

1/2

tdbc::sqlite3 manual page - Tcl Database Connectivity
tcl.tk/man/tcl8.6/TdbcsqliteCmd/tdbc_sqlite3.htm

NAME

tdbc::sqlite3 4 TDBC driver for the SQLite3 database manager

SYNOPSIS

package require tdbc::sqlite3 1.0
 tdbc::sqlite3::connection create db fileName ?-option value...?

DESCRIPTION

The tdbc::sqlite3 driver provides a database interface that conforms to Tcl DataBase
Connectivity (TDBC) and allows a Tcl script to connect to a SQLite3 database. It is also
provided as a worked example of how to write a database driver in Tcl, so that driver
authors have a starting point for further development.
Connection to a SQLite3 database is established by invoking tdbc::sqlite3::connection
create, passing it a string to be used as the connection handle followed by the file name
of the database. The side effect of tdbc::sqlite3::connection create is to create a new
database connection.. As an alternative, tdbc::sqlite::connection new may be used to
create a database connection with an automatically assigned name. The return value
from tdbc::sqlite::connection new is the name that was chosen for the connection
handle. See tdbc::connection(n) for the details of how to use the connection to
manipulate a database.

CONFIGURATION OPTIONS

The standard configuration options -encoding, -isolation, -readonly and -timeout are all
recognized, both on tdbc::sqlite3::connection create and on the configure method of
the resulting connection.
Since the encoding of a SQLite3 database is always well known, the -encoding option
accepts only utf-8 as an encoding and always returns utf-8 for an encoding. The actual
encoding may be set using a SQLite3 PRAGMA statement when creating a new
database.

Only the isolation levels readuncommitted and serializable are implemented. Other
isolation levels are promoted to serializable.

The -readonly flag is not implemented. A false boolean value is accepted silently, while
any other value reports an error.

The -keepcase flag is special and controls how table and column names are reported in
the various methods to retrieve database metadata. By default the flag is zero, i.e. table
and column names are reported all lower case. Otherwise, table and column names are

https://www.tcl.tk/man/tcl8.6/TdbcsqliteCmd/tdbc_sqlite3.htm

2/2

reported as defined in the database.

BUGS

If any column name is not unique among the columns in a result set, the results of -as
dicts returns will be missing all but the rightmost of the duplicated columns. This
limitation can be worked around by adding appropriate AS clauses to SELECT
statements to ensure that all returned column names are unique. Plans are to fix this bug
by using a C implementation of the driver, which will also improve performance
significantly.

SEE ALSO

tdbc, tdbc::connection, tdbc::resultset, tdbc::statement

https://www.tcl.tk/man/tcl8.6/TdbcCmd/tdbc.htm
https://www.tcl.tk/man/tcl8.6/TdbcCmd/tdbc_connection.htm
https://www.tcl.tk/man/tcl8.6/TdbcCmd/tdbc_resultset.htm
https://www.tcl.tk/man/tcl8.6/TdbcCmd/tdbc_statement.htm

1/19

The Tcl interface to the SQLite library
sqlite.org/tclsqlite.html

The SQLite library is designed to be very easy to use from a Tcl or Tcl/Tk script. SQLite
began as a Tcl extension and the primary test suite for SQLite is written in TCL. SQLite
can be used with any programming language, but its connections to TCL run deep.

This document gives an overview of the Tcl programming interface for SQLite.

The API

The interface to the SQLite library consists of single tcl command named sqlite3
Because there is only this one command, the interface is not placed in a separate
namespace.

The sqlite3 command is mostly used as follows to open or create a database:

sqlite3 dbcmd ?database-name? ?options?

To get information only, the sqlite3 command may be given exactly one argument, either
"-version", "-sourceid" or "-has-codec", which will return the specified datum with no other
effect.

With other arguments, the sqlite3 command opens the database named in the second
non-option argument, or named "" if there is no such. If the open succeeds, a new Tcl
command named by the first argument is created and "" is returned. (This approach is
similar to the way widgets are created in Tk.) If the open fails, an error is raised without
creating a Tcl command and an error message string is returned.

If the database does not already exist, the default behavior is for it to be created
automatically (though this can be changed by using the "-create false" option).

The name of the database is usually just the name of a disk file in which the database is
stored. If the name of the database is the special name ":memory:", then a new database
is created in memory. If the name of the database is an empty string, then the database is
created in an empty file that is automatically deleted when the database connection
closes. URI filenames can be used if the "-uri yes" option is supplied on the sqlite3
command.

Options understood by the sqlite3 command include:

https://www.sqlite.org/tclsqlite.html
http://www.tcl-lang.org/
http://www.tcl-lang.org/doc/tea/
https://www.sqlite.org/testing.html
https://www.sqlite.org/inmemorydb.html
https://www.sqlite.org/uri.html

2/19

-create BOOLEAN
If true, then a new database is created if one does not already exist. If false, then
an attempt to open a database file that does not previously exist raises an error.
The default behavior is "true".

-nomutex BOOLEAN
If true, then all mutexes for the database connection are disabled. This provides a
small performance boost in single-threaded applications.

-readonly BOOLEAN
If true, then open the database file read-only. If false, then the database is opened
for both reading and writing if filesystem permissions allow, or for reading only if
filesystem write permission is denied by the operating system. The default setting is
"false". Note that if the previous process to have the database did not exit cleanly
and left behind a hot journal, then the write permission is required to recover the
database after opening, and the database cannot be opened read-only.

-uri BOOLEAN
If true, then interpret the filename argument as a URI filename. If false, then the
argument is a literal filename. The default value is "false".

-vfs VFSNAME
Use an alternative VFS named by the argument.

-fullmutex BOOLEAN
If true, multiple threads can safely attempt to use the database. If false, such
attempts are unsafe. The default value depends upon how the extension is built.

-nofollow BOOLEAN
If true, and the database name refers to a symbolic link, it will not be followed to
open the true database file. If false, symbolic links will be followed. The default is
"false".

Once an SQLite database is open, it can be controlled using methods of the dbcmd.
There are currently 40 methods defined.

https://www.sqlite.org/fileformat2.html#hotjrnl
https://www.sqlite.org/uri.html
https://www.sqlite.org/vfs.html

3/19

authorizer
backup
bind_fallback
busy
cache
changes
close
collate
collation_needed
commit_hook
complete
config
copy
deserialize

enable_load_extension
errorcode
eval
exists
function
incrblob
interrupt
last_insert_rowid
nullvalue
onecolumn
preupdate
profile
progress
restore

rollback_hook
serialize
status
timeout
total_changes
trace
trace_v2
transaction
unlock_notify
update_hook
version
wal_hook

The use of each of these methods will be explained in the sequel, though not in the order
shown above.

The "eval" method

The most useful dbcmd method is "eval". The eval method is used to execute SQL on the
database. The syntax of the eval method looks like this:

dbcmd eval ?-withoutnulls? sql ?array-name? ?script?

The job of the eval method is to execute the SQL statement or statements given in the
second argument. For example, to create a new table in a database, you can do this:

sqlite3 db1 ./testdb
 db1 eval {CREATE TABLE t1(a int, b text)}

The above code creates a new table named t1 with columns a and b. What could be
simpler?

Query results are returned as a list of column values. If a query requests 2 columns and
there are 3 rows matching the query, then the returned list will contain 6 elements. For
example:

db1 eval {INSERT INTO t1 VALUES(1,'hello')}
 db1 eval {INSERT INTO t1 VALUES(2,'goodbye')}

 db1 eval {INSERT INTO t1 VALUES(3,'howdy!')}
 set x [db1 eval {SELECT * FROM t1 ORDER BY a}]

The variable $x is set by the above code to

1 hello 2 goodbye 3 howdy!

4/19

You can also process the results of a query one row at a time by specifying the name of
an array variable and a script following the SQL code. For each row of the query result,
the values of all columns will be inserted into the array variable and the script will be
executed. For instance:

db1 eval {SELECT * FROM t1 ORDER BY a} values {
 parray values

 puts ""
 }

This last code will give the following output:

values(*) = a b
 values(a) = 1

 values(b) = hello
values(*) = a b

 values(a) = 2
 values(b) = goodbye

values(*) = a b
 values(a) = 3

 values(b) = howdy!

For each column in a row of the result, the name of that column is used as an index in to
array and the value of the column is stored in the corresponding array entry. (Caution: If
two or more columns in the result set of a query have the same name, then the last
column with that name will overwrite prior values and earlier columns with the same name
will be inaccessible.) The special array index * is used to store a list of column names in
the order that they appear.

Normally, NULL SQL results are stored in the array using the nullvalue setting. However,
if the -withoutnulls option is used, then NULL SQL values cause the corresponding array
element to be unset instead.

If the array variable name is omitted or is the empty string, then the value of each column
is stored in a variable with the same name as the column itself. For example:

db1 eval {SELECT * FROM t1 ORDER BY a} {
 puts "a=$a b=$b"

 }

From this we get the following output

a=1 b=hello
 a=2 b=goodbye

 a=3 b=howdy!

5/19

Tcl variable names can appear in the SQL statement of the second argument in any
position where it is legal to put a string or number literal. The value of the variable is
substituted for the variable name. If the variable does not exist a NULL values is used.
For example:

db1 eval {INSERT INTO t1 VALUES(5,$bigstring)}

Note that it is not necessary to quote the $bigstring value. That happens automatically. If
$bigstring is a large string or binary object, this technique is not only easier to write, it is
also much more efficient since it avoids making a copy of the content of $bigstring.

If the $bigstring variable has both a string and a "bytearray" representation, then TCL
inserts the value as a string. If it has only a "bytearray" representation, then the value is
inserted as a BLOB. To force a value to be inserted as a BLOB even if it also has a text
representation, use a "@" character to in place of the "$". Like this:

db1 eval {INSERT INTO t1 VALUES(5,@bigstring)}

If the variable does not have a bytearray representation, then "@" works just like "$".
Note that ":" works like "$" in all cases so the following is another way to express the
same statement:

db1 eval {INSERT INTO t1 VALUES(5,:bigstring)}

The use of ":" instead of "$" before the name of a variable can sometimes be useful if the
SQL text is enclosed in double-quotes "..." instead of curly-braces {...}. When the SQL is
contained within double-quotes "..." then TCL will do the substitution of $-variables, which
can lead to SQL injection if extreme care is not used. But TCL will never substitute a :-
variable regardless of whether double-quotes "..." or curly-braces {...} are used to enclose
the SQL, so the use of :-variables adds an extra measure of defense against SQL
injection.

The "close" method

As its name suggests, the "close" method to an SQLite database just closes the
database. This has the side-effect of deleting the dbcmd Tcl command. Here is an
example of opening and then immediately closing a database:

sqlite3 db1 ./testdb
 db1 close

If you delete the dbcmd directly, that has the same effect as invoking the "close" method.
So the following code is equivalent to the previous:

sqlite3 db1 ./testdb
 rename db1 {}

The "transaction" method

6/19

The "transaction" method is used to execute a TCL script inside an SQLite database
transaction. The transaction is committed when the script completes, or it rolls back if the
script fails. If the transaction occurs within another transaction (even one that is started
manually using BEGIN) it is a no-op.

The transaction command can be used to group together several SQLite commands in a
safe way. You can always start transactions manually using BEGIN, of course. But if an
error occurs so that the COMMIT or ROLLBACK are never run, then the database will
remain locked indefinitely. Also, BEGIN does not nest, so you have to make sure no other
transactions are active before starting a new one. The "transaction" method takes care of
all of these details automatically.

The syntax looks like this:

dbcmd transaction ?transaction-type? script

The transaction-type can be one of deferred, exclusive or immediate. The default is
deferred.

The "cache" method

The "eval" method described above keeps a cache of prepared statements for recently
evaluated SQL commands. The "cache" method is used to control this cache. The first
form of this command is:

dbcmd cache size N

This sets the maximum number of statements that can be cached. The upper limit is 100.
The default is 10. If you set the cache size to 0, no caching is done.

The second form of the command is this:

dbcmd cache flush

The cache-flush method finalizes all prepared statements currently in the cache.

The "complete" method

The "complete" method takes a string of supposed SQL as its only argument. It returns
TRUE if the string is a complete statement of SQL and FALSE if there is more to be
entered.

The "complete" method is useful when building interactive applications in order to know
when the user has finished entering a line of SQL code. This is really just an interface to
the sqlite3_complete() C function.

The "config" method

https://www.sqlite.org/c3ref/prepare.html
https://www.sqlite.org/c3ref/finalize.html
https://www.sqlite.org/c3ref/complete.html

7/19

The "config" method queries or changes certain configuration settings for the database
connection using the sqlite3_db_config() interface. Run this method with no arguments to
get a TCL list of available configuration settings and their current values:

dbcmd config

The above will return something like this:

defensive 0 dqs_ddl 1 dqs_dml 1 enable_fkey 0 enable_qpsg 0 enable_trigger 1
enable_view 1 fts3_tokenizer 1 legacy_alter_table 0 legacy_file_format 0
load_extension 0 no_ckpt_on_close 0 reset_database 0 trigger_eqp 0
trusted_schema 1 writable_schema 0

Add the name of an individual configuration setting to query the current value of that
setting. Optionally add a boolean value to change a setting.

The following four configuration changes are recommended for maximum application
security. Turning off the trust_schema setting prevents virtual tables and dodgy SQL
functions from being used inside of triggers, views, CHECK constraints, generated
columns, and expression indexes. Turning off the dqs_dml and dqs_ddl settings prevents
the use of double-quoted strings. Turning on defensive prevents direct writes to shadow
tables.

db config trusted_schema 0
db config defensive 1
db config dqs_dml 0
db config dqs_ddl 0

The "copy" method

The "copy" method copies data from a file into a table. It returns the number of rows
processed successfully from the file. The syntax of the copy method looks like this:

dbcmd copy conflict-algorithm table-name file-name ?column-separator? ?
null-indicator?

Conflict-algorithm must be one of the SQLite conflict algorithms for the INSERT
statement: rollback, abort, fail,ignore, or replace. See the SQLite Language section for
ON CONFLICT for more information. The conflict-algorithm must be specified in lower
case.

Table-name must already exists as a table. File-name must exist, and each row must
contain the same number of columns as defined in the table. If a line in the file contains
more or less than the number of columns defined, the copy method rollbacks any inserts,
and returns an error.

Column-separator is an optional column separator string. The default is the ASCII tab
character \t.

https://www.sqlite.org/c3ref/db_config.html
https://www.sqlite.org/lang_conflict.html

8/19

Null-indicator is an optional string that indicates a column value is null. The default is an
empty string. Note that column-separator and null-indicator are optional positional
arguments; if null-indicator is specified, a column-separator argument must be specified
and precede the null-indicator argument.

The copy method implements similar functionality to the .import SQLite shell command.

The "timeout" method

The "timeout" method is used to control how long the SQLite library will wait for locks to
clear before giving up on a database transaction. The default timeout is 0 millisecond. (In
other words, the default behavior is not to wait at all.)

The SQLite database allows multiple simultaneous readers or a single writer but not both.
If any process is writing to the database no other process is allows to read or write. If any
process is reading the database other processes are allowed to read but not write. The
entire database shared a single lock.

When SQLite tries to open a database and finds that it is locked, it can optionally delay
for a short while and try to open the file again. This process repeats until the query times
out and SQLite returns a failure. The timeout is adjustable. It is set to 0 by default so that
if the database is locked, the SQL statement fails immediately. But you can use the
"timeout" method to change the timeout value to a positive number. For example:

db1 timeout 2000

The argument to the timeout method is the maximum number of milliseconds to wait for
the lock to clear. So in the example above, the maximum delay would be 2 seconds.

The "busy" method

The "busy" method, like "timeout", only comes into play when the database is locked. But
the "busy" method gives the programmer much more control over what action to take.
The "busy" method specifies a callback Tcl procedure that is invoked whenever SQLite
tries to open a locked database. A single integer argument is appended to the callback
before it is invoke. The argument is the number of prior calls to the busy callback for the
current locking event. It is intended that the callback will do some other useful work for a
short while (such as service GUI events) then return so that the lock can be tried again.
The callback procedure should return "0" if it wants SQLite to try again to open the
database and should return "1" if it wants SQLite to abandon the current operation.

If the busy method is invoked without an argument, the name of the callback procedure
last set by the busy method is returned. If no callback procedure has been set, an empty
string is returned.

The "enable_load_extension" method

9/19

The extension loading mechanism of SQLite (accessed using the load_extension() SQL
function) is turned off by default. This is a security precaution. If an application wants to
make use of the load_extension() function it must first turn the capability on using this
method.

This method takes a single boolean argument which will turn the extension loading
functionality on or off.

For best security, do not use this method unless truly needed, and run PRAGMA
trusted_schema=OFF or the "db config trusted_schema 0" method before invoking this
method.

This method maps to the sqlite3_enable_load_extension() C/C++ interface.

The "exists" method

The "exists" method is similar to "onecolumn" and "eval" in that it executes SQL
statements. The difference is that the "exists" method always returns a boolean value
which is TRUE if a query in the SQL statement it executes returns one or more rows and
FALSE if the SQL returns an empty set.

The "exists" method is often used to test for the existence of rows in a table. For example:

if {[db exists {SELECT 1 FROM table1 WHERE user=$user}]} {
 # Processing if $user exists

 } else {
 # Processing if $user does not exist

 }

The "last_insert_rowid" method

The "last_insert_rowid" method returns an integer which is the ROWID of the most
recently inserted database row.

The "function" method

The "function" method registers new SQL functions with the SQLite engine. The
arguments are the name of the new SQL function and a TCL command that implements
that function. Arguments to the function are appended to the TCL command before it is
invoked.

For security reasons, it is recommended that applications first set PRAGMA
trusted_schema=OFF or run the "db config trusted_schema 0" method before using this
method.

The syntax looks like this:

dbcmd function sql-name ?options? script

https://www.sqlite.org/lang_corefunc.html#load_extension
https://www.sqlite.org/lang_corefunc.html#load_extension
https://www.sqlite.org/pragma.html#pragma_trusted_schema
https://www.sqlite.org/c3ref/enable_load_extension.html
https://www.sqlite.org/pragma.html#pragma_trusted_schema

10/19

The following example creates a new SQL function named "hex" that converts its numeric
argument in to a hexadecimal encoded string:

db function hex {format 0x%X}

The "function" method accepts the following options:

11/19

-argcount INTEGER
Specify the number of arguments that the SQL function accepts. The default value
of -1 means any number of arguments.

-deterministic
This option indicates that the function will always return the same answer given the
same argument values. The SQLite query optimizer uses this information to cache
answers from function calls with constant inputs and reuse the result rather than
invoke the function repeatedly.

-directonly
This option restricts the function to only be usable by direct top-level SQL
statement. The function will not be accessible to triggers, views, CHECK
constraints, generated columns, or index expressions. This option is recommended
for all application-defined SQL functions, and is highly recommended for any SQL
function that has side effects or that reveals internal state of the application.

Security Warning: Without this switch, an attacker might be able to change the
schema of a database file to include the new function inside a trigger or view or
CHECK constraint and thereby trick the application into running the function with
parameters of the attacker's choosing. Hence, if the new function has side effects or
reveals internal state about the application and the -directonly option is not used,
that is a potential security vulnerability.

-innocuous
This option indicates that the function has no side effects and does not leak any
information that cannot be computed directly from its input parameters. When this
option is specified, the function may be used in triggers, views, CHECK constraints,
generated columns, and/or index expressions even if PRAGMA
trusted_schema=OFF. The use of this option is discouraged unless it is truly
needed.

-returntype integer|real|text|blob|any
This option is used to configure the type of the result returned by the function. If this
option is set to "any" (the default), SQLite attempts to determine the type of each
value returned by the function implementation based on the Tcl value's internal
type. Or, if it is set to "text" or "blob", the returned value is always a text or blob
value, respectively. If this option is set to "integer", SQLite attempts to coerce the
value returned by the function to an integer. If this is not possible without data loss,
it attempts to coerce it to a real value, and finally falls back to text. If this option is
set to "real", an attempt is made to return a real value, falling back to text if this is
not possible.

The "nullvalue" method

The "nullvalue" method changes the representation for NULL returned as result of the
"eval" method.

https://www.sqlite.org/pragma.html#pragma_trusted_schema

12/19

db1 nullvalue NULL

The "nullvalue" method is useful to differ between NULL and empty column values as Tcl
lacks a NULL representation. The default representation for NULL values is an empty
string.

The "onecolumn" method

The "onecolumn" method works like "eval" in that it evaluates the SQL query statement
given as its argument. The difference is that "onecolumn" returns a single element which
is the first column of the first row of the query result.

This is a convenience method. It saves the user from having to do a "[lindex ... 0]"
on the results of an "eval" in order to extract a single column result.

The "changes" method

The "changes" method returns an integer which is the number of rows in the database
that were inserted, deleted, and/or modified by the most recent "eval" method.

The "total_changes" method

The "total_changes" method returns an integer which is the number of rows in the
database that were inserted, deleted, and/or modified since the current database
connection was first opened.

The "authorizer" method

The "authorizer" method provides access to the sqlite3_set_authorizer C/C++ interface.
The argument to authorizer is the name of a procedure that is called when SQL
statements are being compiled in order to authorize certain operations. The callback
procedure takes 5 arguments which describe the operation being coded. If the callback
returns the text string "SQLITE_OK", then the operation is allowed. If it returns
"SQLITE_IGNORE", then the operation is silently disabled. If the return is
"SQLITE_DENY" then the compilation fails with an error.

If the argument is an empty string then the authorizer is disabled. If the argument is
omitted, then the current authorizer is returned.

The "bind_fallback" method

The "bind_fallback" method gives the application control over how to handle parameter
binding when no TCL variable matches the parameter name.

When the eval method sees a named SQL parameter such as "$abc" or ":def" or "@ghi"
in an SQL statement, it tries to look up a TCL variable with the same name, and it binds
the value of that TCL variable to the SQL parameter. If no such TCL variable exists, the
default behavior is to bind an SQL NULL value to the parameter. However, if a

https://www.sqlite.org/c3ref/set_authorizer.html

13/19

bind_fallback proc is specified, then that proc is invoked with the name of the SQL
parameter and the return value from the proc is bound to the SQL parameter. Or if the
proc returns an error, then the SQL statement aborts with that error. If the proc returns
with some code other than TCL_OK or TCL_ERROR, then the SQL parameter is bound
to NULL, as it would be by default.

The "bind_fallback" method has a single optional argument. If the argument is an empty
string, then the bind_fallback is cancelled and the default behavior is restored. If the
argument is a non-empty string, then the argument is a TCL command (usually the name
of a proc) to invoke whenever an SQL parameter is seen that does not match any TCL
variable. If the "bind_fallback" method is given no arguments, then the current
bind_fallback command is returned.

As an example, the following setup causes TCL to throw an error if an SQL statement
contains an parameter that does not match any global TCL variable:

proc bind_error {nm} {
 error "no such variable: $nm"
}
db bind_fallback bind_error

The "progress" method

This method registers a callback that is invoked periodically during query processing.
There are two arguments: the number of SQLite virtual machine opcodes between
invocations, and the TCL command to invoke. Setting the progress callback to an empty
string disables it.

The progress callback can be used to display the status of a lengthy query or to process
GUI events during a lengthy query.

The "collate" method

This method registers new text collating sequences. There are two arguments: the name
of the collating sequence and the name of a TCL procedure that implements a
comparison function for the collating sequence.

For example, the following code implements a collating sequence called "NOCASE" that
sorts in text order without regard to case:

proc nocase_compare {a b} {
 return [string compare [string tolower $a] [string tolower $b]]
}
db collate NOCASE nocase_compare

The "collation_needed" method

14/19

This method registers a callback routine that is invoked when the SQLite engine needs a
particular collating sequence but does not have that collating sequence registered. The
callback can register the collating sequence. The callback is invoked with a single
parameter which is the name of the needed collating sequence.

The "commit_hook" method

This method registers a callback routine that is invoked just before SQLite tries to commit
changes to a database. If the callback throws an exception or returns a non-zero result,
then the transaction rolls back rather than commit.

The "rollback_hook" method

This method registers a callback routine that is invoked just before SQLite tries to do a
rollback. The script argument is run without change.

The "status" method

This method returns status information from the most recently evaluated SQL statement.
The status method takes a single argument which should be either "steps" or "sorts". If
the argument is "steps", then the method returns the number of full table scan steps that
the previous SQL statement evaluated. If the argument is "sorts", the method returns the
number of sort operations. This information can be used to detect queries that are not
using indices to speed search or sorting.

The status method is basically a wrapper on the sqlite3_stmt_status() C-language
interface.

The "update_hook" method

This method registers a callback routine that is invoked just after each row is modified by
an UPDATE, INSERT, or DELETE statement. Four arguments are appended to the
callback before it is invoked:

The keyword "INSERT", "UPDATE", or "DELETE", as appropriate
The name of the database which is being changed
The table that is being changed
The rowid of the row in the table being changed

The callback must not do anything that will modify the database connection that invoked
the update hook such as running queries.

The "preupdate" method

This method either registers a callback routine that is invoked just before each row is
modified by an UPDATE, INSERT, or DELETE statement, or may perform certain
operations related to the impending update.

https://www.sqlite.org/c3ref/stmt_status.html

15/19

To register or remove a preupdate callback, use this syntax:

dbcmd preupdate hook ?SCRIPT?

When a preupdate callback is registered, then prior to each row modification, the callback
is run with these arguments:

The keyword "INSERT", "UPDATE", or "DELETE", as appropriate
The name of the database which is being changed
The table that is being changed
The original rowid of the row in the table being changed
The new rowid (if any) of the row in the table being changed

The callback must not do anything that will modify the database connection that invoked
the preupdate hook such as running queries.
When the callback is executing, and only then, these preupdate operations may be
performed by use of the indicated syntax:

dbcmd preupdate count
 dbcmd preupdate depth
 dbcmd preupdate new INDEX

 dbcmd preupdate old INDEX

The count submethod returns the number of columns in the row that is being inserted,
updated, or deleted.

The depth submethod returns the update nesting depth. This will be 0 for a direct insert,
update, or delete operation; 1 for inserts, updates, or deletes invoked by top-level
triggers; or higher values for changes resulting from trigger-invoked triggers.

The old and new submethods return the selected original or changed column value
respectively of the row being updated.

Note that the Tcl interface (and underlying SQLite library) must have been built with the
preprocessor symbol SQLITE_ENABLE_PREUPDATE_HOOK defined for the preupdate
method to be available.

The "wal_hook" method

This method registers a callback routine that is invoked after transaction commit when the
database is in WAL mode. Two arguments are appended to the callback command before
it is invoked:

The name of the database on which the transaction was committed
The number of entries in the write-ahead log (WAL) file for that database

This method might decide to run a checkpoint either itself or as a subsequent idle
callback. Note that SQLite only allows a single WAL hook. By default this single WAL
hook is used for the auto-checkpointing. If you set up an explicit WAL hook, then that one

https://www.sqlite.org/wal.html
https://www.sqlite.org/wal.html#ckpt

16/19

WAL hook must ensure that checkpoints are occurring since the auto-checkpointing
mechanism will be disabled.

This method should return an integer value that is equivalent to an SQLite error code
(usually 0 for SQLITE_OK in the case of success or 1 for SQLITE_ERROR if some error
occurs). As in sqlite3_wal_hook(), the results of returning an integer that does not
correspond to an SQLite error code are undefined. If the value returned by the script
cannot be interpreted as an integer value, or if the script throws a Tcl exception, no error
is returned to SQLite but a Tcl background-error is raised.

The "incrblob" method

This method opens a TCL channel that can be used to read or write into a preexisting
BLOB in the database. The syntax is like this:

dbcmd incrblob ?-readonly? ?DB? TABLE COLUMN ROWID

The command returns a new TCL channel for reading or writing to the BLOB. The
channel is opened using the underlying sqlite3_blob_open() C-language interface. Close
the channel using the close command of TCL.

The "errorcode" method

This method returns the numeric error code that resulted from the most recent SQLite
operation.

The "trace" method

The "trace" method registers a callback that is invoked as each SQL statement is
compiled. The text of the SQL is appended as a single string to the command before it is
invoked. This can be used (for example) to keep a log of all SQL operations that an
application performs.

The "trace_v2" method

The "trace_v2" method registers a callback that is invoked as each SQL statement is
compiled. The syntax is as follows:

dbcmd trace_v2 ?callback? ?mask?

This command causes the "callback" script to be invoked whenever certain conditions
occurs. The conditions are determined by the mask argument, which should be a TCL-list
of zero or more of the following keywords:

statement
profile
row
close

https://www.sqlite.org/c3ref/wal_hook.html
https://www.sqlite.org/c3ref/blob_open.html

17/19

Traces for statement invoke the callback with two arguments whenever a new SQL
statement is run. The first argument is an integer which is the value of the pointer to the
underlying sqlite3_stmt object. This integer can be used to correlate SQL statement text
with the result of a profile or row callback. The second argument is the unexpanded text
of the SQL statement being run. By "unexpanded", we mean that variable substitutions in
the text are not expanded into the variable values. This is different from the behavior of
the "trace" method which does expand variable substitutions.

Traces for profile invoke the callback with two arguments as each SQL statement
finishes. The first argument is an integer which is the value of the underlying sqlite3_stmt
object. The second argument is the approximate run-time for the statement in
nanoseconds. The run-time is the best estimate available depending on the capabilities of
the platform on which the application is running.

Traces for row invoke the callback with a single argument whenever a new result row is
available from an SQL statement. The argument is an integer which is the value of the
underlying sqlite3_stmt object pointer.

Traces for close invoke the callback with a single argument as the database connection
is closing. The argument is an integer which is the value of a pointer to the underlying
sqlite3 object that is closing.

There can only be a single trace callback registered on a database connection. Each use
of "trace" or "trace_v2" cancels all prior trace callback.

The "backup" method

The "backup" method makes a backup copy of a live database. The command syntax is
like this:

dbcmd backup ?source-database? backup-filename

The optional source-database argument tells which database in the current connection
should be backed up. The default value is main (or, in other words, the primary database
file). To back up TEMP tables use temp. To backup an auxiliary database added to the
connection using the ATTACH command, use the name of that database as it was
assigned in the ATTACH command.

The backup-filename is the name of a file into which the backup is written. Backup-
filename does not have to exist ahead of time, but if it does, it must be a well-formed
SQLite database.

The "restore" method

The "restore" method copies the content from a separate database file into the current
database connection, overwriting any preexisting content. The command syntax is like
this:

https://www.sqlite.org/c3ref/stmt.html
https://www.sqlite.org/c3ref/stmt.html
https://www.sqlite.org/c3ref/stmt.html
https://www.sqlite.org/c3ref/sqlite3.html
https://www.sqlite.org/lang_attach.html
https://www.sqlite.org/lang_attach.html

18/19

dbcmd restore ?target-database? source-filename

The optional target-database argument tells which database in the current connection
should be overwritten with new content. The default value is main (or, in other words, the
primary database file). To repopulate the TEMP tables use temp. To overwrite an
auxiliary database added to the connection using the ATTACH command, use the name
of that database as it was assigned in the ATTACH command.

The source-filename is the name of an existing well-formed SQLite database file from
which the content is extracted.

The "serialize" method

The "serialize" method creates a BLOB which is a complete copy of an underlying
database. The syntax is like this:

dbcmd serialize ?database?

The optional argument is the name of the schema or database to be serialized. The
default value is "main".

This routine returns a TCL byte-array that is the complete content of the identified
database. This byte-array can be written into a file and then used as an ordinary SQLite
database, or it can be sent over a TCP/IP connection to some other application, or
passed to the "deserialize" method of another database connection.

This method only functions if SQLite is compiled with -
DSQLITE_ENABLE_DESERIALIZE

The "deserialize" method

The "deserialize" method takes a TCL byte-array that contains an SQLite database file
and adds it to the database connection. The syntax is:

dbcmd deserialize ?database? value

The option database argument identifies which attached database should receive the
deserialization. The default is "main".

This command causes SQLite to disconnect from the previous database and reattach to
an in-memory database with the content in value. If value is not a byte-array containing a
well-defined SQLite database, then subsequent commands will likely return
SQLITE_CORRUPT errors.

This method only functions if SQLite is compiled with -
DSQLITE_ENABLE_DESERIALIZE

The "interrupt" method

https://www.sqlite.org/lang_attach.html
https://www.sqlite.org/lang_attach.html
https://www.sqlite.org/rescode.html#corrupt

19/19

The "interrupt" method invokes the sqlite3_interrupt() interface, causing any pending
queries to halt.

The "version" method

Return the current library version. For example, "3.23.0".

The "profile" method

This method is used to profile the execution of SQL statements run by the application.
The syntax is as follows:

dbcmd profile ?script?

Unless script is an empty string, this method arranges for the script to be evaluated after
the execution of each SQL statement. Two arguments are appended to script before it is
invoked: the text of the SQL statement executed and the time elapsed while executing the
statement, in nanoseconds.

A database handle may only have a single profile script registered at any time. If there is
already a script registered when the profile method is invoked, the previous profile script
is replaced by the new one. If the script argument is an empty string, any previously
registered profile callback is canceled but no new profile script is registered.

The "unlock_notify" method

The unlock_notify method is used access the sqlite3_unlock_notify() interface to the
SQLite core library for testing purposes. The use of this method by applications is
discouraged.

https://www.sqlite.org/c3ref/interrupt.html
https://www.sqlite.org/c3ref/unlock_notify.html

