defined a second procedure named
Test/printenv. Why such a cumbersome name? The specification of TclHttpd
states that when Test handles the /app_example domain, the Test/printenv will
handle /app_example/printenv. Of course, you can use any path of your choice
(it may contain multiple '/' characters)—there is only one rule, the name must be
appropriately reflected in the procedure name that you want should be executed
upon accessing the URL.

•

•

•

Chapter 10

[377]

This second procedure does a similar job to our previous CGI scripts—it prints out
the ::env array. The environmental variables are initialized in a manner compliant
with the CGI specification, allowing you to retrieve information about both the
server and the request that is being processed. Besides CGI-related variables, there
are also other, system-specific variables available.

The procedure assigned to handle a specific URL is not limited to return only HTML
string. In fact, you have the full capability to return data of content type of your
choice, which we will show in the next example. This time we want to have the code
that will return a graphical image file tagged with watermark.

Let's present the source code first:

package require Img

Direct_Url /image getImg

proc getImg {name} {

Web Programming in Tcl

[378]

 set watermark [image create photo -file [file join \
 $::Config(library) "watermark.png"] -data png]
 set image [image create photo -file [file join \
 $::Config(docRoot) $name]]
 set iw [image width $image]
 set ih [image height $image]
 $image copy $watermark -to 0 0 160 30
 $image copy $watermark -to [expr {$iw - 160}] [expr {$ih - 30}] \
 $iw $ih

 global getImg
 set getImg "image/jpeg"
 return [::base64::decode [$image data -format jpeg]]
}

The code makes some use of Img package that was not discussed earlier, but it
is enough to know that as a result, the binary data of image with watermark are
eventually returned by the getImg procedure. As that package is dependent on Tk,
it's usage has some drawbacks—it will not work in text-only environment (in real-life
cases, you can consider using dummy X server or TclMagick package that does not
require Tk).

We refer to the watermark file by using $::Config(library) (by default, its value is
custom so the file path would be <TclHttpHomeDir>/custom/watermark.png), and
search for target file in the $::Config(docRoot) (typically htdocs) directory.

The picture to be tagged is specified via the name parameter. Note that you have
to be extremely cautious when it comes to accepting any type of file path from the
request—a malicious user could use it as a security hole.

Before the image data is returned, one more task must be completed. To set the type
of content returned by the procedure, all you have to do is set the global variable
after the procedure, getImg, to the desired content type MIME value:

global getImg
set getImg "image/jpeg"

In this case, we have decided that regardless of the source image format, we will
always generate a JPEG picture.

Chapter 10

[379]

The overall result is that we have a possibility of returning to web browser, a picture
with watermark:

Creating document type handlers
The presented way of tagging files works, but is far from perfect. In particular,
the URL is complex, and the user still has the ability to access the untagged file by
simply requesting http://127.0.0.1/car.jpg file. It will be good to flip over this
situation—by default all graphic files should be tagged, but there should be the
possibility to return the untagged image (for example, for premium users). We can
achieve this by defining the special handler procedure for all files of the MIME type
image/jpeg.

In general, almost any resource served by the web server can be categorized to be
one of the media content types, commonly referred to as MIME types. For a full list
of defined types you can visit http://www.iana.org/assignments/media-types/.
The web servers are usually aware of the most common MIME types. For a list of the
types known to TclHttpd, have a look at the lib/mime.types file.

Using the watermark example
A Document type handler is a piece of code that is invoked only when a resource
of a given type is being requested. Consider the following code, which will be
responsible for applying a watermark to every picture requested from the server:

package require Img
proc Doc_image/jpeg {path suffix sock} {
 set watermark [image create photo -file [file join \
 $::Config(library) "watermark.png"]]
 set image [image create photo -file "$path"]

Web Programming in Tcl

[380]

 set iw [image width $image]
 set ih [image height $image]
 $image copy $watermark -to 0 0 160 30
 $image copy $watermark -to [expr {$iw - 160}] [expr {$ih - 30}] \
 $iw $ih

 set mtype [Mtype $suffix]
 set format [string replace $mtype 0 [string last / $mtype]]
 if {$format eq "gif"} {
 set mtype [Mtype .[set format png]]
 }

 Httpd_ReturnData $sock $mtype [::base64::decode \
 [$image data -format $format]]
}
Mtype_Add .png image/png

#PNG handler
proc Doc_image/png {path suffix socket} {
 Doc_image/jpeg $path $suffix $socket
}

GIF handler
proc Doc_image/gif {path suffix socket} {
 Doc_image/jpeg $path $suffix $socket
}

Direct_Url /untaggedimage getUntaggedImg
proc getUntaggedImg {name} {
 global getUntaggedImg
 set getUntaggedImg [Mtype $name]
 set f [open "htdocs/$name"]
 fconfigure $f -translation binary
 return [read $f]
}

Just save it as customs/doctype_examle.tcl and restart TclHttpd to make it work.

To define a document handler for a MIMEType of your choice, all you have to do is
define the Doc_MIMEType procedure—for example, Doc_image/jpeg will handle all
requests for files of type image/jpeg. Once a resource of that type is requested, the
server finds the matching procedure and executes it with three arguments: the full
path to the requested resource (path), the name of the resource (suffix), and the

Chapter 10

[381]

network socket that can be used to return the answer (socket). Luckily, there is no
need to use the socket directly—once your code has calculated the return data, you
may use a function offered by TclHttpd:

Httpd_ReturnData socket type data

that as a response will send the data of a given type using the socket. There are more
useful functions offered by the server, so we recommend studying the manual—for
example, it is possible to return the HTTP error code or redirect.

The procedure Doc_image/jpeg is designed to be flexible—in particular it does
not make any assumptions about the type of file, but checks it using another useful
TclHttpd function—Mtype filename. This command attempts to return the correct
MIME type by matching the filename extension to the ones defined in lib/mime.
types (or added with command Mtype_Add); if the specified extension is not known,
it returns text / plain as the default value. Due to the constraints of GIF support, in
case of this format we convert and send back a JPEG instead.

The flexibility of Doc_image/jpeg allows us to use it for other types like image/gif or
image/png, by creating some simple wrapper procedures Doc_image/gif and Doc_
image/png which calls that procedure. TclHttpd is not familiar with the type image/
png, so we have to define it first. In this example, we use the Mtype_add extension
MIMEType procedure that defines that all files with the specified extension are of
MIMEType type. Alternatively you could simply add the appropriate entry to the lib/
mime.types file.

Let's verify if the code is working with, for example, GIF files by using the lake.gif
that is already included in the TclHttpd distribution:

Web Programming in Tcl

[382]

As mentioned earlier, we decided to have a backdoor that will allow us to
retrieve the original image, without the watermark. It is done by the procedure
getUntaggedImg bound to /untaggedimage URL:

Creating custom templates
Another example of using handlers for specific MIME types is to handle dynamically
created pages, similar to template files with the.tml extension (described later in
this chapter).

As an example we can use the substify package to parse files. This package allows
for parsing text which contains code in specified delimiters and converts it, so that it
can then be directly passed to the Tcl subst command. This way the file can be
parsed once and evaluated multiple times, by passing the result from invoking
substify::substify to the subst command. The command substify::substify
accepts three parameters—the text to convert, the delimiter that specifies the
beginning of code, and the end of your code. The package is an open source project
and source code is available at: http://sourceforge.net/projects/dqsoftware/
files/substify/0.1/

The package allows us to specify commands to be run without appending their results
by enclosing them in delimiters—for example, <% set now [clock seconds] %>.

Prefixing the command with an = causes the result of the command to be appended
in the current location—for example, <%=[clock seconds]%> will be replaced by
number of seconds since January 1st 1970. We can also put variables to get their
value—such as <%=$now%>, which will be replaced with contents of now variable at
this time.

This is a convenient alternative to .tml files, which require all [and $ characters
to be escaped. It is also useful for placing Tcl code in existing HTML pages, where
escaping all characters that Tcl would interpret might be an issue.

Chapter 10

[383]

For example, in order to convert a sample code using <% and %> as delimiters we can do:
% set code [substify::substify {
 <% set now [clock seconds] %>
 Now = <%=[clock format $now –format "%H:%M:%S"]%>
} "<%" "%>"]

We tell the command that <% is the delimiter for starting the code section and %>
ends a code section. We can then get the resulting string multiple times by doing:

% subst $code

This will return a string similar to Now = 20:31:20.

We can now proceed with writing a MIME type handler for this file. Let's start by
loading substify package so we can call the substify::substify command:
package require substify

We can also add the association that .thtml files should be associated with
application/x-html-tcl-template mime type.

Mtype_Add .thtml application/x-html-tcl-template

The mime type chosen was based on the name that Tclhttpd uses for .tml
files—application/x-tcl-template.

The following information can also be added to the mime.types file instead of
invoking a command, to add a MIME type manually. In such a case, we would need
to add the following line to mime.types:

application/x-html-tcl-template thtml

We can now write the Doc_application/x-html-tcl-template command for
handling .thtml files.

The command will treat all files as being UTF-8 encoded to ease support for
international websites, so we'll read all templates using this encoding. Internally
Tclhttpd treats all files and data as binary by default, therefore, we'll convert all
output passed to the web browsers to utf-8 as last step of handling the request.

1. We'll start by mapping a global array called templateCache, which is used
for storing parsed representation of files. The array will keep mapping
between file names (as specified in path argument), and will keep the file's
last modification time, size, and the parsed content of the file. We'll use the
last modification time and size to check whether file needs to be re-read. The
value for each file will be a list of three elements—the first one being the file
modification time, the second being the size of the file, and the third being
parsed content of the file in UTF-8.
proc Doc_application/x-html-tcl-template {path suffix sock} {
 global templateCache

Web Programming in Tcl

[384]

2. We'll now set the MIME type of returned content. It defaults to text / html
with the implicit specification that the character set for this page is UTF-8.
This value is interpreted by the web browser. While the character set can also
be specified in the body of the HTML page, it is better to provide this at the
HTTP level so that all browsers can use this value immediately.
 set ctype "text/html; charset=UTF-8"

3. Next we try to get information on the file specified by the path argument. If
the file stat command fails, we return error 404, which means that a file
was not found and return from the procedure.
 if {[catch {file stat $path stat}]} {
 Httpd_Error $sock 404
 return
 }

4. The next step is to check whether we already have read the file and if the
parsed version of the file is up to date:
 if {![info exists templateCache($path)] ||
 ([lindex $templateCache($path) 0] != $stat(mtime)) ||
 ([lindex $templateCache($path) 1] != $stat(size))} {

The condition checks if the templateCache array does not contain informa-
tion for the specified file, if the file modification time does not match or if the
file size is different. If any of these conditions fail, we read or re-read the file
from disk and parse it.
We try to open the file for reading. If this step fails, we return error 404 to
the client and return from the procedure.
 if {[catch {set fh [open $path r]}]} {
 Httpd_Error $sock 404
 return
 }

If opening the file succeeded, we then configure the encoding to utf-8 and
read the file.
 fconfigure $fh -encoding utf-8 -translation auto
 set content [read $fh]
 close $fh

Next we convert contents of the file using the substify::substify com-
mand, specifying <% and %> as the delimiters.

Chapter 10

[385]

We then store the file modification time, the size, and the parsed contents of
the file in the templateCache array:
 set content [substify::substify $content "<%" "%>"]
 set templateCache($path) \
 [list $stat(mtime) $stat(size) $content]
 }

Finally, we end the condition that was met only if templateArray did not
contain any information about the file or if it was out of date.

5. We can now pass the cached representation of the file to the subst command,
convert the results to utf-8 and send them back to the client:
 set html [subst [lindex $templateCache($path) 2]]
 set html [encoding convertto utf-8 $html]

 Httpd_ReturnData $sock $ctype $html
}

To verify if it runs correctly, you have to put our handler along with the substify
package in the custom directory to make it available for TclHttpd server, and create
the sample htdocs/index.thtml:

<html>
 <body>
 <h2>Hello world - it is now <%=[clock format [clock seconds]
-format "%H:%M:%S"]%></h2>
 </body>
</html>

The result of accessing this file via the web browser will be as follows:

Web Programming in Tcl

[386]

Learning domain handlers
Another interesting feature of TclHttpd is a possibility to use command Url_
PrefixInstall for sub-domain handling. This command can be used to register
a handler for all requests with a specified prefix. For example, if we register a
command to be run for prefix /myprefix, requests for /myprefix, /myprefix/info,
as well as /myprefix/long/suffix/with/multiple/elements will be handled by
that command. We will show the power and flexibility offered by this command in a
few examples.

Setting up request handlers
The command Url_PrefixInstall requires specifying two arguments—the prefix
to register and the command to be run upon each request for the URL starting with
this prefix. The command also accepts three options, which can be appended after
the two mandatory parameters.

The option -thread specifies whether a request should be handled in a separate
thread and whether or not it accepts a boolean value. This option applies only to
multi-threaded the Tclhttpd. If the server is configured not to use threads or the
version of Tcl it is using does not offer threading support, the request will always be
served in the main thread. If it is not specified, this option defaults to 0 which means
that the request will be handled in the main thread. The main use for this is when the
request needs to perform a long running action—such as performing calculations or
querying a database.

The option -callback can be used to specify the command to be run upon each
request completion. The command will be invoked with two attributes appended—
the socket identifier and error message, in the case of an error or an empty string in
the case of success. If not specified, no command will be run upon each completion
of a request.

The option -readpost can be used to tell Tclhttpd whether it should read POST
data, and is enabled by default. Usually this option should not be used—in this case
the server reads the POST data then the data sent by the browser or application can
be instantly read. This option is mainly meant for advanced users who might want
to send files directly over HTTP(S) requests. In this case, we can disable reading
information sent by the HTTP(S) client and read the data directly from the file.

As an example of using Url_PrefixInstall, we'll create a sample handler that
will print out information about the request. Tclhttpd keeps track of information
related to each connection in global arrays. The name of each array is in the form of
Httpd<socket>—for example, if the connection identifier is sock3, then the variable
would be called Httpdsock3. It contains information about the request—the HTTP
headers, request content type, HTTP version, remote IP address, and much more.

Chapter 10

[387]

The following are a few of keys in the array along with the information they store:

Key Information
headerlist A list of name-value pairs that specify all HTTP headers received by

this request
ipaddr The IP address of remote peer for this connection; for example,

127.0.0.1

pathlist A list of elements in the suffix part of the request; for example, {}
long suffix with multiple elements

prefix The prefix of the connection—same as registered in Url_PrefixInstall
proto The HTTP method used—it can be either HEAD, GET, or POST
query The query passed in either GET or POST response as raw data; for

example, q=some+query&lang=en
self A list consisting of three elements—the protocol (http or https), name

of the host specified and listening port of the server—for example,
http localhost 8015

suffix The suffix of the request; for example, /long/suffix/with/
multiple/elements

url The full path in the request; for example, /myprefix/long/
suffix/with/multiple/elements

version The HTTP version—this should be either 1.0 or 1.1

The array also contains all HTTP headers in the form of mime,<header> where
<header> is the HTTP header in lowercase. For example, in order to get the
User-Agent HTTP header, which identifies the browser that invoked the request,
we can read it using the mime,user-agent key.

In order to create our sample handler, we'll need to register a handler for the specific
prefix first. In our example, the prefix will be /helloworld/prefix/httpstate:

Url_PrefixInstall /helloworld/prefix/httpstate \
 urlHandleHttpstate

Web Programming in Tcl

[388]

Whenever a new request is received the command is run with two parameters
appended—the socket that corresponds to the request and the suffix. Our command
has to accept these parameters:

proc urlHandleHttpstate {sock suffix} {

1. The first thing we'll do is map the Tclhttpd state array as local variable.
We're using the upvar #0 command. It will map a variable with name the
Httpd$sock, where $sock will be expanded to the actual socket passed
as an argument and map the array as the local data array. This will allow
us to access any HTTP state array data as $data(<keyname)—such as
$data(headerlist) for list of all headers.

 upvar #0 Httpd$sock data

2. Our handler will create output in HTML, so we need to start creating the
actual HTML. We start by adding the <html> and <body> tags:
 set html "<html>\n"
 append html "<body>\n"

First we'll print out the data array. We'll create a HTML table for the
array prefixed with title of the table using the <h1> tag. The table will have
2 columns—parameter name and value:
 append html "<h1>HTTP state array</h1>\n"
 append html "<table border=\"1\">\n"
 append html "<tr>\n"
 append html "<th>Parameter</th>\n"
 append html "<th>Value</th>\n"
 append html "</tr>\n"

Next we'll iterate over all elements in the array and print them. We invoke
array names to get list of all keys in the array and then sort them for
easier reading:
 foreach name [lsort [array names data]] {

Next we print each item to a separate row in the HTML table:
 append html "<tr>\n"
 append html "<td>$name</td>\n"
 append html "<td>$data($name)</td>\n"
 append html "</tr>\n"
 }

Finally we need to close the HTML table.
 append html "</table>\n"

Chapter 10

[389]

3. Similarly we can print all HTTP headers as list by accessing
$data(headerlist) to get the name-value pairs and iterate over them:
 append html "<h1>HTTP headers</h1>\n"
 append html "<table border=\"1\">\n"
 append html "<tr>\n"
 append html "<th>Name</th>\n"
 append html "<th>Value</th>\n"
 append html "</tr>\n"

 foreach {name value} $data(headerlist) {
 append html "<tr>\n"
 append html "<td>$name</td>\n"
 append html "<td>$value</td>\n"
 append html "</tr>\n"
 }

Finally we can close the table and finalize our HTML.
 append html "</table>\n"
 append html "</body>\n"
 append html "</html>\n"

4. The last thing we need to do is to send the response to the client:
 Httpd_ReturnData $sock "text/html" $html
}

Once you put the code in custom directory, the result of accessing the
http://127.0.0.1:8015/helloworld/prefix/httpstate URL may be as follows:

Web Programming in Tcl

[390]

We can also access query information to get parameters using query key in the
http state array. We'll use Url_DecodeQuery command, which takes the query
as argument.

Similar to substify based templating, we'll also convert information from and to
UTF-8. This allows the handling of non-latin characters and is good practice for all
Tclhttpd based applications.

1. Let's start by registering a new prefix for query printing:

Url_PrefixInstall /helloworld/prefix/printquery \
 urlHandlePrintquery

2. Next, we'll create the procedure that handles the request. The first thing it
does is map the state array as data local variable and decoding query:
proc urlHandlePrintquery {sock suffix} {
 # map HTTP state array as local array data
 upvar #0 Httpd$sock data
 set querydata [encoding convertfrom utf-8 \
 [Url_DecodeQuery $data(query)]]

3. We can then generate our HTML, similar to how we did in the
previous example:
 set html "<html>\n"
 append html "<body>\n"

4. For testing of submitting values, we'll also create a small HTML form.
It contains two fields—value1 and value2. It will also contain a submit
button to allow the form data to be sent:
 append html "<form method=\"GET\">\n"
 append html "Value1=<input name=\"value1\">
\n"
 append html "Value2=<input name=\"value2\">
\n"
 append html "<input name=\"go\" type=\"submit\""
 append html " value=\"Submit\">
\n"
 append html "</form>\n"

5. Next, we'll create a HTML table that prints out the results:
 append html "<table border=\"1\">\n"
 append html "<tr>\n"
 append html "<th>Parameter</th>\n"
 append html "<th>Value</th>\n"
 append html "<th>Value in uppercase</th>\n"
 append html "</tr>\n"

Chapter 10

[391]

6. Next, we'll iterate over the query information and print it. For this example,
we'll also print the value of each parameter in upper case. This will show
that UTF-8 is handled properly, and non-latin characters are also correctly
converted to their upper case equivalents.
 foreach {name value} $querydata {
 append html "<tr>\n"
 append html "<td>$name</td>\n"
 append html "<td>$value</td>\n"
 append html "<td>[string toupper $value]</td>\n"
 append html "</tr>\n"
 }

7. Finally, we can finalize our HTML by closing all open tags:
 append html "</table>\n"
 append html "</body>\n"
 append html "</html>\n"

8. One final step is to convert the HTML to UTF-8 encoding and return it
to the client:
 set html [encoding convertto utf-8 $html]
 Httpd_ReturnData $sock "text/html; charset=UTF-8" $html
}

We're also specifying charset as the MIME type in the HTTP response.

Once you run this example and enter some test values, you will get a result
similar to the following:

Web Programming in Tcl

[392]

Comparing domain handlers to application
direct URLs
While working through the past few sections, you have probably started to analyse
what are the real differences between the domain handlers and Application direct
URLs described earlier. The following table describes some of those differences:

Domain handler Application direct URL
Command Url_PrefixInstall Direct_Url

Access to query
parameters

using ncgi package or
Url_DecodeQuery

parameters are matched to
corresponding arguments
of the procedure; also using
ncgi package

Access to other data has access to various HTTP
Request related parameters via
state array Httpd$sock

CGI defined parameters via
env array

Response procedure must call one of
relevant commands (like
Httpd_ReturnData)

procedure returns a string with
HTTP response

Scope handles entire domain and
subdomains

handles only specific URL
(the one bind to the procedure)

features powerful easy to use, similar in usage
to CGI

Creating session-based authentication
A more advanced and interesting example is using Url_PrefixInstall, to provide
a more complex authentication system for websites. HTTP provides an authentication
mechanism; however it is only possible to authenticate users using HTTP's built-in
mechanism—same as when using .tclaccess (described later). Our example will
show how we can implement authentication, using cookies and session identifiers.

The code will work in the following way:

If the user has already authenticated and has a valid cookie, we'll pass the
request to a handler for getting files from document root.
If the user has not authenticated yet or the cookie passed by the user is not
valid, we provide the user with a page for logging in to the system.
If the user has not authenticated yet, but is sending authentication
information, it is processed—if the user is successfully authenticated,
he / she can access all files.

•

•

•

Chapter 10

[393]

We'll start by creating a namespace for this example, and loading the package uuid
for generating unique session identifiers. We'll use a separate namespace as this
example involves multiple procedures, and in such cases it is usually a good idea to
put them in to a separate namespace.

The package uuid is used to generate universally unique identifiers for session
identifiers. It generates identifiers conformant to the UUID version 4 standard, which
is described in more detail at http://en.wikipedia.org/wiki/Universally_
Unique_Identifier.

namespace eval customauth {}
package require uuid

The next step is to install a handler for our prefix. We set up our command to handle
all requests coming to the /secure prefix.

We tell Tclhttpd to run the command customauth::handle and specify that the first
argument should be secure, which tells it that all files should be prefixed with secure.

Url_PrefixInstall /secure \
 [list customauth::handle secure]

Specifying a prefix for the customauth::handle command allows requests pointing
to one prefix to serve files that are in a different path—for example, requests for
/secure can actually read files in the directory other/directory. For example, in
such case the command would be:

Url_PrefixInstall /secure \
 [list customauth::handle other/directory]

We then create the procedure to handle requests for content. It takes the specified
prefix as the first argument, followed by socket and suffix, which are appended by
Tclhttpd.

proc customauth::handle {prefix sock suffix} {

First we specify that we want to use the global variable Config, which is needed later
on for getting the docRoot parameter from the configuration, which is needed to find
the actual file in the file system.

We also map a namespace specific variable called userid, which will be used to
specify the user identifier in the context of the current request. This variable can then
be referenced—for example, when using substify file handled, it can be put in HTML
as <%=$customauth::userid%>.

 global Config
 variable userid

Web Programming in Tcl

[394]

Then we map the HTTP state array as local array data, and use the string trimleft
command to remove the leading slash from the suffix variable.

 upvar #0 Httpd$sock data
 set suffix [string trimleft $suffix /]

We then invoke the getUserId command that takes the socket, and works with
cookies and / , or query data to determine the current user logged in. This command
is described later in the example.

 set userid [getUserId $sock]

If the user is not set, we enforce the return page to contain the contents of login.
thtml, regardless of the actual request. Otherwise we allow any file to be processed.

 if {$userid == ""} {
 set url $prefix/login.thtml
 } else {
 set url $prefix/$suffix
 }

The next step is to take the new URL and invoke the DocDomain command. This
command is the handler for returning files based on the URL and document root.

The first step is to set the pathlist key in the HTTP state array to a list of elements
in the new path. This is used by DocDomain to determine the file to load and needs to
be overwritten with a path, which we redirect this request to.

The command DocDomain needs to be invoked with four arguments—the first one
being the prefix for the request—we specify "/" because this is the way Tclhttpd
invokes DocDomain in regular cases. The next argument is the path to the directory
containing files—we take Config(docRoot), which also points to the root directory
for documents. The next parameters specify the socket the connection is using and
the suffix for the connection. The last parameter is created to use the prefix passed to
the command as well as the suffix for the request.

 set data(pathlist) [file split $url]
 DocDomain / $Config(docRoot) $sock $url
}

This causes the request to be handled as if our prefix was not installed, and the
default handler for the files would receive the request.

The next step is to create the customauth::getUserId command that handles
getting the current userid based on cookies, as well as using the query data to
authenticate the user based on their username and password.

Chapter 10

[395]

Cookies are compared against the usersession array that keeps track of
all valid sessions. Each session is a different key in the array and the value
is the user identifier. If the cookie sessionid exists then its value is read. If
usersession($sessionid) exists, it is read and assumed to be the userid.
Otherwise the session is assumed to be invalid.

If the user is not authorized, query data is checked for existence of both username
and password fields. If both exist, it tries to authenticate the user. If it is a valid
user and password, a new session identifier is created and stored in the sessionid
cookie. The variable usersession($sessionid) is also set to identifier of the user.
This way any subsequent requests with this cookie set would also be allowed to
access all data.

We start by making the namespace-specific array usersession available, and
mapping the HTTP state array as local array data. We also set the userid to be
empty, which indicates a user that is not authenticated.

proc customauth::getUserId {sock} {
 variable usersession
 upvar #0 Httpd$sock data

 set userid ""

Next, we try to read the sessionid cookie. If it exists, we get the actual value as the
first element of the list—this is needed since the Cookie_Get command returns a list
of all values for that cookie.

 set sessionid [Cookie_Get "sessionid"]

 if {[llength $sessionid] > 0} {
 set sessionid [lindex $sessionid 0]

If a corresponding entry in the usersession array exists, we assume that this is a
valid session, and take the value of the usersession array for this session to be the
user identifier for this session.

 if {[info exists usersession($sessionid)]} {
 set userid $usersession($sessionid)
 }
 }

We then check if the user was not authenticated so far—either because of a lack of a
sessionid cookie or the cookie value being invalid

 if {$userid == ""} {

Web Programming in Tcl

[396]

If this is the case, we then try to authenticate the user based on the username
and password.

We do this by first decoding the query and checking if both the username and
password elements exist in the query:

 array set query [Url_DecodeQuery $data(query)]
 # check if both paremeters are set
 if {[info exists query(username)] &&
 [info exists query(password)]} {

If the elements exist, we invoke another command that authenticates the user
based on their username and password, and check if the returned value specifies
the user identifier:

 set userid [authenticateUser $query(username) \
 $query(password)]

 if {$userid != ""} {

If the user identifier is not empty, it means that the user has been successfully
authenticated. We will need to generate a new session identifier and store
which user this session maps to:

 set sessionid [uuid::uuid generate]
 set usersession($sessionid) $userid

We'll then store this in a cookie as well. We then save all cookies in the HTTP
headers to make sure they get sent to the client when a response is sent.

 Cookie_Set \
 -name "sessionid" -value $sessionid
 Cookie_Save $sock

Finally we close the braces for all of the conditions above, and return the final user
identifier to customauth::handle command:

 }
 }
 }

 return $userid
}

A sample command for authenticating users can be as follows:

proc customauth::authenticateUser {username password} {
 if {$password == $username} {
 return $username

Chapter 10

[397]

 } else {
 return ""
 }
}

This command will allow everyone whose username and password is set to the same
value—for example, the user john with the password john. Of course, a real-life
implementation would involve much more sophisticated authentication against the
user's database, or LDAP—such as using the authenticateLDAP command from
LDAP section of Chapter 8.

If you attempt to access for the first time any resource from the /secure domain
(we choose the convention that physically the resource should be available in
htdocs/secure directory), you will be prompted for the authentication:

Once authenticated correctly, you will get a resource:

Note that in this example, you can see how different features of
TclHttpd works together—we requested the graphical file, which
was also processed by our watermark code described earlier.

Web Programming in Tcl

[398]

Using the TclHttpd template system
Another interesting feature offered by TclHttpd is the template system. Template
files are all files stored in the htdocs directory with .tml as extension—for example,
test.tml is treated by the server as template.

Imagine you have a normal HTML file named test.htm somewhere in your htdocs
tree. When you request this file via the web browser, its contents will be returned—
exactly as you would expect. The magic starts when you put an additional template
file, named test.tml, in the same directory as test.htm resides.

The template may contain both normal HTML code, Tcl commands enclosed in square
brackets, and Tcl variables with a $ sign—the content of the template is used as the
argument for Tcl subst command. When the client requests test.htm, the date of both
files is checked. If test.tml's last modification date is later, the HTML generated by
that template is cached in the test.htm file returned. Otherwise, the content of test.
htm is considered as up to date, and will be returned directly without processing of the
template. Consider the following example content of test.tml:

<html>
 <body>
 <h3>The time is [clock format [clock seconds] -format
"%H:%M:%S"]</h3>
 </body>
</html>

When you request test.htm for the first time (even when it does not exist!), the
corresponding tml file will be executed, its result written to test.htm, and returned,
so the page will show you the current time:

<html>
 <body>
 <h3>The time is 18:58:12</h3>
 </body>
</html>

However, the consecutive requests will always return the same time value, as it was
buffered in test.htm. You can skip this behavior in two ways:

Request the test.tml file directly in the browser (for example,
http://127.0.0.1:8015/test.tml), instead of test.htm. This will
cause the template to be executed each time.
Use the Doc_Dynamic command in your template. It will disable
caching the content in test.htm file, and the template will be always
executed. In this case the html file may not exist, and still both requests:
http://127.0.0.1:8015/test.htm and http://127.0.0.1:8015/test.
tml will be valid and return the output from the template.

•

•

Chapter 10

[399]

Considering the second case, the template would be like:

[Doc_Dynamic]
<html>
 <body>
 <h3>The time is [clock format [clock seconds] -format
"%H:%M:%S"]</h3>
 </body>
</html>

Each subdirectory of your document root (htdocs) may contain a special 'per-
directory' file named .tml. The content of this file should be normal Tcl code. Until
now we stored all our code in custom directory. As an alternative, you may put it
into .tml file. You may define here procedures that will be called in subsequent
templates. You may also place here any other command, just as you do in custom
scripts. The difference is that the code from the custom directory is executed once
when the server is started, and the code from .tml is executed every time, but only
when any template from that directory (containing .tml) is executed. Note that if
you request static content such as an image or a HTML page that does not have a
shadowing template, the .tml will not be executed.

Using .tml files may be useful at the time of development, later you will probably
move more of its contents to a custom library (to improve performance). Normally
you will store here definitions of your procedures, which you will later call in your
template files. Of course you can use all other available commands as well—for
example, from the html package which greatly facilitates the template's design.

Note that any procedure called in the template file should return the text, not write it
to standard output. For example, the following template will not work as one
might expect:

<h1>[puts "Welcome!"]</h1>

The resulting HTML will contain only <h1></h1>, and the welcome message will be
written to the standard output.

As mentioned earlier, you may also refer to any existing Tcl variable:

<h2>The current document root directory is: $::Config(docRoot)</h2>

The preceding code will result in:

<h2>The current document root directory is: C:/tclhttpd/bin/../
htdocs</h2>

Web Programming in Tcl

[400]

There is also a special variable—page array available for you to be used in your
templates. The array contains some information about the query. The following
template uses the command from the html package—html::tableFromArray—to
display contents of that array:

<h2>The contents and values of <i>::page</i> array:</h2>
[::html::tableFromArray ::page border="1"]

The result is as follows:

Most of keys of the array are self explanatory, for more details consult the
server's manual.

The template system may be either your ally or your enemy. Mixing too much
Tcl code with HTML will usually cause headaches, but when used wisely, the
development of dynamic web pages will be quick and smooth.

Securing access to resources
TclHttpd offers two ways of securing resources—via .htaccess and .tclaccess
files. The first one originates from Apache web server and TclHttpd supports a
subset of the syntax related to authentication. For example, the following contents
of the file will work:

AuthName "My Website"
AuthType Basic
AuthUserFile /path/to/htpasswd.users
require valid-user

Chapter 10

[401]

This will cause all users specified in /path/to/htpasswd.users to be allowed
access. Information on the syntax of the file and the creation of user files is outside
the scope of this book.

We will focus on the .tclaccess method as it provides a more powerful
authentication mechanism, and is better tied to TclHttpd.

The content of such a file is trivial:

set realm ".tclaccess test"
set callback checkAccess

It defines a realm name (that is displayed along with authorization request in the
browser), and a Tcl procedure that will perform the check of privileges. In our
example, this procedure is named checkAccess and you should define it in one
of the files from the custom directory:

proc checkAccess {sock realm user pass} {
 if {[string compare $user John] == 0 &&
 [string compare $pass secret] == 0} {
 return 1
 }
 return 0
}

The interface of the procedure is simple:

It is called with 4 parameters: The socket, realm name (the same that was
defined in .tclaccess), user name, and password entered by the user.
It has to return 1 if the user is allowed to access the protected content,
or 0 otherwise.

Our procedure is not sophisticated—it accepts only the user John with password
secret. In a real-world scenario, you could perform validation using for example, a
database where all users of your application are registered.

•

•

Web Programming in Tcl

[402]

The last thing to do is put .tclaccess in a secured directory—for example,
htdocs/tclaccesstest and verify if it works:

Debugging TclHttpd server
The server offers some debug facilities, available centrally under the /debug
domain. In order to use them, you have to enter the password that is randomly
generated at the start and printed in the console. For more details, go to
http://127.0.0.1:8015/hacks.htm .It contains explanations how to use it. The
most interesting feature is the ability to setup a remote debug session with TclPro
debugger, by accessing the special URL:

http://tclhttpdHost:tclhttpdPort/debug/dbg?host=debuggerHost&port=deb
uggerPort

tclhttpdHost and tclhttpdPort define the socket where the web server is
listening, and debuggerHost/debuggerPort—the listening socket of the debugger.

Assuming both the server and the debugger are launched on your local machine and
will use the default port value (2576) for debugging, the URL would be:

http://127.0.0.1:8015/debug/dbg?host=127.0.0.1

Chapter 10

[403]

Once you access it (and authorize with password, if you did not do this earlier), the
debugging connection will be set up:

Next, accessing any resource hosted by TclHttpd will cause the start of debugging:

Web Programming in Tcl

[404]

Embedding TclHttpd in your application
In this section, we will discuss how to enrich your new / existing application with a
Web interface with the minimum effort. No surprise, we will use TclHttpd to do this
task. What is really interesting is that it can be successfully packed into a Starpack
one-binary exe file. If you wonder why you should even bother adding such a
feature to the application, maybe the Snackamp example will bring you round to this
idea—this mp3 player (written in Tcl, of course) is capable of being managed via the
web browser:

Adding TclHttpd to your application allows you to web-enable it, making it more
accessible. The goal is that even a single-exe application (Starpack) should be able
to transparently expose the web interface to the user. The process may seem to be
complicated at first glance, as the server's author does not refer to such a possibility
directly. If you study the httpd.tcl file in detail, you will notice that it does
some initialization tasks and start the server. Running the server embedded in our
application will differ from standalone execution, so we have to rewrite the logic of
httpd.tcl on our own.

To facilitate this task, we usually use our own package named tclhttpdinit that
consists of a single script which does all the work related to Tclhttpd initialization,
originally done by httpd.tcl.

Chapter 10

[405]

The script has been created by extracting the Tclhttpd initialization scripts and
embedding a minimal configuration. It initializes a minimal subset of Tclhttpd
functionality in order to handle requests for files, as well as allow writing of handlers
for URLs that our application supports. Note that this script does not aspire to be the
most elegant and universal piece of code—on the contrary, you should consider it
rather as an encouragement to develop it on your own.

In order to make it work, you have to copy all the content of the tclhttpd/lib
directory as the separate package (there is already pkgIndex.tcl file existing)—we
usually copy it to tclhttpd.3.5.1. You have to take care about TclLib, as it is
required by TclHttpd. This eventually leads to the situation where the directory
with packages (by convention named lib) has the following subdirectories:

Directory Description
tclhttpd.3.5.1 Contains all the files from tclhttpd/lib directory. Provides

all httpd::* packages
tcllib Entire tcllib library
tclhttpdinit Our initialization package
WWW This is our docroot (hardcoded in tclhttpdinit). You can

of course choose other name and location for this folder—it
requires you to modify the init script.

All of these can be found in the examples that come with this book.

The script runs all commands in the global stack frame using the uplevel #0
command. We start by loading ncgi and md5 packages which are needed by Tclhttpd:

uplevel #0 {
 package require md5
 package require ncgi

Next we load the Tclhttpd packages—all of these packages start with httpd. The
names of packages and their order have been taken from original Tclhttpd scripts:

 package require httpd 1.6
 package require httpd::version
 package require httpd::utils
 package require httpd::url
 package require httpd::counter
 package require httpd::doc
 package require httpd::cgi
 package require httpd::direct
 package require httpd::redirect
 package require httpd::mtype

Web Programming in Tcl

[406]

Note that TclHttpd does not define the httpd:: namespace, even though package
naming convention suggests it.

We then need to disable authentication at the HTTP level and load the package
responsible for authentication:

 set ::Config(Auth) {}
 package require httpd::auth

Setting the ::Config(Auth) entry to be an empty variable prevents the httpd::auth
code from generating a temporary password, and writing it to /tmp—our goal is that
the embedded server should not write anything to disk without our permission.

Enabling authentication for particular folders can be done using .tclaccess scripts,
or by manually authenticating connections in handler commands.

Next we need to read the mime.types file to provide Tclhttpd with mapping of file
extensions to mime types (normally it is done in httpdthread.tcl that is loaded
in httpd.tcl). We read the file from the same directory that our script is in:

 Mtype_ReadTypes \
 [file join [file dirname [info script]] mime.types]

Note that it requires us to duplicate the mime.types (the original one is in
tclhttpd3.5.1).

In order to prevent some Tclhttpd functionalities from throwing errors we create
commands to tell Tclhttpd that threads have been disabled:

 if {[info commands ::Thread_Enabled] == ""} {
 proc ::Thread_Enabled {} {return 0}
 }

We also need to emulate a command to tell Tclhttpd which requests to handle in
separate threads. It always returns 0, which tells Tclhttpd that all requests should
be handled in the same thread as the current one:

 if {[info commands ::Thread_Respond] == ""} {
 proc ::Thread_Respond {args} {return 0}
 }

If our application needs to use threads at the Tclhttpd level, we can load the
httpd::thread package and invoke the Thread_Init command, specifying the
number of threads to use.

Chapter 10

[407]

We do ignore the original logging command, as we do not want it to write anything
to the filesystem, so we need to create our own implementation for logging Tclhttpd
related events. In order to disable logging, we can create an empty one as follows:

 proc ::Log {sock reason args} {
 switch -- $reason {
 Close {
 }
 Error {
 }
 Debug {
 }
 default {
 }
 }
 }

In order to log Tclhttpd events, we can add handlers to particular types of logs—for
example, for Error messages.

We can now initialize Tclhttpd components—we initialize the server itself and tell
him that index files for a directory will be called index.html.

 Httpd_Init
 DirList_IndexFile "index.html"

We can change the default index file if our application will use a different file, or
when creating custom handlers for specific types of files. Tclhttpd will take all
dynamic handlers for file types into account when reading index files, similar to
when reading any other file.

We also need to initialize counters:

 Counter_Init

We also need to configure docRoot—the directory that contains our web page and
/ or static files. In our case, we set it statically to ../WWW (making it effectively be the
lib/WWW directory). The path is created by combining the current working directory
with the path to the script, so that the path is valid even after the current directory
is changed:

 set ::Config(docRoot) [file normalize [file join \
 [pwd] [file dirname [info script]] .. WWW]]
 Doc_AddRoot / $::Config(docRoot)
 Doc_Root $::Config(docRoot)

Web Programming in Tcl

[408]

We also tell Tclhttpd that the document root is stored in the same directory that we
configured. Using additional Doc_AddRoot invocations we can have different parts
of the website served from different directories.

}

Finally we mention that this file creates package tclhttpdinit.

package provide tclhttpdinit 1.0

We can also create pkgIndex.tcl file in the same directory that will tell Tcl that file
tclhttpdinit.tcl provides package tclhttpdinit. Contents of the file would be
as follows:

package ifneeded tclhttpdinit 1.0 [list source [file �oin $dir
tclhttpdinit.tcl]]

We can also use the pkg_mkIndex command from Tcl to create the package. In order
to do this, simply go to the directory containing the tclhttpdinit.tcl script
and run:

% pkg_mkIndex .

This will cause the pkgIndex.tcl file to be created and contain the preceding line, as
well as additional comments created by the command.

In order to initialize the Tclhttpd package, we simply need to include the following
code in our application:

package require tclhttpdinit

Httpd_Server 8081

The second line initializes a HTTP server on port 8081. In order to initialize
SSL-enabled server we can run:

Httpd_SecureServer 8082

After that our server will listen on port 8081 and / or 8082, depending on which
commands we ran.

The source code of the examples presented in this section is
located in the in the 05embeddedtclhttpd directory in the
source code examples for this chapter.

Chapter 10

[409]

Summary
After this chapter, you should be familiar with the concepts of web programming, by
which we understand a set of topics related to HTTP protocol
and HTML language.

First we presented how to use Tcl code as legacy CGI scripts. This application can be
significantly improved with ncgi package. We also presented a convenient way of
generating HTML documents using the html package.

Having laid the basics, we focused on TclHttpd, a mature web server implemented
entirely in Tcl. We discussed its various aspects, starting from serving the static
content and cooperation with CGI scripts. Then we presented advanced concepts like
creating handlers of a specific document type, which can alter the content returned to
the client; mapping Tcl procedures to a URL, so that the HTTP query parameters are
simultaneously the arguments for that procedure; and handling an entire sub-domain
with delegated code. We also mentioned items related to security and debugging.

Finally, we presented how to use all described features in one-file standalone
binaries made with Starpack technology. This is the moment where the full power
of Tcl can be easily seen—just stop for a moment and reflect—how many languages
do you know that offer you the possibility to freely embed a web server? And how
many of them will let you easily pack your entire app into one exe file, for a wide set
of platforms? And in how many cases the resulting file will be around 3 MB of size?
Not many? Well, now there is one more.

Now that you have learned the solid basics of the TclHttpd, you are ready for the the
next chapter, which will introduce you to the server in more detail, with a particular
focus on client-server programming.

TclHttpd in Client-Server
Applications

By now we have learned a lot about network communication, and HTTP in
particular, along with setting up TclHttpd for providing files and responding to
requests from Tcl. We also learned how Tcl uses VFS to provide both standalone
applications and package multiple files, into a single deliverable file we can later on
use. Now, we'll put this knowledge into practice and create a sample client-server
application that uses these technologies.

Throughout this chapter, we'll create a simple application that consists of a client
and server. The application will work over HTTP and will allow multiple clients to
communicate with a single server. It will also offer a comm interface on the server to
invoke commands on remote clients. We'll start off by creating a minimal client and
server, which will be a good starting point for both understanding the model and
its upsides and downsides. It will have a mechanism for running Tcl command a on
client and sending results back to the server.

After this is done, an automatic updates feature will be added so that whenever the
client application changes, it will automatically get updated. This is needed in case
we want our application to be run on multiple systems, and a manual upgrade of
each one is not possible.

We'll also add plugin capability to our application so that we can create multiple
Tcl packages. Those can be deployed to certain clients so that client itself will be
minimal, and packages will extend its functionality.

Of course, this is just a sample application and later on we'll reveal some of the
shortcuts taken in its development, and what would need to be extended for
production quality applications. We'll also mention better security models that
could be used.

TclHttpd in Client-Server Applications

[412]

Creating HTTP-based applications
Client-server applications may use various ways to communicate. Some of them are:

One way is to keep a permanent connection between the server and all
clients. This approach requires creating protocol for sending messages both
from the server to client and the other way around. While this approach is
used by many applications, it is quite difficult to scale and can cause issues
for long-running applications—such as detection of connections broken on
one side, without proper end-of-file events received by other side.
Another possibility is to use HTTP instead of a real time connection.
HTTP based applications typically use a polling mechanism—that is they
periodically query the server to determine if there is anything the client
should perform. Using HTTP and timers simplifies implementation a lot,
and fits very nicely into Tcl's event-driven programming.

Using HTTP means that our application can also use any HTTP proxy
needed by location the client is in, and can be easily configured for majority of network
configurations. HTTP on its own is stateless and each request is independent of the
other. This means that application is responsible for keeping track of what needs to be
sent—usually this is kept on both server and client-side.

All communication in our application will be using Tclhttpd for the server-side
and the http package on client. Both packages have already been introduced in
previous chapters.

Our application will initially have very small functionality—the client will
periodically poll for new jobs to be performed. The server will provide a list
of jobs to perform, if any:

•

•

Chapter 11

[413]

These operations will be done periodically. After this, whenever a job has been
performed by the agent it sends results to the server as follows:

Preparing source code structure
Before implementing our applications, we need to set up our source code structure
and build the system so that we can easily create multiple applications for multiple
platforms—for this example only win32 and linux-x86, but there could be more.
The approach of creating a separate directory for the client or server on each of the
platforms is not manageable in the long term; we would need to copy each change
into multiple directories, which is difficult to do.

Even though this section provides a step by step introduction of what
the preparations need to be, the code samples available along with this
book provides a ready-to-use source code structure. Novice readers
are advised to start by having a look at the sources provided for this
chapter. This chapter also assumes the reader to be familiar with the
content of the previous chapters—especially those related to Starkit
technology, building standalone binaries, using databases, HTTP
client, and TclHttpd.

Later in this section, we will introduce a building script to automate common tasks.

We want to create each of the binaries from a set of directories:

Common libraries and packages for all platforms (pure Tcl)
Common libraries and packages for specified platform
Source code for specified binary

First let's create the following directories: lib-common, lib-win32, and
lib-linux-x86 for common packages. Let's also create src-client and
src-server for sources for client and server applications.

•

•

•

TclHttpd in Client-Server Applications

[414]

The following is a complete file and directory tree of the project along with all scripts
we'll create:

The image contains the results from next steps as well, such as build scripts, server
and client code, as well as all libraries.

The next thing we need are binaries for each platform. We'll create both Tk and
non-Tk versions of each UI. Even though we won't use Tk itself on Microsoft
Windows, background processes should use the Tk version and withdraw its
main window—otherwise they will have a console window shown to the user.

We can download all versions of Tclkit from:

http://www.patthoyts.tk/tclkit/win32-ix86/
http://www.patthoyts.tk/tclkit/linux-ix86/

The authors recommend using the latest version 8.5 of tclkit (with Tk) and tclkitsh
(without Tk), and naming them tclkit-<platform> and tclkitsh-<platform>
accordingly. For Microsoft Windows we also need a .exe extension for the binaries.

•

•

Chapter 11

[415]

We also need to download and/or copy several packages that will be used by our
csa application:

We need to copy the tcllib package (available from:
http://sourceforge.net/projects/tcllib/) as lib-common/tcllib
We need to copy the lib subdirectory from the tclhttpd package
available from:
http://sourceforge.net/projects/tclhttpd/) as src-server/lib/
tclhttpd

We need to put the tclhttpdinit package (provided in Chapter 10, Web
Programming in Tcl) in src-server/lib/tclhttpdinit
We need to copy the Tcl sqlite package, all platforms (available from
http://www.sqlite.org/) as lib-<platform>/sqlite

These packages are needed in order to initialize Tclhttpd web server and database
storage. They have also been introduced in previous chapters.

Now we can finally create the script to build the binaries. First we need to iterate
over each platform we want to build these binaries for, and binaries we want
to build:

foreach {platform suffix} { win32 ".exe" linux-x86 "" } {
 foreach {binname appname dirname} {
 tclkitsh client-cli client tclkit client-ui client
 tclkitsh server-cli server tclkit server-ui server
 } {

Each platform also has a suffix we need to add to the filename, which is needed for
Microsoft Windows platform. The list of binaries consists of three things— the type
of Tclkit binary to use (tclkit or tclkitsh), the destination name of the binary,
and the source directory to use.

We then create the filename we want to work on,which is copied to the
binaries subdirectory:

 set filename \
 [file join binaries $appname-$platform$suffix]

For example, when building a non-UI version of the client for Microsoft Windows
the appname would be client-cli, the variable platform equal to win32 and the
suffix set to .exe. The name of the target binary would be client-cli-win32.exe.

Then we copy the source binary as that particular file:

 file copy -force $binname-$platform$suffix $filename

•

•

•

•

TclHttpd in Client-Server Applications

[416]

For the preceding client-cli-win32.exe example, binname would be set to
tclkitsh and the source binary would be tclkitsh-win32.exe.

Then we mount it, copy appropriate directories, and unmount it:

 vfs::mk4::Mount $filename $filename
 docopy src-$dirname $filename
 docopy lib-common [file join $filename lib]
 docopy lib-$platform [file join $filename lib]
 vfs::unmount $filename

In order to ease the automatic update feature, we will now calculate the MD5
checksum from the created binary and embed it in that binary. We create a script
called fileinfo.tcl in the VFS that will set the csa::applicationMD5 variable
to value of the checksum. We'll also write that checksum to a separate file.

 set md5 [md5::md5 -hex -file $filename]

 vfs::mk4::Mount $filename $filename
 set fh [open [file join $filename fileinfo.tcl] w]
 puts $fh [list set csa::applicationMD5 $md5]
 close $fh
 vfs::unmount $filename
 set fh [open $filename.md5 w]
 puts -nonewline $fh $md5
 close $fh

While the automatic updates are done later in this chapter, we introduce MD5
calculation earlier. An MD5 checksum is stored in the binary as well as separate
file, so that the csa client will be able to easily check if an update is available. It
would query the server for MD5 checksum of latest binary for specified platform,
and compare it with the MD5 checksum of the local client application. If they are
the same, the client is running the latest version. Otherwise, it can download the
updated version and replace it.

Even though the actual binary will not have the same MD5 checksum as what we
calculated, the checksum that was calculated before can be used to compare the
binary that the client is running with the binary the server has, which can be read
from the second file created, as the last step.

The docopy helper procedure mentioned earlier copies the contents of source directory
to the target directory. It is similar to file copy, but handles the case where one or
more files already exist. For example, if both lib-common and src-client/lib are
copied to the lib/ subdirectory of the target binary, the file copy command fails
with the error that lib/ already exists. The docopy command handles this
case properly.

Chapter 11

[417]

It simply checks the file type and recursively copies directories while simply
copying files:

proc docopy {from to} {
 foreach g [glob -directory $from -nocomplain -tails *] {
 set fromg [file join $from $g]
 set tog [file join $to $g]
 if {[file type $fromg] == "directory"} {
 file mkdir $tog
 docopy $fromg $tog
 } else {
 file copy -force $fromg $tog
 }
 }
}

Creating our applications
We now need to start creating code for our client and server applications—src-
client/main.tcl and src-server/main.tcl. Both applications will start with
the same code that initializes starkit, sets up a logger instance, and creates data
directory to store configuration in:

package require starkit
starkit::startup

namespace eval csa {}
namespace eval csa::log {}

initialize logging
package require logger
logger::init csa
logger::import -namespace csa::log csa

set up directories
set csa::datadirectory [file join [pwd] data]
file mkdir $csa::datadirectory

TclHttpd in Client-Server Applications

[418]

Server-side
For our server application, besides the recently explained initialization, we'll need
to initialize Tclhttpd and comm packages:

csa::log::debug "Initializing Tclhttpd"
package require tclhttpdinit
Httpd_Server 8981
csa::log::debug "Initializing comm interface"
package require comm
comm::comm configure -port 1991

This will cause the csa server to listen for HTTP connections on port 8981 and on
comm connections on port 1991. The HTTP connection is used for communication
with all clients, and the comm package is set up to allow adding requests from other
applications and testing the application.

The next step is to load the additional scripts that initialize the database, set up the
comm API and handle incoming HTTP requests:

csa::log::debug "Sourcing remaining files"
source [file join $starkit::topdir commapi.tcl]
source [file join $starkit::topdir database.tcl]
source [file join $starkit::topdir clientrequest.tcl]

The files we source are described later in the chapter. Finally we need to enter the
main loop. If Tk is present, we'll show the UI that comes with Tclhttpd:

csa::log::debug "Entering main loop"

Initialize Tk UI if possible
catch {package require Tk}
if {[info commands tk] != ""} {
 package require httpd::srvui
 SrvUI_Init "CSA server"
} else {
 puts "Server started"
 vwait forever
}

The complete source code is located in the main.tcl in the
01clientserver/src-server directory in the source code
examples for this chapter.

Chapter 11

[419]

Client-side
For the client, after setting up the logger and the data directory, we'll accept the host
name to connect to as argument, to print out an error if either one is not provided:

if {$argc < 1} {
 set error "Usage: client <hostname>"
 log::error $error
 puts stderr $error
 exit 1
}
lassign $argv csa::hostname

csa::log::info "Connecting to $csa::hostname"

We will now read the additional scripts—the initialization of local database, the
client to communicate with the server, and read the local application's
MD5 checksum:

source [file join $starkit::topdir database.tcl]
source [file join $starkit::topdir fileinfo.tcl]
source [file join $starkit::topdir client.tcl]

Then we'll schedule the csa client to request jobs to perform as soon as
 it is initialized:

after idle csa::requestJobs

The command csa::requestJobs is explained later in this chapter.

Finally we need to initialize the main loop. Similar to the server part, if Tk is present,
we show a minimal UI with an exit button:

csa::log::debug "Entering main loop"

if {[info commands tk] != ""} {
 # basic UI
 wm title . "CSA Client"
 button .exit -text "Exit application" -command exit \
 -width 30 -height 3
 pack .exit -fill both -expand 1
} else {
 vwait forever
}

The complete source code is located in the main.tcl in the
01clientserver/src-client directory in the source code
examples for this chapter.

TclHttpd in Client-Server Applications

[420]

Communication and registration
While there is no silver bullet for all possible use cases, the authors of this book
have decided to implement a simple solution. In order to simplify how our
communication is done, everything that we send over HTTP will simply be
dictionaries encoded as UTF-8. Since dictionaries can be converted from and to
strings by Tcl, we do not need to perform any complex operations and everything
seems to be transparent to our application.

Using Tcl's structures and format makes it easy to create both client and server in
Tcl. It also makes it easier to access the data on server and client, and is much more
efficient than using standards such as XML—which add the overhead of converting
to and from XML, as well as require more code to send requests or get a response.

If our application needs to talk to other languages as well, it might be a good idea to
provide communication using standards such as SOAP. These standards are shown
in the next chapter.

Communication between the client and the server is done using the following steps:

The client sends a HTTP POST request providing all data as query, encoded
in UTF-8; fields guid and password should specify client's Globally Unique
Identifier (GUID) and its password
The server checks if guid and password are valid
If client is authorized, server gets jobs to be performed by this agent and
passes them as the response
The client then performs these tasks, which are evaluated as Tcl scripts and
sends back the results from each task

Authorization of guid and password is done against database of all agents. If an
agent already exists in the database, its password has to match one that it provides.
If an agent does not exist yet, its password is stored and compared upon the next
communication. The client generates both GUID and password when it is first run.

Server-side
Let's start off with how our server would handle requests.

Our function to process a request would start off as follows:
proc csa::handleClientProtocol {sock suffix} {
 upvar #0 ::Httpd$sock s
 set req [dict create]
 set response [dict create]
 set ok 0

•

•

•

•

Chapter 11

[421]

 if {[info exists s(query)]} {
 set req [dict create {*}[encoding \
 convertfrom utf-8 $s(query)]
 }

This would map the HTTP request data to the variable s, initialize default values for
variables, and if a query was passed then store it in req variable. We also initialize
the ok and response variables, to indicate that request was not correct and response
to contain no data, which we'll add later.

After this, we'd check if a client is allowed to talk to our server by trying to authorize
it, if guid and password keys were sent in the request:

 if {[dict exists $req guid]
 && [dict exists $req password]} {
 set guid [dict get $req guid]
 if {![authorizeClient $guid \
 [dict get $req password]]} {
 log::warn "handleClientProtocol: Access denied"
 unset guid
 }
 }

Our clients will send passwords as raw text. However, the password will be created
as random string when client first connects, and applications requiring security
should rely on more sophisticated algorithms for authorizing clients or users.
such as SSL and signed certificates, described in Chapter 13, SSL and Security.

Authorization itself is done by authorizeClient command. If the authorization
succeeds, the guid variable remains set. Otherwise we log an error and unset it.

Next, we can provide the client with additional data only if the user is authorized.
For example, providing a list of jobs from getJobs command, providing at most
the number of jobs client requests, or 10 by default:

 if {[info exists guid]} {
 set ok 1
 if {[dict exists $req joblimit]} {
 set joblimit [dict get $req joblimit]
 } else {
 set joblimit 10
 }

 dict set response jobs \
 [getJobs $guid $joblimit]
 }

TclHttpd in Client-Server Applications

[422]

We make sure that only valid clients get the data by checking if guid variable exists.
If authorization fails, it is unset and server won't check for jobs to send to client.

Finally, we need to send the response back to the client, creating a list of ok and
response variables values, and converting it into UTF-8:

 Httpd_ReturnData $sock application/x-csa-data \
 [encoding convertto utf-8 [list $ok $response]]
}

We've used our own MIME type of application/x-csa-data, but it is not required;
the type application/octet-stream, which indicates any series of bytes, can also
be used.

In order for a client to be able to send results from commands, we'll create an
additional small handler. We'll start also by retrieving the query sent by client:

proc csa::handleClientResult {sock suffix} {
 upvar #0 ::Httpd$sock s
 set req [dict create]
 set ok 0

 if {[info exists s(query)]} {
 set req [encoding convertfrom utf-8 $s(query)]
 }

If both job and result keys are sent, we store the job's result in the database.

 if {[dict exists $req job]&&[dict exists $req result]} {
 setJobResult [dict get $req job] \
 [dict get $req result]
 set ok 1
 }

Finally we also send the result back to the client:

 Httpd_ReturnData $sock application/x-csa-data $ok
}

As the client needs to know a valid job identifier, we can assume that it is a valid
client. Otherwise, the job identifier would probably be invalid, which setJobResult
command needs to handle.

Last thing we need to do is to register handler for specified prefixes in our web server:

Url_PrefixInstall /client/protocol csa::handleClientProtocol
Url_PrefixInstall /client/result csa::handleClientResult

Chapter 11

[423]

The code mentioned in this section is located in the src-server/
clientrequest.tcl file in the 01clientserver directory in the
source code examples for this chapter.

Client-side
Implementation of the client for the communication is also not a very difficult task.
We'll use a polling-based approach for communication, which means that the client
will periodically poll the server for new tasks to be processed.

First thing to implement is command for requesting jobs to be performed from the
server. We'll start off by defining the command that will periodically be called to get
new jobs. It starts off by cancelling any other scheduled invocations of the check:

proc csa::requestJobs {} {
 variable hostname

 after cancel csa::requestJobs

We create URL to connect to, based on the hostname provided by the user. We also
set the request's key guid and password in order to authenticate the request.

 set url "http://${hostname}:8981/client/protocol"
 set req [dict create]

 dict set req guid $::csa::guid
 dict set req password $::csa::password

Values for guid and password are stored in database and described later.

Next the command tries to send request to the server; we convert request to
UTF-8, send it as application/x-csa-request MIME type and specify that
csa::requestJobsDone command should be invoked whenever results are retrieved.

 if {[catch {
 http::geturl $url -timeout 30000 \
 -query [encoding convertto utf-8 $req] \
 -type application/x-csa-request \
 -command csa::requestJobsDone
 }]} {
 # try again in 1 minute
 after 60000 csa::requestJobs
 }
}

TclHttpd in Client-Server Applications

[424]

If the request has been successfully sent, then the next steps are followed using
requestJobsDone command. Otherwise, we set up a retry in 60 seconds.

At the start, we'll set up another check for commands in 1 minute from now:

proc csa::requestJobsDone {token} {
 # schedule next communication in 1 minute from now
 after 60000 csa::requestJobs

Then we check if the response is valid and no error was encountered. In case of
any error, we log it, clean up the HTTP token and return. Otherwise we convert
the response from UTF-8 and proceed.

 if {[http::status $token] != "ok"} {
 log::error "requestJobsDone: Invalid HTTP status"
 http::cleanup $token
 return
 } elseif {[http::ncode $token] != 200} {
 log::error "requestJobsDone: Invalid HTTP code"
 http::cleanup $token
 return
 } else {
 set response [encoding convertfrom utf-8 \
 [http::data $token]]
 log::debug "requestJobsDone: Response: $response"
 }

As the first step, we assign ok and response variables to first and second element
of the response, we retrieved from the server. If the server did not send a negative
status as the ok variable, we check if the response contains key jobs—if it does, and
it has any elements then we invoke the runJobs command to run each of the jobs.

 lassign $response ok response

 if {$ok} {
 if {[dict exists $response jobs]
 && ([llength [dict get $response jobs]] > 0)} {
 runJobs [dict get $response jobs]
 }
 } else {
 log::error "requestJobsDone: Server returned error"
 }

Finally we clean up the HTTP token.

 http::cleanup $token
}

Chapter 11

[425]

Running the jobs themselves is done as evaluating them in the global stack frame
using uplevel #0 command. The runJobs command looks as follows:

proc csa::runJobs {jobs} {
 log::debug "runJobs: Running jobs"
 foreach {job command} $jobs {
 log::debug "runJobs: Running job $job"
 set result [uplevel #0 $command]
 log::debug "runJobs: Sending result"
 sendResult $job $result
 }
 log::debug "runJobs: Running jobs complete"
}

The command runs each of the commands and then submits its result to the server.

It uses sendResult to send a result for a job, which is shown as follows.

We first create a URL and a request, setting the keys job and result accordingly. Then
the command sends a request to the server:

proc csa::sendResult {job result} {
 variable hostname

 set url "http://${hostname}:8981/client/result"
 set req [dict create job $job result $result]

 set token [http::geturl $url \
 -query [encoding convertto utf-8 $req]]

After finishing sending the HTTP request, we then check the response and whether
the server has properly handled our request or not; if not, we log and throw an error:

 if {[http::status $token] != "ok"} {
 http::cleanup $token
 log::error "sendResult: Invalid HTTP status"
 error "Invalid HTTP status"
 } elseif {[http::ncode $token] != 200} {
 http::cleanup $token
 log::error "sendResult: Invalid HTTP code"
 error "Invalid HTTP code"
 }

TclHttpd in Client-Server Applications

[426]

Finally, the command cleans up HTTP token and exits.

 http::cleanup $token
}

This is a complete implementation of the client.

The code mentioned in this section is located in the src-client/
client.tcl file in the 01clientserver directory in the source
code examples for this chapter.

Storing information
For the purpose of this application we'll be using the SQLite database. Both the client
and the server will use a database for storing their data; however each of them will
use it for different types of information. Also, with the concept of modules that can
be used in our applications, it is possible to store additional data by extensions.

Server side
For the server side, our application needs to keep at least two types of items—a list of
clients and the list of jobs a client should perform, along with their results.

Database initialization code should go to src-server/database.tcl, which is read
from the main script created earlier. We'll need to start off with loading packages
and initializing the database:

package require sqlite3
package require uuid

sqlite csa::db [file join $csa::datadirectory csa-server.db]

After this, we'll create tables for storing clients and jobs. We'll start by checking if the
tables already exist:

if {[catch {csa::db eval "SELECT COUNT(*) FROM clients"}]} {

If querying a number of items in clients table throws an error, this means that the table
has not been created. In this case, we'll create both clients and clientjobs tables:

 csa::db transaction {
 csa::db eval {
 CREATE TABLE clients (
 guid CHAR(36) NOT NULL PRIMARY KEY,
 password VARCHAR(255) NOT NULL,

Chapter 11

[427]

 status INTEGER NOT NULL DEFAULT 1,
 lastupdate INTEGER NOT NULL DEFAULT 0
);
 CREATE TABLE clientjobs (
 job CHAR(36) NOT NULL PRIMARY KEY,
 client CHAR(36) NOT NULL,
 status INTEGER NOT NULL DEFAULT 0,
 lastupdate INTEGER NOT NULL DEFAULT 0,
 command TEXT,
 result TEXT
);
 }
 }

The first table stores the GUID and password of all clients, along with the time when
they last queried the system. The field status defines current status of a client: 1
means enabled; 0 means disabled.

The table clientjobs stores jobs associated with a client. The field job is a GUID
identifying the job and client is the GUID of the client that should run it. The field
status defines whether the job has already been run or not: 0 means it has not run; 1
means it has already run. The field command keeps the command to run and result
stores the result retrieved from the client.

Now we can create functions that other parts of the application will use.

Let's start with authorizing a client. Our csa::authorizeClient command would
need to check if a client exists in the database, and add it if it does not. It would
need to check if the password provided matches the one in the database and that
the client's status is set to enabled. If not, it should return a message stating that the
authentication failed. Otherwise, it should change the lastupdate field and return
message that authentication succeeded:

proc csa::authorizeClient {guid password} {
 set now [clock seconds]
 set result [db eval {SELECT status, password
 FROM clients WHERE guid=$guid}]

 # if no entry found, add a new item to database
 # and assume the new agent is ok
 if {[llength $result] == 0} {
 db eval {INSERT INTO clients (guid, password)
 VALUES($guid, $password)}
 return true
 }
 lassign $result status dbpassword

TclHttpd in Client-Server Applications

[428]

 # check if passwords match
 if {![string equal $dbpassword $password]} {
 return false
 }

 # if client is not currently enabled, return false
 if {$status != 1} {
 return false
 }

 # if everything matched, it's a valid client
 db eval {UPDATE clients SET lastupdate=$now
 WHERE guid=$guid}
 return true
}

Our application assumes that if we do not currently know a particular client, we'll
silently add it to the database. While this assumption might not always be correct, in
this case there is no danger as a client only accesses his own jobs, which need to be
added for new clients explicitly. Also, such an assumption makes working with the
examples much easier.

In the next step, we'll need to create functions for managing jobs:

csa::addJob for creating new entries for a specified agent
csa::getJobs to retrieve list of jobs for specified agent
csa::setJobResult to set a result for specified entry when client provides it
csa::getJobResult to retrieve a result after it has been provided

Let's start with the command for adding new entries:

proc csa::addJob {client command {callback ""}} {
 variable jobResultWait

First we'll check if a specified client exists and is active:

 # do not allow adding jobs for inactive clients
 if {[llength [db eval \
 {SELECT guid FROM clients WHERE guid=$client
 AND status=1}]] == 0} {
 return ""
 }

•

•

•

•

Chapter 11

[429]

Now we'll create an identifier for the job and add it:

 set job [uuid::uuid generate]
 set now [clock seconds]
 db eval {INSERT INTO clientjobs
 (job, client, lastupdate, command)
 VALUES($job, $client, $now, $command)}

If the callback script was provided, we store it:

 if {$callback != ""} {
 set jobResultWait($job) $callback
 }

Finally we return the job identifier.

 return $job
}

After we've added a job, clients need to be able to retrieve those using getJobs
command, which is a simple query for jobs that were not yet run:

proc csa::getJobs {client limit} {
 return [db eval {SELECT job, command FROM clientjobs
 WHERE client=$client AND status=0 LIMIT $limit}]
}

The next step is being able to set a job's result:

proc csa::setJobResult {job result} {
 variable jobResultWait
 db eval {UPDATE clientjobs SET status=1,result=$result
 WHERE job=$job}

We also need to handle callback scripts that were passed to addJob; if it has to be
set, we set it to be invoked by the event loop, and unset it:

 if {[info exists jobResultWait($job)]} {
 after idle [linsert $jobResultWait($job) end \
 $result]
 unset jobResultWait($job)
 }
}

TclHttpd in Client-Server Applications

[430]

Finally, retrieving a job's result is also a simple query:

proc csa::getJobResult {job} {
 return [db eval {SELECT status, result FROM clientjobs
 WHERE job=$job AND status=1}]
}

This provides us with all the database access functions needed for both clients
and jobs.

The reason for creating callbacks for jobs is that for the comm interface, we will also
provide a synchronous interface. This is an interface which from caller's perspective
will return, once the client has finished processing the command. They are not
stored in the database as whenever a server restarts, call-back scripts will no
longer be valid.

The code mentioned in this section is located in the src-server/
database.tcl file in the 01clientserver directory in the
source code examples for this chapter.

Client side
The database for the client application is definitely smaller—all that we store in it is
a single table with a single row, containing the guid and the password for connecting
to server.

Similar to the server, we start by initializing the SQLite package and setting up
a database object:

package require sqlite3
package require uuid

namespace eval csa {}

sqlite csa::db [file join $csa::datadirectory csa-client.db]

In the next step, we intialize the table if it was previously not there:

if {[catch {csa::db eval "SELECT COUNT(*) FROM
 configuration"}]} {
 csa::db transaction {
 csa::db eval {
 CREATE TABLE configuration (
 guid CHAR(36) NOT NULL PRIMARY KEY,
 password VARCHAR(255) NOT NULL
);
 }

Chapter 11

[431]

After setting up the table we also generate random guid and password strings, and
insert them into the database:

 set guid [uuid::uuid generate]
 set password [uuid::uuid generate]

 # insert authentication data into database
 csa::db eval {INSERT INTO configuration
 VALUES($guid, $password)}
 }
}

Finally, regardless of the fact that the entries were just generated or were already
stored in the database, we set csa::guid and csa::password to the values stored
in the database:

lassign [csa::db eval {SELECT guid, password
 FROM configuration}] csa::guid csa::password

csa::log::info "Local client identifier: $csa::guid"

We also log the identifier that the client has assigned each time it is run, so that it is
easier to test the application.

Although just these two values do not require a complete database, our
application uses SQLite so that potential extensions could also benefit from
a pre-initialized database.

The code mentioned in this section is located in the src-client/
database.tcl file in the 01clientserver directory in the
source code examples for this chapter.

Comm interface—spooling jobs
Now that both the client and the server code is complete, all that remains is to create
a comm interface so we can send commands to the server to add jobs.

As comm interface is already initialized in a server's main.tcl file, all we need to
create now is a handler that will limit the functions available and offer a synchronous
mechanism for adding a job.

We'll start by creating a hook command for comm's eval event:

comm::comm hook eval {
 return [csa::apihandle [lrange $buffer 0 end]]
}

TclHttpd in Client-Server Applications

[432]

We send each command to the csa::apihandle command, which then evaluates
the command.

Let's create this command. We'll start off by checking the actual command that was
sent, and creating a switch for handling various commands:

proc csa::apihandle {command} {
 set cmd [lindex $command 0]
 switch -- $cmd {

First we'll handle the addJob command—which simply accepts a client identifier and
the command to evaluate, and returns the new job's identifier:

 addJob {
 lassign $command cmd client command
 set job [csa::addJob $client $command]
 return $job
 }

We'll also create a similar command, but one that waits for the command to be
executed by the client and returns its result. We'll use return_async from comm
and job callbacks for this:

 addJobWait {
 lassign $command cmd client command

We'll now create a future object:

 set future [comm::comm return_async]

We then pass this object as a callback when the new job is completed. This will cause
the comm's future object to be invoked with the actual result, as soon as the result has
been submitted by a client.

 set job [csa::addJob $client $command \
 [list $future return]]

In case a job was not created, we need to return an error to the user. This might be
the case if the client identifier was invalid.

 if {$job == ""} {
 # if no job was assigned because
 # specified client was not found
 $future return -code 1 "Unknown client"
 }
 }

Chapter 11

[433]

The last method is getting a job's result, which maps directly to getJobResult
command:

 getJobResult {
 lassign $command cmd job
 return [getJobResult $job]
 }

In case an unknown command was passed, we return an error:

 }
 error "Unknown command $cmd"
}

This concludes the comm API and was the last item of our server and client applications.

The code mentioned in this section is located in the src-server/
commapi.tcl file in the 01clientserver directory in the source
code examples for this chapter.

Testing our applications
Now that our application has been implemented, it is time to run it and see how
it works.

Let's start with building our 01clientserver code example. Depending on whether
it is going to be run on a Linux or Windows system, we can run either build.bat or
build.sh script.

After all the binaries have been created, which can take up to several minutes, we
can now run them. Let's start by running the server in first console window:

C> binaries\server-cli-win32.exe

[Thu Nov 26 19:37:03 +0100 2009] [csa] [debug] 'Initializing Tclhttpd'

[Thu Nov 26 19:37:04 +0100 2009] [csa] [debug] 'Initializing comm
interface'

[Thu Nov 26 19:37:05 +0100 2009] [csa] [debug] 'Sourcing remaining files'

[Thu Nov 26 19:37:05 +0100 2009] [csa] [debug] 'Entering main loop'

Server started

For a Linux system the syntax would be slightly different, but the behaviour and logs
would be the same.

TclHttpd in Client-Server Applications

[434]

We can now run the client. Assuming both are run on the same system we can
simply run it with 127.0.0.1 as the hostname:

C> binaries\client-cli-win32.exe 127.0.0.1

[Thu Nov 26 19:38:23 +0100 2009] [csa] [info] 'Connecting to 127.0.0.1'

[Thu Nov 26 19:38:25 +0100 2009] [csa] [info] 'Local client identifier:
b5fac0c4-a2a6-439e-6eb1-b68b2d72e974'

[Thu Nov 26 19:38:25 +0100 2009] [csa] [debug] 'Entering main loop'

We now have our client and server set up. We also know that our client's identifier is
b5fac0c4-a2a6-439e-6eb1-b68b2d72e974. Now we can run any other Tcl session
and send the command to be evaluated by running:

% set cid "b5fac0c4-a2a6-439e-6eb1-b68b2d72e974"

% package require comm

% puts [comm::comm send 1991 addJobWait $cid {expr 1+1}]

2

% set �ob [comm::comm send 1991 addJob $cid {expr 1+2}]

% after 60000

% puts [lindex [comm::comm send 1991 getJobResult $�ob] 1]

1 3

We can see that both commands have been evaluated. The latter form returns both the
status of the command and the value as a list, so we should in fact do the following:

% puts [lindex [comm::comm send 1991 getJobResult $�ob] 1]

3

In case of any problems with the commands, logs provided by both client and
server on their standard outputs should provide additional information about
what the problem might be.

Adding autoupdate to application
Very often we will want our clients to be able to update automatically, especially if
clients are run on large number of computers and / or in different locations.

To make our application automatically update itself, we need to use a simple
but efficient pattern for automatic updates. The approach is exactly the same as
described in Chapter 3, Tcl Standalone Binaries.

Chapter 11

[435]

All that is needed is to perform the following steps:

Check if an updated version of the binary is available; if not, then
download it
Write the binary as a temporary file with the specified filename
Run the temporary binary
As the temporary binary, overwrite the actual binary and exit
As the temporary binary, run the actual binary, which is now updated and exit
As the actual binary, remove the temporary binary and perform normal actions

In order to be able to tell when we are running a temporary binary, we should
always be able to know both file names. As our temporary binary will always be
prefixed with autoupdate-, our file names are similar to /path/to/client-cli-
linux-x86 and /path/to/autoupdate-client-cli-linux-x86 respectively. This
way a simple check can be used to determine whether the application should work
normally or should overwrite the actual binary, restart it and exit.

As for determining whether our version is up to date or not, we'll use the MD5
checksum calculated when binaries were built. This and the corresponding
.md5 files are enough to implement automatic updates.

The complete code for automatic update is located in the
02autoupdate directory in the source code examples for
this chapter.

Server-side
For implementing automatic updates, server-side needs to be able to return
information about the latest version of the application, and return the latest
binary for each platform.

We need to make two changes in the src-server/main.tcl file, compared
to previous example. The first one is that we need to store the directory where
the binaries are kept:

set csa::binariesdirectory [file join [pwd] binaries]

Also, we'll load the additional autoupdate.tcl script that will be responsible for
providing the client with the binaries.

source [file join $starkit::topdir autoupdate.tcl]

•

•

•

•

•

•

TclHttpd in Client-Server Applications

[436]

The script itself is relatively small. All it does is serve requests for binaries. It does
this by getting whatever filename was supplied, and combining that with the path
to the binaries that was previously initialized. If a specified file is not found, the 404
error is returned and an error is logged.

proc csa::handleClientBinary {sock suffix} {
 variable binariesdirectory

 set filename [file join $binariesdirectory \
 [file tail $suffix]]

 if {[file exists $filename]} {
 Httpd_ReturnFile $sock application/octet-stream \
 $filename
 } else {
 log::warn "handleClientBinary: $filename not found"
 Httpd_Error $sock 404
 }
}

We'll also bind a particular prefix so that all requests to the client/binary will be
handled by our command.

Url_PrefixInstall /client/binary csa::handleClientBinary

It works in such a way that the request to http://<host>:8981/client/binary/
client-cli-linux-x86 will cause that file from the binaries subdirectory to
be returned.

The code mentioned in this section is located in the src-server/
autoupdate.tcl file in the 02autoupdate directory in the source
code examples for this chapter.

Client-side
A lot more logic needs to be embedded in the client, though.

As many operating systems do not allow overwriting a binary that is currently
running, our overwrite process is a bit more tricky and described earlier in the chapter.

In the client's main.tcl file we'll introduce some small changes—first we'll add
loading autoupdate.tcl file, we'll also schedule csa::checkAutoupdate command
immediately, but csa::requestJobs later. The purpose is to wait to get the jobs
before making sure our binary is up to date.

Chapter 11

[437]

source [file join $starkit::topdir autoupdate.tcl]

after idle csa::checkAutoupdate
after 60000 csa::requestJobs

The autoupdate.tcl script begins with checking the name of the binary we are
running as. If it starts with the autoupdate- prefix, this means that our application
should overwrite the actual binary, run it and exit:

if {[regexp -nocase \
 "autoupdate-(.*)" \
 [file tail [info nameofexecutable]] - binaryname]} {
 # wait for parent process to exit
 after 5000

We started by waiting 5 seconds for a parent process to exit. Then we determine target
file name, which is the actual binary, such as /path/to/client-cli-linux-x86.

 set dirname [file dirname [info nameofexecutable]]
 set targetname [file join $dirname $binaryname]

Now we try to unmount the VFS of the executable, which is needed to copy
the binary as a file from the Tcl level; otherwise Tcl will consider that path
to be a directory.

Then we overwrite the target binary using our current binary, and try to change its
permissions to being executable on Unix systems. Finally, we run the actual binary
providing the same arguments that our autoupdate binary was run with.

 catch {vfs::mk4::Unmount exe [info nameofexecutable]}
 file copy -force [info nameofexecutable] $targetname
 catch {file attributes $targetname -permissions 0755}
 exec $targetname {*}$argv &
 exit 0
} else {

If our binary is not running in the autoupdate mode, we check if the
autoupdate-<binaryname> file exists. If it does, this means that we have been just
started the end of the automatic update process. In this case we wait for five seconds
for the autoupdate binary to exit, and try to remove it from the filesystem.

 set dirname [file dirname [info nameofexecutable]]
 set targetname [file join $dirname \
 "autoupdate-[file tail [info nameofexecutable]]" \
]

TclHttpd in Client-Server Applications

[438]

 if {[file exists $targetname]} {
 after 5000
 catch {file delete -force $targetname}
 }
}

This is a complete implementation of handling automatic updates themselves.

After this, we need to create a procedure that will periodically check for updates of
the binary file, and if there is a newer version then download and run it.

Also, the command will set csa::autoupdateInProgress variable that can be
used by other parts of the application to stop performing tasks, if we are expecting
to be restarted.

We'll start off by cancelling any scheduled checks and building URL to the binary.

proc csa::checkAutoupdate {} {
 variable hostname
 variable autoupdateInProgress

 after cancel csa::checkAutoupdate

 set url "http://${hostname}:8981/client/binary/"
 append url [file tail [info nameofexecutable]]

Next we'll try to download the <binary>.md5 file, which is the MD5 checksum
of the actual binary, and is generated as part of the build process. csa::
checkAutoupdateDone command will be run when the request has been
completed. If initializing the download fails, we try again in one minute from now:

 if {[catch {
 http::geturl "$url.md5" -timeout 30000 \
 -command [list csa::checkAutoupdateDone $url]
 }]} {
 log::error "checkAutoupdate: Unable to send request"
 # try again in 1 minute
 after 60000 csa::checkAutoupdate
 }
}

After request for the MD5 checksum has been completed, we start off by setting
up a next check for one hour from now, which is the default interval for checking
for updates.

proc csa::checkAutoupdateDone {url token} {
 variable autoupdateInProgress

 after 3600000 csa::checkAutoupdate

Chapter 11

[439]

Next we check if the request has been successfully processed. Unlike many other
examples so far, we also include support for error code 404 in this case—which
means that the server does not have the appropriate file on its side.

 if {[http::status $token] != "ok"} {
 log::error "checkAutoupdateDone: Invalid HTTP status"
 http::cleanup $token
 return
 } elseif {[http::ncode $token] == 404} {
 log::warn "checkAutoupdateBinaryDone:\
 Server does not provide updates for this binary"
 http::cleanup $token
 return
 } elseif {[http::ncode $token] != 200} {
 log::error "checkAutoupdateDone: Invalid HTTP code"
 http::cleanup $token
 return
 } else {

If there was no error processing the request, we retrieve the checksum from the
request and compare it with our local binary's checksum.

 set checksum [http::data $token]

 if {$checksum != $::csa::applicationMD5} {

If the checksums are different, we need to update our binary. We start off by
cancelling the next scheduled automatic update and initialize a request to download
the actual binary, which will invoke the csa::checkAutoupdateBinaryDone
command when it completes.

 after cancel csa::checkAutoupdate
 if {[catch {
 http::geturl $url -timeout 900000 -binary 1 \
 -command csa::checkAutoupdateBinaryDone
 }]} {

If an error has occurred, we set up the next attempt in one minute from now. We also
log the error.

 # an error occured;
 # schedule next check in 1 minute from now
 after 60000 csa::checkAutoupdate
 log::error "checkAutoupdateDone: Unable to\
 download new binary"
 } else {

TclHttpd in Client-Server Applications

[440]

If the download has started, we set the csa::autoupdateInProgress variable
to true to indicate that an update is in progress.

 # if download has started, we set this
 # so no further requests for job are sent
 set autoupdateInProgress true
 }
 }
 }
}

When the download of the binary has finished, we start off by scheduling
the next automatic update in case of problems. We also unset the csa::
autoupdateInProgress variable for the same reason.

proc csa::checkAutoupdateBinaryDone {token} {
 variable autoupdateInProgress

 # just in case - schedule next check in 1 hour from now
 # and clear the autoupdate flag
 after 3600000 csa::checkAutoupdate
 catch {unset autoupdateInProgress}
 log::info "checkAutoupdateBinaryDone: Binary received"

The first thing we do is check whether the transfer has succeeded and no error was
sent by the server—in case of any problems, we log them and exit the procedure.
Next attempt will happen in an hour.

 # check status & HTTP code; return if error occurred
 if {[http::status $token] != "ok"} {
 log::error "checkAutoupdateBinaryDone:\
 Invalid HTTP status"
 http::cleanup $token
 return
 } elseif {[http::ncode $token] == 404} {
 log::warn "checkAutoupdateBinaryDone:\
 Server does not provide updates for this binary"
 http::cleanup $token
 return
 } elseif {[http::ncode $token] != 200} {
 log::error "checkAutoupdateBinaryDone:\
 Invalid HTTP code [http::ncode $token]"
 http::cleanup $token
 return
 } else {

Chapter 11

[441]

In case the transfer succeeds, we create the autoupdate-<binaryname> filename as
aufilename variable:

 set aufilename [file join \
 [file dirname [info nameofexecutable]] \
 "autoupdate-[file tail [info nameofexecutable]]"]
 log::debug "checkAutoupdateBinaryDone:\
 Writing to $aufilename"

We then try to write to that file and in case it fails we log an error.

 if {[catch {
 set fh [open $aufilename w]
 fconfigure $fh -translation binary
 puts -nonewline $fh [http::data $token]
 close $fh
 } error]} {
 log::error "checkAutoupdateBinaryDone:\
 Error writing autoupdate binary: $error"
 } else {

If we were able to create the autoupdate binary, we now change its attributes to
be able to run it. We run it with the same arguments that our binary was run with
and exit:

 log::debug "checkAutoupdateBinaryDone:\
 Running $aufilename"
 catch {file attributes \
 $aufilename -permissions 0755}
 exec $aufilename {*}$::argv &
 exit 0
 }

 http::cleanup $token
 }
}

The code mentioned in this section is located in the src-client/
autoupdate.tcl file in the 02autoupdate directory in the source
code examples for this chapter.

TclHttpd in Client-Server Applications

[442]

In addition to the automatic updates themselves, the new example also checks
for automatic updates in progress when requesting jobs. The csa::requestJobs
command now starts with the following check:

proc csa::requestJobs {} {
 variable hostname
 variable autoupdateInProgress

 after cancel csa::requestJobs

 if {[info exists autoupdateInProgress]} {
 log::info "requestJobs: Auto update in progress; \
 retrying in 1 minute"
 after 60000 csa::requestJobs
 return
 }

The changes in the code in this section are located in the src-
client/client.tcl file in the 02autoupdate directory, in the
source code examples for this chapter.

Extending your applications
Very often applications need to be extended with additional functionalities. In many
cases it is also necessary to run different code on various types of machines.

A good solution to this problem is to introduce extensibility to our application. We'll
want to allow additional modules to be deployed to specified clients—this means
delivering modules to clients, keeping them up to date, and handling loading and
unloading of modules.

The following sections will introduce how Starkits and Tcl's VFS can be used to
easily create modules for our application, and how these can be used to deploy
additional code.

We'll also introduce a simple implementation of handling modules, both on
server side and client side. This requires creating code for downloading modules
themselves, loading them, and the mechanism for telling clients what actions they
should be performing.

The server will be responsible for telling clients when they should load or unload
any of the modules. They will also inform clients if any of the modules are out of
date. Clients will use this information to make sure modules that are loaded are
consistent, with what server expects.

Chapter 11

[443]

The following steps will be performed by the client:

The client sends a list of loaded modules and a list of all available modules
along with their MD5 checksums to server
The server responds with the list of modules to load, unload, and which need
to be downloaded
The client downloads modules that it needs to download; if the client already
has downloaded all modules it needs, no action is taken
The client unloads modules that it should unload and loads modules that it
should load; if the client has already loaded all modules it should have,
no action is taken

Handling security is an additional consideration when creating pluggable
applications. Clients should check if files are authentic whenever they download any
code, which will be run on the client. This can be achieved using SSL and Certificate
Authorities, and such operations are described in more details in Chapter 13.

Starkits as extensions
One of the features Tcl offers is its VFS and using single file archives for staging
entire archives. We've used these technologies to create our clients as single
file executables.

Now we'll reuse similar mechanisms to create modules for our application. All
modules will simply be a Starkit VFS—this will allow embedding all types of
files, creating complex scripts, and easily manage whatever a module contains.

Our modules will have their MD5 checksum calculated, similar to the automatic
update feature. This will allow the application to easily check whether a module
needs to be updated or not. In order to deliver modules to a client, the server will
allow downloading modules, similar to retrieving binaries for automatic update.

Building modules
Our modules will be built similar to how binaries were built, with a minor exception.
Modules will have their MD5 checksum stored as the first 32 bytes of the file; this
does not cause problems for MK4 VFS package and allows easy checking of whether
a package is up to date or not.

The source code for each module will be stored in the mod-<modulename> directories.
For the purpose of this implementation, clients will source the load.tcl script when
loading the package and will source the unload.tcl script when unloading it. It will
be up to the module to initialize and finalize itself properly.

•

•

•

•

TclHttpd in Client-Server Applications

[444]

The directory and file structure in the following screenshot show how files for
modules are laid out.

It is based on previous example and only the mod-comm and mod-helloworld
directories are new.

We'll need to modify the build.tcl script and the add code responsible for building
of modules. We can do this after the initial binaries have been built.

First let's create the modules directory:

file mkdir modules

Then we'll iterate over each module to build and create name of the target file:

foreach module {helloworld comm} {
 set modfile [file join modules $module.kit]

We'll start off by creating a 32 byte file:

 set fh [open $modfile w]
 fconfigure $fh -translation binary
 puts -nonewline $fh [string repeat "\0" 32]
 close $fh

Next we'll create the VFS, copy the source code of the module, and unmount it:

 vfs::mk4::Mount $modfile $modfile
 docopy mod-$module $modfile
 vfs::unmount $modfile

Chapter 11

[445]

Now, calculate the MD5 checksum of the newly created module:

 set md5 [md5::md5 -hex -file $modfile]

And set the first 32 bytes to the checksum:

 set fh [open $modfile r+]
 fconfigure $fh -translation binary
 seek $fh 0 start
 puts -nonewline $fh $md5
 close $fh
}

We'll create two modules—helloworld and comm. The first one will simply log
"Hello world!" every 30 seconds. The second one will set up a comm interface that
can be used for testing and debugging purposes.

Let's start with creating the mod-helloworld/load.tcl script which will be
responsible for initializing the helloworld module:

csa::log::info "Loading helloworld module"

namespace eval helloworld {}

proc helloworld::hello {} {
 csa::log::info "Hello world!"
 after cancel helloworld::hello
 after 30000 helloworld::hello
}

helloworld::hello

Our module will log the information that it has been loaded ,and write out hello
world to the log. The helloworld::hello command also schedules itself to be run
every 30 seconds.

The mod-helloworld/unload.tcl script that cleans up the module looks like this:

csa::log::info "Unloading helloworld module"

after cancel helloworld::hello

namespace delete helloworld

This will log information about the unloading of a module, cancel the next invocation
of the helloworld::hello command, and remove the entire helloworld namespace.

TclHttpd in Client-Server Applications

[446]

Implementing the comm module is also simple. The mod-comm/load.tcl script is
as follows:

csa::log::info "Loading comm module"

package require comm

comm::comm configure -port 1992 -listen 1 -local 1

This script simply loads the comm package, sets it up to listen on port 1992, and only
accepts connections on the local interface.

Unloading the package (in mod-comm/unload.tcl) will configure the comm interface
not to listen for incoming connections:

csa::log::info "Unloading comm module"

comm::comm configure -listen 0

As the comm package cannot be simply unloaded, the best solution is for load.tcl
to configure it to listen for connections and unload.tcl to disable listening.

Server side
The server side of extensibility needs to perform several activities. First of all we
need to track which clients should be using which modules. The second function is
providing clients with modules to download. The third functionality is telling clients
which modules they need to fetch from the server, and which ones that they need
to load or unload from the environment.

Let's start off with adding initialization of the modules directory to our server. We
need to add it to src-server/main.tcl:

set csa::binariesdirectory [file join [pwd] binaries]
set csa::modulesdirectory [file �oin [pwd] modules]
set csa::datadirectory [file join [pwd] data]

We'll also need to load an additional script for handling this functionality:

csa::log::debug "Sourcing remaining files"
source [file join $starkit::topdir commapi.tcl]
source [file join $starkit::topdir database.tcl]
source [file join $starkit::topdir clientrequest.tcl]
source [file join $starkit::topdir autoupdate.tcl]
source [file �oin $starkit::topdir clientmodules.tcl]

Chapter 11

[447]

Next we'll also need to modify src-server/database.tcl to add support for
storing the modules list. We'll need to add a new table definition to script that
creates all tables:

 CREATE TABLE clientmodules (
 client CHAR(36) NOT NULL,
 module VARCHAR(255) NOT NULL
);

In order to work on the data we'll also need commands to add or remove a module
for a specified client:

proc csa::setClientModule {client module enabled} {
 if {[llength [db eval \
 {SELECT guid FROM clients WHERE guid=$client
 AND status=1}]] == 0} {
 return false
 }

 db eval {DELETE FROM clientmodules WHERE
 client=$client AND module=$module}

 if {$enabled} {
 db eval {INSERT INTO clientmodules (client, module)
 VALUES($client, $module)}
 }

 return true
}

Our command starts off by checking if a client exists and returns immediately if
it does not. In the next step, we delete any existing entries and insert a new row if
we've been asked to enable a particular module for a specified client.

We'll also need to be able to list modules associated with a particular client, which
means executing a simple SQL query to list modules:

proc csa::getClientModules {client} {
 return [lsort [db eval {SELECT module
 FROM clientmodules WHERE client=$client}]]
}

Then we'll need to create the clientmodules.tcl file that will have functionality
related to handling modules, and providing them to clients.

TclHttpd in Client-Server Applications

[448]

The first thing required is a function to read MD5 checksums from modules. We'll first
check if the file exists and return an empty string if it does not, otherwise we'll read
and return the first 32 bytes of the file:

proc csa::getModuleMD5 {name} {
 variable modulesdirectory

 set filename [file join $modulesdirectory $name]

 if {![file exists $filename]} {
 return ""
 }
 set fh [open $filename r]
 fconfigure $fh -translation binary
 set md5 [read $fh 32]
 close $fh
 return $md5
}

Next we'll create a function that takes a client identifier, queries the database for
modules for that client and returns a list of module-md5sum pairs, which can be
treated as a dictionary – where the key is the module name and the value is its
md5 checksum.

proc csa::getClientModulesMD5 {client} {
 set rc [list]
 foreach module [getClientModules $client] {
 lappend rc $module [getModuleMD5 $module]
 }
 return $rc
}

Another function will handle requests for a particular module. Similar to how it is
implemented for automatic updates, we'll provide files only from a single directory
and handle cases where a file does not exist, and register a prefix for the requests
in TclHttpd:

proc csa::handleClientModule {sock suffix} {
 variable modulesdirectory
 set filename [file join $modulesdirectory \
 [file tail $suffix]]

 log::debug "handleClientModule: File name: $filename"
 if {[file exists $filename]} {
 Httpd_ReturnFile $sock application/octet-stream \

Chapter 11

[449]

 $filename
 } else {
 log::warn "handleClientModule: $filename not found"
 Httpd_Error $sock 404
 }
}

Url_PrefixInstall /client/module csa::handleClientModule

For communication with the clients, we'll reuse the protocol for requesting jobs.

We also need a function that given a client identifier, request dictionary, and name
of the response variable will provide information to the client. It will also return
whether a client should be provided with a list of jobs or not. If a client will need to
download new or updated modules first, we do not need to provide a list of jobs
as the client will need to have updated modules first.

Let's start by making sure that both the modules available on the client and the list
of loaded modules has been sent to the client:

proc csa::csaHandleClientModules {guid req responsevar} {
 upvar 1 $responsevar response

 set ok true

 if {[dict exists $req availableModules]
 && [dict exists $req loadedModules]} {

Then we copy the values to local variables for convenience, and get a list of modules
that a client should have along with their MD5 checksums.

 set rAvailable [dict get $req availableModules]
 set rLoaded [dict get $req loadedModules]
 set lAvailable [getClientModulesMD5 $guid]

We'll also create a list of actions we want to pass back to the client— the list of modules
it needs to download and the list of modules to load and unload. By default, all lists
are empty and we'll add items only if we detect that the client should perform actions:

 set downloadList [list]
 set loadList [list]
 set unloadList [list]

TclHttpd in Client-Server Applications

[450]

As the first step, we'll iterate over the modules that the client should have and check
if it has them—if the client either does not have a module or its checksum differs,
we'll tell the client to download it.

 foreach {module md5} $lAvailable {
 if {(![dict exists $rAvailable $module]) ||
 ([dict get $rAvailable $module] != $md5)} {
 lappend downloadList $module
 }

After this we check if the client has already loaded this module. If not, we'll tell him
to load the module.

 if {[lsearch -exact $rLoaded $module] < 0} {
 lappend loadList $module
 }
 }

We'll also iterate over the modules that the client currently has loaded and if any of
them should not be loaded according to our list, we'll tell the client to unload it.

 foreach module $rLoaded {
 if {![dict exists $lAvailable $module]} {
 lappend unloadList $module
 }
 }

Once we've conducted our comparison, we tell the agent what should be done. If he
needs to download any modules, we only return this information and return that
there is no point in providing the list of jobs to perform:

 if {[llength $downloadList] > 0} {
 dict set response moduleDownload \
 $downloadList
 set ok false
 } else {

Otherwise if all modules on the client are updated, we provide a list of modules
to load or unload if this is needed.

 if {[llength $loadList] > 0} {
 dict set response moduleLoad \
 $loadList
 }

 if {[llength $unloadList] > 0} {
 dict set response moduleUnload \
 $unloadList
 }
 }

Chapter 11

[451]

Finally, we return whether or not we should provide the client with a list of jobs
to perform or not:

 }

 return $ok
}

Now we'll need to modify the csa::handleClientProtocol command in
the src-server/clientrequest.tcl file to invoke our newly created
 csa::csaHandleClientModules command:

 if {[csaHandleClientModules \
 $guid $req response]} {
 # only specify �obs if client
 # has all the modules

 if {[dict exists $req joblimit]} {
 set joblimit [dict get $req joblimit]
 } else {
 set joblimit 10
 }

 dict set response jobs \
 [getJobs $guid $joblimit]
 log::debug "handleClientProtocol: Jobs:\
 [llength [dict get $response jobs]]"
 }

This will cause jobs to be added only if the csaHandleClientModules command
returned true.

We can also modify the csa::apihandle command in the src-server/commapi.tcl
file to allow adding or removing a module from a client. The following needs to be
added inside the main switch responsible for handling commands:

 switch -- $cmd {
 addClientModule {
 lassign $command cmd client module
 return [setClientModule $client $module 1]
 }
 removeClientModule {
 lassign $command cmd client module
 return [setClientModule $client $module 0]
 }

TclHttpd in Client-Server Applications

[452]

These commands simply invoke the csa::setClientModule command
created earlier.

All changes are located in the src-server directory in the
03extensions directory in the source code examples for this chapter.

Handling modules on client
The first thing that we'll need to implement on the client is support for handling
modules—storage, loading and unloading, and keeping the state of the currently
loaded modules.

Let's start off with adding initialization of the modules directory to our server. We
need to add it to src-client/main.tcl:

set csa::datadirectory [file join [pwd] data]
set csa::modulesdirectory [file �oin [pwd] data modules]

file mkdir $csa::datadirectory
file mkdir $csa::modulesdirectory

Next we'll need to add loading of clientmodules.tcl, which will hold all scripts
related to handling modules:

source [file join $starkit::topdir fileinfo.tcl]
source [file join $starkit::topdir autoupdate.tcl]
source [file join $starkit::topdir database.tcl]
source [file join $starkit::topdir client.tcl]
source [file �oin $starkit::topdir clientmodules.tcl]

The clientmodules.tcl file will hold all scripts related to modules. We'll start off by
creating the code for getting the MD5 checksum of a module. Implementation on the
client will use the modulemd5cache array for caching checksums of a module.

Caching checksums is needed because of the way that VFS is implemented, reading
MD5 checksum is not possible for currently loaded modules. Also, this will speed up
operations and as the client will download updates on its own, it is safe to keep MD5
checksums cached here.

proc csa::getModuleMD5 {module} {
 variable modulesdirectory
 variable modulemd5cache
 if {![info exists modulemd5cache($module)]} {

Chapter 11

[453]

If we don't know the checksum of the requested module we'll initialize it. If the file
exists, then read the first 32 bytes and store it in the cache. If the file does not exist,
we set it to an empty string:

 set filename [file join $modulesdirectory $module]
 if {[file exists $filename]} {
 set fh [open $filename r]
 fconfigure $fh -translation binary
 set modulemd5cache($module) [read $fh 32]
 close $fh
 } else {
 set modulemd5cache($module) ""
 }
 }
 return $modulemd5cache($module)
}

We'll also need a procedure that removes the MD5 cache for a specified module:

proc csa::cleanModuleCache {module} {
 variable modulemd5cache

 catch {unset modulemd5cache($module)}
}

This will be needed in case we download a new version as we need to make sure our
client does not use an older version of the checksum.

Now, we'll create a function to list all modules that are available locally to this
client. We'll simply use the glob command to list items in the modules directory
matching *.kit:

proc csa::getAvailableModules {} {
 variable modulesdirectory

 return [lsort [glob -nocomplain -tails \
 -directory $modulesdirectory *.kit]]
}

TclHttpd in Client-Server Applications

[454]

Similar to the server-side implementation, we'll also create a function that returns all
local modules along with their MD5 checksums.

proc csa::getAvailableModulesMD5 {} {
 set rc [list]
 foreach module [getAvailableModules] {
 lappend rc $module [getModuleMD5 $module]
 }
 return $rc
}

Let's implement the loading of a particular module. The command returns whether
the package has been successfully loaded or not.

We'll store all currently loaded modules in the loadedmodule array—loading
package first checks if the specified package has currently been loaded. If it has
been, we return the following code immediately:

proc csa::loadModule {module} {
 variable loadedmodule
 variable modulesdirectory

 set filename [file join $modulesdirectory $module]

 if {[info exists loadedmodule($module)]} {
 return true
 }

Then we check if a module exists. If it does not, its checksum is empty. In this case,
too, we exit:

 if {[getModuleMD5 $module] == ""} {
 return false
 }

Assuming the module exists we'll now mount it as read only and initialize the
loadedmodule value for the specified module to the output of mounting the VFS,
and source the VFS's load.tcl script:

 set loadedmodule($module) \
 [vfs::mk4::Mount $filename $filename -readonly]

 if {[catch {
 uplevel #0 [list \
 source [file join $filename load.tcl] \
]
 } error]} {

Chapter 11

[455]

If sourcing the script fails, we log an error and unload the module. We'll also

 log::error "Error loading module $module: $error"
 unloadModule $module true
 return false
 }

 return true
}

Now let's create the command to unload a module. It returns whether the package
needed to be unloaded or not. Unloading a package works in similar way to loading
it. We start off by checking if it is currently loaded:

proc csa::unloadModule {module} {
 variable loadedmodule
 variable modulesdirectory

 set filename [file join $modulesdirectory $module]

 if {![info exists loadedmodule($module)]} {
 return false
 }

If a package is currently loaded, we source the unload.tcl script. If it fails, we log
an error, but continue anyway.

 if {[catch {
 uplevel #0 [list \
 source [file join $filename unload.tcl] \
]
 } error]} {
 log::error "Error unloading module $module: $error"
 }

Then we try to unmount the VFS. If that fails, we again log an error:

 if {[catch {
 vfs::unmount $filename
 } error]} {
 log::error "Error unloading module $module: $error"
 }

TclHttpd in Client-Server Applications

[456]

Finally, we unset loadedmodule for a specified module and return:

 unset loadedmodule($module)

 return true
}

We can also create a function to list all currently loaded modules:

proc csa::getLoadedModules {} {
 variable loadedmodule
 return [lsort [array names loadedmodule]]
}

We simply return keys for the loadedmodule array since they correspond to the
currently loaded modules.

Communication with server
Now that the csa client can handle modules, we'll need to implement retrieving
information about them from the server.

It will need to send a list of all available modules, along with their checksums, and a
list of currently loaded ones. Then the server will tell it which modules to download,
load, and unload.

In order to do that we'll need to modify the csa::requestJobs, and csa::
requestJobsDone commands in the src-client/client.tcl file.

The first thing is that in csa::requestJobs we need to add a feature for sending the
list of modules:

 set url "http://${hostname}:8981/client/protocol"
 set req [dict create]

 dict set req guid $::csa::guid
 dict set req password $::csa::password

 dict set req availableModules \
 [getAvailableModulesMD5]

 dict set req loadedModules \
 [getLoadedModules]

This will cause information about modules to be sent.

Chapter 11

[457]

Next, in the csa::requestJobsDone command we need to handle the processing of
the response related to modules:

 if {$ok} {
 if {![processModulesResponse $response]} {
 after cancel csa::requestJobs
 after 3600000 csa::requestJobs
 log::info "requestJobsDone: Rescheduling next\
 communications for in 1 hour from now"
 }

 # evaluate jobs to perform if any are available
 if {[dict exists $response jobs]
 && ([llength [dict get $response jobs]] > 0)} {
 runJobs [dict get $response jobs]
 }
 } else {
 log::error "requestJobsDone: Server returned error"
 }

What we do is invoke the csa::processModulesResponse command with the
response. If it returns false, we schedule the next communication for after one
hour from now. The command will return false if new modules need to be
downloaded—in this case, we schedule the next communication in one hour
in case downloading the modules fails.

We now need to write the procedure for handling part of the response related
to modules.

We start by checking if a list of modules to download has been returned. If it has, we
initialize the download of all modules and return.

proc csa::processModulesResponse {response} {
 if {[dict exists $response moduleDownload]} {
 downloadModules [dict get $response moduleDownload]
 return false
 }

Now we check if there are any modules to load or unload. We then iterate over the
lists and load or unload the modules appropriately:

 if {[dict exists $response moduleLoad]} {
 foreach module [dict get $response moduleLoad] {
 log::info "Loading module $module"
 loadModule $module
 }
 }
 if {[dict exists $response moduleUnload]} {

TclHttpd in Client-Server Applications

[458]

 foreach module [dict get $response moduleUnload] {
 log::info "Unloading module $module"
 unloadModule $module
 }
 }

 return true
}

We'll implement downloading one or more modules asynchronously. The idea is
that the csa::downloadModules command will start the download of the first
module in the list, and pass any remaining modules as arguments to the csa::
downloadModulesDone callback, which will be invoked when HTTP request is done.
Then we'll write the module to disk and if there are any other modules pending for
download, we'll invoke the csa::downloadModules command again with remaining
modules. This will then be done until all modules have been downloaded.

Let's start by creating the csa::downloadModules command. It gets the first module
from the list and stores any remaining modules. Next we create the URL to the
module and unload this module, if it is currently loaded. Unloading will allow
us to write to that module later on.

proc csa::downloadModules {modules} {
 variable hostname

 set module [lindex $modules 0]
 set modules [lrange $modules 1 end]

 log::debug "downloadModules: Downloading $module; \
 [llength $modules] modules remaining"

 set url http://${hostname}:8981/client/module/$module
 unloadModule $module

Next we try to initialize an HTTP request to specified URL. We provide the callback
command that gets both current module and list of remaining modules passed
as arguments.

In case of any errors, we log them and initialize the next communication with the
server in one minute.

 if {[catch {
 http::geturl $url \
 -timeout 900000 -binary 1 -command [list \

Chapter 11

[459]

 csa::downloadModulesDone $module $modules]
 }]} {
 log::error "downloadModules: Unable to \
 download module $module"

 # set up next request for jobs sooner
 after cancel csa::requestJobs
 after 60000 csa::requestJobs
 }
}

Once the download of a module has been completed, our callback is invoked. We
start off by checking for errors in the HTTP transaction.

proc csa::downloadModulesDone {module modules token} {
 variable modulesdirectory

 if {[http::status $token] != "ok"} {
 log::error "downloadModulesDone: Invalid HTTP status"
 } elseif {[http::ncode $token] == 404} {
 log::warn "downloadModulesDone:\
 Server does not provide module $module"
 } elseif {[http::ncode $token] != 200} {
 log::error "downloadModulesDone: Invalid HTTP code"
 } else {

If no error has occurred, we write the module to disk. We then clear the cache of this
module's checksum and clean up the HTTP token.

 log::info "downloadModulesDone: Module $module \
 downloaded"
 set filename [file join $modulesdirectory $module]
 set fh [open $filename w]
 fconfigure $fh -translation binary
 puts -nonewline $fh [http::data $token]
 close $fh

 cleanModuleCache $module

 http::cleanup $token

TclHttpd in Client-Server Applications

[460]

Finally, we check if there are any additional modules to download. If there are,
we retrieve them. If there are no more modules to download, we initialize the next
communication as soon as possible to request which modules to load and get
jobs to perform.

 if {[llength $modules] > 0} {
 downloadModules $modules
 } else {
 log::info "downloadModulesDone: All modules \
 have been downloaded"
 after cancel csa::requestJobs
 after idle csa::requestJobs
 }
 return
 }

Regardless of the presence of any additional modules, we also return from the
procedure here.

The following code will get run if we ran into any problems. It will clean up the
HTTP token and set up the next communication for one minute from now.

 http::cleanup $token
 after cancel csa::requestJobs
 after 60000 csa::requestJobs
 return
}

The source code for both module handling and communication related to
modules is located in the src-client/clientmodules.tcl file in the
03extensions directory in the source code examples for this chapter.

Improving scalability and performance
The preceding example shows a simple application that uses a local SQLite database,
and performs all operations on a single machine. However, as the number of
clients we need to support grows, our application would need to change part
of the approach in order to support a large number of clients.

In most small and medium sized cases it is sufficient to create an application that
works on a single system, in some cases it is worth considering how to make our
application scale better.

Chapter 11

[461]

One or more of the following steps can be done to gain better scalability and improve
its performance:

Create multiple systems for managing subsets of clients and create an
application that works on top of servers, and points clients to the appropriate
servers. Clients could initially ask for the actual server to communicate with,
and then contact this server. The comm API would then also be handled in
a similar case —a single interface could be exposed that would query the
server manager for the actual server managing a particular client. That API
would then proxy the command to the actual server and pass the result back
to the caller. The approach is similar to load balancing, but instead of simply
redirecting the requests we also split database—a server responsible for a
subset of clients will only store data related to these clients.
Split where parts of the application are carried out. For example, a different
system can provide clients with updates to binaries and offer download
of modules. Other systems could serve only requests for jobs and module
information. In addition to this, static files such as binaries, modules, and
their checksums can be served by a dedicated web server which does not
even have to be Tclhttpd based
Optimize when agents connect to spread the load of handling requests over
time. This can be done by providing agents the exact times to query the data,
so that server would always add new clients into slots that have least load.
An alternate approach is to allow server to tell clients to try again in specified
amount of time, and use this when server is overloaded with requests
to process.
Use a more scalable database, and set up a dedicated system just for the
database that our application would then access remotely.

All of the items recently mentioned are independent, and can be implemented
separately or combined to get better performance.

•

•

•

•

TclHttpd in Client-Server Applications

[462]

Summary
Throughout this chapter we've created a complete solution for creating a
client-server application in Tcl.

In this chapter we learned to:

Create a client-server application based on HTTP protocol and Tclhttpd as an
embedded web server packed into Starkit technology for easy deployment
Build a polling-based application for performing tasks on clients and sending
their results back to server, as well as provide comm interface to invoke tasks
using server
Create support for automatic update of clients based on Starkit technology
Create extensible applications using Tcl-based modules and an automated
model, for managing and automatic update of modules

This chapter does not focus on the security aspects of our application. We have only
used a trivial mechanism of validating clients by using passwords, which are sent
using clear text. Chapter 13 introduces SSL based security, and shows how similar
example can be extended to use SSL and Certificate Authority for authentication.

The next chapter shows how to create web services from Tcl. It shows how to use
XML-RPC and SOAP based services, and how to build your own SOAP-based
web service.

•

•

•

•

SOAP and XML-RPC
By now, we have learned about invoking commands remotely in Tcl. We have
used the comm package, deployed debugger remotely, connected using TclDevKit
Inspector, and provided other interfaces with which to run Tcl commands. While all
these solutions have their uses, their disadvantage is that they are limited to the Tcl
language only.

Often, we need our applications to talk to or export services to other parts of our
company's IT infrastructure. The problem, that applications written in different
languages need to be able to communicate with each other, has been known for a
long time. Fortunately, there are standards that describe how to export methods in
a cross-language manner. In this chapter, we'll learn about two of them which are in
common use.

We'll start by learning about XML-RPC, which is a protocol for invoking remote
methods based on XML and HTTP. This protocol defines how sending simple and
complex data types can be done, as well as sending single items and lists of elements.
The standard also provides a means of delivering errors.

XML-RPC is designed so that requests are fairly simple and basically require passing
the name of the method to invoke along with all parameters, and specifying their
name and data type. The standard does not define a means for querying available
methods and / or their parameters. This means that in order to use a service over
XML-RPC, we need to know the names of the methods and parameters they accept.

Another standard is SOAP, which stands for Simple Object Access Protocol. It is a
much more complex standard based on XML and also used over HTTP protocol. It
specifies how to send both simple and complex data types, similar to XML-RPC. It
also defines means for providing errors.

SOAP and XML-RPC

[464]

In addition to this, SOAP defines a standard for describing all available methods,
their parameters and the data types used in a service. The standard is called WSDL,
which stands for Web Service Definition Language. Usually all that is needed to
use a SOAP based service is to either know the URL of the WSDL definition or have
the WSDL definition itself. It provides applications with definitions of all methods
used along with their parameters, and is used by the majority of languages to build
commands to be invoked.

Tcl and standards for remote
procedure calls
Tcl offers packages for both clients and servers of various standards. Even though
this book focuses on XML-RPC and SOAP, Tcl also supports other standards, such
as JSON-RPC, SOAP over SMTP, and can easily be used for REST interfaces—using
JSON, XML, and other formats for passing data.

The previous chapter shows how to implement such an interface using Tcl's
dictionaries. Using XML would only require using the tDOM package, which was
described in Chapter 5. JSON, which stands for JavaScript Object Notation is an open
standards based, widely used web application which is derived from JavaScript.
Currently, the Tcl package json only offers functionality for mapping JSON to Tcl
dictionaries. Creating json responses requires us to create our own code for writing
to JSON data.

For XML-RPC we'll be using the Tcl package XMLRPC available from http://tclsoap.
sourceforge.net/. These packages are also available in the ActiveTcl distribution so
all the packages you need will already be available if you are using ActiveTcl.

This package offers an easy to use XML-RPC client and server, which we can use to
communicate with other websites. It provides an intuitive way to invoke APIs, and
requires very little knowledge of either XML-RPC or its internals to use it.

XML-RPC has been designed as a fairly simple protocol. It supports various data
types, but does not provide a way to describe the service as part of the protocol
itself. An opposite approach has been introduced in SOAP. It is a service that is more
complex than XML-RPC, and offers a language (WSDL) for describing web services
that can be parsed by SOAP client libraries.

For SOAP communication we'll be using a different package than for XML-RPC.
We'll use the Web Services for Tcl package available from http://code.google.
com/p/tclws/. Even though the SOAP package also provides SOAP support, tclws
has better support for SOAP itself as well as the WSDL standard. It also has more
active development and support.

Chapter 12

[465]

This package provides full support for WSDL, which means that in order to invoke
an existing SOAP API all we need to do is point to the URL to WSDL, and we can
then instantly use all remote methods. It also supports complex data types.

The Web Services for Tcl package allows exporting of APIs. It uses Tclhttpd as
the web server for providing APIs over HTTP (non-SSL) and HTTPS (encrypted
using SSL). The package uses the /service URL prefix for providing various SOAP
services. Aside from that, that Tclhttpd instance can be shared with other parts of the
application—so we can use one Tclhttpd instance and same TCP port, for both SOAP
features and other functionality exposed by our application.

When creating a web service, Web Services for Tcl generates a WSDL for it
automatically. This can be used by any SOAP application to use methods exposed
by our application, and makes using our services much easier for any external
developer. In addition to this, the package also generates a user-friendly HTML
page that documents the entire API. It shows all methods, data types, and
additional information.

The Web Services for Tcl package requires the tDOM package for accessing XML and
DOM inside SOAP. This package is available from http://www.tdom.org/. It is also
part of the ActiveTcl distribution so running tclws package from ActiveTcl should
work smoothly.

The following table summarizes protocols:

Protocol Tcl package (link) Functionality
covered

XML-RPC XMLRPC (http://tclsoap.sourceforge.net/) Client
SOAP tclws (http://code.google.com/p/tclws/) Server, Client

Connecting to XML-RPC services
Using XML-RPC to call commands remotely from Tcl is trivial. A new Tcl command
will be created for each method, which makes invoking remote functions almost the
same as invoking local commands.

As mentioned earlier, invoking any XML-RPC command requires knowing the
available remote methods and their definitions. We also need to know the address
of the remote service.

SOAP and XML-RPC

[466]

Invoking a command using XML-RPC will look similar to:

All requests are sent over HTTP or HTTPS to the remote application, building an
XML-RPC message and sending it in the request. The response is also XML-RPC
content and is then parsed by the XMLRPC package.

Defining available methods
In order to perform any XML-RPC operations in Tcl, we first need to load the
XMLRPC package:

package require XMLRPC

Invoking commands over XML-RPC requires us to define the names of functions,
which we want to invoke as well as list all the input parameters that they take.
The XMLRPC package will then create a Tcl command that we can invoke directly.

We can use the XMLRPC::create function to create new methods that we will
invoke remotely. It takes the Tcl command name to create as the first argument
and additional options as name-value pairs.

The option -proxy is used to specify URL to the remote XML-RPC handler and
has to be specified. Another mandatory option -params specifies parameters that
should be passed to the application, specified as name-datatype pairs list. We can
also specify the option -name, which indicates the method name to invoke. If not
specified, the XML-RPC method name is the same as the name of the Tcl command
to create.

For example, in order to create a simple command to invoke XML-RPC we can do:

XMLRPC::create "someMethod" -proxy http://localhost/xmlrpc \
 -params {firstname string lastname string}

This describes the someMethod method which should be passed to http://
localhost/xmlrpc. It will pass the firstname and lastname arguments as strings.

Chapter 12

[467]

This will create a Tcl command called someMethod . Then, invoking it is as simple as:

set result [someMethod "John" "Doe"]

Specifying data types
There are two kinds of data type in XML-RPC—simple and complex. Simple data
types are scalar values such as strings, numbers, or dates. Complex data types are
composed of one or more other data types, such as a structure describing a person
which includes information such as first name and last name.

XML-RPC allows the following simple data types:

Data type Description Example
string Any text Sample text
i4, int 32-bit integer; i4 indicates integer

stored over 4 bytes in memory
15360

double Floating point value 6.25
boolean Boolean value 1
dateTime.iso8601 Date and time 2009-12-06T23:34:45
base64 base64-encoded binary U2FtcGxlIHRleHQ=

The XMLRPC package does not transform values in any way; so it is the
responsibility of the application calling the methods to prepare values for
all fields in the appropriate way.

The date time data type needs to be formatted in accordance with ISO-8601. Usually
it is sufficient to specify it in the YYYY-MM-DDTHH:MM:SS format. An example might
be 2009-12-06T23:34:45. We can use Tcl's clock command to format and / or
scan values. The command clock scan will handle converting any value properly.
The command clock format using %Y-%m-%dT%H:%M:%S as formatting string can be
used to convert a timestamp back to a conforming date and time representation.
For example:

% set time [clock scan "2009-12-06T23:34:45"]
1260117285
% puts [clock format $time -format "%Y-%m-%dT%H:%M:%S"]
2009-12-06T17:34:45

Complex data types are defined using the rpcvar::typedef command. It takes two
arguments— the definition of a data type as the first parameter and the name of data
type as the second.

SOAP and XML-RPC

[468]

For example, to create a person data type that consists of the strings firstname and
lastname we can do the following:

::rpcvar::typedef {
 firstname string
 lastname string
} person

Next we can use this as a definition of the data type for parameters to commands:

::XMLRPC::create getUserId -proxy $url -params \
 [list person person]

The complex data type is built by specifying a list of name-value pairs where names
are fields within a data type, and values are the values of the corresponding fields.
This means that values can be built as lists, taken from the array get command or
passed as dictionary objects.

For example, we can use the latter method in the following way:

set id [getUserId [list firstname John lastname Doe]]

The XML-RPC standard also covers arrays of elements, which are zero or more items
of specified type. Not to be confused with Tcl arrays, arrays in XML-RPC are the
equivalent of Tcl lists.

In order to specify an array of a specified data type as an input parameter we need
to append () to data type; integer() means an array of integers.

For example, we can specify that a method accepts a list of integers by doing
the following:

::XMLRPC::create getUsers -proxy $url -params \
 [list ids integer()]

In order to specify an array as an argument, we need to provide a Tcl list with all of
the items that should be put in the array. For example, we can invoke the getUsers
method to get information about users with an id of 1, 2, and 3 by doing:

set userInfo [getUsers [list 1 2 3]]

Similarly, we can specify an array of complex data types. For example, person()
specifies an array of person objects:

::XMLRPC::create lookupUsers -proxy $url -params \
 [list people person()]

Chapter 12

[469]

Specifying an array of complex data type requires us to create a Tcl list, where each
element is a name-value pairs list that specifies a particular item.

For example, we can invoke preceding method as follows:

set idList [lookupUsers [list \
 [list firstname John lastname Doe] \
 [list firstname James lastname Smith] \
]

This will pass two items to the method.

While it is required to specify data types for parameters passed as input for
methods, output from methods is handled automatically by the XMLRPC package.
The following table shows how various return types are mapped to Tcl:

Return type Mapping to Tcl Example
Simple type, one element As value 2009-12-06T23:34:45

Complex type, one
element

As name-value pairs list {Firstname John
lastname Doe}

Array of simple types As list of values {John James}

Array of complex types As list of name-value
pairs lists

{{firstname John
lastname Doe}
{firstname James
lastname Smith}}

An example of retrieving complex data types is shown in next section of this chapter.

Using XML-RPC
We can now move on to a more practical example of XML-RPC usage. Nowadays
many websites, blogs, and CMS systems offer an XML-RPC based mechanism for
managing them. They either offer standard APIs or custom APIs that are described
in manuals.

A good example can be using XML-RPC to post blogs. Many websites offer one or
more standard API sets:

Blogger API—described at http://www.blogger.com/developers/api/1_
docs/

Movable Type API—described at http://www.sixapart.com/developers/
xmlrpc/movable_type_api/

MetaWeblog API—described at http://www.xmlrpc.com/metaWeblogApi

•

•

•

SOAP and XML-RPC

[470]

Even though the majority of these standards have been created by commercial
companies, they are in wide use in multiple products such as Joomla, WordPress,
and Blogger from Google.

For example, the following is a definition of the Blogger API's
blogger.newPost method:

XMLRPC::create "blogger.newPost" \
 -proxy "http://www.yoursite.com/xmlrpc.php" \
 -params {appkey string blogid string
 username string password string
 content string publish boolean}

For our example we'll use blogger API. While this has been tested on a WordPress
installation, all these methods are available in majority of blogging engines. We'll
create a function to create all XML-RPC invocations so that we can easily attach it
to more blogs.

When posting to applications over the Internet, there are multiple ways to
authenticate. The most commonly used is to provide username and password,
which usually is the same as the one used for accessing the administrative panel.

Another idea is to use application keys, which are unique identifiers assigned to each
application or generated for each website. They are usually provided along with
a secret key, and are used instead of providing the username and password. This
allows different credentials to be used for real users and applications. Application
keys can also be used in addition to the username and password, in which case
the user needs to provide their usual username and password and also provide an
application ID.

The blogger API is an example of an API that used to use application keys. Even
though the blogger API requires specifying appkey, this is no longer used by
the majority of blogging engines. It is recommended that you specify the value
0123456789ABCDEF for appkey unless your blog specifies a key to use.

In this example we'll do the following:

Initialize a namespace initblogger for our command that initializes blog
API in a separate namespace
Create the command initblogger::initBlogger that creates commands
from the blogger API in a specified namespace; it will accept a Tcl namespace
name as the first argument and the URL to the actual blog as the
second arugment

•

•

Chapter 12

[471]

Set up our sample blog's functions as the::myblog Tcl namespace
Post a sample entry to the blog

First let's create the namespace initblogger for our command:

namespace eval initblogger {}

Next, we'll create the initBlogger command, which takes new a namespace name
and the URL to the blog's XML-RPC interface.

proc initblogger::initBlogger {namespace url} {

Now we'll create the target namespace.

 namespace eval $namespace {}

Then, we'll iterate over the list of methods and the parameters they take. These are
blogger API methods, and the field definition is as described in its documentation.
The inside foreach loop will create a command in specified namespace, using
the URL specified. The command name and argument are taken from the list we
iterate over.

 foreach {command parameters} {
 blogger.getUsersBlogs {
 appkey string
 username string password string
 }
 blogger.newPost {
 appkey string blogid string
 username string password string
 content string publish boolean
 }
 blogger.editPost {
 appkey string postid string
 username string password
 string content string publish boolean
 }
 } {

 ::XMLRPC::create ${namespace}::$command -proxy $url \
 -params $parameters -name $command
 }
}

•
•

SOAP and XML-RPC

[472]

After this, we can configure our blog's authentication details and URL; this needs
to be replaced by real information, obviously.

set blogAppkey "0123456789ABCDEF"
set blogUsername "YourUsername"
set blogPassword "YourPassword"
set blogURL "http://www.yoursite.com/xmlrpc.php"

And then we can set up our blog's XML-RPC methods in the myblog namespace:

initblogger::initBlogger ::myblog $blogURL

We are specifying the namespace as ::myblog so that it does not get created relative
to the initblogger namespace.

Now, we can create some sample text for our blog. The text itself can be any valid
HTML. We'll set up some text consisting of the current time and the text "This is an
automated blog entry":

set text "It is "
append text [clock format [clock seconds] -format "%H:%M"]
append text " now."
append text "

<i>"
append text "This is an automated blog entry."
append text "</i>"\1

Next we'll use the blogger.getUsersBlogs method to list all the blogs our user
can post to.

Many people are allowed to post information on multiple blogs, which is why the
blogger API uses a blog identifier to specify all blogs. We can use this similarly to
find a blog matching specified criteria instead of posting on all available blogs.

foreach blog [::myblog::blogger.getUsersBlogs \
 $blogAppkey $blogUsername $blogPassword] {

This method returns an array of complex type. In order to access particular fields,
we can treat the value as dictionary. In order to get the blog's identifier, we need
to get the value of the blogid attribute:

 set blogid [dict get $blog blogid]
 puts "Adding entry to [dict get $blog url]"

Chapter 12

[473]

The next step is to actually post to the blog. In this case we can post to it right away.

 myblog::blogger.newPost \
 $blogAppkey $blogid $blogUsername $blogPassword \
 $text 1

Usually, especially when testing on your own blog, set the publish attribute to 0.
This will cause the post to be saved as draft and it should not be publicly visible.

In general it is a good idea to set up your own test blog if you want to experiment
with using APIs for automating content creation. Testing on a website that contains
live posts is not a good idea.

As the final step we exit after iteration through all blogs has been finished.

}

exit 0

After running the example our blog should have a new post that would state the
current time and the text "This is an automated entry".

The previous example is placed in the blogger-post.tcl file in the 01xmlrpc
directory in the source code samples for this chapter. It comes with all the libraries
needed to run the code.

Using SOAP protocol
Another protocol that is a standard for invoking methods remotely over the
web is SOAP. The standard itself is modular, which means that both way in
which machines communicate and how content is sent can be implemented in
any way. However, most implementations use XML for sending content and
the HTTP / HTTPS protocol for sending information.

One of the major features of this protocol is that it is self-descriptive, which means
that all that a client needs is WSDL. It specifies the available data types, methods,
what arguments they accept, what is the result type. It also specifies address of
host that we should use.

SOAP and XML-RPC

[474]

Usually applications first download the WSDL file from a remote server, which looks
as follows:

WSDL can also be sent using other means, such as a file on a disk as it includes the
URL of the application. The client will be able to determine how to connect to the
remote service regardless of how the service definition was provided.

Web Services for Tcl supports both retrieving WSDL over network and loading it
locally. It uses the http package for all network communication, and supports both
the HTTP and HTTPS protocols.

The server side of the tclws package uses Tclhttpd as a web server and can be used
by more than one web service at a time. Each web service needs to have a different
name. The URL to the service itself is generated based on the name and takes the
form of http://<host>:<port>/service/<serviceName>.

After the client learns the methods and data types of server side from WSDL, it can
communicate with it. This is done over the HTTP or HTTPS protocols. All requests
are sent as SOAP messages that can be parsed by any of the sides. Request provides
a message with the method name to invoke as well as all parameters and response
provides the output from the command. This is very similar to XML-RPC.

Chapter 12

[475]

Below is a sample communication flow in SOAP protocol:

Creating Web Services
The Web Services for Tcl package allows us to create a SOAP web service that will
export functionality of our application.

The package is pure Tcl and can be downloaded from http://code.google.com/
p/tclws/. In order to install it, simply copy the contents of the folder to your Tcl
distribution's lib directory. For example, C:/Tcl/lib on Microsoft Windows or
/opt/ActiveTcl-8.5/lib on Unix systems.

In the majority of cases SOAP is used to integrate applications in a language
independent way. It is also used as standardized way of providing public API access
across a network, either in different parts of single application or across applications.
This is different from using the comm package described in Chapter 8, Using Additional
Internet Services which is used only in Tcl.

When planning a public API to our application it is a good idea to start off with
designing it, and making sure it will not introduce incompatibility over time.

It is a good idea to make our application backward-compatible. For example, if we
ever need to change functions or data type definition, our code should handle the
case that some attributes or parameters are not specified. This can happen if the
application was created against an earlier version of our API. A similar issue applies
to data type definitions—if we ever add new parameters, it is a good idea to handle
the case that they could be skipped and handle reasonable default values properly.

SOAP and XML-RPC

[476]

Since SOAP does not check the actual values passed by applications, we also have
to keep in mind that data sent to our application needs to be checked. It can pose
a security risk, especially if this information is passed "as is" to other parts of the
application. A typical example is assuming that integers are always passed as
integers and passing them "as is" to database - this can be used to perform an SQL
injection attack. More information about this type of attack can be found at:
http://en.wikipedia.org/wiki/SQL_injection

Setting up server
Exporting SOAP interfaces can be done using WS::Server package, which is part of
Web Services for Tcl project. It allows defining services over Tclhttpd web server by
using several commands.

Before creating any services, we need to initialize the Tclhttpd server and set up
a listening connection.

For setting up Tclhttpd we'll use tclhttpdinit package described in Chapter 9,
Learning SNMP. We'll also load the WS::Server package for setting up web services.

package require tclhttpdinit
package require WS::Server

In order to listen for HTTP connections on port 8001, we can do the following:

Httpd_Server 8001

We can also set up listening for HTTPS connections. In this case, we'll need to start
by initializing the tls package:

package require tls

We can also generate a self-signed SSL certificate if it is not present directly from Tcl:

set keyfile server.key
set certfile server.pem

if {![file exists $keyfile]} {
 tls::misc req 1024 $keyfile $certfile \
 [list CN "localhost" days 7300]
}

This will create an SSL key which will be valid for 20 years and specified as valid for
the localhost host name.

Chapter 12

[477]

Next we can configure tls to use the newly generated certificate by doing:

tls::init -keyfile $keyfile -certfile $certfile

Finally we can set up a listening connection on port 8002:

Httpd_SecureServer $port

Creating a service
First thing that needs to be done in order to expose an API as web service is to
create the service itself. The command WS::Server::Service can be used to define
services. It accepts one or more options as arguments. The first mandatory option is
-service which specifies the name of the service. It is used for identifying the web
service inside Tcl.

The option -host also needs to be specified, and it specifies the host (and optionally
port) that should be passed in the web service definition as a URL to invoke
methods. This needs to be defined as an actual IP address, or a host name and
port – such as 192.168.2.1:8001.

When defining a service we should also specify the description option, which
specifies the HTML description of the service. As part of creating a service, the WS::
Server package also creates a HTML page describing all methods and data types,
so it is a good practice to provide a description for all elements of the web service.
It also serves as a good starting point for documenting our API.

The option -mode specifies the mode for supporting a web server; currently only
Tclhttpd is supported, but in the future additional servers such as AOLserver,
Wub or embedded HTTP server will be supported. Therefore it is a good practice
to provide the -mode tclhttpd flag.

For example, our service definition can be as follows:

WS::Server::Service -service Myservice \
 -host "127.0.0.1:8001" \
 -description "My sample service" \
 -mode tclhttpd

The WS::Server::Service command also accepts additional options that can be
used for more advanced features such as header and / or IP address authorization,
or logging invocations of web services. More details can be found in the WS::Server
documentation at http://code.google.com/p/tclws/wiki/WSServer.

All services are available using standard URLs. Each service has a prefix of
/service/<serviceName>; for example, /service/Myservice.

SOAP and XML-RPC

[478]

In order to access this service from the local machine listening on port 8001 the URL
is http://127.0.0.1:8001/service/Myservice. That URL always points to the
HTML documentation of a web service. Here is a sample screenshot of the web page:

The actual WSDL for each of the services is available from the /service/
<serviceName>/wsdl address. Actual invocations of the web service are done
via /service/<serviceName>/op address. For our previous example, the
URLs would be http://127.0.0.1:8001/service/Myservice/wsdl and
http://127.0.0.1:8001/service/Myservice/op respectively.

Chapter 12

[479]

Specifying data types
The Web Services for Tcl package specifies all data types in the same way—for
all input, output, and complex structures. Information on all fields is specified
as name-value pairs list. The following information should be provided:

type specifies data type
comment describes what a particular value provides

The first item specifies the data type and should refer to either standard data types or
types defined for this service. Available types as well as how to create our own types
are described later in this chapter.

The second item should be human readable information about data type. This is used
for generating the HTML page that describes web service in more details. This page
is generated for all web services by tclws package and is described later in
this chapter.

The following example specifies a string type which comments Resulting string:

{type string comment {Resulting string}}

It is also possible to specify a list of zero or more elements by adding [] to data type.
For example:

{type string[] comment {List of strings}}

This way our type is a list of strings. Despite having a different meaning in Tcl terms,
such lists are also often referred to as arrays. Using lists in web services is shown
further in the examples for both client and server applications.

Creating service methods
Now that our service is defined, we can define methods that can be invoked.
The command WS::Server::ServiceProc can be used for this. It accepts five
arguments—service name, method information, arguments list, documentation and
body. Service name is the name specified as service option to WS::Server::Service
command.

For example, a simple method for adding two integers would look as follows:

WS::Server::ServiceProc Myservice \
 {IntAdd {type integer comment {Result}}} \
 {
 A {type integer comment {A}}
 B {type integer comment {B}}
 } \

•

•

SOAP and XML-RPC

[480]

 {Adds two integer numbers} \
{
 return [list IntAddResult [expr {$A + $B}]]
}

Method information is a list of three elements that describe the operation. The first is
the method name (IntAdd in last example), the second is the definition of the data
type of the returned data.

The third parameter is a HTML description of the value returned by the method.
As mentioned earlier, it is a name-value pairs list and should contain type and
comment keys.

The arguments list is specified as pairs of elements, where the first item is the name
of the argument, and the second item is the data type definition; type and comment
also need to be specified.

The description is a HTML description of the method. It should describe what the
method is doing and / or provide information about when it is ok to invoke it,
similar to the usual API documentation.

Body is the Tcl code to be invoked. It is similar to creating a typical Tcl procedure.
The body is evaluated in a separate stack frame as in with normal procedures. All
arguments that have been specified as input can be accessed as normal variables.

The return value of the command is passed as a result to the caller, but requires
specifying it in a specified format. It needs to be a dictionary or a name-value pair
list, containing <methodName>Result as name of the only key and the actual value
stored as value of that key.

From the last example, arguments A and B are simply referenced as variables, similar
to how procedures are created in Tcl. As mentioned before, the result is formed as a
name-value pair where the name is IntAddResult, which corresponds to the IntAdd
method name and the value is actual value is an integer.

An example of a simple server is located in the soap-server-http.tcl
and soap-server-https.tcl files, in the 02soap-basics directory
in the source code examples for this chapter. It comes with all the libraries
needed to run the example.

Chapter 12

[481]

Defining data types
When creating web services using the WS::Server package, there are many places
where we need to define data types. One example might be when specifying
arguments to a method and its return value. Another example is defining
additional data types, which can then be used when creating methods.

Similar to XML-RPC, SOAP defines two types of data types: simple and complex.
Simple data types are values of specified type such as text, integer, and date.
Complex data types are composed of one or more values. They are also represented
as dictionaries when passing complex data types to or from Tcl code.

Using simple data types
The first kind of data type is simple data types that the SOAP standard defines.
These include the following types:

Data type Description Example
string Textual values Sample text
integer Numeric values 15360
dateTime, time, date Date and/or time representation 2009-12-06T23:34:45
boolean Boolean value; can be 1 or 0 1
float, double Floating point values 6.25

For more information about data types in SOAP and a complete list of data types
supported by SOAP, please refer to the XML Schema documentation at http://www.
w3.org/TR/2001/REC-xmlschema-2-20010502/#built-in-datatypes. From a
Tcl perspective, information about the data type is not used in any way and values
are passed the way they were provided by the remote peer.

When specifying dateTime, date, or time data type values we need to follow a
specified pattern. A date needs to be specified as YYYY-MM-DD and time as HH:MM:SS.
Specifying a value for dateTime field requires formatting it in the form of YYYY-MM-
DDTHH:MM:SS, where T is the letter T. An example might be 2009-12-06T23:34:45
for dateTime, 2009-12-06 for date, and 23:34:45 for time.

Similarly to XML-RPC we can use Tcl's clock command to format and / or scan
any date and / or time. The command clock scan will handle converting any
value properly. The command clock format using %Y-%m-%dT%H:%M:%S, %Y-%m-
%d or %H:%M:%S as formatting string can be used to convert a timestamp back to a
conforming date and/or time representation.

SOAP and XML-RPC

[482]

For example:

% set time [clock scan "2009-12-06T23:34:45"]
1260117285
% puts [clock format $time -format "%Y-%m-%dT%H:%M:%S"]
2009-12-06T17:34:45
% puts [clock format $time -format "%Y-%m-%dT"]
2009-12-06T
% puts [clock format $time -format "%Y-%m-%d"]
2009-12-06
% puts [clock format $time -format "%H:%M:%S"]
17:34:45

As mentioned earlier, it is also possible to specify an array of zero or more elements
as a data type by specifying data type followed by brackets, that is, string[]. Arrays
in SOAP are equivalent of lists in Tcl.

Arrays are specified as a list of items, where each item is of the specified type. For
example, an array of integers could be constructed as follows:

set listOfIntegers [list 12 34 56]

Creating complex data types
In addition to simple data types it is also possible to create complex data types;
these are items that consist of one or more attributes. Each of the attributes has to
be specified when creating a complex data type, and can be of any other data type.
For example, the data type Person could be composed of two string elements:
Firstname and Lastname.

Complex data types are created using WS::Utils::ServiceTypeDef command.
It takes four arguments: mode, service name, data type name, and data type
definition. The first argument specifies whether the data type is connected with
the client or server definition.

When defining data types for exported services we should specify Server as the
value for this argument. The second value is the same as the service type passed
when creating a service with the WS::Server::Service command. The data type
name is the name of the data type to be defined. It should be unique within a
specified service. Multiple services can define data types with the same names,
and this does not create any conflicts.

Chapter 12

[483]

The data type definition is a list of one or more name-value pairs, which describe
the attributes of a complex data type. Name should be the name of the attribute and
value is the data type definition. As before, we need to specify the type and comment
need to be specified. Type can be any other simple or complex data type, and
comment is the HTML comment to be used when generating HTML documentation
of the service.

For the purpose of showing how to create and use data types, we will create another
service called Rentbook that will provide a service of managing users, books, and
borrowing / returning books by users.

For example, in order to define a Book data type in Rentbook service which keeps
track of book's identifier, its ISBN symbol, title, current status, and user owning
the book:

WS::Utils::ServiceTypeDef Server Rentbook Book {
 id {type integer comment {User identifier}}
 isbn {type string comment {ISBN number}}
 title {type string comment {Title}}
 status {type string comment {Book status}}
 user {type User comment {User owning book}}
}

The attribute user uses another complex data type to describe the user owning the
book. The definition of this data type is as follows:

WS::Utils::ServiceTypeDef Server Rentbook User {
 id {type integer comment {User identifier}}
 username {type string comment {User name}}
 fullname {type string comment {Full name}}
 status {type string comment {User status}}
 books {type Book[] comment {Books owned by user}}
}

We can see that the User data type also has a reference to the Book data type; each
user can be supplied along with list of books he/she currently owns.

Providing attributes to a complex type is optional. When we return user
information for the user currently owning a book, we do not need to specify
that user's books attribute.

Similarly when specifying books owned by a user, we do not need to specify the
user attribute for each of the books, as we already are specifying the user owning
these books.

SOAP and XML-RPC

[484]

Using data types inside service
Now that we have set up our service and defined the data types, we can move on
to creating methods themselves. Our methods will invoke the database API that is
responsible for storing this information.

While these commands are not shown in this chapter, they are included in
the soap-server-db.tcl file located in the 03soap-complex directory
in the source code examples for this chapter.

We'll start by creating the method for adding new books. It takes an array of Book
type objects and adds each book to the database. It returns an array of integers
which are identifiers of each book in the database:

WS::Server::ServiceProc Rentbook \
 {AddBooks {type integer() comment {New book ids}}} \
 {
 books {type Book[] comment {Books to add}}
 } \
 {Add new books and return their identifiers} \
{
 set rc [list]
 foreach book $books {
 lappend rc [dbAddBook \
 [dict get $book isbn] \
 [dict get $book title] \
]
 }
 return [list AddBooksResult $rc]
}

Using an array of complex types is quite straightforward—the array itself is
converted to a list. Each element of that list is in fact a dictionary we can access
using the dict command. The resulting list, which is an array of simple types, is
created by adding each value to the list. Both the input and output from the method
is automatically converted.

Similarly we can create a method for adding new users to the system. It will take an
array of User type objects, add them to the database and return their identifier:

WS::Server::ServiceProc Rentbook \
 {AddUsers {type integer() comment {New user ids}}} \
 {
 users {type User[] comment {Users to add}}
 } \
 {Add new users and return their identifiers} \
{

Chapter 12

[485]

 set rc [list]
 foreach user $users {
 lappend rc [dbAddUser \
 [dict get $user username] \
 [dict get $user fullname] \
]
 }
 return [list AddUsersResult $rc]
}

Next, we'll create methods for listing all users and books in the system:

WS::Server::ServiceProc Rentbook \
 {ListAllUsers {type User[] comment {All users}}} \
 {
 } \
 {List all users in the system and their books} \
{
 return [list ListAllUsersResult [dbListAllUsers]]
}

WS::Server::ServiceProc Rentbook \
 {ListAllBooks {type Book[] comment {All books}}} \
 {
 } \
 {List all books in the system and current owner} \
{
 return [list ListAllBooksResult [dbListAllBooks]]
}

The methods define an array of User and Book type items, respectively. Internally
each of the result is created as a list. Each element is a dictionary that defines
attributes specific to the data type.

For example, the code for listing books that uses SQLite database as storage,
which is defined as the dbListBooks procedure, and is invoked from within
the dbListAllBooks command is as follows:

 set rc [list]

 foreach {id isbn title user_id} [db eval \
 "SELECT id, isbn, title, user_id FROM books"] {

We start off by setting up an rc variable which will hold resulting list. Then we
iterate through the entries by running an SQL query to retrieve specific fields.

SOAP and XML-RPC

[486]

After this, we create a dictionary that stores the id, isbn, and title keys using
values retrieved from the database:

 set item [dict create id $id isbn $isbn \
 title $title]

Next we check if the user_id is non-zero. This means that a book is
currently borrowed:

 if {$user_id !=0} {

If a book is currently borrowed, we set its status to unavailable and retrieve
information about the user that owns it. In order to do this we call a command
that lists users matching specific criteria and take the first element from the list:

 dict set item status "unavailable"
 dict set item user [lindex \
 [dbListUsers " WHERE id=$user_id"] 0]
 } else {

If the book is not currently borrowed we set its status to available and do not
retrieve the user information.

 dict set item status "available"
 }

Next we add this dictionary to list of all items.

 lappend rc $item
 }

The command dbListUsers is similar to dbListBooks which we've just described.
It also lists items from the database and creates a dictionary for each of the items in
the database.

Next we'll create a command to borrow and return a book. This is also a wrapper
around database APIs. They take a book and user identification and return whether
the operation has succeeded.

WS::Server::ServiceProc Rentbook \
 {BorrowBook {type boolean comment {Success status}}} \
 {
 bookid {type integer comment {Book identifier}}
 userid {type integer comment {User identifier}}
 } \
 {Marks book as borrowed by specified user} \
{
 return [list BorrowBookResult \

Chapter 12

[487]

 [dbBookBorrow $bookid $userid]]
}

WS::Server::ServiceProc Rentbook \
 {ReturnBook {type boolean comment {Success status}}} \
 {
 bookid {type integer comment {Book identifier}}
 userid {type integer comment {User identifier}}
 } \
 {Marks book as returned by specified user} \
{
 return [list ReturnBookResult \
 [dbBookReturn $bookid $userid]]
}

It is a good idea to create SOAP methods in such a way that they are only small
wrappers around other commands. This makes it much easier to test the backend
that retrieves information, both using manual and automated tests.

An example of a simple server is located in soap-server-http.tcl
file in 03soap-complex directory in the source code examples for
this chapter. It comes with all libraries needed to run the example.
Implementation functions for storing a user and book information
using SQLite 3 database are located in soap-server-db.tcl file
in 03soap-complex directory in the source code examples for this
chapter.

Connecting to SOAP based services
Now that we know how to create web services from Tcl we can move on to the other
side of the process: accessing and using web services. Since SOAP is a wide standard
we can use the SOAP client from the Web Services from Tcl package, to access Tcl
services as well as any other type of web services available.

In order to use SOAP based services we need to use the WS::Client package from
Web Services from Tcl:

package require WS::Client

Now that we have loaded the package to access web services, we can move on.

SOAP and XML-RPC

[488]

In order to use a web service, it's best to start off by downloading and parsing WSDL
that describes all methods and data types. This can be done using the WS::Client::
GetAndParseWsdl command. It requires that we specifying the URL to WSDL. We
can also specify a list of HTTP headers for sending request and service name to use.

The headers list is a name-value pairs list, where each name is a HTTP header name
and the value is its value. This is passed as the -headers option to the http package
when retrieving the WSDL. For more information please refer to Chapter 7, Using
Common Internet Services or the documentation available at http://www.tcl.tk/
man/tcl8.5/TclCmd/http.htm#M19.

Similar to the WS::Server package, service name is used to reference a particular
service across API calls. It is also the name of the namespace used to create commands
that map to remote invocations, which is described later in the chapter. If a service
name is specified then it is used. Otherwise it defaults to the name specified in WSDL.
For Tcl based services, the service name exported in WSDL is the service name used
for creating the service.

To parse a WSDL for a previously created Myservice hosted on the same machine
we can invoke the following command:

WS::Client::GetAndParseWsdl \
 "https://127.0.0.1:8002/service/Myservice/wsdl"

In order to access the HTTPS version, we can invoke the following command:

WS::Client::GetAndParseWsdl \
 "https://127.0.0.1:8002/service/Myservice/wsdl"

This command will download the WSDL from specified URL, parse it, and register
a client web service named Myservice.

We can also specify file:// scheme URL to load WSDL from a file. The format is
file://localhost:<path>. For example:

On Unix systems the URL would be file://localhost:/tmp/myservice.
wsdl for /tmp/wyservice.wsdl file
The URL for Microsoft Windows is file://localhost:C:/myservice.wsdl
if path to file is C:/myservice.wsdl

Web Services for Tcl uses the uri package to handle URLs. More information about
file URI scheme can be found in the uri package documentation available from
http://tcllib.sourceforge.net/doc/uri.html.

•

•

Chapter 12

[489]

Invoking methods via commands
We can now use other commands to access remote APIs. Most often we'll want
to invoke methods remotely. Web Services for Tcl package offers two ways
to invoke methods:

Creating Tcl commands that invoke remote interfaces internally; this is
similar to approach in XMLRPC package
Using a generic command to invoke methods

Let's start with creating Tcl commands that map to SOAP methods. These are called
stub commands. While this approach is easier to use, we need to remember that list
of arguments that the command is created by taking all items as input for the method
and sorting them. This means that if the definition for the method changes, the order
of parameters accepted by the Tcl command will also be changed. While usually
parameters for a method do not change over time, it is worth keeping in mind,
especially when developing a service.

In order to create stub commands we need to invoke the WS::Client::CreateStubs
command. It requires a service name as its only argument.

For example, in order to create stubs for Myservice we can invoke the
following command:

WS::Client::CreateStubs Myservice

We can now access the IntAdd method as the Myservice::IntAdd command.

We can then use it in a fashion similar to a regular command:

set result [Myservice::IntAdd 1 2]

The result variable will contain a dictionary result, where the only key is
IntAddResult. In order to access the actual result we need to get it using the
dict command, for example:

puts "1 + 2 = [dict get $result IntAddResult]"

Whenever an error occurs when invoking a web service, this error is thrown back
to caller of the method. This means that if the server side of our application throws
an error that parameters are invalid, the same error is then thrown by a command
invoked on the client.

If a timeout occurs when connecting to a web service, this also causes a Tcl error
to be thrown. Therefore it is a good idea to wrap all calls to remote methods inside
catch command calls.

•

•

SOAP and XML-RPC

[490]

The last code is located in soap-server-http-client-stubs.tcl files
in 02soap-basics directory in the source code examples for this chapter.

In addition to using just our web service, we can also use public services list
available at http://www.xmethods.net/ve2/Directory.po. This site provides
a list of SOAP web services along with details and link to WSDL.

Invoking methods API using DoCall commands
Another way to access remote methods from WS::Client package is to use a
generic command for invoking methods. These commands are generic and accept all
parameters as a dictionary, where the key is name of the parameter and the value is
its value.

The benefit of this approach is that even if parameters, change it does not cause our
client code to be invalid. On the other hand, manually coding all invocations is a
bit more difficult. We recommend whichever method is easier for everyone, unless
a particular service API is bound to change often—then it is best to use generic
commands for invoking methods.

In order to invoke a remote method, we can use WS::Client::DoCall command. It
accepts 3 parameters: service name, method name, and dictionary of parameters.

For example, to call the IntAdd method from Myservice service we can do
the following:

Set result [WS::Client::DoCall Myservice IntAdd \
 [dict create A 2 B 3]]

This will invoke the IntAdd method providing the value 2 for A and 3 for
B parameters. The result is also a dictionary result, where the only key is
IntAddResult. Similarly, to print out a result from our method we can do:

puts "2 + 3 = [dict get $result IntAddResult]"

This should print 2 + 3 = 5 text assuming a Tclhttpd server with Myservice set up
is running.

Command WS::Client::DoCall as well stub commands operate in synchronous
way; which means that commands return after result from remote method have been
retrieved, or an error has occurred.

In many cases it is better to invoke methods asynchronously. This makes sense,
especially if we want our application to be more responsive. It also allows us to invoke
APIs when we do not need to wait for results for the application to proceed, such as
when only notifying other systems of an event without actually expecting any results.

Chapter 12

[491]

Asynchronous calls to web services can be done using the WS::Client::DoCallAsync
command. It accepts five arguments: service name, method name, arguments,
command to run on successful call, and command to run in case on error. The first
three arguments are provided in the same way as for WS::Client::DoCall command.

After a successful response has been received, the command provided as the fourth
argument is run with the result dictionary appended.

If there is an error the command provided as the fifth argument is run. It is provided
with the error code and any error information as two additional arguments.

For example, in order to invoke the IntAdd method from Myservice
asynchronously, we can do the following:

WS::Client::DoAsyncCall Myservice IntAdd \
 [dict create A 3 B 4] \
 IntAddDone IntAddError

This will cause the command IntAddDone to be invoked in the case of a successful
request and response. Otherwise, IntAddError will be called.

If a web service call succeeds the command is invoked with just the result dictionary
as only argument. In the case of errors both the errorCode and errorInfo are
passed. If the problem occurred on the remote side, these should contain error
information as thrown by remote peer. In the case of local problems this will contain
information about any connectivity errors, such as a timeout or connection refused.

These commands are defined as follows:

proc IntAddDone {result} {
 puts "3 + 4 = [dict get $result IntAddResult]"
}

proc IntAddError {errorCode errorInfo} {
 puts "Error during remote API invocation: $errorInfo"
}

This will cause the IntAddDone command to be run and the text 3 + 4 = 7 to be
printed out in case of success. If there is an error detailed information about it will be
printed out.

The previously mentioned code is located in the soap-server-http-
client-call.tcl file in the 02soap-basics directory in the source
code examples for this chapter.

SOAP and XML-RPC

[492]

Using complex data types
When accessing remote APIs we will often need to pass or receive complex data
types and / or arrays of elements. The WS::Client package handles them in the
same way as server part. Arrays of elements are converted to Tcl lists and complex
types are read, and created as dictionaries. Throughout this section, we will use
methods from our previously created Rentbook service. We'll use stub commands
to make the examples easier to read.

Let's start by adding a few books to our database using the AddBooks method:

set result [Rentbook::AddBooks [list \
 [dict create isbn "12-34" title "Book 1"] \
 [dict create isbn "12-35" title "Book 2"] \
]]

set b1 [lindex [dict get $result AddBooksResult] 0]
set b2 [lindex [dict get $result AddBooksResult] 1]

Each of the books to be added is created as a dictionary containing isbn and
title elements, matching the Book data type definition. We create a list of these
dictionaries and pass that to the method.

Next, we process the result—get the AddBooksResult key which holds the results,
and then take first and second element from that list; these are identifiers of the
books we have just added to the system.

Similarly, we'll add new users using the AddUsers method and store their identifiers:

set result [Rentbook::AddUsers [list \
 [dict create username "User1" fullname "User 1"] \
 [dict create username "User2" fullname "User 2"] \
]]

set u1 [lindex [dict get $result AddUsersResult] 0]
set u2 [lindex [dict get $result AddUsersResult] 1]

This will cause our application to have books and users in the database that we
can use.

We can then use these to try booking and returning books we have just created.
First let's borrow book 1 as user 2:

Rentbook::BorrowBook $b1 $u2

We'll also borrow book 2 as user 1:

Rentbook::BorrowBook $b2 $u1

Chapter 12

[493]

This way we have a set of borrowed books. Now we can try to list information about
all users by using the ListAllUsers method:

foreach user [dict get [Rentbook::ListAllUsers] \
 ListAllUsersResult] {
 puts "User [dict get $user fullname]:"
 puts " Status: [dict get $user status]"
 foreach book [dict get $user books] {
 puts " Book [dict get $book title] \
 ([dict get $book isbn])"
 }
}

The preceding example first iterates over each element retrieved as the result.
It then prints out information about the user along with all the books they own.
Listing the books is done by iterating over the books key. The result would be
similar to following:

User User 1:
 Status: active
 Book Book 2 (12-35)
User User 2:
 Status: active
 Book Book 1 (12-34)

Similarly, we can list all books along with the user that owns them if this is the
case. We can use the ListAllBooks method, iterate over the elements and print out
the details. If the userkey is present, this means that a particular book is currently
borrowed by this user. In this case, we can access this element and print out the
details of that person.

foreach book [dict get [Rentbook::ListAllBooks] \
 ListAllBooksResult] {
 puts "[dict get $book title] ([dict get $book isbn]):"
 puts " Status: [dict get $book status]"
 if {[dict exists $book user]} {
 puts " Owned by [dict get $book user fullname]"
 }
}

And the output from this command would be:

Book 1 (12-34):
 Status: unavailable
 Owned by User 2
Book 2 (12-35):
 Status: unavailable
 Owned by User 1

SOAP and XML-RPC

[494]

Examples of using the Rentbook service is located in the soap-server-
http-client.tcl file in the 03soap-complex directory in the source
code examples for this chapter.

Summary
Tcl offers support for a wide range of standards for remote method invocations. We
can use it for accessing APIs available from other applications or services. We can
also export our own functionality.

We can interact with other applications using XML-RPC, which is widely used by
websites as it is easier to implement and lightweight. All that is needed is to know
the methods and arguments they take; we can then easily access methods from other
applications. Our application can also benefit from SOAP. Similar to XML-RPC we
can invoke commands over SOAP. In this case we only need to know the URL of the
WSDL file, which is a definition of the web service, the methods it offers and all data
types related to it.

Despite the advantages of easy integration with different languages and
technologies, the SOAP standard has a major drawback. As it is uses XML and is
designed to be self-descriptive, the overhead of metadata in each request is very
high and SOAP should not be used for communication where network bandwidth
or CPU / memory resources are crucial.

In this chapter we have learned:

How to connect to XML-RPC services and issue methods remotely
How XML-RPC can be used to easily integrate with major blogging engines
How to create SOAP services using Tclhttpd and Web Services for Tcl; define
complex data types for storing structured information
How to invoke methods remotely in SOAP based web services

In the next chapter, we'll learn more details about security in networked applications,
how to build public key infrastructure into our application and how to use Tcl's
safe interpreter feature to reduce the risks related to running code from an
unknown source.

•
•
•

•

SSL and Security
Previous chapters of this book have presented how to write networked applications
in Tcl. However, they did not cover any of the security aspects in detail. While
security on its own is a subject large enough for a separate book, we will focus only
on some aspects of it.

Security is a very important aspect of any application, especially if it communicates
over a network. When communication is made, we need to be sure that we know
who the other peer is; this is called authentication. This can be achieved using
usernames and passwords, authenticating using public / private key based
encryption, and many other aspects. We also need to check that a specified user can
perform specific actions. For example, only the administrator can maintain a system.
This is called authorization.

The terms authentication and authorization are often confused, as from a user
perspective, these usually mean the same. When checking our e-mail, providing
a valid username and password causes both authentication and authorization.
However, it is important to be able to differentiate between these terms:

Authentication is the ability to verify the peer we are talking to
Authorization is the ability to verify whether this peer can perform
specified operation

Whenever we receive any information, we also need to be sure that it has not been
modified in any way during the transmission, which is called the integrity of our
data. When sending data over public networks, if our application is not protected
against it, information might be modified on its path by malicious users. Securing
such communication can be achieved by sending data over an encrypted, secure
connection channel where it is not possible to modify the transmitted data.

•
•

SSL and Security

[496]

In many cases, we also need to be certain that the data we send over the network
cannot be intercepted on its route; for example, that sensitive information cannot be
read by anyone except for recipient(s) of the message. Intercepting and listening to a
communication by an unauthorized user and / or application is called eavesdropping.

It is very easy to ensure authentication and authorization using Secure Socket Layer
(SSL). This is a standard for encrypted network connections that works on top of
regular sockets and provides an encryption layer on top of it. SSL uses public keys
for authenticating peers and making sure only authorized users and / or computers
can communicate with each other. In this chapter, we'll learn how to use encrypted
connections from Tcl and how to make sure we know the other side our application
is communicating with.

This chapter also shows the basics of authorizing users, dealing with issues of roles
and access to various functions. We'll show how to map this to public-key
based authentication.

We'll also learn how to use Tcl's safe interpreter feature. This can come in handy
in order to hide some of Tcl's features or limit access to an operating system's
resources—for example, to disallow accessing file system. You will learn how to limit
commands or the time an interpreter can spend running. The Tcl safe feature can
also be used for creating a sandbox that will allow / disallow specific features based
on access level.

Learning Secure Socket Layer
SSL offers a security layer for communications over networks. SSL itself is a very
generic standard for encrypting any form of communication. It is usually used for
securing network connections to prevent messages from being modified and / or
eavesdropped. We'll use it for securing TCP sockets, and show how applications
can become SSL-enabled and switch to a secure model of communication.

SSL is the most popular standard for encrypted network communication and is
used for almost all protocols, such as WWW, e-mail, FTP, and Jabber. It has multiple
implementations, including open source ones such as OpenSSL, available from
http:// www.openssl.org/.

SSL offers end-to-end encryption of communication. It uses private and public key
pairs for each of the peers communicating over the network. Public keys may be
signed by a certificate authority (CA). Usually it is an application and / or machine
in the network that deals with signing keys, and is trusted by other elements of the
infrastructure. Signed public keys are called certificates. They are signed by certificate
authority and can be used for authenticating remote peers in a communication.

Chapter 13

[497]

Certificates and CAs allow the remote peer to be securely identified—remote peer
needs to provide a valid certificate, which is signed by a trusted element of the
network (CA). All systems within a network have a certificate for CA itself. Upon
any connection a certificate is checked as to whether it is signed by a valid CA. The
certificate also provides information about the identity of remote peers, and because
it is signed by CA, this data can be trusted.

There are different types of certificate authorities:

The first type of CAs are publicly available certificate authorities called
root CAs. These are organizations that verify and sign certificates for other
companies for use in the Internet. An example is secure HTTPS websites,
whose certificates are signed by such root CAs.
Many companies and / or IT applications also use their own certificate
authorities that are trusted by an entire infrastructure. Each part of the system
can then use that system's CA certificate(s) to check if a certificate of a remote
peer is valid. This concept is discussed in more detail later in this chapter.

SSL provides two ways in which communication and authentication is carried out:

The first one is that only the server provides a valid and signed certificate, in
which case the server can be authenticated, but the client remains anonymous
The second possibility is for both the server and client to provide a
valid certificate

Server-only authentication is used for web browsing and many client-server
applications. This means that only validity of the server is checked—the client
checks if the server certificate is valid, but there is no key-based check performed
for the client. In this case, additional authentication is made at application level,
for example, by providing an additional username / password over the encrypted
channel to authorize the user using the application.

Authenticating both the client and server is often used for applications that only
communicate with trusted peers. This is used in client-server applications that
use certificates for authentication. This is the model that the remaining part of this
chapter will focus on, as a majority of our examples are applications that need to
communicate in a secure manner.

Using SSL from Tcl
In order to create an SSL-enabled client or server from Tcl, we need to use tls
package. It provides SSL support over TCP connections as well as any other type of
connection, such as Unix pipes. For the purposes of this book, we'll focus on TCP
connections only.

•

•

•

•

SSL and Security

[498]

Package tls is an open source project built on top of the OpenSSL package, and it's
available from https://sourceforge.net/projects/tls/. The page provides both
binary and source code distribution of the package. The package is also provided
with ActiveTcl distributions, so using any of the examples from ActiveTcl will work
without additional dependencies.

SSL-enabled TCP sockets in Tcl work in the same way as any other kind of
connections. The only difference is that the tls::socket command needs to be
used instead of socket. The command can be used to set up both client and server
connections. Syntax of the command is the same as that of the socket command. The
command also accepts additional options related to SSL keys and options, which
are described later in this chapter.

For example, in order to connect to host 192.168.2.1 port 443 using SSL, we can do
the following:

package require tls

set channel [tls::socket 192.168.2.1 443]

We can then use commands such as puts, gets, or read for accessing data.

SSL sessions begin with a handshake. At that point, encryption of algorithms along
with certificate exchange takes place. From a Tcl perspective, this happens when we
first try to write to a channel for a client or after a first read for a server. If an SSL
handshake fails, then a read or write will fail. Those commands will also fail if the
connection is terminated, which is the same as that for regular TCP sockets.

Setting up an SSL-enabled server is also the same as that with regular TCP sockets.
All we need to run is:

package require tls

tls::socket –server mycommand 8992

The preceding code will cause Tcl to listen for incoming SSL connections and invoke
the mycommand command, just the same as for regular TCP connections. It will be
passed a new channel name as the first argument, followed by a remote IP address
and remote port.

Chapter 13

[499]

The tls package accepts various parameters as name-value pairs that specify items
such as key and certificate files, supported protocols, and authentication policies.
There are two possibilities to specify SSL-related parameters:

We can specify them globally using tls::init command.
Another possibility is to specify them directly in tls::socket command.
In this case, options will only apply to the specified socket. In case of server
connections, those options will apply to all incoming connections on the
specified port. Options provided to tls::socket always overwrite options
specified using tls::init.

The most important options are -keyfile and -certfile, which are used to specify
key and certificate files accordingly. These files are created either using the tls
package itself or using additional tools such as the openssl command-line utility.
Private key file usually has .key extension and certificate usually has .pem extension.

For example, in order to specify a globally used SSL key and certificate files, we can
run the following:

tls::init -keyfile "/path/to/server.key" \
 -certfile "/path/to/server.pem"

We can also specify and / or overwrite these for specific connections by running:

tls::socket –server mycommand -keyfile "/path/to/other.key" \
 -certfile "/path/to/other.pem" 8992

This will cause connections for this particular port to use specified keys regardless
of the ones specified in init command.

When passing options using both tls::init and tls::socket, options provided
to tls::socket overwrite ones passed to tls::init.

The options -cadir and -cafile allow for specifying a file or directory that contains
information about certificate authorities (CAs). The first option specifies a directory
that holds one or more CA certificates. The second option can be used to specify a
single CA certificate to use. CA certificate files usually have .crt extension.

We can also specify whether to ask the remote peer for a certificate, and whether to
only accept valid SSL certificates during handshake or not. The option -request
is used to specify whether to request a certificate from remote peer during SSL
handshake and it defaults to true.

•
•

SSL and Security

[500]

The option –require, if enabled (that is, when specifying -require true), forces
accepting only valid SSL certificates. It defaults to false. A valid certificate is a
certificate signed by one or more trusted CAs. All connections not having a certificate
signed by a trusted CA will be closed. Enabling this option also requires enabling the
-request option and specifying either -cadir or –cafile.

The package tls also supports using password protected SSL keys. This is commonly
used to improve security. The option -password can be used to specify a command to
be run whenever OpenSSL will need to get a password. The command is run without
additional parameters and should return a string that is then passed back to OpenSSL.

For example, to pass a pre-defined password we can do the following:

proc gettlspassword {} {
 return "hardcodedpassword"
}

tls::init -keyfile $keyfile -certfile $certfile \
 –password [gettlspassword]

Options set using the tls::init command are combined with any other options
passed when the socket is created. Note that the tls::init command should be
called first. This is especially important for server sockets; for example, the following
code will not work:

package require tls

tls::socket –server mycommand 8992

tls::init -keyfile "/path/to/server.key" \
 -certfile "/path/to/server.pem"

When creating the server socket, tls did not have any key and certificate specified.
Even though this is specified later, tls did pick up the values at the time
tls::socket was invoked. The next example is correct:

package require tls

tls::init -keyfile "/path/to/server.key" \
 -certfile "/path/to/server.pem"

tls::socket –server mycommand 8992

Chapter 13

[501]

The preceding code differs by setting the tls default parameter before initializing
the socket. At the time the server socket is created, key and certificate filenames are
already set.

Generating self-signed certificates
As stated earlier, SSL needs to have a valid certificate either at just server, or at both
the server and client. We will need to tell the tls package where a valid key and
certificate is located.

There are multiple possibilities for creating and signing a certificate, which are
described later in this chapter. For test purposes, it is enough to generate a
self-signed certificate; this is a certificate that is signed by its own key.

The package tls offers a command for generating a self-signed key and certificate
quickly. It is done using the tls::misc command and its req subcommand. It
requires four parameters. The first one is the size of the key, in bits. It is recommended
to use at least 1024 bits or 2048 bits, as a smaller amount of bits can be considered
insecure. The second argument specifies a path to the private key file and the third
specifies a path to the certificate file. The last argument is a list of name-value pairs
that specify information included in the certificate.

Certificate information can contain one or more elements. The days attribute specifies
the number of days a certificate should be valid; it defaults to 365. The serial attribute
specifies the key's serial number and defaults to 0. Additional details about the key's
validity period, expiration, and serial numbers are described in more detail later in
this chapter.

Certificate information can also include one or more of the following attributes,
which map to SSL certificate fields:

Attribute name Description
C Country; should be specified as two-letter country code; for example,

US for United States of America, UK for United Kingdom, and PL
for Poland

ST State or province name, specified as full name; potential values for
this field vary across countries

L Locality name; for example, city
O Organization name; for example, company name
OU Organization Unit Name; for example, section / department name
CN Common Name, varies depending on type of certificate
Email E-mail address of system or application administrator

SSL and Security

[502]

The field common name is often used to identify resource that owns the certificate.
For example, for the majority of Internet applications, the common name is set to the
hostname of the host we are connecting to, such as www.packtpub.com.

For many applications, the common name can be used to uniquely name a resource
or client; for systems that use Globally Unique Identifier (GUID) for identifying
resources, the common name can be the GUID of the system. This way, SSL-based
authorization can be used to map a connection to a particular resource, application,
or agent.

For example, in order to create a sample SSL key and certificate we can do
the following:

set keyfile server.key
set certfile server.pem

if {![file exists $keyfile]} {
 tls::misc req 1024 $keyfile $certfile \
 [list CN "localhost" days 7300]
}

Now, we configure tls to use the newly generated certificate by calling:

tls::init -keyfile $keyfile -certfile $certfile

We can use the tls::status command to get SSL-specific information about a
socket. The result is a list of key-value pairs that describe the remote peer. If an SSL
handshake has not been done yet, the command returns an empty list. Otherwise,
the following keys are returned:

Attribute name Description
issuer Information about certificate issuer
subject Information about certificate subject
notBefore Begin date for validity of this certificate
notAfter Expiry date for this certificate
serial Serial number of this certificate
cipher Encryption used for communication
sbits Number of bits used for session key

Chapter 13

[503]

The fields issuer and subject are in the form of attribute=value, separated by
comma(s). They contain the same fields as ones used for SSL certificate generation,
except that emailAddress is used instead of Email. An example value for subject
or issuer is:

emailAddress=root@localhost,CN=CertificateAuthority,O=Tcl Network
Programming Book,L=Krakow,ST=Malopolskie,C=PL

A complete example of using SSL-enabled sockets is located in the
01sockets directory in the source code examples for this chapter.

Setting up and using public key infrastructure
As our applications grow and include larger numbers of applications or devices that
communicate within the system, we will need a consistent way to identify and trust
other nodes in the system.

A very common solution is to use SSL certificates. The idea is that we create a trusted
entity that is responsible for authenticating everyone else in the system.

We start off with a commonly trusted entity that is only used for signing other
entities' certificates. This way any certificate that is signed by this entity is considered
secure, and we trust whatever identity is stored in the certificate itself. This is what
certificate authority is.

Identity is usually equal to the common name contained in the certificate itself.
Naming for certificates is up to either the administrator or creator of the application.
In the following examples, we're using identifiers of clients as the common name.
For web applications, it has to be the hostname of the website. As a trusted entity is
signing certificates, we assume that information in the certificate that is also signed
can be trusted.

Throughout our example, we'll be performing the following steps:

Creating a key and self-signed certificate for certificate authority, which will
be the trusted entity for entire infrastructure
Creating a key and certificate request for a sample server
Generating a certificate for the newly created server key—this step uses the
certificate request from the previous step
Creating a key and certificate request for a sample client
Generating a certificate for the newly created client key—this step uses the
certificate request from previous step

•

•
•

•
•

SSL and Security

[504]

In order to create additional server and client keys, only the steps for generating the
key and the request, as well as generating the certificates themselves, have to be
performed. The key and self-signed certificate for certificate authority should be
generated only once.

Each of the entities in the system will also need their own key and certificate. Each
certificate should be signed by the certificate authority. We will need to generate
certificate authority, keys and certificates signed by a previously created CA. We'll
use openssl command from OpenSSL package for these actions. Its documentation
can be found at http://www.openssl.org/docs/apps/openssl.html.

Easy RSA is a very good open source package for managing keys using
certificate authority. It can be used to set up a CA infrastructure and can be found
at http://openvpn.net/easyrsa.html. Even though we will not use the package
itself, we'll be using an OpenSSL configuration file based on the one from Easy
RSA package.

Setting up certificates manually
The first thing we need to do is to set up directories for our keys. We'll store all keys
in a keys subdirectory. We'll also need an empty index.txt file and serial file with
contents of 01, which is used by OpenSSL.

To do this, let's invoke the following commands:

root@ubuntu:/private/ssl/keys# mkdir keys

root@ubuntu:/private/ssl/keys# touch keys/index.txt

root@ubuntu:/private/ssl/keys# echo 01 >keys/serial

The configuration file openssl.cnf should also be put in the main
directory. It is located in the 02opensslconfig directory in the
source code examples for this chapter.

Examples show these commands run as the administrative user, but all commands
can be run as any user. The same applies to Microsoft Windows and MacOSX.
It also applies to all examples for running openssl command, both automatically
and manually.

Chapter 13

[505]

The following shows the layout of files and directories:

The files ca.crt, ca.key, client1.crt, client1.key, server1.crt, server1.key
are files that are created by commands shown in the following section.

Creating certificate authority
After creating the directory structure, we need to create a key and certificate for
certificate authority. We'll use openssl and its req subcommand, which is used
for creating and managing certificates.

For example, we can invoke the following command:

root@ubuntu:/private/ssl/keys# openssl req -days 3650 \
 -nodes -new -x509 -config openssl.cnf \
 -keyout keys/ca.key -out keys/ca.crt
Generating a 1024 bit RSA private key
..................++++++
...........++++++
writing new private key to 'keys/ca.key'

(...)

Country Name (2 letter code) [PL]: <Enter>
State or Province Name (full name) [Malopolskie]: <Enter>
Locality Name (eg, city) [Krakow]: <Enter>
Organization Name (eg, company) [Tcl Network Programming Book]:
<Enter>
Organizational Unit Name (eg, section) [SSL]: <Enter>
Common Name (eg, your name or your server's hostname) []:
CertificateAuthority
Email Address []:

SSL and Security

[506]

The same can be made in silent, non-interactive mode. For this purpose, it's
necessary to create properly built openssl.cnf in which all listed parameters
will be specified. Automating this process is described later in the chapter.

Parts of command output were omitted and are marked with (...) in command
output. Commands and output we have entered are marked in bold. Whenever the
openssl command asked for input and just leaving the value empty was required,
an <Enter> text has been added.

The preceding command is invoked with various flags:

Specifying -days 3650 tells OpenSSL that the CA should be valid for 3650
days, which is roughly 10 years. The option -nodes disables DES encryption
and also disables password protection of the CA certificate.
The option -new combined with -x509 causes OpenSSL to generate a new
key and certificate. Without the latter option, it will generate a key along
with certificate request.
The option -config specifies which configuration file to use. The options -
keyout and -out specify paths of CA private key file and CA certificate
file respectively.

All functionality of the openssl req command is documented at:
http://www.openssl.org/docs/apps/req.html

As a result, the openssl req command invoked will create keys/ca.key containing
private key, used by CA for signing additional keys. This file should be kept secret
and users should not have access to it. The file keys/ca.crt is the certificate for this
CA. It can be passed to users in order to verify the signature of additional keys.

We can also skip using the -nodes option and create a CA key that is password
protected. This increases security of the CA key, but for the purposes of this chapter
and ease of automation, we will not use password protected CA or keys.

Generating the CA key and certificate needs to be done only once regardless of the
number of keys we want to generate.

Generating and signing keys
Now, we can create one or more keys for clients or other servers in the network. We
will also sign these keys using the CA done in previous step.

Command for creating the key itself is similar to previous one:

root@ubuntu:/private/ssl/keys# openssl req -days 3650 \
 -nodes -new -config openssl.cnf \
 -keyout keys/server1.key -out keys/server1.csr

•

•

•

Chapter 13

[507]

Generating a 1024 bit RSA private key
..........................++++++
..++++++
writing new private key to 'keys/server1.key'

(...)

Country Name (2 letter code) [PL]: <Enter>
State or Province Name (full name) [Malopolskie]: <Enter>
Locality Name (eg, city) [Krakow]: <Enter>
Organization Name (eg, company) [Tcl Network Programming Book]:
<Enter>
Organizational Unit Name (eg, section) [SSL]: <Enter>
Common Name (eg, your name or your server's hostname) []:server1
Email Address []:<Enter>

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []: <Enter>
An optional company name []: <Enter>

This will create a key and its certificate. Similar to previous example, parts of text
were omitted and text we entered is marked in bold.

Options specified for the openssl req command are very similar to ones provided
for generating the CA key and certificate. The only difference is that in this case
we do not specify the -x509 option. This creates a certificate request instead of
generating a certificate. This is needed, as the request is then signed by CA to
create a properly signed certificate.

Now our new private key is created as keys/server1.key and an unsigned request
in keys/server1.csr. The private key should be kept secret, similar to the ca.key
file. The file server1.csr can be made public.

The next step is to sign the certificate as Certificate Authority. We will use the ca
subcommand from openssl for this purpose.

The following is an example of signing a certificate:

root@ubunturouter:/private/ssl/keys# openssl ca \
 -days 3650 -config openssl.cnf \
 -extensions server \
 -in keys/server1.csr -out keys/server1.crt
Using configuration from openssl.cnf
Check that the request matches the signature
Signature ok

SSL and Security

[508]

The Subject's Distinguished Name is as follows
countryName :PRINTABLE:'PL'
stateOrProvinceName :PRINTABLE:'Malopolskie'
localityName :PRINTABLE:'Krakow'
organizationName :PRINTABLE:'Tcl Network Programming Book'
organizationalUnitName:PRINTABLE:'SSL'
commonName :PRINTABLE:'server1'
Certificate is to be certified until Dec 28 14:17:48 2019 GMT (3650
days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Similar to previous examples, we have chosen a few of the options available using
openssl command:

The option -days 3650 tells OpenSSL that the certificate should be valid for
3650 days.
The option -config specifies configuration file to use.
-in and -out specify paths of certificate request and output
certificate respectively.
The option -extensions server specifies that the certificate should indicate
that it can be used as a server. This is used whenever a client connects to
verify if the remote peer is actually signed as a server.

Even though options do not specify a path to CA key and certificate, OpenSSL knows
this as it is hardcoded in the openssl.cnf file.

All functionality of the openssl ca command is documented at:
http://www.openssl.org/docs/apps/ca.html

Now a signed certificate has been created as keys/server1.crt. The file keys/
server1.csr can now be deleted. After this, we can use it from within Tcl as follows:

tls::init -cafile keys/ca.crt \
 -keyfile keys/server1.key -certfile keys/server1.pem

The text server1 in filenames should be replaced with the actual name of the key
to use. All servers and clients should also include the -cafile option to allow for
checking the certificate signature.

We can also add the -require true option to require a valid certificate from remote
peers. This will require all peers to have a signed certificate in order to communicate
with other systems.

•

•
•

•

Chapter 13

[509]

The previous example created a server key and certificate using the -extensions
server option. The procedure for creating certificates for a client is exactly the same,
but signing a certificate should be done without this flag. For example:

root@ubuntu:/private/ssl/keys# openssl req -days 3650 \
 -nodes -new -config openssl.cnf \
 -keyout keys/client1.key -out keys/client1.csr
Generating a 1024 bit RSA private key
..........................++++++
..++++++
writing new private key to 'keys/server1.key'

(...)

Common Name (eg, your name or your server's hostname) []:client1
Email Address []: <Enter>
(...)

Creating the key is exactly the same as before. The command for signing this key is
the same except for removing -extensions server option:

root@ubunturouter:/private/ssl/keys# openssl ca \
 -days 3650 -config openssl.cnf \
 -in keys/client1.csr -out keys/client1.crt
(...)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

The configuration file used in preceding examples is located in the
02opensslconfig directory in the source code examples for this chapter.

In this example, we have created all keys and certificates from the same machine and
in same directory. It is also possible to perform these steps on multiple machines.
In this case, generation of CA keys and the certificate and the signing of all keys
needs to be done on one machine. Generation of all other keys can be done on other
machines. Then, the unsigned keys (files with .csr extension) should be passed to
the machine where the CA key and certificate is kept. After signing and creating the
certificate file (files with .crt extension), it should be passed back to the machine
where the key was generated. There is no need to transfer private keys (files with
.key extension) at any point so transfers of (.csr and .crt files) can be made using
unencrypted channels.

SSL and Security

[510]

An implementation of a safe mechanism for generating and signing certificates is
shown later in this chapter.

Automating certificates from Tcl
The package tls does not offer functionality for creating anything other than self-
signed certificates. However, we can automate invocations of openssl command
from within Tcl in order to manage certificates automatically from within Tcl.

We'll use the configuration file from the previous example with slight modifications.
We'll be using a feature of passing environment variables to specify data for
OpenSSL. This way we can automatically generate certificates with specified
information, without any interaction on standard input or standard output.

The command openssl accepts the -batch option that causes it to use default values
from configuration, instead of reading them from standard input.

OpenSSL also allows values to be specified for some fields using environment
variables by specifying $ENV::<variableName> in the openssl.cnf file, where
<variableName> is the name variable and maps to $::env(<variableName>) in Tcl.
We will use this mechanism to pass parameters for certificate information from Tcl.

This will allow us to automate certificate creation and and customize the information
contained in each certificate. This is needed for new nodes in the system or when
a certificate expires and a new one needs to be generated. Automating this will
allow us to add in new clients to our network without any manual effort from the
administrator, such as adding new computers to a managed system. It will also help
if we decide that automated certificate creation and signing from Tcl takes a few
steps to complete. First let's initialize the namespace and variables for keeping
the configuration:

namespace eval sslkeys {}

set sslkeys::keydirectory "keys"
set sslkeys::confdirectory "conf"
set sslkeys::keysize 1024
set sslkeys::expires 3650
set sslkeys::openssl "openssl"

The variables keydirectory and confdirectory store paths to keys and the
configuration directory, respectively. The keysize variable specifies the number
of bits to use for each key, expires specifies the expiration period in days, and the
openssl variable specifies the path to openssl binary.

Chapter 13

[511]

Next we'll set up defaults for each certificate. It is a list of name-value pairs:

set sslkeys::defaults {
 COUNTRY "PL"
 PROVINCE "Malopolskie"
 CITY "Krakow"
 ORG "Tcl Network Programming Book"
 OU "SSL"
 CN "TBD"
 EMAIL "root@localhost"
}

Attributes are similar to the ones used for generating certificates in Tcl.

For each key, we'll merge preceding defaults with additional information provided
when generating a key. We can create a helper procedure to merge values and copy
information to the environment variable:

proc sslkeys::_initArray {argslist} {
 variable keydirectory
 variable keysize
 variable defaults

We'll map the ar array to the same variable in the previous stack frame. This can be
implemented to use the ar array directly in commands that generate keys. We'll also
combine defaults with arguments provided to the procedure using array set:

 upvar 1 ar ar

 array set ar $defaults
 array set ar $argslist

Now we'll copy required values to environment variables. We'll also set up a key
directory as well as key size.

 foreach k {COUNTRY PROVINCE CITY ORG OU CN EMAIL} {
 set ::env(KEY_$k) $ar($k)
 }
 set ::env(KEY_DIR) $keydirectory
 set ::env(KEY_SIZE) $keysize
}

These environment variables are later used by the openssl binary to access
information about the key and directories to use. Tcl variable ::env represents
the operating system's environment variables.

SSL and Security

[512]

We'll also create a helper function to clean up environment variables, which can be
used after invoking OpenSSL. It will also remove *.old files, which are created as
part of the signing certificates process and do not need to be kept.

proc sslkeys::_finiArray {} {
 variable keydirectory

 foreach k {
 COUNTRY PROVINCE CITY ORG OU CN EMAIL DIR SIZE
 } {
 unset ::env(KEY_$k)
 }

 foreach g [glob -nocomplain -directory $keydirectory \
 *.old *.OLD] {
 catch {file delete -force $g}
 }
}

We can now move to functions that will invoke openssl binary to perform actions.

The procedure we'll need to write is initializing certificate authority files if they are
not there. We'll start by mapping needed namespace variables, and initializing the ar
variable using the helper procedure recently mentioned. The command accepts any
number of arguments, which are passed to _initArray command.

proc sslkeys::initialize {args} {
 variable keydirectory
 variable confdirectory
 variable keysize
 variable expires
 variable openssl

 _initArray $args

The first thing we check is whether the key directory exists at all. If it does not, we
create it:

 if {![file exists $keydirectory]} {
 file mkdir $keydirectory
 }

Chapter 13

[513]

After this, we'll check if the file ca.key exists in the keys directory. If it exists, it
means that CA has already been set up and there is no need to create those files:

 if {![file exists [file join $keydirectory ca.key]]} {

If the file does not exist, we'll need to create the serial and index.txt files as
before. These are used by OpenSSL to keep information about signed certificates.

 set fh [open [file join $keydirectory serial] w]
 puts $fh 01
 close $fh

 set fh [open [file join $keydirectory index.txt] w]
 close $fh

Now we'll create a Tcl command that will run the openssl binary to create a CA key
and certificate. We'll first build it as a Tcl list and evaluate it as the next step. This
approach allows for logging and debugging which command will be run.

 set command [list exec $openssl req -batch \
 -days $expires -nodes -new -x509 \
 -keyout [file join $keydirectory ca.key] \
 -out [file join $keydirectory ca.crt] \
 -config [file join $confdirectory openssl.cnf] \
 2>@1]

 set result [eval $command]

We're using the exec command to run the openssl binary. We're also redirecting
standard error to standard output using 2>@1 statement. This is because openssl
writes additional information to standard error, and without this statement Tcl will
throw an error that information was written to standard output.

Finally, we need to unset environment variables.

 }

 _finiArray
}

The final procedure is creating and signing a new certificate. It accepts the type
of certificate—either client or server, the filename for keys, and arguments for
certificate information. Certificate type is used to determine whether -extensions
server should be passed to the openssl binary when signing the certificate.
Filename is the base name for the key and certificate file to create.

SSL and Security

[514]

We start by mapping the required namespace variables and initializing the ar array:

proc sslkeys::createAndSign {type filename args} {
 variable keydirectory
 variable confdirectory
 variable expires
 variable openssl

 _initArray $args

Now we build a Tcl list for running the openssl binary to create the key and run it:

 set command [list exec $openssl req -batch \
 -days $expires -nodes -new \
 -keyout [file join $keydirectory $filename.key] \
 -out [file join $keydirectory $filename.csr] \
 -config [file join $confdirectory openssl.cnf] \
 2>@1]

 set result [eval $command]

We then create a Tcl command for signing the new certificate.

 set command [list exec $openssl ca -batch \
 -days $expires \
 -in [file join $keydirectory $filename.csr] \
 -out [file join $keydirectory $filename.crt] \
 -config [file join $confdirectory openssl.cnf] \
]

Next, if the certificate type is server, we also append the -extensions server option.

 if {$type == "server"} {
 lappend command -extensions server
 }

We then append the 2>@1 statement and run the command:

 lappend command 2>@1

 set result [eval $command]

Chapter 13

[515]

Finally, we remove the .csr file which was used to sign the certificate and clean up
the environment variables:

 file delete \
 [file join $keydirectory $filename.csr]

 _finiArray
}

This code can now be used to create a complete set of certificates for our system—
starting with the CA certificate and providing both client and server keys. This can
be used to create a communication system, which can authenticate each of the peers
and ensure the security and integrity of communication.

In order to create a CA, server, and certificate key all we need to do is invoke the
following commands:

sslkeys::initialize CN "CertificateAuthority"

The previous command will create our CA's key and certificate. Now we can create
a certificate for a client which can only be used for outgoing connections:

sslkeys::createAndSign client client1 CN "client1"

We can also create a server certificate:

sslkeys::createAndSign server server1 CN "server1"

Now our client will have the client1.key and client.crt files ready. Our server
will have server1.key and server1.crt available. These can now be used directly
from the tls package.

It is always better to specify a meaningful value for the common name. Usually it'll
also work in such way that the common name will be the system's identifier, which
will also be the filename of the key. For examples in this chapter, we decided to use
GUIDs and the common name was the same as the GUID generated by the client.

Using the code to generate SSL certificates is shown in more detail in the next
section, which also shows how to automate the process of generating and assigning
certificates to other parts of the system.

SSL and Security

[516]

Managing certificates from Tcl
Now that we can create and sign certificates, the next step is to create a simple solution
that would allow us to build an infrastructure using these keys. We'll create a server
that handles creating certificates for clients and exports a simple service over HTTPS.

The following is a diagram of how communication from the client will look like:

Our example will be performing the following steps:

1. The client requests a new key and certificate from the server; the client will
check if the other side is valid by comparing the server's certificate against
certificate authority's certificate, which the client needs to already have

2. The server provides the client with new key and certificate
3. The client can request information over HTTPS using newly created key

and certificate
4. The server will be able to authenticate the other side by checking if the

certificate is signed by certificate authority

All further communication can use HTTPS as a proper key has been provided to
the client.

Our example will have a server that can create a complete certificate authority,
create, and sign its own key. It will also offer a HTTPS server that will only accept
requests from clients using a valid certificate. We will use the recently mentioned
code for managing CA and server / client keys.

Chapter 13

[517]

Additionally, our server will provide an SSL-enabled server for clients to request
certificates. This server will not require a valid certificate. This would allow any client
to request a certificate that would then be used for communicating over HTTPS. This
is needed because the HTTPS server will not allow any incoming connections without
a valid certificate. We'll create a dedicated service just for creating the key and a
signed certificate that accepts connections without a valid certificate.

While the server will not be able to authenticate clients at this point, client will be
able to use CA certificate to verify that a server can be trusted.

In a typical application, the client would start by requesting a new certificate if it
does not have it. The HTTPS server would be used for communication, once the
certificate has been issued. It could export services similar to those described in
Chapter 11, TclHttpd in Client-Server Applications, or any other type of service.

In order to simplify the example, the protocol for requesting a certificate is very
simple. A client connects over the SSL-encrypted socket. At this point the client
does not have a valid certificate yet, so this will not be checked. It sends a single line
specifying the command, common name, and e-mail address for the certificate. The
server generates it and sends a response. It sends a single line containing a result,
which is true or false, followed by the size of the key and certificate file in bytes. Next
the key and certificate are sent as binary data. Since the client knows their sizes, it
reads this back to key and certificate files. After retrieving a valid certificate, the client
can now connect over HTTPS using a valid certificate and issue other commands.

In many cases, the infrastructure could also be extended to provide multiple servers.
In this case, only one server would offer certificate creation—for both clients and
servers. From then on communication could be made with all servers.

Server side
Let's start by creating server side of our sample application. It will be built up from
two things—a server for issuing certificates and the HTTPS server for invoking
commands for clients with valid certificates. The server side of the application will
store all keys and certificates in the keys subdirectory. It will keep CA key and
certificate, its own key and certificate, and certificates of all other systems in the
network. Although keeping all certificates is not necessary, it is used as a mechanism
for detecting whether a specified client has already had its key generated or not.

SSL and Security

[518]

First we'll set up our server name, create a Certificate Authority, and create this
server's certificate, if it does not exist yet:

set server "server1"

sslkeys::initialize CN "CertificateAuthority"

set sslkey [file join $sslkeys::keydirectory $server.key]
set sslcert [file join $sslkeys::keydirectory $server.crt]
if {![file exists $sslkey]} {
 sslkeys::createAndSign server $server CN $server
}

Next, we'll set up a tls package to use these keys and that requires a valid certificate:

tls::init -keyfile $sslkey -certfile $sslcert \
 -cafile [file join $sslkeys::keydirectory ca.crt] \
 -require true

Now let's set up the HTTPS server along with a very small application serving
all requests:

package require tclhttpdinit
Httpd_SecureServer 9902

proc secureWebServerHandle {sock suffix} {
 set certinfo [dict get [tls::status $sock] subject]
 set client ""
 foreach item [split $certinfo ,/] {
 if {[regexp "^CN=(.*)\$" $item - client]} {
 break
 }
 }
 set text "Clock: [clock seconds]; Client: $client"
 Httpd_ReturnData $sock text/plain $text}

Url_PrefixInstall / secureWebServerHandle

Our server will listen for HTTPS requests on port 9902 and return information about
the current time and client identifier, extracted from the SSL certificate. Since we
require the certificate to be signed by a valid CA, we can assume that we can trust
its value.

Chapter 13

[519]

We can now proceed to creating code for requesting certificates. We'll start by setting
up an SSL-enabled server socket that, as an exception from the tls::init invocation
shown in the preceding code, does not require a valid SSL certificate. It will listen
on port 9901 and run the certRequestAccept command for each new connection:

tls::socket -require false -server certRequestAccept \
 9901

Whenever a connection comes in, we configure the channel as non-blocking, set up
binary translation, and set up an event each time it is readable:

proc certRequestAccept {chan host port} {
 fconfigure $chan -blocking 0 -buffering none -translation binary
 fileevent $chan readable [list certRequestHandle $chan]
}

Every time a channel is readable, our command will try to read a line from it. If it
fails, we close the channel and do nothing:

proc certRequestHandle {chan} {
 if {[catch {gets $chan line} rc]} {
 catch {close $chan}
 } else {

If reading a line did not produce an error, we proceed with checking whether the
end of the file has been reached for this channel or not. If it has, we also close it:

 set eof 1
 catch {set eof [eof $chan]}
 if {$eof} {
 catch {close $chan}
 } else {

Otherwise we check if a line has been read successfully. The variable rc stores
whatever the gets command returned; if a complete line has been read, it will
contain the number of characters read. Otherwise it will be set to 1:

 if {$rc < 0} {
 return
 }

SSL and Security

[520]

If reading the line succeeds, we split the text on each white space to a list and assign
each element of the list to variables. The first one is the command, only certificate
being supported, followed by the common name and e-mail values to be used
in certificate.

 set line [split $line]
 lassign $line command commonName email
 if {$command != "certificate"} {
 close $chan
 return
 }

We'll also use the common name as the filename for the keys. Usually common
names would be identifiers used throughout the system, such as GUIDs.

The next step is to create a full path to the destination key and certificate files, and
check if the certificate file exists:

 set keyfile [file join \
 $sslkeys::keydirectory $commonName.key]
 set certfile [file join \
 $sslkeys::keydirectory $commonName.crt]

 if {[file exists $certfile]} {

If it exists, a client with this identifier has already requested this certificate. In
this case, we send information that we refused to create a certificate and close
the channel.

 if {[catch {
 puts $chan "false 0 0"
 flush $chan
 close $chan
 }]} {
 catch {close $chan}
 }
 } else {

If a certificate has not been created yet, we create it and get the size of both files.

 sslkeys::createAndSign client $commonName \
 CN $commonName EMAIL $email
 set keysize [file size $keyfile]
 set certsize [file size $certfile]

Chapter 13

[521]

Then, we send a response to the client specifying that a certificate has been generated
and the size of both files.

 if {[catch {
 puts $chan "true $keysize $certsize"

The next step is to send the contents of both files and flush the channel to make sure
it gets sent:

 set fh [open $keyfile r]
 fconfigure $fh -translation binary
 fcopy $fh $chan
 close $fh
 unset fh

 set fh [open $certfile r]
 fconfigure $fh -translation binary
 fcopy $fh $chan
 close $fh
 unset fh

 flush $chan

If writing the response produced an error, we assume that unless all data was
sent, an error might have occurred. We close the socket and remove both keys
and the certificate file.

 }]} {
 catch {close $fh}
 catch {close $chan}
 catch {file delete -force $keyfile}
 catch {file delete -force $certfile}
 } else {

We also try to close the file handle first—if an operation such as fcopy failed, the
handle might have been left open and we need to close the file handle in order
to delete it.

If the operation succeeds, we close the connection and only remove the private key.
The certificate is left on the server for reference purposes, and for checking if it has
already been passed to a client.

 catch {close $chan}
 file delete -force $keyfile
 }
 }
 }
 }
}

SSL and Security

[522]

Finally we need to enter Tcl's event loop:

vwait forever

We now have a complete server that allows the creation of SSL keys and certificates,
and offers functionality over HTTPS protocol only to authenticated peers.

The server code for this example is located in the server.tcl file in the
04keymgmt directory in the source code examples for this chapter.

Client side
The next step is to create a client side of our application. It will contain two parts—a
client for requesting a certificate and a test of whether issuing HTTPS requests using
a valid certificate works afterwards. In order to make it easier to run both the server
and client from the same directory and / or on the same computer, client stores all
of its keys in the keys-client subdirectory. If both the server and client are run on
the same computer, the client will copy the ca.crt file from the keys subdirectory.
If not, it is needed to copy ca.crt from the keys directory on the machine where the
server is running to the keys-client subdirectory on the machine where the client
will be run.

We'll start creating client code by creating a command to retrieve a certificate. It
accepts the hostname to connect to and the common name, and the e-mail to send.

First we will open a connection, set it to blocking and binary mode, and send
a request to the server.

proc requestKey {hostname name email} {
 set chan [tls::socket $hostname 9901]
 fconfigure $chan -blocking 1 -translation binary
 puts $chan "certificate $name $email"
 flush $chan

Now, we read the result from the server and assign results to variables. If the server
refused to create a certificate, we show an error.

 gets $chan result
 lassign [split $result] result keysize certsize
 if {!$result} {
 close $chan
 error "Request to generate certificate denied"
 } else {

Chapter 13

[523]

If the server has created keys and certificates, we copy and save them in the
keys-client directory. The common name is used as a base for the key and
certificate filename. After that we close the connection to the server and return.

 set fh [open [file join keys-client $name.key] w]
 fconfigure $fh -translation binary
 fcopy $chan $fh -size $keysize
 close $fh

 set fh [open [file join keys-client $name.crt] w]
 fconfigure $fh -translation binary
 fcopy $chan $fh -size $certsize
 close $fh

 close $chan
 }
}

We can now move to initializing our client. We start by loading the tls and http
packages, then set up the https protocol for http package and assign arguments
passed to script as variables.

package require tls
package require http
http::register https 443 tls::socket

lassign $argv host name email

After this we check arguments that were passed. If either host or name is empty, we
print out usage information on standard error and exit.

If only email is empty, we set it to $name@localhost, where $name is the common
name passed as argument.

if {($host == "") || ($name == "")} {
 puts stderr "Usage: [info script] host name ?email?"
 exit 1
}

if {$email == ""} {
 set email "$name@localhost"
}

SSL and Security

[524]

Now we create filenames of the key and certificate, and check if a certificate
file exists:

set keyfile [file join "keys-client" "$name.key"]
set certfile [file join "keys-client" "$name.crt"]

if {![file exists $certfile]} {

If it does not exist, we set up tls to use the CA certificate and require a valid
certificate from the remote peer. Next, we invoke the previously created requestKey
function, passing the host to connect to, the common name and e-mail.

We also print the status—either that we've successfully requested the keys or that the
keys were already present on the filesystem.

 tls::init \
 -cafile "keys-client/ca.crt" \
 -require true

 requestKey $host $name $email
 puts "SSL keys retrieved"
} else {
 puts "SSL keys already present"
}

We now initialize tls again, using key, certificate and CA information, requiring the
remote peer to have a valid certificate.

tls::init \
 -cafile "keys-client/ca.crt" \
 -keyfile $keyfile \
 -certfile $certfile \
 -require true

Now we send an HTTPS request to the remote host. This connection will leverage the
newly retrieved key and certificate:

set token [http::geturl "https://${host}:9902/test"]

Finally we check the result from the HTTPS request. If it is an error or eof status,
we print out the information. If the request succeeds, we print out information
about response.

switch -- [http::status $token] {
 error {
 puts " ERROR: [http::error $token]"
 }
 eof {

Chapter 13

[525]

 puts " EOF reading response"
 }
 ok {
 puts " OK; HTTP code: [http::ncode $token]"
 puts " Response size: [http::size $token] bytes"
 puts " Response: [http::data $token]"
 }
}
http::cleanup $token

This concludes the code for a test client.

The Code of client part of this example is located in the client.tcl file in
the 04keymgmt directory in the source code examples for this chapter.

Testing our solution
Now that we have both client and server applications, we can run them in order to
check if everything works. In order to run our example, we need to be sure that the
openssl command can be run from the command line. A good test would be to run
the version subcommand:

zoro@ubuntu:~$ openssl version
OpenSSL 0.9.8g 19 Oct 2007

If we have not received an error, we can continue. Otherwise we need to make
sure openssl libraries and openssl command are installed in our system, and
that the directory containing the openssl command is present in our shell's path.

This is usually the case on Unix systems. On Windows machines, it might be
necessary to add a directory such as C:\Program Files\OpenSSL\bin to your
path. For example, you can do this by running:

path " C:\Program Files\OpenSSL\bin;%PATH%"

Of course, you will need to verify paths to your OpenSSL distribution first.
After setting the path, you can verify if it is correct by running the
openssl version command.

Assuming everything went fine we can move on to running the server. We can run
it by using tclsh. For example:

zoro@ubuntu:~/tcl$ tclsh8.5 server.tcl

SSL and Security

[526]

Then we can run the client. We need to specify the hostname and common name
for the client:

zoro@ubuntu:~/tcl$ tclsh8.5 client.tcl 127.0.0.1 client1

Sample output from the client should be as follows:

 OK; HTTP code: 200
 Response size: 34 bytes
 Response: Clock: 1262879775; Client: client1

For the purpose of this example, we'll assume we're running both on the same
machine. If this is not the case, we need to copy keys/ca.crt from the machine
where the server is run as keys-client/ca.crt on the machine where the client
will be run. We also need to specify actual server IP address or a hostname instead
of 127.0.0.1.

Also, in real world scenarios, a request for a new certificate might be queued in the
system, and require system administrator to confirm that a new certificate should be
created. In these cases, the additional step of checking those permissions should be
done on the server for each request. The client would need to periodically check if
the certificate has been generated and then retrieve it.

Another feature omitted from this example is handling expiration of certificates.
While for this example all certificates are generated to expire in 10 years, usually CA
is generated for a very long period of time; all other certificates should expire much
faster, such as in one year. In these cases clients would need to keep track of when
their certificate expires, and request a new one either before that happens
or as soon as this has happened.

SSL and performance issues
While SSL seems like a very good solution to all security aspects, we have to
remember that it also introduces some drawbacks that we might need to take into
account when creating software.

Using encrypted connections produces overhead. While it might seem minimal, it is
worth remembering a few things about how using SSL for communication impacts it.

SSL generates a large overhead on both the client and server when a connection is
established. This is usually a problem for the server side if a lot of connections are
made; in these cases, it is a good idea to limit the number of connections.

Chapter 13

[527]

One way to do this is to combine multiple requests into one, such as querying server
for new tasks, if an update is available, and which modules should be loaded at once.
Another option is to use the HTTP keep alive feature by using the -keepalive flag
from the http package on the clients.

Encrypted communication itself also generates overhead; transferring things such as
large files over an encrypted connection might be a bit slower than unencrypted files.
Any modern computer will be able to keep up a transfer of several megabytes per
second over SSL connections.

When a server is providing data over encrypted connection to multiple clients, the
transfer rate might be much slower due to SSL overhead. This issue mainly applies
to large environments, where big volumes of information need to be shared over
encrypted networks. In many cases, it is also possible to create an instance of a web
server just for providing files; either Tclhttpd or Apache configured for SSL handling.

Authorization and roles
Key-based authentication offers functionality to securely associate connections
with peers within an infrastructure. Very often it is enough to make sure that only
authenticated systems can communicate. There are also cases where we need to
allow / disallow certain operations based on the remote peer issuing the command.
The process of verifying whether a peer is allowed to issue a certain command or not
is called authorization, as mentioned earlier in the chapter.

Very often we associate one or more roles to specified users or systems in the
infrastructure. An example is that IT administrators need to perform different
operations from regular users of a system. It could also be different from operations
performed by an automated backup system.

Also, defining what each of the users or applications in the system is allowed to
perform can be very time consuming. If our application offers a large number of
features and supports hundreds of users or systems, it is a tedious process to
define a set of features for each user.

A typical approach to standardizing this is to define roles, which can be a set
of allowed and disallowed operations. It can also be additional information for
these operations. A good example is distinguishing between users with limited
permissions, normal users, and administrators. All these are roles and define sets
of allowed operations.

SSL and Security

[528]

Securing your application
Very often we will want our application to run Tcl code provided from a trusted or
untrusted source. In these cases, it makes sense to run such scripts in environments
with limited access to operating system and / or limited resources. In some cases, we
can use this to provide an additional security layer. In other cases, it can be used as
additional layer for securing ourselves against badly written code.

Typical examples of such cases include running code retrieved over the network.
Our application may choose to limit access to an operating system for code written
by sources we do not fully trust. An example is a data processing system using
multiple computers; commands received from science units might be run in different
environment than commands received from system administrators.

Slave interpreters, functionality offers creating a Tcl sandbox for running commands,
which we might not want to have full access to our main application's code and / or
provide additional security to limit the potential dangers of running these scripts.
It works in such a way that we can create an additional Tcl interpreter, called the
slave interpreter, which we can evaluate commands in. From our slave interpreter's
perspective, the interpreter that created it is called the master interpreter.

In addition we might impose limits on some operations, such as terminating after a
specified amount of time. This can be used to detect and terminate scripts that are
taking too long to complete. It can also be used as a typical feature of an application,
allowing users to specify if a command should be terminated after a specified time.

Safe interpreters are based on a more generic concept of slave interpreters, which
allow for creating additional Tcl interpreters, exporting commands and channels as
needed. This can be used to both provide security and provide a separate interpreter,
which can't directly access data in other interpreters.

Slave interpreters
All slave interpreters are managed from the interp command. It is used to create
normal and safe slave interpreters. All of its functionality is accessed using the
command's subcommands. All slave interpreters are referenced by name and all
interpreters are also accessible via an additional command, which is the same as
interpreter name.

Chapter 13

[529]

Each interpreter is a completely separated from other Tcl interpreters by default—it
has different namespaces, variables, commands, and channels. This allows things
such as running legacy code that uses same command or variable names as other
parts of our application; names will not collide and all that is needed is additional
code to use remote commands from an interpreter. We can also use information from
different interpreters and details on how to do this are described later in this chapter.

Complete documentation of the interp command and all of its subcommands can be
found at: http://www.tcl.tk/man/tcl/TclCmd/interp.htm

Using slave interpreters
Command interp create can be used to create a slave interpreter. It can be run
without parameters, in which case it creates a unique interpreter name or one with
the interpreter name as an argument. In the latter case, that name is used for the
interpreter. The command also accepts the optional flag -safe as first argument. In
most cases it is better to use a name provided by interp create command. This will
not cause problems with the same interpreter name being used by multiple parts of
an application, and is generally a better approach, especially in reusable code.

For example, we can create a slave interpreter by doing:

set childInterp [interp create]

This will set the childInterp variable to the name of a newly created interpreter.
We can access slave interpreters functionality either by using the interp command's
subcommands or by using the interpreter's own command. The name of the
interpreter is the same as the name of the command created.

Slave interpreters are run in the same thread as the current interpreter; therefore,
entering event loop in any of the interpreters will cause all interpreters to
process events.

We can now evaluate Tcl commands in this interpreter using the eval subcommand.
It can be run either from generic interp command or from the interpreter's
own command.

Running eval from the interpreter's own command requires specifying command(s)
to evaluate as arguments. For example:

puts "1 + 1 = [$childInterp eval {expr { 1 + 1 }}]"

This will cause the expr 1+1 command to be evaluated in slave interpreter and result
from that printed from master interpreter.

SSL and Security

[530]

We can also use a generic interp command, which requires specifying the
interpreter name followed by the command(s) to evaluate. For example:

set result [interp eval $childInterp {string repeat "Test " 10}]

The preceding code will evaluate the string repeat statement in the slave
interpreter, and set the result variable in the master interpreter to the result
of that command.

Commands passed to eval can be created as multiple arguments, but it is always a
safer approach to specify all commands to evaluate as one argument.

We can also create commands using Tcl lists that will be evaluated in the slave
interpreter. This can be used to pass arguments from local variables or for
dynamically creating a command to run.

For example, we can set variables in the slave interpreter from a local value by doing:

$childInterp eval [list string repeat $someString 10]

This will cause a value of the variable someString in the master interpreter to be
repeated 10 times, but using string repeat from the slave interpreter. This can be
used to pass values from variables in the master as parameters to commands in
the slave interpreter.

Sharing information with the slave interpreter
Tcl does not offer any way to map variables between the master and slave
interpreter. Therefore, this is very often the most convenient way to set variables in
slave interpreters.

For example, we can set variables in the slave interpreter from a local value by doing:

$childInterp eval [list set value $value]

This will set the variable in the slave interpreter to a current value from the master
interpreter. However, if either the master or slave changes the value of a variable,
this information will not be propagated.

Tcl channels are also not shared across interpreters by default. This means that
a file opened in the master interpreter cannot be read from slave one without
additional steps.

Chapter 13

[531]

In order to use a channel from the master interpreter in the slave, we need to
invoke the interp share or interp transfer commands. The first command
makes a channel available in target interpreter without removing it from the
source interpreter. The second command makes the channel available in the target
interpreter, and removes it from the source interpreter. Both commands accept
the source interpreter as the first argument, followed by the channel name and
target interpreter.

For example, to make the stdout channel available in a slave interpreter we can do
the following:

interp share {} stdout $childInterp

The channels stdin, stdout, and stderr are available in regular slave interpreters
by default. They are not available in safe interpreters; if we want our safe interpreter
to write to a standard output channel, we need to explicitly share the channel.

Channels shared between interpreters require both interpreters to close the channel
for the underlying channel to be cleaned up. For example, if a file handle is shared
across interpreters, unless all interpreters close it, the file will remain open.
Channels transferred from one interpreter to another only need to be closed
in the target interpreter.

Channel sharing and transferring can also be used to pass file handles or network
connections to slave interpreters. For example, if we want to make code responsible
for communication more secure, it can be run in a separate and safe interpreter.

Commands themselves cannot be shared, but the master interpreter can create
commands in a slave interpreter by invoking the eval subcommand and running
the proc command in the slave interpreter. Aliases also allow mapping of commands
from the master interpreter to the slave interpreter. They are described in more detail
in the next section.

The following table summarizes what information can be shared across interpreters:

Type Command Comments
Variables N/A Cannot be automatically shared; although

variables in slave can be set from master
Channels interp share

interp transfer
Channels can be shared and / or transferred
between interpreters

Commands interp alias Commands from any interpreter can be run in any
other interpreter

SSL and Security

[532]

Creating and managing aliases
Slave interpreters can create commands that invoke other commands in any other
interpreters. It can be used to have a slave interpreter call command in master
interpreter. It can be used to expose functionality to slave interpreters, create wrappers
for safe interpreters that limit functionality. This functionality is called aliases.

Aliases can be created between any interpreters, but usually a master creates an
alias that is accessible in a slave interpreter. Creating or retrieving aliases can be
done using an alias command. Invoked as the interp alias command, it requires
specifying a target interpreter as the first argument, the source interpreter the
command should be run in, and the name of the command to run.

When creating an alias by running the alias subcommand of the interpreter's
command, it only requires specifying the target command name and source
command name. The target interpreter is the interpreter passed as a command
name, and the source interpreter is the current interpreter.

This will create a command in the target interpreter; the name will be the target
command name, specified as a first argument. When invoked, it will cause the
source command to be invoked in the source interpreter.

We can create a command to increase the value of a global variable and print it out in
the master interpreter:

proc incrCounter {variable} {
 global $variable
 set v [incr $variable]
 puts "Current value of \"$variable\" is $v"
}

It is worth noting that the preceding code is evaluated in the master interpreter, and
we have to be careful with handling data passed by slave interpreters. For example,
it is always a bad idea to pass values passed by users to commands such as eval.
As we assume code run in the slave interpreter is not trusted, we also should not
assume values passed by it are valid.

We also define an alias that will cause this command to be accessible from the slave
interpreter under the same name.

interp alias $childInterp incrCounter {} incrCounter

An alias can be also created by invoking the interpreter command. The following
command is equivalent to the previous code:

$childInterp alias incrCounter incrCounter

Chapter 13

[533]

We can now invoke our command by doing:

set value 12
$childInterp eval {incrCounter value}

This will cause the Current value of "value" is 13 to be printed on standard
output. As the incrCounter command is actually evaluated in the master interpreter,
no variables are passed to the slave interpreter and the variable itself is not
fully accessible.

We can also add arguments to pass to this command, before arguments provided
when invoked as target command after source command name.

For example:

interp alias $childInterp incrCounterValue {} incrCounter value

Next, we can invoke the following command:

$childInterp eval {incrCounterValue}

This will cause the incrCounter command to be invoked in the master interpreter
with value as its argument. The output would be similar to Current value of
"value" is 14.

Another example is creating commands for things like HTTP or POP3 protocols. We
can then pass a token or any other information as part of the alias; for example:

set handle [pop3::open $hostname $username $password]
interp alias $childInterp emailRetrieve {} pop3::retrieve $handle
interp alias $childInterp emailList {} pop3::list $handle

This will cause commands emailRetrieve and emailList in the slave interpreter to
access a valid POP3 session from the master interpreter. POP3 protocol and related
commands are described in more detail in Chapter 7, Using Common Internet Services.

Typically aliases are used for two types of things. The first use is to export specific
functions to the slave interpreter. This is then used to run scripts provided by users
or different parts of the infrastructure; scripts themselves won't have access to an
application's private data, but will be able to perform many operations remotely.

The second functionality is limiting the scope of a command. This is mainly used
for safe interpreters. We can overwrite a command and check whether a specified
operation is valid. For example, we can overwrite the socket command to only
allow outgoing connections and only to specified hosts and / or ports. This method
is described in more detail later in this chapter.

SSL and Security

[534]

The Tcl slave interpreter's mechanism offers functionality for listing and getting
definitions of aliases for a specified slave interpreter. This can be done using the aliases
subcommand, either running the interp aliases <interpName> or <interpName>
aliases command, where <interpName> is the name of the interpreter.

Retrieving the definition of an individual alias is done by invoking the alias
subcommand with just alias name as argument. When invoking as an interp alias
command, this needs to be prefixed by a target interpreter name—for example, interp
alias <interpName> <commandName> or <interpName> alias <commandName>.

For example, we can list and print all aliases by doing:

foreach alias [interp aliases $childInterp] {
 puts "$alias is \"[$childInterp alias $alias]\""
}

Deleting interpreters
Deleting a slave interpreter can be done using the interp delete command.
It accepts a single argument, which is the name of the interpreter to delete. For
example, we can delete our previously deleted interpreter by doing:

interp delete $childInterp

Tcl automatically removes all information and objects related to this interpreter, such
as timers, variables, commands, and channels.

Examples of using slave interpreters, described in this and previous
sections, is located in the interp.tcl file in 05slaveinterp
directory in the source code examples for this chapter.

Imposing limits on interpreters
Very often we need to limit time or the number of commands that can be run. In
many cases it can serve as simply a mechanism for detecting infinite loops and / or
other errors in the code sent to clients. This can be very useful mostly for scripts that
are written and sent to clients ad hoc—often they will contain errors that can cause
things such as infinite loops, or performing operations over a long period of time.
Slave interpreter limits can be used to detect and prevent these issues.

Limits are checked before each command is run. If either number of commands run
or time limit has been reached, an error is shown. If script has been run from the
master interpreter, this error is then received by the master interpreter.

Chapter 13

[535]

All limits are set using the interp limit <interpName> or <interpName> limit
commands. The first argument is limit type, which can be either time or commands. It
can be specified by one or more options for this limit. Options depend on limit type
and are described further in the section.

When not specifying any additional option, it returns a list of name-value
pairs containing all options and their current values. When specifying only the
option name, its current value is returned. Specifying one or more options and
corresponding values causes those options to be set.

There are two types of interpreter limits. We can set up a limit on the number of
commands that can be run, specified as limit type commands. It accepts the -value
option that specifies the number of commands, after which a limit should be reached.

Running the following command will cause an interpreter to limit it to only running
10000 commands:

$childInterp limit commands -value 10000

We can also set it in the following way:

interp limit $childInterp commands -value 10000

We can then run the following command:

set value 0
proc increaseValue {} {
 global value
 incr value
}
interp alias $childInterp increaseValue {} increaseValue

$childInterp eval {
 while {true} {increaseValue}
}

It will show after 10000 increaseValue command executions. At that point the
value variable should be set to 10001 or a similar value. The actual number might
differ depending on the Tcl version, and how limits are internally handled. It is not
a good idea to depend on an exact value; instead use a reasonable limit.

The current number of commands run can be retrieved using the info cmdcount
command. This is the same value that limits are compared to.

SSL and Security

[536]

For example, setting the limit to allow 10000 more operations to be performed can be
done as follows:

interp limit $childInterp commands -value \
 [expr {[$childInterp eval {info cmdcount}] + 10000}]

A time-based limit is another type of limit. It is defined as a time limit type and
accepts two options -seconds and -milliseconds. The first option defines the
Unix timestamp at which a limit for the interpreter should be triggered. This can be
output from the clock scan command, but can be any Unix timestamp. The option
-milliseconds defines the number of milliseconds after a specified Unix timestamp
has been reached, at which point a limit should be triggered. This option should only
be specified along with the -seconds option.

For example, in order to cause an interpreter to reach a limit after three seconds we
can do the following:

$childInterp limit time -seconds [clock scan "+3 seconds"]

All types of limits also accept two additional options – -command and -granularity.
Both options are set independently for each limit type.

The first option specifies a Tcl script to be executed in the interpreter that the
interp limit command is currently run from. It can modify limits of the interpreter
if it wants the interpreter to continue executing.

We can also modify how often a check is made by using the -granularity option.
This option specifies how frequently a check is made; usually the check is done
before any command invocation. Setting the value to a greater value will cause a
check to be made less often, which increases performance, especially in the case of
a time limit type. Usually it is not necessary to change the default values of this
option, but if your application needs more exact limit checking, it is advised to set
the-granularity option to 1 for all limit types.

An additional limit can be set on recursion, that is, how many times one command
can invoke another inside it, either itself or any other procedure. We can specify
after how many levels of recursion an error should be thrown by using interp
recursionlimit <interpName> or <interpName> recursionlimit. If run without
arguments, it returns the current limit. If run with a single argument, it sets the value
of the recursion limit. For Tcl 8.4 and 8.5, the default value for all interpreters is 1000.

For example, we can test it in the following way:

$childInterp recursionlimit 16

$childInterp eval {

Chapter 13

[537]

 proc test {} {
 global recursecount
 incr recursecount
 test
 }
 test
}

This will give an error about the recursion limit being hit. The value of the
recursecount variable in the slave interpreter should be set to 15 or similar. Similar
to limits on a command count, it is not a good to depend on an exact value; instead
use a reasonable limit.

Examples of slave interpreter limits is located in the limits.tcl
file in the 05slaveinterp directory in the source code examples
for this chapter.

Working with safe interpreters
As mentioned earlier, Tcl offers a mechanism for creating safe interpreters. These
can be created using the interp create command with the -safe option provided.
For example:

set childInterp [interp create -safe]

This will cause a safe Tcl interpreter to be created. It can be used in the same way
as a regular slave interpreter. The main difference is that many commands are not
accessible. For example, the command socket is not available by default. Default
limitations and command hiding and exposing is explained later in this chapter.

One of the limitations is that such an interpreter cannot access any of Tcl's libraries,
as source and other commands are not available by default. For example, the
following will fail:

package require http

The ability to load packages and provide limited access to the filesystem using the
Safe Base mechanism is described later in this chapter.

Another difference between safe and normal interpreters is how binary extensions,
such as Tcl package for SQLite3, are loaded. Binary extensions have two different
mechanisms for initialization, and when creating an extension its author can choose
to limit functionality of an extension in safe interpreters. For example, the sqlite3
package does not offer any functions in safe interpreters. The package Tclx only
offers limited functionality in safe interpreters.

SSL and Security

[538]

As mentioned earlier, safe interpreters do not have access to stdin, stdout,
and stderr channels by default. The reason for this is that a safe interpreter is
created with minimum resources available by default. We can use the interp share
or interp transfer command to make some of the channels available in a
safe interpreter.

Hiding and exposing commands
Slave interpreters do not offer a full set of Tcl commands so that commands such as
exit could not be invoked, which would cause our application to exit completely.
Instead of simply removing the commands, which would make any attempt
of invoking them again impossible, slave interpreters allow hiding particular
commands. This means that they can't be accessed directly (that is, invoking exit
will not work), but can be invoked from the master interpreter.

This is often used in conjunction with an alias running in master interpreter that
checks whether a particular operation can be performed; for example, before reading
a file, a check can be made as to whether the interpreter should be allowed to read it.

Hiding a command can be done using the interp hide <interpPath> or
<interpPath> hide commands. The command accepts the name of the command to
hide as its argument. For example, in order to hide the command after we can do
the following:

interp hide $childInterp after

The command interp expose can be used to make hidden commands available
again. Similar to hide, it can be invoked as interp expose <interpPath> or
<interpPath> expose. It takes one argument—the name of the hidden command. It
can be used for commands hidden by both our code as well as by Tcl itself, such as
open command for safe interpreters.

In order to make the after command available in the interpreter again, we can do
the following:

$childInterp expose after

Commands that are hidden in a specified interpreter can be called using the interp
invokehidden command; either invoked as interp invokehidden <interpPath>
or <interpPath> invokehidden. It accepts the hidden command name as the first
argument, followed by arguments to pass to the command.

Typically this is done so that a slave interpreter's command is hidden, then an alias
is created that runs in the master interpreter and checks whether an operation can be
allowed. If it is ok to continue, invokehidden is called to invoke the hidden command.

Chapter 13

[539]

For example, let's consider modifying a socket command so that it only allows
outgoing connections and only to specific hosts. We'll need to start by hiding the
original socket command. The command socket is hidden by default for safe
interpreters. For regular slave interpreters though, we can hide it using the
following command:

$childInterp hide socket

Afer this, we need to create a procedure in the master interpreter that checks
permissions and invokes the hidden socket command of the slave interpreter,
only if it is ok to continue:

proc interpSocket {childInterp args} {

We accept any number of arguments since the socket command also accepts
multiple switches.

We'll start by searching for the -server switch; if it is present, we show an error:

 if {[lsearch $args "-server"] >= 0} {
 error "Server sockets not allowed"
 }

Now let's retrieve the host name specified for the command. Usually it is the
argument preceding the port, which is the last argument:

 set host [lindex $args end-1]

After this we check whether the host is either www.google.com or 127.0.0.1. If it is
we invoke the command. If not, we give out an error:

 if {$host == "www.google.com"} {
 interp invokehidden $childInterp socket {*}$args
 } elseif {$host == "127.0.0.1"} {
 $childInterp invokehidden socket {*}$args
 } else {
 error "Connections to $host not allowed"
 }
}

Finally, we need to make an alias that maps the socket command in the slave
interpreter to the interpSocket command in the master interpreter.

interp alias $childInterp socket {} interpSocket $childInterp

SSL and Security

[540]

After that, we can test our code by running the following code:

$childInterp eval {
 set chan [socket www.google.com 80]
 set chan [socket malicious-server 80]
}

It should terminate with error Connections to malicious-server not allowed or
a similar error.

The preceding example is located in the socket.tcl file in the
06safetcl directory in the source code examples for this chapter.

Default safe interpreter setup
Safe interpreters come with limited functionality by default. Many commands are
hidden by default. Commands that allow network or filesystem access are disabled.
They also cannot access environment variables via global env array; giving untrusted
code access to a user's environment variables is not considered safe.

Safe interpreters can't also access standard channels—stdin, stdout, and stderr.
We can share any of these channels using the interp share command, but by
default they are not accessible.

Interpreters do not also have the possibility of loading additional packages by
default; as commands such as open and source are unavailable, Tcl has no way to
load any additional package.

Even though safe interpreters have access to the interp command, this command
also has limited functionality. Safe interpreters can only create other safe slave
interpreters, even if the -safe switch is not specified when using interp create,
a new interpreter is created as safe anyway. Safe interpreters can't also change the
limits (commands, time, and recursion limits) of its own interpreter. It is also not
possible to call the interp invokehidden command, as safe interpreters can't get
access to hidden commands.

Detailed information about commands available by default in safe interpreters,
as well as what are additional limitations of safe interpreters, can be found at
http://www.tcl.tk/man/tcl8.5/TclCmd/interp.htm#M42.

Chapter 13

[541]

Using Safe Base
Safe interpreters cannot load any packages by default and their use is very limited.
Tcl also comes with a Safe Base package that extends safe interpreter functionality to
allow limited filesystem access as well as other additions that aid in package loading.

Safe Base uses safe interpreters created with the interp create -safe command.
Safe Base creates additional commands, described further in this section, that allow
more functionality while retaining the safety of the interpreter. Such interpreters can
load basic Tcl packages, but cannot access parts of the filesystem other than the Tcl
libraries that are included in Tcl itself.

We can create a safe interpreter using Safe Base by invoking the safe::interpCreate
command. It accepts an optional interpreter name. It also accepts one or more options.
These options are described later in this section.

set childInterp [safe::interpCreate]

This creates a safe Tcl interpreter that can only access the part of the filesystem that
contains Tcl libraries. We can now safely load packages such as http, but trying
to source any file outside of Tcl's libraries fails. For example:

$childInterp eval {source /tmp/myscript.tcl}

The preceding code will give a permission denied error.

We can also initialize any existing safe interpreter to offer Safe Base's extended
functionality using the safe::interpInit command. It accepts the slave interpreter
and options for the interpreter. For example:

set childInterp [interp create -safe]
safe::interpInit $childInterp

Safe Base supports the options -accessPath, -deleteHook, -statics, and -nested.
The first option specifies a list of paths that the interpreter is allowed to access.
Adding and removing directories from the list allows for managing paths where
the interpreter can source and load files from.

The option -deleteHook defines the command to run just before this interpreter
is deleted. This command will be run with the interpreter's name specified as an
additional argument. This can be used for retrieving values or cleaning up data
kept outside of the specified interpreter.

SSL and Security

[542]

The option -statics specifies whether a package is allowed to load statically defined
packages. The option -nested specifies whether this slave interpreter will be allowed
to load packages into its own slave interpreters. These options are mainly meant for
dealing with packages created in C, and can be left as they are for the majority of
Safe Base uses.

These options can be changed or read at any time using the safe::interpConfigure
command, followed by the slave interpreter name. If invoked with no additional
arguments, it returns a name-value pair's list with all available options and their
current values. Specifying just the option name returns the current value for that
option. Specifying one or more name-value pairs sets these options to new values.

For example:

interp::safeConfigure $childInterp –accessPath \
 [linsert \
 [interp::safeConfigure $childInterp –accessPath] 0 \
 "/path/to/libraries"]

This command will read the current -accessPath option's value and insert
/path/to/libraries as the first item in the path list.

Deleting an interpreter created using Safe Base can be done using the
safe::interpDelete command. For example:

safe::interpDelete $childInterp

This will cause the delete hook to be run and the interpreter to be deleted.

Complete documentation for Safe Base and Safe Tcl functionality can be found at:
http://www.tcl.tk/man/tcl/TclCmd/safe.htm

Safe Base and filesystem access
In order to provide loading of packages, Safe Base provides a few additional
commands in addition to the ones safe interpreters offer. These are source, load,
file, glob, encoding, and exit. The first two commands limit filesystem to only
access packages in specified paths.

The scope of the glob command has been limited to only access directories in the
interpreter's path. The command file is limited to dirname, join, extension,
root, tail, pathname, and split subcommands. The command encoding cannot
change system encoding or access / change paths where encodings are looked up.
Finally, exit causes only the interpreter to be deleted, but the Tcl process and master
interpreter is left intact.

Chapter 13

[543]

More details about commands available in Safe Base-created safe interpreters can be
found at http://www.tcl.tk/man/tcl/TclCmd/safe.htm#M21.

Unlike default slave interpreters, Safe Base offers limited file system access. By
default only source and load command are available for accessing files. These
allow for loading packages without providing direct access to a file system.

In addition, the list of directories that can be accessed is limited. The configuration
option -accessPath provides a list of directories that can be accessed from within
the interpreter. We can retrieve the current value, modify, and set it using safe::
interpConfigure command.

We can also use the safe::interpAddToAccessPath command to add additional
directories to the access list. It accepts the interpreter name and directory to add to
the list. This is a helper function that checks if a path exists, and adds it if it does not
exist. If the path is already in the access list, an error is produced.

For example, in order to add /tmp to the list of accessible directories, we can do:

safe:: interpAddToAccessPath $childInterp /tmp

Another feature of Safe Base is the ability to obscure actual directory names. In many
cases, finding out the path to where an application or user's directory is set up can
be sensitive information; for example, providing a path to the home directory can
specify a user's name, which might not always be what the script should be able
to access.

For this purpose, Safe Base Tcl has provided a mechanism for translating paths to
obscure original paths.

The safe::interpFindInAccessPath command can be used to find a path in an
interpreter and convert it into a safe representation. It accepts the interpreter name
followed by the directory name.

For example, we can map the Tcl library directory to a safe representation by doing:

set safepath [safe::interpFindInAccessPath \
 $childInterp $tcl_library]

puts "Directory $tcl_library is mapped to $safetcldir"

The variable tcl_library is defined by Tcl and specifies the directory used for
Tcl base functionality. The output from this would be something similar to
/opt/ActiveTcl-8.5/lib/tcl8.5 is mapped to $p(:0:).

SSL and Security

[544]

We can then use this for commands such as source or load from within a Safe Base
interpreter. For example, to manually load parray.tcl from the Tcl library directory
we can do:

$childInterp eval [list source \
 [file join $safetcldir parray.tcl]]

This will invoke a command similar to source $p(:0:)/parray.tcl.
Implementation of the source command in Safe Base will map this to actual path.

Examples of using the safe interpreter and accessing the file system can be found in
the safebase_filesystem.tcl file in the 06safetcl directory, in the source code
examples for this chapter.

We can also extend the approach taken from source command and create an open
command wrapper that only allows files specified in the -accessPath option to
be opened

We can start by creating a wrapper that checks whether a path can be accessed or
not. It accepts the slave interpreter name and directory name:

proc safeCheckAccessPath {childInterp dirname} {
 if {[catch {
 set path [safe::TranslatePath $childInterp $dirname]
 safe::DirInAccessPath $childInterp $path
 }]} {
 return ""
 } else {
 return $path
 }
}

The directory name is translated first, which expands obscured paths and a check is
made as to whether it can be accessed or not. If any of these operations fail, an empty
string is returned. Otherwise a valid path is returned.

This command uses Safe Base's internal commands safe::TranslatePath and
safe::DirInAccessPath. The first command translates path; expanding obscured
paths such as $p(:0:) and making sure it does not contain dangerous items. Second
command checks if a path can be accessed and returns an error if it cannot be accessed.

Now we can create a safe open command wrapper. It takes the interpreter name,
a list of allowed open modes, and any additional arguments. Open modes can be
those such as r, w, r+, w+, and all others supported by the open command. Please
see Chapter 2, Advanced Tcl Features for more details about open modes.

Chapter 13

[545]

The command first splits the path and checks whether the directory can be accessed
or not, and if specified, the access mode is in the list of allowed open modes. We also
check if allowedModes is not set to *; this causes all modes to be available. If either
directory is not in the allowed path or the mode is not allowed, an error occurs.
Otherwise, the hidden open command is invoked in the slave interpreter, and a file
handle is returned.

proc safeOpen {childInterp allowedModes name {access r} args} {
 set dirname [safeCheckAccessPath $childInterp \
 [file dirname $name]]
 set filetail [file tail $name]

 if {($dirname == "") ||
 (([lsearch $allowedModes $access] < 0) &&
 ($allowedModes != "*"))} {
 return -code error "Permission denied"
 }
 return [interp invokehidden $childInterp open \
 [file join $dirname $filetail] $access {*}$args]

}

We can now create an alias that only allows reading files for reading by doing:

$childInterp alias open safeOpen $childInterp {r}

We can then test opening various files. The following command will succeed as, by
default, the Tcl library directory is accessible:

$childInterp eval [list open $tcl_library/tclConfig.sh]

However, trying to read a file outside it will fail:

$childInterp eval [list open /etc/passwd]

We can also use an obscured filename using the safetcldir variable set earlier:

$childInterp eval [list open $safetcldir/tclConfig.sh]

In addition to this, any attempt to open a file for writing will fail, even if the file itself
can be accessed for reading:

$childInterp eval [list open $tcl_library/tclConfig.sh w]

Safe implementation of the open command is located in the
safebase_open.tcl file in the 06safetcl directory in the
source code examples for this chapter.

SSL and Security

[546]

Role-based authorization and interpreters
Safe Base and safe interpreters can also be used to create role-based authorization to
functionality. We can use it to create sandboxes based on what roles the user is able
to access.

We'll also modify the concept a bit—instead of defining a role, we'll define levels for
various items. For example, let's consider file access; we can think of cases where
limited and read-only access is enough. Other tasks (such as system maintenance)
might need to have full access to the entire filesystem.

Similarly for network functionality and limits, in some cases it is good to disable
connectivity and set up a one minute limit on execution. In other cases it might be
a good idea not to impose limits on any of these, especially for network-related
activities, which can also take time due to lagged networks or hosts being down.

We'll use separate Tcl namespaces for defining various roles and a list of acceptable
values. Commands for applying roles will be put in the roles namespace. Each role
is defined as a child namespace; for example, roles::limits.

Each role will define the values variable in its namespace that will specify
acceptable values. The default value for the role will be the first value in the
list of acceptable values. For example:

set roles::limits::values [list none 5s 10s 60s 300s]

This defines that acceptable values for the limits role are none, 5s, 10s, 60s, and
300s. The value of none is the default value if not specified.

Applying roles to an interpreter is also simple. We'll create a command for
applying any acceptable value for each of the roles. Its name will be in the form of
<value>Apply, and it will be defined in the namespace for this role. A command
to apply none value to the limits role would be defined as the roles::limits::
noneApply command.

This way, creation of an interpreter will simply require getting values for all
available roles and applying them.

Creating interpreters using roles
We can create a procedure that creates a safe interpreter based on name-value
pairs of roles. Each role is defined by the role name (such as file access) and value
(such as read-only).

Chapter 13

[547]

Let's start with procedure definition:

proc roles::safeInterpCreate {roles} {

We'll create a list containing the actual roles definition, based on provided values
and default values for roles not specified in the roles argument.

The procedure will start by listing all existing roles and setting the value to the
default value.

 set allroles [list]
 # map current role definitions to all available roles
 # and create a complete list of values for each role
 foreach ns [namespace children ::roles] {
 set role [namespace tail $ns]
 set values [set ${ns}::values]
 set value [lindex $values 0]

If a value of a current role is specified in the input list of roles, we check if it is any
of acceptable values. If this is the case, we set the value to what was specified as the
value for this role.

 if {[dict exists $roles $role]} {
 set v [dict get $roles $role]
 if {[lsearch -exact $values $v] >= 0} {
 set value $v
 }
 }

Finally we add the role name and value, either the default or that provided by the
user, to the list of all roles and their values.

 lappend allroles $role $value
 }

The next step is to create an interpreter using Safe Base and apply all of the roles.

 set childInterp [safe::interpCreate]

 foreach {role value} $allroles {
 ::roles::${role}::${value}Apply $childInterp
 }

 return $childInterp
}

SSL and Security

[548]

For many of the roles we might want to expose a command, assuming it has not
already been exposed. For this reason, we also create a helper procedure
roles::exposeCommand:

proc roles::exposeCommand {childInterp command} {
 if {[lsearch -exact [$childInterp hidden] $command] >= 0} {
 $childInterp expose $command
 }
}

It checks whether a command is hidden or not and if it is, exposes it. This will cause
hidden commands to be exposed and commands already available to be skipped.

Sample role definitions
Roles will usually depend on the types of tasks that scripts run in a sandbox would
be performing. However, some roles such as managing access to the filesystem and
network can be considered common.

One of the common roles could be managing file access, which can be set to:

no file access
read-only
read-write access to limited set of directories
full access to entire filesystem

Let's start by defining this role's namespace and values variable:

namespace eval roles::files {}

set roles::files::values [list none readonly readwrite full]

Now we need to implement a method to apply any of these values to an interpreter.

The filesystem access does not perform any operations at all, but needs to be created:

proc roles::files::noneApply {childInterp} {
}

Read-only access and read-write access use safeOpen, which was implemented
earlier in this chapter. For this example, it has been moved to the roles::files
namespace. Read-only access specifies r as the only mode available. Read-write
does not limit open access modes.

•
•
•
•

Chapter 13

[549]

Both read-only and read-write modes also expose the fconfigure command to
allow specification of encoding, translation, and other parameters needed for reading
from and/or writing to files.

proc roles::files::readonlyApply {childInterp} {
 # create an alias for open to allow any operation
 # within limited paths only
 $childInterp alias ::open \
 ::roles::files::safeOpen $childInterp "r"
 roles::exposeCommand $childInterp fconfigure
}

proc roles::files::readwriteApply {childInterp} {
 # create an alias for open to allow any operation
 # within limited paths only
 $childInterp alias ::open \
 ::roles::files::safeOpen $childInterp "*"
 roles::exposeCommand $childInterp fconfigure
}

Full access to the filesystem exposes open, fconfigure, and file commands in their
full functionality.

The alias for the file command needs to be removed prior to exposing the original
file command.

proc roles::files::fullApply {childInterp} {
 roles::exposeCommand $childInterp open
 roles::exposeCommand $childInterp fconfigure

 $childInterp alias file {}
 roles::exposeCommand $childInterp file
}

Defining the time limits roles is very similar. We define available values, which
correspond to time limits that will be imposed on the interpreter.

namespace eval roles::limits {}

set roles::limits::values [list none 5s 10s 60s 300s]

Applying no limits simply does nothing:

proc roles::limits::noneApply {childInterp} {
}

SSL and Security

[550]

Any other limit requires specifying an appropriate value for the -seconds option to
the interp limit command and time limit type. We'll use the clock scan command
for this:

proc roles::limits::5sApply {childInterp} {
 $childInterp limit time -seconds [clock scan "+5 seconds"]
}

proc roles::limits::10sApply {childInterp} {
 $childInterp limit time -seconds [clock scan "+10 seconds"]
}

proc roles::limits::60sApply {childInterp} {
 $childInterp limit time -seconds [clock scan "+60 seconds"]
}

proc roles::limits::300sApply {childInterp} {
 $childInterp limit time -seconds [clock scan "+300 seconds"]
}

Using role-based interpreters
We can now create a sample interpreter that can access all files, has limited network
connectivity, and has a five-second time limit.

set childInterp [roles::safeInterpCreate [list \
 files full \
 network local \
 limits 5s \
]]

We can now test if our new interpreter can connect to the www.packtpub.com port 80
by running:

if {[catch {
 $childInterp eval {socket www.packtpub.com 80}
} error]} {
 puts "Remote connection failed: $error"
} else {
 puts "Remote connection succeeded"
}

Chapter 13

[551]

The result should be a message saying Remote connection failed: Connection
to www.packtpub.com disallowed or something similar.

We can also try to run an infinite loop, which should also fail:

$childInterp eval {set j 0; while {true} {incr j}}

A complete example is located in the 07roles directory in the source code
examples for this chapter.

The roles.tcl file is the main file, while role_file.tcl, roles_limit.tcl and
roles_network.tcl files define sample roles for file, network access, and limits.

Summary
Security is a very important aspect of creating an application. It should be considered
when creating a complex application; for example, how to securely communicate,
establish a system for authenticating and authorizing users, and many other aspects.

In this chapter, we have learned how to:

Use SSL to create client and server applications.
Set up our own Public Key Infrastructure using the OpenSSL package. This
can be used to set up a set of SSL keys and certificates, which all components
of our system can use to authenticate themselves.
Create a secure communication system, and make sure all certificates can be
generated and transferred securely to remote systems before they can be fully
authenticated within the infrastructure.
Use Tcl slave interpreters as parts of the application and / or provide a
sandbox for running potentially untrusted code.
Tcl mechanisms for securing evaluation of such code, as well as ways of
limiting resources that such code could use.
Apply role-based authorization to providing functionality in slave interpreters.
Use safe Tcl interpreters, authentication, and roles to provide an efficient and
easy-to-manage way to create interpreters customized for a particular user,
and / or operation's privileges and access rights.

•
•

•

•

•

•
•

SSL and Security

[552]

While this chapter focused on the security aspects of creating a networked application,
this is far from covering all possible aspects of security that we should have in mind.
Whenever designing or writing a networked application and / or an application that
takes input from users, it is always a good idea to think about how the user input
could either cause unwanted effects, gain access to information that should not be
exposed or even damage the system itself. Creating a proper security model is a large
issue and should be dealt with for obtaining each solution separately.

This chapter concludes this book. You are encouraged to run examples that were
shown throughout the book as well as experiment on your own with Tcl, how it can
be used to build networked applications. We hope that you have found Tcl's unique
ability to create standalone binaries useful. We also hope that this book will be the
beginning of your journey into the world of Tcl, networking, and creating solutions
using technologies presented throughout this book.

Index
Symbols
${logger}::trace command

about 148
::msgcat::mc command 181
::msgcat::mcload command 181
::msgcat::mcset command 180
-flatlist command 186
-force parameter 144
-list command 186
-prefix parameter 144
.tclaccess method 401
_initArray command 512

A
ActiveState 11
ActiveTcl

about 11, 13
installing, on Unix-like systems 15, 16
installing, on Windows 14
Teacup 17
Teapot 17

AddBooks method 492
addItem command 54
additional Tcl packages

installing 16, 17
addJob command 432
after command 92
after cancel command 96
after idle command 96
agent, SNMP

about 320
setting up 330-333

aliases 532

appenders
about 151
console 152
creating 152
example 153
fileAppend 152

appendFromScript method 202
args parameter 343
array exists command 35
array get command 468
arrayName 191
array names command 36
arrays, Tcl

about 35
array size 37
array variables, manipulating 35

asText method 284
asXML method 199
audit::audit command 155
audit::configure command

about 154
parameters 154

audit::configure command, parameters
-datafile 155
-datafilecount 155
-level 154
-limit 154
-logfile 155
-logfilecount 155

audit::saveAudit command 156
Audit browser

example 156
starting 156
using 156

[554]

audit package
about 154
features 157

aufilename variable 441
authenticateLDAP command 397
authentication 495
authorization 495, 527
authorizeClient command 421
authorize command 315
autoupdate

adding, to application 434, 435
implementing on client-side application

436-442
implementing on server-side application

435, 436
autoupdate feature

about 129, 130
adopting, in Starpack files 130

B
Base64 standard 249
binary

updating 130-132
blogger.getUsersBlogs method 472
blogger.newPost method 470
blogger API 469
blogid attribute 472
break command 42, 221
buffering

about 225
fconfigure command used 225
flush $channel command used 226

byte code language (BCL) 10
Byte Order Mark (BOM) markers 286

C
callback command 232
callbacks 90
catch command 224, 230
cd command 86
centraltimediff variable 300
certificate, managing from Tcl

about 516
client-side sample application, creating

522-524
sample application, creating 516

sample application, testing 525
server side sample application, creating

517-521
certificate authority (CA)

about 496
types 497

certificate information
C attribute 501
CN attribute 501
Email attribute 501
L attribute 501
O attribute 501
OU attribute 501
ST attribute 501

certificates 496
CGI

about 355
url 355

channel
-buffering option 77
-buffersize option 78
-translation option 78
about 73
binary option 78
blocking channel 77
non-blocking channel 77

channel events 93, 94
channelId 177
childInterp variable 529
childNodes method 197
cipher attribute 502
classes

inheriting 66, 68
client-server application, HTTP based. See

also HTTP-based applications
client-server application, HTTP based

creating 412
performance, improving 460, 461
scalability, improving 460, 461

client-server databases
about 184
Mysql 184
PostgreSQL 184

client-side application
autoupdate, implementing 436-438
creating 419
information, storing 430, 431

[555]

clock command 46, 299
clock format command 47
clock scan command 47
clock seconds command 46
close command 76
comm::comm command

about 307
config subcommand 307
return_async subcommand 310
return subcommand 310
self subcommand 308

command-line options, SDX
lsk 120
qwrap 120
unwrap 120
wrap 120

comm interface 431
Common Gateway Interface. See CGI
comm package 307
comm protocol 307
communication, HTTP-based applications

about 420
client-side implementation 423-425
server-side 420, 422

communication types, SNMP
request, sending to agent 320
traps 320

complexcalculation classes
relating, with cache 70

complex data types, SOAP
creating 482, 483

condition variable 39
configuration, TclHttpd

about 372
Config gui 1 372
Config LogFile path 372

content type, MIME 248, 249
continue command 42
counter class

creating 64, 65
counter variable

about 159
value, checking 161

csa::apihandle command 432
csa::authorizeClient command 427
csa::autoupdateInProgress variable 438, 440

csa::checkAutoupdateBinaryDone command
439

csa::checkAutoupdate command 436
csa::checkAutoupdateDone command 438
csa::downloadModules command 458
csa::downloadModulesDone command 458
csa::processModulesResponse command

457
csa::requestJobs command 419, 442, 456
csa::requestJobsDone command 423, 456
current date and time

getting 298-301
current working directory 86
customauth::getUserId command 394
customauth::handle command 393

D
databases

client-server databases 184
embedded databases 185

data file structure 106
data objects, SNMP

about 323
identifying, OIDs used 323

data types, SNMP
counters32, counter64 323
gauges 323
integer and integer32 323
IP address 324
string 323
time tick 324

data types, SOAP
about 481
complex data types 481
complex data types, creating 482, 483
simple data types 481
simple data types, using 481

data types, Tcl
about 26
arrays 35
dictionaries 37, 38
flow control 39
lists 28, 29
loops 40
mathematical expressions 38
own commands, defining 42

[556]

dictionaries 50
dictionary 50
floating point value 49
integer value 49
list 50
string, converting 51
string, converting to lists 51
string / binary data 49

data types, XML-RPC
about 467
base64 467
boolean 467
dateTime.iso8601 467
double 467
i4 , int 467
string 467

days attribute 501
dbListAllBooks command 485
dbListUsers command 486, 487
debugger_break command 168
debugging 157
default channels

stderr 73
stdin 73
stdout 73

default directory structure, TclHttpd
about 371
bin, subdirectories 371
custom, subdirectories 371
htdocs, subdirectories 371
htdocs/cgi-bin, subdirectories 371
lib, subdirectories 371
subdirectories 371

delete command 146
destroy method 65
Developer eXtensions (SDX) 106
dict command 38, 295
dict create command 38
dict get command 38
dictionaries 37
DNS

callbacks, using 296, 297
checking 294, 295
querying 294
query types 296

dns::address command 295
dns::cname command 295

dns::error command 295
dns::name command 295
dns::resolve command 294
dns::result command 295
dns::status command 295
dns::wait command 294
DNS query types 296
DocDomain command 394
docRoot parameter 393
documentation, TclHttpd 368
document type handlers, TclHttpd server

about 379
creating 379
custom templates, creating 382-385
defining, for MIMEType 380
watermark example 379

domain handlers, TclHttpd server
about 386
request handlers, setting up 386-391
session-based authentication, creating 393-

397
dom parse command 195
Dynamic Languages Toolkit (DLTK) 18

E
e-mail handling

about 248
e-mails, receiving 262
e-mails, sending 255
MIME, in Tcl 250
MIME, learning 248

e-mails
automated e-mail sending 257
receiving 262
sending 255, 257
template based e-mails, creating 257-262

e-mails, receiving
e-mails retrieving, POP3 used 265, 266
incoming e-mails, parsing 266-271
messages, listing 264, 265
POP3 protocol, using 263, 264

eavesdropping 496
echoAccept command 94
Eclipse

about 7, 18
configuring 18-20

[557]

Eclipse Modelling Framework (EMF)
extensions 19

elements, array
atime 82
ctime 82
gid 82
mode 82
mtime 82
size 82
type 82
uid 82

emailtemplate::readText command 258
embedded databases

about 185
mk4tcl 185
SQLite 185

encoding names command 177
env command 23
eof command 74, 214
error handling, in TCP networking 222-224
eval command 55
eval method 191
event-driven programming

about 90
channel events 93
event loop, entering 91
idle event 95
Tcl events 90
timer event 95

event loop
entering 91

example, XML-RPC usage 469-472
exec command 23, 75
executable file structure

about 107
diagrammatic representation 107

expr command 38, 52
extensible applications

communication, with server 456-460
creating 442
modules, creating 443-445
modules, handling on client 452-455
server-side 446-451

F
false command 75
fblocked command 215
fconfigure command 76, 210, 219
fcopy command 95, 220
fileevent command 93

about 213
parameters 213

file management
about 79
file command 79
file copy command 80
file delete command 80
file mkdir command 81
file rename command 80

file operations
-directory option 85
-path option 85
-tails option 85
-types option 85
about 73, 81
channel options, configuring 77, 78
current working directory 86
file dirname command 81
file extension command 82
file information, getting 82
file isdirectory command 84
file isfile command 84
file join command 81
file management 79
filename related operations 81
file nativename command 82
file normalize command 82
filereadable command 84
file rootname command 82
files, listing 84, 85
files, reading 73-76
files, writing 73-76
file split command 81
file tail command 81
file writable command 84
file atime command 83
file attributes command 84

[558]

file link command 83
file lstat command 83
file mtime command 83
file readlink command 83
file stat command 82, 83
modes 74

files, listing
global command used 84

files, transfering
about 271
FTP, using 286
HTTP, using 273
resource location, specifying 271, 272

File Transfer Protocol. See FTP
filters, TclOO 72
firstChild method 196
flow control, of program 39, 40
flush command 76
for command 40
foreach command 41
forsequence command 57
freeWrap program 132
FTP 115, 271, 286
ftp::Append command 288
ftp::Cd command 289
ftp::Close command 292
ftp::Delete command 291
ftp::FileSize command 289
ftp::Get command 288
ftp::List command 290
ftp::MkDir command 291
ftp::ModTime command 289
ftp::NList command 289
ftp::Open command 287
ftp::Pwd command 289
ftp::Reget command 288
ftp::Rename command 291
ftp::RmDir command 291
ftp::Type command 287
FTP, for file transfer

connections, establishing 287
directories, listing 289-292
files, listing 289-292
files, retrieving 287
files, uploading 288, 289

funtions, managing jobs
csa::addJob 428
csa::getJobResult 428
csa::getJobs 428
csa::setJobResult 428

G
GET, HTTP 276
getJobResult command 433
getJobs command 421
gets command 74, 214
getUserId command 394
global command 54
Globally Unique Identifier (GUID) 502
global variables 54
glob command 53
guid variable 421

H
hasChildNodes method 196
Hibernator application example 127-129
html package

::html::author string command 363
::html::bodyTag command 364
::html::closeTag command 364
::html::description command 363
::html::end command 364
::html::h3 command 364
::html::head pageTitle command 363
::html::keywords command 363
::html::meta command 363
::html::openTag command 364
::html::submit command 364
::html::tableFromList command 364
::html::textInput command 364
about 362
features 362, 363
using 362

HTTP
about 115, 271, 273
status codes 275

http::cleanup command 274
http::data command 274
http::error command 275

[559]

http::formatQuery command 276
http::geturl command 273
http::meta command 276
http::ncode command 275
http::register command 282
http::status command 275
HTTP, for file transfer

cookies, in Tcl 280, 281
cookies, sending 279
data, retrieving 273-276
encryption 282
HTTP-level authorization 279
information submitting, GET and POST

used 276-278
partial content downloading 279
RSS information, retrieving 282-286

HTTP-based applications
autoupdate, adding 434
client application 419
comm interface 431
communication 420
creating 412, 417
information, storing 426
registration 420
server application 418
source code structure, preparing 413-416
testing 433, 434

HyperText Transfer Protocol. See HTTP

I
identifiers

%C 152
%c 152
%d 152
%H 152
%M 152
%m 152
%P 152
%p 152

idlist variable 268
if command 39
incr command 58
incrCounter command 533
increaseValue command 535
info cmdcount command 535

info patchlevel command 9, 26
information storing, HTTP-based applica-

tions
on client-side application 430, 431
on server-side application 426-429

inheritance 66
initBlogger command 471
installation

ActiveTcl 13
additional Tcl packages 16, 17

installation, TclHttpd
about 367
source code, retrieving from CVS reopsitory

368
instrumentation 163
IntAddDone command 491
IntAdd method 480
Integrated Development Environments

(IDE) 7
integrity 495
internal structure, Starkit

about 122
additional packages, adding 124
resource files, using 124
top-level directory 122

internationalization
about 176
application, translating into different lan-

guages 180-183
encoding issues 176-179

Internet Control Message Protocol (ICMP)
319

Internet media type standard
about 248
MIME subtype 248
MIME type 248

interp alias command 532
interp command 529
interp create command 529, 537
interp delete command 534
interp invokehidden command 538
interp limit command 536
interpSocket command 539
issuer attribute 502
items variable 54

[560]

J
Java Runtime Environment (JRE) 18

K
Komodo

about 7, 20, 21
configuring 21
download link 20

L
lappend command 30
lassign command 35, 264
LDAP

about 301
information, modifying 305, 306
users, authenticating 303, 304
using, from Tcl 301-303

ldap::add command 305
ldap::addMulti command 305
ldap::bind command 303
ldap::connect command 302
ldap::delete command 307
ldap::disconnect command 303
ldap::modify command 305
ldap::modifyDN command 306
ldap::modifyMulti command 305
ldap::search command 302
ldap::secure_connect command 302
Lightweight Directory Access Protocol. See

LDAP
lindex command 29, 51
linsert command 30
list, Tcl

about 28
creating 28-34

ListAllBooks method 493
list command 28
listLevels command 147
llength command 29, 51
local debugging 162-166
local variables 54
localvar variable 61
log::levels command 138
log::log command 138
log::lvChannel command 139

log::lvChannelForall command 139
log::lvCmd command 139
log::lvCmdForall command 139
log::lvCompare command 138
log::lvIsSuppress command 139
log::lvIsSuppressed command 138
log::lvIsSuppressLE command 139
log::Puts command 139
logger::import command 144
logger::init serviceName command 142
logger::setlevel command 145
logger::utils::applyAppender, options

-appender 152
-appenderArgs 152
-levels 152
-service 152
-serviceCmd 152

logger package
about 142
appenders 151, 153
benefits 153
logger instance, creating 142
logging / tracing command implementa-

tion, changing 149, 150
log levels 143
log levels, enabling or disabling 145-147
tracing 148

logger variable 143
logging, Tcl applications

about 136
audit package 154
logger package 142
log package 136

log levels, logger package
about 143, 144
enabling or disabling 145-147

log levels, log package
about 137
enabling or disabling 139

log package
about 136
features 142
initialization 137
logging command default implementation,

replacing 139-141
log levels 137
log levels, enabling or disabling 139

[561]

loops 40
lrange command 30, 315
lreplace command 31
lsearch command 33
lset command 30
lsort command 31

M
Management Information Base (MIB)

about 323
MIB SMIv2 323

master interpreter 528
messageId variable 258
Metakit database

about 106-108
features 108
subview 109
view 109
working with 109-113

MetaWeblog API 469
method forwarding, TclOO 70, 72
methods

inheriting, from counter class 66
MIBSmithySDK 336
MIB tree 324
MIME

about 248
content type 248, 249
multipart messages 249, 250

mime::getbody command 267
mime::getheader command 267
mime::getproperty command 267
mime::initialize command 251, 266
MIME, in Tcl

about 250, 251
messages, creating 251
multipart elements 252

mixins, TclOO
about 69
building 69
cache mixin 69
using 69, 70

mk::file close myTag command 110
mk::file command 109
mk::file commit myTag command 110
mk::file open command 110

mk::file rollback myTag command 110
mk::file views myTag command 110
mk::get path command 112
mk::row append myTag.myView command

111
mk::row create command 111
mk::row delete path command 111, 112
mk::row insert path 1 tempPath command

111
mk::row replace path tempPath command

112
mk::set path command 112
mk::view delete myTag.myView command

111
mk::view layout myTag.myView command

110
mk::view size myTag.myView command

110
MK4 116
Mk4tcl 109
Movable Type API 469
msgcat::mclocale command 182
msgcat::mcpreferences command 182
msgcat package 180
multipart content, MIME

about 249
types 249

multipart content types, MIME
multipart/alternative 250
multipart/mixed 249
multipart/related 249

multipart elements, MIME
about 252
attachment part, creating 253
HTML part, creating 252
plain text version of e-mail, creating 252

Multipurpose Internet Mail Extensions. See
MIME

multithreaded applications
about 98
channels, transfering 103
threads, managing 99, 101
thread shared variables 101, 102

myCommand command 42
mycommand command 498
myDict variable 38
myexample namespace 60

[562]

myFunction command 92
myhandler command 313
myList variable 28
mypackage 88
myPuts command 140
Myservice::IntAdd command 489
Mysql

about 185
connecting to 185, 187

mysql::connect command 185
mysql::fetch command 186
mysql::map command 186
mysql::receive command 187
mysql::sel function 186
mysql::use command 185

N
namespace variables 54
ncgi package

::ncgi::cookie cookieName command 360
::ncgi::header command 359
::ncgi::importFile -client key command 359
::ncgi::importFile -server key uploaded-

FileName command 359
::ncgi::importFile -type key command 359
::ncgi::import name ?tclName? command

360
::ncgi::names command 359
::ncgi::parse command 359
::ncgi::setCookie options command 360
about 357
features 357
usage, illustrating 357, 358

Net-SNMP commands
-c option 327
-h option 327
-O option 328
-r option 327
-t option 327
-V option 327
-v option 327
about 327

Net-SNMP package
about 326, 327
snmpwalk command 328

nextSibling method 196

node types
commentNode 201
elementNode 201
textNode 201

nodeValue method 196
nonblocking sockets

about 212
channel events, handling 213-217

notAfter attribute 502
notBefore attribute 502

O
object-oriented programming

about 62
counter class, creating 64, 65

object definitions, TclOO 68
Object identifiers (OIDs)

about 323
example 324
string representation 324

OID node 324
ok variable 421
onResolveDone command 297
oo::define command 65
oo::objdefine command 68
open command 73
OpenSSL

about 496
URL 496

openssl command-line utility 499
openssl req command 506
Oratcl 194

P
package command 87
packages, Tcl

about 87
creating 88
loading 87

package ifneeded command 88
package require command 87
performances issues, SSL 526, 527
perform method 70
pg_disconnect command 190
pg_execute command 189

[563]

pg_result command 190
pg_select command 189
pgintcl 188
pgtcl 187
pkg_mkIndex command 408
pkgIndex.tcl 88
POP3 263
pop3::close command 266
pop3::delete command 266
pop3::list command 264
pop3::open command 263
pop3::retrieve command 265
pop3::status command 264
pop3::top command 265
pop3::uidl command 264
POST, HTTP 276
PostgreSQL

connecting to 187-189
Post Office Protocol version 3. See POP3
proc command 42
proxyReturn procedure 311
public key infrastructure

certificate authority, creating 505, 506
certificates, automating from Tcl 510-515
certificates, setting up manually 504
keys, creating 506
keys certificate, signing 507, 508
setting up 503

publish attribute 473
puts command 23, 76
pwd command 86

Q
quoted-printable standard 249

R
randomData function 244
raw values, Tcl

storing 204, 205
read $s command 235
read command 75
readData command 214
readData function 216
Really Simple Syndication. See RSS
recursecount variable 537
remote debugging 167, 168, 169

Rentbook service 483
requestCallback command 233
requestJobsDone command 424
req variable 421
resetablecounter class 66
Resetcounter method 66
respond command 230
respondHandle command 230
response variable 421
return subcommand 310
robust scheduling

tclcron, used 97, 98
role based authorization

creating, Safe Base and safe interpreters
used 546

interpreters, creating based on roles 546,
547

sample role definitions 548-550
role based interpreters

using 550, 551
roles 527
roles::exposeCommand 548
roles::limits::noneApply command 546
route system command 75
rpcvar::typedef command 467
RSS 282
runJobs command 424

S
safe::DirInAccessPath command 544
safe::interpAddToAccessPath command 543
safe::interpConfigure command 542, 543
safe::interpCreate command 541
safe::interpDelete command 542
safe::interpFindInAccessPath command 543
safe::interpInit command 541
safe::TranslatePath command 544
Safe Base

filesystem access 542
safe::DirInAccessPath command 544
safe::interpAddToAccessPath command

543
safe::interpConfigure command 542, 543
safe::interpCreate command 541
safe::interpFindInAccessPath command

543

[564]

safe::interpInit command 541
safe::TranslatePath command 544
using 541

safe interpreters
about 528
commands, hiding and exposing 538, 539
default setup 540
interp expose command 538
interp invokehidden command 538
interpSocket command 539
Safe Base package, using 541
working with 537

sbits attribute 502
Scotty

about 334
downloading 334
features 334-336
installing 334, 336
TkIned 334
TkIned application 336

SDX
about 120
command-line options 120

Secure Socket Layer. See SSL
security 495
selectNodes method 284
self-signed certificates

generating 501-503
serial attribute 501, 502
server::getAvg command 161
server application

autoupdate, implementing 435, 436
creating 418
information, storing 426
request, handling 420-422

serverProc 209
setcounter method 68
setJobResult command 422
setvalue method 65
simple data types, SOAP

about 481
boolean 481
dateTime 481
float, double 481
integer 481
string 481

Simple Mail Transfer Protocol (SMTP) 255

Simple Object Access Protocol. See SOAP
slave interpreter

about 528
aliases, creating 532
aliases, managing 532, 534
deleting, interp delete command used 534
information, sharing with 530
limits, imposing 534-536
using 529

smtp::sendmessage command 255
SNMP

about 319, 320
agent 320
agent, setting up 330-333
communication types 321
data objects 323
manager 320
versions 321

SNMP agent
setting up 330-333

SNMP communication, Tcl used
about 339
asynchronous queries, performing 343
MIB trees, walking over 344
SNMP, querying 339-342
SNMP agent, creating 347, 348
traps, receiving 345
traps, sending 346

SNMP manager 320
snmptable command 328
snmpusm command 331
SNMPv1 321
SNMPv2

about 322
inform packet 322
SNMPv2c 322
SNMPv2u 322

SNMPv2c 322
SNMPv2u 322
snmpwalk command 328
SOAP

about 463, 473
connecting, to SOAP based services 487,

488
features 473
sample communication flow 475
Tcl package link 465

[565]

web services, creating 475
WSDL file 474

SOAP based services
complex data types, using 492, 493
connecting to 487, 488
methods, invoking via commands 489
methods API invoking, DoCall commands

used 490, 491
SOAP web service

creating 475, 477
data types, defining 481
data types, specifying 479
data types, using 484-487
server, setting up 476
service methods, creating 479, 480

socket 208
socket -server command 94
socketWritable procedure 219
someMethod 467
source command 53, 179
split command 75
SQLite

about 190
databases, managing from SQLiteStudio

193
using 190-193

SQLiteStudio
about 193
databases, managing from 193

sqlQuery 191
SSL

about 496
certificates, managing, from Tcl 516
client and server authentication 497
performance issues 526, 527
public key infrastructure, setting up 503,

504
self-signed certificates, generating 501-503
server-only authentication 497
using, from Tcl 497-500

SSL-enabled client
creating, from Tcl 497

SSL-enabled TCP sockets 498
stack frames

about 56
stack frame 0 56

stack frame 1 56
stack frame 2 56

standalone Tcl application
Hibernator application 127-129

standards, remote procedure calls
JSON-RPC 464
SOAP 463
SOAP over SMTP 464
WSDL 464
XML-RPC 463

Starkit
about 106, 120
interactions, between files 125
internal structure 122-124
Starkit file, creating 120
Starkit file format 124

starkit::startup command
about 123
actions 123
values 123

Starkit file
creating, SDX used 120, 122

Starpacks technology
about 105, 126
benefits 126
limitations 127

startup parameters, TclHttpd
-config configFileName 371
-docRoot directoryPath 371
-library directoryPath 371
-port portNnumber 371

stderr channel 531
stdin channel 531
stdout channel 531
string command 27
string match command 27
string trimleft command 394
stub commands 489
subject attribute 502
subst command 382
substify::substify command 382
suid-root 335
switch command 40
system command 75

[566]

T
Tcl

about 8, 9, 46
channel 73
databases, using 184
data types 49
default channels 73
e-mail, handling 248
event-driven programming 90
extensions 12
features 46
file operations 73
files, accessing 73
files, transfering 271
global variable 54
installation 13
internationalization 176
local variable 54
modules 89
multithreaded applications 98
namespace variable 54
object-oriented programming 62
object types 49
package, creating 88
package, loading 87
packages 87
raw values, storing 204, 205
Scotty 334
SQL, using 183
stack frames 56
TCP sockets, using 208
Tk 12
time and date manipulation 46-48
time package 298
UDP sockets, using 234
variables, types 54
XMl, handling 195-204

Tcl, as CGI scripts
html package, used 362
ncgi package, used 357, 358
using 355-357

Tcl-ers 107
TclApp 132
Tcl applications

commands, limiting 314-316

commands, performing asynchronously
310, 311

comm client and server 307-309
comm package, using 307
communicating with 307
debugging 157
logging 136
security 528
security aspects 311-314
troubleshooting 135

Tcl commands documentation syntax 22
Tclcron

about 97
manual package 97

tclcron::schedule command 97
Tcl Dev Kit Debugger

about 162
features 169
local debugging 162-163
remote debugging 167

Tcl Dev Kit Inspector 158-161
Tcl events

-command option 95
-size option 95

Tcl event types
file/channel events 90
GUI events 91
idle events 91
time events 90

TclHttpd
about 367
configuring 372
default directory structure 371
documentation 368
homepage link 367
installing 367
performance 373
running 369, 370
startup parameters 371

Tclhttpd 465
TclHttpd server

CGI, using 374
debugging 402, 403
document type handlers, creating 379
domain handlers 386
embedding, in application 404-408
programming 373

[567]

resources, securing 400, 401
static content, providing 373
TclHttpd template system, using 398-400
URL, mapping to application 374-378

TclHttpd template system
about 398
using 398, 399

Tcl Improvement Proposal (TIP) 11
Tclkit

about 106, 118
download link 119, 414
extensions 118
supported platforms 119

Tcl language 11
Tcllib 12
tcllib collection 135
Tcl modules 89
Tcl Network Management (Tnm) 334
tclodbc extension 194
TclOO 62

class definition 64
features 63
filters 72
inheritance 66
invoking commands 67
method forwarding 63, 70-72
mixins 63, 69
multiple inheritance 63
object definitions 68

TclOO objects 56
TclPro Debugger 170-172
tclsh 9
tclsh85 9
tclsh binary 336
Tcl syntax

about 22
commands, nesting 26
commands, running in tclsh interpreter 24
data types 26
grouping 25
script, running 22
Tcl commands documentation syntax 22
variables 24

tcltest 59
tclws package 465

TCP and UDP comparison
about 242
streams vs. datagrams 242

TCP communication 208
TCP networking

binary data, transferring 217-220
buffering 225
common issues 225
data, transferring with fcopy command

220, 221
error handling 222-224
error related issues 222
nonblocking socket, using 212, 213
server sockets, creating 209, 210
service, connecting to 231-233
TCP connection, creating 210, 211
thread pools, using 226-230
threads, using 226

TCP sockets
using 208

tDOM 195
tDOM package 465
Teacup 17
Teapot 17
telephoneNumber attribute 302
testcounter class 68
thread::create command 99
thread::send -async command 99
thread::send command 99
thread::transfer command 103
thread shared variables 101
time::cleanup command 299
time::error command 298
time::getsntp command 298
time::gettime command 298
time::status command 298
time::unixtime command 299
time and date manipulation, Tcl

about 46-48
clock command, using 46
clock format command, using 47
clock scan command, using 47
clock seconds command, using 46

timer events 95
Tk 12
tkcon 21, 22

[568]

TkInEd (Tcl/Tk-based Interactive Network
Editor) 334

TkIned application 336-338
tls::attach command 230
tls::detach command 230
tls::init command 499
tls::misc command 501
tls::socket command 282, 498
tls::status command 502
tls package 497
Tnm::mib command 341
Tnm package

about 335
features 349-351
MIB trees, walking over 344
SNMP, relating to MIB 339
traps, sending 346

Tnm types 340, 341
tpool::create command 227
tpserver::tpool variable 227
tracing mechanism 148
traps, SNMP 320
tsv::array names command 102
tsv::get command 101
tsv::incr command 101
tsv::lappend command 102
tsv::llength command 102
tsv::llindex command 102
tsv::lock command 102
tsv::lpop command 102
tsv::lpush command 102
tsv::lreplace command 102
tsv::lsearch command 102
tsv::lset command 102
tsv::names command 102
tsv::set command 101
tsv::unset command 101

U
UDP communication

about 234
reliable messages, sending 238-242
service, implementing 236, 237
UDP-based client, creating 234, 235

UDP sockets
about 234
advantages 245
disadvantages 245
limitations 243

Unix-like systems
ActiveTcl, installing 15

unset command 24
uplevel command 56, 57
uploadFile procedure 219
upvar command 56, 57
uri::join command 272
uri::split command 272
uri package 272
Url_DecodeQuery command 390
Url_PrefixInstall command 386
use return_async subcommand 310

V
validcommands variable 313
varbind 339
variable command 55
versions, SNMP

about 321
SNMPv1 321
SNMPv2c 322
SNMPv2u 322
SNMPv3 322

VFS
about 114
FTP 115
HTTP 115
Metakit database, using 117, 118
MK4 116
ZIP 115

vwait command 91
vwait forever command 210

W
watermark example 379
while command 41
Windows

ActiveTcl, installing 14

[569]

writable event 94
WS::Client::CreateStubs command 489
WS::Client::DoCallAsync command 491
WS::Client::DoCall command 490
WS::Client::GetAndParseWsdl command

488
WS::Server::Service command 477
WS::Server::ServiceProc command 479
WS::Utils::ServiceTypeDef command 482
WSDL 464

X
XML

handling 195-204
XML-RPC

about 463
command, invoking 466
connecting to 465
data types, specifying 467, 468

example 469
methods, defining 466
return types, mapping to Tcl 469
someMethod method 466
Tcl package link 465
using 469-473

XML Document Object Model (DOM)
parser 195

XMLRPC::create function 466
XPath syntax

/ 198
//tag 198
/tag 198
/tag/text() 198
/tag1/tag2 198

Z
ZIP 115

Thank you for buying
Tcl 8.5 Network Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Drupal 6 Social Networking
ISBN: 978-1-847196-10-1 Paperback: 312 pages

Build a social or community web site, with friends
lists, groups, custom user profiles, and much more

1. Step-by-step instructions for putting together a
social networking site with Drupal 6

2. Customize your Drupal installation with
modules and themes to match the needs of
almost any social networking site

3. Allow users to collaborate and interact with
each other on your site

4. Requires no prior knowledge of Drupal or PHP;
but even experienced Drupal users will find
this useful to modify an existing installation
into a social web site

Zabbix 1.8 Network Monitoring
ISBN: 978-1-847197-68-9 Paperback: 428 pages

Monitor your network hardware, servers, and web
performance effectively and efficiently

1. Start with the very basics of Zabbix, an
enterprise-class open source network
monitoring solution, and move up to more
advanced tasks later

2. Efficiently manage your hosts, users, and
permissions

3. Get alerts and react to changes in monitored
parameters by sending out e-mails, SMSs, or
even execute commands on remote machines

4. In-depth coverage for both beginners and
advanced users with plenty of practical,
working examples and clear explanations

Please check www.PacktPub.com for information on our titles

Drools JBoss Rules 5.0
Developer’s Guide
ISBN: 978-1-847195-64-7 Paperback: 320 pages

Develop rules-based business logic using the
Drools platform

1. Discover the power of Drools as a platform for
developing business rules

2. Build a custom engine to provide real-time
capability and reduce the complexity in
implementing rules

3. Explore Drools modules such as Drools Expert,
Drools Fusion, and Drools Flow, which adds
event processing capabilities to the platform

4. Execute intelligent business logic with ease
using JBoss/Drools, a stronger business-rules
solution

GlassFish Security
ISBN: 978-1-847199-38-6 Paperback: 296 pages

Secure your GlassFish installation, Web applications,
EJB applications, Application Client modules, and
Web services

1. Secure your GlassFish installation and J2EE
applications

2. Develop secure Java EE applications including
Web, EJB, and Application Client modules

3. Secure web services using GlassFish and
OpenSSO web service security features

4. Support SSL in GlassFish including Mutual
Authentication and Certificate Realm with this
practical guide

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introducing Tcl
	What is Tcl/Tk
	Extensions
	Tk

	Installation
	Windows
	Unix-like systems
	Installation of additional Tcl packages

	Additional tools
	Eclipse
	Komodo
	tkcon – an alternate Tcl shell

	Tcl syntax
	Tcl commands documentation syntax
	Running the script
	Running commands directly in the tclsh interpreter
	Variables
	Grouping
	Nesting commands
	Data types
	Lists
	Arrays
	Dictionaries
	Mathematical expressions—expr
	Flow control and loop instructions
	Defining your own commands

	Summary

	Chapter 2: Advanced Tcl Features
	Tcl features
	Working with time and date
	Tcl data types
	Global, namespace, and local variables
	Stack frames

	Object-oriented programming
	Class definition
	Inheritance
	Object definitions
	Using mixins
	Forwarding methods
	Additional information

	Accessing files
	Reading and writing files
	Configuring channel options
	File management
	Filename related operations
	File information
	Listing files
	Current working directory

	Packages in Tcl
	Package loading
	Creating a package
	Tcl modules

	Event-driven programming
	Tcl event types
	Entering the event loop
	Events and stack frames
	Channel events
	Timer and idle events
	Robust scheduling with tclcron

	Multithreaded applications
	Managing threads
	Shared variables
	Transferring channels

	Summary

	Chapter 3: Tcl Standalone Binaries
	Understanding the executable file structure
	Learning the Metakit database
	Working with MetaKit from Tcl

	Learning more about virtual file systems
	Getting into the details of VFS and Metakit

	Learning Tclkit
	Starkit and SDX
	Creating a Starkit file
	Internal structure of starkits
	Using resource files in starkits
	Putting additional packages into a starkit

	Format of the starkit file
	Interactions between different starkit files

	Knowing the Starpack technology
	Practical example—the Hibernator application
	Advanced topics—self updating
	Other solutions
	Summary

	Chapter 4: Troubleshooting Tcl applications
	Logging
	Log package
	Initialization
	Available log levels
	Enabling or disabling log levels
	Replacing the default implementation of the logging command
	Recap of the log package

	Logger package
	Initialization
	Available log levels
	Enabling or disabling log levels
	Tracing
	Changing the implementation of the logging / tracing command
	Appenders
	Recap of the logger package

	Audit
	Recap of the audit package

	Debugging
	Tcl Dev Kit Inspector
	Tcl Dev Kit Debugger
	Local Debugging
	Remote debugging
	Recap of the Tcl Dev Kit Debugger

	TclPro Debugger

	Summary

	Chapter 5: Data Storage
	Internationalizations
	Encoding issues
	Translating your application into different languages

	Using SQL and databases in Tcl
	Connecting to MySQL
	Connecting to PostgreSQL
	Using SQLite
	Managing databases from SQLiteStudio

	Other databases

	Handling XML in Tcl
	Storing raw Tcl values
	Summary

	Chapter 6: Networking in Tcl
	Using TCP sockets
	Creating server sockets
	Connecting over TCP
	Using nonblocking sockets
	Handling channel events

	Transferring binary data
	Transferring data using the fcopy command

	Handling errors
	Buffering
	Using threads for networking
	Using threads and thread pools
	Connecting to our service

	Using UDP sockets
	Creating a UDP-based client
	Implementing service using UDP
	Sending reliable messages
	Comparing TCP and UDP: streams vs. datagrams

	Summary

	Chapter 7: Using Common Internet Services
	Handling e-mail
	Learning MIME
	Content type
	Multipart messages

	MIME in Tcl
	Creating messages
	Multipart elements

	Sending e-mails
	Automated e-mail sending
	Creating template based e-mails

	Receiving e-mails
	Using POP3 protocol in Tcl
	Listing all messages
	Retrieving e-mails using POP3
	Parsing incoming e-mails

	Transferring files and data
	Resources and uri package
	Using HTTP
	Retrieving data over HTTP
	Submitting information using GET and POST
	Advanced topics
	Cookies in Tcl
	HTTP and encryption
	Retrieving RSS information

	Using FTP
	Establishing connections
	Retrieving files
	Uploading files
	Listing files and directories

	Summary

	Chapter 8: Using Additional Internet Services
	Checking DNS
	Using callbacks

	Getting the current date and time
	Using LDAP from Tcl
	Authenticating users over LDAP
	Modifying information in LDAP

	Communicating with Tcl applications
	Comm client and server
	Performing commands asynchronously
	Security aspects
	Limiting available commands

	Summary

	Chapter 9: Learning SNMP
	Introduction to SNMP
	Learning SNMP protocol versions
	Data objects
	Working with SNMP and MIB
	Setting up SNMP agent

	Tcl and Scotty package
	Obtaining Scotty
	The TkIned application

	Using Tcl for SNMP communication
	Querying SNMP in Tcl
	Performing asynchronous queries
	Walking over MIB trees
	Receiving traps
	Sending traps
	SNMP agent
	Additional features

	Summary

	Chapter 10: Web Programming in Tcl
	Tcl scripts as CGI application
	Using ncgi package
	Using html package

	Introduction to TclHttpd
	Installation
	Retrieving source code from the CVS repository

	Documentation
	First run
	Startup parameters

	Default directory structure
	Configuration
	Performance

	Programming TclHttpd server
	Providing static content
	Using CGI in TclHttpd
	Mapping URL to application
	Creating document type handlers
	Using the watermark example
	Creating custom templates

	Learning domain handlers
	Comparing domain handlers to application direct URLs
	Creating session-based authentication

	Using the TclHttpd template system
	Securing access to resources
	Debugging TclHttpd server
	Embedding TclHttpd in your application

	Summary

	Chapter 11: TclHttpd in Client-Server Applications
	Creating HTTP-based applications
	Preparing source code structure
	Creating our applications
	Server-side
	Client-side

	Communication and registration
	Server-side
	Client-side

	Storing information
	Server side
	Client side

	Comm interface—spooling jobs
	Testing our applications

	Adding autoupdate to application
	Server-side
	Client-side

	Extending your applications
	Starkits as extensions
	Building modules
	Server side
	Handling modules on client
	Communication with server

	Improving scalability and performance
	Summary

	Chapter 12: SOAP and XML-RPC
	Tcl and standards for remote procedure calls
	Connecting to XML-RPC services
	Defining available methods
	Specifying data types
	Using XML-RPC

	Using SOAP protocol
	Creating Web Services
	Setting up server
	Creating a service
	Specifying data types
	Creating service methods
	Defining data types
	Using data types inside service

	Connecting to SOAP based services
	Invoking methods via commands
	Invoking methods API using DoCall commands
	Using complex data types

	Summary

	Chapter 13: SSL and Security
	Learning Secure Socket Layer
	Using SSL from Tcl
	Generating self-signed certificates
	Setting up and using public key infrastructure
	Setting up certificates manually
	Automating certificates from Tcl

	Managing certificates from Tcl
	Server side
	Client side
	Testing our solution

	SSL and performance issues

	Authorization and roles
	Securing your application
	Slave interpreters
	Using slave interpreters
	Sharing information with the slave interpreter
	Creating and managing aliases
	Deleting interpreters
	Imposing limits on interpreters

	Working with safe interpreters
	Hiding and exposing commands
	Default safe interpreter setup
	Using Safe Base
	Safe Base and filesystem access

	Role-based authorization and interpreters
	Creating interpreters using roles
	Sample role definitions
	Using role-based interpreters

	Summary

	Index

