
1/5

library manual page - Tcl Built-In Commands
tcl-lang.org/man/tcl/TclCmd/library.htm

NAME

auto_execok, auto_import, auto_load, auto_mkindex, auto_qualify, auto_reset,
tcl_findLibrary, parray, tcl_endOfWord, tcl_startOfNextWord, tcl_startOfPreviousWord,
tcl_wordBreakAfter, tcl_wordBreakBefore 4 standard library of Tcl procedures

SYNOPSIS

auto_execok cmd
 auto_import pattern

 auto_load cmd
 auto_mkindex dir pattern pattern ...

 auto_qualify command namespace
 auto_reset

 tcl_findLibrary basename version patch initScript enVarName varName
 parray arrayName ?pattern?

 tcl_endOfWord str start
 tcl_startOfNextWord str start

 tcl_startOfPreviousWord str start
 tcl_wordBreakAfter str start

 tcl_wordBreakBefore str start

INTRODUCTION

Tcl includes a library of Tcl procedures for commonly-needed functions. The procedures
defined in the Tcl library are generic ones suitable for use by many different applications.
The location of the Tcl library is returned by the info library command. In addition to the
Tcl library, each application will normally have its own library of support procedures as
well; the location of this library is normally given by the value of the $app_library global
variable, where app is the name of the application. For example, the location of the Tk
library is kept in the variable tk_library.
To access the procedures in the Tcl library, an application should source the file init.tcl in
the library, for example with the Tcl command

source [file join [info library] init.tcl]

If the library procedure Tcl_Init is invoked from an application's Tcl_AppInit procedure,
this happens automatically. The code in init.tcl will define the unknown procedure and
arrange for the other procedures to be loaded on-demand using the auto-load mechanism
defined below.

COMMAND PROCEDURES

https://www.tcl-lang.org/man/tcl/TclCmd/library.htm
https://www.tcl-lang.org/man/tcl/TclCmd/info.htm
https://www.tcl-lang.org/man/tcl/TkCmd/tkvars.htm
https://www.tcl-lang.org/man/tcl/TclLib/Init.htm
https://www.tcl-lang.org/man/tcl/TclLib/AppInit.htm
https://www.tcl-lang.org/man/tcl/TclCmd/unknown.htm

2/5

The following procedures are provided in the Tcl library:
auto_execok cmd
Determines whether there is an executable file or shell builtin by the name cmd. If so, it
returns a list of arguments to be passed to exec to execute the executable file or shell
builtin named by cmd. If not, it returns an empty string. This command examines the
directories in the current search path (given by the PATH environment variable) in its
search for an executable file named cmd. On Windows platforms, the search is expanded
with the same directories and file extensions as used by exec. Auto_execok remembers
information about previous searches in an array named auto_execs; this avoids the path
search in future calls for the same cmd. The command auto_reset may be used to force
auto_execok to forget its cached information.

auto_import pattern
Auto_import is invoked during namespace import to see if the imported commands
specified by pattern reside in an autoloaded library. If so, the commands are loaded so
that they will be available to the interpreter for creating the import links. If the commands
do not reside in an autoloaded library, auto_import does nothing. The pattern matching is
performed according to the matching rules of namespace import.

auto_load cmd
This command attempts to load the definition for a Tcl command named cmd. To do this,
it searches an auto-load path, which is a list of one or more directories. The auto-load
path is given by the global variable auto_path if it exists. If there is no auto_path
variable, then the TCLLIBPATH environment variable is used, if it exists. Otherwise the
auto-load path consists of just the Tcl library directory. Within each directory in the auto-
load path there must be a file tclIndex that describes one or more commands defined in
that directory and a script to evaluate to load each of the commands. The tclIndex file
should be generated with the auto_mkindex command. If cmd is found in an index file,
then the appropriate script is evaluated to create the command. The auto_load command
returns 1 if cmd was successfully created. The command returns 0 if there was no index
entry for cmd or if the script did not actually define cmd (e.g. because index information is
out of date). If an error occurs while processing the script, then that error is returned.
Auto_load only reads the index information once and saves it in the array auto_index;
future calls to auto_load check for cmd in the array rather than re-reading the index files.
The cached index information may be deleted with the command auto_reset. This will
force the next auto_load command to reload the index database from disk.

auto_mkindex dir pattern pattern ...
Generates an index suitable for use by auto_load. The command searches dir for all files
whose names match any of the pattern arguments (matching is done with the glob
command), generates an index of all the Tcl command procedures defined in all the
matching files, and stores the index information in a file named tclIndex in dir. If no
pattern is given a pattern of *.tcl will be assumed. For example, the command

auto_mkindex foo *.tcl

will read all the .tcl files in subdirectory foo and generate a new index file foo/tclIndex.

https://www.tcl-lang.org/man/tcl/TclCmd/exec.htm
https://www.tcl-lang.org/man/tcl/TclCmd/exec.htm
https://www.tcl-lang.org/man/tcl/TclCmd/namespace.htm
https://www.tcl-lang.org/man/tcl/TclCmd/namespace.htm
https://www.tcl-lang.org/man/tcl/TclCmd/tclvars.htm
https://www.tcl-lang.org/man/tcl/TclCmd/tclvars.htm
https://www.tcl-lang.org/man/tcl/TclCmd/glob.htm

3/5

Auto_mkindex parses the Tcl scripts by sourcing them into a child interpreter and
monitoring the proc and namespace commands that are executed. Extensions can use
the (undocumented) auto_mkindex_parser package to register other commands that can
contribute to the auto_load index. You will have to read through auto.tcl to see how this
works.

Auto_mkindex_old (which has the same syntax as auto_mkindex) parses the Tcl
scripts in a relatively unsophisticated way: if any line contains the word <proc= as its first
characters then it is assumed to be a procedure definition and the next word of the line is
taken as the procedure's name. Procedure definitions that do not appear in this way
(e.g. they have spaces before the proc) will not be indexed. If your script contains
<dangerous= code, such as global initialization code or procedure names with special
characters like $, *, [or], you are safer using auto_mkindex_old.

auto_reset
Destroys all the information cached by auto_execok and auto_load. This information will
be re-read from disk the next time it is needed. Auto_reset also deletes any procedures
listed in the auto-load index, so that fresh copies of them will be loaded the next time that
they are used.

auto_qualify command namespace
Computes a list of fully qualified names for command. This list mirrors the path a standard
Tcl interpreter follows for command lookups: first it looks for the command in the current
namespace, and then in the global namespace. Accordingly, if command is relative and
namespace is not ::, the list returned has two elements: command scoped by
namespace, as if it were a command in the namespace namespace; and command as if it
were a command in the global namespace. Otherwise, if either command is absolute (it
begins with ::), or namespace is ::, the list contains only command as if it were a
command in the global namespace.
Auto_qualify is used by the auto-loading facilities in Tcl, both for producing auto-loading
indexes such as pkgIndex.tcl, and for performing the actual auto-loading of functions at
runtime.

tcl_findLibrary basename version patch initScript enVarName varName
This is a standard search procedure for use by extensions during their initialization. They
call this procedure to look for their script library in several standard directories. The last
component of the name of the library directory is normally basenameversion (e.g., tk8.0),
but it might be <library= when in the build hierarchies. The initScript file will be sourced into
the interpreter once it is found. The directory in which this file is found is stored into the
global variable varName. If this variable is already defined (e.g., by C code during
application initialization) then no searching is done. Otherwise the search looks in these
directories: the directory named by the environment variable enVarName; relative to the
Tcl library directory; relative to the executable file in the standard installation bin or
bin/arch directory; relative to the executable file in the current build tree; relative to the
executable file in a parallel build tree.

parray arrayName ?pattern?

https://www.tcl-lang.org/man/tcl/TclCmd/proc.htm
https://www.tcl-lang.org/man/tcl/TclCmd/proc.htm

4/5

Prints on standard output the names and values of all the elements in the array
arrayName, or just the names that match pattern (using the matching rules of string
match) and their values if pattern is given. ArrayName must be an array accessible to the
caller of parray. It may be either local or global.

WORD BOUNDARY HELPERS

These procedures are mainly used internally by Tk.
tcl_endOfWord str start
Returns the index of the first end-of-word location that occurs after a starting index start in
the string str. An end-of-word location is defined to be the first non-word character
following the first word character after the starting point. Returns -1 if there are no more
end-of-word locations after the starting point. See the description of tcl_wordchars and
tcl_nonwordchars below for more details on how Tcl determines which characters are
word characters.

tcl_startOfNextWord str start
Returns the index of the first start-of-word location that occurs after a starting index start
in the string str. A start-of-word location is defined to be the first word character following
a non-word character. Returns -1 if there are no more start-of-word locations after the
starting point.

tcl_startOfPreviousWord str start
Returns the index of the first start-of-word location that occurs before a starting index start
in the string str. Returns -1 if there are no more start-of-word locations before the starting
point.

tcl_wordBreakAfter str start
Returns the index of the first word boundary after the starting index start in the string str.
Returns -1 if there are no more boundaries after the starting point in the given string. The
index returned refers to the second character of the pair that comprises a boundary.

tcl_wordBreakBefore str start
Returns the index of the first word boundary before the starting index start in the string
str. Returns -1 if there are no more boundaries before the starting point in the given
string. The index returned refers to the second character of the pair that comprises a
boundary.

VARIABLES

The following global variables are defined or used by the procedures in the Tcl library.
They fall into two broad classes, handling unknown commands and packages, and
determining what are words.

AUTOLOADING AND PACKAGE MANAGEMENT VARIABLES

auto_execs
Used by auto_execok to record information about whether particular commands exist as
executable files.

https://www.tcl-lang.org/man/tcl/TclCmd/string.htm
https://www.tcl-lang.org/man/tcl/TclCmd/tclvars.htm
https://www.tcl-lang.org/man/tcl/TclCmd/tclvars.htm

5/5

auto_index
Used by auto_load to save the index information read from disk.

auto_noexec
If set to any value, then unknown will not attempt to auto-exec any commands.

auto_noload
If set to any value, then unknown will not attempt to auto-load any commands.

auto_path
If set, then it must contain a valid Tcl list giving directories to search during auto-load
operations (including for package index files when using the default package unknown
handler). This variable is initialized during startup to contain, in order: the directories listed
in the TCLLIBPATH environment variable, the directory named by the tcl_library global
variable, the parent directory of tcl_library, the directories listed in the tcl_pkgPath
variable. Additional locations to look for files and package indices should normally be
added to this variable using lappend.

env(TCL_LIBRARY)
env(TCLLIBPATH)
If set, then it must contain a valid Tcl list giving directories to search during auto-load
operations. Directories must be specified in Tcl format, using </= as the path separator,
regardless of platform. This variable is only used when initializing the auto_path variable.

WORD BOUNDARY DETERMINATION VARIABLES

These variables are only used in the tcl_endOfWord, tcl_startOfNextWord,
tcl_startOfPreviousWord, tcl_wordBreakAfter, and tcl_wordBreakBefore commands.
tcl_nonwordchars
This variable contains a regular expression that is used by routines like tcl_endOfWord
to identify whether a character is part of a word or not. If the pattern matches a character,
the character is considered to be a non-word character. On Windows platforms, spaces,
tabs, and newlines are considered non-word characters. Under Unix, everything but
numbers, letters and underscores are considered non-word characters.

tcl_wordchars
This variable contains a regular expression that is used by routines like tcl_endOfWord
to identify whether a character is part of a word or not. If the pattern matches a character,
the character is considered to be a word character. On Windows platforms, words are
comprised of any character that is not a space, tab, or newline. Under Unix, words are
comprised of numbers, letters or underscores.

https://www.tcl-lang.org/man/tcl/TclCmd/unknown.htm
https://www.tcl-lang.org/man/tcl/TclCmd/unknown.htm
https://www.tcl-lang.org/man/tcl/TclCmd/package.htm
https://www.tcl-lang.org/man/tcl/TclCmd/tclvars.htm
https://www.tcl-lang.org/man/tcl/TclCmd/tclvars.htm
https://www.tcl-lang.org/man/tcl/TclCmd/tclvars.htm
https://www.tcl-lang.org/man/tcl/TclCmd/lappend.htm
https://www.tcl-lang.org/man/tcl/TclCmd/tclvars.htm

1/5

package manual page - Tcl Built-In Commands
tcl.tk/man/tcl/TclCmd/package.htm

NAME

package 4 Facilities for package loading and version control

SYNOPSIS

package forget ?package package ...?
 package ifneeded package version ?script?

 package names
 package present package ?requirement...?

 package present -exact package version
 package provide package ?version?

 package require package ?requirement...?
 package require -exact package version

 package unknown ?command?
 package vcompare version1 version2

 package versions package
 package vsatisfies version requirement...

 package prefer ?latest|stable?

DESCRIPTION

This command keeps a simple database of the packages available for use by the current
interpreter and how to load them into the interpreter. It supports multiple versions of each
package and arranges for the correct version of a package to be loaded based on what is
needed by the application. This command also detects and reports version clashes.
Typically, only the package require and package provide commands are invoked in
normal Tcl scripts; the other commands are used primarily by system scripts that maintain
the package database.
The behavior of the package command is determined by its first argument. The following
forms are permitted:

package forget ?package package ...?
Removes all information about each specified package from this interpreter, including
information provided by both package ifneeded and package provide.

package ifneeded package version ?script?
This command typically appears only in system configuration scripts to set up the
package database. It indicates that a particular version of a particular package is
available if needed, and that the package can be added to the interpreter by executing
script. The script is saved in a database for use by subsequent package require
commands; typically, script sets up auto-loading for the commands in the package (or

https://www.tcl.tk/man/tcl/TclCmd/package.htm

2/5

calls load and/or source directly), then invokes package provide to indicate that the
package is present. There may be information in the database for several different
versions of a single package. If the database already contains information for package
and version, the new script replaces the existing one. If the script argument is omitted, the
current script for version version of package package is returned, or an empty string if no
package ifneeded command has been invoked for this package and version.

package names
Returns a list of the names of all packages in the interpreter for which a version has been
provided (via package provide) or for which a package ifneeded script is available. The
order of elements in the list is arbitrary.

package present ?-exact? package ?requirement...?
This command is equivalent to package require except that it does not try and load the
package if it is not already loaded.

package provide package ?version?
This command is invoked to indicate that version version of package package is now
present in the interpreter. It is typically invoked once as part of an ifneeded script, and
again by the package itself when it is finally loaded. An error occurs if a different version
of package has been provided by a previous package provide command. If the version
argument is omitted, then the command returns the version number that is currently
provided, or an empty string if no package provide command has been invoked for
package in this interpreter.

package require package ?requirement...?
This command is typically invoked by Tcl code that wishes to use a particular version of a
particular package. The arguments indicate which package is wanted, and the command
ensures that a suitable version of the package is loaded into the interpreter. If the
command succeeds, it returns the version number that is loaded; otherwise it generates
an error.
A suitable version of the package is any version which satisfies at least one of the
requirements, per the rules of package vsatisfies. If multiple versions are suitable the
implementation with the highest version is chosen. This last part is additionally influenced
by the selection mode set with package prefer.

In the <stable= selection mode the command will select the highest stable version
satisfying the requirements, if any. If no stable version satisfies the requirements, the
highest unstable version satisfying the requirements will be selected. In the <latest=
selection mode the command will accept the highest version satisfying all the
requirements, regardless of its stableness.

If a version of package has already been provided (by invoking the package provide
command), then its version number must satisfy the requirements and the command
returns immediately. Otherwise, the command searches the database of information
provided by previous package ifneeded commands to see if an acceptable version of the
package is available. If so, the script for the highest acceptable version number is
evaluated in the global namespace; it must do whatever is necessary to load the

https://www.tcl.tk/man/tcl/TclCmd/load.htm
https://www.tcl.tk/man/tcl/TclCmd/source.htm

3/5

package, including calling package provide for the package. If the package ifneeded
database does not contain an acceptable version of the package and a package
unknown command has been specified for the interpreter then that command is
evaluated in the global namespace; when it completes, Tcl checks again to see if the
package is now provided or if there is a package ifneeded script for it. If all of these
steps fail to provide an acceptable version of the package, then the command returns an
error.

package require -exact package version
This form of the command is used when only the given version of package is acceptable
to the caller. This command is equivalent to package require package version-version.

package unknown ?command?
This command supplies a <last resort= command to invoke during package require if no
suitable version of a package can be found in the package ifneeded database. If the
command argument is supplied, it contains the first part of a command; when the
command is invoked during a package require command, Tcl appends one or more
additional arguments giving the desired package name and requirements. For example, if
command is foo bar and later the command package require test 2.4 is invoked, then
Tcl will execute the command foo bar test 2.4 to load the package. If no requirements
are supplied to the package require command, then only the name will be added to
invoked command. If the package unknown command is invoked without a command
argument, then the current package unknown script is returned, or an empty string if
there is none. If command is specified as an empty string, then the current package
unknown script is removed, if there is one.

package vcompare version1 version2
Compares the two version numbers given by version1 and version2. Returns -1 if
version1 is an earlier version than version2, 0 if they are equal, and 1 if version1 is later
than version2.

package versions package
Returns a list of all the version numbers of package for which information has been
provided by package ifneeded commands.

package vsatisfies version requirement...
Returns 1 if the version satisfies at least one of the given requirements, and 0 otherwise.
Each requirement is allowed to have any of the forms:
min
This form is called <min-bounded=.

min-
This form is called <min-unbound=.

min-max
This form is called <bounded=.

4/5

where <min= and <max= are valid version numbers. The legacy syntax is a special case of
the extended syntax, keeping backward compatibility. Regarding satisfaction the rules
are:

1. The version has to pass at least one of the listed requirements to be satisfactory.
2. A version satisfies a <bounded= requirement when

1. For min equal to the max if, and only if the version is equal to the min.
2. Otherwise if, and only if the version is greater than or equal to the min, and

less than the max, where both min and max have been padded internally with
<a0=. Note that while the comparison to min is inclusive, the comparison to
max is exclusive.

3. A <min-bounded= requirement is a <bounded= requirement in disguise, with the max
part implicitly specified as the next higher major version number of the min part. A
version satisfies it per the rules above.

4. A version satisfies a <min-unbound= requirement if, and only if it is greater than or
equal to the min, where the min has been padded internally with <a0=. There is no
constraint to a maximum.

package prefer ?latest|stable?
With no arguments, the commands returns either <latest= or <stable=, whichever describes
the current mode of selection logic used by package require.
When passed the argument <latest=, it sets the selection logic mode to <latest=.

When passed the argument <stable=, if the mode is already <stable=, that value is kept. If
the mode is already <latest=, then the attempt to set it back to <stable= is ineffective and
the mode value remains <latest=.

When passed any other value as an argument, raise an invalid argument error.

When an interpreter is created, its initial selection mode value is set to <stable= unless the
environment variable TCL_PKG_PREFER_LATEST is set. If that environment variable is
defined (with any value) then the initial (and permanent) selection mode value is set to
<latest=.

VERSION NUMBERS

Version numbers consist of one or more decimal numbers separated by dots, such as 2
or 1.162 or 3.1.13.1. The first number is called the major version number. Larger numbers
correspond to later versions of a package, with leftmost numbers having greater
significance. For example, version 2.1 is later than 1.3 and version 3.4.6 is later than
3.3.5. Missing fields are equivalent to zeroes: version 1.3 is the same as version 1.3.0
and 1.3.0.0, so it is earlier than 1.3.1 or 1.3.0.2. In addition, the letters <a= (alpha) and/or
<b= (beta) may appear exactly once to replace a dot for separation. These letters
semantically add a negative specifier into the version, where <a= is -2, and <b= is -1. Each
may be specified only once, and <a= or <b= are mutually exclusive in a specifier. Thus
1.3a1 becomes (semantically) 1.3.-2.1, 1.3b1 is 1.3.-1.1. Negative numbers are not
directly allowed in version specifiers. A version number not containing the letters <a= or <b=

5/5

as specified above is called a stable version, whereas presence of the letters causes the
version to be called is unstable. A later version number is assumed to be upwards
compatible with an earlier version number as long as both versions have the same major
version number. For example, Tcl scripts written for version 2.3 of a package should work
unchanged under versions 2.3.2, 2.4, and 2.5.1. Changes in the major version number
signify incompatible changes: if code is written to use version 2.1 of a package, it is not
guaranteed to work unmodified with either version 1.7.3 or version 3.1.

PACKAGE INDICES

The recommended way to use packages in Tcl is to invoke package require and
package provide commands in scripts, and use the procedure pkg_mkIndex to create
package index files. Once you have done this, packages will be loaded automatically in
response to package require commands. See the documentation for pkg_mkIndex for
details.

EXAMPLES

To state that a Tcl script requires the Tk and http packages, put this at the top of the
script:

package require Tk
package require http

To test to see if the Snack package is available and load if it is (often useful for optional
enhancements to programs where the loss of the functionality is not critical) do this:

if {[catch {package require Snack}]} {
 # Error thrown - package not found.
 # Set up a dummy interface to work around the absence
} else {
 # We have the package, configure the app to use it
}

1/1

pkg::create manual page - Tcl Built-In Commands
tcl.tk/man/tcl/TclCmd/packagens.htm

NAME

pkg::create 4 Construct an appropriate 'package ifneeded' command for a given
package specification

SYNOPSIS

::pkg::create -name packageName -version packageVersion ?-load filespec? ... ?-
source filespec? ...

DESCRIPTION

::pkg::create is a utility procedure that is part of the standard Tcl library. It is used to
create an appropriate package ifneeded command for a given package specification. It
can be used to construct a pkgIndex.tcl file for use with the package mechanism.

OPTIONS

The parameters supported are:
-name packageName
This parameter specifies the name of the package. It is required.

-version packageVersion
This parameter specifies the version of the package. It is required.

-load filespec
This parameter specifies a binary library that must be loaded with the load command.
filespec is a list with two elements. The first element is the name of the file to load. The
second, optional element is a list of commands supplied by loading that file. If the list of
procedures is empty or omitted, ::pkg::create will set up the library for direct loading (see
pkg_mkIndex). Any number of -load parameters may be specified.

-source filespec
This parameter is similar to the -load parameter, except that it specifies a Tcl library that
must be loaded with the source command. Any number of -source parameters may be
specified.

At least one -load or -source parameter must be given.

https://www.tcl.tk/man/tcl/TclCmd/packagens.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/load.htm
https://www.tcl.tk/man/tcl/TclCmd/source.htm

1/4

pkg_mkIndex manual page - Tcl Built-In Commands
tcl.tk/man/tcl/TclCmd/pkgMkIndex.htm

NAME

pkg_mkIndex 4 Build an index for automatic loading of packages

SYNOPSIS

pkg_mkIndex ?options...? dir ?pattern pattern ...?

DESCRIPTION

Pkg_mkIndex is a utility procedure that is part of the standard Tcl library. It is used to
create index files that allow packages to be loaded automatically when package require
commands are executed. To use pkg_mkIndex, follow these steps:

1. Create the package(s). Each package may consist of one or more Tcl script files or
binary files. Binary files must be suitable for loading with the load command with a
single argument; for example, if the file is test.so it must be possible to load this file
with the command load test.so. Each script file must contain a package provide
command to declare the package and version number, and each binary file must
contain a call to Tcl_PkgProvide.

2. Create the index by invoking pkg_mkIndex. The dir argument gives the name of a
directory and each pattern argument is a glob-style pattern that selects script or
binary files in dir. The default pattern is *.tcl and *.[info sharedlibextension].
Pkg_mkIndex will create a file pkgIndex.tcl in dir with package information about
all the files given by the pattern arguments. It does this by loading each file into a
child interpreter and seeing what packages and new commands appear (this is why
it is essential to have package provide commands or Tcl_PkgProvide calls in the
files, as described above). If you have a package split among scripts and binary
files, or if you have dependencies among files, you may have to use the -load
option or adjust the order in which pkg_mkIndex processes the files. See
COMPLEX CASES below.

https://www.tcl.tk/man/tcl/TclCmd/pkgMkIndex.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/load.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclLib/PkgRequire.htm
https://www.tcl.tk/man/tcl/TclCmd/glob.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclLib/PkgRequire.htm

2/4

3. Install the package as a subdirectory of one of the directories given by the
tcl_pkgPath variable. If $tcl_pkgPath contains more than one directory, machine-
dependent packages (e.g., those that contain binary shared libraries) should
normally be installed under the first directory and machine-independent packages
(e.g., those that contain only Tcl scripts) should be installed under the second
directory. The subdirectory should include the package's script and/or binary files as
well as the pkgIndex.tcl file. As long as the package is installed as a subdirectory
of a directory in $tcl_pkgPath it will automatically be found during package require
commands.
If you install the package anywhere else, then you must ensure that the directory
containing the package is in the auto_path global variable or an immediate
subdirectory of one of the directories in auto_path. Auto_path contains a list of
directories that are searched by both the auto-loader and the package loader; by
default it includes $tcl_pkgPath. The package loader also checks all of the
subdirectories of the directories in auto_path. You can add a directory to auto_path
explicitly in your application, or you can add the directory to your TCLLIBPATH
environment variable: if this environment variable is present, Tcl initializes
auto_path from it during application startup.

4. Once the above steps have been taken, all you need to do to use a package is to
invoke package require. For example, if versions 2.1, 2.3, and 3.1 of package Test
have been indexed by pkg_mkIndex, the command package require Test will
make version 3.1 available and the command package require -exact Test 2.1 will
make version 2.1 available. There may be many versions of a package in the
various index files in auto_path, but only one will actually be loaded in a given
interpreter, based on the first call to package require. Different versions of a
package may be loaded in different interpreters.

OPTIONS

The optional switches are:
-direct
The generated index will implement direct loading of the package upon package require.
This is the default.

-lazy
The generated index will manage to delay loading the package until the use of one of the
commands provided by the package, instead of loading it immediately upon package
require. This is not compatible with the use of auto_reset, and therefore its use is
discouraged.

-load pkgPat
The index process will preload any packages that exist in the current interpreter and
match pkgPat into the child interpreter used to generate the index. The pattern match
uses string match rules, but without making case distinctions. See COMPLEX CASES
below.

https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm

3/4

-verbose
Generate output during the indexing process. Output is via the tclLog procedure, which
by default prints to stderr.

--
End of the flags, in case dir begins with a dash.

PACKAGES AND THE AUTO-LOADER

The package management facilities overlap somewhat with the auto-loader, in that both
arrange for files to be loaded on-demand. However, package management is a higher-
level mechanism that uses the auto-loader for the last step in the loading process. It is
generally better to index a package with pkg_mkIndex rather than auto_mkindex
because the package mechanism provides version control: several versions of a package
can be made available in the index files, with different applications using different
versions based on package require commands. In contrast, auto_mkindex does not
understand versions so it can only handle a single version of each package. It is probably
not a good idea to index a given package with both pkg_mkIndex and auto_mkindex. If
you use pkg_mkIndex to index a package, its commands cannot be invoked until
package require has been used to select a version; in contrast, packages indexed with
auto_mkindex can be used immediately since there is no version control.

HOW IT WORKS

Pkg_mkIndex depends on the package unknown command, the package ifneeded
command, and the auto-loader. The first time a package require command is invoked,
the package unknown script is invoked. This is set by Tcl initialization to a script that
evaluates all of the pkgIndex.tcl files in the auto_path. The pkgIndex.tcl files contain
package ifneeded commands for each version of each available package; these
commands invoke package provide commands to announce the availability of the
package, and they setup auto-loader information to load the files of the package. If the -
lazy flag was provided when the pkgIndex.tcl was generated, a given file of a given
version of a given package is not actually loaded until the first time one of its commands
is invoked. Thus, after invoking package require you may not see the package's
commands in the interpreter, but you will be able to invoke the commands and they will
be auto-loaded.

DIRECT LOADING

Some packages, for instance packages which use namespaces and export commands or
those which require special initialization, might select that their package files be loaded
immediately upon package require instead of delaying the actual loading to the first use
of one of the package's command. This is the default mode when generating the package
index. It can be overridden by specifying the -lazy argument.

COMPLEX CASES

https://www.tcl.tk/man/tcl/TclCmd/library.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/library.htm
https://www.tcl.tk/man/tcl/TclCmd/library.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/library.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/tclvars.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/package.htm

4/4

Most complex cases of dependencies among scripts and binary files, and packages being
split among scripts and binary files are handled OK. However, you may have to adjust the
order in which files are processed by pkg_mkIndex. These issues are described in detail
below.
If each script or file contains one package, and packages are only contained in one file,
then things are easy. You simply specify all files to be indexed in any order with some
glob patterns.

In general, it is OK for scripts to have dependencies on other packages. If scripts contain
package require commands, these are stubbed out in the interpreter used to process the
scripts, so these do not cause problems. If scripts call into other packages in global code,
these calls are handled by a stub unknown command. However, if scripts make variable
references to other package's variables in global code, these will cause errors. That is
also bad coding style.

If binary files have dependencies on other packages, things can become tricky because it
is not possible to stub out C-level APIs such as Tcl_PkgRequire API when loading a
binary file. For example, suppose the BLT package requires Tk, and expresses this with a
call to Tcl_PkgRequire in its Blt_Init routine. To support this, you must run
pkg_mkIndex in an interpreter that has Tk loaded. You can achieve this with the -load
pkgPat option. If you specify this option, pkg_mkIndex will load any packages listed by
info loaded and that match pkgPat into the interpreter used to process files. In most
cases this will satisfy the Tcl_PkgRequire calls made by binary files.

If you are indexing two binary files and one depends on the other, you should specify the
one that has dependencies last. This way the one without dependencies will get loaded
and indexed, and then the package it provides will be available when the second file is
processed. You may also need to load the first package into the temporary interpreter
used to create the index by using the -load flag; it will not hurt to specify package
patterns that are not yet loaded.

If you have a package that is split across scripts and a binary file, then you should avoid
the -load flag. The problem is that if you load a package before computing the index it
masks any other files that provide part of the same package. If you must use -load, then
you must specify the scripts first; otherwise the package loaded from the binary file may
mask the package defined by the scripts.

https://www.tcl.tk/man/tcl/TclCmd/package.htm
https://www.tcl.tk/man/tcl/TclCmd/unknown.htm
https://www.tcl.tk/man/tcl/TclLib/PkgRequire.htm
https://www.tcl.tk/man/tcl/TclLib/PkgRequire.htm
https://www.tcl.tk/man/tcl/TclCmd/info.htm
https://www.tcl.tk/man/tcl/TclLib/PkgRequire.htm

1/4

package index script interface guidelines
wiki.tcl-lang.org/page/package index script interface guidelines

In a recent TCLCORE message, there was a request to document what the interface
guarantees are between a package index script and a package unknown callback. This
page created to record such documentation.

LV what is meant by "package index script" - code such as pkgIndex.tcl?

DGP The default package unknown callback, [tcl_PkgUnknown] finds the index scripts for
the packages it manages in files named pkgIndex.tcl, so yes, that's the most common
example of an index script.

Other package unknown callbacks might choose to retrieve or generate their index scripts
from other sources, or by other methods.

Probably most important is that a package index script should never raise an error.

This can be tricky because index scripts can be evaluated in just about any kind of Tcl
interpreter, by any registered [package unknown] manager, so you should not depend on
things you might depend on in your more day-to-day Tcl programming.

Especially noteworthy along those lines is that a package index script might be evaluated
in a Tcl interpreter for any release of Tcl from 7.5 on. This means you should not be using
any Tcl 8 features in your index script until after the index script itself verifies that the
interp has a recent enough Tcl in it.

Index scripts can rely on the [return] command to cleanly terminate evaluation of the
index script. So, a useful technique in an index script is to check the interp for a recent
enough Tcl release to support the rest of the index script, and to support the package
indexed by the index script:

 if {![package vsatisfies [package provide Tcl] 8]} {return}

Likewise, an index script should not raise any of Tcl's other return codes like [break] or
[continue]. It's best to think of those as causing undefined behavior, and just avoid them
completely in index scripts. The actual behavior will probably depend on the internal
details of the [package unknown] handler that the index script author really shouldn't
know about, let alone depend on.

An index script can also depend on all of the commands built in to Tcl being available by
their simple names. This does not mean the index script is evaluated in the global
namespace. It only means that non-buggy [package unknown] handlers will not mask
Tcl's built-in commands in the context they provide for index script evaluation.

https://wiki.tcl-lang.org/page/package+index+script+interface+guidelines
https://wiki.tcl-lang.org/page/package
https://wiki.tcl-lang.org/page/package+unknown
https://wiki.tcl-lang.org/page/LV
https://wiki.tcl-lang.org/page/pkgIndex.tcl
https://wiki.tcl-lang.org/page/DGP
https://wiki.tcl-lang.org/page/package+unknown
https://wiki.tcl-lang.org/page/package+unknown

2/4

An index script can rely on the existence of a variable known in the current context as dir.
The contents of that variable are the absolute file system path to the installation directory
associated with the package indexed by this index script. It is up to the [package
unknown] manager to perform this initialization. Thus the [package unknown] manager
keeps track of what installation directory goes with what package goes with what index
script. The default [package unknown] handler, [tclPkgUnkown] achieves this by
assigning to dir the name of the directory that contains a file named pkgIndex.tcl that
contains the index script.

Since the index script does not know what namespace context or proc context it might be
evaluated in, if it wants to access a global variable, it should either use the [global]
command to bring that variable into current scope, or use a fully-qualified name for the
variable (::tcl_platform) after verifying a Tcl 8 interpreter.

An index script should not call [package require] for any package. Evaluation of an index
script is not about loading any package, it is only about registering a load script for later
use. Other than performing that registration by calling [package ifneeded], an index script
should strive to be free of side-effects.

An index script should not assume it is kept in a file and is evaluated by [source]. This
means the index script should not depend on [info script] to return anything useful. The dir
variable is the interface to use to discover the installation directory of the package, and
that's all the index script should need to know.

Don't do this:

package ifneeded foo 1.0 "load [file join $dir foo[info sharedlibextension]]"

That will break if $dir contains spaces. Do this instead:

package ifneeded foo 1.0 [list load [file join $dir foo[info
sharedlibextension]]]

Be sure to read the discussion at pkgIndex.tcl which provides a Tcl 8.5 alternative
preferred by DKF.

On 5-jan-2004 in c.l.t., Michael Schlenker explains with respect to:

`Probably most important is that a package index script should never raise an error.'

The problem is mainly with errors thrown when package require looks for packages, not
when they are found and are about to be loaded.

i.e. the following example code is deemed OK:

https://wiki.tcl-lang.org/page/dir
https://wiki.tcl-lang.org/page/pkgIndex.tcl
https://wiki.tcl-lang.org/page/DKF
https://wiki.tcl-lang.org/page/Michael+Schlenker

3/4

proc loadMyPackage {dir} {
 if { ![CheckRequirement] } {

 # this is OK
 return -code error $errMsg

 }
 source [file join $dir sourceFile.tcl]
}
package ifneeded myPackage [list loadMyPackage $dir]

Of course, the error could also be raised inside the sourceFile.tcl.

DGP The problem with either of those approaches is they do not play well with package's
handling of multiple installed versions of a package. Essentially, the [package ifneeded]
tells the [package] system that a package is available to be loaded, even though the
attempt to load it is going to produce an error. If this index script is for myPackage version
1.2, [package] is going to prefer loading it over myPackage version 1.1, which might not
have the "error on load" problem. That would mean we're ignoring a package that works
in favor of one that doesn't. It's best if you can avoid [package ifneeded] registration of
packages that you know cannot successfully load in the current interp.

In an environment where you can be sure there's only one version of your package
"installed" (the internals of a Starkit, perhaps?), you can probably get away with that. But
in that environment a more generally correct index script will also work, so why not?

Another, perhaps less serious, problem is that the example does have the side effect of
creating a [loadMyPackage] command.

Lars H: If the need is to perform several commands for loading a package, then the
helper proc is quite unnecessary. A multiline package ifneeded script is straightforward to
construct using format:

 package ifneeded myPackage 1.0 [format {
 package require sourceWithEncoding
 sourceWithEncoding utf-8 [file join %s myPackage.tcl]
 } [list $dir]]

Note how the helper sourceWithEncoding package is not loaded until myPackage is
actually required. Also note that dir is list-quoted before it is passed to format, since it will
appear as a complete word in the script (this is similar to how bind percent substitution
works).

NEM: Or a lambda (in Tcl 8.5+):

if {![package vsatisfies [package provide Tcl] 8.5]} {return}
package ifneeded myPackage 1.0 [list apply {dir {
 package require sourceWithEncoding
 sourceWIthEncoding utf-8 [file join $dir myPackage.tcl]
}} $dir]

https://wiki.tcl-lang.org/page/DGP
https://wiki.tcl-lang.org/page/package
https://wiki.tcl-lang.org/page/Lars+H
https://wiki.tcl-lang.org/page/package+ifneeded
https://wiki.tcl-lang.org/page/format
https://wiki.tcl-lang.org/page/dir
https://wiki.tcl-lang.org/page/list
https://wiki.tcl-lang.org/page/format
https://wiki.tcl-lang.org/page/bind
https://wiki.tcl-lang.org/page/NEM
https://wiki.tcl-lang.org/page/lambda

4/4

(Of course, for this specific example there is now [source -encoding]).

Lars H: The big disadvantage of that is of course that it's only suitable for packages that
require Tcl 8.5. An advantage is that it lets you create variables that are local to the script.

https://wiki.tcl-lang.org/page/source
https://wiki.tcl-lang.org/page/Lars+H

1/11

TIP 55: Package Format for Tcl Extensions
core.tcl-lang.org/tips/doc/trunk/tip/55.md

Abstract

This document specifies the contents of a binary distribution of a Tcl package, especially
directory structure and required files, suitable for automated installation into an existing
Tcl installation.

Rationale

There is currently no standard way of distributing or installing a Tcl extension package.
The TEA document defines a standard interface to building packages and includes an
install target but presumes that the packages is being installed on the same machine as it
was built. This TIP defines a directory structure and assorted files for the binary
distribution of a package which can be placed into an archive (for example zip or tar file)
and transferred for installation on another machine. A basic mechanism for installation of
packages is also described.

Definitions

The following definitions are excerpted from [78]:

package: A collection of files providing additional functionality to a user of a Tcl interpreter
when loaded into said interpreter.

Some files in a package implement the provided functionality whereas other files
contain metadata required by the package management of Tcl to be able to use the
package.

distribution: An encapsulation of one or more packages for transport between places,
machines, organizations, and people.

shared library: A piece of binary code that provides a set of operations and data
structures like a normal library, but which does not need to be physically incorporated into
the executables that use it until they are actually executed. This is the normal way to
distribute binary code for a Tcl package such that it can be incorporated into a Tcl
interpreter with the load command. On Windows, shared libraries are known as DLLs, on
the Macintosh ...

References

Much of the required structure for an installable distribution is defined by the requirements
of Tcl's existing package loading methods. The structure of an installable distribution
should largely mirror the structure of an installed package where possible.

https://core.tcl-lang.org/tips/doc/trunk/tip/55.md
https://core.tcl-lang.org/tips/doc/trunk/tip/78.md

2/11

The R system (a statistical package http://www.r-project.org/) has a well defined package
format which enables automatic installation of new packages and integration of
documentation and demonstration programs for these with that of the main R system.

A number of packaging and installation systems (for example, Debian
http://www.debian.org and RPM http://www.redhat.com) have been developed by the
Linux community which provide an interesting range of facilities. These systems
commonly provide facilities for pre and post installation scripts and pre and post removal
scripts to help set up and shut down packages. Also included are detailed dependency
relations between packages which can be used by an installer to ensure that a package
will work once it is installed or warn of potential conflicts after installation.

A significant part of this proposal is the proposed format of the package metadata which
derives from other metadata standardisation efforts, mainly the Dublin Core
http://purl.org/dc/ and the Resource Description Framework http://www.w3.org/RDF .

Requirements

The simplest case of a Tcl package is one that contains only Tcl code; these will be
considered first, and the additional issues raised by packages containing compiled code
will be dealt with later.

The minimum contents of a Tcl only package are defined by the requirements of [package
require xyzzy]. The package needs to be placed in a directory on the auto_path and must
contain one or more .tcl files which implement the functionality provided by the package.

In addition to these files, it is useful to include documentation for the commands
implemented by the package and some additional metadata about the author etc.
Distributions might also optionally include demonstration scripts and applications
illustrating their use, these could either be incorporated into the documentation or
included as stand-alone Tcl files.

Distributions which include shared libraries add an additional layer of complexity since
these will only run on the platforms for which they have been compiled. There are two
clear options here: either distributions are platform specific, intended for installation on
one platform alone, or the structure of the distribution is extended to allow the option of
including multiple shared libraries. The latter option would allow a single installation to
serve multiple platforms and so should be preferred although this TIP will not require a
distribution to support multiple platforms.

Proposed Directory Structure

The following directory structure is proposed for an installable distribution:

http://www.r-project.org/
http://www.debian.org/
http://www.redhat.com/
http://purl.org/dc/
http://www.w3.org/RDF

3/11

 packagename$version
 + DESCRIPTION.txt -- Metadata, description of the package
 + doc/ -- documentation
 + examples/ -- example scripts and applications
 + $architecture/ -- shared library directories
 + pkgIndex.tcl -- package index file (optional)

In addition, a distribution may include any additional files or directories required for its
operation.

DESCRIPTION is a file containing metadata about the package(s) contained in the
distribution. Its format will be described in a later section of this document.

The file pkgIndex.tcl currently required by the package-loading mechanism of the Tcl core
is optionally distributed. In most cases, it will be generated by the installer; all the
information which is necessary to do this is part of the distribution. Distribution authors
should only include pkgIndex.tcl if special features of their distribution mean that the
generated file would not work.

If the pkgIndex.tcl file is included in the distribution it should load files from their locations
within the distribution directory structure. For example, Tcl files should be loaded from the
tcl directory.

doc/ directory contains documentation in an accepted format. Currently Tcl documentation
is delivered either in source form (nroff or TMML) or as HTML files. Given the lack of a
standard cross platform solution, this TIP does not require a specific format; however, the
inclusion of either a text or HTML formatted help file is strongly encouraged. If HTML
formatted help is included the main file should be named index.html or index.htm so that it
can be linked to a central web page. If only plain text documentation is included there
should be a file called readme.txt (in either upper or lower case) which will serve as the
top level documentation file.

examples/ directory contains one or more Tcl files giving examples of the use of this
package. These should be complete scripts suitable for either sourcing in tclsh/wish or
running from the command line. The examples should be self contained and any external
data should be included in files in this directory or a sub-directory. This directory should
contain a file readme.txt which explains how to run the examples and provides a
commentary on what they do.

$architecture directories contain shared libraries for various platforms. The special
architecture tcl is used for Tcl script files. They either implement the package or contain
companion procedure definitions to the shared libraries of the package.

The distribution need not provide all possible combinations of architectures and may only
provide one shared library. This structure is proposed to allow shared libraries to co-exist
in a multi-platform environment and to allow binary packages to be distributed in multi-
platform distributions. The architectures included in the distribution should be named in
the DESCRIPTION.txt file.

4/11

The possible values of $architecture and methods for generating them are discussed in a
later section.

Metadata

This section defines the metadata describing the package contained in the distribution in
a format-neutral way. The model for this data is that provided by the Resource Description
Framework (RDF http://www.w3.org/rdf) which defines a triple based data model. The
RDF model defines objects, their properties and relationships between them. In addition,
where possible, element names are taken from the Dublin Core Metadata Element Set
http://dublincore.org/documents/1999/07/02/dces/ which defines a standard set of
element names for metadata. Dublin Core names are marked with DC in parentheses in
the following list.

In a package description, the object being described is the package itself, hence the
element names are all intended to describe packages. Other objects might be described
including people and organisations. The package description should not include these
objects but a package repository might store them separately keyed on the values stored
in this description (e.g. email addresses of creators).

Identifier (DC)

This element is a string containing the name of the distributed package. The
name may consist only of alphanumeric characters, colons, dashes and
underscores. This name should correspond to the name of the package
defined by this distribution (that is, the code should contain package provide
xyzzy where xyzzy is the value of this element.

Care must be taken to make this name unique among the package names in
the archive. To overcome this, namespace style names separated by double
colons should be used.

Examples: xyzzy, tcllib, xml::soap, cassidy::wonderful-package_2

http://www.w3.org/rdf
http://dublincore.org/documents/1999/07/02/dces/

5/11

Version

This element is a string containing the version of the package. It consists of 4
components separated by full stops. The components are major version,
minor version, maturity and level; and are written in this order.

The major and minor version components are integer numbers greater than or
equal to zero.

The component maturity is restricted to the values a, b. The represent the
maturity states alpha, beta respectively. For a production release, this
component can be omitted.

The level component allows a more fine-grained differentiation of maturity
levels. When a package has maturity production the level component is often
called the patchlevel of the package. If the level component is zero, it may be
omitted.

The period each side of the maturity component may be omitted.

Valid version numbers can be decoded via the following regular expression:

regexp {([0-9]+)\.([0-9]+)\.?([ab])?\.?([0-9]*)} $ver => major minor maturity
level

Examples: 8.4.0 8.4a1 2.5.b.5

Title (DC)

This element is a free form string containing a one sentence description of the
package contained in the distribution.

Example: Installer Tools for Tcl Packages

Creator (DC)

This element is a string containing the name of the person, organisation or
service responsible for the creation of the package optionally followed by the
email address of the author in angle brackets
http://www.faqs.org/rfcs/rfc2822.html . More detail about an author can be
provided in a separate object in the RDF description and if this is provided the
email address should be used as the value of the Name field in that object.

If there is more than one author this field may appear multiple times.

Email addresses may be obfuscated to avoid spam harvesters.

Example: Steve Cassidy

http://www.faqs.org/rfcs/rfc2822.html

6/11

Contributor (DC)

This element is a string analogous to the Creator element which contains the
name of a contributor to the package.

Rights (DC)

Typically, a Rights element will contain a rights management statement for the
resource, or reference a service providing such information. This will usually
be a reference to the license under which the package is distributed. This can
be a free form string naming the license or a URL referring to a document
containing the text of the license.

If the Rights element is absent, no assumptions can be made about the status
of these and other rights with respect to the resource.

Examples: BSD, http://www.opensource.org/licenses/artistic-license.html

URL

This element is a string containing an url referring to a document or site at
which the information about the package can be found. This url is not the
location of the distribution, as this might be part of a larger repository separate
from the package site.

Example: http://www.shlrc.mq.edu.au/~steve/tcl/

http://www.opensource.org/licenses/artistic-license.html
http://www.shlrc.mq.edu.au/~steve/tcl/

7/11

Available (DC)

This element is the release data of the package in the form YYYY-MM-DD.

YYYY is a four-digit integer number greater than zero denoting the year the
distribution was released.

MM is a two-digit integer number greater than zero and less than

It is padded with zero at the front if it less than 10. It denotes the month the
distribution was released. The number 1 represents January, 2 represents
February; and 12 represents December.

DD is a two-digit integer number greater than zero and less than 32. It is and
padded with zero at the front if less than 10. It denotes the day in the month
the distribution was released.

A valid data string can be obtained with the Tcl command [clock format [clock
seconds] -format "%Y-%m-%d"]

Example: 2002-01-23

(The DC element is Date but it can be refined to Created, Available, Applies)

Description (DC)

This element is a free form string briefly describing the package.

Architecture

This element is a string describing one of the architectures included in the
distribution. As a distribution is allowed to contain the files for several
architectures, this element may appear multiple times and should correspond
to a directory in the distribution.

Require

Names a package that must be installed for this package to operate properly.
This should have the same format as the package require command, eg. ?-
exact? package ?version?.

Example: http 2.0

Recommend

Declares a strong, but not absolute dependency on another package. In most
cases this package should be installed unless the user has specific reasons
not to install them.

8/11

Suggest

Declares a package which would enhance the functionality of this package but
which is not a requirement for the basic functionality of the package.

Conflict

Names a package with which can't be installed alongside this package. The
syntax is the same as for Require. If a conflicting package is present on the
system, an installer might offer an option of removing it or not installing this
package.

Subject (DC)

The topic or content of the package expressed as a set of Keywords. At some
future time, a set of canonical keywords may be established by a repository
manager.

The following Dublin Core elements were not included in the standard set above but may
be used in a package description if appropriate.

Publisher

An entity responsible for making the package available.

Type

The nature or genre of the content of the resource. For a Tcl package the
value of this element would be Software if the DCMI Type Vocabulary
http://au.dublincore.org/documents/2000/07/11/dcmi-type-vocabulary/ was
used. A more useful set of types might be developed in the future for Tcl
packages.

Format

The physical or digital manifestation of the resource. This might be used by
archive maintainers to specify the format of a package archive, eg. zip, tar etc.

Source

A Reference to a resource from which the present resource is derived.

Language

A language of the intellectual content of the resource. Could be used if multi-
language packages are available. Should use the two letter language code
defined by RFC 1766, eg. 'fr' for French, 'en' for English.

Encoding of the Metadata

http://au.dublincore.org/documents/2000/07/11/dcmi-type-vocabulary/

9/11

The primary means of storing RDF data is using XML but it can be stored in many other
formats. This TIP prescribes a simple text based encoding according to the RFC 2822
format which is described in this section. Data stored in this format can be converted to
XML format for use by other tools, similarly XML formatted descriptions can be converted
into this text format without loss of information.

The text format description is stored in the file DESCRIPTION.txt. The XML formatted
version of the data may be stored in the file DESCRIPTION.rdf within the archive and
may be automatically generated if not present.

The general format of this file is that of a RFC 2822 mail message, without body and
using custom headers. The available headers are the case-independent logical names
from the preceding section but may be augmented by other fields defined by repository
maintainers or other applications. The headers are allowed appear in any order.

Example:

 Identifier: stemmer
 Version: 1.0.0
 Title: A stemmer for English.
 Creator: Steve Cassidy <>
 Description: Provides a procedure to remove any prefixes or suffixes on
 a word to give the word stem. Uses Porter's algorithm to do this
 in an intelligent manner with an accuracy of around 80%.
 Rights: BSD
 URL: http://www.shlrc.mq.edu.au/emu/tcl/
 Available: 2001-08-16
 Architecture: tcl
 Subject: linguistics
 Subject: text

Combination Distributions

It is often useful to combine a number of related packages so that they can be installed
together to provide a certain kind of functionality, for example, web page production tools
or database access. Perl uses the term Bundle to refer to such a group of related
packages. There are two alternative mechanisms for distribution of such a package within
the mechanisms suggested here. Firstly, since a distribution may contain more than one
package, the set of files making up the various packages could be combined together and
described by a single DESCRIPTION.txt file. This is similar to the way that tcllib is
currently distributed. The disadvantage would be that all of the Tcl files implementing
these packages would have to reside in the same directory which could cause name
clashes.

The second alternative is to create a distribution consisting of only a DESCRIPTION.txt
file to describe which Requires the component packages causing them to be installed
from the repository. For example, tcllib might be described as follows:

https://core.tcl-lang.org/cdn-cgi/l/email-protection

10/11

 Identifier: tcllib
 Version: 1.0.0
 Title: The Standard Tcl Library
 Description: This package is intended to be a collection of Tcl
 packages that provide utility functions useful to a large
 collection of Tcl programmers.
 Rights: BSD
 URL: http://sourceforge.net/projects/tcllib
 Contributor: Andreas Kupries <andreas_kupries at users dot sourceforge dot net>
 Contributor: Don Porter <dgp at users dot sourceforge dot net>
 Require: base64
 Require: cmdline
 Require: csv
 ...

Installing tcllib would cause the installer to fetch base64, cmdline, csv etc from the
repository and install them in order to satisfy the tcllib requirement. A new pkgIndex.tcl file
could be constructed to load all of these packages if [package require tcllib] was called.

Architecture

Possible values for $architecture in the directory structure include:

the value of tcl_platform(platform): windows, unix, macintosh

a composite of tcl_platform values:
$tcl_platform(machine)-$tcl_platform(os)-$tcl_platform(osVersion)

a canonical system name as returned by config.guess: i686-pc-linux-gnu

Installing Packages

A package structured according to this TIP can be installed using the following steps:

1. Download the package archive (eg. zip file)

2. Locate a writable directory included on $auto_path (or ask for a installation
directory)

3. Unpack the archive in the desired location.

4. Run pkg_mkIndex with appropriate arguments to generate a pkgIndex.tcl file if none
is present. Arguments will include the appropriate Architecture directories for the
platform.

5. (optional) link help files and demos to the central index.

Alternatives

Alternatives might be considered for the package DESCRIPTION.txt file, for the
documentation directory and for the location of shared libraries.

11/11

An alternative for package description file is to include an alternative package description,
for example the XML based ``ppd_ format used to describe Perl packages on the
ActiveState Perl package repository. The main motivation for the simple format proposed
is that it is trivial for authors to write and trivial for programs to read and can be
transformed into standards based RDF XML. The use of the DC element names means
that search engines etc. will be able to usefully index the packages in a repository.

Note that the ppd format could still be used to describe packages stored in a repository
for installation and that some of the information required to build the ppd format could be
derived from the description file.

In the R package format referenced earlier, documentation is included in a standard
source form and is converted to HTML or text based help pages; these might be included
in the package or derived from the source forms on installation. The closest option for Tcl
would be to require nroff format help files which can be converted to HTML or text files on
installation. Unfortunately there is no guaranteed tool to do nroff->X conversion on
Windows or Macintosh platforms. Until there is an accepted way of authoring Tcl
documentation this TIP defers any standard layout of these files in an installable package.

The alternative to having shared libraries in specific directories is to have separate
packages for each new platform. This has the advantage of making the packages smaller
and more closely correspond to the existing directory structure of an installed package.
The main motivation for the suggested directory structure is to allow multi-platform
packages or to facilitate multi-platform installations.

Supporting Tools

The standards outlined in this TIP should be supported by Tcl scripts to:

Generate empty package templates for new projects.

Validate package directories or archive files.

Read and write the DESCRIPTION.txt file and provide a standard interface to the
information it contains. Convert between RFC 2822 and XML formats.

Install a package from an appropriately structured archive.

In addition, the TEA standard should be extended with a package makefile target which
will act like the current install target but which will copy files to a local directory and
optionally build an archive of the package for distribution.

